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ABSTRACT 
 

The main purpose of this study is to show how a Merton Model approach can be used to 

develop a new measure of company failures’ probability independent from their sectors.  

In this study, a new index, Fuzzy-bankruptcy index, is created which explains the 

default probability of any firm X, independent from the sector it belongs. In the 

construction process in order to reduce the relativity of financial ratios due to the fact 

that their interpretation change with time and according to different sectors, fuzzy logic 

is used. For the fuzzy process, we used five input variables, four of them are chosen 

from both factor analysis and clustering and the last input variable calculated from 

Merton Model. Looking back to the default history of firms, one can find different 

reasons such as managerial arrogance, fraud and managerial mistakes which are 

responsible for the very sad endings of well-known companies like Enron, K-Mart and 

even the country Argentina. Thus, we hope with the help of our Fuzzy-bankruptcy index 

one could be able to get a better insight into the financial situation a company is in, and 

it could also prevent credit loan companies from investing in the wrong firm and 

possibly from losing the entire investment.  

 

This study is organized as seven chapters. Chapter one explains the factor analysis. 

Chapter two gives the definition of probability of default and outlines the methods for 

estimating default probability. It reviews the literature on estimating the default 

probabilities, the Merton Model and its extensions. Chapter three explains the cluster 

analysis and fuzzy logic. It reviews the literature on clustering and methods of 

clustering, especially explains the method of how to cluster variables in detail. Second 

part of chapter three explains fuzzy logic and its applications. It reviews the literature on 

applications of fuzzy logic and how and why we use fuzzy logic in our model. Chapter 

four gives the information of our study and describes the model we studied. Chapter 

five investigates the relationship between macro-economic factors and probability of 

default and Chapter six concludes. Chapter seven is appendix of our study. 

 

Keywords: Merton Model, Clustering, Fuzzy Logic, Default Probability
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ÖZET 
 

Merton Model opsiyon fiyatlama yöntemini kullanarak finansal şirketlerin batma 

olasılıklarının hesaplanmasında kullanılan bir modeldir. Biz bu çalışmada, Merton 

Model kullanarak şirketlerin batma olasılıklarını hesapladık. Öncelikle, IMKB100 

içinde yer alan finansal şirketler için Merton Model kullanarak batma olasılıklarını 

hesapladık, değerlerin sıfır ve bire çok yakın olduğunu ya da seneden seneye olan 

geçişlerde değişkenliğin çok yoğun olduğunu gözlemledik. Bu sonuçlarla 

çalışmamızdaki ana amacımızı, Merton Modeli de kullanarak, sektörden bağımsız, yani 

tüm şirketler için yorumlayabileceğimiz ve karşılaştırabileceğimiz bir endeks 

oluşturmak olarak değiştirdik. Literatürde, şirketlerin finansal durumlarını 

yorumlayabilmek için çok sayıda finansal rasyolar olduğunu ve bu finansal rasyoların 

yorumlarının firmaların ait olduğu sektörlerle de ilişkilendiği bilinmektedir. Bu ilişki 

yüzünden, oluşturmak istediğimiz endeksi bulanık mantık kullanarak oluşturmamız 

gerektiğine karar verdik. Literatürde çok sayıda yeterli ve anlamlı finansal rasyolarla 

karşılaştığımızdan, şirketlerin batma olasılıklarını yorumlayabilecek için her bir finansal 

rasyoya tek tek bakmak yerine; çok sayıda olan finansal rasyolara faktör analizi 

uygulayarak, aynı açıklamayı yapacak daha az sayıda finansal rasyolar belirledik. 

Ulaştığımız sayı bulanık mantık uygulamamızı kişiselleştireceğinden, faktör analizi ile 

elimine ettiğimiz finansal rasyoları kümeleme yöntemi kullanarak bir kez daha elimine 

ettik. Böylelikle, bulanık mantık kullanarak oluşturacağımız değişkenimizin girdi 

değişkenlerini belirlemiş olduk. Bu değişkenleri ve arasındaki ilişkiyi inceleyerek, 

değişkenler arasında kuralları belirleyerek modelimiz oluşturduk. Böylelikle Merton 

modeli de dâhil ederek, bulanık mantık kullanarak şirketlerin batma olasılıklarını daha 

hassas ve sektörden bağımsız olarak hesapladık. Son olarak bulduğumuz endeksi 

makroekonomik göstergelerle açıkladık. 

 

Anahtar Kelimeler: Merton Model, Kümeleme, Bulanık Mantık, Batma Olasılığı



INTRODUCTION 
 

The main purpose of this study is to show how a Merton Model approach can be used to 

develop a new measure of company failures’ probability independent from their sectors. 

The original Merton model is based on some simplifying assumptions about the 

structure of the typical firm’s finances. The event of default is determined by the market 

value of the firm’s assets in conjunction with the liability structure of the firm.
1
  

 

Merton approach is the most popular approach for estimating default probability by 

using market information. The model assumes that a firm has equity and certain amount 

of zero coupon debt that will become due at a future time. Much of the literature follows 

Merton (1974) by explicitly linking the risk of a firm’s bankruptcy to the variability in 

the firm’s asset value and by viewing the market value of firm’s equity as the standard 

call option2 on the market value of firm’s asset with strike price equal to the promised 

payment of corporate debts.3 Merton proposes that the position of the shareholders can 

be considered as similar to purchasing a call option on the assets of the company, and 

the price at which they will exercise this option to purchase is equal to the book value of 

company's debt due for payment in the defined time horizon. In this way, Merton was 

the first to demonstrate that a firm's option of defaulting can be modeled in accordance 

with the assumptions of Black and Scholes (1973). 

 

In this study, a new index, Fuzzy-bankruptcy index, is created which explains the 

default probability of any firm X, independent from the sector it belongs. In the 

construction process in order to reduce the relativity of financial ratios due to the fact 

that their interpretation change with time and according to different sectors, fuzzy logic 

is used. For the fuzzy process, minimum number of input variables is used to construct 

                                                 
1
   A Merton Model Approach to Assessing the Default Risk of UK Companies, Merxe Tudela and Garry 

Young; Bank of England; 2003. 
2
   Options are known from the financial world where they represent the right to buy or sell a financial 

value, mostly a stock, for a predetermined price, without having the obligation to do so. For more detail 

See: Carlsson, C.,Fuller,R.; Fuzzy Sets and Systems and J. Hull, Options, Futures and Derivatives 
3
   The Predictive Performance of a Barrier Option Credit Risk Model in an Emerging Market, David 

Wang, Heng Chih Chou, David Wang, Rim Zaabar, Journal of Economic Literature, 2009 



 2 

the output variable which denotes our bankruptcy probability. There are many different 

reasons why companies have defaulted over the time. Hot items in these are managerial 

arrogance, fraud and managerial mistakes. Well-known examples are companies like 

Enron, K-Mart and even the country Argentina. These causes are related with many 

other companies that defaulted over time. Thus, with the help of our Fuzzy-bankruptcy 

index one could be able to get a better insight into the financial situation a company is 

in, and it could also prevent credit loan companies from investing in the wrong firm and 

possibly from losing the entire investment.  

 

This study is organized as five chapters. Chapter one starts explaining factor analysis, 

which is a data reduction method to resume a number of original variables into a smaller 

set of composite dimensions, or factors. This method is commonly used when 

developing a questionnaire to see the relationship between the items in the questionnaire 

and underlying dimensions. It is also used to reduce larger data set of variables to a 

smaller set of variables that explain important dimensions of variability.  

 

Chapter two gives the definition of probability of default and outlines the methods for 

estimating default probability. It reviews the literature on estimating the default 

probabilities, the Merton Model and its extensions. In this chapter, Merton default 

probabilities of ISE100 financial companies from year 2004 to 2008 are calculated. 

Distance to Default (DD) and Expected Default Frequency (EDF) are also calculated as 

functions of Merton default probabilities. 

 

Chapter three explains the cluster analysis and fuzzy logic. In the first part, the literature 

on clustering and methods of clustering are reviewed by showing special attention how 

to cluster variables in detail. Cluster analysis groups individuals or objects into clusters 

so that objects in the same cluster are homogeneous and there is heterogeneity across 

clusters.  Homogeneous means data belongs the same clusters should be as similar as 

possible and heterogeneity means data belongs the different clusters should be as 

different as possible. In other words, we can group or cluster the observed data that the 

similarity of cases within each cluster is maximum and the dissimilarity of cases 

between clusters is maximum. Second part of chapter three explains fuzzy logic and its 



 3 

applications. It reviews the literature on applications of fuzzy logic. Fuzzy logic is used 

due to the fact that fuzzy set theory is developed for solving problems in which 

descriptions of observations are imprecise, vague and uncertain. The term “fuzzy” refers 

to the situation in which there are no well- defined boundaries of the sets of activities or 

observations to which the descriptions apply. For example, one can easily assign a firm 

with Merton default probability is 0.6 to the “class of default firms, because the term 

default probability does not constitute a well-defined boundary. Chapter four gives the 

information of the study and describes the model we studied. Chapter five investigates 

the relationship between macro-economic factors and probability of default.  



 4 

 

CHAPTER 1 FACTOR ANALYSIS 
 

Factor Analysis is a branch of statistical science, however because of its extensions on 

psychology, the technique itself is often mistakenly considered as psychological theory.  

The origin of the factor analysis is generally ascribed to Charles Spearman
4
. Since his 

monumental work in developing psychology theory involving a single factor analysis. 

 

Application of factor analysis in fields other than psychology has become very popular 

since 1950. These fields include such varied disciplines as medical, political science, 

economics, sociology, taxonomy. Also, there are many individual studies that are 

difficult to assign to a particular discipline. In economics, evaluating the performance of 

the systems
5
, investment decisions

6
, structure of security price changes were the 

subjects which are examples of factor analysis applications. 

 

When we try to specify the economic relationships by mathematical formulation we 

encounter problems such as which variables should be included in the equation, what 

form they should be assume; linear, nonlinear, logarithmic; and whether a single 

equation may be analyzed independently or a complete model of simultaneous 

equations should be considered all at once. If the explained variable in one relationship 

became the explanatory variable in other equation the single relationship can not be 

analyzed independently. In specifying relationships, it is necessary to know first what 

variables should be included in the relationship as explanatory variables. One method 

which will tell us the significance of each explanatory variable in explaining the 

variation of the explained variable is factor analysis. The basic idea behind the factor 

analysis is to represent a set of variables by a smaller number of variables. In this case, 

they are called factors. The variables used in factor analysis should be linearly related to 

each other. In other words, the variables must be at least moderately correlated to each 

                                                 
4
   English psychologist known for work in statistics as a pioneer of factor analysis and for Spearman’s   

rank correlation coefficient. 
5
   Burch, 1972. 

6
   Farrar 1962. 
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other; otherwise the number of factors will be almost the same as the number of original 

variables. This means that factor analysis is pointless. 

 

Factor analysis could be used for any of the following purposes: 

 

 To reduce a large number of variables to a smaller number of factors for 

modeling purposes 

 To select a subset of variables from a larger set based on which original 

variables have the highest correlations with the principal component factors.  

 To identify clusters of cases  

 To create a set of factors to be treated as uncorrelated variables as one approach 

to handling multicollinearity in such procedures as multiple regression 

 To establish that multiple tests measure the same factor, thereby giving 

justification for administering fewer tests. Factor analysis originated a century 

ago with Charles Spearman's attempts to show that a wide variety of mental tests 

could be explained by a single underlying intelligence factor (a notion now 

rejected, by the way).  

 

In the following, we state the basic procedure of finding the factors by the principal axis 

method. First, we list all the variables that we think are in some way related. Suppose 

we have N such variables. We then collect sample data on these variables and compute a 

symmetric matrix M in such a way that on the diagonal of the matrix, we enter the 

square of the multiple correlation coefficient
7
 of one of the N variables in relation to the 

other variables. And off the diagonal of the matrix we enter the simple correlation 

                                                 
7
   To measure the linear correlation between 2X , 3X  and Y  we use the correlation of multiple  

  correlation; 1.23R . The square of 1.23R  is called the coefficient of determination. It is the ratio of   

  explained variables and total variation of Y . Using simple correlation coefficients,  

2

23

231312

2

13

2

122

23.1
r1

rr2rr+r
=R




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coefficients between each pair of the N variables. The matrix, which we called M, will 

be like the following:    

)1+(N)1+(N

2

)1(N.123...N

2N

1N

1N

2

N2.134...12

12
2

N1.234...

R

...

r

r

...

...

...

...

.........r

............

......Rr

......rR

M




























 

 

Then, we perform row and column operations on matrix M to transform it into a 

diagonal matrix. 

 

D=MBBT , where B is orthogonal matrix
8
 and D is diagonal matrix, and 

BD=MBBBT . Since B is orthogonal matrix the transpose of B is the same as inverse 

of B, which means I=BBT . Thus, BD=MB , where  























































N

2

1

NNN1

2N2221

1N1211

λ.....00

.........

.........

0...0λ0

0..00λ

m.........m

...

...

m......mm

m......mm

BD

 

 

Matrix D is diagonal matrix, on the diagonal are the characteristics roots iλ and off the 

diagonal are all zeros. B matrix is called the matrix of characteristic vectors. Choose 

only positive λ  and arrange them in descending order. Multiplying iλ  by its 

respective column N),1,2,...=(jm ji
, we get vectors of coefficients. These coefficients 

represent the contributions of each variable to each other.  

 

                                                 
8
   A nonsingular matrix is orthogonal if its inverse and transpose are the same. 
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Figure 1.1 Matrix Representation of Factor Analysis  

 

 Factor 1 Factor 2 … Factor K 

Variable 1 Coefficient Coefficient  Coefficient 

Variable 2 … … … … 

…. … … … … 

… … … … … 

Variable N … … … … 

 

The coefficients in each vector whose values are very close may be grouped together 

and factors as defined by the grouped variables. 

 

Now, we can summarize the steps in conducting a factor analysis. There are four basic 

factor analysis steps:  

 

 data collection and generation of the correlation matrix  

 extraction of initial factor solution  

 rotation and interpretation  

 construction of scales or factor scores to use in further analyses  
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CHAPTER 2 PROBABILITY OF DEFAULT & METHODS 

FOR ESTIMATING DEFAULT PROBABILITIES 
 

 

There are several measures of country risk, one of the simplest and most easily 

accessible is the rating assigned to a country’s debt by ratings agency. These rating 

agencies measures the default risk rather than the equity risk. In addition, default risk is 

also affected by many of the factors that affect the equity risk. Note that the most 

obvious determinant of a company’s risk exposure to country risk is how much of the 

revenues it derives from the country. 

 

2.1. PROBABILITY OF DEFAULT 

 

A technical default is a delay in timely payment of an obligation, or a non-payment all 

together. If an obligor misses a payment, by even one day, it is said to be in technical 

default. This delay may be for operational reasons (and so not really a great worry) or it 

may reflect a short-term cash flow crisis, such as the Argentina debt
9
 default for three 

months. But if the obligor states it intends to pay the obligation as soon as it can, and 

specifies a time-span that is within (say) one to three months, then while it is in 

technical default it is not in actual default. If an obligor is in actual default, it is in 

default and declared as being in default. This does not mean a mere delay of payment. If 

an obligor does not pay, and does not declare an intention to pay an obligation, it may 

then be classified by the ratings agencies as being in ‘default’ and rated ‘D’. 

 

                                                 
9
  J.F. Hornbeck, “Argentina’s Sovereign Debt Restructuring”, CRS Report for Congress, 2004.  
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Shortly, the default probability is the probability that the value of the assets of the firm 

will be less than the book value of its liabilities at the maturity. (Default probability is 

similar to expected default frequency used by Moody’s KMV
10

) 

 

The probability of default is a function of two factors: 
11

 

 

1. Ratio of debt (and other fixed costs) to cash flows: Default is the result of a firm 

being unable to service its fixed claims. The larger is the size of cash flows on debt 

obligations and other fixed claims relative to the size of operating cash flows, the higher 

is the probability of default. 

 

2. Volatility of Cash Flows: Default is triggered when the firm’s cash flow is too low to 

pay its fixed claims. The more volatile the firm’s (operating) cash flow, the more likely 

it is that the firm will face default. 

 

2.2. METHODS FOR ESTIMATING DEFAULT PROBABILITIES 

 

Prior empirical models of corporate default probabilities, reviewed by Jones (1987) and 

Hillegeist, Keating, Cram and Lundstedt (2004), have relied on many types of 

covariates, both fixed and time varying. Academics in the fields of accounting and 

finance have actively studied bankruptcy prediction since the work of Beaver (1966, 

1968) and Altman (1968). Altman’s z-score is a measure of leverage, defined as the 

market value of equity divided by the book value of total debt. And a second generation 

of empirical work is based on qualitative response models, such as logit and probit. 

Among these, Ohlson (1980) used an o-score method; effectively summarize publicly-

available information about the probability of bankruptcy. 

 

 

                                                 
10

   KMV is a trademark of KMV Corporation. Stephen Kealhofer, John Mc Quown and Oldrich Vasicek 

founded KMV Corporation in 1989. On February 11, 2002, Moody’s announced that it was acquiring    

KMV for more than $200 million in cash. 

11   Smithson et al. (1990), pp.368-369, and Damodaran, pp.451, 1997. 
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Credit risk models are gaining popularity in the light of the Basel II
12

 accord. The 

pioneers of estimation of default probabilities are rating agencies like Moody’s, Fitch 

and S&P. They started to publish not only the ratings of companies but also their 

estimated default probabilities. These estimations are produced from historical data. 
13

 

 

2.2.1. Estimating Default Probabilities from Historical Data 

 

In this method, rating agencies produce data for showing that default experience over 

pre-determined time period of bonds that had a particular rating at the beginning of the 

period. So, probability of a bond defaulting during a particular year can be calculated 

from the historical defaulting experience data which was prepared from the rating 

agencies. 

 

To estimate the default probability from historical data, Stefan Huschens, Konstantin 

Vogl, and Robert Wania, first consider the homogeneous group. To simplify the model, 

first they assume all obligors have the same default probability. (i.e., pick all obligors 

with the same rating from a portfolio). In their study, they characterized obligors by a 

Bernoulli distribution
14

 and each obligor is independent form each other.  For estimation 

of default probabilities one has to take into account that dependence affects the 

estimation. If one can relax the independence condition the next step is to consider the 

case of equicorrelation.
15

 They found closely connection between the default probability 

and the default correlation. Also, the estimation procedure has to take into account this 

relation. In their article, they present estimation methods for both, the general case of a 

Bernoulli mixture model and the special case of the single-factor model which is used in 

the Internal Ratings- Based Approach of Basel II.  

 

 

                                                 
12 

   Basel II is the second of the Basel accords. 
13 

For further reading
 
on estimation methods of rating agencies see Kavvathas (2000) and Carty (1997). 

14 
Take the value 1 if the obligor defaults, otherwise take the value 0. 

15 
Let n21 X,...,X,X  identically distributed random variables, they are said to be equicorrelated if 

correlation of iX and 
jX is constant, for all i and j distinct. 
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2.2.2. Estimating Default Probabilities from Bond Prices  

 

Prices of bond’s which issued by company can be used for estimate the probability of 

default for a company. The familiar assumption in this method is the only reason a 

corporate bond sells for less than a similar risk-free bond is the possibility of default. 

This assumption is not completely true because in practice the price of a corporate bond 

is affected by its liquidity. If liquidity will be low than it makes price will be low, too.  

 

2.2.3. Estimating Default Probabilities from Credit Default Swap Spreads or Asset 

Swap  

 

A Credit Default Swap (CDS)
16

 is an instrument where one company buys insurance 

against another company defaults its obligation. The payoff from the instrument is 

usually the difference between the face value of a bond issued by the second company 

and its value immediately after a default. The Credit Default Swap spreads, which can 

be directly related to the probability of default, is the amount paid per year for 

protection. Another source of information is the asset swap market. Asset swap spreads 

provide an estimate of the excess of a bond’s yield spread over the LIBOR/swap rate.  

  

2.3. LITERATURE 

 

Merton (1974) used continuous time model and the Black and Scholes’s option pricing 

model, to provide the first comprehensive model on credit spread in order to estimate 

default probabilities. In his model, the value of the firm’s assets is assumed to follow a 

lognormal diffusion process with a constant volatility.  

 

For estimating default probabilities from CDS, John Hull and Alan White, in the paper 

of Valuing CDS, test the sensitivity of CDS valuations to assumptions about the 

                                                 
16

 CDS is a swap contract in which the buyer of the CDS makes a series of payments to the seller and, in 

exchange, receives a payoff if a credit instrument (typically a bond or loan) goes into default (fails to 

pay). See, Credit Default Swap, Frederic P. Miller, Agnes F. Vandome, John Mc Brewster, VDM 

Publishing House Ltd., 2009, Page: 92.  
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expected recovery date. In this study, they also test that whether approximate no 

arbitrage arguments give accurate valuations. In the second part of the study, they model 

the default correlations. Evaluating default correlations for more than one firm is an 

important task in risk management, credit analysis and derivative pricing.
17

   

 

According to Black and Cox (1976), the market value of firm’s equity can be viewed as 

a European down-and-out call option
18

 on the market value of firm’s asset. If the firm’s 

asset value falls below a certain barrier level, the firm’s equity can be knocked out by 

bankruptcy.   

 

Longstaff and Schwars (1995), Briys and de Varence (1997), Dar-Hsin Chen, Heng-

Chih Chou and David Wang (2009), all extend Merton model using barrier 

option
19

concept. Most empirical research of the barrier option credit risk model focus 

on developed markets
20

.  

 

Dar-Hsin Chen, Heng-Chih Chou and David Wang (2009), and Duan (1994, 2000) 

transformed-data maximum likelihood estimation method to directly estimate the 

unobserved model parameters, and compare the predictive ability of the barrier option 

model to Merton model. They found that the barrier option credit risk model is still 

more powerful than Merton model in predicting bankruptcy in emerging market
21

. 

Moreover, the barrier option model  predicts bankruptcy much better for electronics 

firms and for highly-leveraged firms. Also, in 1973, Merton provided the first analytical 

formula for a down and out call option, which was followed by the more detailed paper 

by Reiner & Rubinstein (1991), which provides the formulas for all eight types of 

                                                 
17

 See Chusheng Zhou, An Analysis of Default Correlations and Multiple Defaults. 
18

 A call option is deactivated if the price of the underlying falls below a certain price level. If the 

underlying asset does reach the barrier price level, the down-and-in option becomes a vanilla European 

call option. If the underlying asset price does not reach the barrier level, the option expires worthless.  
19

  A barrier option has a prespecified payoff function at its expiration date, T. This payoff function 

depends on the value of the underlying stock price at the expiration date as well as the time series of stock 

price leading up to that date. Specifically, the option depends on whether or not the stock price breached a 

certain price level, called a barrier, during the life of the option. See, Financial Derivatives: Pricing, 

Applications and Mathematics, Cambridge University Press, Jamil Baz, George Chacko.  
20

   For example: Taiwan Market.  
21

   Emerging markets are nations with social or business activity in the process of rapid growth and 

industrialization. 
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barriers.
22

 (Barrier Options can be classified according to the payoff type (Call or Put), 

knocking type (Knock out or Knock in), barrier type (up and down), relative level of 

barrier and strike price). Haug (1998) gives a generalization of the set of formulas 

provided by Reiner & Rubinstein. In the paper of “The Predictive Performance of a 

Barrier-Option Credit Risk Model in an Emerging Market, he defined a term H, which 

is barrier level and proportional to the corporate debt. Darrell Duffie, Leondro Saita and 

Ke Wang (2005), provides maximum likelihood estimators of term structures of 

conditional probabilities of corporate default, incorporating the dynamics of firm-

specific and macroeconomic covariates. They use industrial firms with monthly data 

spanning 1980 to 2004 and the term structure of conditional future default probabilities 

depends on a firm’s distance to default.
23

    

 

 2.4 MERTON MODEL AND ITS EXTENSIONS 

2.4.1 Merton Model 

 

In 1974, Robert Merton
24

 proposed a model for assessing the credit risk of a company 

by characterizing the company’s equity as European call option, which is written on its 

assets. Merton Model assumes that a company has a certain amount of zero-coupon debt 

that will become due at a future time (T)
25

. In other words, the model can be used to 

                                                 
22

   See Appendix I.. 
23

   Darrell Duffie, Multi-period Corporate Default Prediction with Stochastic Covariates, Journal of 

Financial Economics, 2007.  
24

  Robert C. Merton is the John and Natty McArthur University Professor at Harvard Business School. 

In 1997, he and Myron Scholes were awarded the Nobel Prize in Economic Sciences for contributions in 

the area of option pricing. 
25   Credit risk models routinely assume one-year time horizon for debt maturity and subsequent  

estimation of default probability. One year is perceived as being of sufficient length for a bank to raise  

additional capital on account of increase in portfolio credit risk (if any). Furthermore, implicit in the 

regulatory approach to capital requirements is an assumption that if large losses (short of insolvency) are 

experienced during the analysis period, a bank will take actions such that its probability of remaining 

solvent during the following period will remain high. Such actions include raising new equity to replace 

that which has been lost or rebalancing to a safer portfolio such that the remaining equity is adequate to 

preserve solvency with the specified probability. For bank loan portfolios, substantial rebalancing is 

usually difficult to accomplish quickly, especially during the periods of general economic distress that are 

typically associated with large losses. Thus, unless a bank is able to raise new equity by the end of the 

analysis period, it will begin the next period with a larger-than-desired probability of insolvency. The 

one-year convention may have arisen largely because, until recently, default rates and rating transition 



 14 

estimate either the risk neutral probability that the company will default or the credit 

spread on the debt.  

 

According to Jones, (1984) the default risk implied by the Merton Model is so low that 

its pricing ability for investment grade bonds is no better than a naïve model that does 

not consider default risk at all.  

 

The Merton type models are explored from 2001 to 2004 year horizon. As inputs, 

Merton’s model requires the current value of the company’s assets, the volatility of the 

company’s assets, the outstanding debt, and the debt maturity. One popular way of 

implementing Merton’s model estimates the current value of the company’s assets and 

the volatility of the assets from the market value of the company’s equity and the 

equity’s instantaneous volatility using an approach suggested by Jones et al (1984). A 

debt maturity date is chosen and debt payments are mapped into a single payment on the 

debt maturity date in some way. Shortly, Merton model generates the probability of 

default for each firm in the sample at any given point in time. 

 

We use following notation which is defined for all variables that we use to construct 

Merton Model.  

 

0A : Value of company’s assets today  

tA : Value of company’s assets at time t  

0E  : Value of company’s equity today  

TE  : Value of company’s equity at time T  

TD : Debt repayment due at time T (T is the maturity of the debt) 

Aσ : Volatility of assets (Assumed constant)  

Eσ : Instantaneous volatility of equity  

 

                                                                                                                                               
matrices were most easily available at a one-year horizon, and such data are key inputs to conventional 

portfolio credit risk models. However, Carey (2000) contends that this time horizon is too short. 
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The company defaults if the value of its assets is less than the promised debt repayment 

at time T.  In other words, model assumes the firm promises to pay TD  to the 

bondholders at maturity T. If this payment is not met, that is, if the value of the firm’s 

assets at maturity is less than TD , the bondholders take over the company and 

shareholders receive nothing. Table 3.1 represents the cases for debt holders and equity 

holders. 

 

Table 2.1 Default and No Default Cases 

Event  (At Time T) Assets Debtholders Equityholders 

No Default TA  > TD  TD  TA - TD  

Default TA < TD  TA
 

0 

  

The equity of the company is a European call option on the assets of the company with 

maturity T and exercise price equal to the face value of the debt. Note that, default can 

be triggered only at maturity and this happens only when TA < TD . 

 

In other words, the payoff of equityholders is equivalent to a European call option on 

the assets of the firm with exercise price TD and maturity T.  

)0,D(Amax=E T

TT  . 

 

The payoff of debtholders is equivalent to a portfolio which consists of a European put 

option and debt. The exercise price of the European put option is TD
 
with maturity T 

and written on the assets of the firm. So, its value at time T is )D,(Amin T

T , which is 

equal to )0,A(DmaxD T

TT  . 

