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ABSTRACT 

 

T RA F FI C  G E N ERA T O R  F O R F IRE WA L L  T ES TI N G   

 

            Firewalls lead at the front line of a computer network to restrict unauthorized 

access. The desired security level is determined by a policy and implemented by a firewall 

which not only has to be effective but also stable and reliable service is expected. In order 

to verify the level of security of the system, testing is required.   

 

 The objective of this thesis is to test a firewall with software testing techniques 

taking into consideration the nominated policy and the firewall. Iptables software was 

examined and tested by two different algorithms that were modified according to software 

testing techniques, and the results were observed. Packets sent through the Firewall Under 

Test (FUT) are compared to packets passed through the FUT and test results were 

observed. The security performance of the modified algorithms proved to be successful. 
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ÖZET  

 

GÜVENL�K DUVARI SINAMA AMAÇLI A� TRAF�K ÜRETEC� 

 

 Güvenlik duvarları, bir bilgisayar a�ı üzerinden izinsiz eri�im sa�lamayı amaçlayan 

ataklara kar�ı olu�turulan savunma mekanizmasının ön sıralarında yer almaktadır. Hem 

güvenilir ve istikrarlı, hem de performanslı bir hizmet saglaması önemlidir. Bu do�rultuda, 

arzu edilen güvenlik seviyesinin sa�lanabilmesi, olu�turulan güvenlik politikası ile 

mümkün olmaktadır. Güvenlik duvarının, beklenen güvenli�i ne ölçüde kar�ıladı�ını  

do�rulamak için ise, sistem test edilmelidir.    

 

 Bu çalı�mada, güvenlik duvarlarının izledikleri politika göz önüne alınarak yazılım 

testi yöntemleri ile sınanması hedef alınmı�tır. Güvenlik duvarı uygulaması için seçilen 

Iptables yazılımı, geli�tirililen algoritmalar ile 2 farklı yazılım testi uygulanarak sınanmı� 

ve test sonuçları gözlenmi�tir. Test edilmekte olan güvenlik duvarına gönderilen test 

paketleri, güvenlik duvarının arkasına geçen paketler ile kar�ıla�tırılarak test sonuçlarına 

karar verilmi�tir.  
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CHAPTER 1 

INTRODUCTION 

A firewall controls network traffic to and from a computer, based on a security 

policy. Although there was an omission from most of the literature of firewall studies, that 

is the systematic testing of firewalls, recent studies on firewalls began to fill this gap.  

Frantzen et al. proposed that given the large number of firewall vulnerabilities that 

have surfaced in recent years, it is important to develop a comprehensive framework for 

understanding both what firewalls actually do when they receive incoming traffic and what 

can go wrong when they process this traffic. They studied on a Framework for 

understanding vulnerabilities in firewalls using a dataflow model of firewall internals [1]. 

Dataflow based adequacy criteria [2, 3] provides a test set to satisfy certain define-

use (DU) associations that exist in the code. On the tests, achieving DU coverage level 

generally requires larger test sets and it is concluded frequently that higher detection rates 

achieved by the coverage based test, but with lower confidence the DU coverage sets had 

better fault detection also achieving 100% coverage. This is not necessarily a good 

indication that the test is adequate since the differences in fault detections are not 

statistically significant according to [4]. 

The studies based on data flow testing [5, 6, 7, 8, 9, 10] has been restricted to 

testing data dependencies that exist within a procedure which requires information about 

the flow of data including calls and returns, across procedure boundaries. Intra-procedural 

data flow tests focus on source code by building and searching program’s def-use graph 

and determines the dependencies or definition use pairs. Although existed inter-procedural 

data flow algorithms cannot provide information about locations of definitions needed for 

inter-procedural data flow testing, but consist of determining the def-use information and 

guiding selection and execution of test cases that meet requirements [11]. 

Zaugg worked on the test packet driven approach of firewall testing including two 

phases: the identification of appropriate test cases that examine the behavior of the firewall 
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and the practical performance of these tests where the study focuses on the second phase 

[12].There are three general approaches to firewall testing: Penetration testing, testing of 

the firewall implementation and testing of the firewall rules [12]. However, most of the 

academic work concentrates on the firewall rules and assume the implementation is error-

free [13]. This study focuses on the implementation testing of the firewall with software 

testing techniques and aims to test Iptables Firewall.  

This thesis introduces a Packet Generation Framework for Firewall Testing. The 

thesis is composed of five chapters. Chapter 2 gives some background information about 

software testing techniques, types of firewalls and recent works about firewall testing. 

Chapter 3 explains the details of conformance testing of firewall and equivalence 

partitioning testing of firewalls on which IPTABLES firewall is used in Linux platform. 

Moreover, database design and firewall configuration also explained in this section. 

Chapter 4 describes experiments which are performed using Packet Generation 

Framework. Finally, Chapter 5 gives the conclusion of this thesis work. 
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CHAPTER 2 

BACKGROUND 

In this chapter, software techniques with comparisons and types of firewalls are 

explained. In addition, the usages of software testing methods for firewall testing are 

reviewed. 

2.1. Software Testing 

Software testing is an activity which aims to reveal possible defects in computer 

software [14]. Moderately software or a system have an implementation with specifications, 

according to testers perspective, it requires different approaches based on amount of 

knowledge. By the complete knowledge of software or system with data flows, source codes 

a structural test can be applied which is called white box testing. Otherwise the system can 

be identified as “unknown” according to its specifications, therefore a functional test would 

be more appropriate approach namely its black box testing. As referred in [15:15], Myers 

summarizes the important aspects of the testing principles in 10 steps, namely: 

 

1. “A necessary part of a test case is a definition of the expected output or result. 

2. A programmer should avoid attempting to test his or her own program. 

3. A programming organization should not test its own programs. 

4. Thoroughly inspect the results of each test. 

5. Test cases must be written for input conditions that are invalid and unexpected, as 

well as for those that are valid and expected. 

6. Examining a program to see if it does not do what it is supposed to do is only half the 

battle; the other half is seeing whether the program does what it is not supposed to do. 

7. Avoid throwaway test cases unless the program is truly a throwaway program. 

8. Do not plan a testing effort under the tacit assumption that no errors will be found. 
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9. The probability of the existence of more errors in a section of a program is 

proportional to the number of errors already found in that section. 

10. Testing is an extremely creative and intellectually challenging task.” 

 

As offered in these steps, a well defined test case requires a purpose definition with an 

appropriate input to serve that purpose and an expected output. Also a successful test case 

needs to be unique, compare to other test cases in the way of uncovering defects.  

In this thesis, a black box approach is considered and a comparison to white box approach 

is made for stating the differences better. In black box approaches, equivalence partitioning is 

one of the techniques applied in proposed approach and it is compared to random testing to 

state difference with a reason to be selected. The other approach is conformance testing, 

performed in proposed approach. Also a penetration testing can be explained as a 

complementary to conformance testing. 

2.1.1. Black Box Testing 

Black box testing focuses on behaviors of the software based on functional 

requirements. Consequently, Input/Output conditions are based on no knowledge of internal 

logic about the software’s structure. The test cases are derived from specification of the 

requirements [16:161-166].The studies about automated test case generation by FSM can be 

referred as [17]. 

The number of driven test cases should contain all the possible function 

specifications to achieve reasonable testing and the test cases should reveal the presence or 

absence of the possible types of errors as referred in [18] 

The observation of test results reveal the difference between how the software acts 

and how its intent to behave, under given input. Each specification of the software is 

compared with expected behavior. All functional requirements of the system are considered 

to be fully exercised by black box testing [19]. 
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 Generally black box testing aims to find errors that can be categorized as [20:459-

468]: 

 

• “Incorrect or missing functions 

• Interface errors 

• Errors in data structures or external data base access 

• Behavior or performance errors 

• Initialization and termination errors” 

Black box testing mostly focuses on functionality of software. Compare to white box 

testing, it is applied in further stages of testing where a control flow and structural design is 

not considered. Only the information domain is regarded as an input to apply test cases. 

2.1.2. White Box Testing 

White box testing is also called Structural Testing or Logic Deriving Testing [15:11]. 

As the name implies, information about the structural design of the program and source code 

are required to derive test cases as a source. The determination of suitable test cases- derived 

from the structure of the software- is considered with the help of control flow, event 

sequence graphs or some other models.  

Since a model such as data control flow is required to derive test cases, every 

possible path in that graph needs to be examined at least once to complete the test of 

software. But as stated in [15:9-14], there are some disadvantages which make it infeasible. 

First one is the possibility of huge unique path exists in graphs; of that the cause high cost 

not only to determine uniqueness but also to execute each of them at least once, which is 

called exhaustive input test. Second one is, however each path should ever executed at least 

once, there is a path required to be executed. In case of missing paths, software runs 

incorrect. And there is also a possibility of absence in this missing patch that would not be 

recognized or examined paths would not uncover the error. 
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2.1.3. Black Box vs. White Box Testing 

As the name offers Black box testing [21], also called functional testing, derives test 

cases from the specification of the SUT, not the implementation where white box testing 

considers within. Furthermore in white box testing every statement or branch of the SUT is 

required to be executed at least once with some techniques. For the detailed information and 

comparisons of those white box techniques such as statement testing, branch testing, data-

flow testing [18] is referred. Since black box testing focuses on functions of the system, it is 

applied at further stages comparison to white box testing, where it is applied at early stages 

of life cycle [20:460]. 

