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ABSTRACT

ABELIAN - NON ABELIAN MIXING AND COSMIC INFLATION IN
BORN-INFELD TYPE GRAVITY

General Relativity (GR), which forms the basic framework for understanding cos-
mological and astrophysical phenomena, is based solely on general covariance. There-
fore, the theory admits extensions regarding various phenomena related to inflation, mas-
sive gravity, dark energy etc.

In this thesis work we study Born-Infeld type extensions of the GR. There are
mainly two parts in the thesis: The extension based on Ricci tensor (already known in
literature) and a novel extension based on Riemann tensor. We call them respectively
Born-Infeld-Einstein (BIE) and Born-Infeld-Riemann (BIR) extensions. The BIR for-
malism is being proposed and studied in this thesis work. In a comparative fashion, we
study these two extensions for determining their implications for

1. Mixing between Abelian and Non-Abelian gauge fields, and

2. Inflationary phase of cosmic evolution.
As we prove explicitly, the two approaches yield distinct predictions for these phenomena.
We emphasize that a slow-roll inflationary dynamics is naturally realized in BIR. The
mixing between Abelian and Non-Abelian sectors enables cosmic photon production in

inflationary phase.
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OZET

BORN-INFELD KUTLE CEKIM KURAMLARINDA
ABELYEN - ABELYEN OLMAYAN KARISIMI VE KOZMIK SISME

Kozmolojik ve astrofiziksel olgularin anlasilabilmesi icin temel bir cerceve olan
Genel Gorelilik (GR), genel kovaryans ilkesine baghdir. Buna gore, bu kuram kozmik
sisme, karanlik enerji gibi degisik olgular1 agiklayabilecek genisletilmelere izin verir.

Bu tezde GR’1n Born-Infeld tiirii genisletilmis formlar1 lizerinde calistik. Esas
olarak bu tez iki boliime ayrilmistir: Ricci tensoriine bagh bir genisletme (bu tarz bir
genigletme literatiirde bulunmaktadir) ve Riemann tensoriiniin kendisine bagli, alisilmisin
disinda bir genigletme. Sirasiyla bunlar Born-Infeld-Einstein ve Born-Infeld-Riemann
(BIE ve BIR) olarak adlandirilir. Bu tezde, bu iki yaklagimin

1. Abelyen ve Abelyen olmayan ayar alanlarinin karisimi

2. Kozmik evrimin sisme fazi
durumlarindaki etkileri iizerinde calistik. Acik bir sekilde gosterdigimiz gibi, bu iki
yaklagim yukarida verilen olgular i¢in farkli 6ngoriiler saglar. Bu tezde kozmik sigsmenin
dinamiginin dogal bir yolla BIR’dan ¢iktigim1 ve Abelyen ve Abelyen olmayan alanlarin

karigiminin, evrenin sisme fazinda kozmik foton iiretimine izin verdigini gosterdik.
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CHAPTER 1

INTRODUCTION

Understanding of Universe has been a giant puzzle since ancient times. Observa-
tions and experiments showed that it was born with Big Bang and then started to expand.
This expansion caused to form of subatomic particles such as quarks, leptons and then
fundamental interactions of nature. Now, we know that there are four fundamental inter-
actions which are Electromagnetism, Weak Interaction, Strong Interaction and Gravita-
tion. All theoretical physicist’s dream is to unify these fundamental interactions. In the
second half of the 20th century, Electromagnetism and Weak Interaction was unified in a
theory which was called as Electroweak Theory. Moreover, Strong Interaction was added
to them and this model was called as Standard Model.

So then, what about Gravitation?

Einstein gave a different perspective to gravity in the paper of General Relativity
(GR) in 1916. He claimed that Gravity is the effects of curving of spacetime. Until now, it
passed a numerous experimental tests. However, it still posses some problems at galactic
and large scales. For example, it needs extra ingredients, called as Dark Matter and Dark
Energy, to explain galaxy rotation curves. The another way to explain phenomena which
could not explained by GR is to modify General Relativity. There are several types of
modification and one of them is Born-Infeld Type Gravity (Born-Infeld, 1934). There
are some papers which claim that Born-Infeld Type Gravity could explain galaxy rotation
curves without Dark Matter (Banados, 2008).

