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EFFECTS OF ANTI-SCRATCH ADDITIVES 

ON THE PROPERTIES OF POLYPROPYLENES 

 
SUMMARY 

Polypropylene (PP)  is one of the most widely used thermoplastic. It is used in many 

applications such as components of automobiles, large and small appliances, 

packaging, textiles and medical devices. The use of polypropylene has increased 

significantly especially in automotive sector over the past decades due to a good 

price to performance ratio, weight reduction, recyclability and design opportunities 

for vehicle production. 

A wide variety of unfilled polypropylene and talc filled polypropylene can be found 

in the vehicle's interior, exterior parts including bumper fascias, instrumental panels 

and door trims. Usage of talc brings about several modifications of polypropylene 

properties, which increase the industrial interest for this particular. On the other 

hand, scratch resistance is an important parameter for automotive applications but 

polypropylene has poor scratch resistance. Therefore, it is desirable to improve 

scratch resistance and reduce scratch visibility from the aesthetic point of view. 

Generally, improvement in scratch resistance can be achieved by increasing 

crystallinity, compounding with scratch resistant polymers, and adding silicone-

based additives. Additive approaches include the use of lubricating  migratory amide 

slip agents, polysiloxane (silicone oil), lubricants (such as PDMS), grafted polymer 

agents and special fillers such as talc, wollastonite and nanoclays. Silicones are 

macromolecules that consist of a backbone of alternating silicon and oxygen atoms. 

They act as a slipping agent on the surface of polymer to decrease coefficient of 

friction at the surface as a result of that improved scratch resistance of polymer. 

Polydimethylsiloxanes (PDMS) have very low solubility parameters, and are thus 

highly immiscible with many other organic monomers and solvents. It is sometimes 

fairly difficult to properly react siloxanes with conventional organic monomers or 

oligomers due to immiscibility problems. During the modification of network 

structures, where the reactions are conducted in bulk, miscibility is even a more 

serious problem. The versatility of (Si--R--X) terminated siloxane oligomers 

provides and important solution under these circumstances. By proper choice and 

design of the (R) groups, it is possible to enhance the miscibility and as a result, the 

copolymerizability between reactive siloxanes and other organic monomer. 

The aim of this work is to improve scratch resistance of neat PP (nPP) and talc 

reinforced PP (tPP) by using different commercially available anti-scratch additives 

which are a mixture of modified polyolefin-silicone block copolymer, siloxane 

copolyester, and organically modified siloxane, by using as 1 and 3 wt-% both in 

nPP and in tPP. The samples were prepared by melt blending extrusion. The extruder 

was a 25 mm diameter single screw extruder with L/D ratio of 25 consisted of three 

heating zones surrounding the screw, a static mixer after the third heating zone and a 

strand die with four holes. The 3-stage single screw with compression ratio of 2.05 



xx 

 

was equipped with dispersive mixing elements in the metering zone. An optimization 

study was carried out to determine the optimum temperature profile; 190/ 195/ 195/ 

200/ 200 ºC for heating zones, static mixer and die, respectively. The samples were 

prepared for each test differently. Strands types of specimens prepared for the 

mechanical measurement tests. Compression molding at 210ºC temperature and 100 

bar pressure was used to prepare the 10cm×10cm×2mm samples for other tests. 

Structural analyses of the additives and samples were determined by Fourier 

transform infrared spectroscopy (FTIR-ATR) to observe chemical composition of 

additives and the behaviour of additive on the surface.  

Tensile strength, elastic modulus and elongation at break values were determined by 

tensile tests. Mechanical properties of polypropylene depended on filler, additive 

types and additive content. Hardness of samples was evaluated by Shore-D hardness 

tests which resulted that additives decreased the hardness of samples but talc as a 

rigid filler increased the hardness of samples. Thermal properties of the samples were 

analyzed by differential scanning calorimetry (DSC) analysis. Percent of crystallinity 

of the samples was calculated which resulted that talc increased % crystallinity of the 

samples. 

The scratch resistance of the samples was examined by using Erichsen scratch tester. 

Scratch marks were applied to the test surface that was prepared by using hot press. 

A series of parallel scratch marks were applied with 20 cuts (10 in one direction and 

10 perpendicular to those) at a distance of 2 mm under 20 N stress loads for all 

samples.  Tribological investigation were done to determine the scratch resistance of 

the samples. Width (μm) of the scratches was measured by optical microscopy. 

Exposed talc particles on the surface of talc reinforced PP are found to be responsible 

for the increased light scattering, leading to greatly increased visibility. Talc 

reinforced polypropylene always showed higher scratch width which means that the 

samples with talc exhibit lowered scratch resistance and lowered scratch hardness as 

well. PDMS containing additives acted as slipping agent on the surface of polymer 

and decrease scratch width and visibility, improve the scratch resistance both in nPP 

and tPP. When they were used as 3 %, the visibility of scratch was seen only in one 

direction for nPP based samples by optical microscope.  

Surface properties were investigated by contact angle measurements and by using 

these data the surface free energy of samples were calculated. It was shown that 

siloxane containing additives increased water contact angle value and made the 

surface more hydrophobic. Samples with PDMS containing additives had low 

surface free energy due to  the fact that the methyl groups of PDMS have virtually no 

interactions with each other. 

Melt flow rate was also measured for all of the samples which showed that PDMS 

containing additives increase processability by increasing MFR value. tPP based 

samples had lower MFR value due to lack of contribution of the talc to the flow.  

The density values of additives and samples were measured to show that samples 

with PDMS containing additives lowered density of samples depend on their density 

value. On the other hand, talc increased density of PP.  
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ÇİZİLMEZLİK KATKILARININ 
POLİPROPİLENİN ÖZELLİKLERİNE ETKİSİ  

 

ÖZET 

Polipropilen (PP) en yaygın kullanılan termoplastiklerden biridir. PP’nin, büyük ve 

küçük ev aletleri, otomobil bileşenleri, ambalaj, tekstil, tıbbi cihaz parçaları gibi 

birçok kullanım alanı vardır. Son on yılda polipropilenin özellikle araba 

endüstrisinde kullanımı oldukça yaygınlaşmıştır. Bunun nedenleri arasında 

performasına göre fiyatının uygunluğu, hafifiliği, ultraviole ışınlarına dayanımı ve 

kolaylıkla değişik tasarım fırsatları yaratması gösterilebilir.  

Saf polipropilen ve talk dolgulu polipropilen arabaların iç ve dış aksamlarında 

enstrümantal panellerinde ve kapı süslerinde kullanılabilir. Talkın kullanımı 

polipropilenin birçok özelliğini iyileştirmektedir ve endüstriyel alanda kullanımını 

arttırmaktadır. Öte yandan çizilmeye karşı direnç otomotiv sektöründe önemli bir 

parametredir. Fakat polipropilenin çizilme direnci düşüktür. Bu nedenle çizilme 

direncini arttırmak, çizinirliğini düşürmek estetik açıdan önemlidir. Ayrıca çizinirliği 

düşürmek malzemenin ömrünün de uzamasını sağlar. Genel olarak çizilme direncini 

arttırmak; kristalliği arttırarak, çizilmeye karşı dayanıklı polimerlerle birleştirerek ve 

silikon bazlı katkı maddeleri ile takviye edilerek sağlanabilir. Bu katkı maddelerine 

örnek olarak; yağlama maddeleri, polidimetil siloksanlar (PDMS), polisiloksanlar 

(silikon yağı), graft edilmiş yağlama ajanları ve talk, nanokil gibi özel dolgu 

maddeleri gösterilebilir. Silikonlar, iskeletinde karbon (C) yerine ardışık olarak 

dizilmiş silisyum (Si) ve oksijen (O) atomları bulunan polimerlerin ortak adıdır. 

Silikon moleküllerinin çoğunda silisyum atomlarına bağlı metil ya da fenil grupları 

yer alır. Yüzeye göç ederek kayganlaşmayı sağlarlar, sürtünme katsayısını düşürür ve 

böylece çizinirliği düşürerek, çizilme direncini arttırırlar. Polidimetil siloksan 

(PDMS), polisiloksan grubunun en yaygın kullanılan üyesidir. Geniş molar hacim, 

kohezif enerji yoğunluğunun düşük olması ve esnekliğinin yüksek olması PDMS’nin 

önemli fiziksel özelliklerindendir. Bunlara ek olarak PDMS, görünür ve UV ışığına 

karşı saydam, ozon ve korona karşı çok dirençli, atomik oksijen ve hatta oksijen 

plazmalarına karşı kararlıdır. Diğer üstün özellikleri ise film şekillendirme yeteneği, 

çeşitli gazlara karşı yüksek geçirgenliği, su sevmeyen (hidrofob) yapıda olması, 

serbest hareket yeteneği, yüzey aktivitesi, kimyasal ve fiziksel etkilere karşı etkisiz 

(inert) olmasıdır. PDMS çok düşük çözünürlük parametrelerine sahiptir ve bir çok 

organik monomerler ve çözücüler ile karışmazlar. Bunedenle siloksanların organik 

monomer ve oligomerlerle reaksiyona girmesi çok zordur. Sonlu siloksan 

oligomerlerin (Si--R--X) fonksiyonlu yapısı bu durumda çözüm sağlar. R grubunun 

doğru seçimi ve dizaynı, karışabilirliğin artmasını sağlar. Reaktif siloksanlar ve diğer 

organik monomerler arasındaki kopolimerizasyonu mümkün hale getirir. Öte yandan 

talk Mg3Si4O10(OH)2 kimyasal formülüne sahip hidratlanmış magnezyum silikadan 

http://tr.wikipedia.org/wiki/Magnezyum
http://tr.wikipedia.org/wiki/Silikon
http://tr.wikipedia.org/wiki/Oksijen
http://tr.wikipedia.org/wiki/Hidroksit
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oluşan bir mineraldir. Özellikle otomotiv sektöründe polipropileni kuvvetlendirmek 

için yaygın olarak kullanılır.  

Bu çalışmanın amacı, polipropilenin ve talk dolgulu polipropilenin çizinme direncini 

arttırmak ve kullanılan katkıların polipropilenlerin mekanik, ısıl ve tribolojik 

özelliklerine etkisini incelemektir. Bu amaçla ticari olarak bulunan PDMS içeren üç 

farklı katkı maddesi kullanılmıştır. Bunlar: modifiye edilmiş poliolefin-silikon blok 

kopolimer karışımı, siloksan kopolyester ve organik olarak modifiye edilmiş 

siloksandır. Bu katkılar % 1 ve % 3 oranında kullanılmıştır. Örnekler eriyik 

karıştırma ile ekstrüderde hazırlanmıştır. Kullanılan ekstrüder, 25 mm çapında, 

L/D’si 25 olan, vidayı çevreleyen üç ısıtma bölgesi, üçüncü ısıtma bölgesinin 

devamında bir statik mikser ve kafadan oluşan tek vidalı bir ekstrüderdir. 3 

basamaklı ve sıkıştırma oranı 2,05 olan vida, dispersif karıştırma elemanları ile 

donatılmıştır. Optimizasyon çalışması sonucunda katkı maddelerinin karışımlarının 

ekstrüzyonu için optimum sıcaklık profili birinci, ikinci ve üçüncü ısıtma bölgesi, 

statik mikser ve kafa için sırasıyla 190/ 195/ 195/ 200/ 200 ºC olarak belirlenmiştir. 

Pellet haline getirilen örnekler herbir karakterizasyon için farklı şekilde 

kalıplanmıştır. Çizinirlik testi için sıcak preste 210ºC ve 100 bar’da 

10cm×10cm×2mm boyutlarında hazırlanmıştır. 

Kızılötesi spektroskopisi katkıların molekül bağlarının yapısı hakkında bilgi edilmek 

için kullanıldı.  IR ışınları molekülün titreşim hareketleri tarafından soğurulmaktadır 

ve dalga boyuna göre spektrumlar elde edilmektedir. Ayrıca katkıların yüzeydeki 

davranışını incelemek için hem örneğin yüzeyinden hem içinden analiz yapılarak 

aradaki fark gözlemlenmeye çalışılmıştır. Additivlerin PDMS karakteristik piklerine 

sahip olduğu görülmüştür. İçte ve dışta görülen katkının yüzeyde pikleri daha 

baskındır. 