“Functional testing can be applied at any level of granularity where some form of 

specification is available, from overall system testing to individual units, although the level 

of granularity and the type of software influence the choice of the specification styles and 

notations, and consequently the functional testing techniques that can be used” [16:161-

166]. All levels of granularity can be functionally tested and still some forms of 

specifications will be available, e.g. overall system testing and even as far as individual 

unit testing will be possible. Specification styles and notations can influence the level of 

granularity and the type of software that is being used. 

 However, there is a particular level of granularity which cannot be run over because 

structural and fault based testing techniques are invariably tied to specific program 

structures.  Fine-grain program structures (statements, classes , etc.) are usually tested by 

common structural tests, and these tests can only be used at modules which have small 

levels, or from another point of view and small collection of modules (small subsystems, 

component, or libraries) [16]. Also in [22], by analyzing structure of the specifications, its 

shown how to apply white box testing techniques into black box testing under the condition 

of requirements are implemented in formal model. 
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2.1.4. Equivalence Partitioning 

It is mentioned previous chapters how derive a test case from a model and how to 

decide correct test case to perform. There is another approach called, Equivalence 

Partitioning; that testing aims to limit infinitely many test cases, which causes the same 

problem we have mentioned in white box testing namely exhaustive input test, into a small 

subset of test cases. But there are 2 important properties of each test case partitioned in a 

subset defined by Pressman in [13] such as: 

• “It reduces, by more than a count of one, the number of other test cases that 

must be developed to achieve some predefined goal of “reasonable” testing” 

• “It covers a large set of other possible test cases. That is, it tells us something 

about the presence or absence of errors over and above this specific set of 

input values” 

The first property aims to minimize the possible input domain by defining a unique 

and most representative test case to uncover maximum number of possible input. The second 

property tells that if a test case that chosen from one partition detects an error, the other test 

case chosen from same partition acts exactly like first test case. That behavior must give 

satisfaction to all the test cases defined in same partition. 

2.1.5. Random Testing 

Each system requires an input to test its specifications for functional testing, namely 

black box testing and there should be a domain to select inputs. If any input from the domain 

is randomly selected, it’s called random testing. With that approach, there come some 

questions such as, how many selections should be done? [23:66-67]. 

Of course, it’s not always possible to know which test cases are better that can 

identify the defects. Since different test cases can more likely reveal defects then running the 

same test case, reasonably we can conclude that more different test cases are more valuable 

than similar selected test cases [16:161-166]. 
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2.1.6. Random vs. Equivalence Partitioning Testing 

Considering advantages of random testing, “Accidental bias may be avoided by 

choosing test cases from a random distribution. Random sampling is often an inexpensive 

way to produce a large number of test cases. If we assume absolutely no knowledge on 

which to place a higher value on one test case than another, then random sampling 

maximizes value by maximizing the number of test cases that can be created (without bias) 

for a given budget. Even if we do attain some knowledge suggesting that some cases are 

more valuable than others, the efficiency of random sampling may in some cases outweigh 

its inability to use any knowledge we may have” [16:161-166]. But it is assumed that 

random selection has less chance of select correct set of inputs to reveal defects in [18] [24] 

[25]. For further discussions [26] and [27] can be considered. 

Partitioning testing, which separates the domain by grouping an infinite set into finite 

sets, increases the cost. But the size of domain is important factor by the cost of creating a 

partition to compare with random selection. But some knowledge about the system is 

required for that estimation [23:67-72]. 

We can assume in the case of, each sub domain [28] of domain is uniform, and then 

the input from the partitioning class reveals the same defects from any input from same 

partition. So the partitions must be disjoint (the case of joint, defined in [29]) to satisfy 

uniformity. Also the experience takes an important role to select more likely failure-prone 

test cases [16]. That comparison between random and partitioning testing is also considered 

by an analytical approach in [30] and by experimental results in [25]. 

2.1.7. Conformance Testing 

It is also known as compliance testing or type testing [31]. The purpose of 

conformance testing is to determine the product, protocol, computer program or a system 

work or perform as intended. An implementation conforms to the specification based on 

formal standard. There are standards to conform the term “intended”. The conformance 

testing ensures that, each individual requirement of the specified standard works properly 
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where those standards are defined by independent institutes such as IEEE [32]. Each 

protocol implementation needs different formal definitions to state its specific aspects 

conformance to standards [33, 34, 35, 36, and 37]. 

In the test platform where conformance testing is applied to, System Under Test 

(SUT) factor takes an important role to define boundaries of test. The tests should be run by 

a system which can observe the SUT’s attitude. Also that dedicated system must be isolated 

from external effects to avoid miscalculated results [38]. 

As seen in Figure 2.1. Conformance testing has phases namely, implementation, 

compilation, testing, logging and analysis. In compilation stage by defining the test 

purposes, test cases are generated. In testing stage, test suite is set up and the created test 

system uses test suite to apply testing. Before testing stage, the Product (IUT) needs to be 

implemented according to base standards. The test is performed by the test system to 

product. As a last stage the test report is generated by logs of SUT. 

 

 Figure 2. 1. Conformance Testing [67] 

2.1.8. Penetration Testing 

Penetration testing also known as Black Hat Hacker and the purpose is to identify the 

vulnerabilities which can be caused by system configuration or component flaws. According 

to black box approach, security analyze of the system is covered without any prior 

infrastructure knowledge which is a “blind” test or attack. On the other hand, white box 

approach requires system infrastructure and can reveals leaks, so it is considered as “inside 

job” test or attack [39]. 
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From the perspective of functional testing, penetration testing considers with 

negative cases that cause system not as intended (produce fault), where functional testing 

considers only positives to test system. A positive test checks system behaviors with legal 

inputs and reveals the input-output nonconformance. But neither negative test cases reveals 

no error, it does not prove system has no faults because of very little assurance [40]. 

On the development life cycle of the application, penetration testing must be 

integrated in early phases to avoid implementation errors or systematic faults. Otherwise it 

uncovers defects or bugs too late which cost expensive. The integration phase at the system 

level, component testing can be used to check inter-component communication and global 

error handling, unit testing is used to divide security [40] into discrete parts. But root-cause 

architecture of vulnerabilities must be prevail [40]. 

Result interpolation such as bugs and vulnerabilities, is one of the major issues of 

penetration testing. Since the tests can identify small risks in early life cycle, the errors 

caused by mitigation of subsets can effect system at later life cycles which   The success of 

the tests depend on standards and metrics where tester skill, knowledge and experience lead 

with “software risk analysis” [41]. By use of tools provides efficient analysis which based on 

metrics [40]. 

2.2. Firewalls  

 Firewalls are softwares or hardwares which provide permission control, obstructing 

and filtering to unauthorized reaching come from on network or on internet. It can be 

separated in to three groups of software in Figure 2.2, hardware in Figure 2.3 or both of 

them to each other [42].Broadly speaking, a computer firewall, prevents unauthorized 

access to or from a private network. Firewalls are tools that can be used to enhance the 

security of computers connected to a network, such as LAN or the Internet. They are an 

integral part of a comprehensive security framework for your network. 
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Figure 2. 2. Hardware Firewalls [68] 

Firewall is one of the core element network and internet securities. However, 

managing firewall rules, especially for enterprise networks, has become complex and 

error-prone [43]. Firewall filtering rules have to be carefully written and organized in order 

to correctly implement the security policy [44]. In addition, inserting or modifying a 

filtering rule requires thorough analysis of the relationship between this rule and other 

rules in order to determine the proper order of this rule and commit the updates. 

 

Figure 2. 3. Software Firewalls [68] 
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In theory, a firewall is supposed to isolate your computer from the Internet, 

absolutely using a "wall of code" that inspects each individual "packet" of data as it arrives 

at either side of the firewall to determine whether it should be allowed to pass or be 

blocked. Firewalls have the ability to further enhance security by enabling regular control 

over what types of system functions and processes have access to networking resources. 

These firewalls can use various types of signatures and host conditions to allow or deny 

traffic. 

DMZ network serves as appendix for computer systems and sources that need to be 

accessible either externally or internally, but that could not be placed on internal protected 

networks [45] .DMZ networks are typically implemented as network switches that sit 

between two firewalls or between a firewall and a boundary router. Given the special 

nature of DMZ networks, they typically serve as attachment points for systems that require 

or foster external connectivity [45]. 

 A DMZ is a set of machines under common administrative control, with a common 

security policy and security level. There are many good reasons to erect internal firewalls 

[43]. 

2.2.1. Types of Firewalls 

Firewalls could be classifying three main categories. It could be arranging 

generally, packet filtering, circuit gateways, and application gateways [42] [43] [46]. Some 

sources mentions about fourth filtering of statefull inspection firewalls [45]. Traditionally, 

firewalls are placed between an organization and the outside world [43]. But a large 

organization may need internal firewalls as well to isolate DMZ (also known as 

administrative domains) [44]. DMZ which known as De Militarized Zone network, is 

created out of a network connecting two firewalls when two or more firewalls exist in the 

networks connecting the firewalls [45]. 