In addition to the possibility of explaining phenomena which GR could not ex-
plain, Born- Infeld Type Gravity theories also give a chance to unify gravitation with other
interactions. In this thesis, we worked on Born-Infeld-Einstein gravity which is obtained
by using rank-2 tensor fields such as Ricci tensor and Metric tensor. Also we analyse
Born-Infeld-Riemann Gravity which is obtained by using rank-4 tensor fields, especially
Riemann tensor itself. Hence, to see their cosmological implications, we examine both
theories in homogeneous and isotropic background, FRW background.

In this thesis we use metric theory of gravity and natural units. Detailed explana-
tion is given in Appendix A.

The thesis was organised as follows. In Chapter 2, we gave a brief summary about

gauge theories. Especially we examined Abelian Gauge Theories and Non Abelian Gauge



Theories to understand the importance of the mixing of these terms.

In Chapter 3, we explain Born-Infeld Theory and give their detailed calculations.
As a result of this chapter we noticed that what the determinant notion give us.

In Chapter 4, we explain original Born-Infeld-Einstein Theory and then examine
what happens if we add some new terms to the action and we realize that our modification
brings in Abelian -Non Abelian Mixing naturally.

In Chapter 5, we analyse Born-Infeld-Riemann Gravity and its solutions due to
our modification. This type of modification gave us Abelian-Non Abelian mixing terms
naturally too.

In Chapter 6, firstly we introduced inflationary cosmology briefly, then analysed
both Born- Infeld- Einstein and Born- Infeld- Riemann type modification in Friedmann-
Robertson- Walker (FRW)background. From there, a question occurs: These modifica-
tions gave us inflation?

Finally, in Chapter 7 we concluded the thesis.



CHAPTER 2

GAUGE THEORIES

Symmetries are the most important concept of the physics. Noether Theorem says
that, if a quantity remains invariant under appropriate changes, then there should be sym-
metry. We can classify symmetry in two parts: Discrete and Continuous symmetries.
Lattice symmetries in condensed matter physics is an example of discrete symmetries
while spacetime symmetries in quantum field theory is for continuous symmetries (Beis-
ert, 2013).

In the language of mathematics, symmetries are described by group structure. In
this thesis we deal with continuous symmetries and groups, which are also known as Lie
Group. One of these symmetries is gauge symmetry which is continuous, local, internal
symmetry (Enberg, 2013). If we want to make one more definition for gauge symmetry,
we can say that any physical quantity has gauge symmetry if it remains unchanged under
gauge transformation. So then, what is gauge transformation?

Gauge transformations are phase transformations. They can be global or local.
Global means that, transformation does not depend on spacetime whereas local means
that transformation depends on it. The set of gauge transformations constitutes gauge
group. Moreover the theory which is invariant under gauge transformations is called
Gauge Theory. From there, whole gauge theories have gauge symmetry. Gauge theory
is one of the most important notion of physics since it is modern theory of fundamental
interactions. The crucial role is played by phase factor which is associated with a parallel
transport in an external gauge field (Makeenko, 1996).

The well-known example of gauge theory is Electromagnetism. Moreover, the
Standard Model which is a unified description of all interactions of known particles except
gravity is also gauge theory. Gauge theories could be Abelian which is commutative or
non Abelian which is non commutative. Electromagnetism is an Abelian Gauge Theory
and then its generalisation to non Abelian Gauge Theory, which is known as Yang-Mills
theory, was given by Yang-Mills in 1950s . Standard model is also an example of non
Abelian Gauge Theory.

In this thesis, we demand to obtain Abelian-non Abelian mixing terms which can
have cosmological implications. Then, in the following sections we examine Abelian and

non Abelian Gauge theories one by one in order to understand meaning of mixing.