Evrensel test cihazından alınan gerilim-gerinim sonuçlarından, elastik modülü ve 

kopma uzaması ile çekme mukavemeti değerleri hesaplanmıştır. Farklı oranların ve 

farklı katkılarının mekanik özellikleri nasıl etkilediği gösterilmiştir.  

Örneklerin sertlik değerleri, Shore D tipi durometre ile, ASTM D2240 standardına 

göre ölçülmüştür. Malzemenin sertliği, genel anlamda, metal bir çubuk, bilye ya da 

iğnenin batmasına karşı gösterdiği direnci ifade eder. Silikon katklı örneklerde sertlik 

düşerken, talk katkısının sertliği arttırdığı gözlemlenmiştir.  

Tüm karışımların ısıl özellikleri DSC analizi ile incelenmiştir. Örneklerin erime 

sıcaklığı oldukça yakındır. Yüzde kristallilik değerleri entalpi değerlerinden 

hesaplanmıştır. Yüzde kristallilik değerinin talklı örneklerde arttığı belirlenmiştir.  

Çizilme direnci malzemenin tribolojik özelliklerinden biridir. Çizilme direncini tayin 

etmek için Erichsen çizme test cihazı kullanılmıştır. Tüm örnekler uygulanan kuvvet 

20 N dur. Çiziklerden 10 tanesi birbirine paralel ve diğer 10 tanesi de bunlara dik ve 

kendi içinde paralel şekilde 2 mm aralıklarla uygulanmıştır. Cihazda kullanılan uç 1 

mm lik ISO 1518-1 tipidir.  

Çizinirliklerin genişliğini ölçmek ve görüntülemek için optik mikroskop 

kullanılmıştır. Bir örneğin on farklı noktasından görüntü alınmıştır. Talk dolgulu 

örneklerin çizinirlik genişlikleri talk dolgusu olmayan örneklere göre oldukça 

fazladır. Bu da talk dolgulu örneklerin çizilmeye karşı gösterdikleri direncin ve 

çizilme sertliğinin daha az olduğunun göstergesidir. Çünkü çizilme sertliği çizik 

genişliği ile ters orantılıdır. Silikon bazlı katkıların herbirinin çizilme direncini 

arttırdığı gözlemlenmiştir. Talk katkısı olmayan örneklerde % 3 oranında kullanılan 
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katkıların  çizinirliği oldukça düşürdüğü hatta, çizinirliğin sadece tek yönde oluştuğu 

optik mikroskop ile gözlemlenmiştir.    

Kontakt açı ölçümleri ile yüzey özellikleri incelenmiş ve bu veriler kullanılarak 

serbest yüzey enerjileri hesaplanmıştır. PDMS içeren katkılı örneklerde su ile yapılan 

temas açı ölçümlerinde açının arttığı gözlemlenmiş. Açının artması daha hidrofobik 

bir yüzey oluştuğunun göstergesidir. PDMS içeren katklı örneklerin serbest yüzey 

enerjileride daha düşük çıkmıştır.  

Eriyik akış hızı (MFR) analizi (190ºC, 2,16 kg) tüm örnekler için hesaplanmıştır. 

Ölçüm sonuçlarının silikon bazlı katkıların MFR değerini arttırdığı gözlemlenmiştir. 

Akışkanlığın artması, daha kolay işlenebilirliği de sağlamıştır. Talk katkılı örneklerin 

MFR değeri azalmış, akışkanlığa gösterdiği direnç artmıştır.  

Örneklerin yoğunluklarına bakıldığında PDMS içeren katkılı örneklerin yoğunluğu 

azalttığı gözlemlenmiştir. Talk dolgu maddesinin ise yoğunluğu arttırdığı 

görülmüştür. Organik olarak modifiye edilmiş siloksan en düşük yoğunluğa sahiptir. 

Bunedenle bu katkının kullanıldığı örnekler de en düşük yoğunluğa sahiptir. Siloksan 

kopolyester katkısı da en yüksek yoğunluğa sahiptir. Bunun nedeni içeriğindeki 

yüksek yoğunluklu polikaprolaktonlardır. Bu katkının kullanıldığı örneklerde daha 

yüksek yoğunluğa sahiptir.  
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1.  INTRODUCTION 

For the past decade, polypropylene (PP) has become one of the most widely used 

polyolefin especially for automotive industries, food packaging, fabrication of 

electric and electronic components and currently its utilization in building structural 

component for civil needs [1].  

Polypropylene compounded materials are being increasingly used to produce various 

components in modern passenger cars due to its low cost and chemical resistance. On 

the other hand, aesthetical appeal and low susceptibility to mechanical damage are 

important parameters especially in the automotive industries. But, the major 

drawback of PP is the poor scratch resistance which is important for the life of 

materials and aesthetic of view. Many factors affected scratch behavior of polymers, 

such as scratch testing parameters, methods, material ductility, crystallinity, 

hardness, surface roughness and surface tension [2]. In general, improvement in 

resistance to scratch deformation of thermoplastic olefins can be achieved by 

increasing crystallinity, compounding with scratch resistant polymers, and by 

reinforcement of the polymer matrix with fillers and additives [3].  Besides those 

lubricants, impact modifiers, surface morphology, and the interface between the 

matrix/filler are important for scratch resistance performance [4]. Lubricate the 

surface using slip additives has been successfully employed to reduce scratch 

damage in polypropylene-based materials. As the coefficient of friction at the surface 

is reduced, the magnitude of the maximum tensile stress during scratching is also 

decreased, which in turn reduced brittle scratch damage such as cracking, crazing, 

and cavitations. Materials with higher scratch resistance are expected greater scratch 

hardness and lower scratch visibility [5]. 

The aim of this work is to investigate effects of anti-scratch additives on the 

properties of different types of polypropylenes. One of the used polypropylene was 

filled with talc which is a magnesium sheet silicate with the chemical formula Mg3 

Si4 O10 (OH)2. Three different commercially available additives were used to improve 
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scratch resistance of neat PP (nPP) and talc reinforced PP (tPP). These additives are 

(1) a mixture of modified polyolefin-silicone block copolymer, (2) siloxane 

copolyester and (3) organically modified siloxane, used as 1 and 3 wt-% both in nPP 

and in tPP. These additives were mixed to PPs by single screw extruder which 

contained dispersive and distributive elements with static mixer. Structural surface 

analyses of the samples and additives were determined by Fourier transform infrared 

spectroscopy (FTIR-ATR). The prepared samples were moulded at hot press for 

testing scratch resistance. A series of parallel scratch marks were applied by Erichsen 

scratch tester under same force to the samples. Widths (μm) of the scratches were 

measured by using optical microscopy. The peak temperature (Tp), the enthalpy of 

melting were obtained by differential scanning calorimeter (DSC) and percentage 

crystallinity were calculated from these data. Tensile test was performed in order to 

examine the effects of filler, additive type and additive content on the mechanical 

properties of polypropylenes. Hardness of the samples was evaluated by Shore-D 

hardness tests.  The surface properties of the samples were investigated by means of 

contact angle measurements. The density of additives and samples were measured by 

density kits. Melt flow index of the samples were measured to investigate the effects 

of additives on processability. 
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2.  THEORETICAL PART  

2.1 Polypropylene (PP) 

Polypropylene (PP) is a crystalline thermoplastic polyolefin resin. It belongs to the 

group of olefinic polymers, which can generally be described by the chemical 

structure in Figure 2.1.  

 

Figure 2.1 : Structure of polypropylene. 

Polypropylene (PP) is readily formed by polymerizing propylene with suitable 

catalysts, generally aluminum alkyl and titanium tetrachloride. Polypropylene 

properties vary according to molecular weight, method of production, and the 

copolymers involved [6]. 

2.1.1 History of polypropylene 

Propylene was first polymerized to a crystalline isotactic polymer by Giulio Natta as 

well as by the German chemist Karl Rehn in March 1954. This pioneering discovery 

led to large‐scale commercial production of isotactic polypropylene by the Italian 

firm Montecatini from 1957 onwards. German Karl Ziegler, for his discovery of first 

titanium‐based catalysts, and Italian Giulio Natta, for using them to prepare stereo 

regular polymers from olefins, were awarded the Nobel Prize in Chemistry in 1963 

for their discoveries in the field of the chemistry and technology of high polymers. 

Ziegler–Natta catalysts have been used in the commercial manufacture of various 

polyolefins, such as polypropylene (PP),  high density polyethylene (HDPE), linear 

low density polyethylene (LLDPE) etc. since 1956. 
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It was found that olefins can be polymerized by using coordination catalysts, but the 

monomers approach the reactive site, they randomly orient relative to the growing 

chain, creating the atactic form. It had not been possible to perform any steric control 

on polymerization processes until the discovery of stereospecific polymerization of 

PO. Polymerization of stereoregular isotactic PP by coordination catalysts was the 

first practical performance of steric control on the growth of a polymer chain. 

Besides being the starting point of PP industry, this was the first event in a long 

series of successful applications of coordination catalysts to other monomers, leading 

to stereoregular polymers of higher α-olefins, styrene and diolefins [7]. The 

properties of isotactic polypropylene enabled it to be utilized as a raw material for 

film and fiber industry as well as being a thermoplastic resin. Industrial production of 

PP was started in 1957. Polymerization of syndiotactic PP was also performed by 

using coordination catalysts; however, this product has not achieved any commercial 

importance and has been only of scientific interest [8]. 

Beside from Ziegler-Natta type catalysts, metallocene catalysts activated by MAO 

(methylaluminoxane) are also used in the polyolefin production as catalyst (initiator). 

Metallocene contains a transition metal and two cyclopentadienyl ligands 

coordinated in a sandwich structure. Metallocenes were developed in 1950’s, 

beginning with the discovery of ferrocene followed shortly thereafter by synthesis of 

titanocene dichloride and zirconocene dichloride. Polypropylene produced by 

metallocene catalysts (mPP/isotactic mPP) have good impact resistance, chemical 

resistance better than polycarbonate and acrylics, glossy and transparent. [9].  

2.1.2 Structure and property relationships  

Propylene is an asymmetrical monomer so that polypropylene can be produced with 

different stereochemical configurations. The most common types of polypropylene, 

shown in Figure 2.2, are isotactic, syndiotactic, and atactic. In isotactic 

polypropylene, the methylgroups are placed on the same side of the backbone; in 

syndiotactic polypropylene, on alternating sides; and in atactic polypropylene, the 

methyl groups are arranged randomly along the chain.  

Isotactic homopolymer polypropylene has a high degree of crystallinity thereby 

creating a material that is strong, with low permeability to vapor or solvents, and 

high chemical resistance. Atactic polypropylene is amorphous and has little 

http://en.wikipedia.org/wiki/Transition_metal
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commercial value. The atactic form, due to its lack of crystallinity, has poor physical 

strength with lower resistance to dissolution in solvents and greater permeability to 

low molecular weight gases such as oxygen and water vapor. Syndiotactic 

polypropylene is prepared with soluble coordination catalysis and the 

stereoregularity attained is generally lower than that of isotactic polymers. Both 

isotactic and syndiotactic polypropylene are semicrystalline polymers with high 

melting temperatures. Isotactic polypropylene dominates the market, likely because it 

is easily produced with heterogeneous Ziegler–Natta and metallocene catalysts; 

syndiotactic polypropylene can be produced only with some metallocene catalysts 

and has much less widespread commercial use.                                                                                                                                                                   

 

Figure 2.2 : Structure of isotactic, syndiotactic and atactic polypropylene. 

2.1.3 Properties of polypropylene 

The mechanical and thermal properties of polypropylene can vary based on the 

isotacticity, the molecular weight and its distribution and % crystallinity. Since PP is 

a viscoelastic material like other thermoplastics, its mechanical properties are 

strongly dependent on time, temperature and stress.  