First category of firewalls, as seen in Figure 2.4, is application - layer gateway 

Contrast to packet filter firewall design, in this type of firewall, prefer to use general 

specified mechanism to allow many different kids of traffic to flow. The code can be used 
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for each desired applications. This type of firewalls search some protocols which work in 

application layer in OSI models [43]. 

 

Figure 2. 4. Application Layer Firewall [69] 
 

The second category of firewalls, as seen in Figure 2.5, is circuit - level gateway. 

Circuit gateways relay TCP connections. The caller connects to a TCP port on the 

gateway, which connects to some destination on the other side of the gateway. During the 

call the gateway’s relay programs copy the bytes back and forth: the gateway acts as a 

wire. In some cases a circuit connection is made automatically [43]. For example, we have 

a host outside our gateway that needs to use an internal printer. We have told that host to 

connect to the print service on the gateway. Our gateway is configured to relay that 

particular connection to the printer port on an internal machine.  

 

                                           

Figure 2. 5. Circuit Level Firewall [69] 
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The third category of firewalls, as seen in Figure 2.6, is packet - filtering gateways. 

This type firewalls control IP protocol, IP address and port number include own rules [47]. 

From there, the firewall would start at the top of the rule set and work down through the 

rules. In the table a sample of a packet filter firewall rule set for an imaginary network is 

shown. In packet filtering firewalls, the rule set would be much larger and detailed [45]. It 

is more troublesome than other firewalls [43]. A permission or denied rule is following 

some actions taken of accept, deny or discard. 

 

 
 

Figure 2. 6.Packet Filter Firewall [69] 

2.2.2. Policy 

So far it has been mentioned firewalls are an authority to control and monitor the 

network traffic between a local area network and internet. The restriction of 

unauthoritezied accesses is crucial. Therefore configuration of firewall is the most 

important step to restrict unauthorized access from internet. Different security levels 

require for different types of services. Referred to [45], building a firewall design requires 

4 components, namely policy, authentication, packet filtering, application gateway.  

The most effective way to provide security for firewalls is to design a correct and 

well defined policy to control network traffic pass through firewall. A firewall provides 

security mostly depends on the policy. As referred in [48], there are 5 stages to create a 

firewall policy such as zone of trust, administrator change, logging, stability and 

documentation. 
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Each zone stands behind firewall requires different trust levels, depends on the 

service they provide. Since firewall controls the traffic between different zones, a policy 

should be configured considering different traffic flow for each zone. Therefore zones 

must be identified correctly with the level of trust. As stated in Zone of Trust, firewall 

policy defines different rules which provide different security levels for different services. 

By the change of those services, policy rules need to be updated. Addition or modification 

of some rules, affects the policy. In case of firewall administrator change, such a scenario 

may arise that the new administrator can hesitate to modify or remove a rule when the 

policy requires an update. Consequently inserting a new rule would work but also override 

the some rules hierarchically. Far too often firewall may contain so many garbage rules 

which can cause an anomaly. So, well defined documentation of addicted or removed rules 

with date prevents that scenario. Also penetration testing and IDS can check the rules to 

verify agreed policy works as intended. 

Firewall policy meets the security requirements as much as the rule set serves as it 

is intended. Because the behaviors of the firewall actions are defined in the policy by 

implemented rules, each rule almost contains some fields have information about source 

address of packet, destination address of packet, type of traffic namely protocol and the 

ports of communicated services [45]. 

Beside of controlling the input and output network traffic by accepting or denying 

packets, firewall can also log the traffic pass through. That should also be considered as 

primary purpose which affects security indirectly but efficiently. But a log is as useful as it 

is reviewed. A firewall should be monitored to check whether it is up and works as 

intended. Therefore it is ensured that firewall provides maximum security as it stands. 

Even a firewall, with well designed and well defined rules, is only as good as it is stable. 

Otherwise an intruder may find a way to avoid. Each rule in the firewall stands for the 

policy that provides security. Therefore every rule needs to be documented with required 

information about why that rule stands for and which rules it is cooperated with.  
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2.3. Tool Support 

The implementation process devoloped in Windows XP SP3 platform. JDK 

1.6.0u13 version of Java software with a JPCAP version 0.7  library is used for packet 

generation, sending and capturing. The generated traffic sent to the firewall, where 

IPTABLES version 1.4.1 is used in linux platform (ubuntu version 9.04) is used. According 

to firewall policy, accepted packets are passed through firewall and captured by a sniffer. 

The generated and captured packets are stored in MYSQL version 5.1 community server 

edition database.  

That chapter is composed of 3 sub-chapters. Chapter 2.3.1 gives basic information 

about IPTABLES and configuration, chapter 2.3.2 explains the implementation details of 

traffic generation tool with JPCAP library and  chapter 2.3.3 describes the database model. 

2.3.1. IPTABLES 

 Iptables is the userspace command line program used to configure the Linux 2.4.x, 

2.6.x and upper versions IPv4 packet filtering ruleset [63, 64]. It is targeted towards system 

administrators. Also, iptables is a software which could used for inspect Netfilter system 

into userspace have been in the core [64]. This system will provide properties of packet 

filtering firewalls, application level firewalls and statefull firewalls by means of Extensions 

which named widening package[64]. For example, it could made possible to use like IPS 

and IDS properties with Snort softwares [64]. There are three different tables in the iptables 

[64]. The mangle table, the nat table and the filter table [64]. Each table has its own built-in 

chains like the filter table has input, output and forward chains [64]. Each iptables rule, 

must specify the table and the chain within the table that it should be applied to [64]. 

The first table of iptables is mangle table. This table is used mainly for mangling 

packets.Among other things, the contents of different packets and that of their headers 

could changed. Examples of this would be to change the TTL is used to modify the Time 

To Live field in the IP header, TOS is used to set the Type Of Service or MARK [63]. The 

following marks are only effective in the mangle table.  
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The nat table is used mainly for Network Address Translation. " NAT " packets get 

their IP addresses altered, according to our rules. Packets in a stream only traverse this table 

once . Assume that the first packet of a stream is allowed. The rest of the packets in the 

same stream are automatically " NAT " or Masqueraded etc, and will be subject to the same 

actions as the first packet . These will, not go through this table again, but will  nevertheless 

be treated like the first packet in the stream. This is the main reason why  could not to do 

any filtering in this table, which discussion at greater length further on. The PREROUTING 

chain is used to alter packets as soon as they get in to the firewall. The OUTPUT chain is 

used for altering locally generated packets before they get to the routing decision. Finally, 

the POSTROUTING chain which is used to alter packets just as they are about to leave the 

firewall [64]. 

The filter table should be used exclusively for filtering packets. For example, it 

could DROP, LOG, ACCEPT or REJECT packets without problems, as it could in the 

other tables. There are three chains built in to this table. The first one is named FORWARD 

and is used on all nonlocally generated packets that are not destined for our local host. 

INPUT is used on all packets that are destined for our local host (the firewall) and 

OUTPUT is finally used for all locally generated packets [65]. 

Figure 2.7 will clarify to FORWARD chain process. If a packet have gotten into the 

first routing decision that is not targeted for the local machine itself and it will be routed 

through the FORWARD chain. If the packet is destined for an IP address that the local 

machine is listening to, the packet could sent through the INPUT chain and to the local 

machine [64]. 

 First step in Figure 2.7, a packet comes in on the interface to mangle 

PREROUTING. This chain is normally used for mangling packets, changing TOS and so 

on. This is also where the non - locally generated connection tracking takes place. In 

second step, nat PREROUTING chain is used for DNAT mainly. First step in Figure 2.7, a 

packet comes in on the interface to mangle PREROUTING.  
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Figure 2. 7. Forward Chain of Filter Table 
 
 

This can be used for very specific needs, where wanted to mangle the packets after 

the initial routing decision, but before the last routing decision made just before the packet 

is sent out. In forth step, the packet gets routed onto the FORWARD chain of the filter. 

Only forwarded packets go through here where doing all the filtering. In fifth step which 

mangle POSTROUTING is used for specific types of packet mangling that we wish to take 

place after all kinds of routing decisions have been done, but still on this machine. In sixth 

step of forward packets, nat POSTROUTING should first and foremost be used for SNAT. 

Avoid doing filtering here, since certain packets might pass this chain without ever hitting 

it. This is also where Masquerading is done. And the last, packets go out on the outgoing 

interface. 
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2.3.2. JPCAP Library 

Packet Generation Software tool is implemented in Java by using JPCAP library 

which enables to generate, send and capture TCP packets. Packet generation is composed 3 

of 4 phases which is based on a TCP/IP model layers as seen in Figure 2.8, namely: 

 

1) Transport Layer 

2) Internet Layer 

3) Link Layer 

 

 

Figure 2. 8. TCP/IP Protocol Layers [70] 
 

In Transport Layer, packet is constructed in TCP protocol and all flag , port 

information are specified. TCP packet generation requires datagram fields such as:Ack flag, 

Ack number, Destination port number, Fin flag, Tcp option, Psh flag, Rst flag, RSV1 flag, 

RSV2 flag, Sequence number, Source port number, SYN flag, URG flag, Urgent Pointer, 

Window size as seen in the Table 2.1. TCP packet constructor is explained in the Figure 2.9 

with the fields and the required parameters. 
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Table 2.1. TCP Layer Fields 

Field Name Explanation 

Acknowledgment flag Boolean variable stands for Acknowledgement number. When ack 

flag is set to true, Ack number field defines the next expected byte 

that the receiver is expecting and restricted up to 32 bits. 

