

TRAFFIC GENERATOR FOR FIREWALL
TESTING

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

�zmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by

Özgür KAYA

July 2009
�ZM�R

We approve the thesis of Özgür KAYA

Assist. Prof. Dr. Tu�kan TU�LULAR
Supervisor

Assist. Prof. Dr. Tolga AYAV
Committee Member

Prof. Dr. �aban EREN
Committee Member

6 July 2009

Prof. Dr. Sıtkı AYTAÇ
Head of the Computer Engineering
Departmant

Prof. Dr. Hasan BÖKE
Dean of the Graduate School of

Engineering and Science

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my advisor, Assist. Prof. Dr. Tu�kan

TU�LULAR, for his guidance.
I would also like to acknowledge my institution, Ya�ar University, for providing

me research facilities and the test bed during my graduate study.

Special thanks go to my Head of the Computer Engineering Department in Yasar

University, Korhan KARABULUT, for his understanding and guidance. He provided me

salutary study environment and many helpful suggestions.

I am thankful to Mr. Graeme Hanssen for his inspirations about critical thinking.

Last but not least, I wish to express my gratitude to my family for their

encouragement support and patience during the course of my studies

 iv

ABSTRACT

T RA F FI C G E N ERA T O R F O R F IRE WA L L T ES TI N G

 Firewalls lead at the front line of a computer network to restrict unauthorized

access. The desired security level is determined by a policy and implemented by a firewall

which not only has to be effective but also stable and reliable service is expected. In order

to verify the level of security of the system, testing is required.

 The objective of this thesis is to test a firewall with software testing techniques

taking into consideration the nominated policy and the firewall. Iptables software was

examined and tested by two different algorithms that were modified according to software

testing techniques, and the results were observed. Packets sent through the Firewall Under

Test (FUT) are compared to packets passed through the FUT and test results were

observed. The security performance of the modified algorithms proved to be successful.

 v

ÖZET

GÜVENL�K DUVARI SINAMA AMAÇLI A� TRAF�K ÜRETEC�

 Güvenlik duvarları, bir bilgisayar a�ı üzerinden izinsiz eri�im sa�lamayı amaçlayan

ataklara kar�ı olu�turulan savunma mekanizmasının ön sıralarında yer almaktadır. Hem

güvenilir ve istikrarlı, hem de performanslı bir hizmet saglaması önemlidir. Bu do�rultuda,

arzu edilen güvenlik seviyesinin sa�lanabilmesi, olu�turulan güvenlik politikası ile

mümkün olmaktadır. Güvenlik duvarının, beklenen güvenli�i ne ölçüde kar�ıladı�ını

do�rulamak için ise, sistem test edilmelidir.

 Bu çalı�mada, güvenlik duvarlarının izledikleri politika göz önüne alınarak yazılım

testi yöntemleri ile sınanması hedef alınmı�tır. Güvenlik duvarı uygulaması için seçilen

Iptables yazılımı, geli�tirililen algoritmalar ile 2 farklı yazılım testi uygulanarak sınanmı�

ve test sonuçları gözlenmi�tir. Test edilmekte olan güvenlik duvarına gönderilen test

paketleri, güvenlik duvarının arkasına geçen paketler ile kar�ıla�tırılarak test sonuçlarına

karar verilmi�tir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES .. ……..viii

LIST OF TABLES.. ix

CHAPTER 1. INTRODUCTION ..1

CHAPTER 2. BACKGROUND ..3

2.1. Software Testing ..3

2.1.1. Black Box Testing.... 4

2.1.2. White Box Testing 6

2.1.3. Black Box vs. White Box Testing 6

2.1.4. Equivalence Partitioning 7

2.1.5. Random Testing 8

2.1.6. Random vs. Equivalence Partitioning Testing.... 8

2.1.7. Conformance Testing 9

2.1.8. Penetration Testing...10

2.2. Firewalls...11

2.2.1. Types of Firewalls....12

2.2.2. Policy....14

2.3. Tool Support ..16

2.3.1. IPTABLES16

2.3.2. JPCAP Library...19

CHAPTER 3. PROPOSED APPROACH.. 25

3.1. Formal Methods ... 25

3.2. Firewall Policy Formalization .. 26

3.3. Formal Framework ... 27

3.4. Deriving Test Cases from FSM .. 28

 vii

3.5. Test Selection .. 29

3.6. Rule Tuples... 30

3.7. Network Traffic Generator .. 30

3.8. Database Design... 30

3.9. Automatized Test Case Generation Algorithm............................ 38

3.9.1. Conformance Testing ... 38

3.9.2. Equivalence Partitioning Testing 39

3.10. Abstract Test Cases.. 40

3.10.1 Scenario 1: Subnet IP Range for Source IP........................... 40

3.10.2 Scenario 2: Source IP is a Host ... 42

3.10.3 Scenario 3: Source IP is Any .. 44

CHAPTER 4. EXPERIMENTS AND EVALUATION... 46

4.1. Experimental Setup ... 48

4.2. Experiment and Evaluation ... 57

CHAPTER 5. CONCLUSION ..51

REFERENCES ...52

APPENDIX A. EXPERIMENT RESULTS ...57

 viii

LIST OF FIGURES

Figure Page

Figure 2.1. Conformance Testing ...9

Figure 2.2. Hardware Firewalls ..11

Figure 2.3. Software Firewalls..11

Figure 2.4. Application Layer Firewall ..13

Figure 2.5. Circuit Level Firewall ..13

Figure 2.7. Forward Chain of Filter Table..18

Figure 2.8. TCP/IP Protocol Layers..19

Figure 2.9. TCP Packet Constructor ...21

Figure 2.10. IP Packet Parameters ..23

Figure 3.1. Network Layout..26

Figure 3.2. Conformance Testing..29

Figure 3.3. Network Layer 2...30

Figure 3.4. Use case diagram of FUT...32

Figure 3.5. Network Traffic Generator Software GUI ...34

Figure 3.6. Activity Diagram..35

Figure 3.7. Create Equivalence Testing Table..36

Figure 3.8. Equivalence Testing Database Model ..36

Figure 3.9. Create Conformance Testing Table..37

Figure 3.10. Conformance Testing Database Model ..37

Figure 4.1. Test Bed..46

Figure 4.2. Windows IP Configuration ...47

Figure 4.3. Number of Test Case..50

 ix

LIST OF TABLES

Table Page

Table 2.1. TCP Layer Fields...20�

Table 2.2. IP Layer Fields...22�

Table 2.3. Link Layer Header ...24

Table 3.1. Formal Policy...26

Table 3.2. Formal Default Policy..27

Table 3.3. Firewall Rule (Default Policy: Deny)..31

Table 3.4. Conformance Test Cases Scenario-1 ...40

Table 3.5. Equivalence Partitioning Test Cases Scenario-1 ...41

Table 3.6. Conformance Test Cases Scenario-2 ..42

Table 3.7. Equivalence Partitioning Test Cases Scenario-2 ...43

Table 3.8. Conformance Test Cases Scenario-3 ...44

Table 3.9. Equivalence Partitioning Test Cases Scenario-3 ...45

Table 4.1. Rule Fields ...48

Table 4.2. Firewall Rules..49

 1

CHAPTER 1

INTRODUCTION

A firewall controls network traffic to and from a computer, based on a security

policy. Although there was an omission from most of the literature of firewall studies, that

is the systematic testing of firewalls, recent studies on firewalls began to fill this gap.

Frantzen et al. proposed that given the large number of firewall vulnerabilities that

have surfaced in recent years, it is important to develop a comprehensive framework for

understanding both what firewalls actually do when they receive incoming traffic and what

can go wrong when they process this traffic. They studied on a Framework for

understanding vulnerabilities in firewalls using a dataflow model of firewall internals [1].

Dataflow based adequacy criteria [2, 3] provides a test set to satisfy certain define-

use (DU) associations that exist in the code. On the tests, achieving DU coverage level

generally requires larger test sets and it is concluded frequently that higher detection rates

achieved by the coverage based test, but with lower confidence the DU coverage sets had

better fault detection also achieving 100% coverage. This is not necessarily a good

indication that the test is adequate since the differences in fault detections are not

statistically significant according to [4].

The studies based on data flow testing [5, 6, 7, 8, 9, 10] has been restricted to

testing data dependencies that exist within a procedure which requires information about

the flow of data including calls and returns, across procedure boundaries. Intra-procedural

data flow tests focus on source code by building and searching program’s def-use graph

and determines the dependencies or definition use pairs. Although existed inter-procedural

data flow algorithms cannot provide information about locations of definitions needed for

inter-procedural data flow testing, but consist of determining the def-use information and

guiding selection and execution of test cases that meet requirements [11].

Zaugg worked on the test packet driven approach of firewall testing including two

phases: the identification of appropriate test cases that examine the behavior of the firewall

 2

and the practical performance of these tests where the study focuses on the second phase

[12].There are three general approaches to firewall testing: Penetration testing, testing of

the firewall implementation and testing of the firewall rules [12]. However, most of the

academic work concentrates on the firewall rules and assume the implementation is error-

free [13]. This study focuses on the implementation testing of the firewall with software

testing techniques and aims to test Iptables Firewall.

This thesis introduces a Packet Generation Framework for Firewall Testing. The

thesis is composed of five chapters. Chapter 2 gives some background information about

software testing techniques, types of firewalls and recent works about firewall testing.

Chapter 3 explains the details of conformance testing of firewall and equivalence

partitioning testing of firewalls on which IPTABLES firewall is used in Linux platform.

Moreover, database design and firewall configuration also explained in this section.

Chapter 4 describes experiments which are performed using Packet Generation

Framework. Finally, Chapter 5 gives the conclusion of this thesis work.

 3

CHAPTER 2

BACKGROUND

In this chapter, software techniques with comparisons and types of firewalls are

explained. In addition, the usages of software testing methods for firewall testing are

reviewed.

2.1. Software Testing

Software testing is an activity which aims to reveal possible defects in computer

software [14]. Moderately software or a system have an implementation with specifications,

according to testers perspective, it requires different approaches based on amount of

knowledge. By the complete knowledge of software or system with data flows, source codes

a structural test can be applied which is called white box testing. Otherwise the system can

be identified as “unknown” according to its specifications, therefore a functional test would

be more appropriate approach namely its black box testing. As referred in [15:15], Myers

summarizes the important aspects of the testing principles in 10 steps, namely:

1. “A necessary part of a test case is a definition of the expected output or result.

2. A programmer should avoid attempting to test his or her own program.

3. A programming organization should not test its own programs.

4. Thoroughly inspect the results of each test.

5. Test cases must be written for input conditions that are invalid and unexpected, as

well as for those that are valid and expected.

6. Examining a program to see if it does not do what it is supposed to do is only half the

battle; the other half is seeing whether the program does what it is not supposed to do.