-  Density 

Polypropylene is the lightest among the commonly used thermoplastics and has a 

density of 0.9 g/cm
3
. 
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- Thermal properties 

Polypropylene has a glass transition temperature and a crystalline melting point of -

10ºC and 160-170ºC, respectively. Moreover, it has a maximum continuous use 

temperature of 100ºC, which is significantly higher than those of the other 

commodity plastics and some other engineering plastics. 

- Mechanical properties 

The mechanical properties of isotactic PP depend on its percent crystallinity. Due to 

its relatively high melting temperature, the crystalline phase maintains mechanical 

strength up to rather high temperatures. It has high tensile strength, stiffness and 

hardness due to its crystallinity. However, an increase in molecular weight leads to a 

reduction in tensile strength, stiffness, hardness but an increase in impact strength of 

polypropylene. 

2.1.4 Applications 

Polypropylene has become one of the most widely use polyolefine especially for 

intensive activities in research, product development and commercialization. 

Polypropylene has a variety of applications in our daily life, from packaging, toys, 

pipes, and tools, to some promising specialty applications in the electronic, airplane, 

and automotive industries. 

Applications of polypropylene range from injection-molded,  blow-molded products, 

fibers and filaments to films and extrusion coatings. Extruded polypropylene fibers 

are utilized in products such as yarn for carpets, woven and knitted fabrics. 

Nonwoven polypropylene fabrics are used in applications carpet backing, liners for 

disposable diapers, disposable hospital fabrics, reusable towels and furniture dust 

covers whereas oriented polypropylene film is used as overwrap of items such as 

cigarettes, snacks and phonograph records [11]. 

2.1.4.1 Automotive applications for interior and external parts 

Polypropylene has long been used for various automotive applications due to weight 

saving and hence fuel reduction and easy processability. Polymers can be moulded at 

high speeds and low costs into complexly shaped parts. A wide variety of unfilled 
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polypropylene and polypropylene composites can be found in the vehicle's interior, 

exterior, and under-the-hood.  

 

   a)  Interior parts:   

   -  Trim Components 

Polypropylene is one of the most common plastics selected for trim components in 

automobiles today. It can often be found in molded-in-color applications for various 

trim items throughout the vehicle. Most pillar trim found in vehicles composed of a 

polypropylene copolymer. Garnish moldings are all the trim-colored body panels in 

the automotive interior. The more structural parts often contain talc or another 

mineral to improve heat capabilities and stiffness. The upper trim component of the 

instrument panel may contain up to 26 wt% talc-filled polypropylene. Many other 

interior components, such as glove box and console bins, as well as console 

housings, are molded-in-color polypropylene.  Door trim consists of unfilled or talc-

filled high-crystalline polypropylene with molded-in color. 

         - Functional Components 

 Polypropylene can be compounded to meet many different component stiffness, 

impact, heat resistance, and appearance requirements. In order to make automotive 

components having both toughness and processability, high melt flow resistance (low 

molecular weight) polypropylene resins are important ingredients in TPO 

(thermoplastic olefin) formulations. Mineral-reinforced polypropylene materials can 

often be found in structural parts throughout the vehicle. Armrest substrates and 

console substrates are often injection molded with 20-30% glass-reinforced 

polypropylene. 

        b) Exterior parts 

Polypropylene is used frequently in the exterior of automobiles to air inlet panels and 

wheel house liners. Polypropylene offer excellent weatherability properties. Air inlet 

panels often require substantial weather resistance as these parts are subjected to 

extreme temperatures (high and low), sunlight, and rain or snow. These parts are 
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often polypropylene copolymer with 10-20 wt% talc to offer improved stiffness and 

good impact [12]. 

2.2 Scratch Resistance 

Polymers are preferred for microelectronic packaging, coatings, aerospace, 

automotive, food packaging and biomedical applications due to their adequate 

strength, lightness, versatility, ease of processing and low cost. It is important that 

the products are manufactured with durable, low-gloss first surfaces and aesthetically 

appealing. In order to maintain a good appearance, it is required that materials 

exhibit minimal susceptibility to mechanically induced surface damage and stress 

whitening does not occur.  However, polymers are more susceptible to scratches and 

abrasion when compared to other materials because they are relatively soft [10]. 

Scratch deformation of polymeric surfaces has become an important area of research 

in the field of materials science and mechanics. The surge of interest in the subject of 

scratch resistance stems from the increasing use of polymers in applications. Scratch 

behaviour of polymers depends on a variety of factors, which can be classified into 

two primary groups: (i) indenter geometry and testing conditions such as normal load 

temperature and sliding tip velocity and (ii) material properties such as modulus, 

yield stres, ductility, crystallinity, hardness, surface roughness, surface tension [2].  

A scratch on the surface of a polymeric material is a large size flaw that can 

potentially be a stress raiser restricting the applicability during tensile, impact or 

fatigue loading. Moreover, surface damage induced by scratch or any mechanical 

deformation process detracts the user from the subjective perception of  quality of the 

product and limits the applicability of polymeric materials. 

Scratches can also decrease the mechanical strength of polymeric materials. In 

general, the scratch performance of polymeric materials depends on the scratch stress 

field associated with the indenter geometry and properties of the polymeric materials. 

Other factors such as lubricant, filler and additives also affect the scratch 

performance of thermoplastic olefins. [14] 

Scratches promote crazing, wedging, ironing and debonding that drastically increases 

the ability of the surface to scatter light, consequently increase in scratch visibility. 
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Polymeric materials should be characterized by high modulus and elastic recovery in 

order to enhance scratch resistance. Surface texture, crystalline orientation and 

impact strength are the other aspects of consideration. Even small decreases in 

percentage crystallinity enhance stress whitening. High modulus and yield stress 

characteristics of highly crystalline polymers lead to their lower susceptibility to 

stress whitening [10]. 

Kody and Martin developed a sophisticated scratch testing methodology in 1996 

which involves quantifying the light scattered from solid polymer or a polymer 

composite surface due to surface deformation. The technique involves first 

deforming the material in a controlled and reproducible manner. Scratch test has 

been developed so as to evaluate the scratch behavior of polymers. In a scratch test, 

an indenter with a constant penetration rate is used. The machine uses a conical 

diamond stylus to induce scratches into a flat piece of material mounted on a rotating 

stage. Furthermore, the indenter can be made of various materials such as diamond, 

sapphire, steel, silicone nitrite, etc. The scratch is done with a constant loading rate 

and constant scratch rate. A scratch tester is shown in Figure 2.3 [15]. 

 

    Figure 2.3: Schematic representation of the scratch test. W, V and d are normal   

                       applied load, scratching velocity and scratch width, respectively [14] 

The results could then be used to compare the scratch resistance of materials. The 

severity of the scratch damage is evaluated by using various techniques such as 

atomic force microscopy, optical microscope, scanning electron microscope, laser 

confocal microscope, Raman spectroscope, white-light interferometer, cross 

profilometer, tribometer, elipsometer, etc. Stress whitening is the scattering of visible 
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light and the extent of scattering is a measure of the visibility of the scratch. Light 

will be scattered from the scratch if the plastically deformed region contains features 

(voids, stretched fibrils, ridges) of dimensions corresponding to the wavelength of 

visible light [16]. In recent study, Erichsen scratch tester is used and scratch damage 

is evaluated by optical microscope. The example of optical imaging that is taken 

after Erichsen scratch tester is shown Figure 2.4. This measurement corresponds to 

the difference in brightness of the cut and uncut polymer surface of scratch. 

 

 
  

Figure 2.4 : Example of scratch marks on the samples.  

2.2.1 Types of additive and filler for scratch resistance 

Improving the scratch resistance and surface durability of polypropylene and TPO 

used for automotive interior and exterior parts continues to be a topic of interest to 

the industry. Over the years a number of technical approaches have been developed 

which provide varying degrees of improvement in scratch resistance. Examples 

include increasing part surface lubricity through the use of filler selection (e.g. 

wollastonite vs. talc), slip additives (e.g. fatty acid amides and siloxanes),  improving 

adhesion between the polymer matrix and inorganic fillers (e.g. through surface 

modification and compatibilization), and increasing surface hardness (e.g. through 

polymer architecture as well as the use of additives such as nucleating agents to 

increase the crystallinity) [17]. 

2.2.1.1 Special fillers  

Polypropylene (PP) filled with particulate fillers are of great interest in both research 

and industry. It is well known that polypropylene has good processability allowing to 

accept different types of natural and synthetic fillers. As fillers, mica, kaolin, calcium 
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carbonate, and talc are the most often used to reduce both the production costs and to 

improve the properties of the thermoplastics, such as rigidity, strength, hardness, 

flexural modulus, dimensional stability, crystallinity, electrical and thermal 

conductivity. However, fillers have a detrimental effect on other properties such as 

the impact property and deformability. The filler type and size, interfacial adhesion 

and bond strength between matrix and filler and surface characteristics of the 

composite can greatly influence the filled system. In a highly filled polymer system, 

nonuniformity of properties can exists because of poor dispersion of the filler in the 

matrix. A good interfacial adhesion between matrix and filler may improve the 

mechanical strength [17]. 

One of the most commonly used filler is wollastonite. It provides better scratch 

resistance to TPO and PP vs. talc. However, wollastonite has some limitations, e.g.,  

• Higher cost vs. talc  

• Difficult to incorporate during compounding due to high aspect ratio (must 

be fed downstream)  

• Several grades of wollastonite-filled materials are available.  

The other commonly used filler is based on nanoclays. It also provides improved 

scratch resistance vs. talc but suffers from following limitations:  

• Very high cost  

• Not yet a mature and commercially viable technology  

• Adopted in some low volume platforms to test.  

2.2.1.2 Slip additives  

One particular strategy that has been successfully employed to reduce scratch 

damage in polypropylene-based materials is to lubricate the surface using slip 

additives. As the coefficient of friction at the surface is reduced, the magnitude of the 

maximum tensile stress during scratching is also decreased, which in turn reduced 

brittle scratch damage such as cracking, crazing, and cavitation. Decreasing the 

coefficient of friction has also been shown to reduce the yielded zone size on the 

surface from scratching, resulting in reduced scratch visibility.  

Slip additive may be categorized as migratory or nonmigratory. Migratory slip 

additives must migrate from the bulk of the part to the surface in order to function as 

lubricants. Nonmigratory slip additives are by their nature randomly distributed 
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throughout the part, and must be used at relatively high concentrations in order for 

enough additive to be present at the surface to provide a lubricating effect.  

- Migratory Slip Additives 

Primary and secondary fatty acid amides are the most common migratory slip 

additives, including oleamide, erucamide, stearyl erucamide, ethylene bis (oleamide), 

and oleyl palmitamide. The use of these additives to reduce the coefficient of friction 

at polymer surface has been practiced since the 1950’s, when they were first 

employed in polyethylene films. The products function by migrating from the 

polymer bulk to the part surface to form a close-packed, oriented layer. In 

polyethylene, a monolayer of the additive has been shown to be sufficient to reduce 

the coefficient of friction to a low value. In polypropylene films, migratory slip 

additives can provide a reduction in the coefficient of friction. 

However, several disadvantages related to uncontrolled migration:  

• Stickiness after aging/weathering can be an issue  

• Fogging (critical for interior applications)  

• Poor paintability (partial paint applications & touch up)  

• Poor adhesion (parts may be attached using adhesives)  

• Effect is not permanent  

• Weatherability is poor  

- Nonmigratory Slip Additives  

High moleculer weight polysiloxanes are the most common nonmigratory slip 

additives used to enhance the scratch resistance of polypropylene-based materials. 