 

 

 

 

 

 

 

 



 16 

Table 2.2 Value of Portfolio at Time T 

  

 

At Time 0 

 

At Time T 

 

Exercise Price( TD )  

> Stock Price ( TA ) 

Exercise Price ( TD )   

< Stock Price ( TA ) 

Equityholders European Call Not Exercised 
TA  - TD  

Debtholders European Put +Debt TD - TA  Not Exercised + TD  

  

 

2.4.1.1 Assumptions of Merton Model 

 

The model assumes that the underlying value of each firm follows a geometric 

Brownian motion and that each firm has issued just one zero-coupon bond. As Black 

and Scholes pricing formula assumes Merton model also assumes that there are no 

transactions costs and taxes. In addition, there are no dividends during the life of the 

derivative and there are no riskless arbitrage opportunities. The risk free interest rate is 

constant and same for all maturities. (r can be known as a function of t ) . In addition of 

all these assumptions; security trading is also continuous. At the end, the price follows a 

Geometric Brownian Motion with constant drift and volatility. It follows from this that 

the return has a normal distribution. Following assumptions will undermine Merton 

model efficiency:  

 

 The assumption that the firm can default only at time T. If the firm’s value falls 

down to minimal level before the maturity of the debt but it is able to recover and 

meet the debt’s payment at maturity, the default would be avoided in Merton’s 

approach. However, you can construct the model on a barrier option and can handle 

this problem. 

 

 The model does not distinguish among different types of debt according to their 

seniority, collaterals, covenants or convertibility. 
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 Default probability for private firms (not listed on the stock exchange) can be 

estimated only by performing some comparability analysis based on accounting 

data. 

 

 It is “static” in that the model assumes that once management puts a debt structure 

in place, it leaves it unchanged even if the firm’s assets have increased. As a result, 

the model cannot capture the behavior of those firms that seek to maintain a 

constant or target leverage ratio across time. 

 

 Another potential shortcoming of the option based approach is that the stock market 

may not efficiently incorporate all publicly-available information about default 

probability into equity prices. In particular, prior studies suggest that the market 

does not accurately reflect all of the information in the financial statements (Sloan, 

1996). 

 

2.4.2 Forecasting Default Probabilities with KMV Merton Model      

 

The KMV-Merton model applies the framework of Merton (1974), in which the equity 

of the company is European call option on the underlying value of the company with an 

exercise price equal to the face value of the company’s debt. The model recognizes that 

neither the underlying value of the company nor its volatility is directly observable. 

Under the model’s assumptions both can be inferred from the value of equity, the 

volatility of equity and several other observable variables by solving two nonlinear 

simultaneous equations. After inferring these values, the model specifies that the 

probability of default is the normal cumulative density function of a z-score depending 

on the firm’s underlying value, the firm’s volatility and the face value of the firm’s debt.  

The Merton model makes two important assumptions. The first is that the total value of 

a company is assumed to follow Geometric Brownian Motion
26

,  

 

                                                 
26

 A stochastic process often assumed for asset prices where the logarithm of the underlying variable 

follows generalized Wiener Process. See, “Options Futures and other Derivatives”, Hull, J. 
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VdWσ+μVdt=dV V  

where, 

 V   :  the total value of the company 

 μ     : the expected return on V 

     Vσ
 
:  the volatility of the company value. 

 dW :  standard Weiner Process
27

.  

 

The second assumption of the Merton model is that the firm has issued just one discount 

bond maturing in T periods. Under these assumptions, the equity of the firm is a call 

option on the underlying value of the company with an exercise price equal to the face 

value of the firm’s debt and a time-to-maturity of T. And, the value of equity as a 

function of the total value of the company can be defined by the Black-Scholes and 

Merton Formula. By put-call parity
28

, the value of the company’s debt is equal to the 

value of a risk-free discount bond minus the value of a put option written on the 

company, again with an exercise price equal to the face value of debt and a time-to-

maturity of T.  

 

The Merton model stipulates that the equity value of a company today, which is denoted 

by 0E , satisfies, 

)N(dDe)N(dA=E 2

TrT

100

                     (1) 

 

 

 Tσ

T0.5σ+r+
D

Ao
ln

=d
A

2AT

1










 and Tσd=d A12   

where, N is the cumulative density function of the standard normal distribution, r is the  

risk-free rate of interest in continuous terms. 

 

                                                 
27

   A stochastic process where the change in variable during each short period of time of length x has a  

normal distribution with expectation equal to 0 and variance equal to x. See “Options Futures and other 

Derivatives, Hull, J. 
28

 Put-Call Parity: The relationship between price of the European call option and the price of 

European put option written on same stock when they have the same exercise price and maturity date. 
rTKe+C=S+P 

. 
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The equation (1), express the value of a company’s equity as a function of the value of 

the company and time.  

 

Now, consider 1d : 
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0

rTT

A

eD
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, which denotes Leverage. Since )N(dDe)N(dA=E 2

TrT

100

 , with 

replacement of the value of leverage, )N(dLA)N(dA=E 20100  . 

 

Consider the inverse of Leverage, which is denoted by 1L ,  
T
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Tσ

Lln-
=d A

A

1 and Tσd=d A12  . 

 

Shown by Jones, Masan, Rosenfeld (1984), equity value is a function of asset value. By 

Ito’s Lemma, A0E0 σA
A

E
=σE



. 

 

Remember that Eσ  is the instantaneous volatility of the company’s equity at time 0. 

)LN(d)N(d
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(If we know the variables TL,,σ,E E0 , we can estimate .σ,A A0 ) 

Consider the volatility of the equity
0
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E
E

σA
A
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=σ 



, 
A

E




is the delta of the call option 
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and equal to )N(d1 and 
0

0

A

E

A

E




is elasticity of the firm’s equity against the value of the 

assets. 

 

In the KMV-Merton model, the value of the call option is observed as the total value of 

the company’s equity, while the value of the underlying asset (the value of the 

company) is not directly observable. Thus, while V must be inferred, E is easy to 

observe in the marketplace by multiplying the company’s shares outstanding by its 

current stock price. Similarly, in the KMV-Merton model, the volatility of equity, Eσ , 

can be estimated but the volatility of the underlying company, Aσ  must be inferred.  

 

Probability of Default, which will be denoted by PD, is equal to )dN( 2 . Remember 

that probability of not defaulting occurs when
T

T DA  , this happens with probability 

of )N(d2 . This means, PD= 1 - )N(d2 = )dN( 2 . 

 

Now, we will consider 2d , which is equal to Tσd A1   and express  2d  in terms of 

Leverage. 

 

 
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 
T

Tσ

Lln-
TT+

Tσ

Lln-
=d

AA

AA

A

2 . 

 

To find probability of default, we need to calculate the Leverage (L), volatility of the 

assets ( Aσ ) and to know the maturity (T).        

  

Example 2.4.2.1: Suppose a company has $10 million in equity value (based on their 

current market price and the number of shares outstanding) with an equity volatility of 

sixty percentage. It also has $10 million in zero-coupon debt outstanding with two years 

to maturity. The risk free rate is 5%. Now, we will calculate the current value of their 

assets and the volatility of their assets. With this information, we can calculate the 

Merton bankruptcy probability of this company.  

 

When solving this problem we will have two equations with two unknowns. One 



 21 

equation will be the Black-Scholes Option formula, which is used to value the firm’s 

equity as a function of its asset value and its asset volatility, as well as other known 

variables. The equation (1) shows the Black-Scholes formula. 

                       
)N(dDe)N(dA=E 2

TrT

100

                                (1)              

where, 

 

 Tσ

T0.5σ+r+
D

Ao
ln

=d
A

2AT

1










 and Tσd=d A12   

and  

tA
 
: Value of company’s assets at time t 

TE  : Value of company’s equity at time T 

D  : Debt repayment due at maturity of the debt 

Aσ  : Volatility of assets (assumed constant) 

Eσ  : Instantaneous volatility of equity  

 

The other equation is the relationship, based on Ito’s Lemma, between the asset 

volatility and the equity volatility, which will be shown in equation (2). 

                                     
A01E0 σA)d(N=σE                                                (2) 

 

Now, to solve the equations; we will use the Newton-Raphson method. The Newton-

Raphson method is an iterative procedure to solve equations of the form f(x) = 0. To 

find the root of f(x), start with an initial guess, 1x , and then adjust each subsequent 

guess as follows:  

)x(f

)x(f
xx

1

'

1
12  . 

 

When we have a multidimensional problem like Merton Model, the goal is to solve for 

the unknown parameters 0A  and A  such that: ),A(g A0  and ),A(h A0  . Then, if x is 

a vector containing 0A  and A , F is a vector containing the values ),A(g A0  and 

),A(h A0  , then the iterative procedure is rewritten as follows: 
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where J is the Jacobian matrix for the system of equations and  










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
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A
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J . 

  

The challenge in our case is to determine the elements of the Jacobian matrix, which 

involves relatively messy partial derivatives. 

 

Let  02

TrT

10A0 E)N(dDe)N(dA),A(g  

 , E0A01A0 σEσA)d(N=),A(h 
.  

 

To find the Jacobian matrix, we need to calculate the partial derivatives of the function 

g, which we derive from Black-Scholes formula (i.e. we need to calculate 

,
A

),A(g

0

A0




and .)

),A(g

A

A0




29

and partial derivatives of the function h, which we 

derive from Ito’s Lemma i.e. we need to calculate ,
A

),A(h

0

A0




and .)

),A(h

A

A0




. 

 

For the first step we calculate the partial derivative of the function g with respect to A  

(i.e. we calculate .
),A(g

A
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
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A
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29

   Since the function is Black-Scholes, the partial derivative is the Greek Letter vega, which meqasues 

the sensitivityty ofoption price to the underlying parameter volatility. 
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To find the partial derivatives (to find the value of equation (2)), first we need to 

calculate
A

2

2

2
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1 d
,
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For the next step, we calculate the derivative of 1d with respect to A ,  
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Now, we can use partial equations to find the value in equation (2). 
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Then we make simple mathematical calculations to equation (3) and find the following 
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equation. 

T)d(NA
),A(g
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Now, we need to calculate the derivative of the function g with respect to 0A . The 

following equation can be found from simple mathematical calculation. 
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After these mathematical calculations, we find the first row of the Jacobian matrix, to 

calculate the second row of the matrix; we need to calculate the partial derivatives of the 

function h, which is derived from Ito’s Lemma.  Since, E0A01A0 σEσA)d(N=),A(h 
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Now, we will calculate the partial derivative of the function h with respect to A . 
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With all these information, we can construct the Jacobian matrix. 
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We found 905.18A0   million and %87.32A   with four iterations when starting 

with initial guess when 25A0  and %20A  .The following tables, Table 2.3.A and 

Table 2.3.B, show the first four iterations of this  
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Table 2.3.A Results of Iterations 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

0A  25 19.05 18.92 18.91 

A  20% 28.78% 32.72% 32.87% 

1d  3.74 2.03 1.83 1.82 

2d  3.45 1.63 1.36 1.35 

)( 1dN  0.9999 0.9789 0.9660 0.9654 

)( 2dN  0.9997 0.9479 0.9135 0.9119 

)( 1

'
dN  0.0004 0.0506 0.0754 0.0765 

Black-Scholes 15.9518 10.0680 10.0317 10.0000 

g 5.95 0.068 0.0137 0 

h -1.0005 -0.6334 -0.0184 0 

 

Table 2.3.B Jacobian and Inverse Jacobian Matrix 

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 

J 








965.242.0

013.01

 








079.17318.0

363.19791.0

 








366.16369.0

017.2966.0

 









336.16371.0

017.2965.0

 

1
J

 














04.0008.0

01.01

 














06.0019.0

084.0049.1

 














064.0025.0

134.0086.1

 












064.0025.0

137.0088.1

 

 

We can calculate the Merton bankruptcy of this company with the results from the 

fourth iteration. Probability of Default s equal to )dN( 2 . This means, PD= 1 -

)N(d2 = )dN( 2 . PD of this company is equal to 089.0)35.1(N)dN( 2  . 
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2.4.2.1 Simplification of Distance to Default 

 

The simplified expression contains only observable parameters and distance to default 

can be computed without solving nonlinear equations. The simplification is based on 

three assumptions. 

 

1) Assume )N(d1 is close to 1. 

2) The limit of the drift term is equal to 0. 

3) When calculating distance to default, use the book (face) value of debt instead of 

the leverage ratio. 
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Now, since the drift term is very small, close to the zero, than 0=)Tσ
2

1
(r 2A
 . 

Rewrite the explanation of the volatility of the assets by using Ito’s Lemma, we found 

the following expression: 
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Now assume time to maturity is equal to 1 year. So, 
0E0
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AσE
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leverage ratio, which is denoted by L, 
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0 
   

The DD is simply the number of standard deviations of a firm that is away from the 

default point within a specified time horizon. It is an ordinal measure of the firm’s 
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default risk. Chan-Lau and Say (2006) proposed the distance-to-capital as an alternative 

tool to forecasting bank default risk. The distance-to-capital is constructed the same way 

as the distance-to-default except that the default point is proposed as the capital 

thresholds, which is defined by the prompt-correction-action (PCA) frameworks. PCAs 

are typically rules-based frameworks, where rules are based on specific levels of a 

bank’s risk adjusted capital. The most commonly used capital threshold is the minimum 

capital adequacy ratio defined by the Basel II.  

 

To determine the probability of default for a company, there are essentially three steps 

to be taken, as defined by Crosbie and Bohn (2003): 

 

 Make an estimation of the asset value and the asset volatility
30

: In this step, 

estimation is made of the asset value and asset volatility of the firm based on the 

market value and volatility of equity and book value of liabilities. 

 

 Calculate the distance to default
31

: The distance-to-default is calculated from the 

asset value and asset volatility and the book value of liabilities. 

 

 Calculate the default probability: The default probability is a direct function of 

the distance-to-default. 

 

The smaller DD, the larger the probability that the firm will default on its debt. It can be 

used to rank different firms according to their creditworthiness
32

. You can find more 

information about DD in appendix  II. 

 

                                                 
30   The Black-Scholes model is used to calculate these values. Based upon the data collected, it is just 

matted of applying the formula like Löffler and Posch (2007) did to Enron (2001). 
31   The distance-to-default is a function combined of several variables: value of assets, asset volatility 

and value of liabilities. But there is also another variable that is part of the distance-to-default: the asset 

drift rate. To calculate its value, the Capital Asset Pricing Model (CAPM) comes into the as a standard 

procedure for estimating expected returns. 
32 

   In the literature one can sometimes see the risk free interest rate replaces with the asset value growth 

rate. The distance to default measure is then linked to real world default probabilities instead of risk 

neutral ones. Risk neutral probabilities are typically used for pricing purposes and real world probabilities 

for risk management purposes.   
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2.5 DEFAULT & SURVIVAL PROBABILITIES 

 

According to the study of Paul Dunne and Alan Hughes, they shown smaller companies 

grew faster than larger companies, and age is negatively related to growth. In addition, 

their study shown that smaller companies had higher death rates but the largest and 

smallest companies was least vulnerable to takeover.
33

  

 

What logically follows is that when the probability of default for company X is higher 

than for company Y, company X pays a higher interest on its debt than does company Y. 

 

2.5.1 Bivariate Normal Distribution 

 

Assume X and Y are two random variables with the following joint probability density 

function. 
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Then y)ψ(x, is known as the bivariate normal probability density function and is 

specified with five parameters; Xμ , Yμ , Xσ , Yσ and 
YX,ρ , Xμ and Yμ  is  expectation 

of the random variables X and Y, respectively. Xσ , Yσ is standard deviation of the 

random variables X and Y, respectively.
YX,ρ  is the correlation coefficient of X and Y. 

Knowing the default probability of each single party and joint default probability of 

both parties, we can obtain the default correlation. Evaluating default correlations or the 

probabilities of default by more than one firm is an important task in credit analysis, 

derivatives pricing, and risk management. However, default correlations can not be 

                                                 
33

   Paul Dunne and Alan Hughes, “Age, Size, Growth and Survival”, UK Companies in the 1980s”, The 

Journal of Industrial Economics, 1994. 
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measured directly, multiple default modeling is technically difficult, and most existing 

credit models can not be applied to analyze multiple defaults.
34

 One way to estimate 

default correlation uses historical data.
35

The problem with this information is well 

known and has many applications because defaults for bonds are rare, there are not 

enough time series data available to accurately estimate default correlations. In addition, 

these applications do not use firm specific information. Therefore, we cannot recognize 

the default correlation between Exxon and Chevron could be very different from that 

between Exxon and Wal-Mart. Default correlation analysis has many applications in 

asset pricing and risk management. Due to the rapid growth in the credit derivatives 

market and the increasing importance of measuring and controlling default risks in 

portfolios of loans, derivatives and other securities, the importance default correlation 

analysis has been widely recognized by the financial industry in recent years.
36

   

 

Let (t)DX  and (t)DY  be two random variables that describes the default status of the 

firms X and Y; respectively. 





otherwise0

ttimeatdefaultsXfirmif1,
=(t)DX

 

 

Notice that, a random variable will be called Bernoulli variable if it takes values when 

a success occurs and a value   when a failure occurs. Here we shall assume 1  

and 1 . 

 

If we assume that firm X and Y’s default status are independent then 

(t))P(D.(t))P(D=)1=(t)Dand1=(t)P(D YXYX . 

 

However, the independency assumption is not accurate in general. It is reasonable to 

assume that when one firm X defaults, the other firm Y may have higher probability of 

                                                 
34

   Chusheng Zhou, An Analysis of Default Correlations and Multiple Defaults, Review of Financial 

Studies, 2001, pp. 555-576. 
35

  Lucas, 1995. 
36

  J.P Morgan. 
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default. Perhaps firms work together or both firms X and Y affected from the general 

economy. In other words, two firms (X and Y) may have a positive correlation. Also, we 

should consider the opposite direction. 

 

We define the default correlation of the firms X and Y, (t))D(t),Cor(D YX  as 

 

(t))Var(D)(t)Var(D

(t))D(t),Cov(D
=(t))D(t),Cor(D

YX

YX
YX , 

where, (t))D(t),Cov(D YX denotes the covariance of the default random variables (t)DX  

and (t)DY ; for any i, (t))Var(D i is the variance of the default random variable (t)Di . 

 

Remember that (t))(t))E(DE(D(t))(t)DE(D=(t))D(t),Cov(D YXYXYX  . Since (t)DX  

and (t)DY are Bernoulli random variables; we can calculate the expected value, variance 

as follows:  

 

 The expected value of the default random variable of firm X : 

)1=(t)P(D=)0=(t)(D0P+)1=(t)(D1P=(t))E(D XXXX . 

 

 The variance of the default random variable of firm X: 

Since 
2

X

2

XX (t))E(D)(t)E(D=(t))Var(D  (from the definition of variance)
37

; 

and )1=(t)P(D=(t))E(D XX  and )0=(t)P(D0+)1=(t)P(D1=)(t)E(D X

2

X

22

X ; 

2

XXX )1=(t)P(D)1=(t)P(D=(t))Var(D  . Thus the variance of default random 

variable is equal to multiplication of default probability with survival 

probability. (i.e. (t))P(D1)(1=(t)P(D=(t))Var(D XXX  ) 

 

Now, consider )DP(D YX  which represents the probability of joint default at time T, 

where T is the maturity. This probability is simply y)ψ(x,=)DP(D YX  , where 

y)ψ(x, is bivariate normal distribution. In addition to the joint probability of default, we 

                                                 
37

 See Appendix II. 
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can derive other useful probabilities. 
38

 

 

Consider the conditional probability; )ΙDP(D YX . It represents the probability of default 

of firm X at time T conditional on the default of firm Y at time T. We can calculate the 

conditional default probability with the help of joint default probability of default at 

time T. 

)P(D

)DP(D
=)ΙDP(D

Y

YX
YX


. 

 

Now, consider the probability of at least one of the firm defaults at time T which will 

be denoted )DP(D YX   and )DP(D)P(D+)P(D=)DP(D YXYXYX  . In addition, 

)DD(E)D(E)D(E)DP(D)P(D+)P(D yXYXYXYX  . Since, ))t(D)t(D(E YX can 

be different from ))t(D(E))t(D(E YX , it implies that estimates of the probability can also 

be very sensitive to the default correlation. 

 

We can easily deduce the survival probabilities from the default probabilities. Let 

)P(SX denotes the probability of survival of firm X at time T. Then, 

)P(D1=)P(S XX  . 

 

 The probability of at least one of the firms X and Y survives; )SP(S YX  : 

)DP(D1=)SP(S YXYX  . 

 The probability of default of firm X and survival of firm Y at time T; 

)SP(D YX  :  

)DP(D)P(D=)SP(D YXXYX  . 

 The probability of survival of firm X and survival of firm Y at time T; 

)DP(S YX  :  

)SP(S)P(S=)DP(S YXXYX  . 

 

                                                 
38

   L. Cathcart, L.El Jahel; Multiple Default’s and Metron Model, Journal of Fixed Income, 2004, Vol: 

14, Pages 60-69, ISSN: 1059-8596. 
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 The probability of survival of firm X at time T conditional on the survival 

of firm Y at time T; )ΙSP(S YX :  

)P(S

)SP(S
=)ΙSP(S

Y

YX

YX


. 

 

)eD<P(A=)D<P(A=)1=P(D rTT

0

T

TX

 , remember that we denote leverage with L 

and defined as
0

rTT

A

eD
=L



.  The probability of X firm’s asset value at time zero (now) 

smaller than the present value of financial debt is equal the probability of firm X’s asset 

value at time T smaller than the financial debt at time T.  

 

2.6 An APPLICATION of PUBLIC COMPANIES in TURKEY 

 

We have examined the data of fifty ISE
39

 companies over the period 2004 and 2008. 

The inputs to the Merton model include the volatility of stock returns, total debt of the 

firm, the risk free interest rate and the time period. For the risk free rate, we use the One 

Year Treasury Constant Maturity Rate obtained from the TUIK
40

. Risk free rates can be 

found in appendix part 7.3. In addition, we assume the maturity, T is equal to 1 (one 

year).  

 

As a first application, the volatility of ISE stocks have been calculated by using the 

return data retrieved from ISE website. In this calculation logarithmic returns have been 

used. Then the unobservable parameters 0A and Aσ  have been computed 

simultaneously by using equations derived from the Ito’s Lemma and Put-Call Parity. 

Having all these parameters computed )d(N 2 of Black-Scholes equation is retrieved. 

All these computations are repeated for individual companies and for each year, 

between 2004 and 2008. Table 2.3 illustrates MPD values of ISE100 compan

                                                 
39

   İstanbul Stock Exchange. 
40

  Turkish Statistical Institute. 
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Table 2.4 MPD of Companies Selected from ISE100 (2004-2008) 

 MDP-2004 MDP-2005 MDP-2006 MDP-2007 MDP-2008 

ACIBD 0.3401 0.0008 0.0000 0.0164 0.0001 

ADEL 0.0414 0.0000 0.0000 0.0000 0.0000 

AEFES 0.0000 0.0000 0.0000 0.2906 0.0001 

AKSA 0.0000 0.0000 0.3371 0.0000 0.0007 

ALARK 0.0000 0.0000 0.6349 0.0000 0.0000 

ALTIN 0.0005 0.0005 0.0582 0.0023 0.0017 

ANACM 0.0000 0.0000 0.0000 0.0394 0.0039 

ASELS 0.0000 0.0000 0.0000 0.0000 0.0966 

AYGAZ 0.0000 0.0000 0.0000 0.0000 0.0015 

BAGFS 0.0000 0.0011 0.0000 0.0000 0.0019 

BANVT 0.3573 0.0003 0.0003 0.0012 0.0875 

BROVA 0.0000 0.0000 0.0000 0.0000 0.0001 

BUCIM 0.0114 0.0000 0.0000 0.0000 0.0000 

CIMSA 0.0000 0.0004 0.0002 0.0000 0.0033 

DYHOL 0.0000 0.0352 0.0000 0.0000 0.1251 

ECILC 0.1775 0.0000 0.0000 0.0000 0.0110 

EDIP 0.0000 0.0000 0.0003 0.0020 0.1014 

EGEEN 0.0000 0.0000 0.0000 0.0000 0.0063 

EGGUB 0.0000 0.0000 0.0000 0.0008 0.0135 

ENKAI 0.0000 0.0727 0.0388 0.0001 0.0020 

EREGL 0.6178 0.0000 0.0000 0.0180 0.0451 

FENIS 0.0414 0.0084 0.0018 0.0417 0.0252 

FRIGO 0.4991 0.0001 0.0000 0.2285 0.0427 

FROTO 0.0000 0.0000 0.0000 0.0000 0.0000 

GOLDS 0.0031 0.0000 0.0024 0.0000 0.0014 

GOODY 0.0000 0.0000 0.0000 0.0000 0.0005 

GSDHO 0.1160 0.0778 0.0240 0.0041 0.0571 

HEKTS 0.0000 0.0000 0.0000 0.0000 0.0000 

HURGZ 0.0000 0.0000 0.0000 0.0000 0.0561 

IHLAS 0.0000 0.0000 0.0000 0.0000 0.0222 

IPMAT 0.0000 0.0127 0.0000 0.0001 0.0081 

IZOCM 0.0000 0.0000 0.0000 0.0000 0.0000 

KAPLM 0.0109 0.0000 0.0000 0.0000 0.0000 

KARTN 0.0000 0.0000 0.0000 0.0000 0.0000 

KCHOL 0.0001 0.0302 0.0138 0.0031 0.0577 

KENT 0.0000 0.0000 0.0000 0.0000 0.0116 

KUTPO 0.1886 0.0000 0.0000 0.0000 0.4152 

METUR 0.0000 0.0122 0.0000 0.0000 0.0616 

MİPAZ 0.0000 0.0000 0.0019 0.0000 0.0210 

MRDIN 0.0000 0.0000 0.0000 0.0000 0.0000 

OKANT 0.0323 0.0000 0.0000 0.0000 0.1366 

OLMKS 0.0000 0.0000 0.0000 0.0000 0.0000 

PARSN 0.0000 0.2314 0.0000 0.0000 0.0007 

PENGD 0.0000 0.0018 0.0003 0.0059 0.0450 

PNSUT 0.0000 0.0002 0.0004 0.0000 0.0027 

PTOFS 0.2023 0.0002 0.0007 0.0000 0.0072 

SAHOL 0.0000 0.0101 0.0733 0.0000 0.0809 

TATKS 0.0080 0.0069 0.0004 0.0000 0.0410 

TCELL 0.0000 0.0000 0.0000 0.0000 0.0000 

VESTL 0.0000 0.0000 0.0000 0.0000 0.0465 
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From Table 2.3; we can see that for the year 2004, MPD of Acıbadem is equal to 0.34 

and one year later the default probability decreases to 0.0008. At 2006 it remains nearly 

the same or so close to zero. For instance, from the model if follows that PARSN’s 

Merton default probability was 23.14% based on our data for the year 2005. However, 

MPD of PARSN for 2004 and 2006 take values so close to one. The MPD of TCELL is 

almost surely zero for all years, we examined. In addition, the MPD of VESTL is 

different from zero only at the year 2008.  

 

The following graphs illustrate MPD for fifty companies which belong to the ISE100 

for each year between 2004 and 2008. In addition, we calculate these probabilities by 

solving two equations with two unknowns. Two unknown parameters are the value of 

assets of the firm and its volatility. To solve these equations, we use excel goal seek 

function
41

 in excel. We can not use goal seek function many times as other functions 

such as correlation or multiplication in excel. To run goal seek function many times we 

create a macro which will be explained in appendix IV. 

 

Graph 2.1 MPD of Selected IMKB Companies  

 

 

 

                                                 
41

   Goal seek function can be used when you know the result of a formula, but not the input values 

required by the formula to decide the result, reverse calculation 
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From Graph 2.1, one can easily mentioned that Merton probability of default take 

values close to zero or one. Also, it changes rapidly in one year. We think that it is not 

accurate to say that any firm X can be default with nearly hundred percentage, after one 

year later it can be default with nearly zero percentage. 

 

Graph 2.2 MPD of Selected Companies from ISE100  
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Graph 2.2 illustrates the MPD for all fifty companies for all years between 2004 and 

2008. (Different colors illustrate different years). From the above graph, we can see that 

MPD values are not increasing or decreasing function by the time. It changes rapidly 

and nonsense. One year it takes value which is close to one, after that year its value 

close to zero. 