2.1. Abelian Gauge Theory

Abelian gauge theory is a theory which remains invariant under Abelian gauge
transformation. Under the roof of Particle Physics we deal with unitary transformations.
In the set of unitary transformations, the only Abelian one is U(1) gauge group which has
one parameter and consists of all unitary 1 x 1 matrices. To understand how it remains
invariant, let us examine briefly real scalar field Lagrangian, which is also called Klein-
Gordon Lagrangian,

Lx_g=0,00"d +m*®*®

where @ is the real scalar field (we hold the complex conjugate since transformation
contains complex components while the field itself does not). Under global U(1) gauge

transformations, which is the group of complex phase rotations, ®(z) becomes

O(z) — P'(z) = exp(ia)P(x) (2.1)

Since the transformation is global, phase, «, is independent of spacetime coordinate. Then

the new Lagrangian which is a function of ®'(x) is

kea = (0,2 0" +m*oYP
= 0, (exp(—ia)®*) 0" (exp(ia)®) + m? exp(—ia)P* exp(ia)® (2.2)

Hence due to independence of spacetime point of «, there is no contribution which comes

from the exponential. Then the transformed Lagrangian takes the form as

ea = 0,0°0"® +m*d*d
ko = Lr (2.3)

It means that Lagrangian remains unchanged under global U (1) transformation. This is
the Gauge Symmetry!

Let us also examine local gauge transformation in which o depends on spacetime,



i.e. a(x). Thus transformation can be written as
O(z) — () = exp(ia(x))P(x) (2.4)
Then Lagrangian becomes,

oo = (0,9) 0" +m*dYe
= Oy (exp(—ia(x))®") 0" (exp(icv(z))P)
+ m?exp(—ia(x))®* exp(ia(x))P (2.5)

Since phase factor depends on spacetime, the derivative operator acts on it also! Then

Lagrangian is written as

w_c = |—iexp(—ia(x))®*0,a(z) + exp(—ia(z))d, D]
X [iexp(ia(z))P0"a(z) 4+ exp(ia(x))0" D]
+ m?exp(—ia(x))®* exp(ia(x))P
= [—i®"0,a(x) + 0,97] [i PO a(x) 4+ 0" D]
+ mPord (2.6)

At first glance, the Lagrangian seems not to be invariant. However, if one changes deriva-

tive operator into gauge covariant derivative operator which is
D, =0,—19A,
and applying gauge transformation to the gauge field A,, as
1
A, — A+ Eaua(x)

it is straight forward to see that we have a gauge invariant Lagrangian under local gauge

transformations (Lewis, 2009).



In this step we introduce a new field, gauge field, to the theory. In Particle Physics,
gauge fields have a crucial role. They are force carriers of the gauge theories. In the light
of gauge transformation of gauge field, we can deduce that the mass term of gauge field,
A, A" is not invariant under gauge transformation. Thus, to preserve gauge invariance,
gauge fields should be massless. This explains why we need Higgs Mechanism (Griffiths,
1987).

Due to the force carrier properties of the gauge fields, they are called as gauge
bosons. Each generator in gauge group corresponds to a gauge boson. In Abelian Gauge
theories, which is in U(1) gauge group, there is one generator and then one gauge boson.
For Electromagnetism, this gauge boson is photon.

As we mention above, Electromagnetism is an Abelian Gauge Theory. So, to
preserve its local gauge invariance we need gauge covariant derivative and gauge field. In

the light of these, What is the Field Strength of Electromagnetism? It can be written as

[D,.,D,] = —igF,, 2.7)

From there, Field Strength Tensor of Electromagnetism, anymore we call it Abelian Field
Strength Tensor, is
F.=0,A,—0,A,

2.2. Non-Abelian Gauge Theory

Non Abelian Gauge Theory is the theory which remains invariant under local
transformations of non Abelian gauge group. Then, what is non Abelian gauge trans-
formation? and what is the difference between Abelian and non Abelian gauge trans-
formations? As we mentioned in previous section; in Abelian gauge transformation, the
group elements are commutative although in non Abelian gauge transformation they are

not. For non Abelian gauge group,

[Taa Tb] = fabcTc



where T, is the generator of the group and f. is the structure constant. In the class of
unitary gauge groups, U(n), all groups are non Abelian except U(1). This is related to
generator number of the group which is determined by n?.

Our aim is to obtain invariant action under local gauge transformation which we
call as G. However, in non Abelian gauge groups generators are represented in matrix
form and so action contains det G. This breaks the invariance of the action. Hence, to
avoid this challenge, we use operator of non Abelian group whose determinant is 1. It is
called special unitary group , in short SU(n). The generator number of SU(n) is given
as n? — 1. From there SU(2) and SU(3), which are non Abelian gauge groups of the
Standard Model, have 3 and 8 generators respectively.