The nonmigratory slip additives have some technical advantages over their migartory 

counterparts. For example, they provide an immediate and somewhat more durable 

antiscratch effect. Also owing to their nonmigratory nature they would be expected 

to be evenly distributed at the surface, even in textured parts. Unlike the migratory 

slip additives, polysiloxane shows no decrease in performance after washing. A 

major disadvantage vs. migratory slip additives is inferior cost performance due to 

both the higher price of the additive and the higher loadings that must be used to give 

an effect at the part surface. It has also been reported that polysiloxanes have are 

prone to adsorption on talc, which necessitates the passivation of the talc filler prior 
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to incorporation of the polysiloxane. Many polysiloxanes are viscous liguids, which 

can be difficult to handle and dose in a compounding operation. For this reason more 

user-friendly solid forms such as masterbatches have been developed and are 

typically employed. 

Although, these additives are less migratory than slips, but still suffers from some of 

the same disadvantages:  

• Poor paintability (partial paint applications & touch up)  

• Poor adhesion (parts may be attached using adhesives)  

• Effect is not permanent.  [5] 

2.3 Polysiloxanes 

Polysiloxanes are the most common organosilicon polymers used in polymer 

chemistry. They are usually known as “silicones” or “silicon elastomers”, have 

received wide spread attention as specialty polymers since their commercial 

introduction in the 1940’s and are by far the most important of the inorganic 

backbone polymers. Special interest in these systems has developed as a result of 

their unique properties which fulfill a wide range of needs for very diversified 

applications ranging from electrical insulation to biomaterials and to space research. 

Thermodynamic calculations and spectroscopic studies have shown that in 

polydimethyl siloxanes, [(CH3)2SiO]n, the methyl groups rotate with unusual ease 

around the (Si-O) bonds. A large molar volume (75.5 cm
3
/mole) and a low cohesive 

energy density (intermolecular forces) of polydimethyl siloxanes (PDMS) are 

consequences of the ease of rotation of the methyl groups. Low intermolecular forces 

and the flexibility are also responsible for many unique properties of the PDMSs 

such as extremely low glass transition temperature (Tg = -123 
o
C), low surface 

tension and surface energy, low solubility parameter and low dielectric constant. The 

reason for the surface energy being so low is that the methyl groups have virtually no 

interactions with each other. Another factor in the surface energy is the boiling point. 

Since it is low for polysiloxanes, the surface energy is low as well. The bonding is 

strong and so the polymer can be used as a good adhesive as well. Since it has the 

ability to bend and twist, there wont be as much cracking going on in the application. 

In addition, polydimethyl siloxanes are transparent to visible and UV light, very 

resistant to ozone and corona discharge, stable against atomic oxygen an even 
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oxygen plasmas. Despite their many outstanding properties, PDMS rubbers require 

extremely high molecular weights to develop useful mechanical properties. Chemical 

backbone structure of PDMS is given in Figure 2.5.  

 

Figure 2.5 : Chemical backbone structure of PDMS. 

Even at a molecular weight of 500,000 g/mole they exhibit cold flow and very weak 

rubbery properties. Therefore, PDMS must generally be chemically crosslinked in 

order to be used in an elastomer. However, unfilled PDMS vulcanizates still have 

very low tensile and tear strengths and elongations. Polysiloxanes are not compatible 

with the numerous organic polymers due to their low solubility-parameter (7.5 (Cal 

cm
-3

)
1/2

). In addition, they have high gas permeability, chemically and physically 

inert and hydrophobic properties [19]. Properties of PDMS is given in Table 2.1.         

Table 2.1 : Properties of PDMS [20]. 

Sample Properties 

Mass density 0.97 kg/m
3
 

Young’s modulus 360-870 Kpa 

Poisson ratio 0.5 

Tensile or fracture strength 2.24 Mpa 

Specific heat 1.46 kJ/kg K 

Thermal conductivity 0.15 W/m K 

Dielectric constant 2.3-2.8 

Index of refraction 1.4 

Electrical conductivity 4x10
13

 Ωm 

Magnetic permeability 0.6x10
6
 cm

3
/g 

Adhesion to silicon dioxide Excellent 

Biocompatibility 

Noniritating to skin, no adverse 

effect on rabbits and mice, only 

mild inflammatory reaction when 

implanted 

Hydrophobicity 
Highly hydrophobic, contact angle 

90-120° 

Melting Point -49.9–40° 
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2.3.1 Theory of contact angle 

The surface tension of solids with a low surface free energy (such as polymers) 

cannot be measured directly because of the elastic and viscous restraints of the bulk 

phase. So it is needed to be measured by using of indirect methods. If we consider a 

liquid drop standing on a solid surface (Figure 2.6), the drop is in equilibrium by 

balancing three forces (the interfacial tensions between solid and liquid, SL; between 

solid and vapor, SV; and between liquid and vapor, LV). In another saying, the 

contact angle (θ), is the angle formed by a liquid drop at the three phase boundary 

where a liquid, gas and solid intersect, and it is included between the tangent plane to 

the surface of the liquid and the tangent plane to the surface of the solid, at the point 

of intersection. Low values of θ indicate a strong liquid-solid interaction such that 

the liquid tends to spread on the solid surface (well wetting) and high θ values 

indicate weak interaction and poor wetting (Erbil, 2006; Çağlar, 2007). 

 

Figure 2.6: Illustration of a liquid drop on a solid surface. 

Various type of liquids such as deionized water, diiodomethane and ethylene glycol 

can be used to measure contact angle degree of surface. After contact angle 

measurement with liquids, the total free energy was calculated.  The total surface 

energy, γi
TOT

, of a given non-metallic material (i) can be considered as being 

composed of two parts: the Liftshitz-van der Waals (LW), γi
LW

, and the acid-base 

(AB) component, γi
AB

. The former represents the dispersion forces, dipole-dipole 

and induction, and the latter represents the short range H bonding or acid-base 

interactions. This is written as the sum of the two components in Equation 3.1, 

γi
TOT

 = γi
LW 

+ γi
AB

                                                                                                 (3.1)                                                                                                          
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where the acid-base term is a property of one that depends on the mutual interaction 

of two unlike species, an acid and base. γi
AB

 is composed of two surface parameters 

which are independent of physical presence of another one: γi
+
 is the Lewis acid 

component and γi
-
  is the Lewis base component of the surface free energy. These, 

together, yield the acid-base component of surface free energy, γi
AB 

is given in 

Equation 3.2, 

γi
AB

 = 2(γi
+
γi

-
)

1/2                                                                               
                                               (3.2)                                                   

The most characteristic feature of these Lewis acid and base components is that they 

are not additive although the non-polar ones are. It means that if phase (i) possesses 

only γi
+
 or γi

-
, this component does not participate in the total surface free energy of 

the phase (i). However, it will interact with the complementary component of phase 

(j), contacting phase. As a result, the total surface free energy of a phase (i) is given 

Equation 3.3,  

    

γi
TOT 

= γi
LW

 + γi
AB

 = γi
LW 

+ 2(γi
+
γi

-
)

1/2                                                                                                     
(3.3)                                                        

 

The values of γi
AB

, γi
+
and γi

- 
can be determined by using the contact angle θ and 

“Complete Young Equation” is given Equation 3.4,  

 

(1+cosθ)γi 
TOT

 = 2 [(γi 
LW 

γj 
LW

)
1/2

 + (γi
+ 

γj
-
)

1/2
 + (γi

– 
γj

+
)

1/2
 ]                                 (3.4)                           

 

The LW component of a solid surfaces (i) can also be found from the contact angle 

of a non-polar liquid (j) (diiodometan for our study), where γi 
TOT

=γj 
LW

, on the solid 

surface. In this case Equation 3.5 reduces to, 

 

(1+cosθ)γi 
TOT

 = 2(γi
LW 

γj 
LW

)
1/2                                         

                                                  (3.5)                                                          

 

As a result, the LW component of a solid surface can be calculated by applying the 

contact angle of a non-polar liquid on the solid surface in Equation (3.6). For a 

bipolar liquid (L) contacting with the solid (S), with surface tension γL, acidic and 

basic surface parameters γL
+
and γL

-
, respectively, and non-polar surface component, 

γL
LW

, the complete equation to be considered is as follows, 
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(1+cosθL)γL
TOT

 = 2 [(γL
LW

γS
LW

)
1/2

 + (γL
+ 

γS
-
)

1/2
 + (γL

-
γS

+
)

1/2
 ]                               (3.6)                      

 

which can be constructed to form a set of two simultaneous equation, in terms of the 

parameters of the solid γS
-
, γS

+
 and two advancing contact angles θ1 and θ2, which 

are measured on the solid surface. These two equations can then be simultaneously 

solved for γS-and γS+ provided that the γi
LW

, γi
+
and γi

-
 for the probe liquids are 

known. 

Providing the known surface components of the contacting phases (i.e. polymer and 

fiber), the work of adhesion (Wa) between phase 1 and phase 2 can be calculated 

from the summation of dispersive and acid/base components by using Equation 3.7, 

[21], 

 

Wa
TOT

 = Wa
LW

 + Wa
AB

 = 2 [(γ1
LW

γ2
LW

)
1/2

 + (γ1
+
γ2

-
)

1/2
 + (γ1

-
γ2

+
)

1/2
]                (3.7)  

 

Surface free energy components of probe liquids were given for diiodometan (DIM) 

ethylene glycol (EG) and deionized water in Table 2.2.  

 

 

Table 2.2:  Surface free energy components of probe liquids, (mN/m)                            

(Luner and Oh, 2001, McMohan and Ying, 1982). 

 

Surface Tension  DIM 

(mN/m) 

EG 

(mN/m) 

W 

(mN/m) 

γL
TOT

 50.8 48 72.8 

γL
LW

 50.8 29 21.8 

γL
-
 - 47 25.5 

γL
+
 - 1.92 25.5 
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2.4 Polymer Processing  

Polymer processing is defined as the “engineering activity concerned with operations 

carried out on polymeric materials or systems to increase their utility”. Primarily, it 

deals with convertion of raw polymeric material into finish products involving not 

only shaping but also compounding.  

2.4.1 Mixing  

Mixing is a key in almost every polymer processing operation, affecting material 

properties, processability and cost. Various additives and reinforcing agents are 

mixed with polymers to improve mechanical performance and impart specific 

properties to the mixture. Besides achieving the desired shape, a suitable degree of 

homogeneity in composition and properties is required in the manufacture of 

products from polymeric materials.  

2.4.1.1 Types of mixing  

The two types of mixing occurring in the extruder are distributive and dispersive 

mixing. As their names describe, the distributive mixing evenly distributes particles 

throughout the melt, while the dispersive mixing breaks up agglomerates or large 

particles and disperses them evenly throughout the melt. The distributive and 

dispersive mixing is shown schematically in Figure 2.7. 

 

Figure 2.7 : Distributive and dispersive mixing. 

The distributive mixing is used with fibers, reinforcing fillers, and shear-sensitive 

materials to provide a uniform melt temperature. The dispersive mixing is a high-
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shear process where the molten polymer is forced through very small openings that 

may generate shear heating. The dispersive mixing is used in alloying different 

plastics, pigment dispersing, and mixing non-reinforcing fillers and additives, such as 

flame-retardants, impact modifiers, lubricants, and so forth [23, 10]. 

2.5 Extrusion Process 

Extrusion is a high volume manufacturing process used to create fixed cross 

sectional profiles such as pipe/tubing, slot bars with several cavities, weather 

stripping, windows frames, adhesive tapes, and wire insulations. 

2.5.1 Extrusion 

The extrusion of polymeric materials to produce finished products for industrial or 

consumer applications is an integrated process, with the extruder comprising one 

component of the entire line. In some applications, the production lines are very long 

with numerous operations, requiring operators to communicate and work together to 

produce an acceptable finished product. In batch extrusion systems, the aim is only to 

take a desired shape product so the feed is already uniform. On the other hand, in 

continuous extrusion processes, the ingredients are fed together to the extruder and 

besides taking the shape of the die, homogeneous mixing of the ingredients is also 

very important. 