7. Avoid throwaway test cases unless the program is truly a throwaway program.

8. Do not plan a testing effort under the tacit assumption that no errors will be found.

 4

9. The probability of the existence of more errors in a section of a program is

proportional to the number of errors already found in that section.

10. Testing is an extremely creative and intellectually challenging task.”

As offered in these steps, a well defined test case requires a purpose definition with an

appropriate input to serve that purpose and an expected output. Also a successful test case

needs to be unique, compare to other test cases in the way of uncovering defects.

In this thesis, a black box approach is considered and a comparison to white box approach

is made for stating the differences better. In black box approaches, equivalence partitioning is

one of the techniques applied in proposed approach and it is compared to random testing to

state difference with a reason to be selected. The other approach is conformance testing,

performed in proposed approach. Also a penetration testing can be explained as a

complementary to conformance testing.

2.1.1. Black Box Testing

Black box testing focuses on behaviors of the software based on functional

requirements. Consequently, Input/Output conditions are based on no knowledge of internal

logic about the software’s structure. The test cases are derived from specification of the

requirements [16:161-166].The studies about automated test case generation by FSM can be

referred as [17].

The number of driven test cases should contain all the possible function

specifications to achieve reasonable testing and the test cases should reveal the presence or

absence of the possible types of errors as referred in [18]

The observation of test results reveal the difference between how the software acts

and how its intent to behave, under given input. Each specification of the software is

compared with expected behavior. All functional requirements of the system are considered

to be fully exercised by black box testing [19].

 5

 Generally black box testing aims to find errors that can be categorized as [20:459-

468]:

• “Incorrect or missing functions

• Interface errors

• Errors in data structures or external data base access

• Behavior or performance errors

• Initialization and termination errors”

Black box testing mostly focuses on functionality of software. Compare to white box

testing, it is applied in further stages of testing where a control flow and structural design is

not considered. Only the information domain is regarded as an input to apply test cases.

2.1.2. White Box Testing

White box testing is also called Structural Testing or Logic Deriving Testing [15:11].

As the name implies, information about the structural design of the program and source code

are required to derive test cases as a source. The determination of suitable test cases- derived

from the structure of the software- is considered with the help of control flow, event

sequence graphs or some other models.

Since a model such as data control flow is required to derive test cases, every

possible path in that graph needs to be examined at least once to complete the test of

software. But as stated in [15:9-14], there are some disadvantages which make it infeasible.

First one is the possibility of huge unique path exists in graphs; of that the cause high cost

not only to determine uniqueness but also to execute each of them at least once, which is

called exhaustive input test. Second one is, however each path should ever executed at least

once, there is a path required to be executed. In case of missing paths, software runs

incorrect. And there is also a possibility of absence in this missing patch that would not be

recognized or examined paths would not uncover the error.

 6

2.1.3. Black Box vs. White Box Testing

As the name offers Black box testing [21], also called functional testing, derives test

cases from the specification of the SUT, not the implementation where white box testing

considers within. Furthermore in white box testing every statement or branch of the SUT is

required to be executed at least once with some techniques. For the detailed information and

comparisons of those white box techniques such as statement testing, branch testing, data-

flow testing [18] is referred. Since black box testing focuses on functions of the system, it is

applied at further stages comparison to white box testing, where it is applied at early stages

of life cycle [20:460].

“Functional testing can be applied at any level of granularity where some form of

specification is available, from overall system testing to individual units, although the level

of granularity and the type of software influence the choice of the specification styles and

notations, and consequently the functional testing techniques that can be used” [16:161-

166]. All levels of granularity can be functionally tested and still some forms of

specifications will be available, e.g. overall system testing and even as far as individual

unit testing will be possible. Specification styles and notations can influence the level of

granularity and the type of software that is being used.

 However, there is a particular level of granularity which cannot be run over because

structural and fault based testing techniques are invariably tied to specific program

structures. Fine-grain program structures (statements, classes , etc.) are usually tested by

common structural tests, and these tests can only be used at modules which have small

levels, or from another point of view and small collection of modules (small subsystems,

component, or libraries) [16]. Also in [22], by analyzing structure of the specifications, its

shown how to apply white box testing techniques into black box testing under the condition

of requirements are implemented in formal model.

 7

2.1.4. Equivalence Partitioning

It is mentioned previous chapters how derive a test case from a model and how to

decide correct test case to perform. There is another approach called, Equivalence

Partitioning; that testing aims to limit infinitely many test cases, which causes the same

problem we have mentioned in white box testing namely exhaustive input test, into a small

subset of test cases. But there are 2 important properties of each test case partitioned in a

subset defined by Pressman in [13] such as:

• “It reduces, by more than a count of one, the number of other test cases that

must be developed to achieve some predefined goal of “reasonable” testing”

• “It covers a large set of other possible test cases. That is, it tells us something

about the presence or absence of errors over and above this specific set of

input values”

The first property aims to minimize the possible input domain by defining a unique

and most representative test case to uncover maximum number of possible input. The second

property tells that if a test case that chosen from one partition detects an error, the other test

case chosen from same partition acts exactly like first test case. That behavior must give

satisfaction to all the test cases defined in same partition.

2.1.5. Random Testing

Each system requires an input to test its specifications for functional testing, namely

black box testing and there should be a domain to select inputs. If any input from the domain

is randomly selected, it’s called random testing. With that approach, there come some

questions such as, how many selections should be done? [23:66-67].

Of course, it’s not always possible to know which test cases are better that can

identify the defects. Since different test cases can more likely reveal defects then running the

same test case, reasonably we can conclude that more different test cases are more valuable

than similar selected test cases [16:161-166].

 8

2.1.6. Random vs. Equivalence Partitioning Testing

Considering advantages of random testing, “Accidental bias may be avoided by

choosing test cases from a random distribution. Random sampling is often an inexpensive

way to produce a large number of test cases. If we assume absolutely no knowledge on

which to place a higher value on one test case than another, then random sampling

maximizes value by maximizing the number of test cases that can be created (without bias)

for a given budget. Even if we do attain some knowledge suggesting that some cases are

more valuable than others, the efficiency of random sampling may in some cases outweigh

its inability to use any knowledge we may have” [16:161-166]. But it is assumed that

random selection has less chance of select correct set of inputs to reveal defects in [18] [24]

[25]. For further discussions [26] and [27] can be considered.

Partitioning testing, which separates the domain by grouping an infinite set into finite

sets, increases the cost. But the size of domain is important factor by the cost of creating a

partition to compare with random selection. But some knowledge about the system is

required for that estimation [23:67-72].

We can assume in the case of, each sub domain [28] of domain is uniform, and then

the input from the partitioning class reveals the same defects from any input from same

partition. So the partitions must be disjoint (the case of joint, defined in [29]) to satisfy

uniformity. Also the experience takes an important role to select more likely failure-prone

test cases [16]. That comparison between random and partitioning testing is also considered

by an analytical approach in [30] and by experimental results in [25].

2.1.7. Conformance Testing

It is also known as compliance testing or type testing [31]. The purpose of

conformance testing is to determine the product, protocol, computer program or a system

work or perform as intended. An implementation conforms to the specification based on

formal standard. There are standards to conform the term “intended”. The conformance

testing ensures that, each individual requirement of the specified standard works properly

 9

where those standards are defined by independent institutes such as IEEE [32]. Each

protocol implementation needs different formal definitions to state its specific aspects

conformance to standards [33, 34, 35, 36, and 37].

In the test platform where conformance testing is applied to, System Under Test

(SUT) factor takes an important role to define boundaries of test. The tests should be run by

a system which can observe the SUT’s attitude. Also that dedicated system must be isolated

from external effects to avoid miscalculated results [38].

As seen in Figure 2.1. Conformance testing has phases namely, implementation,

compilation, testing, logging and analysis. In compilation stage by defining the test

purposes, test cases are generated. In testing stage, test suite is set up and the created test

system uses test suite to apply testing. Before testing stage, the Product (IUT) needs to be

implemented according to base standards. The test is performed by the test system to

product. As a last stage the test report is generated by logs of SUT.

 Figure 2. 1. Conformance Testing [67]

2.1.8. Penetration Testing

Penetration testing also known as Black Hat Hacker and the purpose is to identify the

vulnerabilities which can be caused by system configuration or component flaws. According

to black box approach, security analyze of the system is covered without any prior

infrastructure knowledge which is a “blind” test or attack. On the other hand, white box

approach requires system infrastructure and can reveals leaks, so it is considered as “inside

job” test or attack [39].

 10

From the perspective of functional testing, penetration testing considers with

negative cases that cause system not as intended (produce fault), where functional testing

considers only positives to test system. A positive test checks system behaviors with legal

inputs and reveals the input-output nonconformance. But neither negative test cases reveals

no error, it does not prove system has no faults because of very little assurance [40].

On the development life cycle of the application, penetration testing must be

integrated in early phases to avoid implementation errors or systematic faults. Otherwise it

uncovers defects or bugs too late which cost expensive. The integration phase at the system

level, component testing can be used to check inter-component communication and global

error handling, unit testing is used to divide security [40] into discrete parts. But root-cause

architecture of vulnerabilities must be prevail [40].

Result interpolation such as bugs and vulnerabilities, is one of the major issues of

penetration testing. Since the tests can identify small risks in early life cycle, the errors

caused by mitigation of subsets can effect system at later life cycles which The success of

the tests depend on standards and metrics where tester skill, knowledge and experience lead

with “software risk analysis” [41]. By use of tools provides efficient analysis which based on

metrics [40].

2.2. Firewalls

 Firewalls are softwares or hardwares which provide permission control, obstructing

and filtering to unauthorized reaching come from on network or on internet. It can be

separated in to three groups of software in Figure 2.2, hardware in Figure 2.3 or both of

them to each other [42].Broadly speaking, a computer firewall, prevents unauthorized

access to or from a private network. Firewalls are tools that can be used to enhance the

security of computers connected to a network, such as LAN or the Internet. They are an

integral part of a comprehensive security framework for your network.

 11

Figure 2. 2. Hardware Firewalls [68]

Firewall is one of the core element network and internet securities. However,

managing firewall rules, especially for enterprise networks, has become complex and

error-prone [43]. Firewall filtering rules have to be carefully written and organized in order

to correctly implement the security policy [44]. In addition, inserting or modifying a

filtering rule requires thorough analysis of the relationship between this rule and other

rules in order to determine the proper order of this rule and commit the updates.

Figure 2. 3. Software Firewalls [68]

 12

In theory, a firewall is supposed to isolate your computer from the Internet,

absolutely using a "wall of code" that inspects each individual "packet" of data as it arrives

at either side of the firewall to determine whether it should be allowed to pass or be

blocked. Firewalls have the ability to further enhance security by enabling regular control

over what types of system functions and processes have access to networking resources.

These firewalls can use various types of signatures and host conditions to allow or deny

traffic.

DMZ network serves as appendix for computer systems and sources that need to be

accessible either externally or internally, but that could not be placed on internal protected

networks [45] .DMZ networks are typically implemented as network switches that sit

between two firewalls or between a firewall and a boundary router. Given the special

nature of DMZ networks, they typically serve as attachment points for systems that require

or foster external connectivity [45].