 

Since DD is a function of MPD, we can easily calculate DD of each company. Table 2.4 

illustrates DD values of each company for all years.
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Table 2.5 DD of Selected ISE100 Companies (2004-2008) 

 DD-2004 DD-2005 DD-2006 DD-2007 DD-2008 

ACIBD 0.7820 1.8645 0.1882 0.3106 -12.1122 

ADEL 1.9130 4.6354 4.4418 10.7553 5.0830 

AEFES 6.6760 5.8626 1.7813 0.5655 1.2225 

AKSA 10.2374 6.0936 0.7135 6.5240 2.4472 

ALARK 5.9498 5.7318 0.7842 13.2675 4.4321 

ALTIN 1.6276 1.6276 -0.0449 0.7090 1.0082 

ANACM 4.4208 3.5366 2.6609 0.8972 0.0501 

ASELS 12.1741 3.7320 9.3941 10.9506 1.8649 

AYGAZ 7.0194 4.0880 2.0732 4.8166 2.3852 

BAGFS 2.0282 2.4154 2.8915 6.4978 2.7986 

BANVT 0.4325 1.0680 1.3232 1.5483 -4.1883 

BROVA 7.3573 5.2600 9.8937 8.2861 3.8453 

BUCIM 1.9443 7.2438 6.4341 20.4941 5.7919 

CIMSA 16.0748 2.3664 2.9366 11.6846 2.2905 

DYHOL 1.6466 -1.3672 -1.5107 -0.4800 -1.1720 

ECILC 1.5329 5.9413 8.3713 11.9882 2.6463 

EDIP 5.4600 7.3758 1.6731 -1.2834 -11.7706 

EGEEN 10.6772 5.3307 7.6411 5.0637 1.0389 

EGGUB 9.2172 6.0727 5.2884 2.2871 1.0085 

ENKAI -0.8463 0.2344 0.8702 1.9913 2.2245 

EREGL 0.7579 3.7025 3.5941 1.6194 0.6073 

FENIS -1.7581 -0.6139 -0.5966 0.3143 0.2167 

FRIGO -3.0367 -0.2330 -1.5207 -1.0700 -6.5729 

FROTO 4.2042 6.0133 5.9330 6.1574 3.4119 

GOLDS 2.4662 4.0494 2.2961 4.2601 2.8169 

GOODY 6.1855 4.1083 3.9172 13.0768 3.0025 

GSDHO -17.6451 -23.2083 -28.0075 -32.2577 1.6626 

HEKTS 8.3193 11.4588 10.2467 14.2190 11.1770 

HURGZ 3.8540 4.9754 7.1989 1.1723 -0.0985 

IHLAS 3.0299 3.3185 7.5200 3.9785 1.6552 

IPMAT 7.1974 2.0842 4.8636 3.4374 2.2491 

IZOCM 5.1457 5.9615 6.6150 14.6239 6.1476 

KAPLM 2.5383 5.4359 5.0033 10.0143 4.2288 

KARTN 7.2201 6.5421 30.5370 12.2752 13.6705 

KCHOL -4.8132 -13.3920 -28.4253 -16.7535 -3.7979 

KENT 4.9431 4.2494 4.4045 4.1476 1.2350 

KUTPO 1.0594 14.5642 8.8672 8.2181 1.1309 

METUR 28.4669 1.3660 2.1887 0.4972 -9.4179 

MİPAZ 2.7205 5.9720 2.8964 6.1214 0.5468 

MRDIN 8.8708 10.3643 6.0016 9.4457 7.2592 

OKANT 2.0924 9.5007 7.8673 12.6525 1.7492 

OLMKS 15.2403 8.5849 16.9193 33.6296 5.3103 

PARSN 16.6018 1.3153 8.1293 5.2110 3.1641 

PENGD 4.0674 0.6160 -3.2534 -0.8353 -0.2276 

PNSUT -36.3628 2.9622 3.2335 13.0020 2.6676 

PTOFS 0.9871 2.3937 2.2190 5.0002 1.8768 

SAHOL 2.9866 -29.1463 -22.4933 -48.8560 -21.6965 

TATKS -16.3521 -3.5726 -9.7183 -1.3283 -2.3254 

TCELL -4.0383 5.1352 5.6189 8.1364 3.8301 

VESTL 1.9012 4.0051 1.0609 3.3169 0.4204 
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For instance, from table 2.4 the DD for PTOFS is 0.9871 which means that PTOFS was, 

based on this model for the trading year 2004, less than 1 standard deviation away from 

its default: 0.9871, standard deviation to be precise. This indicates that PTOFS was 

more close to a default than it might have looked like. But before we will draw our 

conclusions, let’s have a look at expected default frequencies of companies. 

 

For instance, the DD for METUR is 28.4669 which means for the trading year 2004, 

28.4669, standard deviation to be precise. In addition, the MPD for METUR is so close 

to zero. 

 

Graph 2.3 illustrates the distance to default values of the same fifty companies. From 

the graph we can see that some companies have negative values for all years between 

2004 and 2008. Positive Distance to default values increases and negative distance 

default values decreases each year. In addition, we can say that as time changes, 

absolute value of distance to default increases. This outcome is expected because 

companies which we calculate distance to default values are selected from ISE100.    

 

Graph 2.3 DD of Selected Companies from ISE100 
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For each year, the EDF’s of all companies are shown below. As can be seen, the 

maximum value for EDF of companies is equal to one. 
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Table 2.6 EDF of Selected ISE100 Companies (2004-2008) 

 EDF-2004 EDF-2005 EDF-2006 EDF-2007 EDF-2008 

ACIBD 0.2171 0.0311 0.4253 0.3780 1.0000 

ADEL 0.0279 0.0000 0.0000 0.0000 0.0000 

AEFES 0.0000 0.0000 0.0374 0.2859 0.1108 

AKSA 0.0000 0.0000 0.2378 0.0000 0.0072 

ALARK 0.0000 0.0000 0.2165 0.0000 0.0000 

ALTIN 0.0518 0.0518 0.5179 0.2392 0.1567 

ANACM 0.0000 0.0002 0.0039 0.1848 0.4800 

ASELS 0.0000 0.0001 0.0000 0.0000 0.0311 

AYGAZ 0.0000 0.0000 0.0191 0.0000 0.0085 

BAGFS 0.0213 0.0079 0.0019 0.0000 0.0026 

BANVT 0.3327 0.1428 0.0929 0.0608 1.0000 

BROVA 0.0000 0.0000 0.0000 0.0000 0.0001 

BUCIM 0.0259 0.0000 0.0000 0.0000 0.0000 

CIMSA 0.0000 0.0090 0.0017 0.0000 0.0110 

DYHOL 0.0498 0.9142 0.9346 0.6844 0.8794 

ECILC 0.0627 0.0000 0.0000 0.0000 0.0041 

EDIP 0.0000 0.0000 0.0472 0.9003 1.0000 

EGEEN 0.0000 0.0000 0.0000 0.0000 0.1494 

EGGUB 0.0000 0.0000 0.0000 0.0111 0.1566 

ENKAI 0.8013 0.4073 0.1921 0.0232 0.0131 

EREGL 0.2243 0.0001 0.0002 0.0527 0.2718 

FENIS 0.9606 0.7304 0.7246 0.3767 0.4142 

FRIGO 0.9988 0.5921 0.9358 0.8577 1.0000 

FROTO 0.0000 0.0000 0.0000 0.0000 0.0003 

GOLDS 0.0068 0.0000 0.0108 0.0000 0.0024 

GOODY 0.0000 0.0000 0.0000 0.0000 0.0013 

GSDHO 1.0000 1.0000 1.0000 1.0000 0.0482 

HEKTS 0.0000 0.0000 0.0000 0.0000 0.0000 

HURGZ 0.0001 0.0000 0.0000 0.1205 0.5392 

IHLAS 0.0012 0.0005 0.0000 0.0000 0.0489 

IPMAT 0.0000 0.0186 0.0000 0.0003 0.0123 

IZOCM 0.0000 0.0000 0.0000 0.0000 0.0000 

KAPLM 0.0056 0.0000 0.0000 0.0000 0.0000 

KARTN 0.0000 0.0000 0.0000 0.0000 0.0000 

KCHOL 1.0000 1.0000 1.0000 1.0000 0.9999 

KENT 0.0000 0.0000 0.0000 0.0000 0.1084 

KUTPO 0.1447 0.0000 0.0000 0.0000 0.1290 

METUR 0.0000 0.0860 0.0143 0.3095 1.0000 

MİPAZ 0.0033 0.0000 0.0019 0.0000 0.2923 

MRDIN 0.0000 0.0000 0.0000 0.0000 0.0000 

OKANT 0.0182 0.0000 0.0000 0.0000 0.0401 

OLMKS 0.0000 0.0000 0.0000 0.0000 0.0000 

PARSN 0.0000 0.0942 0.0000 0.0000 0.0008 

PENGD 0.0000 0.2689 0.9994 0.7982 0.5900 

PNSUT 1.0000 0.0015 0.0006 0.0000 0.0038 

PTOFS 0.1618 0.0083 0.0132 0.0000 0.0303 

SAHOL 0.0014 1.0000 1.0000 1.0000 1.0000 

TATKS 1.0000 0.9998 1.0000 0.9080 0.9900 

TCELL 1.0000 0.0000 0.0000 0.0000 0.0001 

VESTL 0.0286 0.0000 0.1444 0.0005 0.3371 
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Graph 2.4 illustrates expected default frequencies of the same fifty companies for each 

year. The companies which have negative distance to default values have greatest 

expected default frequencies. We can easily see that for almost every company in our 

study, expected default frequencies increases by time.  

 

Graph 2.4 EDF of Selected Companies from ISE100 
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Graph 2.5 helps us to see all parameters which we calculate for the companies belong to 

ISE100 for the year 2004. Each year expected default frequencies increases for nearly 

all companies in our data and you can analyze this information from graph 2.4. 
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Graph 2.5 MPD-DD-EDF of Companies  

2004: MPD-DD-EDF
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If one wants to see all parameters together, graph 2.5 helps. Graph 2.5 illustrates three 

parameters (MPD, DD, and EDF) for 2004. From the graph, you can easily see that if 

DD takes negative values, EDF takes greatest value in a neighborhood range. 

 

After calculating these values, we want to analyze the relationship between these 

variables. To analyze them, as a first application we calculate the correlation coefficient 

of these variables. An excerpt of this data is given in Table 2.6. In other words, Table 2.6 

illustrates correlation between default parameters. 

 

Table 2.7 Correlations between Default Parameters 

Correlation 

Year Debt & Equity Debt & MPD Debt & DD Debt & EDF 

2004 0,73 -0,06 -0,07 0,06 

2005 0,74 0,05 -0,74 0,54 

2006 0,71 0,05 -0,62 0,47 

2007 0,76 -0,05 -0,71 0,5 

2008 0,85 0,08 -0,31 0,37 
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From table 2.6 and graph 2.6, we can examine that the correlation between total debt 

and equity increases by the time, the values are so close to each other and they are 

highly positively correlated. This means, companies with higher total debt tend to have 

higher equities and vice versa. In addition, companies with fewer equities tend to have 

lower total debt. In addition, from the graph 2.6, for years between 2004 and 2008, the 

correlation between total debt and equity takes nearly same values which are close to 

0.8.  

 

The correlation coefficient of total debt and DD take negative values for all years. This 

means that they are negative correlated and in a negative correlation, as the values of 

one of the variables increase, the values of the second variable decrease. Likewise, as 

the value of one of the variable decreases, the value of the other variable increases.  

 

Graph 2.6 Correlations between Default Parameters 
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Remember that we find MPD with solving two equations. You can find the solutions of 

the equations for each company for each year in appendix V. In other words, the 

unobservable parameters 0A
and Aσ  for each company, can be found in appendix. 

Notice that we do not make interpretation with these values. Since these equations can 

have different values that can be satisfies equations. We checked that different solutions 

give close values for MPD.     
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CHAPTER 3 CLUSTER ANALYSIS & FUZZY LOGIC 
 

3.1 CLUSTER ANALYSIS 

 

Cluster analysis divides data into groups (clusters) such that similar data objects belong 

to the same cluster and dissimilar data objects to different clusters. The resulting data 

partition improves data understanding and reveals its internal structure. Partition 

clustering algorithms divide up a data set into clusters or classes, where similar data 

objects are assigned to the same cluster whereas dissimilar data objects should belong to 

different clusters. In other words, cluster analysis is an exploratory data analysis tool for 

organizing observed data such as people, brands, events, companies, countries, etc. into 

meaningful taxonomies, groups or clusters, which maximizes the similarity of cases 

within each cluster and maximizes the dissimilarity between clusters or groups that are 

initially unknown. The term similarity should be understood as mathematical similarity. 

The term cluster analysis is first used by Robert C. Tryon.
42

 In the last few years, the 

science of cluster analysis has been discovered to be a valuable tool in the physical, 

economic, finance and biological sciences. 

 

The clustering results depend on the choice of dissimilarity (similarity) so that the 

natural question is how we should measure the dissimilarity (similarity) between 

samples. A common choice of dissimilarity function between samples is the Euclidean 

distance. In metric spaces, similarity is often defined by a distance norm. The distance 

norm or similarity is usually not known beforehand.  

 

Data can be reveal clusters of different geometrical shapes, sizes and densities. In 

addition, clusters can be spherical, linear, nonlinear or hollow. The following figures 

show the examples of cluster types we mentioned, respectively. 

 

                                                 
42

   The most thorough treatment of cluster analysis can be found in Robert C. Tryon and Daniel E. Bailey, 

Cluster Analysis (New York: McGraw-Hill, 1970). 
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Homogeneity within the clusters means that data that belong to the same cluster should 

be as similar as possible. Heterogeneity between clusters means data that belong to 

different clusters should be as different as possible. 

 

FIGURE 3.1 EXAMPLES OF CLUSTER TYPES 

 

    

The distance between x and y (as data) as considered to be two dimension function 

satisfying the following properties. 

 

 For every x; 0=x)d(x,  

 For every x and y; 0y)d(x,   

 For every x, y; x)d(y,=y)d(x,  

 For every x, y and z; z)d(x,z)d(y,+y)d(x,   

 

In the case of continuous variables, we have a long list of distance functions (which 

satisfies above properties). Each of distance functions implies different view of data 

because of their geometry. The following table illustrates the different distance 

functions with definitions, which are usually measure dissimilarity in cluster analysis. 
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Table 3.1 Formulas of Distance Functions 

 

Distance Function 

 

Formula (Definition) 

 

Minkowski Distance 
 

n

1=i

p

ii

p )y(x=y)d(x,  

 

Hamming Distance 
 

n

1=i

ii |yx|=y)d(x,  

 

Euclidean Distance 
 

n

1=i

2

ii )y(x=y)d(x,  

 

Angular Separation 
2/1

n

1=i

2

i

n

1=i

2

i

n

1=i

ii

yx

yx

=y)d(x,












 

Tchebyschev Distance |yx|=y)d(x, ii
axm

n1,2,...=i
  

 

The Minkowski norm provides a concise, parametric distance function that generalizes 

many of the distance functions used in the literature. The advantage is that mathematical 

results can be shown for a whole class of distance functions, and the user can adapt the 

distance function to suit the needs of the application by modifying the Minkowski 

parameter. There are several examples of the Minkowski distance, including Hamming 

distance (usually refereed to as a city-block distance); the Euclidean distance and 

Tchebyschev distance. They are special case of Minkowski distance when p=1, 2 and 

infinity. 

 

For example, Euclidean distance is the geometric distance between two objects or 

cases and it is most commonly used one. With Euclidean distances the smaller the 

distance, the more similar the cases. However, this measure is affected by variables with 

large size. So, if objects are being compared across variables that have very different 

variances then the Euclidean distance is not accurate. To handle this problem, you can 

standardize (normalize) the clustering variables.  
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For instance, Hamming Distance is a number used to denote the difference between two 

binary strings. Hamming distance was originally conceived for detection and 

correction of errors in digital communication. In the context of prioritized model 

checking, the minimum Hamming distance between the state being explored and the set 

of error states is used as an evaluation function to guide the search. The Tchebyschev 

distance takes into consideration the maximal distance over the coordinates x and y. 

 

Remember that, distance can be measured in a variety of ways. For example, Ward’s 

Method is distinct from other methods because it uses an analysis of variance approach 

to evaluate the distances between clusters. In general, this method is very efficient. 

Cluster membership is assessed by calculating the total sum of squared deviations from 

the mean of a cluster. The criterion for fusion is that it should produce the smallest 

possible increase in the error sum of squares.
43

 

 

In real applications, there is very often no sharp boundary between clusters so that fuzzy 

clustering is often better suited for the data. Clustering can also be thought of as a form 

of data compression, where a large number of samples are converted into a small 

number of representative prototypes or clusters. Depending on the data and the 

application, different types of similarity measures may be used to identify classes, 

where the similarity measure controls how the clusters are formed. 

 

Clustering techniques can be applied to data that is quantitative (numerical), qualitative 

(Categorical), or a mixture of both. However, having a mixture of different types of data 

will make the analysis more complicated. In this thesis, the clustering of quantitative 

data is considered.   

 

Clustering algorithms can be applied to many fields such as marketing, insurance, 

earthquake studies and city planning. For instance, as application of the insurance; you 

can identify groups of motor insurance policy holders with a high average claim cost. 

For the city planning, by clustering you can identify groups of houses according to their 

                                                 
43

   Ward’s Method, Cluster Analysis, 2001. 
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house types, value and geographical location. 

 

Desirable Properties of a Clustering Algorithm 

 

• Scalability (in terms of both time and space) 

• Ability to deal with different data types 

• Minimal requirements for domain knowledge to determine input parameters 

• Able to deal with noise and outliers 

• Insensitive to order of input records 

• Incorporation of user-specified constraints 

• Interpretability and usability 

 

3.1.1 A TYPOLOGY OF CLUSTERING 

 

To discuss the variety of clustering concepts and algorithms, a classification of them is 

necessary. Typically, such a classification involves the following three binary 

oppositions presented by Sneath and Sokal 1973. 

 

FIGURE 3.2 TYPOLOGY OF CLUSTERING 
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3.1.1.1 Hierarchic versus Nonhierarchical (Partional) Methods 

 

The clustering techniques in this category produce a graphic representation of data.
44

 

The construction of graphs is done in two ways, bottom-up
45

 and top-down
46

. In 

hierarchical clustering the data are not partitioned into a particular cluster in a single 

step. Instead, a series of partitions takes place, which may run from a single cluster 

containing all objects to n clusters each containing a single object.  Hierarchical 

Clustering is subdivided into agglomerative methods, which proceed by series of 

fusions of the n objects into groups, and divisive methods, which separate n objects 

successively into finer groupings. . Hierarchical clustering may be represented by a two 

dimensional diagram known as dendogram which illustrates the fusions or divisions 

made at each successive stage of analysis. An example of such a dendogram is defined 

in the following figure. 

 

FIGURE 3.3 DENDOGRAM 

 

 Source: Boris Mirkin, Mathematical Classification and Clustering- Nonconvex Optimization and 

Its Application, Kluwer Academic Publication. 

                                                 
44

   Duda et al., 2001. 
45

   Agglomerative Method: treat each pattern as a single element cluster then merge the closest clusters, 

repeat until reach to a single data set. 
46

   Divise Method: Opposite of Agglomerative Method, start with the entire set treated as single cluster 

and keep splitting it into smaller clusters. 
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This diagram illustrates which clusters have been joined at each stage of the analysis 

and the distance between clusters at the time of joining. If there is a large jump in the 

distance between clusters from one stage to another then this suggests that at one stage 

clusters that are relatively close together were joined whereas, at the following stage, 

the clusters that were joined were relatively far apart. This implies that the optimum 

number of clusters may be the number present just before that large jump in distance. 

 

Hierarchical methods generate clusters as nested structures, in a hierarchical fashion; 

the clusters of higher levels are aggregations of the clusters of lower level. 

Nonhierarchical methods result in a set of unnested clusters. 

 

Example 3.1.1.1.1 Assume we have following objects to cluster. 

 

 

 

 

We can cluster these objects with partitional or hierarchical clustering. The following 

graphs are examples of clustering types. Since clustering is subjective; we can separate 

objects such as females or males, as in last figure or we can separate objects from 

Simpson’s Family or not.    

 

 
 



 50 

3.1.1.2 Agglomerative versus Divisive Methods 

 

Agglomerative method starts with each item in its own cluster, find the best pair to 

merge into a new cluster. Repeat until all clusters are fused together. Also, it is called 

bottom up method. Divisive Method; which is also called top-down method; starts with 

all the data in a single cluster, consider every possible way to divide the cluster into two. 

Choose the best division and recursively operate on both sides. This refers to the 

methods of the hierarchical clustering according to the direction of generating the 

hierarchy, merging smaller clusters into the larger ones bottom-up (agglomerative) or 

splitting the larger ones into smaller cluster stop-down (divisive). Agglomerative 

methods have been developed for processing mostly similarity/dissimilarity data while 

the divisive method mostly worked with attribute- based information. The above figure 

shows the direction. 

 

3.1.1.3 Nonoverlapping versus Overlapping Methods  

 

Most clustering methods partition the data into non-overlapping regions, where each 

point belongs to only one cluster. Overlapping clustering allows items to belong to 

multiple clusters and it provides o more natural way to discover interesting and useful 

classes in data. 

 

SPSS
47

 has three different procedures that can be used to cluster data: hierarchical 

cluster analysis, k-means clusters and two step clusters. Hierarchical clustering requires 

a matrix of distances between all pairs of cases, and k-means cluster requires shuffling 

cases in and out of clusters and knowing the number of clusters in advances. In a very 

large data set, if one needs a clustering procedure that can rapidly form clusters on the 

basis of either categorical or continuous data; neither Hierarchical clustering nor k-

means cluster works. In this thesis, we use two step clustering method using SPSS. In 

two step clustering method in SPSS, we have an option to create a separate cluster for 

cases that do not well into any other clusters and defined as outlier cluster.    

                                                 
47

 Statistical Package for the Social Sciences. 
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3.1.2 CLUSTERS 

 

Various definitions of a cluster can be formulated, depending on the objective of 

clustering. Generally, one may accept the view that a cluster is a group of objects that 

are more similar to one another than the members of other clusters. As we mentioned 

before, the term “similarity” should be understood as mathematical similarity, measured 

in some well-defined sense. In metric spaces, similarity is usually defined by means of a 

distance norm. 

 

Note that, using cluster analysis, we can also form groups of related variables similar to 

what we do in factor analysis. On the other hand, an important issue is how to measure 

the distance between two clusters. Assume we have two clusters; A and B; as in Figure 

3.4.  

 

FIGURE 3.4 CLUSTER A & CLUSTER B  

 

 

There exist three main distance functions to measure the distance between clusters. 

Single link method, complete link method and group average link method.  
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3.1.2.1 Single Link Method 

 

The distance between cluster A and cluster B based on the minimal distance between 

patterns belonging to A and B. The mathematical definition of the single method, if we 

denote the distance function of clusters with 'd , 

 

y)d(x,=B)(A,d nim
ByA,x

'


, where y)d(x, is any distance function. 

The following figure illustrates the single link method. 

 

  FIGURE 3.5 SINGLE LINK METHOD 

 

3.1.2.2 Complete Link Method 

 

The distance between cluster A and cluster B based on the maximum distance between 

patterns belonging to A and B. In other words, this method is at the opposite end of the 

spectrum, as it based on the distance between two farthest patterns belonging to clusters 

A and B. The mathematical definition of the complete link method, if we denote the 

distance function of clusters with ''d , 

 

y)d(x,=B)(A,d axm
ByA,x

''


, where y)d(x, is any distance function. 

 

The following figure illustrates the complete link method. 
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FIGURE 3.6 COMPLETE LINK METHOD 

 

3.1.2.3 Group Average Link 

 

The group average link method considers the average between the distances computed 

with the all pairs of the pattern, one from each cluster. The mathematical definition of 

the group average link method, if we denote the distance function of clusters with '''d , 

 


 By,Ax

''' )y,x(d
)B(card)A(card

1
=B)(A,d , where y)d(x,  is any distance function. 

 

The following figure illustrates the complete link method. 

 

 

FIGURE 3.7 GROUP AVERAGE LINK METHOD 

 

 

In addition, one can use the correlation coefficient as a measure of similarity. To take 

the absolute value of it before forming clusters because variables with large negative 
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correlation coefficients are just as closely related as variables with large positive 

coefficients. 

 

3.1.3 FUZZY CLUSTERING 

 

Ruspini (1969) first proposed the idea of fuzzy partitions. After that, fuzzy clustering 

has grown to be an important tool for data analysis and modeling. Up to that time, it has 

been applied extensively for diverse tasks such as data analysis, data mining and image 

processing. The clustering results are largely influenced by how this distance is 

computed, since it determines the shape of the clusters. The success of fuzzy clustering 

in various applications may depend very much on the shape of the clusters. In addition, 

fuzzy clustering can be used as a tool to obtain the partitioning of data. Since clusters 

can formally be seen as subsets of the data set, one possible classification of clustering 

methods can be according to whether the subsets are crisp of fuzzy.  

 

3.1.4 LIMITATIONS OF CLUSTERING (ADVANTAGES & DISADVANTAGES 

OF CLUSTER ANALYSIS) 

 

The different methods of clustering usually give different results. It is important to think 

carefully to decide which method to use or which clustering variables you will use. The 

best way to get the correct results you should know your data in detail and know each 

clustering variables with statistics or properties. The cluster analysis is not stabile when 

cases are dropped. The cases are dropped because merger of clusters depends on 

similarity of one case to the cluster. Dropping one case can affect the course in which 

the analysis progresses. In addition, the choice of variables included in a cluster analysis 

must be underpinned by conceptual consider because the clustering has no mechanism 

for differentiating between relevant and irrelevant variables. 

 

Compared to factor analysis, clustering variables identifies the key variables which 

explain the principal dimensionality in the data, rather than abstract factors; allows 
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much larger correlation or covariance matrices to be analyzed; and greatly simplifies 

interpretation. 

 

One of the disadvantages of clustering is to find an outlier cluster, which includes the 

data that does not fit well into any other cluster. We can see this as a disadvantage, 

because we want to analyze and make predictions from the results of clusters.  

 

3.2 FUZZY LOGIC 

 

In the computational world, there are two broad areas of logic: Crisp Logic and Fuzzy 

Logic. Crisp Logic arises out of the fundamental concepts of such people Aristotle and 

Pythagoras who based their work on the idea that everything in the universe can be 

describe by numerical formulate and relationships. In crisp logic which is also Boolean 

Logic, problems are simplified by reducing the possible states a variable may have 

(Black and white, on or off.) The original 0 and 1 or binary set theory was invented by 

German mathematician Georg Cantor48. The Polish philosopher Jan Lukasiewicz 

developed the first logic of vagueness in 1920 when he created se with possible 

membership values 0, 1 and ½.   49 He developed first three valued logic system also in 

the same period quantum philosopher Black identified the logic with continuous values. 

But they could not find an application area and these studies did not reach a conclusion. 

 

Fuzzy set theory is developed for solving problems in which descriptions of activities 

and observations are imprecise, vague, and uncertain. The term “fuzzy” refers to the 

situation in which there are no well-defined boundaries of the sets of activities or 

observations to which the descriptions apply. For example, one can easily assign a 

person seven feet tall to the “class of tall man”. But it would be difficult to justify the 

inclusion or exclusion of a six-foot tall person to that class, because the term “tall” does 

not constitute a well-defined boundary. This notion of fuzziness exists almost 

everywhere in our daily life, such as the “class of red flowers,” the “class of good 

                                                 
48

   German mathematician, who is known as the inventor of the set theory. 
49

   Johnson 1972, p. 55 
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kickers,” the “class of expensive cars,” or “numbers close to ten,” etc. These classes of 

objects cannot be well represented by classical set theory. In classical set theory, an 

object is either in a set or not in a set. In optimization, a solution is either feasible or not. 

Real situations are very often not crisp and deterministic, and they cannot be described 

precisely. 

 

An object cannot partially belong to a set50. To cope with this difficulty, Lotfi A. Zadeh 

proposed the fuzzy set theory published in his famous paper “Fuzzy Sets” in 

Information and Control in 1965. The concept of fuzzy logic, first presented by 

Zadeh51, who is a well-respected professor in the department of electrical engineering 

and computer science. Zadeh was a well-respected scholar in control theory before he 

was working on fuzzy theory. He developed the concept of “state”, which forms the 

basis for modern control theory. In the early 60’s, he thought that classical control 

theory had put to much emphasis on precision therefore could not handle the complex 

systems. As early as 1962, he wrote to handle biological systems “we need a radically 

different kind of mathematics, the mathematics of fuzzy or cloudy quantities which are 

not describable in terms of probability distribution (Zadeh, 1962). Later he formalized 

the ideas into his paper Fuzzy Sets. Most of the fundamental concepts in fuzzy process 

were proposed by Zadeh in late 60’s and early in 70’s. After the introduction of fuzzy 

sets in 1965, he proposed the fuzzy algorithm in 1968, fuzzy decision making in 1970 

(Bellman &Zadeh), and fuzzy ordering in 1971 (Zadeh). In 1973, he published another 

seminal paper, “Outline of a new approach to the analysis of complex systems and 

decision process” (Zadeh, [1973]), which establishes the foundation for fuzzy control. 