Destination port Identifies the receiver’s port number. 

Source port Identifies the sender’s port number. 

FIN flag 1 bit Boolean field that tells to receiver, sender will not send no 

more data. 

TCP option optional multiple of 32 bits field. 

PSH flag 1 bit Boolean Push function field. 

RST flag 1 bit Boolean field to reset connection. 

RSV1 and RSV2 Reserved fields. 

SYN flag 1 bit Boolean field, stands for synchronizing sequence number. 

Sequence number 32 bit field, depends on SYN flag. If it’s set true, it replaces the 

sequence number with actual first data bytes plus 1. If its set false 

then it replaces with the first data byte. 

URG flag 1 bit Boolean field and identifies the urgent pointer is set. 

Urgent pointer 16 Bits field, synchronizes the last urgent data byte from the 

sequence number. 

Sequence number 32 bit field, depends on SYN flag. If it’s set true, it replaces the 

sequence number with actual first data bytes plus 1. If its set false 

then it replaces with the first data byte. 

Window size 16 Bits field and identifies the receiver’s data size of able to 

receive. 
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Figure 2. 9. TCP Packet Constructor [71] 
 

After that arguments set in the TCP generate function, it is encapsulated by an IP 

frame. ” In most protocol specifications related to the TCP/IP protocol suite, the term 

fragmentation rather than segmentation is used. The meaning is the same” [66] That 

encapsulation requires IPv4 parameter datagram fields such as: Priority, IP Delay flag bit , 

IP Through flag bit, IP Reliability flag bit, Type of Service, Fragmentation reservation flag, 

Don't fragment flag, More fragment flag, Fragment offset, Identification, TTL, Protocol, 

Source IP address, Destination IP address as seen in the Table 2.2. In internet layer, data 

adressing and packet fragmentation operations are completed. IP version 4 packet datagram 

fields with the required parameters are shown in the Figure 2.10. 
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Table 2. 2. IP Layer Fields 

Field Name Explanation 

Version 4 bits field, specifies the packet is IP version 4 or IP version 6. 

Priority Priority of a packet. 

IP Delay flag Minimizes the Delay, 0 is normal delay, 1 is low delay. 

IP Through flag Maximizes the thorughput, 0 is normal, 1 is high. 

IP Reliability flag Set the reliability, 0 is normal, 1 is high. 

Type of Service 
Refers to Quality of Service and identifies the priority of 

packet. 

Fragment offset 13 Bits field and specifies the fragment that packet is attached. 

Fragmentation reservation 

flag 

3 bits field and identifies the packet is allowed to be 

fragmented or not (Don’t Fragment) or followed by more 

fragments (More Fragment). 

Don't fragment flag Used for packet recovery. 

More fragment flag Used for packet recovery. 

Fragment offset Used for packet recovery. 

Identification 

16 Bits field that helps to recover packet from small pieces 

only enough to pass through, and uses the Fragmentation field 

with Don’t fragmentation or More fragmentation fields. 

TTL 
8 bits field, specifies the number of hops the packet pass 

through before it is discarded. 

Protocol 

8 bits field identifies the protocol of packet. But when packet 

is encapsulated by higher level protocol such as TCP, that 

field is ignored. 

Source IP address Identifies the senders IP address in 32 bits field. 

Destination IP address Identifies the receiver’s IP address in 32 bits field. 
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Figure 2. 10. IP Packet Parameters [71] 
 

 After IP layer, the packet is encapsulated in Link Layer by the pysical medium 

information and prosedure is specified data transmission. Ethernet header includes fields 

such as: destination mac address, source mac address, frame type as shown in the table 2.3. 
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Table 2. 3. Link Layer Header 

Fielad Name Explanation 

Destination mac address 6 Bytes field of receiver’s pysical interface address. 

Source mac address 6 Bytes field of sender’s pysical interface address. 

Frame type Ethernet Frame Type. 

 

 After packets are generated, JPCAP library enables to send them via sender methot 

which requires initializing network interface device and a packet as an input parameter. 

Sent packets can be captured by an capture methot which requires input parameters namely, 

network interface device, maximum number of bytes can be captured, promiscuous mode 

for destination mac address control and time out period to restrict incoming packets.  
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CHAPTER 3 

PROPOSED APPROACH�

 Designed proposed approach aims to test specifications of the software, which is a 

firewall policy in our case. There are some steps for testing in our approach such as 

defining a firewall policy in a formal language, deriving firewall rules in terms of tuples, 

defining an algorithm to automatize test case generation, generating abstract test cases from 

tuples by that algorithm, generating packets from abstract test cases, applying a formal 

model to test firewall. 

3.1. Formal Methods  

The increasing complexity of systems requires well defined specifications in a 

systematic way which consists of mathematical models to observe system’s behavior. 

Formal Description Technique (FDT) provides an implementation of a system with an 

implemented language with a syntax and semantics with formal descriptions. That makes it 

possible to question and analyze by using mathematical basics [49:4-8]. As an example of 

that standardization with mathematical models based on finite state machines are Estelle [61] 

and SDL [62] may be pointed. 

Briefly, formal protocol development of a system requires firstly capturing phase 

where requirements of the system is collected, then specifications are defined and 

implemented from that requirements using FDT. By the combination of specifications and 

their implementations, correctness of the system can be experimented with tests derived 

from FSM and verified with a formal model [49:10-23]. 
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3.2. Firewall Policy Formalization  

Firewalls may have a different policy syntaxes adapted for their own algorithms. 

Therefore comparison or testing policies (if it works as intended) come up with problems of 

understanding different policies or comparing them by a common specification. That 

situation requires a formal definition for firewall policies to meet them in a common point. 

So, even different syntaxes can be interpreted in terms of their formal definitions.  

As seen in the Figure 3.1. there is a network layout, contains internet, intranet and a 

firewall. Firewall has 2 interfaces for an input and output. Considering intranet (subnet) as a 

packet sender, eth 1 interface is an input and eth 0 interface is an output but considering 

packets come from internet, it is vice versa..  

 

 

Figure 3. 1. Network Layout 

Assume that, there is an internet access from intranet to internet for all subnet hosts 

from 1 to n. In our formal approach we state a subnet as a set that all the hosts are identical 

therefore the policy behaves same for each member of the subnet. The internet access from 

intranet to internet can be shown in Table 3.1. 

In given Table 3.1 source is a subnet where hosts are participated in intranet. They 

request for a permission to access internet so the destination is an internet for the subnet 
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hosts in the intranet as a source and the restriction is allowed for a web access service. So the 

formal policy figured in Table 3.1 shows that each request from intranet to internet for a web 

access services is accepted by firewall as stated in the policy.  

 
Table 3. 1. Formal Policy 

Source Destination Restriction Permission 

Intranet Internet Web Access Accept 

 

But in case of some other requests apart from web access, there must be a rule 

defined in the policy, in out case default policy is deny. Table 3.2. shows that any other 

requests from intranet to internet is denied by the firewall policy.  

 
Table 3. 2. Formal Default Policy 

Source Destination Restriction Permission 

Intranet Internet Web Access Accept 

Intranet Internet Any Deny 

3.3. Formal Framework  

Depends on configuration of test architecture, an abstract test case can be generated. 

That will state the how the system will be tested which is Implementation Under Test (IUT) 

as seen in Figure 3.2 for the comformance testing. The relationship between IUT and testing 

environment must be stated based on test purpose derived from requirements, then that step 

followed by development of an abstract test suite which is implementation independent. The 

next step is abstract test case generation for each test purpose [49:27-45]. As last step to 

apply testing on a real system, that test cases transformed into executable form. To interpret 

the results more accurately and consistently, meaningful test selections for execution can be 

chosen [50, 51, 52]. 
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In [53], Test sequence generation technique approach can be used together with 

conformance testing where 4 (T-, U-, D- and W-) methods are used to generate test 

sequences for FSM, such as UIO, DS or Wset and helped compared to each other with pros 

and cons.  

But sometimes for each input there isn’t a completely specified output stated. That 

condition differs from state oriented (deterministic) models. Therefore the test generation 

from that input/output can be considered nondeterministic FSM [54, 55, 56, 57, 58]. And 

that should be handling as a problem which caused by an output sequences of the 

specification FSM, does not corresponds to input sequences, However “conforming 

implementation of FSM must produce all of them” [59]. 

3.4. Deriving Test Cases from FSM 

Test case generation is a directly effective factor on determining performance and 

cost measurements. The utility model is used for test case generation from specifications 

(formal or informal) and this model aims for the improved performance, reduced cost in test 

design [16:246-250].Specifications may be indicated straightly as some form of finite state 

machine. As an example, “embedded control systems are frequently specified with State 

charts, communication protocols are commonly described with SDL diagrams, and menu 

driven applications are sometimes modeled with simple diagrams representing states and 

transitions” stated in [16]. Sometimes the finite state essence of systems is left implicit in 

informal specifications.  