Let us examine local transformation of gauge group SU(2) on real scalar field
®(z). Suppose that

P — & =exp (zi&(a:)) P
where L is the generator of the group and & is phase factor. By using Einstein summation

rule, scalar product can be avoid and transformation is written as
& — &' =exp (iL,a%(x)) P

Here, since we work on SU(2) gauge group (especially in §6) and it has 3 generator, a
can take three different value as a = 1,2, 3. In the following chapters of this thesis, we
deal with SU(2) for non Abelian gauge group, so our gauge indices take three different

values. Then applying transformation to the Klein Gordon Lagrangian
Lr_g=0,00"® +m’d*d
"_c becomes

k- = [—iexp(—il,a®(2))P"Lodua (x) + exp(—iLea’(z))0, D]
x  [iexp(iL,a®(x))®L,0"a(z) + exp(iL,a(x))0" ]
+ m2exp(—iL,a®(x))®* exp(iL,a®(x))®
= [-i®*L,0,a%(x) + 0,9 [i®PL,0"a"(x) + O"®] + m*®*®  (2.8)



In this step, one can deduce the covariant derivative as like as Abelian case.
D, =0, —19A", L,
where A?, is non Abelian gauge field and it is transformation is given as
A% Ly — A" Ly + é (0,0%) Ly + i[a Lq, A® Ly

Under these transformations, Klein-Gordon Lagrangian has local non Abelian gauge in-
variance. In the previous section, we mentioned about gauge fields are force carriers of
the theories. Then, since gauge index has three different values for SU(2), there are three
different force carriers, gauge bosons. They are W= and Z°. These are gauge bosons of
weak interactions. For SU(3), there are 8 gauge bosons since this group has 8 generators
and these are gluons. SU(3) is the gauge group of strong interaction. Thus, field strength

of non Abelian gauge theory is given as
Dy, D] = —igF*,, L, (2.9)
From there, by using the commutation rule

[Laa Lb] = fabch

Field Strength Tensor of the non Abelian fields, any more we call it as non Abelian Field

Strength Tensor, takes form
a a a a b c
FuV:8ﬂAV_aVAu_gbeA;LAV

In the light of discussion given above, Standard Model which is the unified theory
of fundamental interactions except gravity is non Abelian Gauge Theory. Gauge groups
of this theory are (1) for electromagnetic interactions, SU(2) for weak interactions ( for

electroweak interactions which is unification of electromagnetism and weak interaction,



gauge group is given as U(1) x SU(2)) and SU(3) for strong interactions.



CHAPTER 3

BORN-INFELD THEORY

Born-Infeld Theory (Born-Infeld, 1934) was orginally proposed by Born and In-
feld in 1934 to solve the problem of diverging Coulomb field and self energy of point
particles in Maxwell’s electrodynamics (Wohlfarth, 2004). This theory is non-linear
extension of Maxwell’s theory and reduces to Maxwell equations for small amplitudes
(Nieto, 2004). Also, in 1980s, Born-Infeld Theory became of very much interest due to
its relation with SUSY and String Theory. Thus it is a significant theory.

Born and Infeld used determinantal form given below.
Sp_; = / d*xM* [det(A,,)]"? (3.1)

A, can be expanded as

A;u/ = Guv + af;w

where g,,,, is symmetric and f,,, is antisymmetric parts of A,,,. Hence the action becomes;

SB,[ = /d4$M4 [det(gw, + afuu)]1/2 (32)

For an exact physical theory, action

Sz/d%ﬁ

must be dimensionless.
e In D dimensional spacetime, [dPz] = M~P for D =4 — [d*z] =M~
e D=4 — [L]=M"*

By using this fact, let us examine dimensions of constituents term by term.

e Metric tensor is dimensionless [g,,,| = M°.

10



e Dimension of antisymmetric tensor (Assume that it is electromagnetic tensor)
[f ul/] =M 2’
e [a] = M~ to cancel out dimension of f,,

Here we should examine Born-Infeld action in order to understand Born-Infeld procedure.