The extrusion process is shown in Figure 2.8. Polymeric material is received, 

inspected, and stored. Prior to extrusion, the polymer may be blended with additives, 

color pigments or concentrates, flame retardants, fillers, lubricants, reinforcements, 

etc., to produce the desired product property profile. Some resin systems must be 

dried prior to extrusion to eliminate polymer degradation due to moisture. Other 

resins, which do not normally require drying, may have to be dried if they are stored 

in a cold warehouse and brought into a warm environment, causing moisture to 

condense on the surface of the pellets, flake, or powder.  
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Figure 2.8 : A general scheme of extrusion process. 

Once the polymer or blend is properly dried and ingredients mixed, the formulation 

is fed to the extruder, where it is melted, mixed, and delivered to the die to shape the 

extrudate. After exiting the die, the product is cooled and solidified in the desired 

shape and pulled away from the extruder at constant velocity to attain the appropriate 

cross section. Secondary operations, i.e., flame treatment, printing, cutting, 

annealing, etc., can be done in line after the puller. Finally, the product is inspected, 

packaged, and shipped. 

In a screw extrusion process, polymer is fed from the hopper, and mechanically 

pushed forward by the rotation of the screw. The screw pushes the plastic material 

into the barrel, which is heated to reach the melting temperature. In most processes, 

the barrel has three or more controlled heating zones increasing the temperature from 

the rear to the front. At the front of the screw, the molten material travels through a 

screen or breaker plate, a metal puck having many small holes. The screen or the 

breaker is required to develop a backpressure and thus control the melting and proper 

mixing of the polymer. The material enters the die after passing the breaker. After 

the die gives the polymer the final product shape, the material is cooled in a water 

bath. It is necessary to take into consideration the flow, deformation, and temperature 

relationship in all parts of the production line. The product must be cooled in a 
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carefully controlled vacuum water bath to avoid collapsing. Products produced 

include films, sheets, profiles, pipes, tubes, rods, wire/cable coverings, coatings, 

filaments, blown shapes, and others [24].  

Namely, there are continuous extruders with single-screws or multi screws; 

continuous disk or drum extruders, which use viscous drag, melt actions or elastic 

melt actions and discontinuous extruders, which use ram and reciprocating actions 

[25]. Since a single screw extruder is employed in this thesis, only this type of 

extruder will be mentioned from now on. 

2.5.1.1 Single screw extruder components 

A single screw extruder has five major equipment components: drive system, feed 

system, screw-barrel and heaters system, die assembly and control system as shown 

in Figure. 2.9 [24]. 

 

Figure 2.9 : Single screw extruder [24]. 

The drive system comprises the motor, gear box, bull gear, and thrust bearing 

assembly. The feed system is the feed hopper, feed throat, and screw feed section. 

The screw, barrel, and heating systems are where solid resin is conveyed forward, 

melted, mixed and pumped to the die. Extrudate is transported and shaped in the 

adapter and die, respectively. Finally, the control system controls the extruder 

electrical inputs and monitors the extruder feedback. Computer-designed extrusion 

controls not only run and monitor the extruder, but also can control the entire 
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extrusion process with feedback loops that automatically change feeder settings, 

puller speeds, screw speeds, etc., to maintain product quality. 

The cooling channels takes placed around the feed section to remove frictional heat 

generated by the rotating screw and pellet compression into the screw channels, 

preventing the pellets from premature melting. The barrel and heaters help heat and 

melt the polymer by controlling the temperature in the different zones, preventing 

material from overheating and degrading.  

A single screw extruder screw typically has three different sections, as shown in 

Figure 2.10. The feed section has deep flights to transport powder or pellets away 

from the feed throat. The transition section changes gradually from deep flights with 

unmelted pellets to shallow flights containing the melt. Resin is compressed in the 

transition section during the melting process. Metering is the last screw section and 

has the shallowest flight depths. 

 

 

Figure 2.10 : Extruder screw stages [24]. 

The extruder head assembly includes breaker plate, adapter to connect the die 

assembly to the extruder, and die. The die is attached either directly to the extruder or 

to a transfer pipe or adapter that is connected to the extruder. Polymer melt 

temperature in the adapter must be maintained. Transfer pipes, like extruder barrels, 

should have heater bands covering as much area as possible to minimize hot or cold 

spots. Control is making a measurement, determining if something needs to be 

changed, making a decision, and taking action [25]. 
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2.6 Literature Review  

In this section, the studies about scratch resistance of polypropylenes will be 

mentioned. 

Dasari et al. investigated the scratch deformation characteristics of neat and 

wollastonite containing polypropylenes. Electron microscopy and atomic force 

microscopy techniques are used to determine surface tribology of polypropylenes. 

Beside Neat PP, coated and coupled wollastonite containing PP, fine wollastonite 

containing PP, coarse wollastonite containing PP and coated wollastonite containing 

PP were prepared. Scratch resistance was evaluated in terms of scratch hardness, 

scratch depth, average scratch roughness, thickness and density of the scratch tracks. 

The study indicated that filled polypropylene showed plastic deformation due to 

debonding/detachment of wollastonite mineral particles from the polypropylene 

matrix. Materials with higher scratch hardness are expected to exhibit greater 

resistance to scratch deformation and lower scratch visibility. They observed that 

resistance to scratch deformation decreases with the following sequence: coated and 

coupled wollastonite containing PP, neat PP, fine wollastonite containing PP, coarse 

wollastonite containing PP and coated wollastonite containing PP [4]. 

Chu et al. investigated the test methods used to see effect of different mineral fillers 

on the scratch and mar resistance of pigmented mineral-filled polypropylene. 

Pigmented mineral-filled polypropylene (PP-PMF) is marketed as a potential 

alternative to acrylonitrile-butyldiene-styrene (ABS) for automotive interior 

components. But PP-PMF was more easily damaged by surface scratch. A new 

method was introduced to characterize the scratch visibility by image analysis. A 

correlation was found between scratch visibility and scratch hardness measured by 

interferometer. They concluded that wollastonite can reduce the scratch depth and 

visibility whereas talc is not very efficient for this purpose. An interface modifier and 

lubricant can further reduce scratch depth and whitening for wollastonite-filled PP 

but the additives was ineffective for talc-filled PP-PMF [26]. 

In a work of Shuhao and co-workers, polypropylene (PP) and talc-filled PP with 

various lubricants were prepared to study the effects of normal force on the scratch 

resistance of polymers. The effects of additives on the scratch behavior of neat and 

talc-filled PP systems were investigated. Differential scanning calorimetry and 



24 

optical microscopy were used to characterize crystallinity and scratch deformation 

mechanisms in the PP systems. It was found that the scratch hardness is related to the 

applied loads during the scratch process. Lower load showed higher scratch hardness 

due to elastic deformation of PP composites. The talc-filled impact copolymer 

polypropylene (ICPP) exhibited higher scratch hardness than the neat ICPP. Homo-

PP exhibited superior scratch resistance and less susceptibility to scratch deformation 

than ICPP. The addition of lubricant and annealing treatment improved the scratch 

resistance of both neat and the talc-filled PP systems [27]. 

Thridandapani et al. investigated the surface deformation during scratching of neat 

polypropylene and polypropylene-clay nanocomposites. Neat PP, PP-4 wt.% clay, 

and PP-8 wt.% clay were used. Nanoclay has a significant effect on modulus, yield 

strength, elastic recovery and resistance to mechanically induced scratch damage. It 

was seen that there was an increase in crystallinity but the spherulite size decreases 

by reinforcement of polypropylene with clay. Reinforcement with nanoclay 

introduces an “ironing” mechanism, implying higher scratch resistance. Higher 

scratch resistance is directly related to lower scratch visibility [16].  

Hadal and co-workers described the effect of wollastonite and talc on the scratch 

deformation behavior of low and high crystallinity polypropylenes. The vertical 

resolution of atomic force microscopy and lateral resolution of scanning electron 

microscopy was utilized to examine the characteristics of scratch damage. It was 

indicated that reinforcement of polypropylenes with wollastonite and talc increased 

the tensile modulus of polypropylenes, but yield strength remained unaffected. This 

behavior was related to the high aspect ratio of the particles that encouraged 

detachment of minerals from the matrix at the yield point. Scratch deformed regions 

in neat polypropylenes were free of voids and grooves, while reinforced-

polypropylenes exhibited voids and debonding/detachment of filler particles. As a 

result the severity of plastic deformation was comparatively higher for talc-

reinforced polypropylenes than wollastonite-reinforced polypropylenes because of 

the layered structure of talc that encourages delamination. Usage of coupling agents 

improved the resistance to scratch deformation by promoting adhesion and bonding 

between the reinforcement and matrix [28].  
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In a work of Koch and co-workers, the influence of addition of different 

polyethylenes to a heterophasic PP/EPR copolymer on the scratch behavior was 

investigated. The nano-indentor scratch tests and the Erichsen cross cutter method 

were used for comparison the effect of scratch test types on the scratch resistance of 

material. The scratch evaluation was carried out by measuring the ΔL values with a 

spectral photometer. It was found that the addition of PE to the PP/EPR blend leads 

to an improvement of scratch resistance. No strong correlation was found between 

micro- and macro-scratch experiments [3]. 

In a work of Xiang and co-workers, scratch behavior in neat and talc-filled high 

crystallinity polypropylene (PP) copolymers containing various additives were 

investigated. Differential scanning calorimetry, scanning electron microscopy and 

attenuated total reflectance Fourier transform infrared spectroscopy were used to 

characterize crystallinity, morphology and scratch mechanisms in PP systems. The 

influences of talc, nucleating agent and lubricant on the scratch behavior of PP were 

discussed. For high crystallinity PP copolymers, it was found that the scratch 

resistance depends mainly on the fracture features generated on the scratch surface, 

which was confirmed by SEM and interferometer surface analyses. They concluded 

that the talc filled PP copolymer exhibited high scratch visibility and scratch depth.  

The addition of nucleating agent or lubricant reduces scratch depth and scratch 

visibility of the talc-filled PP since the additives were likely to flow to the surface 

and reduce scratch fracture features during scratch [29]. 

In a work of Wong et al. surface damage of polypropylene under progressive loading 

was investigated. Homo polypropylene, talc filled homo polypropylene, copolymer- 

PP blend, talc filled copolymer-PP blend were used. The results show that for the PP 

systems, the magnitude of critical load to stress whitening occurs in the following 

order: homopolymer, talc-filled homopolymer, copolymer, talc filled copolymer. 

Scratch visibility increases significantly due to the massive formation of voids and 

exposed talc particles on the scratched surface. Exposed talc particles on the surface 

of talc-filled PP were found to be responsible for the increased light scattering, 

leading to greatly increased visibility. Even though, talc increases scratch hardness in 

both homopolymer and copolymer PP systems, if not properly modified, is found to 

have a deleterious role in terms of scratch visibility [30]. 
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3. EXPERIMENTAL 

3.1 Materials 

3.1.1 Polypropylene (PP)  

Neat polypropylene (nPP) which has a trade name of MH 418, was purchased from 

PETKIM Petrochemical Holding Inc., Izmir. Basic properties of the pelletized 

polypropylene are declared by the company in Table 3.1. 

Table 3.1 : Basic properties of neat polypropylene. 

Property Value Unit Test Method 

Melt flow rate 

(2160 g, 230ºC) 

4.0 – 6.0 g/10 min  ASTM D1238 

Tensile strength    

at yield 

350 kg/cm
2
 ASTM D638 

Tensile strength     

at break 

430 kg/cm
2
 ASTM D638 

 

3.1.2 Talc reinforced polypropylene (tPP)  

40 wt-% talc reinforced polypropylene which has a trade name of EMOPLEN 
®
 HP 

MTF 40, was the commercial polypropylene supplied from EMAS Plastic Industry 

and Trade Inc., Bursa. Basic properties of the pelletized talc reinforced 

polypropylene are declared by the company in Table 3.2. 

Table 3.2 : Basic properties of talc reinforced polypropylene. 