 A DMZ is a set of machines under common administrative control, with a common

security policy and security level. There are many good reasons to erect internal firewalls

[43].

2.2.1. Types of Firewalls

Firewalls could be classifying three main categories. It could be arranging

generally, packet filtering, circuit gateways, and application gateways [42] [43] [46]. Some

sources mentions about fourth filtering of statefull inspection firewalls [45]. Traditionally,

firewalls are placed between an organization and the outside world [43]. But a large

organization may need internal firewalls as well to isolate DMZ (also known as

administrative domains) [44]. DMZ which known as De Militarized Zone network, is

created out of a network connecting two firewalls when two or more firewalls exist in the

networks connecting the firewalls [45].

First category of firewalls, as seen in Figure 2.4, is application - layer gateway

Contrast to packet filter firewall design, in this type of firewall, prefer to use general

specified mechanism to allow many different kids of traffic to flow. The code can be used

 13

for each desired applications. This type of firewalls search some protocols which work in

application layer in OSI models [43].

Figure 2. 4. Application Layer Firewall [69]

The second category of firewalls, as seen in Figure 2.5, is circuit - level gateway.

Circuit gateways relay TCP connections. The caller connects to a TCP port on the

gateway, which connects to some destination on the other side of the gateway. During the

call the gateway’s relay programs copy the bytes back and forth: the gateway acts as a

wire. In some cases a circuit connection is made automatically [43]. For example, we have

a host outside our gateway that needs to use an internal printer. We have told that host to

connect to the print service on the gateway. Our gateway is configured to relay that

particular connection to the printer port on an internal machine.

Figure 2. 5. Circuit Level Firewall [69]

 14

The third category of firewalls, as seen in Figure 2.6, is packet - filtering gateways.

This type firewalls control IP protocol, IP address and port number include own rules [47].

From there, the firewall would start at the top of the rule set and work down through the

rules. In the table a sample of a packet filter firewall rule set for an imaginary network is

shown. In packet filtering firewalls, the rule set would be much larger and detailed [45]. It

is more troublesome than other firewalls [43]. A permission or denied rule is following

some actions taken of accept, deny or discard.

Figure 2. 6.Packet Filter Firewall [69]

2.2.2. Policy

So far it has been mentioned firewalls are an authority to control and monitor the

network traffic between a local area network and internet. The restriction of

unauthoritezied accesses is crucial. Therefore configuration of firewall is the most

important step to restrict unauthorized access from internet. Different security levels

require for different types of services. Referred to [45], building a firewall design requires

4 components, namely policy, authentication, packet filtering, application gateway.

The most effective way to provide security for firewalls is to design a correct and

well defined policy to control network traffic pass through firewall. A firewall provides

security mostly depends on the policy. As referred in [48], there are 5 stages to create a

firewall policy such as zone of trust, administrator change, logging, stability and

documentation.

 15

Each zone stands behind firewall requires different trust levels, depends on the

service they provide. Since firewall controls the traffic between different zones, a policy

should be configured considering different traffic flow for each zone. Therefore zones

must be identified correctly with the level of trust. As stated in Zone of Trust, firewall

policy defines different rules which provide different security levels for different services.

By the change of those services, policy rules need to be updated. Addition or modification

of some rules, affects the policy. In case of firewall administrator change, such a scenario

may arise that the new administrator can hesitate to modify or remove a rule when the

policy requires an update. Consequently inserting a new rule would work but also override

the some rules hierarchically. Far too often firewall may contain so many garbage rules

which can cause an anomaly. So, well defined documentation of addicted or removed rules

with date prevents that scenario. Also penetration testing and IDS can check the rules to

verify agreed policy works as intended.

Firewall policy meets the security requirements as much as the rule set serves as it

is intended. Because the behaviors of the firewall actions are defined in the policy by

implemented rules, each rule almost contains some fields have information about source

address of packet, destination address of packet, type of traffic namely protocol and the

ports of communicated services [45].

Beside of controlling the input and output network traffic by accepting or denying

packets, firewall can also log the traffic pass through. That should also be considered as

primary purpose which affects security indirectly but efficiently. But a log is as useful as it

is reviewed. A firewall should be monitored to check whether it is up and works as

intended. Therefore it is ensured that firewall provides maximum security as it stands.

Even a firewall, with well designed and well defined rules, is only as good as it is stable.

Otherwise an intruder may find a way to avoid. Each rule in the firewall stands for the

policy that provides security. Therefore every rule needs to be documented with required

information about why that rule stands for and which rules it is cooperated with.

 16

2.3. Tool Support

The implementation process devoloped in Windows XP SP3 platform. JDK

1.6.0u13 version of Java software with a JPCAP version 0.7 library is used for packet

generation, sending and capturing. The generated traffic sent to the firewall, where

IPTABLES version 1.4.1 is used in linux platform (ubuntu version 9.04) is used. According

to firewall policy, accepted packets are passed through firewall and captured by a sniffer.

The generated and captured packets are stored in MYSQL version 5.1 community server

edition database.

That chapter is composed of 3 sub-chapters. Chapter 2.3.1 gives basic information

about IPTABLES and configuration, chapter 2.3.2 explains the implementation details of

traffic generation tool with JPCAP library and chapter 2.3.3 describes the database model.

2.3.1. IPTABLES

 Iptables is the userspace command line program used to configure the Linux 2.4.x,

2.6.x and upper versions IPv4 packet filtering ruleset [63, 64]. It is targeted towards system

administrators. Also, iptables is a software which could used for inspect Netfilter system

into userspace have been in the core [64]. This system will provide properties of packet

filtering firewalls, application level firewalls and statefull firewalls by means of Extensions

which named widening package[64]. For example, it could made possible to use like IPS

and IDS properties with Snort softwares [64]. There are three different tables in the iptables

[64]. The mangle table, the nat table and the filter table [64]. Each table has its own built-in

chains like the filter table has input, output and forward chains [64]. Each iptables rule,

must specify the table and the chain within the table that it should be applied to [64].

The first table of iptables is mangle table. This table is used mainly for mangling

packets.Among other things, the contents of different packets and that of their headers

could changed. Examples of this would be to change the TTL is used to modify the Time

To Live field in the IP header, TOS is used to set the Type Of Service or MARK [63]. The

following marks are only effective in the mangle table.

 17

The nat table is used mainly for Network Address Translation. " NAT " packets get

their IP addresses altered, according to our rules. Packets in a stream only traverse this table

once . Assume that the first packet of a stream is allowed. The rest of the packets in the

same stream are automatically " NAT " or Masqueraded etc, and will be subject to the same

actions as the first packet . These will, not go through this table again, but will nevertheless

be treated like the first packet in the stream. This is the main reason why could not to do

any filtering in this table, which discussion at greater length further on. The PREROUTING

chain is used to alter packets as soon as they get in to the firewall. The OUTPUT chain is

used for altering locally generated packets before they get to the routing decision. Finally,

the POSTROUTING chain which is used to alter packets just as they are about to leave the

firewall [64].

The filter table should be used exclusively for filtering packets. For example, it

could DROP, LOG, ACCEPT or REJECT packets without problems, as it could in the

other tables. There are three chains built in to this table. The first one is named FORWARD

and is used on all nonlocally generated packets that are not destined for our local host.

INPUT is used on all packets that are destined for our local host (the firewall) and

OUTPUT is finally used for all locally generated packets [65].

Figure 2.7 will clarify to FORWARD chain process. If a packet have gotten into the

first routing decision that is not targeted for the local machine itself and it will be routed

through the FORWARD chain. If the packet is destined for an IP address that the local

machine is listening to, the packet could sent through the INPUT chain and to the local

machine [64].

 First step in Figure 2.7, a packet comes in on the interface to mangle

PREROUTING. This chain is normally used for mangling packets, changing TOS and so

on. This is also where the non - locally generated connection tracking takes place. In

second step, nat PREROUTING chain is used for DNAT mainly. First step in Figure 2.7, a

packet comes in on the interface to mangle PREROUTING.

 18

Figure 2. 7. Forward Chain of Filter Table

This can be used for very specific needs, where wanted to mangle the packets after

the initial routing decision, but before the last routing decision made just before the packet

is sent out. In forth step, the packet gets routed onto the FORWARD chain of the filter.

Only forwarded packets go through here where doing all the filtering. In fifth step which

mangle POSTROUTING is used for specific types of packet mangling that we wish to take

place after all kinds of routing decisions have been done, but still on this machine. In sixth

step of forward packets, nat POSTROUTING should first and foremost be used for SNAT.

Avoid doing filtering here, since certain packets might pass this chain without ever hitting

it. This is also where Masquerading is done. And the last, packets go out on the outgoing

interface.

 19

2.3.2. JPCAP Library

Packet Generation Software tool is implemented in Java by using JPCAP library

which enables to generate, send and capture TCP packets. Packet generation is composed 3

of 4 phases which is based on a TCP/IP model layers as seen in Figure 2.8, namely:

1) Transport Layer

2) Internet Layer

3) Link Layer

Figure 2. 8. TCP/IP Protocol Layers [70]

In Transport Layer, packet is constructed in TCP protocol and all flag , port

information are specified. TCP packet generation requires datagram fields such as:Ack flag,

Ack number, Destination port number, Fin flag, Tcp option, Psh flag, Rst flag, RSV1 flag,

RSV2 flag, Sequence number, Source port number, SYN flag, URG flag, Urgent Pointer,

Window size as seen in the Table 2.1. TCP packet constructor is explained in the Figure 2.9

with the fields and the required parameters.

 20

Table 2.1. TCP Layer Fields

Field Name Explanation

Acknowledgment flag Boolean variable stands for Acknowledgement number. When ack

flag is set to true, Ack number field defines the next expected byte

that the receiver is expecting and restricted up to 32 bits.

Destination port Identifies the receiver’s port number.

Source port Identifies the sender’s port number.

FIN flag 1 bit Boolean field that tells to receiver, sender will not send no

more data.

TCP option optional multiple of 32 bits field.

PSH flag 1 bit Boolean Push function field.

RST flag 1 bit Boolean field to reset connection.

RSV1 and RSV2 Reserved fields.

SYN flag 1 bit Boolean field, stands for synchronizing sequence number.

Sequence number 32 bit field, depends on SYN flag. If it’s set true, it replaces the

sequence number with actual first data bytes plus 1. If its set false

then it replaces with the first data byte.

URG flag 1 bit Boolean field and identifies the urgent pointer is set.

Urgent pointer 16 Bits field, synchronizes the last urgent data byte from the

sequence number.

Sequence number 32 bit field, depends on SYN flag. If it’s set true, it replaces the

sequence number with actual first data bytes plus 1. If its set false

then it replaces with the first data byte.

Window size 16 Bits field and identifies the receiver’s data size of able to

receive.