In this paper, he introduced concept of linguistic variables and proposed to use if-then 

rules to formulate human knowledge. Since then, fuzzy set theory has been rapidly 

developed by Zadeh himself and numerous researchers, and an increasing number of 

successful real applications of this theory in a wide variety of unexpected fields have 

been appearing.  

 

It was Plato who laid the foundation for what would become fuzzy logic, indicating that 

                                                 
50 

  Shu-Jen Chen, Chin-Lai Hwang, in collaboration with Frank P. Hwang, Fuzzy Multiple Attribute  

Decision Making, Germany, 1992, Springer-Verlag, s. 42.  
51

 L. Zadeh, 1965. 
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there was a third region (beyond True and False, beyond Black and White as Grey) 

where these opposites "tumbled about." Other, more modern philosophers echoed his 

sentiments, notably Hegel, Marx, and Engels. But it was Lukasiewicz who first 

proposed a systematic alternative to be valued logic of Aristotle52.  

 

Japanese engineers, with sensitivity to new technology; quickly found that fuzzy 

controllers were very easy to design and worked very well for many problems. In 1983, 

Sugeno and Nisnida began the pioneer work on a fuzzy robot, self-parking car that was 

controlled by calling out commands. Because fuzzy logic provides the tools to classify 

information into broad, coarse categorizations or groupings, it has infinite possibilities 

for application which have proven to be much cheaper, simpler and more effective than 

other systems in handling complex information. Fuzzy logic has extremely broad 

implications for many fields, not just for electrical engineering and computer 

technology. Numerous consumer goods especially household products and cameras 

already incorporate fuzzy logic into their design. 

  

The development of fuzzy set theory to fuzzy technology during the first half of the 

1990s has been very fast. More than 16.000 publications have appeared since 1965. 

Most of them have advanced the theory in many areas. Today; in almost every field; 

fuzzy logic are able to apply, especially it is widely used in industrial fields. In 

particular Japanese were implemented the fuzzy logic in washing machines, dishwasher, 

vacuum cleaners and video cameras. Moreover software and hardware which are 

intended for fuzzy logic applications are presented to consumer in the market. Even 

fuzzy microprocessors are also offered to sale. The Panasonic's video camera which 

automatically eliminate the vibration between shots in the case of hand-held and 

Matsushita's washing machine that choose washing program according to laundries 

dirtiness, weight and kind of clothes are interesting examples of fuzzy logic 

applications. 

 

In economics and finance, fuzzy logic can be applied in modeling complex sales and 
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 C. Lejewski, "Jan Lukasiewicz," Encyclopedia of Philosophy, Vol. 5, Mac Millen, NY: 1967, pp. 104-

107. 



 58 

trade systems, cost-benefit analysis, investment evaluations and in portfolio analysis. 

Also, in banking system fuzzy logic approach is used for the assessment of credit 

demand or rating credits. Fuzzy systems are used mostly for estimating, decision 

making and mechanical control systems. 

  

A fuzzy set is a class of objects with a continuum of membership grades. The main idea 

of fuzzy set theory is quite intuitive and natural: Instead of determining the exact 

boundaries as in an ordinary set, a fuzzy set allows no sharply defined boundaries 

because of a generalization of a characteristic function to a membership function53. The 

membership function, which assigns to each object a grade of membership, is associated 

with each fuzzy set. Usually, the membership grades are in [0, 1]. When the grade of 

membership for an object in a set is one, this object is absolutely in that set; when the 

grade of membership is zero; the object is absolutely not in that set. Borderline cases are 

assigned numbers between zero and one. Precise membership grades do not convey any 

absolute significance. They are context-dependent and can be subjectively assessed54. 

 

Aristotle outlined a system of logic that has influenced Western thought for over two 

thousand years. A syllogism is a conclusion based on two premises. Statements or 

conclusions are evaluated as either true or false. Truth is regarded as a bivalent variable 

which assumes a value equal to only true or false (zero or one). This system of logic is 

powerful and reliable if applied appropriately, and if one has premises that are 

unquestionably either true or false. Shortly, in conventional logic or in other saying 

Boolean logic there is only two possible states a variable may have such as we defined 

before:” Black or White”, “True or False”, and “One or Zero”. However, in fuzzy logic 

variables can have different values according to their degrees of membership. For 

example, the concept of “warm room temperature” may be expressed as an interval (e.g. 

]C25,C21[ 00
) in classical set theory. But, the definition of the warm room temperature 

does not have well defined boundaries. The definition depends people to people. 

Suppose, we have a room whose temperature is
0C25 , we do not say this room is not 
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Masatoshi Sakawa, Fuzzy Sets and Interactive Mul i-objective Optimization, New York, Plenum Press, 1993, s. 36. 

54  
 
Shu-Jen Chen, Chin-Lai Hwang, in collaboration with Frank P. Hwang, Fuzzy Multiple Attribute Decision Making, Germany, 1992, Springer 

Verlag, s. 42. 



 59 

warm. We may say it is slightly warm. Thus, representation of the concept closer to the 

human interpretation. As we mentioned before, in fuzzy sets, instead of determining the 

exact boundaries as in an ordinary set, a fuzzy set allows no sharply defined boundaries 

because of a generalization of a characteristic function to a membership function. 

 

May be, we can think fuzzy logic as a part of a logic. However, some logicians do not 

believe the use of fuzzy logic. For example Haack55, a formal logician, has some 

criticisms about fuzzy logic.  She states that there are only two areas where fuzzy logic 

is “needed”. (But, in each case, Haack shows the ultimately classical logic can 

substitute for fuzzy logic.) The following are Haack’s two cases that may require for 

fuzzy logic: 

 

 Nature of Truth and Falsity: Haack argues that True and False are discrete 

terms. In classical logic, any fuzziness that arises from a statement is due to an 

imprecise definition of terms. But, Haack says that if it can be shown that fuzzy 

values are needed indeed fuzzy (meaning not discrete), then a need for fuzzy 

logic can demonstrated. 

 

 Utility of Fuzzy Logic: Haack says that if it can be shown that generalizing 

classic logic to include fuzzy logic would aid calculations, then fuzzy logic 

would be needed. However, she argues that data manipulation in a fuzzy system 

actually becomes more complex. So, fuzzy logic is not necessary. 

 

Haack
56

 believes fuzzy logic is not necessary because the calculations are more 

involved and partial membership values can be eliminated by defining terms more 

precisely. Fox has responded to Haack’s objections. He believes that the following three 

areas can benefit from fuzzy logic.  

 

 Requisite Apparatus: Use fuzzy logic to describe the real world relationships 

                                                 
55

  Haack, "Do we need fuzzy logic?" Int. Journal. of Man-Mach. Stud., Vol. 11, 1979, pp.437-445. 
56

  Haack Susan, Deviant Logic and Fuzzy Logic: Beyond the Formalism. 
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that are inherently fuzzy. 

 Prescriptive Apparatus: Use fuzzy logic because some data is inherently fuzzy 

and needs fuzzy calculations. 

 Descriptive Apparatus: Use fuzzy logic because some inferencing systems are 

inherently fuzzy. 

 

3.2.1 FUZZY SETS & MEMBERSHIP FUNCTIONS 

 

In this section, we will review the definition of a fuzzy set as well as some of its basic 

concepts as they apply to later chapters in this thesis. In addition, we give the definition 

of fuzzy membership functions, their properties their types. 

 

3.2.1.1 Fuzzy Sets 

 

A fuzzy set is represented by a membership function defined on the universe of 

discourse. The universe of discourse is the space where the fuzzy variables are defined. 

The membership functions give the grade or degree of membership function within the 

set of any element of the universe of discourse. The membership function maps the 

elements of universe onto numerical values in the interval [0, 1]. A membership 

function value of zero implies that the corresponding element is definitely not an 

element of the fuzzy set, while a value of unity (1) means that the element fully belongs 

to the set. A membership function of a fuzzy set is continuous function with range [0, 1]. 

So, there is nothing fuzzy about a fuzzy set. It is simply a set with a continuous 

function. For simplicity, we use piecewise linear membership functions such as triangles 

and trapezoids. Also, membership functions can be continuous curves such as Gaussian 

membership function and bell membership function. They have an advantage of being 

smooth and nonzero at all points. However, they are unable to specify asymmetric 

membership function, which are important in many applications. 
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Like convential set, a fuzzy set can be used to describe the value of a variable. If a 

variable can take words or sentences in natural or artificial language as its values, it is 

called linguistic variable where the words are characterized by fuzzy sets. For 

example, age is a linguistic variable if it values are old, young, very young, quite young, 

not very old instead of 56, 36, 25,… . Linguistic term is used to express concepts and 

knowledge in human communication, whereas membership function is useful for 

processing numeric input data. In our model, the linguistic term is default probability 

and it values as normal, good, extremely good, bad and extremely bad. Now, we will 

give mathematical definition of fuzzy sets.  

 

3.2.1.1.1 Definition of a Fuzzy Set 

 

A fuzzy set A
~

 in a universe of discourse X  is characterized by a membership function 

)x(
A
~  which associates with each element x  in X  a real number in the interval  1,0 . 

The function value )x(
A
~ is termed the grade of membership of x  in A

~
.The fuzzy 

set A
~

, is usually denoted by the set of pairs  Xx)),x(,xA
~

A
~  . 

For an ordinary set, A
~

 










A
~

xiff0

A
~

xiff1
)x(

A
~ . 

When X  is a finite set such as; n21 x,...,x,x  the fuzzy set on X  may also be 

represented as: 

.
)x(

x
A
~ n

1i iA
~

i
 

  

When X  is an infinite set, the fuzzy set may be represented as: 

.
)x(

x
A
~

A
~

 
  

A fuzzy set A
~

 of the universe of discourse X  is called a normal fuzzy set implying 

that  

Xx i  , 1)x( iA
~  . 
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Example 3.2.1.1 Let }Peter,Mark,John,Tom{X  which is a finite set. Evaluated by a 

girl, the fuzzy set “handsome boys”, may be characterized as: 

 

)}6.0,Peter(),8.0,Mark(),2.0,John(),7.0,Tom{(A
~
 , 

                             6.0

Peter

8.0

Mark

2.0

John

7.0

Tom
A
~

 . 

 

Example 3.2.1.2 Consider the set of old people belonging to the universe of people in 

the age of 0 to 120.   

We can define the membership function ( oldμ  ) as: 

 

80>x

80x<60

60x0

;

;

;

1
20

60x
0

=(x)μ old 












 

 

Example 3.2.1.3 Suppose we want to model the notion of “high income” with a fuzzy 

set. Let U denote the set of positive real numbers which represents the possible yearly 

total income. Assume we believe that no one thought that an income under $10.000 was 

high and everyone thought that yearly income over $100.000 was high, however the 

proportion p of people that thought that an income x between $10.000 and $100.000 

was high approximately, 
90

10x
=p


 for any ]90,10[x  and the membership function is 

in the following form. 

100>x

100x<10

10x0

;

;

;

1
90

10x
0

=(x)μ high 












 

There are various way to get reasonable membership function but we have modeled this 

membership function with piecewise linear function which is very simple for 

computations. Most commonly used piecewise linear functions are triangular and 

trapezoidal functions. Even though, there are situations in which nonlinear membership 
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functions are more suitable, most practitioners have found that triangular and 

trapezoidal membership functions are sufficient for developing good approximate 

solutions for the problems they wish to solve.   

 

3.2.1.2 Membership Functions and Fuzzy Numbers 

 

In this section, we will give the definitions and graphs of the membership functions 

which we use to model the bankruptcy probability. 

 

3.2.1.2.1 Triangular Membership Functions 

 

The triangular curve is a function of a vector x; and depends on three scalar 

parameters 1a , 2a  and 3a . The parameters 1a and 3a  locate the “feet” of the triangle and 

the parameter 2a  locates “peak”. 

 

    































xa,0

axa,
aa

xa

axa,
aa

ax

ax,0

)x(

3

32

23

3

21

12

1

1

A
~       ; where 321 aaa        (1) 

 

In addition, a triangular fuzzy number A
~

also can be defined by a triplet )a,a,a( 321  

shown in Figure 4.1. The membership function )x(
A
~ is defined as (1). A fuzzy number 

A
~

is often written as ),,m()aa,a(A
~

321  , where 2am   is the mean of fuzzy 

number A
~

and 2312 aa,aa  are the left and right “spreads”, respectively. 

When 0 , A
~

is considered a crisp number. 

 

Alternatively, defining the interval of confidence at level , triangular fuzzy number. Is 
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characterized as  

],a)aa(,a)aa[(A
~

323112  ].1,0[  

 

FIGURE 3.8 A TRIANGULAR FUZZY NUMBER  

 

 

Now, we will briefly define some important properties which are easy to verify. 

 

    i) Addition or subtraction operations on two triangular fuzzy numbers give a 

triangular trapezoidal fuzzy number. 

    ii) Multiplication, inverse and division operations on triangular trapezoidal fuzzy 

number do not necessarily gives a triangular fuzzy number. 

    iii) Maximum and minimum operations on triangular fuzzy number do not give a 

triangular fuzzy number. However, in the case of a triangular fuzzy number, we can 

approximate the results of these operations by a triangular fuzzy number. 

 

3.2.1.2.2 A Trapezoidal Membership Functions 

 

The trapezoid curve is a function of a vector, x and depends on four scalar 

parameters 1a , 2a , 3a  and 4a . The parameters 1a  and 4a   locate the “feet” parameters of 

the trapezoid and the parameters 2a  and 3a  locate the “shoulders”. 
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
































4

43

44

4

32

21

12

1

1

A
~

ax,0

axa,
aa

xa

axa,1

axa,
aa

ax

ax,0

)x(  ; where 4321 aaaa                    (2) 

 

In addition, a Trapezoidal Fuzzy Number can be represented completely by a quadruplet 

)a,a,a,a(A
~

4321 . In this case for 1 we do not have a point, rather we have a flat 

line over an interval )a,a( 32 as shown in following figure.  

 

FIGURE 3.9 A TRAPEZOIDAL FUZZY NUMBER 

 

 

By the interval of confidence at level , trapezoidal fuzzy number can be characterized. 

Thus, ],a)aa(,a)aa[(A
~

434112  ].1,0[  

 

The membership function of a trapezoidal fuzzy number is characterized as (2). It 

should be noted that a triangular fuzzy number is a special case of a trapezoidal fuzzy 

number with 32 aa  . We can extend all the results of algebraic operations on triangular 

fuzzy numbers to the trapezoidal fuzzy numbers as well. Some of these are summarized 

below. 

 

     i) Addition or subtraction operations on two trapezoidal fuzzy numbers give a 

trapezoidal fuzzy number. 



 66 

     ii) Multiplication, inverse and division operations on trapezoidal fuzzy number do 

not necessarily gives a trapezoidal fuzzy number. 

     iii) Maximum and minimum operations on trapezoidal fuzzy number do not give a 

trapezoidal fuzzy number. However, in the case of a trapezoidal fuzzy number, we can 

approximate the results of these operations by a trapezoidal fuzzy number. 

 

3.2.3 OPERATIONS ON FUZZY SETS 

 

In his very first paper about fuzzy sets
57

, L. A. Zadeh suggested the minimum operator 

for the intersection and the maximum operator for the union of two fuzzy sets. 

 

Applying the fuzzy operators can be thought as the second step of the fuzzy inference 

system. Let A  and B  be two fuzzy sets. We say that A and B equal if and only if 

(x)μ=(x)μ BA  for all x in U (universe). We say that BA   if and only 

if (x)μ(x)μ BA  , for all Ux . The complement cA  of the set A  is a fuzzy set in U , 

whose membership function is defined as (x)μ1=(x)μ AcA
 . The Figure 4.3 illustrates 

the membership function of complement of any fuzzy set which have triangular 

membership function. 

 

FIGURE 3.10 COMPLEMENT OF A FUZZY SET 

 

 

                                                 
57

 L.A. Zadeh, Fuzzy Sets, Information and Control, 1965 
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The union of A  and B  is a fuzzy set BA in U , whose membership function is 

defined as  (x)μ(x),μmax=(x)μ BABA . The Figure 4.4 illustrates the membership 

function of union of two fuzzy sets which have triangular membership function.  

 

FIGURE 3.11 UNION OF FUZZY SETS  

 

 

The intersection of A  and B  is a fuzzy set BA in U , whose membership function is 

defined as  (x)μ(x),μmin=(x)μ BABA . The Figure 4.5 illustrates the membership 

function of intersection of two fuzzy sets which have triangular membership function. 

 

FIGURE 3.12 INTERSECTION OF FUZZY SETS 

 

 

In addition to the operations of union and intersection, one can define a number of other 

ways of forming combinations
58

 of fuzzy sets.
59

  

                                                 
58

   Algebraic product, algebraic sum, extension. 
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There is a wide variety of fuzzy complement, fuzzy union, fuzzy intersection operators, 

a number of different interpretations of fuzzy “if then” rules were proposed in the 

literature. Like Zadeh, Godel, Mamdani, Lukasiewicz, Dienes-Rescher implications. 

For instance in Dienes-Rescher implication they replace the logic operators NOT and 

OR in NOTP OR Q by the basic fuzzy complement and the basic fuzzy union, 

respectively. In other words, the fuzzy “if then” rule If A and B is interpreted as a fuzzy 

relation Q in VU with the membership function. 

 

In the Mamdani application, which we will explain in the next chapter (Fuzzy Inference 

System), the fuzzy “if then” rule If A and B is interpreted as a fuzzy relation Q in VU   

with the membership function. Now, we will briefly give definitions of the operations to 

the membership functions as triangular and trapezoidal fuzzy numbers which we use in 

our model.  

 

3.2.3.1 Operations on Triangular Fuzzy Number  

 

Equity of Triangular Fuzzy Numbers: Let  321 m,m,mm~   and  321 n,n,nn~   be 

two triangular fuzzy numbers. If n~m~  , then 2211 nm,nm   and 33 nm  . 

 

Distance between Triangular Fuzzy Numbers: The distance between 

  321 m,m,mm~   and  321 n,n,nn~    is calculated as  

   2

33

2

22

2

113
1 )nm()nm()nm(n~,m~d  , 

and it is called the vertex method. By definition, m~  is closer to n~  as  n~,m~d  approaches 

to 0. 

 

Algebraic Operations on Triangular Fuzzy Number: We will briefly explain some 

important properties which are easy to verify. 

                                                                                                                                               
59

      L.A. Zadeh, Fuzzy Sets, Information and Control, 1965 
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 Addition or subtraction operations upon triangular fuzzy numbers, give a 

triangular fuzzy number. 

 Multiplication, inverse and division operations on triangular fuzzy numbers, do 

not necessarily give a triangular fuzzy number. 

 Maximum and minimum operations on triangular fuzzy number do not 

necessarily give a triangular fuzzy number. 

 However, the results of these operations can be approximated by a triangular 

fuzzy number. 

 

Now, we define two triangular fuzzy numbers A
~

and 


B  by the triples as )a,a,a(A
~

321  

and )b,b,b(B 321


. 

 

 Addition:        )b,b,b)()(a,a,a(B)(A
~

321321 


 

        )ba,ba,ba( 332211                                     

 Subtraction:   )b,b,b)()(a,a,a(B)(A
~

321321 


 

                 )ba,ba,ba( 132231   

                                               

 

 The symmetric (image) of a triangular fuzzy number. is defined as 

)a,a,a()A
~

( 123  . 

 

 Multiplication, Inverse and Division: For multiplication, inverse and 

division operations, triplets cannot be used. However the computation can be 

done using the confidence interval at each level . For triangular fuzzy 

number in R  we must decompose the levels in such a way as to examine in 

the computation the effect of minimum and maximum with positive and 

negative values when increases from 0 to  . In  


R  the compositions are 

very simple. 

Example 3.2.3.1: Let A
~

 and 


B  be two triangular fuzzy numbers defined by the triples 

as 

)9,5,3(A
~
 and )9,7,4(B 



. 
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The interval of confidence is then given by  

    

].9)59(,3)35[(A
~

  

                                             ].94,32[   

                                             

 and 

           ]9)79(,4)47[(B 



 

                                                        ].92,43[   

                                                  . 

 

The multiplication at each level of  [0,1]  is given by 

)].92)(94(),43)(32[(B(.)A
~





  

].81548,12176[ 22   

 

Note that, at 0 0 0( ) [12,81]A B  , and at 1  .35]35,35[B(.)A
~

11 


 

 

3.2.4 FUZZY INFERENCE SYSTEM  

 

There are two type of fuzzy inference system in matlab
60

 such as, Mamdani and 

Sugeno
61

 type. These methods operate in the same way when fuzzifying the inputs and 

applying the fuzzy operators, however their membership functions type of outputs are 

different. In Sugeno Method, the output membership functions must be constant or 

linear. Mamdani's fuzzy inference method is the most commonly used fuzzy system. 

Mamdani's method was among the first control systems built using fuzzy set theory. It 

was proposed in 1975 by Ebrahim Mamdani as an attempt to control by synthesizing a 

set of linguistic control rules obtained from experienced human operators.
62

    

In our fuzzy model, we use Mamdani method. Because if we use Sugeno method, we 

can not identify each membership function as we want. 

 

                                                 
60

   Matlab is a high-level language and interactive environment that enables you to perform 

computationally intensive tasks faster than with traditional programming languages such as C, C++, and 

FORTRAN (www.mathworks.com). 
61

  Sugeno, M. and Kang, G.T., ”Structure Identification of Fuzzy Model”, Fuzzy Sets and Systems, Vol: 

28, 1988. 
62

 Fuzzy Logic Toolbox, www.mathworks.com/products/fuzzylogic/s.2-20. 
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Takagi- Sugeno-Kong Method is similar to the Mamdani method in many respects. The 

first two parts of the fuzzy inference process, fuzzifying the inputs and applying the 

fuzzy operator are exactly the same. The main difference between Mamdani and Sugeno 

is that Sugeno output functions are either linear or constant. We can think that they are 

the types of fuzzy inference systems.  

 

Only Mamdani and Takagi-Sugeno-Kong Method can be used in matlab. Takagi-

Sugeno-Kong Method is more compact and computationally efficient representation 

than Mamdani Method, so Sugeno system lends itself to use the adaptive techniques for 

constructing fuzzy models. These adaptive techniques can be used to customize the 

membership function so that fuzzy systems best models the data. However, we did not 

use the Takagi-Sugeno-Kong method because in Takagi-Sugeno-Kong Method, the 

output membership function would be linear or constant. It does not let us to define the 

value of the output. In other words, we cannot say in what percentage the output 

belongs to each fuzzy set and we cannot identify each membership function as we want. 

 

Aggregation is the combination of the consequents of each rule in a Mamdani fuzzy 

inference system in preparation for defuzzification. Note that, as long as the aggregation 

method is commutative (which it always should be), then the order in which the rules 

are executed is unimportant. There exists three aggregation method such as maximum 

(max), probabilisictor (algebraic sum; probor(a,b)=a + b – ab), and sum (simply the sum 

of each rule’s output set). After the aggregation process, there is a fuzzy set for each 

output variable that needs defuzzification and defuzzification is the final process of the 

fuzzy inference system. In other words, after aggregation process, the fuzzy system 

becomes ready to defuzzification which is final step of fuzzy inference system. Now, we 

will define the steps of the fuzzy inference system in detail. 
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FIGURE 3.13 FUZZY INFERENCE SYSTEMS 

 

 

Fuzzifier converts the crisp input to a linguistic variable using the membership 

functions stored in the fuzzy knowledge base. Inference engine use “If then” type fuzzy 

rules converts to fuzzy input to the fuzzy output.  The following figure shows, how 

inference engine handles with the process. 

 

FIGURE 3.14 INFERENCE ENGINE 

 

 

 

Defuzzifier converts the fuzzy output of the inference engine to crisp using membership 

function.  
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3.2.4.1 Fuzzification 

 

Fuzzification is the first step of the fuzzy inference system. It is the process of 

decomposing a system input and output into one or more fuzzy sets. Two or more 

membership functions should be defined for each input and output variables. 

Fuzzification takes inputs and determines the degree to which they belong to each of the 

appropriate membership functions. 

 

The process of fuzzification allows the system inputs and outputs to be expressed in 

linguistic terms so that rules can be applied in a simple manner to express as a complex 

system. There are five fuzzy sets for our work. They are; extremely bad, bad, normal, 

good, and extremely good. Fuzzification of the five crisp variables, causes spreading of 

variables with a distribution profile. For example, as a variable total debt assume take 

value 20.000 at year 2003, the figure of membership function helps us to identify. In the 

membership function figure, when x is equal to 20.000 and a vertical line plotted 

crossing 20.000 at the x-axis, the line intersects with the membership function with 

“good” and membership function “good” at different points. 

All the vertical lines intersect at one or two points. If it intersects at only one point, this 

means it will be in the range only extremely bad, bad, normal, good, and extremely 

good and the y-value is equal to 1. In other words, it is belongs to 100% to the fuzzy set. 

If it intersects at two points; a and b. The sum of the values of y-axis (a+b) is equal to 1. 

This means that it belongs to one of the fuzzy sets with a% and b% to the other set. 

 

The purpose of fuzzification process is to allow a fuzzy condition in a rule to be 

interpreted. For instance, the condition, “Total Debt = 20.000” in a rule can be true for 

all values of “Total Debt”, however the confidence factor or membership value of this 

condition can be derived from membership function graph. An indicator which has a 

value of 20.000 with a confidence factor of 0.5 (membership value of the club 

“normal”), it is gradual change of the membership value of the condition “normal” with 

height that gives fuzzy logic is strength.      
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3.2.4.2 Rule Generation 

 

A fuzzy rule associates a condition described using linguistic variables and fuzzy sets to 

come up with a solution. It is a scheme for capturing knowledge that involves 

imprecision. The main feature of reasoning using these rules is its partial matching 

capability, which enables an inference to be made from a fuzzy rule even when the 

rule's condition is only partially satisfied.
63

 On the other hand, the conventional rule can 

not deal with a situation where the condition for rules partially satisfied; it rules are 

explained in Boolean logic. 

 

In classical logic, a simple proposition P is a linguistic statement within a universe of 

elements, say U, that can be identified as being a collection of elements in U are strictly 

true or strictly false. Hence a proposition P is a collection of elements where the truth 

values for all elements in the set are either all true or false. The truth of the element in 

the proposition P can be assigned a binary truth value called T. For Boolean classical 

logic, T is assigned value 1 or 0. Now let P and Q be two simple propositions on the 

same universe of discourse that can be combined using the logical connectives to form 

expressions involving the two simple propositions. Such connectives are disjunction, 

conjunction, negation, implication and equivalence. These connectives can be used to 

create compound propositions, where a compound proposition is defined as a logical 

proposition formed by logically connecting two or more simple propositions.  

 

A fuzzy rule has two components like conventional rules: as if-part referred as the 

antecedent, and a then-part, referred as consequent. The antecedent describes a 

condition, and the consequent describes a conclusion that can be drawn when the 

condition holds. Now, we introduce two components. 

 

The structure of fuzzy rule is identical to the conventional rule but there is a main 

difference which lies in the content of antecedent. The antecedent of a fuzzy rule 

                                                 
63

 John Yen Langari, Fuzzy Logic Intelligence, Control and Information, Center for Fuzzy Logic, 

Robotics and Intelligent Systems Texas A&M University, Prentice Hall. 
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describes an elastic condition while the conventional rule describes a grid condition. For 

example, consider two rules (R1 and R2) below: 

R1: If the income of a person is greater than $70.000, then the person is 

rich. 

R2: If the income of a person is high then the person is rich. 

 

The rule R1 is conventional one, because its condition is rigid which means the 

condition is either satisfied or not. In contrast, R2 is a fuzzy rule because its condition 

can be satisfied to a degree for those people whose income lies in the boundary of the 

fuzzy set “high”. In the rule R2, “high” is a fuzzy set defined by a membership function. 

 

Like conventional rules, the antecedent of a fuzzy rule may combine multiple simple 

conditions into a complex one using three logic connectives: and (conjunction), or 

(disjunction) and not (negation). For instance, a loan approval system may contain the 

following fuzzy rule. 