Property Value Unit Test Method 

Melt flow rate 

(2160 g, 230ºC) 

1.0 – 7.0 cm
3
/g ISO 307 

Tensile stress 27-37 MPa ISO 527 

Tensile strain at 

break 

≥ 5 % ISO 527  
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3.1.3 Mixture of modified polyolefin and silicone block copolymer  

TEGOMER
®
 PP-Si 401 was a mixture of modified polyolefin-silicone block 

copolymer obtained from EVONIK Industry. The melt flow rate (190°C/2.16 kg), 

silicone content [wt-% PDMS] and density are declared minimum 100 g/ 10 min, 15 

and 939 kg/m
3
 by the company respectively. 

3.1.4 Polyester modified siloxane 

TEGOMER
®
 H-Si 6440 P was the polyester modified siloxane obtained from 

EVONIK Industry.  The melting point and water content were declared 54°C and 

less than 0.1 % by the company respectively.  

3.1.5 Organically modified siloxane 

TEGOMER
®
 Antiscratch 100 was organically modified siloxane obtained from 

EVONIK Industry. The melt flow rate (230°C/2.16 kg) is declared minimum 100 g/ 

10 min by the company.  

3.2 Equipments 

3.2.1 Extruder 

A single screw extruder with a diameter of 25 mm and L/D of 25 was used to prepare 

samples by melt mixing method. The scheme of the extruder is given in Figure 3.1. 

 

Figure 3.1 : Single screw extruder. 
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The extruder has 5 zones; 3 heating zones, a static mixer and a die. Temperature 

control is achieved by PID control of ceramic heaters. Every ceramic heater section 

is surrounded with a cover. All the controllers are introduced in a control board. 

The screw of the extruder has 3 stages, which consists of universal single flights in 

the feeding and transition zones with distributive pineapple mixing elements in the 

metering zone. The compression ratio (ratio of metering section flight depth/feeding 

section flight depth) is 2.05. The screw configuration is given in Figure 3.2. 

 

Figure 3.2 : Screw configuration. 

Static mixer is placed between the barrel and die to increase the degree of mixing. 

The pressure before the die is monitored by the pressure gauge. This static mixer 

which is given in Figure 3.3 consists of eight mixing elements. 

 

Figure 3.3 : Static mixer and degree of mixing achieved. 
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3.2.2 Hot press 

Molding were performed on a hydraulic press for their own optimum cure times, at 

210
o
C and under 100 bar pressure. The conceptual view of hydraulic hot press can be 

seen from Figure 3.4. Samples were handled as casts with 2 mm thickness for FTIR-

ATR analysis, Shore-D hardness test, contact angle measurement and anti-scratch 

tests. 

The uncured pieces of compound placed in the mold are known variously as 

preforms, billets or load weights. Normally the weight of this preform will be chosen 

to be a few percent (from two to ten percent) above the weight of the final product, to 

ensure a fully formed product and to give an extra 'push' for expulsion of any 

residual trapped air. The preform is placed in the bottom cavity and the top mold 

section placed on it by hand. If a significant number of moldings are to be made, it is 

often advantageous to fix the two halves of the mold to their respective press platens 

[46]. 

 

 

Figure 3.4 : Hydraulic hot press. 
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3.2.3 Fourier transform infrared spectroscopy (FTIR-ATR) test device  

Perkin Elmer Spectrum 100 model FTIR apparatus with ATR (Attenuated Total 

Reflectance) technique was used to determine the organic components of the 

samples. Percent transmittance versus wavenumber graph was obtained from the 

apparatus. 

3.2.4 Universal testing machine 

A Zwick/Roel Z.05 universal testing machine was performed for the evaluation of 

tensile properties of the samples. The machine had 500 N capacities, sizes to 12x30 

mm stainless steel Zwick pincer grips. The load cell was capable of applying 500 N 

force and testing samples up to 200 mm/min speed. 

3.2.5 Shore-D hardness test device 

Zwick Roell Shore D in accordance with ASTM D 2240 was used.  

3.2.6 Differential scanning calorimetry analysis (DSC) 

Thermal analyses of the samples were done with a Mettler Toledo DSC1 Differential 

Scanning Calorimetry equipment. The analysis were done for all samples between 

25ºC and 200ºC at 10ºC/min heating rate under inert atmosphere. Melting 

temperatures (Tm), the peak temperature (Tp), the enthalpy of melting were obtained 

using a differential scanning calorimeter (DSC). 

3.2.7 Scratch Tester 

430 P-II Erichsen scratch tester was used for anti-scratch experiments. The motor-

driven scratch hardness tester 430 P-II is a universal testing instrument designed for 

carrying out a wide range of tests on plastic surfaces to determine their resistance to 

scratches. The instrument is equipped with an ISO 1518-1 type (1 mm) edge and 

defined speed (normally 10 mm/s). As it can be seen Figure 3.5, one tip is used to 

make single cuts, parallel cuts and - by turning the specimen by 90° cross-cuts at 

various thicknesses.  
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Figure 3.5 : Erichsen scratch tester. 

3.2.8 Optical microscopy  

Nikon Eclipse LV100 optical microscopy was used to measure scratch widths (μm) 

of the samples. 

3.2.9 Contact angle test device 

Attension Biolin Scientific AB, ThetaLite TL101 model optical tensiometer aparatus 

was used to measure contact angles of the surfaces for all samples. 

3.2.10 Melt flow index device (MFI) 

HAAKE Melt Flow MT was used to measure melt flow rate (MFR) values of the 

samples. It is equipped with a standard 8 mm in length and 3 mm in diameter die, a 

standard 6.35 mm in length and 9.4772 mm in diameter piston, and a standard load to 

apply 2.16 kg force during the extrusion. 

3.2.11 Density Measurement 

Mettler Toledo’s Density Kit was used to measure density of nPP, tPP, additives and 

samples with additives.  
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3.3 Experimental Procedure 

3.3.1 Optimization 

The aim of this study is to analyze the effects of additive types on mechanical, 

thermal, and tribological properties of nPP and tPP which are prepared by melt 

mixing via a single screw extruder. Firstly, an optimum temperature profile was 

determined. The lower limit of the processing temperatures was determined 190ºC 

for PP, which is higher than melting temperature of PP. 

After knowing the processing limits, experiments with several temperature profiles 

were carried out. As a result of these experiments, the temperature profile was 

decided to be 190/ 195/ 195/ 200/ 200 ºC for zone 1, zone 2, zone 3, static mixer and 

die respectively. Then, residence time measurements at 30 rpm was done by dye 

detecting method with the use of blue colored PP-based masterbatches, which were 

found to be between 1.1 – 1.5 minutes. After the temperature profile determination, 

optimum additives amounts were determined. According to the literature, additives 

were useful between 0.5 – 4 wt-% for PPs. So, nPP and tPP were extruded with three 

commercially available additives by using 1 and 3 wt-% of PPs by melt mixing 

method.  

3.3.2 Preparation of samples 

In this study, different compositions of samples were extruded in order to investigate 

the effects of additives on mechanical, thermal, and tribological properties of nPP 

and tPP. Sample recipes and nomenclature were given in Table 3.3.  

300 grams of polymer was prepared for each batch for melt mixing in extruder. 

Additives were added to the nPP and tPP as weight percent. The PP and additives 

pellets were premixed by shaking in a large – closed container by hand for 5 minutes 

before being fed to the extruder. Temperatures of the zone 1, zone 2, zone 3, static 

mixer and die were 190/ 195/ 195/ 200/ 200 °C respectively. The samples were 

extruded at 30 rpm. The strands from the die were collected on a metal plate and 

pelletized after complete solidification. The middle of these productions was taken as 

samples, because effective mixing takes place at this point.  
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Table 3.3 : Sample recipes and nomenclature. 

Sample PP   

[wt-%] 

Talc 

reinforced 

PP 

[wt- %] 

A [wt- %] 

TEGOMER 

PP-Si 401 

B [wt- %] 

TEGOMER 

H-Si 6440 P 

C [wt- %] 

TEGOMER 

Antiscratch 

100 

nPP 100     

nPP-%1 A 99  1   

nPP-%3 A 97  3   

nPP-%1 B 99   1  

nPP-%3 B 97   3  

nPP-%1 C 99    1 

nPP-%3 C 97    3 

tPP  100    

tPP-%1 A  99 1   

tPP-%3 A  97 3   

tPP-%1 B  99  1  

tPP-%3 B  97  3  

tPP-%1 C  99   1 

tPP-%3 C  97   3 

 

The samples were prepared for each characterization differently. Strands types of 

specimens prepared for the mechanical measurement tests. Hydraulic hot press was 

used to prepare the 10cm×10cm×2mm film samples for scratch tests via compression 

molding. Used mould was shown at Figure 3.6. The PP samples were preheated for 

10 minutes at 210ºC and then molded for 3 minutes with a pressure of 100 bars. tPP 

samples were immersed in cold water after they had been removed from the press. 

nPP samples were put on metal plate to cool by themselves. These samples also were 

used for FTIR-ATR analysis, Shore-D hardness test, contact angle measurement. 

 

 

Figure 3.6 : Shape and dimensions of 2 mm thick mould.  

   

10 cm  

20 cm  
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3.3.3 Fourier transform infrared spectroscopy (FTIR-ATR) 

FTIR analysis was performed over the range of 650 to 4000 cm
-1

 at  room conditions. 

The inside and surface of hot pressed samples were measured by FTIR-ATR analysis 

to determine the organic components on the surface and inside of samples as it was 

given in Figure 3.7. It was done to see molecular behavior of additives on the surface 

of samples.  

 

 

Figure 3.7 : Example of taking sample for FTIR-ATR anlaysis.  

3.3.4 Mechanical property characterization 

Specimens were cut with a cutter. Then dimensional measurements were taken place. 

Suitable specimens were placed between gauges. The tensile tests were carried out at 

100 mm/min rate according to ISO 6259 (specifies a short-term tensile test method 

for determining the tensile properties of thermoplastics pipes) standards. From the 

measured stress and strain values, tensile strength, % strain and elastic modulus were 

calculated from the average of as 5 specimens tested. 

3.3.5 Shore-D hardness test 

According to standard measurement (ASTM D 2240); after 15 seconds of the 

beginning the measured values were recorded. For every sample, at least 3 parallel 

values measured and the averages of the values were calculated and recorded. 

3.3.6 Thermal property characterization 

The thermal properties of the samples were determined by differential scanning 

calorimetry (DSC). The heating scans were carried out at 10ºC/min rate in the 

temperature range of 25ºC - 200ºC in the DSC analysis. The enthalpy of melting 

 

 

inside of  the sample surface of 

the sample  

cutting the surface 
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were calculated from the thermograms by evaluating the area under the melting 

curves.  

3.3.7 Anti-scratch experiments 

Erichsen scratch tester was used to scratch samples. The scratch tester has a one tip 

which provide single and parallel cuts and than by turning the specimen by 90° - 

cross-cuts was applied to test panels of various thicknesses. A series of parallel 

scratch marks were applied with 20 cuts at a distance of 2 mm under 20 N loads for 

all samples. Two samples were scratched for the same composition. After applying 

scratch tests, the photos were taken with optical microscope from 20 different points 

of scratches for the same composition. Average scratch widths (μm) of the samples 

were calculated by using the length of scratches. 

3.3.8 Determination of surface properties by contact angle measurements  

Various type of liquids such as deionized water, diiodomethane and ethylene glycol 

were used to measure the contact angles of all samples. Each contact angle 

measurement was repeated at least three times. After, average contact angle values 

were measured for three kind of liquids, the surface free energy was calculated by 

using these datas. The sessile drop method was applied in order to calculate surface 

free energy and determine surface behavior by using equations which was mentioned 

in Section 2.3.1 at theory of contact angle.  

3.3.9 Melt flow rate determination 

The melt flow rate (MFR) of nPP, tPP and samples with additives were measured at 

190ºC with 2.16 kg load according to ASTM D1238 standard.  