Let us start with considering [det(g,, + af..)] 1/2

. By bracketing of g,,,
det(gu +afw) = det[gu.(d®, +af?,)] (3.3)

and by using the property of determinant given below

det(A.B) = det(A). det(B) (3.4)
it becomes
det(guw +af) = det(gua)det (0%, +af) (3.5)
Then Eq.(3.2) becomes,
Sar = [ dedtt (det (g.0) 7 et (5%, + af?)] (3.6)

Here we have to find expansion of det (0%, 4+ af®,). The series expansion is given as

det (0, +af",) = %[ Z rl(arey] (3.7)

k=0 7=1

If we expand this series up to third order and use the trace property

Tr(aX) = aTr(X)

11



where ¢ is a constant;

9] k
dot (0%, +aft) = Y g |Trlafh) = 3Trlaf P+ O
k=0
= [ arr(n) - ST + T
+ O(A3)] (3.8)

To find

et(go + ol = (Ut aTr() = Sa?Tr{(f2,0) + 5a[Tr(f,)

1/2
+ (9(A3)] (3.9)

we should also use binomial expansion which is

o0 oo '
(1+2) = Z (Z)$k = Z k'(ee——k)‘xk (3.10)

k=0 k=0
Fore=1;
1 s l
A+a)i = Z@xk
k=0
3! A 5
= 1 O(A
Tt T ag gyt W
l(l_l)l l(l_l)(l_g)!
— 14 22 T4+ 22 2 2% + O(A?)
(3 — D! 21(3 — 2)!
11
= 1—|—§a:—§a:2+(’)(A3) (3.11)

Hence, if we choose x as

v = aTr(f%,) — g Tr{(f) + 5o [Tr(f)F (3.12)



Then 2 takes the form as

2

s = |aTr(f) = ETH( )+ ()
= a*Tr[(f*)* + O(4?) (3.13)

By inserting (3.12) and(3.13) in (3.9), [det(g,,, + af..)]"/* becomes;

[det(gu + afu)]* = [det(gua)]2{1+ 5 [aTr(r) = SaTr((f,)
b @rr()P] - [, r] + ot )
= [det(gu)]?[1+ JaTr(7,) — 3@ Trl(f))
+ éaQ[Tr(fay)F +0(4?)] (3.14)

This is the expansion of determinant given in Eq. (3.6). By substituting the result given

in Eq.(3.14)in the Eq. (3.6), the action becomes

Sur = [ dadrdet(g,) (14 aTr(s7) = J@TH())

b oL@rr(r) (3.15)

From now, we have an action containing trace of tensors instead of determinantal form.

Trace of nth order any rank-2 tensor is given as

TrA" = A, A5 A, Al (3.16)

v Hn—1Hn

(Koerber, 2004). Thus,

Tr(fe) = f° (3.17)

v (63

13



Since we assign f,, as electromagnetic tensor which is

0 E, E, E.
~E, 0 —-B. B,

f;w:
~E, B. 0 -B,
~E, B, B, 0
Tr(f2) =0 (3.18)

and so by using the equation given in Eq.(3.18)

[Tr(f%,))* =0 (3.19)

too. There is no contributions from trace of f,, or square of it. The only term giving

non-vanishing contribution to the action is T'r[( f )] and it is expanded as

Trl(fo)? = for%

- fuugaufya
= f;wfy'u
- _f;u/f/w (3.20)
From there, since [det(g,4)]"/? = v/—0,
4274 1L, v
Spy = [ daM \/——g<1+ 10 ) 3.21)
By arranging;
4 4 1 4 2 Qv
Sp, = |[d a:\/_—g<M + M f ) (3.22)

14



Here, M* corresponds to accumulated energy in the universe. f,,, f** is just Lagrangian
term of electromagnetic field. Therefore, Born-Infeld theory provides us cosmological
constant and electromagnetism. One of the remarkable result of this theory is that elec-
tromagnetism is embedded in geometry since we use determinant notion. Moreover, in
Born-Infeld theory, metric is not a dynamical variable. It means that we have no variation
with respect to metric tensor. The only role of metric tensor is to supply invariance of
action in the case of coordinate transformation.

As a consequence; Born-Infeld Theory yields to Electromagnetism.