Occasionally, test cases are enclosed in infinite states of control or interactive 

systems. But still FSM model can be used, if these infinite states are simple. Considering a 

communication example that issues an network traffic such as incoming and outgoing 

packets are transmitted from different ports. But under the condition of services’ content is 

disregarded , the protocol system still be considered as an FSM. Most common strategy for 

deriving test cases from FSM is to checking each state transmission which is specification of 

precondition and post condition pair [16].  
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3.5. Test Selection 

As mentioned in previous Chapter 3.3, at test method’s level of abstraction, a 

specific test purpose is used which is derived from the abstract test case phase. Although 

abstract test method is specific to environment requirements, there are large amount of test 

cases (or infinite) can be generated for FSM by generation algorithms.  

 

 

Figure 3. 2. Conformance Testing [49] 
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Proportionally that increases the cost of generation or makes it impossible to execute 

all test cases, if number of generated test cases are infinite. That should lead by a reduction 

in the size of test cases by an selection of meaningful portions. Apart from random selection, 

there can be used a heuristic from software testing [49:149-150] such as equivalence 

partitioning and boundary value analysis [18].  

3.6. Rule Tuples 

 By the formal policy definition, we must set a standard syntax in terms of tuples. So 

the firewall policy can be given as an input to execute and generate abstract test cases by 

the test case generation algorithm. 

 An example network layer is stated in the Figure 3.3 with the rule stated in Table 

3.3. “*” notation and any show all the possible values can be applied in that field. The 

intranet contains a subnet which is 193.140.248.* by the connection port any. Destination 

for the internet as an ip is considered as *.*.*.* but the port number is 80 for the web 

service. 

 

 

Figure 3. 3. Network Layer 2 
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Table 3. 3. Firewall Rule (Default Policy: Deny) 

Order Protocol Source IP 
Source 

Port 

Destination 

IP 

Destination 

Port 
Action 

1 6 193.140.248.* Any *.*.*.* 80 Accept 

    

 

As rewritten the policy in tuple form, it is:   

• <1, 6, 193.140.248.*, Any, *.*.*.*, 25, Accept>.  

The rule covers the packets generated from the tuple as:  

• <6, 193.140.248.*, Any, *.*.*.*, 25>  

with the fields; protocol, source ip, source port, destination ip, destination port. 

 IP address for source or destination of packets is considered in 3 cases such as host 

(193.140.248.1), subnet (193.140.248.*), and “*.*.*.*”. In case of subnet ip address is 

given, the algorithm evaluates the subnet range for top, bottom and center values.  

As an example;  

  193.140.248.1 is generated for bottom value 

  193.140.248.127 is generated for center value 

  193.140.248.254 is generated for top value   

 In case of “*.*.*.*” is given, the algorithm uses 6 ip addresses to replace it by the 

approach of all ip addresses are identical but each selected ip aims to uncover the mostly 

predicted ip address range. That ip addresses are; 

• 10.0.01 

• 172.16.0.1 

• 192.168.0.1 

• 127.0.0.1 

• 88.241.34.41 

• 215.15.168.23 

 The port number is stated as an integer or “any”. In case of integer value, it is used 

as it is given. But in “any” case, the port addresses are “0, 65535, 23, 80”. 
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3.7. Network Traffic Generator 

 The graphical notation of testing platform is shown in Figure 3.4 with use case 

diagram. The detailed describtion of use case : 

Use-case : Firewall Testing  

Primary actor : Tester 

Secondary actors : Firewall, Sniffer and Evaluator 

Goal in context : Testing a firewall by generating network traffic via software testing 

techniques 

Preconditions : 1) The test case generation methot needs to be selected 

     2) Firewall policy needs to be defined and set to DENY as default policy 

     3) Sniffer needs to be ready to listen traffic 

Trigger : The tester decides to test a firewall 

Scenario :       1) Tester: selects a testing technique 

  2) Tester: test is performed 

  3) Firewall: Filters incoming packets and route them 

  4) Sniffer: Captures packets behind firewall and store them 

  5) Evaluator: Compares the packets of Tester and Sniffer 
 

 

Figure 3.4. Use case diagram of FUT 



 33

The implemented Network Traffic Generator tool GUI is shown in Figure 3.5. 

Functions of the tool are enumerated in circles namely; 

 

1) Perform Test : It confers 2 testing techniques to perform such as, conformance 

testing and equivalence partitioning testing.  

2) OK Button : When pressed, it runs whole selected testing technique and includes 

phases such as reading a firewall rule, generating test cases, generating packets and 

finalizes test with sending packets.  

3) Firewall Rules : That text area shows firewall rules. 

4) List Rule Button : When pressed, firewall rules are read from file and listed in text 

field.  

5) Test Case Generation : It confers 2 testing techniques to generate test cases  

6) Show Equivalence DB : When pressed, that button establishes a database 

connection and sorts all stored packet information generated by equivalence 

partitioning testing technique.  

7) Database Table : That table shows the queried data by Conformance DB and 

Equivalence DB buttons.  

8) Console : That field notifies user about the information flow during software runs.  

 

The Activity Diagram of implemented software is shown in Figure 3.6. When software 

run, testing technique needs to be selected. Due to selected testing technique, firewall rule 

policy is read from a file and convert that rule into a rule tuple. An appropiate algorithm, 

designed for conformance testing or equivalence partitioning testing, is applied for deriving 

test cases. Then packets are generated from each test case. Generated packets can be sent 

directly or written to text file or stored in database. Those 3 functions also can be combined 

by an order.  

 



 34

  
 

 

F
ig

ur
e 

3.
5.

 N
et

w
or

k 
T

ra
ff

ic
 G

en
er

at
or

 S
of

tw
ar

e 
G

U
I 



 35

 

Figure 3.6. Activity Diagram 
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3.8. Database Design 

MYSQL version 5.1 community server edition database is used for 3 purposes 

namely, storing generated packets, captured packets and comparing generated and captured 

packets as an evaluator. For database connection via java platform, mysql-connector-java 

version 5.1.7 driver is used. Generated packets are stored in a database table, created with 

sql for equivalence testing as seen in Figure 3.7, and followed by the database model in 

figure 3.8,  for conformance testing the sql is shown in Figure 3.9 and followed by the 

database model in Figure 3.10. 

 

 

Figure 3.7. Create Equivalence Testing Table 
 
 

 

Figure 3. 8. Equivalence Testing Database Model 
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Figure 3. 9. Create Conformance Testing Table 
 

 
Figure 3. 10. Conformance Testing Database Model 

 
The packets which pass through firewall, are captured with sniffer tool and stored in 

a table with only their hash values are considered . 
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3.9. Automatized Test Case Generation Algorithm 

3.9.1. Conformance Testing 

 As the formal policy defined in tuple form, that study aims to generate test cases 

automated by the test case generation algorithm. The presented algorithm is modified from 

[60] as shown in 3.1, applied for TCP protocol by using Reset, FIN, SYN/ACK and SYN 

flags. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.1) 
                             

 
 

 

for each <FirewallRule> 
 for <source_IP> 
  Generate IP 
 for <source_port> 
  Generate Port 
 for <destination_ip> 
  Generate IP 
 for <destination_port> 
  Generate Port 
Return TestCases   
 
for each <TestCase>  
 TestCase.setFlag(RST, true) 
 TestCase.setFlag(FIN, true) 
 switch(source_IP and destination_IP) and TestCase.setFlag(SYN,ACK, true) 
 TestCase.setFlag(SYN, true) 
 
for <IP>  
 if ip is a host 
  IP is a host IP 
 if ip is a subnet 
  IP is a random IP in subnet 
 if ip is “*.*.*.*” 
  IP is a random IP from set of most used IPs = { 
  202.212.5.30,   // yahoo 
  216.239.33.96,   // google 
  131.107.137.165,  // msn } 
for <Port> 
 if port is an integer 
  Port is port 
 if port is “any” 
  Generate random port in range [1-1024] 
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3.9.2. Equivalence Partitioning Testing 

 Our Equivalence Class Partitioning approach aims to uncover faults in FUT by 

exercising each independent path, where each path represents a unique test case. As 

referred in [15], input domain of FUT is divided into finite number of equivalence classes 

and ECP consists of 2 steps namely equivalence class identification and test case 

generation.  

 In [60] Equivalence classes are reclaimed as valid  and invalid. Valid equivalence 

classes are denominated by ECv and represented by valid inputs. Invalid equivalence 

classes are denominated by ECinv and the domain contains of invalid inputs. The algorithm 

referred in [60] is modified and presented in 3.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.2) 
 

for <ip> 
 if ip is a host 
  ECv is a host ip 
  ECinv(0) is [1.0.0.1 … ip-1] 
  ECinv(1) is [ip+1 … 255.255.255.254] 
 if ip is a subnet 
  call subnet_range for 
   ECv is subnet 
   ECinv(0) is lower subnet-1 
   ECinv(1) is upper subnet+1 
 if ip is “*.*.*.*” 
  ECv (0) is 10.0.01 
  ECv (1) is 172.16.0.1 
  ECv (2) is 192.168.0.1 
  ECv (3) is 127.0.0.1 
  ECv (4) is 88.241.34.41 
  ECv (5) is 215.15.168.23 
 for <subnet_range> 
  ECv (0) is center value of subnet_range 
  ECv (1) is bottom value of subnet_range 
  ECv (2) is top value of subnet_range 
for <port> 
 if port is an integer 
  ECv is port 
  ECinv(0) is (port-1) 
  ECinv(1) is (port+1) 
 if port is “any”  
  ECv (0) is 0 
  ECv (1) is 65535 
  ECv (2) is 23 
  ECv (3) is 80 
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3.10. Abstract Test Cases 

3.10.1. Scenario 1: Subnet IP Range for Source IP 

 The abstract test cases auto-generated by the given algorithm as the form of tuple 

which is source IP is a subnet; <6, 193.140.248.*, Any, *.*.*.*, 25>. 