“If the income of a person is high and the credit report of a person is fair or the person 

has a valuable real estate asset then recommends approving the loan”. The rule has three 

components and a conclusion. Three components have three fuzzy sets which should be 

defined with membership functions. “High”, ”Fair” and “Valuable” are fuzzy sets. 

 

When applying fuzzy rules we need to use some logical operations of fuzzy sets. The 

most important thing to realize about fuzzy logical reasoning is the fact that it is a 

superset of standard Boolean Logic. In other words, if we keep the fuzzy values at their 

extreme points of 1 for completely true, and 0 for completely false, standard logical 

operations will hold. However, we know that in fuzzy logic the truth of any statement is 

a matter of degree so we have to extend the standard logical operations to all real 

numbers between 0 and 1. 

 

Shortly, in a fuzzy rule-based system, the rules can be represented such as: 

If x is in X and y is in Y … then z is in Z 
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where; x, y and z represents the variables; X, Y, Z are linguistic variables such as 

extremely good, good, normal, extremely bad and bad.   

For two variables with five membership functions, for fuzzy process the total number of 

rules should be 25 (5x5). For example; if we have two linguistic variables (inputs) such 

as EBIT and SP and each have five membership functions such as extremely bad, bad, 

normal, good, and extremely good. We can think as they were numbers such as 1, 2, 3, 

4, 5; respectively. Then apply the rule as round 
3

SPEBIT2 
 as the membership 

function of the output below.    

 

 Table 3.2 Example for Rule Generation  

EBIT 

 

SP 

 Extremely Bad Bad Normal Good 
Extremely 

Good 

Extremely Bad Extremely Bad Bad Bad Normal Good 

Bad Extremely Bad Bad Normal Normal Good 

Normal Bad Bad Normal Normal Good 

Good Bad Normal Normal Good 
Extremely 

Good 

Extremely Good Bad Normal Good Good 
Extremely 

Good 

 

If we have more than two inputs and more than five membership functions, it is 

perplexing to develop the fuzzy model. For example, if we have three variables and 

seven membership functions, number of rules increases to 343 (7x7x7). However, we 

use fuzzy model to simplify the environment and develop the most useful model. If the 

environment cannot be simplified as we want, it is meaningful to use fuzzy system. 

Fuzzy logic cannot be used for unsolvable problems. This seems fairly reasonable, but 

its perception of being a guessing game may lead people to believe that it can be used 

for anything. An obvious drawback a fuzzy logic is that always accurate. Generally, 

fuzzy logic, confused with probability theory. In some way they are similar concepts but 

they do not say the same things. Probability is likelihood that something is true, fuzzy 

logic is the degree to which something is true. 
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The consequent of fuzzy rules can be classified into three categories. 

 

1.  Crisp Consequent: If … then y = a where is non-fuzzy numeric value or symbolic 

value. 

2.   Fuzzy Consequent: If … then y is A, where A is a fuzzy set. 

3. Functional Consequent: If 1x  is 1A  and 2x  is 2A  and … nx  is 

nA then 



n

1i

ii0 xaay , where n10 a,...a,a are constants. 

 

Generally, fuzzy rules with a crisp consequent can be processed more efficiently. A rule 

with a fuzzy consequent is easier to understand and more suitable for capturing 

imprecise human expertise. Finally, rules with a functional consequent can be used to 

approximate complex nonlinear models using a small number of rules. 

 

3.2.4.3 Defuzzification  

 

If the conclusion of the fuzzy rule set involves fuzzy concepts, then these concepts will 

have to be translated back into objective terms before they can be used in practice. The 

process of converting the fuzzy output to a crisp number is called defuzzification. The 

input for the defuzzification process is a fuzzy set and the output is a single number.  

Before an output is defuzzified, all the fuzzy outputs of the system are aggregated with 

a union operator. The union is the maximum of the set of given membership functions 

and can be expressed as a fuzzy set. Then, by choosing a defuzzification method we 

need to convert a fuzzy value to an objective term. There are many defuzzification 

methods but primarily only three of them in common use for the Mamdani Fuzzy 

Models. Centroid Defuzzification Method (Centroid of Area: COA), Maximum 

Defuzzification Method, Weighted Average Defuzzification Method. In the Centroid 

method, the crisp value of the output variable is computed by finding the variable value 

of center of gravity of the membership function for the fuzzy value. One of the 

maximum defuzzification methods is mean of maximum method, is used in creating 
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Fuzzy State Machines for computer gaming development.
64

 The largest (smallest) of 

maximum defuzzification method can be used to yield only two crisp output level for all 

input values.  

 

In addition, in matlab fuzzy designer only supports five defuzzification methods which 

are Centroid Defuzzification Method, Bisector Defuzzification Method, Smallest of 

Maximum (SOM) Defuzzification Method, Largest of Maximum (LOM) 

Defuzzification Method and Mean of Maximum Defuzzification Method. The following 

figure shows the defuzzification methods with an example. 

 

 

FIGURE 3.15 DEFUZZIFICATION METHODS 

 

 

In the centroid of area defuzzification method, the fuzzy logic controller calculates the 

area under the scaled membership functions within the range of output variable. After 

that, fuzzy logic controller uses following integral to calculate the geometric center of 

this area.   






max

min

max

min

X

X

X

X

dx)x(f

dx)x(xf

COA . 

 where, COA is the center of area, x is the value of linguistic variable, minX is minimum 
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 Perumal, L. and Nagi F.H. “Fuzzy Control System based on Largest of Maximum Defuzzification”. 
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value of the linguistic variable and maxX is the maximum value of the linguistic variable. 

In our model, we use centroid of area method. 

Shortly, to defuzzify the Mamdani style fuzzy inference system, one can choose 

centroid, bisector (is the vertical line that will divide region into sub-regions of equal 

area), middle of maximum, smallest of maximum or largest of maximum methods. 

 

Sugeno Fuzzy Models (Sugeno Fuzzy Inference System) was proposed to develop a 

systematic approach to generate fuzzy rules from a given input- output system. 

A typical rule in a Sugeno type fuzzy model has the following form: 

 

If Input1 = x and Input2 = y then Output z = ax + by + c, where a, b and c are reel 

numbers. For a zero-order Sugeno model, the output level z is constant (i.e. a=b=0). 

 

FIGURE 3.16 SUGENO MODEL 

 

Source: John Yen,Reza Langari; Fuzzy Logic- Intelligence, Control and Information; Prentice Hall, 

1999. 

 

For the Sugeno style inference system one can choose weighted average or weighted 

sum because the output membership function has the form of constant or linear.  

“Which defuzzification method is the right one to use?” has no simple answer but the 

center of area method has mostly used one. We use centroid average method in our 
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model. This method was developed by Sugeno in 1985. It is the most commonly used 

and very accurate to apply. The only disadvantage of this method is that it is 

computationally difficult for complex membership functions. 
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CHAPTER 4 THE MODEL AND DATA 
 

 A number of statistical models have been around for decades, and one of the most 

popular prediction schemes is the Altman model. Edward Altman paired thirty three 

failed and thirty three non-failed firms in an attempt to control for industry and size 

differences. He then employed a method called discriminant analysis to a list of twenty 

two financial ratios. This method builds the best linear model possible so that it can 

explain the firms as failed or not failed with a little error as possible. The dependent 

variable in this model denotes the bankruptcy status, takes the value 1 for the company 

that does not failed and zero otherwise. Altman started with a list of twenty two 

financial ratios for the independent variables. From the list he chooses five that embrace 

the best linear model. The best five financial ratios are denoted in the below table. 

 

Table 4.1 Financial Ratios 

Working Capital / Total Assets 

Retained Earnings / Total Assets 

Earnings Before Interest and Taxes / Total Assets 

Market Value of Equity / Book Value of Total Debt 

Sales / Total Sales 

 

To find the best significant financial ratios for all industries, as a first application we 

calculate some basic financial ratios which we will define later and then by making 

factor analysis we eliminate financial ratios that can explain the similar information and 

gives similar result
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4.1 DATA 

 

In order to broaden the usage of Merton Model to different sectors than financial ones, 

and create a new approach which is more sensitive to bankruptcy probabilities for 

different sectors, we choose US Market which consists of seventy eight different sectors 

and 3574 listed companies. The data consist of yearly company observations on 

financial ratios from the period of January 2005 to December 2008, found in 

www.usa.gov and www.dataworldbank. In our study, we worked with total 3574 

companies (including foreign and not foreign ones) stated in USA, which belong to 

seventy eight different industries as banking, business equipment, chemicals, internet, 

retail, energy, healthcare, manufacturing, auto & truck, semiconductor, etc. For each 

company, we collect and calculate the parameters and/or financial ratios, which are the 

most significant, mostly used in literature and could be reached easily as shown in Table 

4.2. Definitions and usages of financial ratios can be found in part 7.4, in appendix. 

 

Table 4.2 Financial Ratios 

Total Debt EBIT(t-1) EBIT EBITDA Value Line Beta 

Revenues Last 

Year 

Enterprise Value / 

Sales 

Enterprise Value/ 

Trailing Sales 
Capital Expenditures Return on Capital 

Number of Shares 

Outstanding 

Non-cash WC as 

% of  Revenues 

Current PE  

(Price Earnings) 

Non-Cash Working 

Capital (WC) 

Intangible Assets / 

Total Assets 

Stock Price Depreciation Trailing PE Forward EPS Net Margin 

Trading Volume Dividends Book Debt to Capital Market Debt to Capital Book Value of Assets 

Trailing 12-

mounth Revenues 

Cash as % Total 

Assets 

Growth in 

Revenue(Last Year) 

Three Year Regression 

Beta 

Free Cash Flow for 

the Firm 

Cash as % Firm 

Value 

Three Year St. 

Deviation 

Expected Growth in 

EPS 

Fixed Assets / Total 

Assets 

Firm Value/Book 

Value of Capital 

PBV Ratio Market Cap Price Sales Ratio SG&A Expenses Hilo Risk 

Firm Value Forward PE Dividend Yield Market Cap Reinvestment 

Enterprise Value Effective Tax Rate PEG Ratio Trailing Net Income Payout Ratio 

EV/EBITDA Return on Equity Insider Holdings Trailing Revenues EV/EBIT 

Net Income Invested Capital Institutional Holdings Cash as % Revenues Correlation (Market) 

Growth in EPS 
Change in Non-

cash WC 
Market (Debt /Equity)  EV/Invested Capital 

To construct our default parameter which is going to solve the problem of looking all 

http://www.usa.gov/
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parameters simultaneously and trying to find the significant ones every time while 

studying different sectors and gives us the opportunity to embrace all companies’ 

features we need to reduce the number of financial ratios that are given in Table 4.2. 

With factor analysis we hand down a decision to reduce financial ratios which gives 

nearly same information for nearly all sectors. As time changes, the explaining default 

parameter can change or for different sectors different parameters can explain default 

probabilities.  

 

4.2 FACTOR ANALYSIS & CLUSTERING PART 

 

For the factor analysis, we worked with foreign and non foreign USA companies in 

USA (3574 companies). As mentioned above factor analysis is a method for 

investigating whether a number of variables of interest are linearly related to a smaller 

number of unobservable factors. We factor the variables which are relevant in Table 4.2 

and Table 4.3.A, Table 4.3.B and Table 4.3.C illustrates the results.  

 

Table 4.3.A Factor Analysis  

Factor Variance Cumulative Difference Proportion Cumulative 

F1 12.66 12.66 6.96 0.38 0.38 

F2 5.7 18.36 1.22 0.17 0.54 

F3 4.49 22.85 2.02 0.13 0.68 

F4 2.47 25.32 0.88 0.07 0.75 

F5 1.59 26.91 0.14 0.05 0.8 

F6 1.45 28.36 0.12 0.04 0.84 

F7 1.32 29.68 0.24 0.04 0.88 

F8 1.08 30.76 0.07 0.03 0.91 

F9 1.01 31.77 0.02 0.03 0.94 

F10 0.99 32.76 0.01 0.03 0.97 

F11 0.97 33.73  0.03 1 

Total 33.73 293.16  1  
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Table 4.3.B Factor Analysis  

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 C U 

3 Year Regression Beta -0.14 -0.17 -0.05 0.05 0.22 -0.15 0.07 0.09 0.12 0.27 0.32 0.32 0.67 

3Year Standard Deviation -0.29 -0.17 -0.08 0.15 0.12 -0.10 0.07 0.15 0.06 0.32 0.31 0.39 0.61 

NsH 0.71 0.13 0.20 -0.06 0.10 -0.04 -0.02 0.02 0.07 -0.01 0.06 0.59 0.41 

Book Debt to Capital 0.05 0.38 -0.54 -0.02 -0.15 0.02 0.06 -0.02 -0.05 -0.11 -0.10 0.50 0.50 

Book Value of Assets 0.87 -0.02 0.09 0.03 -0.01 0.19 -0.03 0.00 0.02 -0.18 0.18 0.88 0.12 

Capital Expenditures 0.69 -0.06 0.07 0.23 -0.12 0.15 -0.03 0.08 -0.05 0.06 0.23 0.64 0.36 

Cash 0.53 -0.08 0.17 -0.25 0.35 -0.09 0.02 -0.09 0.25 -0.15 0.04 0.60 0.40 

Firm Value -0.05 -0.33 -0.08 -0.31 0.46 -0.20 0.05 -0.17 0.40 -0.13 0.10 0.69 0.31 

Total Assets (Cash) -0.16 -0.06 0.12 -0.32 0.48 -0.25 0.12 -0.19 0.42 -0.10 0.05 0.68 0.32 

CHG IN NON CASH WC 0.10 0.00 -0.04 0.08 -0.02 0.00 0.05 0.00 -0.03 0.06 0.02 0.03 0.66 

Correlation 0.15 0.07 0.15 -0.10 0.11 -0.03 0.00 -0.09 0.09 0.01 0.05 0.09 0.87 

CURRENT_PE -0.30 0.52 0.22 -0.24 -0.17 0.29 -0.16 -0.30 0.06 0.19 0.12 0.75 0.25 

EBIT 0.90 -0.01 0.18 0.19 -0.10 0.05 0.16 -0.04 0.18 0.05 -0.05 0.96 0.04 

EBIT_1_T_ 0.89 0.02 0.17 0.18 -0.06 0.03 0.12 -0.01 0.16 0.04 -0.04 0.90 0.10 

EBITDA 0.90 -0.02 0.16 0.18 -0.10 0.08 0.14 -0.06 0.16 0.02 0.00 0.94 0.06 

EFF_TAX_RATE 0.14 -0.21 0.05 0.01 -0.19 0.01 0.00 -0.07 -0.11 -0.05 -0.02 0.12 0.88 

Enterprise Value 0.81 0.33 0.28 -0.04 -0.02 -0.19 -0.24 0.00 -0.07 0.02 0.00 0.94 0.06 

EV Invested Capital -0.17 0.58 0.49 -0.17 -0.04 -0.23 0.42 -0.02 -0.01 -0.06 0.09 0.87 0.13 

EV Trailing Sales -0.27 0.73 0.22 0.35 0.23 0.18 0.00 -0.10 -0.08 -0.02 -0.06 0.88 0.12 

EV_EBIT -0.27 0.69 0.22 -0.33 -0.06 0.31 -0.12 0.20 0.21 0.02 -0.03 0.90 0.10 

EV_EBITDA -0.27 0.69 0.25 -0.33 -0.03 0.25 -0.06 0.23 0.21 -0.01 -0.06 0.89 0.11 

EV_SALES -0.29 0.72 0.23 0.39 0.25 0.20 -0.01 -0.06 -0.08 0.00 -0.03 0.92 0.08 

EG in EPS -0.31 0.21 0.00 -0.09 -0.02 0.01 0.02 -0.01 0.04 0.26 0.15 0.25 0.73 

EG in Revenue -0.18 0.29 0.15 0.05 0.05 -0.07 0.13 0.18 0.07 0.24 0.15 0.28 0.68 

Firm Value 0.83 0.31 0.29 -0.06 0.02 -0.20 -0.25 -0.01 -0.04 0.02 0.00 0.97 0.03 

Fixed Assets/ Total Assets 0.07 0.05 0.04 0.47 -0.27 0.13 -0.03 0.14 -0.30 0.14 0.11 0.46 0.54 

FORWARD_EPS 0.35 0.00 0.23 0.17 -0.05 -0.06 0.09 0.20 -0.10 -0.05 -0.06 0.27 0.72 

FORWARD_PE -0.25 0.44 0.14 -0.25 -0.14 0.27 -0.19 -0.34 0.06 0.10 0.03 0.59 0.41 

Growth in EPS -0.17 -0.03 -0.02 0.03 0.03 -0.10 0.08 0.02 0.04 0.19 0.18 0.12 0.85 

Growth in Revenue Last -0.03 0.07 0.11 0.03 0.02 -0.04 0.03 0.07 0.03 0.19 0.17 0.09 0.89 

HILO Risk -0.13 -0.21 -0.12 0.20 0.11 -0.07 0.04 0.20 0.02 0.18 0.21 0.25 0.75 

Intangible Assets 0.10 0.03 -0.14 0.02 -0.01 0.03 -0.01 -0.03 -0.02 -0.16 -0.10 0.07 0.90 

Invested Capital 0.82 0.00 0.03 0.13 -0.07 0.23 -0.11 0.03 -0.02 -0.27 0.23 0.89 0.11 

Market Capital 0.74 0.32 0.36 -0.06 0.03 -0.20 -0.19 0.00 -0.03 0.03 -0.01 0.86 0.14 

Market D E 0.13 0.10 -0.98 -0.01 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.99 0.01 

Market Debt to Capital 0.12 0.11 -0.98 -0.01 0.00 -0.01 0.02 0.00 0.00 0.00 0.00 0.99 0.01 

Net Income 0.84 0.06 0.23 0.08 0.05 -0.08 0.09 0.12 0.10 0.02 -0.10 0.83 0.17 

Net Margin -0.14 0.39 0.18 0.43 0.28 -0.12 0.14 0.21 0.01 -0.03 0.01 0.54 0.46 

NON_CASH_WC 0.33 -0.11 0.10 -0.22 0.13 0.01 -0.05 -0.08 0.12 -0.13 0.01 0.24 0.66 

PAYOUT Ratio 0.05 0.00 -0.22 -0.10 0.09 0.01 -0.10 -0.14 0.14 -0.14 -0.10 0.15 0.82 

PBV Ratio -0.11 0.65 0.36 -0.14 -0.15 -0.11 0.35 -0.04 -0.12 -0.04 -0.02 0.76 0.24 

PEG Ratio 0.04 0.24 0.22 -0.10 -0.14 0.16 -0.14 -0.22 -0.03 -0.16 -0.09 0.26 0.74 

PTOM -0.09 0.31 0.08 0.59 0.12 0.00 0.09 0.04 -0.07 0.03 0.04 0.49 0.51 

PS Ratio -0.32 0.67 0.32 0.28 0.24 0.10 0.04 -0.03 -0.01 0.02 0.01 0.81 0.19 

Reinvestment 0.33 0.01 0.04 0.22 -0.14 0.08 -0.05 0.23 -0.13 0.11 0.21 0.31 0.57 

Reinvestment Rate -0.10 0.00 -0.04 0.02 0.07 0.04 -0.04 -0.05 0.02 -0.03 0.01 0.02 0.86 

Last Year Revenues 0.87 -0.16 0.13 -0.23 0.13 0.19 0.16 -0.01 -0.16 0.05 -0.03 0.95 0.05 

ROC 0.06 0.10 0.29 0.09 0.16 -0.37 0.39 -0.01 0.03 0.09 -0.05 0.43 0.57 

ROE 0.19 0.24 0.24 0.10 0.03 -0.33 0.37 0.21 -0.07 -0.05 -0.16 0.48 0.52 

SERIES02 0.49 -0.08 0.08 0.03 0.14 0.12 -0.06 0.10 0.11 -0.06 0.17 0.35 0.61 

SG_A_Expenses 0.67 -0.03 0.12 -0.21 0.04 0.03 0.03 -0.07 0.02 -0.17 -0.15 0.57 0.43 

Stock Price 0.23 0.25 0.34 0.01 -0.11 0.06 -0.05 0.01 -0.11 -0.05 -0.04 0.27 0.73 

Total 0.71 0.08 -0.12 0.08 -0.12 0.18 -0.11 0.03 -0.08 -0.23 0.08 0.65 0.34 

Trading Volume 0.09 0.00 0.08 0.15 0.23 -0.01 -0.05 0.24 0.09 0.12 0.28 0.24 0.76 

Trailing Revenue 0.87 -0.15 0.14 -0.21 0.14 0.19 0.15 0.02 -0.16 0.05 -0.01 0.95 0.05 

TRAILIE 0.82 0.07 0.24 0.08 0.06 -0.09 0.09 0.16 0.09 0.01 -0.08 0.80 0.20 

Trailing Net Income -0.27 0.46 0.19 -0.25 -0.19 0.25 -0.16 -0.39 0.04 0.20 0.11 0.71 0.29 

BV of Capital -0.15 0.62 0.49 -0.15 -0.13 -0.20 0.44 -0.02 -0.09 -0.06 0.09 0.93 0.07 

Value Line Beta -0.05 -0.19 0.00 -0.04 0.33 -0.13 0.01 0.11 0.24 0.25 0.36 0.43 0.52 

C: Communality U: Uniqueness 
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Table 4.3.C Factor Analysis  

  Model Independence Saturated 

Discrepancy 4.27 51.05 0 

Chi-square statistic 768.49 9188.46 --- 

Chi-square Probability 1 0 --- 

Bartlett chi-square 649.66 8142 --- 

Bartlett Probability 1 0 --- 

Parameters 653 59 1770 

Degrees of freedom 1117 1711 --- 

 

From the results shown in Table 4.3.A, B and C, we have eleven factors and because of 

the fact that two of them are highly and positively correlated, we eliminate one of them 

which are not as highly and positively correlated with the remaining factors. So we left 

out with ten variables to construct our default probability, which is different from 

Merton default probability but also includes Merton default probability as an input 

variable. We consider constructing our default probability with fuzzy model aiming to 

take into account the relativity of different magnitudes of financial factors in different 

sectors. As mentioned before, the beginning point of fuzzy modeling lies in picking up 

the input variables and designing fuzzy rules between the input variables. Working out 

with eleven variables (including Merton Default Probability) in fuzzy modeling and 

creating fuzzy rules (consisting five linguistic variables; extremely good, good, normal, 

bad, extremely bad) between them leads to 511  rules. Because of the diminishing 

efficiency and functionality of fuzzy modeling with so many input variables and 

obviously so many fuzzy rules, we decided to reduce the input variables again with a 

different process; which is called clustering. The steps of this method applied are as 

follows: 

 

 Cluster industries with variables we derived from factor analysis 

 Find industries between clusters 

 Find similar properties of  industries which are between clusters 

 Reduce financial ratios according to these information 
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Now, we will give detailed information for the steps which we applied. For the 

clustering part; we choose to work with only foreign USA companies, where the 

sensitivity effect of bankruptcy is magnified. Our data in clustering part consists of 992 

firms and seventy eight different industries between January 2005 to December 2008. 

The following table shows the number of companies belong the same industries in our 

data.  

 

Table 4.4 Number of Companies   

Industries Number of 

Companies 

Bank, Drug, Internet, Computer Software, Thrift, Petroleum, Financial 

Services, Medical Supplies, Industrial Services, Insurance, Telecom 

Services, Metals & Mining, Retail Store, Precious Metal, 

Semiconductor, Electronics. 

 

> 20 

Advertising, Chemical, Maritime Entertainment, Medical Services, 

Telecom Equipments, Biotechnology, Computers, Foreign Telecom, 

Food Processing, Paper Forest Products, Recreation, Air Transport, 

Auto Truck, Cable TV, Tobacco, Home Building, Publishing. 

Educational Services, Wireless Network, Steel, Shoe, Water Utility, 

Rail Road, Hotel, Restaurant, Power, Oilfield Services & Equipment. 

 

< 20 

 

We cluster the companies with respect to the following variables, which will be defined 

as follows. In addition; we cluster the companies with variables that we find from the 

results of factor analysis. Now, we will give some information about our clustering 

variables. 

 

a. EBIT: Earnings before interest and taxes. EBIT is calculated from the income 

statement by taking the net income and adding the back taxes and interest expense, plus 

provision for income taxes. The formula is:  

 

EBIT = Total Revenues – Costs – Depreciation 
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b. Trailing Sales (TS): A company's revenue from sales over a period of time in the 

past. Often, a company will use trailing sales over the past twelve months to help 

forecast its expected sales over the coming twelve months. Trailing sales are useful 

because they can be known with certainty; however, their predictive value is often 

limited because of forces outside the company's control. 

 

c. Expected Growth in Earnings per Share (EG): First, we want to give the definition 

of earnings per share (EPS). It is the dollar amount of the period’s net income that is 

available to each share of common stock. Basic earnings per share (EPS) are calculated 

by deducting any preferred dividends due to preferred stock shareholders for the period, 

and dividing by the weighted average number of common shares of stock outstanding 

during the period. Diluted earnings per share include an adjustment for common stock 

equivalents, resulting in 195 earnings per share lower earnings per share than basic EPS. 

 

Expected growth in EPS tells investors how much money per share outstanding a 

company is expected to make. 

 

d. PRE-TAX Operating Margin (PTOM): Pretax operating margin is calculated by 

dividing pretax operating earnings, excluding net realized capital gains or losses, 

interest expense and amortization of other acquired intangible assets by total revenue 

excluding net realized capital gains or losses.  

 

e. Total Debt (TD): Debt can be explained as owing something of value to another. In 

business, a debt is usually the obligation to pay for a service or good already received. 

Debts may be short-term, meaning they must be paid within the next year, or long-term. 

Total debt includes debt due in less than one year and long- term debt. Long-term debt 

is debt due in one year or more. 

 

f. Trading Volume (TV): The number of shares, bonds or contracts. 

 

g. Beta- Value Line (BVL): Beta is a measure of a stock’s systematic, or market risk, 

and offers investors a good indication of an issue’s volatility relative to the overall stock 
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market. The market beta is set at 1, and a stock’s beta is calculated by Value Line, 

based on past stock-price volatility. If equity has a beta of 1, it will probably move in 

lock step with the broader market. For example, if the market rises (falls) by ten 

percentage an issue with a beta of 1 will probably increase (decrease) by about the same 

amount. A beta above 1 indicates that a stock’s volatility is greater than the market. For 

instance, an issue with a beta of 1.3 has a level of volatility thirty percentages greater 

then the market average. Hence, given a ten percentage increase (decrease) in the stock 

market our hypothetical issue will probably climb (fall) about thirteen percentage. The 

reverse is also true. A stock with a beta of 0.70 has lower volatility than the overall 

market, and a broad increase (decrease) of 10% would likely result in a 7% gain (loss) 

for our low-beta issue. 

 

h. Cash as Firm Value (CF): The value of a firm is the value of its business as a going 

concern. The firm’s business constitutes its assets, and the present assessment of the 

future returns from the firm’s business constitutes the current value of the firm’s assets. 

The value of the firm’s assets is different from the bottom line on the firm’s balance 

sheet. When the firm is bought or sold, the value traded is the ongoing business. The 

difference between the amount paid for that value and the amount of book assets is 

usually accounted for as the “good will”. 

 

The value of the firm’s assets can be measured by the price at which the total of the 

firm’s liabilities can be bought or sold. The various liabilities of the firm are claims on 

its assets. The claimants may include the debt holders, equity holder, etc. 

 

As we said, we cluster the industries with respect to the variables which we found from 

the factor analysis. The clustering variables are “Stock Price”, “Trading Volume”, 

”Number of Shares Outstanding”, “Total Debt”,” Pre-tax Operating Margin”, “Trailing 

Sales”, “Expected Growth in EPS”, “Value Line Beta”, “EBIT”, ”Cash as Firm Value”. 

When we cluster the industries (in other words, we divide up our data set into clusters, 

where similar data objects are assigned to the same cluster, whereas dissimilar data 

objects should belong to different clusters), we find that some industries belong to 
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different clusters with different percentages. In addition, we found some sectors that are 

between clusters. These are industries that might have greater volatilities. For one year 

process, belonging different clusters can be explained as having greater volatilities than 

the sectors belonging one cluster (with hundred percentage). Since, we want to find an 

index which will be explain default probability, the volatile industries are extremely 

important data for us. If we use this data, we can easily find similar and dissimilar 

properties of these firms and catch up the variables that can explain the default 

probability.   