 21

Figure 2. 9. TCP Packet Constructor [71]

After that arguments set in the TCP generate function, it is encapsulated by an IP

frame. ” In most protocol specifications related to the TCP/IP protocol suite, the term

fragmentation rather than segmentation is used. The meaning is the same” [66] That

encapsulation requires IPv4 parameter datagram fields such as: Priority, IP Delay flag bit ,

IP Through flag bit, IP Reliability flag bit, Type of Service, Fragmentation reservation flag,

Don't fragment flag, More fragment flag, Fragment offset, Identification, TTL, Protocol,

Source IP address, Destination IP address as seen in the Table 2.2. In internet layer, data

adressing and packet fragmentation operations are completed. IP version 4 packet datagram

fields with the required parameters are shown in the Figure 2.10.

 22

Table 2. 2. IP Layer Fields

Field Name Explanation

Version 4 bits field, specifies the packet is IP version 4 or IP version 6.

Priority Priority of a packet.

IP Delay flag Minimizes the Delay, 0 is normal delay, 1 is low delay.

IP Through flag Maximizes the thorughput, 0 is normal, 1 is high.

IP Reliability flag Set the reliability, 0 is normal, 1 is high.

Type of Service
Refers to Quality of Service and identifies the priority of

packet.

Fragment offset 13 Bits field and specifies the fragment that packet is attached.

Fragmentation reservation

flag

3 bits field and identifies the packet is allowed to be

fragmented or not (Don’t Fragment) or followed by more

fragments (More Fragment).

Don't fragment flag Used for packet recovery.

More fragment flag Used for packet recovery.

Fragment offset Used for packet recovery.

Identification

16 Bits field that helps to recover packet from small pieces

only enough to pass through, and uses the Fragmentation field

with Don’t fragmentation or More fragmentation fields.

TTL
8 bits field, specifies the number of hops the packet pass

through before it is discarded.

Protocol

8 bits field identifies the protocol of packet. But when packet

is encapsulated by higher level protocol such as TCP, that

field is ignored.

Source IP address Identifies the senders IP address in 32 bits field.

Destination IP address Identifies the receiver’s IP address in 32 bits field.

 23

Figure 2. 10. IP Packet Parameters [71]

 After IP layer, the packet is encapsulated in Link Layer by the pysical medium

information and prosedure is specified data transmission. Ethernet header includes fields

such as: destination mac address, source mac address, frame type as shown in the table 2.3.

 24

Table 2. 3. Link Layer Header

Fielad Name Explanation

Destination mac address 6 Bytes field of receiver’s pysical interface address.

Source mac address 6 Bytes field of sender’s pysical interface address.

Frame type Ethernet Frame Type.

 After packets are generated, JPCAP library enables to send them via sender methot

which requires initializing network interface device and a packet as an input parameter.

Sent packets can be captured by an capture methot which requires input parameters namely,

network interface device, maximum number of bytes can be captured, promiscuous mode

for destination mac address control and time out period to restrict incoming packets.

 25

CHAPTER 3

PROPOSED APPROACH�

 Designed proposed approach aims to test specifications of the software, which is a

firewall policy in our case. There are some steps for testing in our approach such as

defining a firewall policy in a formal language, deriving firewall rules in terms of tuples,

defining an algorithm to automatize test case generation, generating abstract test cases from

tuples by that algorithm, generating packets from abstract test cases, applying a formal

model to test firewall.

3.1. Formal Methods

The increasing complexity of systems requires well defined specifications in a

systematic way which consists of mathematical models to observe system’s behavior.

Formal Description Technique (FDT) provides an implementation of a system with an

implemented language with a syntax and semantics with formal descriptions. That makes it

possible to question and analyze by using mathematical basics [49:4-8]. As an example of

that standardization with mathematical models based on finite state machines are Estelle [61]

and SDL [62] may be pointed.

Briefly, formal protocol development of a system requires firstly capturing phase

where requirements of the system is collected, then specifications are defined and

implemented from that requirements using FDT. By the combination of specifications and

their implementations, correctness of the system can be experimented with tests derived

from FSM and verified with a formal model [49:10-23].

 26

3.2. Firewall Policy Formalization

Firewalls may have a different policy syntaxes adapted for their own algorithms.

Therefore comparison or testing policies (if it works as intended) come up with problems of

understanding different policies or comparing them by a common specification. That

situation requires a formal definition for firewall policies to meet them in a common point.

So, even different syntaxes can be interpreted in terms of their formal definitions.

As seen in the Figure 3.1. there is a network layout, contains internet, intranet and a

firewall. Firewall has 2 interfaces for an input and output. Considering intranet (subnet) as a

packet sender, eth 1 interface is an input and eth 0 interface is an output but considering

packets come from internet, it is vice versa..

Figure 3. 1. Network Layout

Assume that, there is an internet access from intranet to internet for all subnet hosts

from 1 to n. In our formal approach we state a subnet as a set that all the hosts are identical

therefore the policy behaves same for each member of the subnet. The internet access from

intranet to internet can be shown in Table 3.1.

In given Table 3.1 source is a subnet where hosts are participated in intranet. They

request for a permission to access internet so the destination is an internet for the subnet

 Firewall

eth 0 eth 1

Host 1

Host n

Host 2

.

.

.

Intranet Internet

 27

hosts in the intranet as a source and the restriction is allowed for a web access service. So the

formal policy figured in Table 3.1 shows that each request from intranet to internet for a web

access services is accepted by firewall as stated in the policy.

Table 3. 1. Formal Policy

Source Destination Restriction Permission

Intranet Internet Web Access Accept

But in case of some other requests apart from web access, there must be a rule

defined in the policy, in out case default policy is deny. Table 3.2. shows that any other

requests from intranet to internet is denied by the firewall policy.

Table 3. 2. Formal Default Policy

Source Destination Restriction Permission

Intranet Internet Web Access Accept

Intranet Internet Any Deny

3.3. Formal Framework

Depends on configuration of test architecture, an abstract test case can be generated.

That will state the how the system will be tested which is Implementation Under Test (IUT)

as seen in Figure 3.2 for the comformance testing. The relationship between IUT and testing

environment must be stated based on test purpose derived from requirements, then that step

followed by development of an abstract test suite which is implementation independent. The

next step is abstract test case generation for each test purpose [49:27-45]. As last step to

apply testing on a real system, that test cases transformed into executable form. To interpret

the results more accurately and consistently, meaningful test selections for execution can be

chosen [50, 51, 52].

 28

In [53], Test sequence generation technique approach can be used together with

conformance testing where 4 (T-, U-, D- and W-) methods are used to generate test

sequences for FSM, such as UIO, DS or Wset and helped compared to each other with pros

and cons.

But sometimes for each input there isn’t a completely specified output stated. That

condition differs from state oriented (deterministic) models. Therefore the test generation

from that input/output can be considered nondeterministic FSM [54, 55, 56, 57, 58]. And

that should be handling as a problem which caused by an output sequences of the

specification FSM, does not corresponds to input sequences, However “conforming

implementation of FSM must produce all of them” [59].

3.4. Deriving Test Cases from FSM

Test case generation is a directly effective factor on determining performance and

cost measurements. The utility model is used for test case generation from specifications

(formal or informal) and this model aims for the improved performance, reduced cost in test

design [16:246-250].Specifications may be indicated straightly as some form of finite state

machine. As an example, “embedded control systems are frequently specified with State

charts, communication protocols are commonly described with SDL diagrams, and menu

driven applications are sometimes modeled with simple diagrams representing states and

transitions” stated in [16]. Sometimes the finite state essence of systems is left implicit in

informal specifications.

Occasionally, test cases are enclosed in infinite states of control or interactive

systems. But still FSM model can be used, if these infinite states are simple. Considering a

communication example that issues an network traffic such as incoming and outgoing

packets are transmitted from different ports. But under the condition of services’ content is

disregarded , the protocol system still be considered as an FSM. Most common strategy for

deriving test cases from FSM is to checking each state transmission which is specification of

precondition and post condition pair [16].

 29

3.5. Test Selection

As mentioned in previous Chapter 3.3, at test method’s level of abstraction, a

specific test purpose is used which is derived from the abstract test case phase. Although

abstract test method is specific to environment requirements, there are large amount of test

cases (or infinite) can be generated for FSM by generation algorithms.

Figure 3. 2. Conformance Testing [49]

 30

Proportionally that increases the cost of generation or makes it impossible to execute

all test cases, if number of generated test cases are infinite. That should lead by a reduction

in the size of test cases by an selection of meaningful portions. Apart from random selection,

there can be used a heuristic from software testing [49:149-150] such as equivalence

partitioning and boundary value analysis [18].

3.6. Rule Tuples

 By the formal policy definition, we must set a standard syntax in terms of tuples. So

the firewall policy can be given as an input to execute and generate abstract test cases by

the test case generation algorithm.

 An example network layer is stated in the Figure 3.3 with the rule stated in Table

3.3. “*” notation and any show all the possible values can be applied in that field. The

intranet contains a subnet which is 193.140.248.* by the connection port any. Destination

for the internet as an ip is considered as *.*.*.* but the port number is 80 for the web

service.

Figure 3. 3. Network Layer 2

 Firewall

 eth 0 eth 1

Host 1

Host n

Host 2

.

.

.

Intranet Internet

193.140.248.* : Any *.*.*.* : 80

 31

Table 3. 3. Firewall Rule (Default Policy: Deny)

Order Protocol Source IP
Source

Port

Destination

IP

Destination

Port
Action

1 6 193.140.248.* Any *.*.*.* 80 Accept

As rewritten the policy in tuple form, it is:

• <1, 6, 193.140.248.*, Any, *.*.*.*, 25, Accept>.

The rule covers the packets generated from the tuple as:

• <6, 193.140.248.*, Any, *.*.*.*, 25>

with the fields; protocol, source ip, source port, destination ip, destination port.

 IP address for source or destination of packets is considered in 3 cases such as host

(193.140.248.1), subnet (193.140.248.*), and “*.*.*.*”. In case of subnet ip address is

given, the algorithm evaluates the subnet range for top, bottom and center values.

As an example;

 193.140.248.1 is generated for bottom value

 193.140.248.127 is generated for center value

 193.140.248.254 is generated for top value

 In case of “*.*.*.*” is given, the algorithm uses 6 ip addresses to replace it by the

approach of all ip addresses are identical but each selected ip aims to uncover the mostly

predicted ip address range. That ip addresses are;

• 10.0.01

• 172.16.0.1

• 192.168.0.1

• 127.0.0.1

• 88.241.34.41

• 215.15.168.23

 The port number is stated as an integer or “any”. In case of integer value, it is used

as it is given. But in “any” case, the port addresses are “0, 65535, 23, 80”.