3.3.10 Density Measurement  

Mettler Toledo’s Density Kits were used to measure density of nPP, tPP, additives 

and samples with additives. Density Kits were mounted on balance to provide a 

convenient solution for determining the density of solid. The measurement was 

repeated as three times. 
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4. RESULTS AND DISCUSSION 

In this study, neat PP (nPP) and talc reinforced PP (tPP) were extruded with three 

commercially available additives by using 1 and 3 wt-% of PPs. One of the additives 

was a mixture of modified polyolefine-silicone block copolymer, the other one was 

polyester modified siloxane and the third one was the organically modified siloxane. 

Thermal, mechanical and tribological properties of the prepared fourteen samples 

were characterized.  

4.1 FTIR-ATR Results 

FTIR analysis was used to examine the chemical composition and structure of 

materials. Additives and samples were characterized to obtain FTIR-ATR spectra. 

The structural and characteristic groups of materials were determined. The FTIR-

ATR spectra of additives were presented in Figure 4.1. 

In the FTIR-ATR spectra of PDMS containing additives the band at 2963 and 2905 

cm
-1 

refer to CH stretching region of CH3. The peaks from Si-O (at 1024 cm
-1

), and 

Si-CH3 (at 1260 and 800 cm
-1

) are clearly seen the latter two of which are 

characteristic peaks for PMDS. While the bands at 1446 and 1412 cm
-1

 show CH3 

asymmetric deformation of Si-CH3, the band at 1258 cm
-1

 shows CH3 symmetric 

deformation of Si-CH3. CH3 rocking are shown at the peaks 863 and 787 cm
-1

. These 

results are in aggrement with references [43, 44]. 

FTIR-ATR spectra of tPP, surface of tPP-C and inside of tPP-C were shown in 

Figure 4.2. Surface of the sample was analyzed to see the migration of additive on 

the surface. When the FTIR-ATR graphs were compared, it can be seen that the peak 

between 1800-2400 cm
-1

 disappeared for the surface of the tPP due to the fact that 

TEGOMER Antiscratch 100 had no peak between these values. FTIR-ATR spectra 

of inside of tPP-C resembled with spectra of tPP. PP samples showed PP 

characteristic bands with symmetric vibration of H atoms of CH2 at 2853 ±5 cm
-1

, 

asymmetric and symmetric deformations of C-H of CH3 at 1450 ± 20cm
-1

 and 1380-



38 

1370 cm
-1

, respectively, [47]. Inside of tPP-C also had characteristic peak of 

TEGOMER Antiscratch 100 as 1260 cm
-1 

(Si-CH3).  

 

        Figure 4.1 : FTIR-ATR spectra of  TEGOMER PP-Si 401, TEGOMER H-Si 

6440 P, TEGOMER Antiscratch 100.    

 

Figure 4.2 : FTIR-ATR spectra of tPP, surface of tPP-C and inside of tPP-C (3%). 

Inside of 
tPP-C  

Surface  of 
tPP-C  
 

tPP 

TEGOMER 
Antiscratch 100 

TEGOMER 

Antiscratch 100 

 

TEGOMER 

H-Si 6440 P 

 

TEGOMER 

PP- Si 401  

 



39 

The results showed that all additives has characteristic peak of PDMS in their 

structure. PDMS containing additives behaved as a slipping agent on the surface of 

samples. It was seen that the additive migrated on the surface quite higher the inside 

of the polymer. FTIR-ATR spectra of surface of tPP-C resembled with spectra of 

additive.  

4.2 Tensile test result of samples  

Tensile tests were performed with universal test machine at 25ºC. The values of all 

the mechanical parameters are calculated as 5 specimens for each composition. 

Tensile strengths of samples were compared in Figure 4.3. The tensile strength of 

nPP and tPP was found 50.0 MPa, 46.2 MPa respectively. Addition of talc (tPP) 

decrease the tensile strength of polypropylene (nPP). It is known that type and 

particle size of filler, distribution of filler are the most important factor affecting the 

mechanical properties of binary (PP/filler) [17]. When the additives were added 1%, 

an increase in tensile strength was observed due to the effect of other groups than 

PDMS. The tensile strength of nPP- 1% A was found 57.6 MPa whereas it was 51.0 

MPa for nPP- 3% A. When the additives were added 3%, affect of PDMS can be 

seen more obvious than other groups that tensile strength decreased both in nPP and 

tPP according to error bars.  

 

Figure 4.3 : Tensile strength of samples. 
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As it is given in the literature, PDMS containing additives can reduce the tensile 

strength of the polymer materials, but improving the toughness and surface 

properties [48, 49]. PP-1% TEGOMER PP-Si 401 had the highest tensile strength 

than other samples containing other additives for both nPP and tPP. 

Modulus of elasticity equals to the ratio of the applied load per unit area of cross 

section to the increase in length per unit length. PP can be considered a tough 

material at room temperature. One of the reason for incorporating talc in plastics is to 

increase the stiffness (modulus of elasticity). The degree of rigidity obtained depends 

on the filling level, aspect ratio and fineness of the talc [42]. Modulus of elasticity of 

samples were compared in Figure 4.4. Addition of talc to the polypropylene 

increased the modulus of elasticity significantly. The modulus of elasticity was found 

127.7 MPa for nPP, it was 148.7 MPa for tPP. The increase in elasticity modulus was 

related to the rigid filler particles that restrict the mobility. On the other hand, the 

additives acted as a rather softening material so that addition of additives decreased 

the modulus of elasticity. It was also seen that increasing amount of additives, 

lowered the modulus of elasticity. For each type of additives, the percent of 

decreasing was the same for nPP and tPP.  

 

Figure 4.4 : Modulus of elasticity for all samples. 
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Elongation at break was greatly reduced by the inclusion of reinforcement but it was 

increased by additives as it can be seen Figure 4.5. A low elongation figure denoted a 

brittle rupture, while a high elongation showed that a material responds in a ductile 

manner. Percentage of elongation at break value was found 33.0 for nPP and it was 

found 24.6 for tPP. Addition of talc decrease the elongation at break. Percentage of 

elongation at break value of nPP- 1 % TEGOMER H-Si 6440 P was found 51.5 and  

it was found 60 for nPP- 3 % TEGOMER H-Si 6440 P. Addition of additive 

increased the elongation at break value. Moreover, increasing the additive content 

made the elongation at break value higher. TEGOMER H-Si 6440 P increased the 

elongation at break more than other additives for nPP and tPP.  For each type of 

additives, the percent of increasing was the same for nPP and tPP.  

 

Figure 4.5 : Elongation at break for all samples. 

4.3 Hardness Test Results 
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increase the hardness but, inclusion of PDMS containing additives decrease the 

hardnesss of sample. 

Table 4.1 : Shore-D hardness results. 

Sample 
Hardness 

Shore-D  

nPP 26.5 

nPP-%1 A 26.0 

nPP-%3 A 26.0 

nPP-%1 B 25.5 

nPP-%3 B 25.5 

nPP-%1 C 25.0 

nPP-%3 C 25.0 

tPP 27.0 

tPP-%1 A 26.5 

tPP-%3 A 26.5 

tPP-%1 B 26.0 

tPP-%3 B 26.0 

tPP-%1 C 25.5 

tPP-%3 C 25.5  

4.4 Thermal tests results of the samples 

Thermal properties of samples were analyzed by differential scanning calorimetry. 

Samples were heated from room temperature to 200°C. The enthalpy of melting, 

melting temperature and crystallinity of samples were given in Table 4.1.  

The measurements indicated that the melting temperature of nPP is 165.13°C, 

whereas the melting temperature of tPP was found to be 164.02°C.  This can be 

related to the effect of talc that prevents the molecular mobility of the segments. 

There are not many changes in Tm depending the amount of additives. Percent 

crystallinity (% Xc) of each material was calculated by using Eqution (4.1): 

 

                                            % Xc = 100* ΔHm/ (ΔHf x θPP)                                   (4.1) 

 

where ΔHm is the melting enthalpy obtained from DSC thermograms, ΔHf is the heat 

of fusion for fully crystalline PP (207 J/g), and θPP is the PP fraction in composition. 

The DSC results of samples were given in Table 4.2. Percent crystallinity of nPP was 

obtained 40.7. It was found 46.5 for tPP which was higher than that of nPP. As a 
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general trend, tPP based samples had higher %Xc in comparison to nPP based 

mixtures. This can be attributed to the nucleating effect of talc, which gives more 

time for PP during cooling to crystallize. Percentage of crystallinity and entalpy of 

melting increased by increasing additive content for nPP. Crystallinity of nPP-1% A 

and nPP- 1% B was the same with nPP. nPP-%1 C and nPP-%3 C had lower % 

crystallinity than other nPP samples. nPP-3% A had the highest crystallinity value in 

nPP based samples. On the other hand, the additive content did not affect entalpy of 

melting and % crystallinity of tPP as much as nPP. Each additive increased 

crystallinity of tPP. tPP- 3% C had the highest % crystallinity value in tPP based 

samples.   

Table 4.2 : The DSC results of samples. 

Sample Tm 

[°C] 

ΔHm 

 [J/g]  

%Crystallinity 

[%Xc] 

nPP 165.1 84.2 40.7 

nPP-%1 A 165.9 84.3 41.1 

nPP-%3 A 166.0 87.8 43.7 

nPP-%1 B 165.8 81.8 39.9 

nPP-%3 B 165.7 90.3 45.0 

nPP-%1 C 164.7 49.4 24.1 

nPP-%3 C 166.0 74.3 37.0 

tPP 164.0 57.8 46.5 

tPP-%1 A 166.7 62.0 50.8 

tPP-%3 A 164.8 65.4 55.4 

tPP-%1 B 164.0 59.7 48.9 

tPP-%3 B 165.6 56.9 48.2 

tPP-%1 C 164.9 58.5 47.9 

tPP-%3 C 163.8 66.1 56.0 

4.5 Evaluation of scratch resistance  

After applying scratch tests, the photos were taken with optical microscopy from 10 

different points of scratches for the same sample. Scratch widths (μm)  of both neat 

and talc reinforced PP samples were optically calculated in optical microscopy. 

Optical imaging of nPP, tPP, and tPP-%3 C were shown in Figure 4.6, Figure 4.7 and 

Figure 4.8 respectively. The scratch widths of nPP and tPP were found 458.0 μm and 

636.2 μm by optical imaging, respectively. tPP based samples always showed higher 

scratch widths and lower scratch resistance. The results were similar with the 

literature, [4, 26 ,27].  
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Figure 4.6 : Optical image of nPP. 

 

 

 

Figure 4.7 : Optical image of tPP. 
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Figure 4.8 : Optical image of tPP-%3 C. 

 

Talc can be added to increase scratch resistance, but in some studies these undesired 

results were found. Anti-scratch additives decreased scratch visibility and widths of 

scratches, and they enhanced the scratch resistance of PPs. Moreover, the increasing 

amount of the additives made the scratch visible only in one direction for nPP based 

samples as it can be seen in Figure 4.8.  This occurred because of higher silicone 

content in the compositions.  

The graph of scratch widths (μm) of the samples was shown in Figure 4.9 for all 

samples. When the scratch width of nPP- 1% B was found 400.7 μm, it was 395.0 

μm for nPP-3% B. The scratch width of nPP- 1% C was obtained 385.0 μm whereas 

the scratch width of nPP- 3% C was obtained 373 μm. As the amounts of additives 

were increased, the scratch resistance of samples became higher. The most effective 

one for improving scratch resistance was found as 3 % TEGOMER Antiscratch 100 

especially when containing % 3 in PPs. For each type of additives, the percent of 

decreasing was the same for nPP and tPP.  
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Figure 4.9: Scratch widths of nPP, tPP and the samples prepared. 