 Those test cases -generated by Algorithm 1- are presented below in Table 3.4 at 

abstract form without flags. As stated in the algorithm those test cases aim to uncover 

errors in firewall caused by IP addresses and ports with the TCP protocol.  

 That abstract generated test cases, from no.1 to 3 are for the source IP, from no. 4 to 

7 aims the source port, from no. 8 to 13 are for the destination IP and the no. 14 rule stands 

for the destination port.   

Table 3. 4. Conformance Test Cases Scenario-1 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 193.140.248.1 Any *.*.*.* 25 

2 6 193.140.248.127 Any *.*.*.* 25 

3 6 193.140.248.254 Any *.*.*.* 25 

4 6 193.140.248.* 0 *.*.*.* 25 

5 6 193.140.248.* 65535 *.*.*.* 25 

6 6 193.140.248.* 23 *.*.*.* 25 

7 6 193.140.248.* 80 *.*.*.* 25 

8 6 193.140.248.* Any 10.0.0.1 25 

9 6 193.140.248.* Any 172.16.0.1 25 

10 6 193.140.248.* Any 192.168.0.1 25 

11 6 193.140.248.* Any 127.0.0.1 25 

12 6 193.140.248.* Any 88.241.34.41 25 

13 6 193.140.248.* Any 215.15.168.23 25 

14 6 193.140.248.* Any *.*.*.* 25 
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 In the Table 3.5, the abstract test cases are shown, generated by Alg2. The test cases 

from no.1 to no. 9 are for source IP, no.10 to no. 13 are for source port, no.14 to no. 19 are 

for destination IP and no.20 to no.22 are for destination port.  

 

Table 3. 5. Equivalence Partitioning Test Cases Scenario-1 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 193.140.248.1 Any *.*.*.* 25 

2 6 193.140.248.127 Any *.*.*.* 25 

3 6 193.140.248.254 Any *.*.*.* 25 

4 6 193.140.247.1 Any *.*.*.* 25 

5 6 193.140.247.127 Any *.*.*.* 25 

6 6 193.140.247.254 Any *.*.*.* 25 

7 6 193.140.249.1 Any *.*.*.* 25 

8 6 193.140.249.127 Any *.*.*.* 25 

9 6 193.140.249.254 Any *.*.*.* 25 

10 6 193.140.248.* 0 *.*.*.* 25 

11 6 193.140.248.* 65535 *.*.*.* 25 

12 6 193.140.248.* 23 *.*.*.* 25 

13 6 193.140.248.* 80 *.*.*.* 25 

14 6 193.140.248.* Any 10.0.0.1 25 

15 6 193.140.248.* Any 172.16.0.1 25 

16 6 193.140.248.* Any 192.168.0.1 25 

17 6 193.140.248.* Any 127.0.0.1 25 

18 6 193.140.248.* Any 88.241.34.41 25 

19 6 193.140.248.* Any 215.15.168.23 25 

20 6 193.140.248.* Any *.*.*.* 26 

21 6 193.140.248.* Any *.*.*.* 24 

22 6 193.140.248.* Any *.*.*.* 25 

 

 



 42

3.10.2. Scenario 2: Source IP is a Host  

 In this scenario, the abstract test cases auto-generated by the given algorithm as the 

form of tuple where the source ip represents a host; 

 

• <6, 193.140.248.15, Any, *.*.*.*, 25>  

 

 The following test cases in Table 3.6 represent the case of source of host IP and the 

test case no.1 is for the source IP, from no.2 to no.5 are for the source port, from no.6 to 

no.11 are for the destination IP and no.12 is for the destination port. And the Table 3.7 

represents the Equivalence Partitioning test cases. 

 

Table 3. 6.  Conformance Test Cases Scenario-2 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 193.140.248.15 Any *.*.*.* 25 

2 6 193.140.248.15 0 *.*.*.* 25 

3 6 193.140.248.15 65535 *.*.*.* 25 

4 6 193.140.248.15 23 *.*.*.* 25 

5 6 193.140.248.15 80 *.*.*.* 25 

6 6 193.140.248.15 Any 10.0.0.1 25 

7 6 193.140.248.15 Any 172.16.0.1 25 

8 6 193.140.248.15 Any 192.168.0.1 25 

9 6 193.140.248.15 Any 127.0.0.1 25 

10 6 193.140.248.15 Any 88.241.34.41 25 

11 6 193.140.248.15 Any 215.15.168.23 25 

12 6 193.140.248.15 Any *.*.*.* 25 
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Table 3. 7. Equivalence Partitioning Test Cases Scenario-2 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 193.140.248.15 Any *.*.*.* 25 

2 6 1.0.0.1 Any *.*.*.* 25 

3 6 193.140.248.14 Any *.*.*.* 25 

4 6 97.70.124.7 Any *.*.*.* 25 

5 6 193.140.248.16 Any *.*.*.* 25 

6 6 255.255.255.254 Any *.*.*.* 25 

7 6 224.197.251.135 Any *.*.*.* 25 

8 6 193.140.248.15 0 *.*.*.* 25 

9 6 193.140.248.15 65535 *.*.*.* 25 

10 6 193.140.248.15 23 *.*.*.* 25 

11 6 193.140.248.15 80 *.*.*.* 25 

12 6 193.140.248.15 Any 10.0.0.1 25 

13 6 193.140.248.15 Any 172.16.0.1 25 

14 6 193.140.248.15 Any 192.168.0.1 25 

15 6 193.140.248.15 Any 127.0.0.1 25 

16 6 193.140.248.15 Any 88.241.34.41 25 

17 6 193.140.248.15 Any 215.15.168.23 25 

18 6 193.140.248.15 Any *.*.*.* 26 

19 6 193.140.248.15 Any *.*.*.* 24 

20 6 193.140.248.15 Any *.*.*.* 25 
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3.10.3. Scenario 3: Source IP is Any 

 In scenario-3, the abstract test cases auto-generated by the given algorithm as the 

form of tuple in case of source IP is any; 

• <6, Any, Any, *.*.*.*, 25>  

 The test cases listed below in Table 3.8. represents the case when source IP is 

denoted as any in the firewall rule. The generated test cases, from no1. to no.6 are for 

source IP, from no.7 to no.10 are for the source port, from no.11 to no.16 are for the 

destination IP, and the no.17 stand for the destination port to uncover errors. 

 

Table 3. 8. Conformance Test Cases Scenario-3 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 10.0.0.1 Any *.*.*.* 25 

2 6 172.16.0.1 Any *.*.*.* 25 

3 6 192.168.0.1 Any *.*.*.* 25 

4 6 127.0.0.1 Any *.*.*.* 25 

5 6 88.241.34.41 Any *.*.*.* 25 

6 6 215.15.168.23 Any *.*.*.* 25 

7 6 *.*.*.* 0 *.*.*.* 25 

8 6 *.*.*.* 65535 *.*.*.* 25 

9 6 *.*.*.* 23 *.*.*.* 25 

10 6 *.*.*.* 80 *.*.*.* 25 

11 6 *.*.*.* Any 10.0.0.1 25 

12 6 *.*.*.* Any 172.16.0.1 25 

13 6 *.*.*.* Any 192.168.0.1 25 

14 6 *.*.*.* Any 127.0.0.1 25 

15 6 *.*.*.* Any 88.241.34.41 25 

16 6 *.*.*.* Any 215.15.168.23 25 

17 6 *.*.*.* Any *.*.*.* 25 
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 The generated test cases in Table 3.9, from no1. to no.6 are for source IP, from no.7 

to no.10 are for the source port, from no.11 to no.16 are for the destination IP, and no.17 to 

no.19 stand for the destination port to uncover errors. 

 

Table 3. 9. Equivalence Partitioning Test Cases Scenario-3 

Test 

No 
Protocol Source IP 

Source 

Port 

Destination 

IP 

Destination 

Port 

1 6 10.0.0.1 Any *.*.*.* 25 

2 6 172.16.0.1 Any *.*.*.* 25 

3 6 192.168.0.1 Any *.*.*.* 25 

4 6 127.0.0.1 Any *.*.*.* 25 

5 6 88.241.34.41 Any *.*.*.* 25 

6 6 215.15.168.23 Any *.*.*.* 25 

7 6 *.*.*.* 0 *.*.*.* 25 

8 6 *.*.*.* 65535 *.*.*.* 25 

9 6 *.*.*.* 23 *.*.*.* 25 

10 6 *.*.*.* 80 *.*.*.* 25 

11 6 *.*.*.* Any 10.0.0.1 25 

12 6 *.*.*.* Any 172.16.0.1 25 

13 6 *.*.*.* Any 192.168.0.1 25 

14 6 *.*.*.* Any 127.0.0.1 25 

15 6 *.*.*.* Any 88.241.34.41 25 

16 6 *.*.*.* Any 215.15.168.23 25 

17 6 *.*.*.* Any *.*.*.* 26 

18 6 *.*.*.* Any *.*.*.* 24 

19 6 *.*.*.* Any *.*.*.* 25 
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CHAPTER 4 

EXPERIMENTS AND EVALUATION 

 The implemented network traffic generation tool uses 2 different algorithms namely 

Conformance Testing Algorithm and Equivalence Partitioning Algorithm. These 2 

algorithms are  applied to same network topology as shown in Figure 4.1. Equivalence 

Partitioning Algorithm aims to reveal defacts in IPTABLES by using equivalence classes 

and expects all the packets exist in same partition act same. Other algorithm uses an 

approach which generats packets by changing flags to observe a stateless firewall acts same 

for each packet with different flag values.  