 32

3.7. Network Traffic Generator

 The graphical notation of testing platform is shown in Figure 3.4 with use case

diagram. The detailed describtion of use case :

Use-case : Firewall Testing

Primary actor : Tester

Secondary actors : Firewall, Sniffer and Evaluator

Goal in context : Testing a firewall by generating network traffic via software testing

techniques

Preconditions : 1) The test case generation methot needs to be selected

 2) Firewall policy needs to be defined and set to DENY as default policy

 3) Sniffer needs to be ready to listen traffic

Trigger : The tester decides to test a firewall

Scenario : 1) Tester: selects a testing technique

 2) Tester: test is performed

 3) Firewall: Filters incoming packets and route them

 4) Sniffer: Captures packets behind firewall and store them

 5) Evaluator: Compares the packets of Tester and Sniffer

Figure 3.4. Use case diagram of FUT

 33

The implemented Network Traffic Generator tool GUI is shown in Figure 3.5.

Functions of the tool are enumerated in circles namely;

1) Perform Test : It confers 2 testing techniques to perform such as, conformance

testing and equivalence partitioning testing.

2) OK Button : When pressed, it runs whole selected testing technique and includes

phases such as reading a firewall rule, generating test cases, generating packets and

finalizes test with sending packets.

3) Firewall Rules : That text area shows firewall rules.

4) List Rule Button : When pressed, firewall rules are read from file and listed in text

field.

5) Test Case Generation : It confers 2 testing techniques to generate test cases

6) Show Equivalence DB : When pressed, that button establishes a database

connection and sorts all stored packet information generated by equivalence

partitioning testing technique.

7) Database Table : That table shows the queried data by Conformance DB and

Equivalence DB buttons.

8) Console : That field notifies user about the information flow during software runs.

The Activity Diagram of implemented software is shown in Figure 3.6. When software

run, testing technique needs to be selected. Due to selected testing technique, firewall rule

policy is read from a file and convert that rule into a rule tuple. An appropiate algorithm,

designed for conformance testing or equivalence partitioning testing, is applied for deriving

test cases. Then packets are generated from each test case. Generated packets can be sent

directly or written to text file or stored in database. Those 3 functions also can be combined

by an order.

 34

F
ig

ur
e

3.
5.

 N
et

w
or

k
T

ra
ff

ic
 G

en
er

at
or

 S
of

tw
ar

e
G

U
I

 35

Figure 3.6. Activity Diagram

 36

3.8. Database Design

MYSQL version 5.1 community server edition database is used for 3 purposes

namely, storing generated packets, captured packets and comparing generated and captured

packets as an evaluator. For database connection via java platform, mysql-connector-java

version 5.1.7 driver is used. Generated packets are stored in a database table, created with

sql for equivalence testing as seen in Figure 3.7, and followed by the database model in

figure 3.8, for conformance testing the sql is shown in Figure 3.9 and followed by the

database model in Figure 3.10.

Figure 3.7. Create Equivalence Testing Table

Figure 3. 8. Equivalence Testing Database Model

 37

Figure 3. 9. Create Conformance Testing Table

Figure 3. 10. Conformance Testing Database Model

The packets which pass through firewall, are captured with sniffer tool and stored in

a table with only their hash values are considered .

 38

3.9. Automatized Test Case Generation Algorithm

3.9.1. Conformance Testing

 As the formal policy defined in tuple form, that study aims to generate test cases

automated by the test case generation algorithm. The presented algorithm is modified from

[60] as shown in 3.1, applied for TCP protocol by using Reset, FIN, SYN/ACK and SYN

flags.

(3.1)

for each <FirewallRule>
 for <source_IP>
 Generate IP
 for <source_port>
 Generate Port
 for <destination_ip>
 Generate IP
 for <destination_port>
 Generate Port
Return TestCases

for each <TestCase>
 TestCase.setFlag(RST, true)
 TestCase.setFlag(FIN, true)
 switch(source_IP and destination_IP) and TestCase.setFlag(SYN,ACK, true)
 TestCase.setFlag(SYN, true)

for <IP>
 if ip is a host
 IP is a host IP
 if ip is a subnet
 IP is a random IP in subnet
 if ip is “*.*.*.*”
 IP is a random IP from set of most used IPs = {
 202.212.5.30, // yahoo
 216.239.33.96, // google
 131.107.137.165, // msn }
for <Port>
 if port is an integer
 Port is port
 if port is “any”
 Generate random port in range [1-1024]

 39

3.9.2. Equivalence Partitioning Testing

 Our Equivalence Class Partitioning approach aims to uncover faults in FUT by

exercising each independent path, where each path represents a unique test case. As

referred in [15], input domain of FUT is divided into finite number of equivalence classes

and ECP consists of 2 steps namely equivalence class identification and test case

generation.

 In [60] Equivalence classes are reclaimed as valid and invalid. Valid equivalence

classes are denominated by ECv and represented by valid inputs. Invalid equivalence

classes are denominated by ECinv and the domain contains of invalid inputs. The algorithm

referred in [60] is modified and presented in 3.2.

(3.2)

for <ip>
 if ip is a host
 ECv is a host ip
 ECinv(0) is [1.0.0.1 … ip-1]
 ECinv(1) is [ip+1 … 255.255.255.254]
 if ip is a subnet
 call subnet_range for
 ECv is subnet
 ECinv(0) is lower subnet-1
 ECinv(1) is upper subnet+1
 if ip is “*.*.*.*”
 ECv (0) is 10.0.01
 ECv (1) is 172.16.0.1
 ECv (2) is 192.168.0.1
 ECv (3) is 127.0.0.1
 ECv (4) is 88.241.34.41
 ECv (5) is 215.15.168.23
 for <subnet_range>
 ECv (0) is center value of subnet_range
 ECv (1) is bottom value of subnet_range
 ECv (2) is top value of subnet_range
for <port>
 if port is an integer
 ECv is port
 ECinv(0) is (port-1)
 ECinv(1) is (port+1)
 if port is “any”
 ECv (0) is 0
 ECv (1) is 65535
 ECv (2) is 23
 ECv (3) is 80

 40

3.10. Abstract Test Cases

3.10.1. Scenario 1: Subnet IP Range for Source IP

 The abstract test cases auto-generated by the given algorithm as the form of tuple

which is source IP is a subnet; <6, 193.140.248.*, Any, *.*.*.*, 25>.

 Those test cases -generated by Algorithm 1- are presented below in Table 3.4 at

abstract form without flags. As stated in the algorithm those test cases aim to uncover

errors in firewall caused by IP addresses and ports with the TCP protocol.

 That abstract generated test cases, from no.1 to 3 are for the source IP, from no. 4 to

7 aims the source port, from no. 8 to 13 are for the destination IP and the no. 14 rule stands

for the destination port.

Table 3. 4. Conformance Test Cases Scenario-1

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 193.140.248.1 Any *.*.*.* 25

2 6 193.140.248.127 Any *.*.*.* 25

3 6 193.140.248.254 Any *.*.*.* 25

4 6 193.140.248.* 0 *.*.*.* 25

5 6 193.140.248.* 65535 *.*.*.* 25

6 6 193.140.248.* 23 *.*.*.* 25

7 6 193.140.248.* 80 *.*.*.* 25

8 6 193.140.248.* Any 10.0.0.1 25

9 6 193.140.248.* Any 172.16.0.1 25

10 6 193.140.248.* Any 192.168.0.1 25

11 6 193.140.248.* Any 127.0.0.1 25

12 6 193.140.248.* Any 88.241.34.41 25

13 6 193.140.248.* Any 215.15.168.23 25

14 6 193.140.248.* Any *.*.*.* 25

 41

 In the Table 3.5, the abstract test cases are shown, generated by Alg2. The test cases

from no.1 to no. 9 are for source IP, no.10 to no. 13 are for source port, no.14 to no. 19 are

for destination IP and no.20 to no.22 are for destination port.

Table 3. 5. Equivalence Partitioning Test Cases Scenario-1

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 193.140.248.1 Any *.*.*.* 25

2 6 193.140.248.127 Any *.*.*.* 25

3 6 193.140.248.254 Any *.*.*.* 25

4 6 193.140.247.1 Any *.*.*.* 25

5 6 193.140.247.127 Any *.*.*.* 25

6 6 193.140.247.254 Any *.*.*.* 25

7 6 193.140.249.1 Any *.*.*.* 25

8 6 193.140.249.127 Any *.*.*.* 25

9 6 193.140.249.254 Any *.*.*.* 25

10 6 193.140.248.* 0 *.*.*.* 25

11 6 193.140.248.* 65535 *.*.*.* 25

12 6 193.140.248.* 23 *.*.*.* 25

13 6 193.140.248.* 80 *.*.*.* 25

14 6 193.140.248.* Any 10.0.0.1 25

15 6 193.140.248.* Any 172.16.0.1 25

16 6 193.140.248.* Any 192.168.0.1 25

17 6 193.140.248.* Any 127.0.0.1 25

18 6 193.140.248.* Any 88.241.34.41 25

19 6 193.140.248.* Any 215.15.168.23 25

20 6 193.140.248.* Any *.*.*.* 26

21 6 193.140.248.* Any *.*.*.* 24

22 6 193.140.248.* Any *.*.*.* 25

 42

3.10.2. Scenario 2: Source IP is a Host

 In this scenario, the abstract test cases auto-generated by the given algorithm as the

form of tuple where the source ip represents a host;

• <6, 193.140.248.15, Any, *.*.*.*, 25>

 The following test cases in Table 3.6 represent the case of source of host IP and the

test case no.1 is for the source IP, from no.2 to no.5 are for the source port, from no.6 to

no.11 are for the destination IP and no.12 is for the destination port. And the Table 3.7

represents the Equivalence Partitioning test cases.

Table 3. 6. Conformance Test Cases Scenario-2

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 193.140.248.15 Any *.*.*.* 25

2 6 193.140.248.15 0 *.*.*.* 25

3 6 193.140.248.15 65535 *.*.*.* 25

4 6 193.140.248.15 23 *.*.*.* 25

5 6 193.140.248.15 80 *.*.*.* 25

6 6 193.140.248.15 Any 10.0.0.1 25

7 6 193.140.248.15 Any 172.16.0.1 25

8 6 193.140.248.15 Any 192.168.0.1 25

9 6 193.140.248.15 Any 127.0.0.1 25

10 6 193.140.248.15 Any 88.241.34.41 25

11 6 193.140.248.15 Any 215.15.168.23 25

12 6 193.140.248.15 Any *.*.*.* 25

 43

Table 3. 7. Equivalence Partitioning Test Cases Scenario-2

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 193.140.248.15 Any *.*.*.* 25

2 6 1.0.0.1 Any *.*.*.* 25

3 6 193.140.248.14 Any *.*.*.* 25

4 6 97.70.124.7 Any *.*.*.* 25

5 6 193.140.248.16 Any *.*.*.* 25

6 6 255.255.255.254 Any *.*.*.* 25

7 6 224.197.251.135 Any *.*.*.* 25

8 6 193.140.248.15 0 *.*.*.* 25

9 6 193.140.248.15 65535 *.*.*.* 25

10 6 193.140.248.15 23 *.*.*.* 25

11 6 193.140.248.15 80 *.*.*.* 25

12 6 193.140.248.15 Any 10.0.0.1 25

13 6 193.140.248.15 Any 172.16.0.1 25

14 6 193.140.248.15 Any 192.168.0.1 25

15 6 193.140.248.15 Any 127.0.0.1 25

16 6 193.140.248.15 Any 88.241.34.41 25

17 6 193.140.248.15 Any 215.15.168.23 25

18 6 193.140.248.15 Any *.*.*.* 26

19 6 193.140.248.15 Any *.*.*.* 24

20 6 193.140.248.15 Any *.*.*.* 25

 44

3.10.3. Scenario 3: Source IP is Any

 In scenario-3, the abstract test cases auto-generated by the given algorithm as the

form of tuple in case of source IP is any;

• <6, Any, Any, *.*.*.*, 25>

 The test cases listed below in Table 3.8. represents the case when source IP is

denoted as any in the firewall rule. The generated test cases, from no1. to no.6 are for

source IP, from no.7 to no.10 are for the source port, from no.11 to no.16 are for the

destination IP, and the no.17 stand for the destination port to uncover errors.