 

If clustering variables are measured on different scales, variables with large values 

contribute more to the distance measure than variables with small values. In our study, 

we have clustering variables on different scales; to prevent this issue, we standardized 

all clustering variables. Standardizing the proximity measure does not change the ratios 

between different pairs of objects, but can make interpretation clear.   

 

We cluster industries each year between 2005 and 2008 and for each year we obtained 

two clusters; Cluster 1 and Cluster 2. The following tables (Table 4.5, Table 4.6, Table 

4.7, Table 4.8) show the industries which belong to Cluster 2 with hundred percentage 

and shows the industries between clusters with percentage information for the year 

2005. In addition, the following tables do not give the information about Cluster 1 

because the industries which do not belong to Cluster 2 belong to Cluster 1. As we said 

before, for the year 2005, when we cluster seventy eight industries with different 

number of companies with respect to the clustering variable (which we found from 

factor analysis), we have two clusters. An expert of this analysis is given in Table 4.5.    
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Table 4.5 Cluster Analysis of Foreign USA Companies at 2005 

2005 

Foreign USA Companies 

Cluster 2  Cluster 1 Cluster 2 

Food Processing Internet 0.90 0.10 

Foreign Electronics Semiconductor 0.87 0.13 

Foreign Telecom Services Drug 0.63 0.37 

 

Tobacco 0.50 0.50 

Medical Supplies 0.40 0.60 

Auto& Truck 0.25 0.75 

Petroleum 0.17 0.83 

 

 

Above table gives the information that foreign internet companies in USA belongs 90 % 

to Cluster 1 and 10 % to Cluster 2. For example, the foreign drug companies in USA 

belong to 62.5 % to the cluster 1 and 37.5% to the cluster 2. Only the industries Food 

Processing, Foreign Electronics and Foreign Telecom Services belong to Cluster 2 with 

100%. The industries which are not written in Table 4.5 be a member of Cluster 1. With 

this information, we can say that for the year 2005 the industries Internet, 

Semiconductor, Drug, Tobacco, Medical Supplies, Auto & Truck and Petroleum were 

the greatest probability of bankruptcy among the all sectors in our data (seventy eight 

sectors). Since not belonging one cluster implies that sector has greatest volatility which 

is also means it has greatest bankruptcy probability. Notice that, they have different 

probabilities. For instance, we can say that Tobacco sector is more volatile than the 

internet sector at 2005. Since Tobacco sector is between clusters with 0.5 probabilities; 

which means Tobacco sector belongs to Cluster 1 and 2 with equal probabilities. 

However, Internet companies belong to Cluster 1 with higher probability than 0.5, 

which is 0.9. We can think as Internet companies almost surely belong to Cluster 1.    
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The following table shows the industries which belong to Cluster 2 with hundred 

percentage and shows the industries between clusters with percentage information for 

the year 2006. 

 

Table 4.6 Cluster Analysis of Foreign USA Companies at 2006 

2006 

Foreign USA Companies 

Cluster 2  Cluster 1 Cluster 2 

Foreign Electronics Semiconductor 0.91 0.09 

Tobacco Petroleum 0.86 0.14 

Petroleum (Integrated) Medical Supplies 0.86 0.14 

Chemical (Diversified) Internet 0.82 0.18 

Oilfield Services & 

Equipment’s 
Precious Metals 0.75 0.25 

 

Telecom Services 0.56 0.44 

Telecom 

Equipments 
0.50 0.50 

Drug 0.56 0.44 

Food Processing 0.33 0.67 

Auto& Truck 0.25 0.75 

 

For the year 2006, new industries included to belonging both clusters, only Tobacco 

companies now belong to Cluster 2 with 100%. At year 2005, Tobacco sector were 

between clusters with equal percentage. We can say that Tobacco companies start to be 

stable with respect to the clustering variables. The included industries are: Precious 

Metals, Telecom Services and Equipments, Food Processing. In addition, they are 

industries become more volatile than the previous year. For year 2006, the most volatile 

sectors are Telecom Equipments, Telecom Services, and Drug. The Auto & Truck and 
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Precious Metals sectors have same probabilities for different clusters. In cluster 

analysis, we cannot say one cluster is better than the other, so we can think that Auto & 

Truck and Precious Metals sectors are in the same risk group. Since they are between 

Clusters with same probabilities, we can say the volatility of these sectors are nearly 

same. Remember that, if one clusters the industries with respect to different clustering 

variables, the results will be changed. Put differently, if we cluster industries with only 

five parameters that we found from factor analysis, we can found one cluster or more 

than two clusters and also we can found the probabilities belonging to each cluster.  

However, we cluster industries with variables we choose from factor analysis.  

 

Since we measure volatility of companies with respect to being different clusters, it is 

important to know the probabilities of being each cluster. We should consider the 

difference between being one cluster with 90% and 50%. What we are trying to mean, a 

sector belonging to a cluster with 50% is more volatile than a sector belonging a cluster 

with 90%. 

 

From Table 4.6 we can say that Telecom Services. Telecom Equipment and Drug sectors 

are more volatile than the sectors Medical Supplies, Internet and Precious Metals. 

 

The Table 4.7 illustrates the industries which belong to Cluster 2 with hundred 

percentage and show the industries between clusters with percentage information for the 

year 2007. There are ten sectors which are between clusters and only Petroleum belongs 

to Cluster 2. 
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Table 4.7 Cluster Analysis of Foreign USA Companies at 2007 

2007 

Foreign USA Companies 

Cluster 2  Cluster 1 Cluster 2 

Petroleum Drug 0.92 0.08 

 

Semiconductor 0.92 0.08 

Internet 0.89 0.11 

Telecom Services 0.85 0.15 

Entertainment 0.83 0.17 

Precious Metals 0.80 0.20 

Telecom Equipments 0.75 0.25 

Food Processing 0.50 0.50 

Metals & Mining 0.50 0.50 

Auto& Truck 0.40 0.60 

 

For the year 2007, the industries Drug, Semiconductor, Internet and Auto & Truck are 

still belonging to Cluster 1 and 2 with different percentages. Now, there is only one 

sector (Petroleum) belonging to Cluster 2 with hundred percentages. The other 

industries which are not written in the above table belong to Cluster 1 with hundred 

percentage.  

 

If we consider the three year analysis, the first year, Tobacco sector was between 

clusters. One year later it belongs to Cluster 2 and the third year, it belongs to Cluster1.   

 

The following table shows the industries which belong to Cluster 2 with hundred 

percentage and show the industries between clusters with percentage information for the 

year 2008. For the year 2008, Cluster 2 has man members than the other years. 
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Table 4.8 Cluster Analysis of Foreign USA Companies at 2008 

2008 

Foreign USA Companies 

Cluster 2  Cluster 1 Cluster 2 

Utility Semiconductor 0.90 0.10 

Railroad Drug 0.90 0.10 

Precious Metals Telecom Services 0.83 0.17 

Power Internet 0.80 0.20 

Petroleum Medical Supplies 0.75 0.25 

Maritime Aerospace / Defense 0.75 0.25 

Hotel & Gaming E-Commerce 0.67 0.33 

Entertainment Chemical 0.67 0.33 

Diversified Co. Telecom Equipment 0.57 0.43 

Chemical Metals & Mining 0.50 0.50 

Cable Food Processing 0.50 0.50 

Biotechnology Auto & Truck 0.40 0.60 

 

As these clusters are analyzed in more depth, it will be important to look closely at each 

industries ratio which denotes the percentage of regarding to each cluster. From the 

above table, we can easily mention that the most volatile industries are Food Processing, 

Metals & Mining and Telecom Equipment and Auto & Truck. In addition, the 

Semiconductor industry belongs to Cluster 1 with 90 %. We can say that Semiconductor 

industry practically belongs to Cluster 1. From above table we can see that E-commerce 

and Chemical; and Medical Supplies and Aerospace /Defense sectors are between 

clusters with same probabilities.     

 

Semiconductor, Drug, Internet and Auto & Truck industries are between clusters for 



 95 

all the years between 2005 and 2008. The following table shows the industries between 

clusters for each year between 2005 and 2008.  

 

Table 4.9 Industries between Clusters 

2005 2006 2007 2008 

Auto & Truck Auto & Truck Auto & Truck Auto & Truck 

Drug Drug Drug Drug 

Internet Internet Internet Internet 

Semiconductor Semiconductor Semiconductor Semiconductor 

Medical Supplies Medical Supplies  Medical Supplies 

 Food Processing Food Processing Food Processing 

 Telecom Equipment Telecom Equipment Telecom Equipment 

 Telecom Services Telecom Services Telecom Services 

  Metals & Mining Metals & Mining 

Petroleum Petroleum   

 Precious Metals Precious Metals  

Tobacco    

  Entertainment  

   Chemical 

   E-Commerce 

   Aerospace/Defense 

 

The cluster analysis shows that the industries Medical Supplies, Food Processing. 

Telecom Equipment and Telecom Services are also between clusters for different three 

years. Since we make four year analysis, they are between clusters with 75%. In 
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addition; Metals Mining, Petroleum and Precious Metals are between clusters with 50%. 

Tobacco, Entertainment, Chemical, E-commerce and Aerospace/ Defense sectors are 

between clusters for only one year.  

 

The industries between clusters are: Semiconductor, Drug, Internet and Auto & 

Truck. Now, we need to find the similar properties of these industries with respect to 

the clustering variables. We take the mean and standard deviation of all foreign USA 

companies clustering variables for each year and all. You can find tables in appendix 

that illustrates the clustering variables mean and standard deviation values of all seventy 

eight different industries for each year between 2005 and 2008. 

 

Table 4.10 Descriptive Statistics of All Industries 

 

ALL 

 SP TV NSh TD PTOM EV/TS EG VLB EBIT CF 

2005 

Mean 
45.61 2099800.68 129.23 866.28 -1.1 18.06 0.18 0.61 819.22 0.14 

2005 

St. Dev. 
534.69 53541582.78 466.02 4524.82 5.54 163.01 0.12 0.56 3307.06 0.34 

2006 

Mean 
50.43 1970577.11 144.23 906.41 -1.47 23.82 0.17 0.88 705.35 0.15 

2006 

St. Dev. 
611.97 49117175.39 468.47 4557.92 7.16 262.36 0.12 0.42 3196.35 0.39 

2007 

Mean 
49.35 2976954.13 154.83 1326.63 -1.79 11.05 0.16 0.9 859.79 0.18 

2007 

St. Dev. 
612.69 64667284.05 485.6 10374.06 8.72 75.41 0.09 0.38 3890.77 0.33 

2008 

Mean 
30.86 2429465.97 175.99 1523.87 -1.28 3.58 0.14 0.99 1052.35 0.43 

2008 

St. Dev. 
405.08 55590958.26 521.34 10558 6.03 29.18 0.12 0.42 4568.08 1.07 

 

As we mentioned before; to find the similar properties of the industries, we use 

statistical information of the sectors which are between clusters. Table 4.11 shows the 

mean and standard deviations of the Semiconductor companies for all and each years 

between 2005 and 2008. 
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Table 4.11 Descriptive Statistics of the Industry: Semiconductor (Between Clusters) 

 

SEMICONDUCTOR 

 

 
SP TV NSh TD PTOM EV/ TS EG VLB EBIT CF 

All  

Mean 
9.36 725932.01 325.87 250.86 -0.5 10.22 0.22 0.98 491.44 0.72 

All  

St. Dev. 
9.17 2396277.35 1081.66 568.5 4.54 67.3 0.11 0.52 1352.24 1.3 

2005 

Mean 
10.29 294371.05 298.83 244.51 0.15 3.12 0.2 0.74 803.22 0.33 

2005 

St. Dev. 
6.78 672097.1 1068.54 565.11 0.32 2.02 0.06 0.76 1674.71 0.36 

2006 

Mean 
10.99 533954.95 316.23 252.07 0.1 30.24 0.23 1.17 376.14 0.27 

2006 

St. Dev. 
9.56 998316.42 1097.25 568.75 0.4 124.24 0.11 0.43 1173.86 0.26 

2007 

Mean 
10.71 1620146.62 331.56 220.7 0.09 4.67 0.22 1.02 455.97 0.38 

2007 

St. Dev. 
11.54 4504342.85 1123.29 551.14 0.38 9.99 0.11 0.38 1424.32 0.37 

2008 

Mean 
5.44 455255.43 356.86 286.16 -1.82 -1.29 0.24 1.04 493.75 1.62 

2008 

St. Dev. 
7.53 970393.1 1116.24 626.37 8.08 7.88 0.15 0.29 1360.2 2.06 

  

 

Table 4.12 Descriptive Statistics of the Industry: Internet (Between Clusters) 

INTERNET 

 SP TV NSh TD PTOM EV/TS EG VLB EBIT CF 

All  

Mean 
10.29 294371.05 298.83 244.51 0.15 3.12 0.2 0.74 803.22 0.33 

All 

St. Dev. 
6.78 672097.1 1068.54 565.11 0.32 2.02 0.06 0.76 1674.71 0.36 

2005 

Mean 
10.99 533954.95 316.23 252.07 0.1 30.24 0.23 1.17 376.14 0.27 

2005 

St. Dev. 
9.56 998316.42 1097.25 568.75 0.4 124.24 0.11 0.43 1173.86 0.26 

2006 

Mean 
10.71 1620146.62 331.56 220.7 0.09 4.67 0.22 1.02 455.97 0.38 

2006 

St. Dev. 
11.54 4504342.85 1123.29 551.14 0.38 9.99 0.11 0.38 1424.32 0.37 

2007 

Mean 
5.44 455255.43 356.86 286.16 -1.82 -1.29 0.24 1.04 493.75 1.62 

2007 

St. Dev. 
7.53 970393.1 1116.24 626.37 8.08 7.88 0.15 0.29 1360.2 2.06 

2008 

Mean 
15.68 302994.6 52.38 9.79 -0.47 17 0.21 0.9 163.23 0.38 

2008 

St. Dev. 
46.21 549909.1 54.12 20.55 2.7 37.84 0.12 0.4 827.34 0.71 
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Table 4.12 shows the mean and standard deviations of the Internet companies for all and 

each years between 2005 and 2008. 

 

Table 4.13 Descriptive Statistics of the Industry: Drug (Between Clusters) 

 

DRUG 

 

 SP TV NSh TD PTOM EV/ TS EG VLB EBIT CF 

All  

Mean 10.17 377235.58 188.37 660.38 -7.28 54.84 0.13 0.89 691.78 0.5 

All 

St. Dev. 15.21 899302.64 519.27 2675.76 14.32 500.21 0.08 0.53 2712.44 1.17 

2005 

Mean 11.89 318453.09 176.86 411.44 -7.27 19.45 0.13 0.52 695.41 0.22 

2005 

St. Dev. 14.3 957752.63 539.53 1527.34 13.81 30.65 0.05 0.55 2431.04 0.16 

2006 

Mean 11.79 402909.59 186.86 656.19 -8.09 175.37 0.13 0.98 573.58 0.3 

2006 

St. Dev. 16.73 877208.66 518.56 2885.72 14.76 967.87 0.05 0.41 2361.65 0.36 

2007 

Mean 9.89 457125.18 194.22 581.87 -7.82 12.36 0.15 1.05 730 0.47 

2007 

St. Dev. 16.3 1039490.17 523.18 2071.17 16.7 31.62 0.09 0.48 2916.35 0.52 

2008 

Mean 7.13 330454.45 195.56 992.02 -6.02 4.08 0.09 1.04 769.05 0.98 

2008 

St. Dev. 13.15 706295.52 509.24 3728 12 18.9 0.1 0.49 3073.75 2.12 

 

Table 4.14 shows the mean and standard deviations of the Auto & Truck companies for 

all and each years between 2005 and 2008. 

 

Table 4.13 shows the mean and standard deviations of the Drug companies for all and 

each years between 2005 and 2008. 
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Table 4.14 Descriptive Statistics of the Industry: Auto & Truck (Between Clusters) 

 
 

AUTO-TRUCK 

 

  SP TV NSh TD PTOM EV/TS EG VLB EBIT CF 

All  

Mean 11.89 318453.09 176.86 411.44 -7.27 19.45 0.13 0.52 695.41 0.22 

All 

St. Dev. 14.3 957752.63 539.53 1527.34 13.81 30.65 0.05 0.55 2431.04 0.16 

2005 

Mean 11.79 402909.59 186.86 656.19 -8.09 175.37 0.13 0.98 573.58 0.3 

2005 

St. Dev. 16.73 877208.66 518.56 2885.72 14.76 967.87 0.05 0.41 2361.65 0.36 

2006 

Mean 9.89 457125.18 194.22 581.87 -7.82 12.36 0.15 1.05 730 0.47 

2006 

St. Dev. 16.3 1039490.17 523.18 2071.17 16.7 31.62 0.09 0.48 2916.35 0.52 

2007 

Mean 7.13 330454.45 195.56 992.02 -6.02 4.08 0.09 1.04 769.05 0.98 

2007 

St. Dev. 13.15 706295.52 509.24 3728 12 18.9 0.1 0.49 3073.75 2.12 

2008 

Mean 14.3 957752.63 539.53 1527.34 13.81 30.65 0.05 0.55 2431.04 0.16 

2008 

St. Dev. 11.79 402909.59 186.86 656.19 -8.09 175.37 0.13 0.98 573.58 0.3 

 

We analyze that the mean of stock price and trading volume of these industries are 

smaller than the all sector means for all years between 2005 and 2008. In addition the 

mean of Total Debt and EBIT are also smaller for the industries semiconductor, 

internet and drug. Only for the Auto & Truck, the mean of total debt and EBIT are 

bigger than the sector means. So we can not generalize that the industries between 

clusters have smaller total debt and EBIT values. 

 

After that, we look at the correlation matrix of the clustering variables for the industries 

between clusters. The following table shows the correlation matrix of the clustering 

variables. Remember that the correlation matrix is symmetric so we did not write the 

values of correlation below the diagonal. 
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Table 4.15 Correlation Matrix 

 

 NSh CF TS EG PTOM SP TD TV VLB EBIT 

NSh 1 -0.28 -0.03 -0.36 -0.31 0.04 0.41 0.45 -0.08 0.65 

CF  1 -0.33 0.15 -0.32 -0.22 -0.20 -0.18 0.06 -0.27 

EV/TS   1 0.39 0.03 0.48 -0.16 0.35 0.05 -0.13 

EG     1 -0.12 0.24 -0.34 0.02 0.76 -0.40 

PTOM     1 0.19 0.03 0.21 -0.01 0.16 

SP      1 0.11 0.29 -0.21 0.20 

TD       1 -0.56 -0.13 0.89 

TV        1 0.01 0.07 

VLB         1 -0.20 

EBIT          1 

 

We analyze the correlation coefficient matrix and consider each clustering variable. 

After that we find the clustering variable which have the greatest correlation coefficient 

with the other clustering variables. For example, we consider total debt, look at the 

correlation coefficient with all other clustering variables and than take the maximum 

and find that EBIT have the greatest correlation coefficient with total debt. After 

considering the clustering variable expected growth in EPS and we find that it has 

greatest correlation coefficient again with EBIT. The following two figures show the 

maximum correlation coefficients between clustering variables. 

 

FIGURE 4.1 MAXIMUM CORRELATION COEFFICIENT - I 

 

 

EBIT 

 

Total  

Debt Expected 

Growth 

in EPS 
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FIGURE 4.2 MAXIMUM CORRELATION COEFFICIENT – II 

 

 

 

The above figure shows that the variable “number of shares outstanding” has the 

greatest correlation coefficient with the variable “trading volume”. The variable 

“trailing sales” has the greatest correlation coefficient with the variable “trading 

volume”. The other connections are similar that we do not need to explain. 

 

We need to cluster the industries that they belong to each cluster distinctly. The main 

idea behind that, if they are between clusters, their structure changes more than the 

other industries which mean that they have greater volatilities. We cluster the industries 

with the variables that we find from factor analysis. We eliminate the variables which 

are in similar categories before clustering. Now, we require finding variables which can 

cluster the industries distinctly, which cannot measure the volatility of the industries.  

 

As we find out before the industries between clusters have similar properties. They have 

both smaller total debt and EBIT values and expected growth in EPS has greatest 

correlation with EBIT. To make distinct clusters, we will choose the variable “expected 

Trading 
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Number of 

Shares 
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Trailing 
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   Value 

    Line  

    Beta 
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growth in EPS” among these three variables. To choose the other clustering variables, 

we necessitate to find the variables which has no relationship or nearly no relationship. 

We look at the smallest correlation coefficient between clustering variables and choose 

the variable “trading volume”, “value line beta”, “cash as firm value” and “pre-tax 

operating margin”. We again cluster the industries for each year between 2005 and 2008 

with respect to variables “Expected Growth in EPS”, “Trading Volume”, “Value Line 

Beta”, “Cash as Firm Value” and “Pre-tax Operating Margin”. The expected results 

show that now we have distinct clusters. In other words, the clustering variables EBIT, 

total debt, stock price, trailing sales and number of shares outstanding of the industries 

constitute intersecting clusters.  

 

The situation of not belonging one cluster that means being between clusters can be 

identified with the variables EBIT, total debt, stock price, trailing sales and number of 

shares outstanding. In addition to these, they are variables that can determine the 

volatility of the companies and if volatility increases, we can say that probability of 

bankruptcy increases.     

 

To apply fuzzy process, we have five variables that we derive with clustering and we 

need to calculate Merton default probabilities of all industries in our data. The following 

part represents how we calculate MPD values of industries. 

 

4.3 THE MODEL (PROBABILITY OF DEFAULT)  

 

In our study, to calculate the default probabilities of the firms, we begin by examining 

foreign USA companies between 2005 and 2008. We have 992 firms to estimate the 

probability of default. Notice that, we have firms from different industries.  

 

As we said before; the probability of default can be measured with a model that uses 

company’s financial information to obtain an indication of how likely the firm is to 
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enter distress in the near future
65

. This financial information, in the Merton Model, 

consists of several variables. A short description of each one will be given below.  

 

The inputs to the Merton Model include the volatility of stock returns, debt of the firm, 

the risk free rate and the time period. The volatility of assets is estimated from the past 

three year stock return data for each month. For the risk free rate, we use the 1-Year 

Treasury Constant Maturity Rate. As an option based model and uses balance sheet of 

the firms, we use time period as one year. 

 

As we said before, with above known parameters, according to Merton Model we have 

two equations with two unknowns. If we find the unknown parameters, we can calculate 

the MPD of companies. As in section 2.6, we have two equations which can be 

calculated from Ito’s Lemma and Black and Scholes Formula. Ito’s Lemma defines a 

relation between the asset volatility and equity volatility. Black-Scholes is used to value 

the firm’s equity as a function of its asset value and its assets volatility. In these 

equations, we have two unknown parameters (current value of the assets and volatility 

of the assets). To find these unknown parameters, we need to find values for them that 

would satisfy both equations. To solve these equations, we use excel goal seek 

function
66

. However, we should find unknown parameters for each company. In excel 

we cannot use goal seek function many times as other functions such as correlation or 

multiplication. To run goal seek function many times we create a macro which will be 

explained in appendix II. With the help of this macro, we calculate Merton default 

probability, distance to default and expected default frequencies of each company for 

each year between 2005 and 2008.  In addition we can solve these equations with the 

help of Newton-Raphson numerical procedure. 

 

As mentioned before, industries which are between clusters are more volatile than 

industries which belong to one cluster (with hundred percentage). However, when we 

calculate the MPD of these industries, for each year none of them has greater 

                                                 
65 Saretto, 2004. 
66

   Goal seek function can be used when you know the result of a formula. but not the input values 

required by the formula to decide the result. reverse calculation 



 104 

probability than 0.5. Only Tobacco sector has probability 0.5 at 2005. Following tables 

illustrates MPD of the industries which are between clusters. This also indicates the 

necessity of building a default probability. 

 

Table 4.16 MPD of the Industries which are Between Clusters in 2005 

2005 - Industries Between Clusters 

Internet 0.2741 

Semiconductor 0.0001 

Drug 0.0736 

Tobacco 0.5000 

Medical Supplies 0.1562 

Auto & Truck 0.2500 

Petroleum 0.1288 

 

The table above illustrates the average MPD values of different sectors in 2005. The 

MPD values of sectors are calculated by finding the average of MPD values of all 

companies in each sector. In other words, this table illustrates MPD values of each 

industry which are between clusters with respect to the variables that we found from 

factor analysis. 

Table 4.17 MPD of the Industries which are Between Clusters in 2006 

2006 - Industries Between Clusters 

Semiconductor 0.000451 

Petroleum  0.00023 

Medical Supplies 0.04 

Internet 0.0203 

Precious Metals 0.0003 

Telecom Services 0.00024 

Telecom Equipments 0.00033 

Drug 0.0003 

Food Processing 0.0004 

Auto & Truck 0.0000 
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The industry of Medical Supplies has the greatest Merton default probability than the 

other industries which are between clusters in 2006. The second risky sector is Medical 

Supplies. To find the probability; first we calculate MPD of each company, which 

belongs Medical Supplies sector. Then, by calculating average value, we can easily find 

the MPD value of Medical Supplies. 

 

Table 4.18 MPD of the Industries which are Between Clusters in 2007 

2007 - Industries Between Clusters 

Semiconductor 0.078 

Internet 0.2441 

Telecom Services 0.2873 

Drug 0.1151 

Precious Metals 0.0024 

Telecom Equipments 0.3025 

Food Processing 0.0548 

Auto & Truck 0.02135 

Metals & Mining 0.3702 

Entertainment 0.1684 

 

The value of 0.078, in the Table 4.18, shows MPD of the Semiconductor sector. Metals 

& Mining has the greatest Merton default probability than the other industries which are 

between clusters in 2007. The second risky sector is Telecom Equipment sector. In 

2007, all industries have greater Merton default probabilities which can be explained 

with the global crisis. From cluster analysis, we analyze that the sectors Food 

Processing, Metals & Mining and Auto Truck are most volatile sectors for the year 

2007. From Merton Model, we found that Auto & Truck and Food processing sectors 

have smaller MPD values. To consider both models, to construct a new bankruptcy 

probability, we should use MPD and the clustering variables in fuzzy process.  
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Table 4.19 MPD of the Industries which are Between Clusters in 2008 

2008 - Industries Between Clusters 

Semiconductor 0.0127 

Drug 0.0626 

Telecom Services 0.0599 

Internet 0.1117 

Aerospace / Defense 0.000 

E – Commerce 0.016 

Chemical 0.0024 

Telecom Equipments 0.0506 

Metals & Mining 0.052 

Food Processing 0.0079 

Auto & Truck 0.0077 

 

Internet sector has the greatest default probability than the other industries which are 

between clusters in 2008. The second risky sector is Drug. If we compare the results 

with the previous year, we can say that it becomes much more stable.   

 

Now, we define the default correlations of sector X and Y. (t))D(t),Cor(D YX  as 

 

(t))Var(D)(t)Var(D

(t))D(t),Cov(D
=(t))D(t),Cor(D

YX

YX
YX . 