 

Scratch hardness is one of the main characteristics of the material which indicates its 

scratch deformation resistance. In the manner indentation hardness, scratch hardness 

is a measure of force applied to the sample per unit area and it can be calculated as 

follows (4.2) : 

                                    Hscratch = Lscratch/ Ap                                                                                       (4.2) 

 

where Hscratch is the scratch hardness in kg/mm
2
, Lscratch is the scratch load in N, and 

Ap is the projected load supporting area mm
2
, which is w

2
/4 for a conical indenter, 

where w is the scratch width. Consequently, Equation 2.  can be rewritten as follows 

(4.3) : 

                                             Hscratch= 4Lscratch/ w
2 
                                                 (4.3)  
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Good correlation was found between scratch visibility and scratch hardness based on 

scratch width measurements. Materials with higher scratch hardness were more 

resistant to scratch. As it was seen in Figure 4.10, the hardness of samples with anti-

scratch additives became higher than non-additive nPP and tPP. It was also observed 

that the effect of additive content on the scratch hardness varied according to the 

additive type. tPP samples showed less scratch hardness than nPP samples according 

to the scratch width of samples. On the other hand, there were not many changes in 

the scratch hardness of tPP and nPP samples depended on additive content.  While 

scratch hardness of nPP-1% C was obtained 17.5 kg/mm
2
, it was found 18.6 kg/mm

2 

for nPP-3% C. The scratch hardness of nPP-1% B was found 16.2 kg/mm
2
, it was  

16.7 kg/mm
2
 for nPP-3% B.  

Unfortunately, samples with talc reinforced PP always showed poor scratch 

resistance. Talc reinforced-polypropylenes exhibited voids and debonding of filler 

particles because of the layered structure of talc that encourages delamination. 

Additives act as lubricating agent on the surface to provide antiscratch effect and 

improved scratch resistance of PPs. 

 
                                 

Figure 4.10 : Scratch hardness of samples. 
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4.6 Contact Angle Test Results 

The contact angles values of samples were shown in Table 4.3  for deionized water, 

diiodomethane and ethylene glycol.  

The water contact angle value of nPP and tPP was obtained as 90.1
o 

and 96.2
o 

respectively. Water contact angle values that were higher than 90° indicate surface 

hydrophobicity. The  hydrophobicity of talc surfaces arises from the fact that the 

atoms exposed on the  surface are linked together by siloxane (Si-0-Si) bonds and, 

hence, do not form strong  hydrogen bonds with water. Water contact angle of nPP-

3% C was found 104.0
o
. PDMS has hydrophobic characteristic as mentioned in 

Section 3.2. So that samples with silicone based additives had higher water contact 

angle degree than nPP and tPP. Moreover, increasing additives content made contact 

angle degree higher as a result of that more hydrophobic surface occurred. 
 

Water contact angles on all polymer surfaces studied are higher than those of  

diiodomethane (DIM). Water possesses both polar and dispersion surface energy 

components, while DIM has mostly the dispersion surface energy component. 

Table 4.3 : Contact angle degree of samples. 

Sample water 

 (
o 
) 

diiodomethane   

      (
o 
) 

  ethylene    

  glycol (
o 
) 

nPP 90.1 56.2 67.5 

nPP-%1 A 94.8 60.0 74.0 

nPP-%3 A 96.2 61.0 76.6 

nPP-%1 B 94.0 59.7 72.5 

nPP-%3 B 96.8 63.0 72.7 

nPP-%1 C 101.1 62.0 75.0 

nPP-%3 C 104.0 66.8 78.0 

tPP 96.2 57.0 60.0 

tPP-%1 A 102.8 57.7 74.5 

tPP-%3 A 104.1 58.0 75.2 

tPP-%1 B 100.0 57.7 63.2 

tPP-%3 B 104.0 59.7 64.8 

tPP-%1 C 107.1 57.7 60.6 

tPP-%3 C 112.6 59.8 62.7 

 

The total surface free energy of samples were shown in Figure 4.11. PDMS 

containing samples had lower surface energy than nPP and tPP. nPP and tPP had the 
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highest surface energy which was 31.2 mJ/m
2 

and 31.1 mJ/m
2
 respectively. The 

surface free energy of tPP-1 % C was found 27.3 mJ/m
2 

and it was found 24.3 mJ/m
2 

for tPP-3 % C. tPP-3 % C had the lowest surface free energy. For each types of 

additives, as the amount of additive increased, the surface free energy decreased.  

 

Figure 4.11: Surface free energy of sample. 

4.7 MFR result of the samples 

The melt flow rate (MFR) of nPP, tPP and samples with additives were measured 

according to ASTM D1238 standard. MFR values of nPP and tPP were obtained 

5.4g/10 min, 5.2 g/10 min respectively. As it can be seen from Figure 4.12, the MFR 

values decreased slightly with the addition of the talc content. This result can be 

directly related to the lack of contribution of the talc to the flow. On the other hand, 

the MFR values of samples increased due to three kind of additives. TEGOMER H-

Si 6440 P increased flowability of samples significantly when using 3 wt- % in both 

nPP and tPP. 3 wt- % of TEGOMER PP-Si 401 and TEGOMER Antiscratch 100 

increased MFR values of nPP samples more than those of tPP samples. A higher 

MFR values allowed the polypropylene to fill the mold more easily. 
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Figure 4.12 : MFR values of nPP, tPP and all samples. 

4.8 Density Result 

The density values of additives and  all samples was calculated by Mettler Toledo’s 

Density Kits. The results were shown in Table 4.4.   

Table 4.4 : Density of additives and samples. 
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nPP-%3 C 0.886 
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tPP-%1 C 0.965 

tPP-%3 C 0.963 
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The density of TEGOMER PP-Si 401, TEGOMER H-Si 6440 P, TEGOMER 

Antiscratch 100  were found 0.847, 0.997, 0.493 g/cm
3 

respectively. TEGOMER The 

density value of nPP was found 0.909 g/cm
3
, while it was found 0.999 g/cm

3 
for tPP. 

Talc increased density of PP. TEGOMER Antiscratch 100 which was organically 

modified siloxane had the lowest density value so that  the samples of nPP and tPP 

containing TEGOMER Antiscratch 100 had less density value than other samples as 

well. TEGOMER H-Si 6440 P showed higher density value due to containing of 

polycaprolactone groups which had higher density. The nPP and tPP samples which 

containing TEGOMER H-Si 6440 P had higher density value than other samples.  
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5. CONCLUSION 

In this study, three different commercially available anti-scratch additives were used 

to improve scratch resistance of neat PP (nPP) and talc reinforced PP (tPP) samples. 

These additives are (1) a mixture of modified polyolefin-silicone block copolymer, 

(2) siloxane copolyester and (3) organically modified siloxane used as 1 and 3 wt-% 

both in nPP and in tPP. The effects of filler, additives and additive contents on the 

mechanical, thermal, and tribological properties were investigated. 

FTIR-ATR analysis showed that additives had characteristic peaks of PDMS in their 

structure. Moreover, FTIR-ATR analysis of tPP- %3 C showed that, the surface of 

samples had characteristic peak of additives due to migration of additives as a 

slipping agent on the surface. FTIR-ATR spectra of inside of tPP- % 3 C was quite 

similar with PP but it also had characteristic peak of additive.  

Mechanical property analysis of the samples showed that PDMS containing additives 

decreased modulus of elasticity but increased elongation at break value. On the other 

hand, talc as a rigid filler increased modulus of elasticity but decreased elongation at 

break value of samples. Tensile strength depended on additive content. When the 

additives were added 1%, an increase in tensile strength was observed due to the 

effect of other groups than PDMS.  When 3% of additives were used in composition, 

decreasing of tensile strength was observed. Addition of talc decreased tensile 

strength this can be depended on particle size of talc or distribution of talc.  

The Shore-D hardness measurements showed that talc as a rigid filler increased 

hardness of the samples, in contrast PDMS containing additives decreased hardness 

of the samples. 

According to DSC analysis, it was concluded that the experimental melting 

temperatures of the polypropylene based materials were consistent with the 

theoretical values. tPP based samples had higher % crystallinity in comparison to 

nPP based samples. This can be attributed to the nucleating effect of talc. Percentage 

of crystallinity and entalpy of melting increased by increasing additive content for 
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nPP. On the other hand, the additive content did not affect entalpy of melting and % 

crystallinity of tPP as much as nPP. Each of additives increased crystallinity of tPP. 

tPP based samples always showed higher % crystallinity than nPP based samples.  

The measurements performed with the optical microscope demonstrated that scratch 

width of polypropylene films decreased and therefore scratch hardness of the films 

increased considerably with the insertion of the silicone based additives. As the 

amounts of additives were increased, the scratch resistance of samples became higher 

for nPP and tPP. In general, talc used as a filler at automotive applications. 

Unfortunately, samples with talc reinforced PP always showed poor scratch 

resistance. PDMS containing additives were chosen as additives in PP systems to 

modify the surface characteristics of the samples and to improve scratch resistance of 

samples. PDMS containing additives were effective to decrease the width of 

scratches and improve scratch resistance. The most effective one for improving 

scratch resistance was found as 3 % TEGOMER Antiscratch 100.  

Contact angle results showed that additives increased the contact angle degree of 

samples due to containing PDMS in their structure. As a result of that more 

hydrophobic surface occurred. Talc also increased the hydrophobicity of sample. 

Sample with PDMS containing additives had lower surface free energy than those of  

nPP and tPP. tPP- 3% C had the lowest surface free energy value.  

Melt flow rate (MFR) analysis were carried out for all samples. The talc reduce the 

mobility of macromolecules in the interphases and decrease MFR value of PP. On 

the other hand, the MFR values of samples increased due to three kind of additives 

because of their silicone content. 3 wt- %  of TEGOMER H-Si 6440 P was more 

effective to increase viscosity comparing to other additives. A higher MFR allowed 

the polypropylene to fill the mold more easily. 

Density measurement showed that talc as a rigid filler increased the density of PP. 

TEGOMER Antiscratch 100 had the lowest density value and the samples of nPP 

and tPP containing TEGOMER Antiscratch 100 had lower density value than other 

samples as well. The samples which containing TEGOMER H-Si 6440 P had higher 

density value than other samples. This can be due to containing caprolactone groups 

which had high density in the structure of additive.  
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As a conclusion, for the additives containing nPP, while there is some decrease in 

modulus of elasticity and some increase in elongation at break, there is no significant 

change in tensile strength values. Although the most effective additive is found to be 

TEGOMER Antiscratch 100, the others can be used as well. Eventhough the 

additives had increased anti-scratch effect of  tPP,  due to the fact that tPP has poor 

scratch resistance, samples with nPP are preferred.  
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APPENDICES 

APPENDIX A: Optical images of samples.  

APPENDIX B: DSC graphes of samples.  
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APPENDIX A  

  

Figure A.1 : Optical image of nPP -%1 A. 

 

 

Figure A.2 : Optical image of nPP -%3 A. 
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Figure A.3 : Optical image of nPP -%1 B. 

 

 

Figure A.4 : Optical image of nPP -%3 B. 
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Figure A.5 : Optical image of nPP -%1 C. 

 

 

 

Figure A.6 : Optical image of tPP -%1 A. 
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Figure A.7 : Optical image of tPP -%3 A. 

 

 

Figure A.8 : Optical image of tPP -%1 B. 



67 

 

 

Figure A.9: Optical image of tPP -%3 B. 

 

 

Figure A.10: Optical image of tPP -%1 C. 
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Figure A.11: Optical image of tPP -%3 C. 
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APPENDIX B  

Figure B.1: DSC diagram of nPP. 

 

 

Figure B.2: DSC diagram of nPP-1% A. 
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Figure B.3: DSC diagram of nPP-3% A. 

 

 

Figure B.4: DSC diagram of nPP-1% B. 
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Figure B.5: DSC diagram of nPP-3% B. 

 

 

Figure B.6: DSC diagram of nPP-1% C. 
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Figure B.7: DSC diagram of nPP-3% C. 

 

 

Figure B.8: DSC diagram of tPP 
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Figure B.9: DSC diagram of tPP-1% A. 

 

 

Figure B.10: DSC diagram of tPP-3% A. 
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Figure B.11: DSC diagram of tPP-1% B. 

 

 

Figure B.12: DSC diagram of tPP-3% B. 
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Figure B.13: DSC diagram of tPP-1% C. 

  

 

Figure B.14: DSC diagram of tPP-3% C. 
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