 Establishing a test bed, shown in Figure 4.1, begins with configuring IP address of  

network interfaces. Firewall’s interface configuration is set up in linux by the commands 

“ifconfig eth0 192.168.3.1 netmask 255.255.255.0” and “ifconfig eth1 192.168.5.1 netmask 

255.255.255.0”.  

 

 

Figure 4. 1. Test Bed 

 

Windows IP configuration is done in “Network Connections” window via TCP/IP 

addresses tab as seen in the Figure 4.2 for Sender PC and Listener PC .  

Sender Listener 
 

Firewall 

Evaluator 

192.168.3.15/24 192.168.5.3/24 

eth0 192.168.3.1/24 eth1 192.168.5.1/24 
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Figure 4. 2. Windows IP Configuration 
 

The next step is to configure kernel’s IP routing table in linux for routing packets 

come from eth1 to eth0 interfaces. The new routes are added to kernel by the commands, 

“add route –net 192.168.3.0 netmask 255.255.255.0 gw 192.168.3.1” and “add route –net 

192.168.5.0 netmask 255.255.255.0 gw 192.168.5.1”. 

 After configuration of all interfaces are completed, the firewall, IPTABLES, needs 

to be configured by defined the policy. That step requires different configuration due to the 

different policies for each experiment and will be explained detailed in each experiment. 

In order to apply testing approaches, the firewall policy will be experimented based 

on source IP, source port, destination IP, destination port fields. For the packets aim to 

reveal defacts based on source or destination IP, in the policy host and subnet addresses 

need to be presented in source or destination IP field. The other defacts, may caused by port 

values, are considered as “any” or a port number, and need to be presented in policy as 

source or destination port fields.  
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4.1. Experimental Setup  

 In order to distinguish results and uncover all brances of the nominated policy, test 

cases are generated from each rule. The fields of the rules are taking into consideration and 

the conditions of IP can be Any, Subnet or Host, while port can be Any or Decimal as seen 

in Table 4.1. 

 

Table 4. 1. Rule Fields 
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The sets Sip, Sport, Dip, Dport represent Source IP, Source port, Destination IP and 

Destination port where Sip={“*.*.*.*”, “192.168.3.*”, “192.168.3.15”}, Sport={“Any”, 

“21”}, Dip={“*.*.*.*”, ”192.168.5.*”, ”192.168.5.3”}and Dport={“Any”, “110”}. By the 

cartesian product of these sets, there are 36 experiments planned for equivalence 

paritioning testing and conformance testing as seen in Table 4.2. The firewall rule tuple is 

set <”*.*.*.*”,“Any”,“*.*.*.*”,“Any”> and each field is represented by the defiend set 

elements until all the unknowns are revealed and tuple takes the form of 

<”192.168.3.15”,”21”,”192.168.5.3”,”110”>. The firewall default policy is set to drop for 

each experiment with the command, “iptables –P FORWARD DROP”. 

 

Table 4. 2. Firewall Rules 
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4.2. Experiment and Evaluation 

 The number of generated test cases are represented by a histogram graph in Figure 

4.3 for 36 firewall rules, considering both algorithms, namely conformance testing and 

equivalence partitioning testing. As seen in the Figure 4.3, conformance testing algorithm 

generated 16 test cases for each rules. But the range of test cases, that are generated by 

equivalence partitioning algorithm, varies between 18 and 26, and the average number of 

test cases generated for each rule is approximately 22. Even the least number of generated 

test cases by equivalence partitioning algorithm for a firewall rule is 18 while conformance 

testing generates 16 test cases. Therefore, conformance testing algorithm is more 

appropriate while considering number of generated test cases. These generated test cases 

are experimented during FUT process and the experiment results take place in the 

Appendix A. 
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CHAPTER 5 

CONCLUSION 

 The main objective of this thesis is to develop an approach that provides an 

algorithm to cooperate with software testing methods for firewall testing. Therefore chosen 

software testing methods oriented to our proposed FUT approach. Designed approach is 

performed via implemented network traffic generator tool which enables to generate test 

cases from policy rules, than each test case is represented with a packet to test FUT. The 

most important feature of this thesis is that test cases are auto-generated. Implemented two 

different algorithms, which are conformance testing and equivalence partitioning, aim to 

uncover defects caused by firewall implementation or the nominated policy. These 

algorithms are used in developed packet generation framework. During framework design, 

library support is provided to assist packet generation. The test suite is based on the sent / 

filtered packets paradigm, in which test cases are created, sent through to firewall that has a 

implemented policy with certain iptables rules and than the comparison of generated and 

filtered packets are observed to see if the packets are filtered correctly.   

 Each test case of equivalence partitioning testing technique is represented by a 

packet. According the circumstances of test case is valid which is appropriate for the 

nominated policy, it is expected to packet is forwarded by firewall and the invalid packets 

are dropped. Conformance testing aims to generate all valid packets with unordered flag 

sequence considering to tcp handshake protocol and it is expected to packets are forwarded 

by firewall. During this study, all the test cases are implemented as it’s intended by the 

security policy. It is observed while all invalid packets are dropped by the firewall , the 

valid packets are forwarded.  

 Clearly, concept of firewall policy rules can be extended by containing other 

protocols such as icmp, arp and udp. The appropriate algorithms can be developed with 

considered protocols. Also correctness test suites can be implemented for generating 

packets from both direction of firewall and the sent / expect pairs can be compared.  
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APPENDIX A 

EXPERIMENT RESULTS 

A.1.  Experiment���

 The first experiment is performed for the firewall policy that allows all traffic from 

tcp protocol. The firewall configuration by the policy is done with the command, “iptables 

–A FORWARD –p tcp –j ACCEPT”.   

 

Table A.1. Equivalence Partitioning-I 

 
 

Table A.2. Conformance Testing - I 
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A.2.  Experiment����

 The second experiment is run for the policy that allows all traffic targets the 

destination port 110 under the condition of protocol is tcp. The firewall policy is configured 

as “iptables –A FORWARD –p tcp –dport 110 –j ACCEPT”. 

 

Table A.3. Equivalence Partitioning-II 

 
 

Table A.4. Conformance Testing - II 
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A.3.  Experiment�����

 The third experiment is performed for the case, firewall is configured as the 

destination ip is a subnet of 192.168.3.* with the command of “iptables –A FORWARD –p 

tcp  –d 192.168.3.0/24 –j ACCEPT”. 

 

Table A.5. Equivalence Partitioning-III 

 

 

Table A.6. Conformance Testing - III 
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A.4.  Experiment IV�

 The fourth experiment runs for the case of the traffic pass through firewall, targets a 

subnet with the port of 110. The firewall policy is edited as “iptables –A FORWARD –p 

tcp –s–d 192.168.3.0/24 –dport 110 –j ACCEPT”. 

 

Table A.7. Equivalence Partitioning-IV 

 

 

Table A.8. Conformance Testing - IV 
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A.5.  Experiment�V�

The fifth experiment is performed for the case that traffic is allowed for the 

destination ip is a host. The firewall policy is configured as “iptables –A FORWARD –p 

tcp –d 192.168.5.3 –j ACCEPT”. 

 
 

Table A.9. Equivalence Partitioning - V 

 
 

Table A.10. Conformance Testing - V 
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A.6.  Experiment VI�

The sixth experiment is performed for the case that traffic is allowed for the 

destination ip is a host with the port of 110. The firewall policy is configured as “iptables –

A FORWARD –p tcp –d 192.168.5.3 –dport 110 –j ACCEPT”. 

 
Table A.11. Equivalence Partitioning - VI 

 

 

Table A.12. Conformance Testing - VI 
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A.7.  Experiment VII 

The seventh experiment is performed for the case, policy allows all traffic comes 

from port 21 with the command of “iptables –A FORWARD –p tcp  –sport 21 –j 

ACCEPT”. 

 

Table A.13. Equivalence Partitioning-VII 

 

 

Table A.14. Conformance Testing - VII 
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A.8.  Experiment VIII 

The eighths experiment is performed for the case, policy allows all traffic comes 

from port 21 and goes to 110 with the command of “iptables –A FORWARD –p tcp  –sport 

21 –dport 110 –j ACCEPT”. 