 

For good measure, we anxious about default correlations of industries. These 

calculations are non- mandatory for our probability default index. However, we want to 

calculate the probabilities or probability ranges for default correlations. Regarding this, 

we can analyze cross-sectoral relationship. Table 5.20 illustrates default correlations of 

industries: Internet and Semiconductor, Internet and Drug, Drug and Medical Supplies 

and Auto & Truck and Petroleum. 
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Table 4.20 Upper and Lower Bounds (2005)  

Correlation 

Internet & 

Semiconductor 

Internet & 

Drug 

Medical Supplies & 

Drug 

Auto Truck & 

Petroleum 

0.1 0.32 0.34 0.31 0.35 

0.2 0.33 0.35 0.33 0.36 

0.3 0.35 0.37 0.35 0.38 

0.4 0.37 0.38 0.36 0.39 

0.5 0.38 0.4 0.38 0.41 

0.6 0.4 0.42 0.4 0.43 

0.7 0.42 0.44 0.42 0.45 

0.8 0.43 0.44 0.44 0.47 

0.9 0.44 0.47 0.47 0.5 

-0.1 0.26 0.28 0.25 0.29 

-0.2 0.24 0.26 0.24 0.27 

-0.3 0.23 0.25 0.22 0.26 

-0.4 0.21 0.23 0.21 0.24 

-0.5 0.2 0.22 0.19 0.23 

-0.6 0.18 0.2 0.17 0.21 

-0.7 0.17 0.19 0.16 0.2 

-0.8 0.15 0.17 0.14 0.18 

-0.9 0.13 0.15 0.12 0.16 

Maximum 0.44 0.47 0.47 0.5 

Minimum 0.13 0.15 0.12 0.16 

 

Table 4.21 illustrates the boundaries of default correlation of the following sectors. For 

instance, the bold values 0.08 and 0.43 represent the minimum and maximum default 

correlation of the sectors Auto & Truck and Semiconductor. A correlation greater than 

0.8 generally describes as strong, whereas a correlation less than 0.5 generally describes 

as weak. For sectors Auto & Truck and Semiconductor, the minimum value of the 

correlation is 0.08 and the maximum value of the correlation is 0.43 (which is also 

smaller than 0.5), which means they are positively correlated, and the correlation is 

weak. For the following sectors, there is no negative correlation, which describes if any 

of these sector defaults, we expect any other sector can be default. 
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Table 4.21 Default Correlation Boundaries of Industries  

 2005 2006 2007 2008 

 Min Max Min Max Min Max Min Max 

Auto Truck & Internet 0.21 0.53 0.06 0.37 0.13 0.43 0.09 0.41 

Auto Truck & Drug 0.14 0.47 0.06 0.37 0.09 0.43 0.07 0.41 

Auto Truck  & Semiconductor 0.12 0.4 0.06 0.37 0.08 0.43 0.06 0.43 

Internet & Drug 0.15 0.47 0.06 0.39 0.16 0.5 0.1 0.46 

Internet & Semiconductor 0.13 0.4 0.06 0.39 0.14 0.48 0.09 0.42 

Drug & Semiconductor 0.07 0.39 0.06 0.43 0.11 0.47 0.07 0.42 

 

For each year between 2005 and 2008, the following graph shows the Merton default 

probabilities of the same foreign USA companies.  

 

Graph 4.1 MPD of Foreign USA Companies  

 

 

 4.4 Fuzzy Model for Bankruptcy Probability 

 

In our fuzzy model, we have five fuzzy variables as inputs and for each input we have 

five membership functions that two of them are trapezoids and three of them are 

triangles. We need to characterize each membership function. In other words, we need 

to find the border points of the each membership function. First we find the maximum, 
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minimum, standard deviation and the mean of the each input. By using these values and 

expert opinion, we decide the borders of each membership function as seen in the 

following tables. 

 

Table 4.22.A Range of the Variables 

 Max Min Mean St. Dev 

SP 20 -1 -0.0321 0.7641 

EBIT 15 -1 -0.0158 0.9372 

NSh 15 -1 0.0344 1.1141 

EV/TS 15 -10 -0.0227 0.8423 

MPD 1 0 0.022 0.2883 

Output 1 0 0.4853 0.0366 

 

 

Table 4.22.B Range of the Variables 

Extremely 

Bad 
A B C D Bad E F G 

SP -1 -1 0.25 0.47 SP 0.027 2.14 4.08 

EBIT -1 -1 0.70 4.72 EBIT 1.79 3.82 6.34 

NSh -1 -1 0.6 4.68 NSh 2.89 4.73 7.13 

EV/TS -10 -10 -7.5 -4.93 EV/TS -7.78 -4.24 -1.99 

MPD 0.52 0.82 1 1 MPD 0.39 0.54 0.86 

Output 0 0 0.1 0.3 Output 0.1 0.3 0.5 
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Table 4.22.B Range of the Variables 

Good H I J 
Extremely 

Good 
K L M N 

SP 5.36 10.36 16.61 SP 
14.2

5 
17.9 22.1 38.9 

EBIT 6.38 9.16 13 EBIT 8.68 10.65 15 15 

NSh 8.17 9.65 10.99 NSh 9.23 11.42 15 15 

EV/TS -1.17 3.67 7.29 EV/TS 2.70 8.62 15 15 

MPD 0,009 0,036 0,059 MPD 0 0 0.0025 0.033 

Output 0.5 0.7 0.9 Output 0.7 0.9 1 1 

 

Table 4.22.C Range of the Variables and Model Properties 

Normal O P Q Model Properties 

SP 1.08 4.47 6.08 And Method Minimum 

EBIT 4.7 6.61 8.68 Or Method Maximum 

NSh 4.47 6.53 9.09 Implication Minimum 

EV/TS -3.16 -1.11 0.68 Aggregation Maximum 

MPD 0.054 0.2579 0.521 Defuzzification Centroid 

Output 0.41 0.5 0.59 Type Mamdani 

 

 

In the above tables; A, B, C and D  are borders of the first membership function, which 

is trapezoid; E, F and G are the borders of the second membership function, which is 

triangular; O, P and Q are the borders of the second triangular and H, I and J are borders 

of the last triangular. F, P and I are the head values of the triangular and others are the 

bottom values. To define a trapezoid, we need five borders. For the first trapezoid the 

borders are A, B, C and D and for the other trapezoid the borders are K, L, M and N. In 

our fuzzy logic process, we use and method with taking minimum values of variables. 

We use and method with taking maximum value of variables. For the implication 

process, we use minimum and for the aggregation process, we use maximum method. 

As we explained before, for the defuzzification, we use centroid method. The following 

figure summaries the fuzzy system which we used. 
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FIGURE 4.3 FUZZY SYSTEM OF OUR MODEL 

 

The membership functions are defined as “Extremely Bad”, “Bad”, “Normal”, and 

“Good”, “Extremely Good”. Membership functions can be continuous but we use 

piecewise linear functions such as triangular and trapezoidal membership functions. The 

triangular membership functions are “Normal”, “Bad”, “Good”, “Extremely Good” and 

“Extremely Bad” has the shape of trapezoidal because of their over situation. Graph 4.2 

illustrates the membership functions of the input variable; NSh. You can find the graphs 

of membership functions for the other input variables in appendix, 7.10. 

 

Graph 4.2 Membership Functions of Input Variable; NSh 

 

 

In previous graph, extremely bad, bad, normal, good, extremely good are functions 

mapping a bankruptcy scale. A point on that scale has five “truth values”- one for each 
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of the five functions. For the particular bankruptcy shown, the five truth values could be 

interpreted as describing the bankruptcy probability as, say not good, slightly normal 

etc. We determine the ranges of the membership functions with doing some statistics. 

 

To sum up, we have five input variables and one output, which we said fuzzy 

bankruptcy index and denoted FBI, which was produced from these five variables. One 

of the input variables is the default probability that we calculated from Merton Model 

which is denoted by MPD. The other input variables are SP, NSh, EBIT and EV/TS. 

 

For the next step of modeling, we need to define the rules. Notice that, if we have only 

two variables with five membership functions for each, the total number of rules should 

be 25. We have five input variables with five membership functions, so the rules can be 

represented such as: 

 

If 1x  is A and 2x   is in B and 3x is in C and 4x is in D and 5x is in E then z is in Z; 

where 521 x,...,x,x represent variables and A, B, C, D, E and Z are linguistic variables 

such as “extremely good”, “good”, “normal”, “bad” and “extremely bad”. We decide 

rules for indicators according to mean and standard deviation applications. 

 

Figure 4.4 illustrates the rules that we use to construct FBI. The following figure is the 

summary of the topics that we mentioned above. It shows that the effect of one fuzzy if 

then rule when calculating the output. If the rule is with and application or something 

different, it is not important, we should know what this means in mathematical sense. 

After finding the output as a fuzzy set we should defuzzy it to understand what this 

really means. 
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FIGURE 4.4 SUMMARY OF “FUZZY IF THEN” RULES 

 

 

After determining the membership functions and rules, we use fuzzy inference system 

in matlab to create output for our model. As we mentioned before, we use Mamdani 

type fuzzy inference system and the system consist of five parts.  
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Graph 4.3 Surface that Shows Relationship between SP, MPD and Output 

 

 

By looking above graph, we can easily examine the relations SP and MPD with the 

output space. So, after investigate the graph, you can change up your mind and decide 

to use another indicator the best fits the output. You can find the graph of MPD, output 

with other input variables in appendix. The graph 7.7.A-B-C illustrates the relationship 

between input variables, MPD and output, which we called FBI. 

 

Steps of the Fuzzy Process, 

 Define the data 

 Define the borders of the membership functions 

 Define the model that develop the output, FBI 

 Define the rules  

 Fuzzification 

 Defuzzification 

 Constructing FBI 



 115 

CHAPTER 5 MACRO ECONOMIC FACTORS & PROBABILITY 

OF DEFAULT  

 

Researches were carried out to study the probability of default on the individual firm’s 

level. However, only since recent years have the researches about the probability of 

default taken into account the influence of macro economic conditions. Same empirical 

results have been found. Standard credit risk models by Vasicek (1987, 1991, 2002), 

following the option-based approach of Merton (1974), allow for business cycle effects 

generally via one or more unobserved systemic risk factors. Helwege and Kleiman 

(1996) studied the relationship between recession and actual default rate. They 

model growth in GDP (Gross Domestic Product) as a dummy variable with a value of 1 

when growth exceeds 1.5% per year and 0 when it falls below that level. Friedson et al 

(1997) refined the model by taking into consideration interest rate. Studying the 

corporate bond of 1971-1995, the authors found a relation between macroeconomic 

conditions and the probability of default. Later, Wilson (1997) found out that the single 

factor model explains only 23.9% of the US systematic risk, the substantial correlation 

remaining is explained by the second or thirdfactors, a single-factor systematic risk 

model is not enough to capture all. The author constructed a model which allows for the 

macroeconomic variables (GDP, rate of government spending, regional housing price 

index) to influence a firm’s probability of default using a pooled logit regression, and 

further confirmed this relationship between macro factors and the probability of default. 

67
 

 

In our study, to analyze the relationship between EDF / MPD and macro economy, the 

least square dummy variable model is chosen. This model makes possible the analysis 

of relationship between probability of default and macroeconomy. The model is 

displayed as: 

t,iii0t,i u)SPIln()URln()CPIln()IPIln(D)FBIln(    

where 

                                                 
67

 Yiping Qu; Macro Factors and Probability of Default; Journal of Economics, Finance and Business 

Administration.  
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:FBI t,i  Fuzzy Bankruptcy Index of the thi industry over the time t. 

:IPI  Industrial Production Index 

:CPI Consumer Price Index 

:UR Unemployment Rate 

:SPI Share Price Index 

:Di  Dummy variable for certain industry 

:u t,i  Random variable assumed to be independent and identically normally distributed 

:i  Certain industry 

:t  Time 

 

A log-linear model is used in order to capture the percentage changes instead of the 

normal unitchanges. First difference is taken for the variables that are not stationary.The 

variables considered are Industrial Production Index (IPI), Consumer Price Index (CPI), 

Unemployment Rate (UR), Interest Rate Spread (IRS), Share prices (SP) and Financial 

Openness Index (FOI), during the period of January 2005 to December 2008.  

 

The Industrial Production Index is an economic indicator which measures real 

production output, which includes manufacturing, mining and utilities. IPI is an 

important indicator for economic forecasting and is often used to measure inflation 

pressures as high levels of industrial production can lead to sudden changes in prices. 

 

The Consumer Price Index is a monthly measurement of inflation. It is one of the red-

hot economic indicators that are carefully dissected by the financial markets. It is 

compiled by the Bureau of Labor Statistics and is based upon a 1982 Base of 100. CPI 

is an indicator of changes in consumer prices. It is obtained by comparing, over time the 

cost of a fixed basket of goods and services purchased by consumers. Since the basket 

contains goods and services of unchanging or equivalent quantity and quality, the index 

reflects only pure price change. CPI does not include sales price of houses. Instead, it 

calculates the monthly equivalent of owning a house.  
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Unemployment rates give the numbers of unemployed persons as a percentage of the 

civilian labor force. In the least-square dummy variable model, unemployment rate is 

denoted with UR. 

 

Share Price Index represents the performance of the whole stock market, as a proxy. It 

therefore reflects investors’ sentiment on the state of the economy, which is denoted 

SPI. 

 

We calculate the coefficient of determination 2R  with the provided information from 

the regression and find 0.5782 which means around 58% of the total variation in FBI is 

explained by this regression model. 

 

Table 5.1 Estimates of Fixed Effects for Industry 

Parameter Estimate Standard Error T 
Sig. 

 

ln (IPI) -3.17 1.80 -2.294 0.022 

ln (CPI) -3.07 0.564 -5.455 0.000 

ln (SPI) -4.91 0.324 -8.066 0.000 

ln (UR) 5.12 1.76 2.564 0.023 

 

 

From Table 5.1 we can easily see that if Industrial Production increases by 1%, the 

Fuzzy bankrupcy probability, which is represented by FBI as dependent variable in the 

model will on average decrease by 3.17% holding other variables constant. The 

coefficients of other variables are interpreted in the same way. 

 

Graph 5.1.A and 5.2.B illustrates the relationship between fuzzy index with macro 

economic factors that we use in our least-square.  
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Graph 5.1.A FBI & CPI and MPD & IP  

                                 
 

Graph 5.1.B MPD & SPI and MPD & UR 

 

Different industries react to the changes of macro factors with different degree and 

direction. 
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CONCLUSION 

 

In this study we construct a default parameter, which we named FBI, by using fuzzy 

process. For the fuzzy process, we have five input variables, four of them are chosen 

from both factor analysis and clustering and the last input variable calculated from 

Merton Model. We use an algorithm which was written in Matlab to apply the fuzzy 

process. For clustering part, we use SPSS and for the factor analysis, we use E-views. 

The following figure illustrates the main topics of our study. 

 

Figure I.1 Summary of Topics with Computer Programs 

 

 

At first, we have introduced an approximation to the Merton model for the ISE100 

companies and we analyze that Merton model for bankruptcy probability is not 

sufficient. To explicate the values which found from Merton Model is perplexing. The 

Merton bankruptcy probabilities are so close to zero or one, or the values change so 

extremely which cannot be possible or possibly to explain. Because of this, we try to 
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create a new variable (FBI), which also includes Merton Model as an input variable or 

in other words, we create a new approach which is more sensitive to bankruptcy 

probabilities. 

 

In addition, we want to create an index, which is nearly accurate to all securities. To do 

this, our data consists of seventy eight different sectors. We calculate MPD values of 

these companies and with the help of these values we calculate the MPD values of 

sectors. To determine other input variables of our fuzzy process, we use factor analysis 

and clustering. First, we use factor analysis and find ten financial ratios
68

. For the fuzzy 

process, ten input variables with five membership functions
69

 are too many to be 

significant. We have two options, one is to reduce the number of membership functions 

to three (bad, normal, good) or reduce the number of input variables. We decided to 

reduce the number of input variables and use clustering (If we decided to reduce the 

number of membership functions, we cannot cope with the difficulty of explaining all 

sectors). We cluster the companies with variables we found from factor analysis. In 

other words, we cluster the industries each year and from clustering results, we reduce 

the financial ratios which imply bankruptcy probability. Since cluster analysis is an 

exploratory data analysis tool for organizing observed data into meaningful group or 

clusters; we can easily examine the volatile sectors. Our main point is to find the sectors 

that are between clusters. Being between clusters illustrates that firms are not stable. 

After finding the sectors between clusters, we decide to find similar properties of these 

sectors. In addition, we seek the similarities of the financial ratios of firms which are 

between clusters. We illustrate that they are the properties that makes companies 

between clusters. To show these, we eliminate the properties and cluster industries again 

with these variables and find again two clusters. However, now the sectors belong to 

each cluster with hundred percentage. Thus, we find our financial ratios that can 

measure the sensitivity of bankruptcy without considering the sectors. In other words, 

we found our input variables for the fuzzy process. 

 

                                                 
68

    SP, TV, Nsh, TD,PTOM, EV/TS, EG, VLB, EBIT, CF. 
69

    Normal, Bad, Extremely Bad, Good and Extremely Good. 
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Now we have five input variables to construct a new parameter which indicates 

bankruptcy probabilities. It includes Merton Model and some significant financial ratios 

(SP, Nsh, EBIT, EV/TS). As we said before, we use fuzzy logic to construct our output 

variable, named FBI. To use fuzzy logic, first we analyze the input variables and their 

meanings. By the help of these information we can construct the membership functions 

and fuzzy rules between our input variables.  

 

We compare the values of FBI and MPD, their covariance is positive. This means their 

values increase and decrease at the same time. Notice that we construct FBI because 

MPD takes values so close to 0, which we cannot easily make estimation with this 

knowledge. Our results show that FBI is much more sensitive than the MPD.  

 

At the end, we explain FBI index with macro-economic factors. FBI is calculated using 

both market information as well as firm’s individual profile. One of the input that 

creates FBI is based on well-known Black_Scholes option pricing equation, it combines 

asset’s value, asset risk and the firm’s leverage ratio into a unique measure of default 

risk. The exogenous variables in the model represent the general macro economic state.   

We analyzed the relationship of macroeconomic factors with the probability of default 

parameter which we construct with fuzzy logic. Using the multifactor fixed effect 

model, the study verified the effect of the macro factors on probability of default. 

Different industries react to the changes of macro factors with different degree.  

 

 

    



 122 

 

APPENDICES 

 

I. BARRIER OPTIONS 

 

Barrier options are options that are either activated or deactivated when the price of the 

underlying security passes through some predefined value which is called the barrier. 

Barrier options have eight different varieties: 

 

Down and out Call Option: A call option that is deactivated if the price of the 

underlying falls below a certain price level. If the underlying asset does reach the barrier 

price level, the down-and-in option becomes a vanilla European call option. If the 

underlying asset price does not reach the barrier level, the option expires worthless.  

 

Up and in Call Option: A call option that is activated if the price of the underlying 

rises above a certain price level. 

 

Up and out Call Option: A call option that is deactivated if the price of the underlying 

rises above a certain price level. 

 

Down and in Call Option: A call option that is activated if the price of the underlying 

falls below a certain price level. 

 

Up and in Put Option: A put option that is activated if the price of the underlying rises 

above a certain price level. 

 

Up and out Put Option:  A put option that is deactivated if the price of the underlying 

rises above a certain price level. 

 

Down and in Put Option: A put option that is activated if the price of the underlying 



 123 

falls below a certain price level. 

 

Down and out Put Option: A put option that is deactivated if the price of the 

underlying falls below a certain price level. 

 

The value of these options is dependent not only upon the value of the underlying 

security at option expiration, but also the path that the underlying takes prior to 

expiration. They're  therefore known as path-dependent options. Investors may 

choose type of barrier options rather than directly purchasing the vanilla option, as 

option premiums tend to be significantly lower for knock-in options. 

 

II. VARIANCE FORMULATION 

 

To show equation (1), follow the following steps, we use only definition and simple 

mathematical calculations. 
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III. INTEREST RATES FOR ISE100 APPLICATION 

 

Following table shows the risk-free interest rate which we use in the application of 

ISE100 index. To calculate the MPD values of each company, one parameter is the risk 

free interest rate. As said, we take following information from TUİK.   
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Table III.1 Risk Free Interest Rates between 2004-2008 Risk-free Interest Rates 

Year Treasury Bill Rate 

2004 24.7% 

2005 16.3% 

2006 18.1% 

2007 18.4% 

2008 19.2% 

 

IV. MACRO FOR GOAL SEEK FUNCTION 

 

As said before, to solve two equations with two unknown parameters, we use goal seek 

function in the Excel. However, to do this process for many times we need to write a 

macro, which is as follows.  

 

Sub solve All() 

Dim cell Change As Range 

Dim cell Goal As Range 

Dim cell Constraint As Range 

Set cell Change = Active Sheet. Range("K3:L3") 

Set cell Goal = Active Sheet. Range("M3") 

Set cell Constraint = Active Sheet. Range("K3") 

 

Do  

Solver Reset 

Solver Add Cell Ref:=cell Constraint. Address. Relation:=2. Formula Text:="0" 

Solver Ok Set Cell:=cell Goal. Address. _ 

Max Min Val:=2. By Change:=cell Change. Address 

SOLVER . Solver Solve User Finish:=True 

Solver Finish Keep Final:= 1 

Set cell Change = cell Change. Offset (1. 0) 

' Msg Box  cell Change. Row 

Set cell Goal = cell Goal. Offset (1. 0) 
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Set cell Constraint = cell Constraint. Offset (1. 0) 

' Msg Box cell Goal. Row 

Loop While Trim (cell Goal. Text) <> "" 'until goal cell is empty 

End Sub 

 

V. RESULTS OF ISE100 APPLICATION 

 

Table V.1 and Table V.2 illustrate the unknown parameters of the Merton model. Notice 

that, we have two equations with two unknowns. We found the unknown parameters, by 

the help of this information we calculate the default probabilities. Because of the 

properties of our variables, we have some constraints. For instance, they should be 

greater than zero. Thus, we take a negligible region that the equations almost surely 

satisfied. 
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Table V.1 Volatility of Firm’s Asset Returns 

 2004 2005 2006 2007 2008 

ACIBD 1.34 0.36 0.16 0.37 0.09 

ADEL 1.03 0.37 0.47 0.24 0.52 

AEFES 0.26 0.17 0.18 1.02 0.26 

AKSA 0.17 0.23 1.24 0.28 0.45 

ALARK 0.29 0.30 2.43 0.16 0.43 

ALTIN 0.34 0.32 0.43 0.31 0.32 

ANACM 0.33 0.25 0.18 0.53 0.29 

ASELS 0.39 0.53 0.47 0.37 1.45 

AYGAZ 0.21 0.35 0.27 0.30 0.50 

BAGFS 0.24 0.46 0.31 0.30 0.69 

BANVT 1.13 0.26 0.28 0.35 0.25 

BROVA 0.20 0.51 0.46 0.31 0.77 

BUCIM 0.66 0.39 0.51 0.10 0.39 

CIMSA 0.32 0.38 0.46 0.19 0.56 

DYHOL 0.16 0.30 0.16 0.18 0.41 

ECILC 1.59 0.46 0.43 0.27 1.13 

EDIP 0.28 0.14 0.31 0.22 0.15 

EGEEN 0.34 0.32 0.33 0.45 0.38 

EGGUB 0.28 0.39 0.37 0.42 0.43 

ENKAI 0.15 0.49 0.52 0.31 0.49 

EREGL 2.35 0.32 0.27 0.59 0.50 

FENIS 0.30 0.27 0.24 0.44 0.39 

FRIGO 0.58 0.20 0.16 0.52 0.18 

FROTO 0.23 0.27 0.22 0.23 0.44 

GOLDS 0.65 0.45 0.52 0.26 0.65 

GOODY 0.28 0.31 0.39 0.17 0.57 

GSDHO 0.12 0.09 0.07 0.06 0.92 

HEKTS 0.52 0.47 0.53 0.34 0.45 

HURGZ 0.51 0.43 0.34 0.21 0.43 

IHLAS 0.24 0.34 0.19 0.35 0.64 

IPMAT 0.27 0.69 0.72 0.56 0.70 

IZOCM 0.38 0.43 0.34 0.25 0.64 

KAPLM 1.06 0.65 0.60 0.36 0.60 

KARTN 0.87 0.55 0.21 0.52 0.47 

KCHOL 0.14 0.12 0.07 0.09 0.24 

KENT 0.31 0.52 0.44 0.32 0.46 

KUTPO 1.12 0.53 0.32 0.25 2.05 

METUR 0.32 0.47 0.27 0.18 0.16 

MİPAZ 0.36 0.37 0.74 0.28 0.41 

MRDIN 0.24 0.37 0.44 0.26 0.49 

OKANT 1.08 0.29 0.66 0.41 1.59 

OLMKS 0.18 0.44 0.27 0.17 0.61 

PARSN 0.20 1.49 0.33 0.37 0.72 

PENGD 0.38 0.29 0.16 0.26 0.39 

PNSUT 0.04 0.46 0.66 0.21 0.69 

PTOFS 1.10 0.34 0.40 0.27 0.54 

SAHOL 0.21 0.07 0.10 0.04 0.10 

TATKS 0.10 0.19 0.11 0.15 0.27 

TCELL 0.10 0.25 0.26 0.21 0.50 

VESTL 0.23 0.10 0.20 0.17 0.47 
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Table V.2 Market Value of Firm’s Asset Return  

 2004 2005 2006 2007 2008 

ACIBD 131.48 172.62 218.51 260.07 410.16 

ADEL 28.46 34.10 40.02 42.32 52.27 

AEFES 1290.27 1826.63 2.69 2.60 4.03 

AKSA 754.89 744.27 875.85 709.95 910.92 

ALARK 358.64 577.05 590.77 740.18 926.41 

ALTIN 134.07 220.78 266.54 259.97 313.72 

ANACM 629.24 815.30 960.53 991.24 1256.62 

ASELS 291.52 416.22 426.21 507.29 510.27 

AYGAZ 940.36 1115.27 1923.98 1699.85 1843.17 

BAGFS 102.08 111.49 118.81 129.47 204.53 

BANVT 126.09 137.23 152.48 226.25 273.53 

BROVA 10.88 12.20 9.72 8.18 6.98 

BUCIM 179.77 172.11 200.31 263.52 331.33 

CIMSA 631.88 693.77 856.03 1007.75 932.64 

DYHOL 1.01 1.45 1.63 2.62 3.46 

ECILC 563.58 980.98 1228.64 1711.86 1803.80 

EDIP 86.42 91.15 83.72 111.54 180.22 

EGEEN 45.99 33.31 40.62 39.61 61.35 

EGGUB 99.78 105.98 111.20 141.69 165.66 

ENKAI 3927.37 4028.27 4612.44 5.01 6.82 

EREGL 4681.18 6027.50 7120.79 7922.33 9816.78 

FENIS 44.31 59.53 65.69 62.75 76.26 

FRIGO 14.40 20.45 21.02 20.39 16.16 

FROTO 2080.14 1877.31 2008.24 2061.91 2025.69 

GOLDS 153.98 156.51 182.64 194.31 190.83 

GOODY 277.43 263.77 284.02 279.13 303.03 

GSDHO 1192.72 1776.10 2434.54 2598.72 682.30 

HEKTS 55.62 66.38 71.72 76.96 79.67 

HURGZ 647.28 724.36 751.75 1228.84 1641.56 

IHLAS 551.58 592.24 527.63 522.23 570.98 

IPMAT 28.88 50.17 60.90 32.07 430.26 

IZOCM 96.22 136.82 173.00 169.54 155.53 

KAPLM 33.76 30.60 33.40 33.24 33.20 

KARTN 187.91 178.93 189.91 153.77 152.92 

KCHOL 10388.26 23767.61 35160.69 36205.88 47932.77 

KENT 202.30 201.19 210.67 246.10 323.67 

KUTPO 4848.34 84.27 89.29 94.01 91.99 

METUR 77.44 19.79 19.56 21.89 20.68 

MİPAZ 15.42 23.54 25.91 23.58 53.35 

MRDIN 25.52 187.67 77.49 78.48 225.90 

OKANT 137.91 10.75 8.94 8.46 13.70 

OLMKS 13.75 139.35 152.88 171.69 171.63 

PARSN 134.28 118.31 151.21 196.52 253.99 

PENGD 84.91 60.71 49.62 57.00 70.15 

PNSUT 45.25 266.61 263.67 303.35 318.95 

PTOFS 257.66 2991.37 3146.19 3219.98 3584.33 

SAHOL 2857.66 46601.75 50156.63 56913.10 13033.54 

TATKS 29341.85 248.20 241.07 286.19 398.12 

TCELL 241.43 5866.90 6611.36 7716.56 9158.45 

VESTL 1475.17 1647.95 1900.86 1699.00 1451.92 
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From Table V.2, we can say that for the year 2004, market value of TCELL’s assets 

return is nearly 241. 

 

Table V.4.-V.8 illustrates correlation between our parameters from Merton model for 

each year, respectively. 

 

Table V.4 Correlation between Merton Model Parameters at 2004 

 
T

D  0E  
Eσ  )d(N 1  )d(N 2  Aσ  0A  0E /

0
D  

0

0 D/A  MPD  

T
D  1 0.7348 -0.0541 0.022 0.0482 -0.1467 0.9809 -0.0359 -0.0359 -0.0482 

0E   1 0.1975 0.0536 -0.2285 0.1586 0.8527 -0.0721 -0.0721 0.2285 

Eσ    1 -0.4071 -0.8554 0.9497 0.0117 -0.0813 -0.0814 0.8554 

)d(N 1     1 0.6566 -0.1516 0.0331 0.0452 0.0453 -0.6566 

)d(N 2      1 -0.7349 -0.025 0.0643 0.0644 -1 

Aσ       1 -0.0708 -0.046 -0.0461 0.7349 

0A        1 -0.0485 -0.0485 0.025 

0

0 D/E         1 1 -0.0643 

0

0 D/A          1 -0.0644 

MPD           1 

 

From the above table, we can say that the correlation between volatility of asset returns 

and total debt is negative. In addition, the correlation between volatility of asset returns 

and volatility of equity is equal to 0.9497, which is nearly 1. In other words, they are 

highly positively correlated. In a positive correlation, as the values of one of the 

variables increase, the values of the second variable also increase. Likewise, as the 

value of one of the variables decreases, the value of the other variable also decreases. 