Table 3. 8. Conformance Test Cases Scenario-3

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 10.0.0.1 Any *.*.*.* 25

2 6 172.16.0.1 Any *.*.*.* 25

3 6 192.168.0.1 Any *.*.*.* 25

4 6 127.0.0.1 Any *.*.*.* 25

5 6 88.241.34.41 Any *.*.*.* 25

6 6 215.15.168.23 Any *.*.*.* 25

7 6 *.*.*.* 0 *.*.*.* 25

8 6 *.*.*.* 65535 *.*.*.* 25

9 6 *.*.*.* 23 *.*.*.* 25

10 6 *.*.*.* 80 *.*.*.* 25

11 6 *.*.*.* Any 10.0.0.1 25

12 6 *.*.*.* Any 172.16.0.1 25

13 6 *.*.*.* Any 192.168.0.1 25

14 6 *.*.*.* Any 127.0.0.1 25

15 6 *.*.*.* Any 88.241.34.41 25

16 6 *.*.*.* Any 215.15.168.23 25

17 6 *.*.*.* Any *.*.*.* 25

 45

 The generated test cases in Table 3.9, from no1. to no.6 are for source IP, from no.7

to no.10 are for the source port, from no.11 to no.16 are for the destination IP, and no.17 to

no.19 stand for the destination port to uncover errors.

Table 3. 9. Equivalence Partitioning Test Cases Scenario-3

Test

No
Protocol Source IP

Source

Port

Destination

IP

Destination

Port

1 6 10.0.0.1 Any *.*.*.* 25

2 6 172.16.0.1 Any *.*.*.* 25

3 6 192.168.0.1 Any *.*.*.* 25

4 6 127.0.0.1 Any *.*.*.* 25

5 6 88.241.34.41 Any *.*.*.* 25

6 6 215.15.168.23 Any *.*.*.* 25

7 6 *.*.*.* 0 *.*.*.* 25

8 6 *.*.*.* 65535 *.*.*.* 25

9 6 *.*.*.* 23 *.*.*.* 25

10 6 *.*.*.* 80 *.*.*.* 25

11 6 *.*.*.* Any 10.0.0.1 25

12 6 *.*.*.* Any 172.16.0.1 25

13 6 *.*.*.* Any 192.168.0.1 25

14 6 *.*.*.* Any 127.0.0.1 25

15 6 *.*.*.* Any 88.241.34.41 25

16 6 *.*.*.* Any 215.15.168.23 25

17 6 *.*.*.* Any *.*.*.* 26

18 6 *.*.*.* Any *.*.*.* 24

19 6 *.*.*.* Any *.*.*.* 25

 46

CHAPTER 4

EXPERIMENTS AND EVALUATION

 The implemented network traffic generation tool uses 2 different algorithms namely

Conformance Testing Algorithm and Equivalence Partitioning Algorithm. These 2

algorithms are applied to same network topology as shown in Figure 4.1. Equivalence

Partitioning Algorithm aims to reveal defacts in IPTABLES by using equivalence classes

and expects all the packets exist in same partition act same. Other algorithm uses an

approach which generats packets by changing flags to observe a stateless firewall acts same

for each packet with different flag values.

 Establishing a test bed, shown in Figure 4.1, begins with configuring IP address of

network interfaces. Firewall’s interface configuration is set up in linux by the commands

“ifconfig eth0 192.168.3.1 netmask 255.255.255.0” and “ifconfig eth1 192.168.5.1 netmask

255.255.255.0”.

Figure 4. 1. Test Bed

Windows IP configuration is done in “Network Connections” window via TCP/IP

addresses tab as seen in the Figure 4.2 for Sender PC and Listener PC .

Sender Listener

Firewall

Evaluator

192.168.3.15/24 192.168.5.3/24

eth0 192.168.3.1/24 eth1 192.168.5.1/24

 47

Figure 4. 2. Windows IP Configuration

The next step is to configure kernel’s IP routing table in linux for routing packets

come from eth1 to eth0 interfaces. The new routes are added to kernel by the commands,

“add route –net 192.168.3.0 netmask 255.255.255.0 gw 192.168.3.1” and “add route –net

192.168.5.0 netmask 255.255.255.0 gw 192.168.5.1”.

 After configuration of all interfaces are completed, the firewall, IPTABLES, needs

to be configured by defined the policy. That step requires different configuration due to the

different policies for each experiment and will be explained detailed in each experiment.

In order to apply testing approaches, the firewall policy will be experimented based

on source IP, source port, destination IP, destination port fields. For the packets aim to

reveal defacts based on source or destination IP, in the policy host and subnet addresses

need to be presented in source or destination IP field. The other defacts, may caused by port

values, are considered as “any” or a port number, and need to be presented in policy as

source or destination port fields.

 48

4.1. Experimental Setup

 In order to distinguish results and uncover all brances of the nominated policy, test

cases are generated from each rule. The fields of the rules are taking into consideration and

the conditions of IP can be Any, Subnet or Host, while port can be Any or Decimal as seen

in Table 4.1.

Table 4. 1. Rule Fields

 49

The sets Sip, Sport, Dip, Dport represent Source IP, Source port, Destination IP and

Destination port where Sip={“*.*.*.*”, “192.168.3.*”, “192.168.3.15”}, Sport={“Any”,

“21”}, Dip={“*.*.*.*”, ”192.168.5.*”, ”192.168.5.3”}and Dport={“Any”, “110”}. By the

cartesian product of these sets, there are 36 experiments planned for equivalence

paritioning testing and conformance testing as seen in Table 4.2. The firewall rule tuple is

set <”*.*.*.*”,“Any”,“*.*.*.*”,“Any”> and each field is represented by the defiend set

elements until all the unknowns are revealed and tuple takes the form of

<”192.168.3.15”,”21”,”192.168.5.3”,”110”>. The firewall default policy is set to drop for

each experiment with the command, “iptables –P FORWARD DROP”.

Table 4. 2. Firewall Rules

 50

4.2. Experiment and Evaluation

 The number of generated test cases are represented by a histogram graph in Figure

4.3 for 36 firewall rules, considering both algorithms, namely conformance testing and

equivalence partitioning testing. As seen in the Figure 4.3, conformance testing algorithm

generated 16 test cases for each rules. But the range of test cases, that are generated by

equivalence partitioning algorithm, varies between 18 and 26, and the average number of

test cases generated for each rule is approximately 22. Even the least number of generated

test cases by equivalence partitioning algorithm for a firewall rule is 18 while conformance

testing generates 16 test cases. Therefore, conformance testing algorithm is more

appropriate while considering number of generated test cases. These generated test cases

are experimented during FUT process and the experiment results take place in the

Appendix A.

0

5

10

15

20

25

30

35

40

16 17 18 19 20 21 22 23 24 25 26

Number of Test Cases

N
u

m
b

e
r

o
f

F
ir

e
w

a
ll
 R

u
le

s

Conformance Testing Equivalence Partitioning Testing

Figure 4. 3. Number of Test Case

 51

CHAPTER 5

CONCLUSION

 The main objective of this thesis is to develop an approach that provides an

algorithm to cooperate with software testing methods for firewall testing. Therefore chosen

software testing methods oriented to our proposed FUT approach. Designed approach is

performed via implemented network traffic generator tool which enables to generate test

cases from policy rules, than each test case is represented with a packet to test FUT. The

most important feature of this thesis is that test cases are auto-generated. Implemented two

different algorithms, which are conformance testing and equivalence partitioning, aim to

uncover defects caused by firewall implementation or the nominated policy. These

algorithms are used in developed packet generation framework. During framework design,

library support is provided to assist packet generation. The test suite is based on the sent /

filtered packets paradigm, in which test cases are created, sent through to firewall that has a

implemented policy with certain iptables rules and than the comparison of generated and

filtered packets are observed to see if the packets are filtered correctly.

 Each test case of equivalence partitioning testing technique is represented by a

packet. According the circumstances of test case is valid which is appropriate for the

nominated policy, it is expected to packet is forwarded by firewall and the invalid packets

are dropped. Conformance testing aims to generate all valid packets with unordered flag

sequence considering to tcp handshake protocol and it is expected to packets are forwarded

by firewall. During this study, all the test cases are implemented as it’s intended by the

security policy. It is observed while all invalid packets are dropped by the firewall , the

valid packets are forwarded.

 Clearly, concept of firewall policy rules can be extended by containing other

protocols such as icmp, arp and udp. The appropriate algorithms can be developed with

considered protocols. Also correctness test suites can be implemented for generating

packets from both direction of firewall and the sent / expect pairs can be compared.

 52

REFERENCES

[1] M. Frantzen et al. “A Framework for Understanding Vulnerabilities in Firewalls Using
a Dataflow Model of Firewall Internals,” In Proceedings of Computers Security,2001,
pp. 263-270.

[2] S. Rapps, E.J. Weyuker, “Data Flow Analysis Techniques for Test Data Selection”, In

Roc. Sixth Int. Conf. Software Engineering, Tokyo, 1982.

[3] S. Rapps, E.J Weyuker, “Selecting Software Test Data Using Data Flow Information,”

In IEEE Trans. Softw. Eng., SE-11, April 1985.

[4] M. Hutchins et al., “Experiments on the Effectiveness of Dataflow- and Controlflow-

Based Test Adequacy Criteria”, In Siemens Corporate Research, Inc.

[5] L. A. Clarke et al., “A comparison of data flow path selection criteria,” In Proceedings

of 8th International Conference on Software Engineering, August 1985, pp. 244-251,
London, UK.

[6] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow testing criteria,” In

IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1483-1498, October
1988.

[7] B. Korel and J. Laski, “A tool for data flow oriented program testing,” In ACM

Software Proceedings, pp. 35-37, December 1985.