 

Table A.15. Equivalence Partitioning - VIII 

 

 

Table A.16. Conformance Testing - VIII 
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A.9.  Experiment IX 

The ninth experiment is performed for the case, policy allows all traffic comes from 

port 21 and goes to a subnet with the command of “iptables –A FORWARD –p tcp  –sport 

21 –dip 192.168.5.0/24 –j ACCEPT”. 

 

Table A.17. Equivalence Partitioning - IX 

 

 

Table A.18. Conformance Testing - XI 
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A.10. Experiment X 

The 10th experiment is performed for the case, policy allows all traffic comes from 

port 21 and goes to a subnet via port 110 with the command of “iptables –A FORWARD –

p tcp  –sport 21 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”. 

 

Table A.19. Equivalence Partitioning - X 

 

 

Table A.20. Conformance Testing - X 
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A.11. Experiment XI 

The 11th experiment is performed for the case, policy allows all traffic comes from 

port 21 and goes to a host with the command of “iptables –A FORWARD –p tcp  –sport 21 

–dip 192.168.5.3 –j ACCEPT”. 

 

Table A.21. Equivalence Partitioning - XI 

 

 

Table A.22. Conformance Testing - XI 
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A.12. Experiment XII 

The 12th experiment is performed for the case, policy allows all traffic comes from 

port 21 and goes to a host via port 110 with the command of “iptables –A FORWARD –p 

tcp  –sport 21 –dip 192.168.5.3 –dport 110 –j ACCEPT”. 

 

Table A.23. Equivalence Partitioning - XII 

 

 

Table A.24. Conformance Testing - XII 
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A.13. Experiment XIII 

The 13th experiment is performed for the case, policy allows traffic comes from a 

subnet with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.0/24 –j 

ACCEPT”. 

 

Table A.25. Equivalence Partitioning - XIII 

 

 

Table A.26. Conformance Testing - XIII 
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A.14. Experiment XIV 

The 14th experiment is performed for the case, policy allows traffic comes from a 

subnet and goes to port 110 with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.0/24 –dport 110 –j ACCEPT”. 

 

Table A.27. Equivalence Partitioning - XIV 

 

 

Table A.28. Conformance Testing - XIV 
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A.15. Experiment XV 

The 15th experiment is performed for the case, policy allows traffic comes from a 

subnet and goes to a host with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.0/24 –dip 192.168.5.0/24 –j ACCEPT”. 

 

Table A.29. Equivalence Partitioning - XV 

 

 

Table A.30. Conformance Testing - XV 
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A.16. Experiment XVI 

The 16th experiment is performed for the case, policy allows traffic comes from a 

subnet and goes to a subnet via port 110 with the command of “iptables –A FORWARD –p 

tcp –sip 192.168.3.0/24 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”. 

 

Table A.31. Equivalence Partitioning - XVI 

 

 

Table A.32. Conformance Testing - XVI 
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A.17. Experiment XVII 

The 17th experiment is performed for the case, policy allows traffic comes from a 

subnet and goes to a host with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.0/24 –dip 192.168.5.3 –j ACCEPT”. 

 

Table A.33. Equivalence Partitioning - XVII 

 

Table A.34. Conformance Testing - XVII 
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A.18. Experiment XVIII 

The 18th experiment is performed for the case, policy allows traffic comes from a 

subnet and goes to a host via port 110 with the command of “iptables –A FORWARD –p 

tcp –sip 192.168.3.0/24 –dip 192.168.5.3 –dport 110 –j ACCEPT”. 

 
Table A.35. Equivalence Partitioning - XVIII 

 
 

Table A.36. Conformance Testing - XVIII 
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A.19. Experiment XIX 

The 19th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.0/24 –sport 21 –j ACCEPT”. 

 

Table A.37. Equivalence Partitioning - XIX 

 

 

Table A.38. Conformance Testing - XIX 
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A.20. Experiment XX 

The 20th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 and goes to port 110 with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dport 110 –j ACCEPT”. 

 

Table A.39. Equivalence Partitioning - XX 

 

 

Table A.40. Conformance Testing - XX 
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A.21. Experiment XXI 

The 21th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 and goes to a subnet with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.0/24 –j ACCEPT”. 

 

Table A.41. Equivalence Partitioning - XXI 

 
 

Table A.42. Conformance Testing - XXI 
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A.22. Experiment XXII 

The 22th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 and goes to a subnet via port 110 with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.0/24 –dport 110 –j 

ACCEPT”. 

Table A.43. Equivalence Partitioning - XXII 

 

Table A.44. Conformance Testing - XXII 
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A.23. Experiment XXIII 

The 23th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 and goes to a host with the command of “iptables –A FORWARD –

p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.3 –j ACCEPT”. 

 

Table A.45. Equivalence Partitioning - XXIII 

 

 

Table A.46. Conformance Testing - XXIII 
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A.24. Experiment XXIV 

The 24th experiment is performed for the case, policy allows traffic comes from a 

subnet with the port 21 and goes to a host via port 110, with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.3 –dport 110 –j 

ACCEPT”. 

 

Table A.47. Equivalence Partitioning - XXIV 

 

 

Table A.48. Conformance Testing - XXIV 
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A.25. Experiment XXV 

The 25th experiment is performed for the case, policy allows traffic comes from a 

host, with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.15 –j 

ACCEPT”. 

 

Table A.49. Equivalence Partitioning - XXV 

 

 

Table A.50. Conformance Testing - XXV 
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A.26. Experiment XXVI 

The 26th experiment is performed for the case, policy allows traffic comes from a 

host and goes to via port 110, with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.15 –dport 110 –j ACCEPT”. 

 

 Table A.51. Equivalence Partitioning - XXVI 

 

 

Table A.52. Conformance Testing - XXVI 
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A.27. Experiment XXVII 

The 27th experiment is performed for the case, policy allows traffic comes from a 

host and goes to a subnet, with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.15 –dip 192.168.5.0/24 –j ACCEPT”. 

 

Table A.53. Equivalence Partitioning - XXVII 

 

 

Table A.54. Conformance Testing - XXVII 
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A.28. Experiment XXVIII 

The 28th experiment is performed for the case, policy allows traffic comes from a 

host and goes to a subnet via port 110, with the command of “iptables –A FORWARD –p 

tcp –sip 192.168.3.15 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”. 

 

Table A.55. Equivalence Partitioning - XXVIII 

 

 

Table A.56. Conformance Testing - XXVIII 
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A.29. Experiment XXIX 

The 29th experiment is performed for the case, policy allows traffic comes from a 

host and goes to a host, with the command of “iptables –A FORWARD –p tcp –sip 

192.168.3.15 –dip 192.168.5.3 –j ACCEPT”. 

 

Table A.57. Equivalence Partitioning - XXIX 

 

 

Table A.58. Conformance Testing - XXIX 
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A.30. Experiment XXX 

The 30th experiment is performed for the case, policy allows traffic comes from a 

host and goes to a host via port 110, with the command of “iptables –A FORWARD –p tcp 

–sip 192.168.3.15 –dip 192.168.5.3 –dport 110 –j ACCEPT”. 

 

Table A.59. Equivalence Partitioning - XXX 

 

 

Table A.60. Conformance Testing - XXX 
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A.31. Experiment XXXI 

The 31th experiment is performed for the case, policy allows traffic comes from a 

host via port 21, with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.15 –

sport 21 –j ACCEPT”. 

 

Table A.61. Equivalence Partitioning - XXXI 

 

 

Table A.62. Conformance Testing - XXX 
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A.32. Experiment XXXII 

The 32th experiment is performed for the case, policy allows traffic comes from a 

host via port 21 and goes via port 110, with the command of “iptables –A FORWARD –p 

tcp –sip 192.168.3.15 –sport 21 –dport 110 –j ACCEPT”. 

 

Table A.63. Equivalence Partitioning - XXXII 

 

 

Table A.64. Conformance Testing - XXXII 
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A.33. Experiment XXXIII 

The 33th experiment is performed for the case, policy allows traffic comes from a 

host via port 21, and goes to a subnet with the command of “iptables –A FORWARD –p 

tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.0/24 –j ACCEPT”. 

 

Table A.65. Equivalence Partitioning - XXXIII 

 

 

Table A.66. Conformance Testing - XXXIII 
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A.34. Experiment XXXIV 

The 34th experiment is performed for the case, policy allows traffic comes from a 

host via port 21, and goes to a subnet via port 110, with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.0/24 –dport 110 –j 

ACCEPT”. 

Table A.67. Equivalence Partitioning - XXXIV 

 

 

Table A.68. Conformance Testing - XXXIV 
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A.35. Experiment XXXV 

The 35th experiment is performed for the case, policy allows traffic comes from a 

host via port 21, and goes to a host, with the command of “iptables –A FORWARD –p tcp 

–sip 192.168.3.15 –sport 21 –dip 192.168.5.3 –j ACCEPT”. 

 

Table A.69. Equivalence Partitioning - XXXV 

 

 

Table A.70. Conformance Testing - XXXV 
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A.36. Experiment XXXVI 

The 36th experiment is performed for the case, policy allows traffic comes from a 

host via port 21, and goes to a host via port 110, with the command of “iptables –A 

FORWARD –p tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.3 –dport 110 –j ACCEPT”. 

 
Table A.71. Equivalence Partitioning - XXXVI 

 
 

Table A.72. Conformance Testing - XXXVI 

 
 