We want to mean that volatility of asset return decreases implies decrease in volatility of 

equity. 
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Table V.5 Correlation between Merton Model Parameters at 2005 

  
T

D  0E  
Eσ  )d(N 1  )d(N 2  Aσ  0A  0E /

0
D  

0

0 D/A  MPD  

T
D  1 0.7428 -0.0017 -0.2163 -0.05 -0.2808 0.9909 -0.0397 -0.0397 0.05 

0E   1 -0.1088 -0.154 -0.0162 -0.3043 0.826 -0.08 -0.08 0.0162 

Eσ    1 -0.3675 -0.8402 0.8256 -0.0234 0.0259 0.0259 0.8402 

)d(N 1     1 0.5318 0.1 -0.2127 0.0564 0.0564 -0.5318 

)d(N 2      1 -0.6268 -0.0451 0.0478 0.0478 -1 

Aσ       1 -0.2975 0.1213 0.1213 0.6268 

0A        1 -0.0495 -0.0495 0.0451 

0

0 D/E         1 1 -0.0478 

0

0 D/A  
        1 -0.0478 

MPD           1 

 

 

Table V.6 Correlation between Merton Model Parameters at 2006 

 
T

D  0E  
Eσ  )d(N 1  )d(N 2  Aσ  0A  0E /

0
D  

0

0 D/A  MPD  

T
D  1 0.7085 0.0354 -0.6416 -0.0505 -0.1884 0.9913 -0.0732 -0.0732 0.0505 

0E  
 1 -0.0018 -0.4374 -0.04 -0.1545 0.795 -0.1244 -0.1244 0.04 

Eσ    1 -0.4948 -0.9283 0.9406 0.0293 -0.1095 -0.11 0.9283 

)d(N 1     1 0.52 -0.243 -0.6321 0.1028 0.103 -0.52 

)d(N 2      1 -0.865 -0.05 0.0667 0.0672 -1 

Aσ       1 -0.1914 -0.0142 -0.0147 0.865 

0A  
      1 -0.086 -0.086 0.05 

0

0 D/E  
       1 1 -0.0667 

0

0 D/A  
        1 -0.0672 

MPD           1 
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Table V.7 Correlation between Merton Model Parameters at 2007 

  T
D  0E  

Eσ  )d(N 1  )d(N 2  Aσ  0A  0E /
0

D  
0

0 D/A  MPD  

T
D  1 0.7625 -0.0824 0.0419 0.0486 -0.3036 0.9907 -0.0721 -0.0721 -0.0486 

0E   1 -0.0776 0.0857 0.0855 -0.2235 0.8435 -0.116 -0.116 -0.0855 

Eσ    1 -0.7274 -0.8083 0.8551 -0.0848 -0.0511 -0.0513 0.8083 

)d(N 1     1 0.9202 -0.5098 0.0529 0.0806 0.0807 -0.9202 

)d(N 2      1 -0.6635 0.0584 0.0808 0.081 -1 

Aσ       1 -0.2991 0.1367 0.1366 0.6635 

0A        1 -0.0843 -0.0843 -0.0584 

0

0 D/E         1 1 -0.0808 

0

0 D/A          1 -0.081 

MPD           1 

 

 

 

Table V.8 2008 Correlation between Merton Model Parameters at 2008 

  T
D  0E  

Eσ  )d(N 1  )d(N 2  Aσ  0A  0E /
0

D  
0

0 D/A  MPD  

T
D  1 0.847 -0.033 -0.3216 -0.085 -0.1851 0.9805 -0.0552 -0.0552 0.085 

0E   1 -0.0436 -0.1277 -0.0006 -0.1153 0.935 -0.0708 -0.0707 0.0006 

Eσ    1 -0.0731 -0.8092 0.8941 -0.0382 -0.1313 -0.1316 0.8092 

)d(N 1     1 0.4127 0.335 -0.2618 0.1323 0.1323 -0.4127 

)d(N 2      1 -0.5775 -0.0568 0.095 0.0954 -1 

Aσ       1 -0.1662 0.0039 0.0036 0.5775 

0A        1 -0.063 -0.063 0.0568 

0

0 D/E         1 1 -0.095 

0

0 D/A          1 -0.0954 

MPD           1 
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VI. DEFINITIONS OF RATIOS 

 

In this section, we give the descriptions of the variables that we use in factor analysis.
70

 

 

Book Debt Ratio: This is the book estimate of the debt ratio, obtained by dividing the 

cumulated value of debt by the cumulated value of debt plus the cumulated book value 

of equity for the entire sector. 

 

Book Value: The dollar amount recorded on the balance sheet for an asset, liability, or 

equity. Subtract the accumulated depreciation from the historical cost to get the book 

value of an asset. Adjust the maturity value of the liability for any discount or premium 

to calculate the book value of a liability. The book value of a liability is usually the 

amount of cash required to pay off the obligation at that point in time, and the amount at 

which the asset or liability is “carried on the books.” The book value of an asset 

represents the cost of the asset that has not been put on the income statement as an 

expense.  

 

Capital (Book Value): This is the book value of debt plus the book value of common 

equity, as reported on the balance sheet 

 

Capital Expenditure: Outlay charged to a long-term asset account. A capital 

expenditure either adds a fixed asset unit or increases the value of an existing fixed 

asset. An example is a new motor for a truck. 

 

Cash to Current Liabilities Ratio: Computation that measures a company's ability to 

satisfy short-term financial obligations immediately and is therefore a good liquidity 

measure. The ratio equals cash plus near-cash and marketable securities divided by 

current liabilities. 

 

                                                 
70

 Dictionary of Accounting Terms, Dictionary of Financial and Business Terms, 
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Dividend Yield (Funds): Indicated yield represents return on a share of a mutual fund 

held over the past twelve months. Assumes fund was purchased 1 year ago. Reflects 

effect of sales charges (at current rates), but not redemption charges. 

 

Dividend Yield (Stocks): Indicated yield represents annual dividends divided by 

current stock price. 

Dividends per Share: Dividends paid for the past 12 months divided by the number of 

common shares outstanding, as reported by a company. The number of shares often is 

determined by a weighted average of shares outstanding over the reporting term. 

 

EBITDA: Estimated by adding depreciation and amortization back to operating income 

(EBIT).  

 

Effective Rate: A measure of the time value of money that fully reflects the effects of 

compounding. 

 

Enterprise Accounting: Accounting for the entire business rather than its subdivisions 

(e.g., department). 

 

Enterprise Value / Sales (EV/S): The EV/S is just a quick way to understand how 

investors feel about a company. If the EV/S goes up by a 10th or down by a 10th of a 

point, there is no definitive point that suddenly turns a healthy company into a sick 

company or vice versa. 

 

Earnings per Share (EPS): The dollar amount of the period’s net income that is 

available to each share of common stock. Basic EPS are calculated by deducting any 

preferred dividends due to preferred stock shareholders for the period, and dividing by 

the weighted average number of common shares of stock outstanding during the period. 

Diluted earnings per share include an adjustment for common stock equivalents, 

resulting in 195 earnings per share lower earnings per share than basic EPS.  

 

Free Cash Flow for the Firm (FCFF): A measure of financial performance that 

expresses the net amount of cash that is generated for the firm, consisting of expenses, 
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taxes and changes in net working capital and investments. 

 

Growth in Earnings per Share: EPS Growth Rate ratio is expressed as a percentage 

and it shows the relative growth of EPS over the last two reporting periods. A minus 

sign indicates negative growth from last year. If the previous year's EPS-basic is zero 

earnings per share growth rate is not defined. 

 

Net Income:  Divided by average total assets; also called rate earned on total assets. 

Other versions of return on investment exist, such as net income before interest and 

taxes divided by average total assets. Return on investment is a commonly used 

measure to evaluate divisional performance. 

 

Non-Cash Working Capital / Sales:  

Non-cash Working Capital = Inventory + Other Current Assets + Accounts Receivable -          

Accounts Payable - Other Current Liabilities  

(Current assets excluding cash - Current liabilities excluding interest bearing debt). For 

the sector, we use cumulated values for each of the variables. 

 

Payout Ratio: Ratio of cash dividends declared to earnings for the period. It equals 

dividends per share divided by earnings per share. Stockholders investing for income 

favor a higher ratio. Stockholders looking for capital gains tolerate low ratios when 

earnings are being reinvested to finance corporate growth. Assume cash dividends of 

$100,000, net income of $400,000, and outstanding shares of 200,000. The payout ratio 

equals 25% ($.50/$2.00). 

 

Price Earning (PE) Ratio: Assume XYZ Corporation sells for $25.50 per share and 

has earned $2.55 per share this year; $25. 50 = 10 times $2.55. 

XYZ stock sells for 10 times earnings.  

P/E = Current stock price divided by trailing annual earnings per share or expected 

annual earnings per share. 

 

A steady decrease in the P/E ratio reflects decreasing investor confidence in the growth 

potential of the entity. Some companies have high P/E multiples reflecting high 
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earnings growth expectations. Young, fast-growing companies often have high P/E 

stocks with multiples over 20. A company's P/E ratio depends on many factors such as 

risk, earnings trend, quality of management, industry conditions, and economic factors. 

 

Price Book Value (PBV) Ratio: Price Book value is the ratio of the market value of 

equity to the book value of equity. (i.e. It is the measure of shareholders’ equity in the 

balance sheet. If we consider price book value ratio and returns on equity, it is not 

surprising to see firms which have high returns on equity selling for well above book 

value and firms which have low returns on equity selling at or below book value.  

 

Reinvestment Rate (Risk): The danger that when a debt security matures, possible 

investments will be at a lower rate of interest. Short-term debt is subject to 

reinvestment-rate risk. Contrast with interest-rate risk, which is the chance that while an 

investor holds a debt security, the interest rate will rise, making the investor’s security 

less valuable. Interest-rate risk is associated with long-term debt. 

 

Reinvestment Rate = (Net Capital Expenditures + Change in WC) / EBIT (1-t). 

  

Return on Equity (ROE):  A financial analysis tool that measures how well a 

company generates earnings compared to the amount of capital shareholders have 

invested in the firm. The formula is net income divided by average common 

shareholders’ equity. If the company has preferred stock, the preferred stock dividends 

are subtracted from net income before dividing by equity. 

 

Return on stockholders' investments. It is a variant of the DuPont formula, which equals 

total assets (investment) turnover, times the profit margin, times the equity multiplier: 

 

Equity

AssetsTotal

venuesRe

Income

AssetsTotal

venuesRe

Equity

Income
 . 

 

Return on Investment (ROI): A measure of the earning power of assets. The ratio 

reveals the firm's profitability on its business operations and thus serves to measure 
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management's effectiveness. It equals net income divided by average total assets; also 

called rate earned on total assets. Other versions of ROI exist, such as net income before 

interest and taxes divided by average total assets. Return on investment is a commonly 

used measure to evaluate divisional performance. 

 

CapitalInvested

Sales

Sales

IncomeNet

CapitalInvested

IncomeNet
ROI   

 

Turnover Ratio: Measure of a particular asset's activity (e.g., sales, cost of sales). The 

average asset balance for the period is used equal to the beginning balance plus the 

ending balance divided by 2. A turnover ratio is an activity ratio. By looking at the 

turnover of an asset in terms of generating revenue, the accountant can properly 

appraise a company's ability to manage assets efficiently. Examples are the turnover in 

fixed assets (sales/fixed assets), accounts receivable (sales/accounts receivable), and 

inventory (cost of sales/inventory) 

 

VII. CLUSTERING RESULTS 

 

In this section, we put the results of cluster analysis. Graph VII.1 and VII.2 gives 

information of cluster percentages and percent rate of industries within clusters for year 

2005.  

 

Graph VII.1 Clusters Percentage at 2005 
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From the following graph, we can easily see that cluster 2 seems to be outlier. 

 

Graph VII.2 Within Cluster Percentage of Industry (2005) 

 
 

 

Table VII.1 and VII.2 gives statistical information for Cluster 1 and 2 and union of them 

at 2005. If one analyze parameters with this information in detail and consider this 

information together with logical sense, one can classify clusters. We would like to 

remind clustering does not order clusters from best to worse or vice versa. However, 

you can order them with analyzing statistical information. The difficulty is to consider 

all parameters together. 

 

Table VII.1 Cluster Descriptive Statistics (2005) 

 SP TV NSh TD PTOM 

2005 Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

Cluster 1 27.72 22.82 341902.94 510713.95 143.69 207.92 861.35 1602.65 0.22 0.21 

Cluster 2 59.06 73.81 1377533.50 2334192.59 1458.62 1220.72 14642.38 16347.82 -0.32 3.15 

Combined 33.12 38.53 520459.94 1132627.14 370.41 730.53 3237.39 8612.65 0.13 1.32 
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Table VII.2 Cluster Descriptive Statistics (2005) 

 EV/TS EG VLB EBIT CF 

2005 Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

Cluster 1 2.94 2.56 0.20 0.14 0.80 0.52 603.94 1175.96 0.11 0.14 

Cluster 2 3.90 5.25 0.16 0.16 0.91 0.46 10213.53 10198.79 0.09 0.10 

Combined 3.10 3.19 0.19 0.14 0.82 0.51 2260.77 5641.96 0.11 0.13 

 

 

Graphs VII.3 and VII.4 gives information about cluster analysis for year 2006. 

 

 

Graph VII.3 Clusters Percentage at 2006 

 
 

Graph VII.4 Within Cluster Percentage (2006) 

 
 

Table VII.3 and VII.4 gives statistical information for Cluster 1 and 2 and union of them 

at 2006. 
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Table VII.3 Cluster Descriptive Statistics (2006) 

 SP TV NSh TD PTOM 

2006 Mean 
St. 

Dev 
Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

Cluster 1 27.34 21.51 298049.91 400533.59 141.56 220.19 923.53 1793.96 0.21 0.21 

Cluster 2 56.11 74.44 1400979.83 1672966.15 1561.04 1308.24 14211.20 18135.64 0.09 0.99 

Combined 32.22 37.68 485339.90 877278.28 382.60 780.71 3179.93 9068.36 0.19 0.45 

 

 

Table VII.4 Cluster Descriptive Statistics (2006) 

 EV/TS EG VLB EBIT CF 

2006 Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

Cluster 1 2.77 2.24 0.18 0.12 0.97 0.31 601.72 1190.01 0.12 0.17 

Cluster 2 4.39 6.48 0.13 0.11 1.08 0.33 10009.46 11126.69 0.09 0.08 

Combined 3.04 3.39 0.17 0.12 0.99 0.31 2199.26 5852.08 0.12 0.16 

 

Graph VII.5 and VII.6 gives information of cluster percentages and percent rate of 

industries within clusters for year 2007. 

 

Graph VII.5 Cluster Percentage at 2007 
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Graph VII.6 Within Cluster Percentage (2007) 

 
 

Table VII.5 and VII.6 give statistical information for Cluster 1 and 2 and union of them 

at 2007. 

 

Table VII.5 Cluster Descriptive Statistics (2007) 

 SP TV NSh TD PTOM 

2007 Mean St. Dev Mean St. Dev Mean St. Dev Mean 
St. 

Dev 
Mean 

St. 

Dev 

Cluster 1 920128.94 1358621.76 198.02 341.08 1294.52 3072.97 0.20 0.24 2.69 2.57 

Cluster 2 5895963.79 7201193.80 2390.79 1487.87 24991.33 29176.84 -0.16 1.88 3.21 3.07 

Combined 1283747.64 2645369.74 358.26 767.21 3026.21 10300.34 0.17 0.55 2.73 2.61 

 

 

Table VII.6 Cluster Descriptive Statistics (2007) 

 EV/TS EG VLB EBIT CF 

2007 Mean St. Dev Mean 
St. 

Dev 
Mean St. Dev Mean 

St. 

Dev 
Mean 

St. 

Dev 

Cluster 1 0.17 0.10 1.03 0.30 936.87 2025.86 0.13 0.18 26.53 22.34 

Cluster 2 0.12 0.09 1.09 0.30 16464.16 13709.88 0.08 0.15 81.25 143.28 

Combined 0.16 0.10 1.04 0.30 2071.56 5767.16 0.13 0.18 30.53 45.75 

 

 

Graph VII.7 and VII.8 give information of cluster percentages and percent rate of 
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industries within clusters for year 2008. 

 

Graph VII.7 Clusters Percentage at 2008 

 

 

Graph VII.8 Within Cluster Percentage (2008) 

 

Table VII.7 and VII.8 illustrate statistical information for Cluster 1 and 2 and union of 

them at 2008. 

 

Table VII.7 Cluster Descriptive Statistics (2008) 

 SP TV NSh TD PTOM 

2008 Mean 
St. 

Dev 
Mean St. Dev Mean St. Dev Mean St. Dev Mean 

St. 

Dev 

Cluster 1 14.54 13.79 626904.17 954689.02 187.74 317.72 1331.40 3022.50 0.20 0.18 

Cluster 2 31.07 45.28 2727240.92 3495512.96 1266.31 1511.72 11632.65 21675.74 0.17 0.58 

Combined 17.74 24.22 1033688.75 1937319.68 396.64 836.06 3326.50 10653.14 0.19 0.30 
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Table VII.8 Cluster Descriptive Statistics (2008) 

 EV/TS EG VLB EBIT CF 

2008 Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev 

Cluster 1 1.07 1.09 0.15 0.09 1.17 0.37 1000.62 2210.22 0.30 0.45 

Cluster 2 2.74 2.97 0.17 0.23 1.19 0.28 8361.19 13239.77 0.11 0.12 

Combined 1.39 1.75 0.15 0.13 1.17 0.35 2426.19 6768.93 0.27 0.41 

 

 

VIII MPD RESULTS OF USA INDUSTRIES 

 

Table VIII.1 illustrates Merton default probabilities of the industries. First, we calculate 

MPD of each company with solving two equations with two unknowns. Then, taking 

the average MPD of companies belong to the same industries, we find the MPD of each 

industry. 

 

In addition, Table VIII.1 illustrates which industries have maximum MPD values. As an 

extra confirmation, they are nearly same industries which are between clusters. 
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Table VIII.1 Merton Default Probabilities of Industries  

Industry Name MDP-2005 MDP-2006 MDP-2007 MDP-2008 

Advertising 0.5000 0.2875 0.7983 0.0082 

Aerospace/Defense 0.3333 0.0610 0.3433 0.0000 

Air Transport 0.0003 0.0009 0.0256 0.0034 

Apparel 0.0092 0.0000 0.0080 0.0029 

Auto & Truck 0.2500 0.0000 0.0214 0.0077 

Auto Parts 0.1667 0.2189 0.5703 0.3341 

Bank  0.0213 0.0002 0.0031 0.0006 

Beverage  0.0000 0.0000 0.3371 0.0133 

Biotechnology 0.3850 0.1823 0.0475 0.0034 

Building Materials 0.3333 0.0000 0.0003 0.0079 

Chemical  0.2500 0.0005 0.0000 0.0024 

Computer Software/Services 0.1792 0.0178 0.1868 0.0423 

Computers/Peripherals 0.0992 0.0000 0.1434 0.0004 

Diversified Co. 0.0000 0.0000 0.0067 0.1452 

Drug 0.0736 0.0003 0.1151 0.0626 

E-Commerce 0.0000 0.0000 0.0107 0.0163 

Electrical Equipment 0.1667 0.0001 0.3334 0.0017 

Electronics 0.1038 0.2311 0.1278 0.2853 

Entertainment Tech 0.3578 0.0002 0.1685 0.1277 

Environmental 0.2115 0.0629 0.0914 0.1215 

Financial Services. (Div.) 0.0388 0.0000 0.0112 0.0016 

Food Processing 0.2000 0.0005 0.0549 0.0079 

Industrial Services 0.2280 0.0570 0.1157 0.0882 

Insurance  0.0000 0.0000 0.0840 0.0011 

Internet 0.2741 0.0203 0.2441 0.1117 

Machinery 0.0833 0.0462 0.1821 0.1251 

Maritime 0.0000 0.0012 0.0000 0.0136 

Medical Services 0.2187 0.4654 0.2394 0.1600 

Medical Supplies 0.1562 0.0404 0.2930 0.2972 

Metals & Mining (Div.) 0.2409 0.0233 0.3703 0.0526 

Oilfield Services/Equip. 0.0000 0.0004 0.1666 0.0013 

Petroleum  0.1288 0.0002 0.0326 0.0086 

Precious Metals 0.1500 0.0003 0.0024 0.0050 

Precision Instrument 0.1831 0.1665 0.3440 0.1250 

Recreation 0.1380 0.0001 0.2696 0.0069 

Retail Store 0.2000 0.0002 0.2011 0.2192 

Semiconductor 0.0001 0.0005 0.0008 0.0127 

Telecom. Equipment 0.2063 0.0003 0.3025 0.0507 

Telecom. Services 0.2257 0.0002 0.2874 0.0599 

Thrift 0.0000 0.0000 0.0000 0.0000 

Utility  0.0000 0.0000 0.0000 0.0000 

Wireless Networking 0.1429 0.0000 0.0010 0.0000 

     

Maximum 0.5000 0.4654 0.7983 0.3341 

Second Maximum 0.3850 0.2875 0.5703 0.2972 

Third Maximum 0.3578 0.2311 0.3703 0.2853 

Fourth Maximum 0.3333 0.2189 0.3440 0.2192 

Fifth  Maximum 0.3333 0.1823 0.3433 0.1600 
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IX DISTANCE TO DEFAULT 

 

The following figure demonstrates the concept of distance to default. In the figure, STD 

stands for short-term debt. LTD refers to long-term debt. DPT is default point, which is 

defined as the sum of STD and 50% of LTD. DD is the abbreviation of distance to 

default. 0V
 
refers to the current asset value. 1V  is the expected asset value in one year. 

The shadow represents probability of default related with the specified DD in the graph. 

 

 FIGURE IX.1 DISTANCE TO DEFAULT  

 

Source: Crouhy. M.. Galai. D., Mark. R., "A comparative analysis of current credit risk models", Journal 

of Banking and Finance, 2000.  

 

 

X. MEMBERSHIP FUNCTIONS OF INPUT VARIABLES 

 

As said, in the fuzzy process we have five input variables and following graphs shows 

membership functions of each input variable. Graph X.1 illustrates membership 

functions of input variable Stock Price, SP. We have five linguistic variables as 

extremely bad, bad, normal good and extremely good as seen in the following graph. In 

addition, following graph also illustrates the boundaries of each membership function. 

As we defined before, each input variable has five membership functions (extremely 
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bad, bad, normal, good and extremely good).   

 

Graph X.1 Membership Function of the Input Variable: SP  

 

 

 

Graph X.2 Membership Function of the Input Variable: NSh 
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Graph X.3 Membership Function of the Input Variable: EBIT 

  

 

 

Graph X.4 Membership Function of Input Variable: EV/TS 
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Graph X.5 Membership Function of the Input Variable: MPD 

 

 

 

Graph X.6 Membership Function of the Output Variable 

 

 
 

 

In graphs X.1, X.2, X.3, X.4, X.5 and X.6; extremely bad, bad, normal, good, extremely 

good are functions, which denotes bankruptcy scale. A point on that scale has five “truth 

values”- one for each of the five functions. We have five membership functions, three of 

them are triangle and two of them are trapezoids. They all take values between 0 and 1. 

The five truth values could be interpreted as degree of the bankruptcy.  
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Graph X.7 Fuzzy Result of Output Variable 
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The following table shows the value of fuzzy outputs. 
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Table X.1 Fuzzy Outputs 

Company Name 2005 2006 2007 2008 

Com-Guard.com Inc.     0.3814     0.4231     0.3814     0.3979 

Environmental Solutions World.     0.5000     0.3814     0.3814     0.5000 

Innova Pure Water Inc     0.3814     0.5000     0.3814     0.5000 

Int'l Commercial Television     0.3814     0.5000     0.3814     0.5000 

CCL Industries Inc.     0.4981     0.5000     0.3961     0.5000 

Infosys Technology ADR     0.4810     0.5000     0.4132     0.5000 

Marvell Technology     0.4893     0.5000     0.4222     0.5000 

Central European Media Enterps.     0.4888     0.5000     0.4238     0.5000 

Breakwater Resources     0.5000     0.5000     0.4481     0.5000 

Inmet Mining Corp.     0.4979     0.4533     0.4498     0.5000 

Compania de Minas Buenaventura     0.4983     0.5000     0.4644     0.5000 

Elbit Systems     0.4994     0.5000     0.4660     0.5000 

Elbit Medical Imaging Ltd     0.5000     0.5000     0.4736     0.5000 

Form Factor Inc.     0.4995     0.5000     0.4917     0.5000 

Apco Argentina     0.4908     0.5000     0.4945     0.5000 

Aladdin Knowledge     0.5000     0.5000     0.4966     0.5000 

Consolidated Water Co Ltd     0.5000     0.5000     0.4966     0.5000 

Dorchester Minerals LP     0.4992     0.5000     0.4997     0.5000 

Allied Motion Technologies In     0.5000     0.5000     0.5000     0.5000 

ATS Automation Tooling Systems     0.5000     0.5000     0.5000     0.5000 

Attunity Ltd.     0.5000     0.5000     0.5000     0.3814 

Audio Codes Ltd.     0.5000     0.5000     0.5000     0.5000 

Axesstel Incorporation     0.5000     0.5000     0.5000     0.3814 

B.O.S. Better On Line Solution     0.5000     0.5000     0.5000     0.5000 

Ballard Power Sys.     0.5000     0.5000     0.5000     0.5000 

Bingo.com Ltd.     0.3814     0.5000     0.5000     0.5000 

Biovail Corporation     0.4998     0.5000     0.5000     0.5000 

BVR Systems 1998 Ltd     0.5000     0.5000     0.5000     0.5000 

Calavo Growers Inc.     0.5000     0.5000     0.5000     0.5000 

Camtek Ltd     0.5000     0.5000     0.5000     0.5000 

Canadian Superior Energy Inc.     0.5000     0.5000     0.5000     0.5000 

Casual Male Retail Group     0.5000     0.5000     0.5000     0.3814 

CE Franklin Ltd     0.5000     0.5000     0.5000     0.5000 

Ceragon Networks Ltd     0.5000     0.5000     0.5000     0.4590 

Certicom Corp     0.5000     0.5000     0.5000     0.5000 

CEVA Inc.     0.5000     0.5000     0.5000     0.5000 

China Automotive Systems Inc     0.5000     0.5000     0.5000     0.5000 

Defense Industries Int'l Inc     0.5000     0.5000     0.5000     0.5000 

Delta Galil Industries Ltd     0.5000     0.5000     0.5000     0.5000 

Destiny Media Technologies Inc     0.3814     0.5000     0.5000     0.5000 

Entrx Corp     0.5000     0.5000     0.5000     0.5000 

IAMGOLD Corp.     0.5000     0.5000     0.5000     0.5000 

Intertape Polymer Group Inc.     0.5000     0.5000     0.5000     0.5000 

Isotechnika Inc     0.5000     0.5000     0.5000     0.5000 

Ivanhoe Energy Inc     0.5000     0.5000     0.5000     0.5000 

Jacada Ltd.     0.5000     0.5000     0.5000     0.5000 

Kirkland Lake Gold Inc     0.5000     0.5000     0.5000     0.4821 

Magna Entertainment Corp     0.5000     0.5000     0.5000     0.5000 

MDI Inc     0.5000     0.5000     0.5000     0.5000 

Med-Emerg International Inc.     0.3814     0.3814     0.5000     0.5000 

Medical Nutrition USA Inc     0.3814     0.5000     0.5000     0.5000 

Moro Corp     0.3814     0.5000     0.5000     0.5000 

Net Sol Technologies Inc     0.5000     0.5000     0.5000     0.5000 

New Ulm Telecom Inc     0.5000     0.5000     0.5000     0.5000 
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Graph X.8 Surface that Shows Relationship between EBIT, MPD and Output 

 
 

 

Graph X.9 Surface that Shows Relationship between EV/TS, MPD and Output 

 
 

 

Graph X.10 Surface that Shows Relationship between NSh, MPD and Output 
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