[8] B. Korel and J. Laski, “A data flow oriented program testing strategy,” In IEEE

Transactions on Software Engineering, vol. SE-9, no. 3, pp. 347- 354, May 1983.

[9] S. C. Ntafos, “An evaluation of required element testing strategies,” In Proceedings of

7th International Conference on Sofhvare Engineering, March 1984, pp. 250-256,
Orlando, Florida.

[10] S. Rapps, E. J. Weyuker, “Selecting software test data using data flow information,” In

IEEE Transactionsof Software Engineering, vol. SE- 11, no. 4, April 1985, pp. 367-
375.

[11] M. J. Harrold, M. L. Soffa, “Interprocedural Data Flow Testing,” Department of

Computer Science University of Pittsburgh.

[12] G. Zaugg. “Firewall Testing.” M.A. Thesis, Swiss Federal Institute of Technology

Zurich, 2005.

 53

[13] R. S. Pressman, Software Engineering: A Practitioner's Approach, European 3th ed.,
UK, 1994.

[14] A. Heitzel and C. William, The Complete Guide to Software Testing, 2nd ed., QED

Information Sciences, 1988.
[15] G. J. Myers, The Art of Software Testing, 2nd Ed, 2004.

[16] M. Pezzand and M. Young, Software Testing and Analysis: Process, Principles and

Techniques, John Wiley & Sons Inc, 2008.

[17] K. Meinke, “Automated Black-Box Testing of Functional Correctness using Function

Approximation”, In ACM SIGSOFT Software Engineering Notes, 2004.

[18] G. J. Myers, “Art of Software Testing”, John Wiley & Sons, Inc., New York 1979.

[19] W. E. Perry, Effective Methods for Software Testing, 3rd Ed., 2006.

[20] R. S. Pressman, Software Engineering A Practitioner’s Approach, 5th Ed., 2001.

[21] B. Beizer, “Black-Box Testing: Techniques for Functional Testing of Software and

Systems,” John Wiley & Sons, Inc., 1995.

[22] B. K. Aichernig, “Systematic Black-Box Testing of Computer-Based Systems through
Formal Abstraction Techniques”, Ph. D. Thesis 2001.

[23] I. Burnstein, “Practical Software Testing: A Process Oriented Approach,” ISBN 0-387-
95131-8, 2003.

[24] J. Duran and S. Ntafos, “An Evaluation of Random Testing,” In IEEE Trans. on

Software Engineering, Vol. SE-10, No. 4, July 1984, pp. 438.

[25] R. Hamlet and R. Taylor, “Partition Testing does not Inspire Confidence,” In IEEE

Trans. on Software Engineering, Vol. 16, No. 12, Dec. 1990, pp. 1402-1411.

[26] T. Chen and Y. Yu, “On the expected number of failures detected by sub domain testing

and random testing,” In IEEE Trans. Software Engineering, Vol. 22, 1996, pp. 109–119.

[27] W. Gutjahr, “Partition testing vs. random testing: the influence of uncertainty,” In IEEE

Trans. Software Engineering, Vol. 25, No. 5, Sept./Oct. 1999, pp. 661–674.

[28] P.G. Frankl and E.J. Weyuker, “A Formal Analysis of the Fault-Detecting Ability of

Testing Methods,” In IEEE Trans. Software Eng., vol. 19, pp. 202–213, 1993.

[29] D. Richardson and L. Clarke, “A partition analysis method to increase program

reliability”, in Proc. 5th Int. Conf Software Engineering, San Diego, CA, 1981, pp. 244-
253.

 54

[30] E.J. Weyuker and B. Jeng, “Analyzing Partition Testing Strategies,” In IEEE Trans.

Software Eng., vol. 17, pp. 703–711, 1991.

[31] “Conformance Testing.” Internet: http://en.wikipedia.org/wiki/Conformance_testing,

May, 2009.
[32] “Conformance Testing Standards.” Internet:

http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1243147,00.html,
May, 2009.

[33] R. J. Linn and W. H. McCoy, “Producing tests for implementations of OS1 protocols,”

in Protocol Specifications, Testing and Verification. III. H. Rudin and C. H. West. Eds.
Amsterdam. The Netherlands: North-Holland. 1983. pp. 505-520.

[34] D. P. Sidhu, “Protocol verification via executable logic specifications,” In Protocol

Specifications, Testing and Verification. III. H. Rudin and C. H. West. Eds. Amsterdam.
The Netherlands: North-Holland. 1983. pp. 237-248.

[35] D. P. Sidhu and C. S. Crall, “Executable logic specifications for protocol service

interfaces,” In IEEE Trans. Software Eng.. vol. 14. Jan. 1988.

[36] D. Rayner, “Standardizing conformance testing for OSI. in Protocol Specifications,” In

Proc of Testing and Verification, V. M. Diaz. Ed. Amsterdam. The Netherlands: North-
Holland. 1986.

[37] D. P. Sidhu. “Protocol verification using prolog”. ISU Preprint. 1985.

[38] “Conformance Testing.” Internet:

http://portal.etsi.org/mbs/Testing/conformance/conformance.htm#TP, May, 2009.

[39] “Penetration Testing.” Internet: http://en.wikipedia.org/wiki/Penetration_testing , April,

2009.

[40] G. McGraw, “Software Security,” In Proc. of IEEE Security & Privacy, vol. 2, no.2,

2004, pp. 80–83.

[41] D. Verndon and G. McGraw, “Software Risk Analysis,” In Proc. of IEEE Security &

Privacy, vol. 2, no. 5, 2004, pp. 81–85.

[42] “Firewalls.” Internet: http://tr.wikipedia.org/wiki/Firewall,May, 2009.

[43] S. M. Bellovin and R. W. Cheswick, “Network Firewalls,” In IEEE Communications

Magazine, p: 50-57, 1994.

[44] E. S. Al-Shaer and H. Hamed, “Modeling and Management of Firewall Policies,” In

IEEE Transactions On Network and Service Management, 2004.

[45] J. Wack, K. Cutler, J. Pole, “Guidelines on Firewalls and Firewall Policy”, 2004.

 55

[46] “Comodo Firewall Program User Guide”, Internet:

http://forums.comodo.com/computer_firewalls-b67.0, April, 2009.
[47] D. B. Chapman,” Network (in)security through IP packet filtering,” In Proceedings of

the Third Usenix UNlX Security Symposium, pp. 63-76, 1992.

[48] “Firewall Policy.” Internet: http://www.net-security.org/article.php?id=440&p=1,

April, 2009.

[49] J. Tretmans, A Formal Approach to Conformance Testing, ISBN 90–9005643–2, 2001.

[50] R. M. Hierons and H. Ural, “Concerning the Ordering of Adaptive Test Sequences,” In

23rd IFIP International Conference on Formal Techniques for Networked and

Distributed Systems (FORTE 2003), 2003, LNCS volume 2767, pp. 289-302.

[51] I. Hwang et al., “Test Selection for a Nondeterministic FSM,” In Proc of Computer

Communications, 2001, Vol. 24/12, 7, pp.1213-1223.

[52] F. Zhang and T. Cheung, “Optimal Transfer Trees and Distinguishing Trees for Testing

Observable Nondeterministic Finite-State Machines,” In IEEE Transactions on Software

Engineering, 2003, Vol. 29, No. 1, pp. 1-14.

[53] D. P. Sidhu and T. Leung, “Formal Methods for Protocol Testing: A Detailed Study,” In

IEEE Transactions On Software Engineering, Vol. 15, No.4, 1989.

[54] I. Kufareva, N. Yevtushenko, and A. Petrenko, “Design of Tests for Nondeterministic

Machines with Respect to Reduction,” Automatic Control and Computer Sciences,
Allerton Press Inc., USA, No. 3, 1998.

[55] G. L. Luo, G. v. Bochmann, and A. Petrenko, “Test Selection Based on Communicating

Nondeterministic Finite-State Machines Using a Generalized Wp-method.,” In IEEE

Transactions on Software Engineering, 1994, 20(2), pp. 149–161.

[56] A. Petrenko et al., “Nondeterministic State Machines in Protocol Conformance Testing,”

In Proceedings of the IFIP Sixth International Workshop on Protocol Test Systems,
France, 1993, pp. 363-378.

[57] A. Petrenko, N. Yevtushenko, and G. v. Bochmann, “Testing Deterministic

Implementations from their Nondeterministic Specifications,” In Proceedings of the IFIP

Ninth International Workshop on Testing of Communicating Systems, 1996, pp. 125-140.

[58] N. Yevtushenko, A. Lebedev, and A. Petrenko, “On Checking Experiments with

Nondeterministic Automata,” In Automatic Control and Computer Sciences, 1991, 6, pp.
81–85.

 56

[59] A. Petrenko, and Nina Yevtushenko, “Conformance Tests as Checking Experiments for
Partial Nondeterministic FSM,” In Springer Proceedings FATES, pp. 118-133, 2005.

[60] T. Tuglular, “Test Case Generation for Firewall Implementation Testing using

Software Testing Techniques,” In SIN 2007- Internation Conference on Security of

Information and Networks, 2007.

[61] Recommendation X.500, -The Directory - Overview of Concepts, Models, and Services,

1989.

[62] CCITT Z.100, Specification and Description Language SDL, 1988.

[63] “IPTABLES in Netfilter.” Internet: http://www.netfilter.org, May, 2009

[64] Oskar Andreasson, IPTABLES Tutorial v1.2.0.

[65] Danial Hoffman and Durga Prabhakar, “Testing IPTABLES,” M.S. Thesis,

Departmant of Computer Science, University of Victoria.

[66] William Stallings, Data and Computer Communications,5th Edition, 2003.

[67] “Conformance Testing.” Internet:

http://portal.etsi.org/mbs/Testing/conformance/conformance.htm, April, 2009.

[68] “Firewall Types.” Internet:
http://www.vicomsoft.com/knowledge/reference/firewalls1.html#2, May, 2009.

[69] “Firewall Types.” Internet:
http://www.c-sharpcorner.com/UploadFile/pmalik/firewall12212008134435PM/firewall.aspx,

May, 2009.

[70] “TCP/IP Model.” Internet:
http://learn-networking.com/tcp-ip/how-encapsulation-works-within-the-tcpip-model,

May, 2009.

[71] “JPCAP Library.” Internet:
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/javadoc/index.html, May, 2009.

 57

APPENDIX A

EXPERIMENT RESULTS

A.1. Experiment���

 The first experiment is performed for the firewall policy that allows all traffic from

tcp protocol. The firewall configuration by the policy is done with the command, “iptables

–A FORWARD –p tcp –j ACCEPT”.

Table A.1. Equivalence Partitioning-I

Table A.2. Conformance Testing - I

 58

A.2. Experiment����

 The second experiment is run for the policy that allows all traffic targets the

destination port 110 under the condition of protocol is tcp. The firewall policy is configured

as “iptables –A FORWARD –p tcp –dport 110 –j ACCEPT”.

Table A.3. Equivalence Partitioning-II

Table A.4. Conformance Testing - II

 59

A.3. Experiment�����

 The third experiment is performed for the case, firewall is configured as the

destination ip is a subnet of 192.168.3.* with the command of “iptables –A FORWARD –p

tcp –d 192.168.3.0/24 –j ACCEPT”.

Table A.5. Equivalence Partitioning-III

Table A.6. Conformance Testing - III

 60

A.4. Experiment IV�

 The fourth experiment runs for the case of the traffic pass through firewall, targets a

subnet with the port of 110. The firewall policy is edited as “iptables –A FORWARD –p

tcp –s–d 192.168.3.0/24 –dport 110 –j ACCEPT”.

Table A.7. Equivalence Partitioning-IV

Table A.8. Conformance Testing - IV

 61

A.5. Experiment�V�

The fifth experiment is performed for the case that traffic is allowed for the

destination ip is a host. The firewall policy is configured as “iptables –A FORWARD –p

tcp –d 192.168.5.3 –j ACCEPT”.

Table A.9. Equivalence Partitioning - V

Table A.10. Conformance Testing - V

 62

A.6. Experiment VI�

The sixth experiment is performed for the case that traffic is allowed for the

destination ip is a host with the port of 110. The firewall policy is configured as “iptables –

A FORWARD –p tcp –d 192.168.5.3 –dport 110 –j ACCEPT”.

Table A.11. Equivalence Partitioning - VI

Table A.12. Conformance Testing - VI

 63

A.7. Experiment VII

The seventh experiment is performed for the case, policy allows all traffic comes

from port 21 with the command of “iptables –A FORWARD –p tcp –sport 21 –j

ACCEPT”.

Table A.13. Equivalence Partitioning-VII

Table A.14. Conformance Testing - VII

 64

A.8. Experiment VIII

The eighths experiment is performed for the case, policy allows all traffic comes

from port 21 and goes to 110 with the command of “iptables –A FORWARD –p tcp –sport

21 –dport 110 –j ACCEPT”.

Table A.15. Equivalence Partitioning - VIII

Table A.16. Conformance Testing - VIII

 65

A.9. Experiment IX

The ninth experiment is performed for the case, policy allows all traffic comes from

port 21 and goes to a subnet with the command of “iptables –A FORWARD –p tcp –sport

21 –dip 192.168.5.0/24 –j ACCEPT”.

Table A.17. Equivalence Partitioning - IX

Table A.18. Conformance Testing - XI

 66

A.10. Experiment X

The 10th experiment is performed for the case, policy allows all traffic comes from

port 21 and goes to a subnet via port 110 with the command of “iptables –A FORWARD –

p tcp –sport 21 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”.

Table A.19. Equivalence Partitioning - X

Table A.20. Conformance Testing - X

 67

A.11. Experiment XI

The 11th experiment is performed for the case, policy allows all traffic comes from

port 21 and goes to a host with the command of “iptables –A FORWARD –p tcp –sport 21

–dip 192.168.5.3 –j ACCEPT”.

Table A.21. Equivalence Partitioning - XI

Table A.22. Conformance Testing - XI

 68

A.12. Experiment XII

The 12th experiment is performed for the case, policy allows all traffic comes from

port 21 and goes to a host via port 110 with the command of “iptables –A FORWARD –p

tcp –sport 21 –dip 192.168.5.3 –dport 110 –j ACCEPT”.

Table A.23. Equivalence Partitioning - XII

Table A.24. Conformance Testing - XII

 69

A.13. Experiment XIII

The 13th experiment is performed for the case, policy allows traffic comes from a

subnet with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.0/24 –j

ACCEPT”.

Table A.25. Equivalence Partitioning - XIII

Table A.26. Conformance Testing - XIII

 70

A.14. Experiment XIV

The 14th experiment is performed for the case, policy allows traffic comes from a

subnet and goes to port 110 with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.0/24 –dport 110 –j ACCEPT”.

Table A.27. Equivalence Partitioning - XIV

Table A.28. Conformance Testing - XIV

 71

A.15. Experiment XV

The 15th experiment is performed for the case, policy allows traffic comes from a

subnet and goes to a host with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.0/24 –dip 192.168.5.0/24 –j ACCEPT”.

Table A.29. Equivalence Partitioning - XV

Table A.30. Conformance Testing - XV

 72

A.16. Experiment XVI

The 16th experiment is performed for the case, policy allows traffic comes from a

subnet and goes to a subnet via port 110 with the command of “iptables –A FORWARD –p

tcp –sip 192.168.3.0/24 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”.

Table A.31. Equivalence Partitioning - XVI

Table A.32. Conformance Testing - XVI

 73

A.17. Experiment XVII

The 17th experiment is performed for the case, policy allows traffic comes from a

subnet and goes to a host with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.0/24 –dip 192.168.5.3 –j ACCEPT”.

Table A.33. Equivalence Partitioning - XVII

Table A.34. Conformance Testing - XVII

 74

A.18. Experiment XVIII

The 18th experiment is performed for the case, policy allows traffic comes from a

subnet and goes to a host via port 110 with the command of “iptables –A FORWARD –p

tcp –sip 192.168.3.0/24 –dip 192.168.5.3 –dport 110 –j ACCEPT”.

Table A.35. Equivalence Partitioning - XVIII

Table A.36. Conformance Testing - XVIII

 75

A.19. Experiment XIX

The 19th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.0/24 –sport 21 –j ACCEPT”.

Table A.37. Equivalence Partitioning - XIX

Table A.38. Conformance Testing - XIX

 76

A.20. Experiment XX

The 20th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 and goes to port 110 with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dport 110 –j ACCEPT”.

Table A.39. Equivalence Partitioning - XX

Table A.40. Conformance Testing - XX

 77

A.21. Experiment XXI

The 21th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 and goes to a subnet with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.0/24 –j ACCEPT”.

Table A.41. Equivalence Partitioning - XXI

Table A.42. Conformance Testing - XXI

 78

A.22. Experiment XXII

The 22th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 and goes to a subnet via port 110 with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.0/24 –dport 110 –j

ACCEPT”.

Table A.43. Equivalence Partitioning - XXII

Table A.44. Conformance Testing - XXII

 79

A.23. Experiment XXIII

The 23th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 and goes to a host with the command of “iptables –A FORWARD –

p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.3 –j ACCEPT”.

Table A.45. Equivalence Partitioning - XXIII

Table A.46. Conformance Testing - XXIII

 80

A.24. Experiment XXIV

The 24th experiment is performed for the case, policy allows traffic comes from a

subnet with the port 21 and goes to a host via port 110, with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.0/24 –sport 21 –dip 192.168.5.3 –dport 110 –j

ACCEPT”.

Table A.47. Equivalence Partitioning - XXIV

Table A.48. Conformance Testing - XXIV

 81

A.25. Experiment XXV

The 25th experiment is performed for the case, policy allows traffic comes from a

host, with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.15 –j

ACCEPT”.

Table A.49. Equivalence Partitioning - XXV

Table A.50. Conformance Testing - XXV

 82

A.26. Experiment XXVI

The 26th experiment is performed for the case, policy allows traffic comes from a

host and goes to via port 110, with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.15 –dport 110 –j ACCEPT”.

 Table A.51. Equivalence Partitioning - XXVI

Table A.52. Conformance Testing - XXVI

 83

A.27. Experiment XXVII

The 27th experiment is performed for the case, policy allows traffic comes from a

host and goes to a subnet, with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.15 –dip 192.168.5.0/24 –j ACCEPT”.

Table A.53. Equivalence Partitioning - XXVII

Table A.54. Conformance Testing - XXVII

 84

A.28. Experiment XXVIII

The 28th experiment is performed for the case, policy allows traffic comes from a

host and goes to a subnet via port 110, with the command of “iptables –A FORWARD –p

tcp –sip 192.168.3.15 –dip 192.168.5.0/24 –dport 110 –j ACCEPT”.

Table A.55. Equivalence Partitioning - XXVIII

Table A.56. Conformance Testing - XXVIII

 85

A.29. Experiment XXIX

The 29th experiment is performed for the case, policy allows traffic comes from a

host and goes to a host, with the command of “iptables –A FORWARD –p tcp –sip

192.168.3.15 –dip 192.168.5.3 –j ACCEPT”.

Table A.57. Equivalence Partitioning - XXIX

Table A.58. Conformance Testing - XXIX

 86

A.30. Experiment XXX

The 30th experiment is performed for the case, policy allows traffic comes from a

host and goes to a host via port 110, with the command of “iptables –A FORWARD –p tcp

–sip 192.168.3.15 –dip 192.168.5.3 –dport 110 –j ACCEPT”.

Table A.59. Equivalence Partitioning - XXX

Table A.60. Conformance Testing - XXX

 87

A.31. Experiment XXXI

The 31th experiment is performed for the case, policy allows traffic comes from a

host via port 21, with the command of “iptables –A FORWARD –p tcp –sip 192.168.3.15 –

sport 21 –j ACCEPT”.

Table A.61. Equivalence Partitioning - XXXI

Table A.62. Conformance Testing - XXX

 88

A.32. Experiment XXXII

The 32th experiment is performed for the case, policy allows traffic comes from a

host via port 21 and goes via port 110, with the command of “iptables –A FORWARD –p

tcp –sip 192.168.3.15 –sport 21 –dport 110 –j ACCEPT”.

Table A.63. Equivalence Partitioning - XXXII

Table A.64. Conformance Testing - XXXII

 89

A.33. Experiment XXXIII

The 33th experiment is performed for the case, policy allows traffic comes from a

host via port 21, and goes to a subnet with the command of “iptables –A FORWARD –p

tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.0/24 –j ACCEPT”.

Table A.65. Equivalence Partitioning - XXXIII

Table A.66. Conformance Testing - XXXIII

 90

A.34. Experiment XXXIV

The 34th experiment is performed for the case, policy allows traffic comes from a

host via port 21, and goes to a subnet via port 110, with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.0/24 –dport 110 –j

ACCEPT”.

Table A.67. Equivalence Partitioning - XXXIV

Table A.68. Conformance Testing - XXXIV

 91

A.35. Experiment XXXV

The 35th experiment is performed for the case, policy allows traffic comes from a

host via port 21, and goes to a host, with the command of “iptables –A FORWARD –p tcp

–sip 192.168.3.15 –sport 21 –dip 192.168.5.3 –j ACCEPT”.

Table A.69. Equivalence Partitioning - XXXV

Table A.70. Conformance Testing - XXXV

 92

A.36. Experiment XXXVI

The 36th experiment is performed for the case, policy allows traffic comes from a

host via port 21, and goes to a host via port 110, with the command of “iptables –A

FORWARD –p tcp –sip 192.168.3.15 –sport 21 –dip 192.168.5.3 –dport 110 –j ACCEPT”.

Table A.71. Equivalence Partitioning - XXXVI

Table A.72. Conformance Testing - XXXVI