15



CHAPTER 4

BORN-INFELD-EINSTEIN GRAVITY
Eddigton introduced the action (Eddington, 1924),

Sepp = / d*z [det(R,, (T))] 4.1)

and inspiring from Eddington; Deser and Gibbons proposed that Born-Infeld-Einstein

Gravity (Deser, 1998) and their action is given below:
_ 4002 1/2
Sp_a = /d xMp, [—det (agu + ORuw + X)) 4.2)

Dimensional analysis:

o [a, [Xu] =M
o [b=M"

If one choose ), = bR, + X, then Sp_¢ becomes;

Sp_g = /d%Mﬁl [—det (ag, + QW)]U2 4.3)

In this step let us examine expansion of determinant and to do this let us follow the same

procedure given in previous chapter. Thus, by bracketing of ag,.

—det (aguw + Quv) = — det {agua (5% + éQO‘V) } (4.4)

16



and also by using (3.4),
—det (agu + Q) = [— det (aguq)] det (5“,, - é@al,) (4.5)
The one other property of determinant;
det(cA) = " det(A) (4.6)
for n x n matrix. Then,
det (agu) = a* det (gua) 4.7)

1

Since g,q is 4 X 4 matrix for D = 4. For det (5”‘V + —Qay), we can use the expansion
a

given in Eq.(3.8),

1 1 1
det <5a,, + 5@%) = 1+ aTr Q) — ﬁTr (@))%

1
+ 5 T (Q%)] +0(4%) (48)
and also using binomial expansion given (3.11)

[~ detlagu + Q)] = @ [ det(g)] {1+ 3 [1Tr(@°,) — 55 Tr(@ )]

2 2
b oalTr(Q@P] - g [Tr@)?] + 0<A3>}
= ¥ det(gw)]l/Q [1 + %TT(QO‘ ) — —TT[(Qa )%
bl @) + 0] 9

17



Then action becomes,

Sp-a = [ deMpe (- det(gn) 21+ 52T0(Q") — 15 Tr(Q))

4a?

1
—l—@[Tr(Qo‘y)]z +O(A%|  (4.10)
Let us find traces being in Sp_¢. To do this, we use (3.16):

@) = Q%

= bR", + X°, (4.11)
and it can be rewritten as
Tr(Q%,) =bR+ X (4.12)
and from(4.12),
[Tr(Q*))* = b*R* + 2RX + X*? (4.13)

For Tr[(Q?,)?%], we use again Eq.(3.16)
Tri(@%)] = Q%Q"%
= Qw/g#aan
= QMVQV'M (4.14)

Since Q. = bR, + X, and QV* = bR + XVF

Tr[(Q%)?Y] = QuQ™ = RuR™+ RuWX"™ + X, R™ + X, X" (4.15)



Here R,, and X, are symmetric tensors. Therefore, R,, = R,, and X, = X,,..
Moreover, R, X"" = R?g,,9,,X"" = R”X,,. By changing indices as p — v and

o— R, X" =R"X,,. Thus
Tr[(Q%)Y] = RuR"™+2R,X" + X, X" (4.16)

Hence, by subsituting (4.12),(4.13) and (4.16) in (4.10) and changing representation as
[~ det(gua)]'* = V=9

1 1
SD—G = /d4$M}%lCL2\/ —g |:1 + % (bR + X) - @ (RHZ/R'LW + 2R;LVXHU

1
£ XX ) + 5 (PR 2RX + X?) + O(4)| - @.17)

If we want to obtain natural theory, we should avoid non physical components from
the theory. Here, R*”RR,,, term results in ghost when it is expand perturbatively around
Minkowski background. Ghost- sometimes called as bad ghost- means that wrong signed
kinetic energy of any scalar field. For instance ,If metric tensor is Diag[-,+,+,+] and ki-
netic energy of scalar field positive signed, then it is called as GHOST (Karahan, 2010).
Since ghosts allows probabilities to be negative, it violates unitarity. Higher derivative
curvature theories always contains ghosts (Stelle, 1978). Therefore, to have a natural
theory, we cancel out non-linear curvature terms besides ghosts by using X ...

Suppose that

1
BgMVXaa =X (4.18)

To test this assumption let us multiply both sides with g*”

1

—gwg" X%, = Xug"” (4.19)
D N—— N——
§",=D Xv,
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—DX°, = X",
— X=X (4.20)

Then our assumption is hold! To cancel out ghosts, let us define X,

1 1
X = %bQ (RPURW - §R2) (4.21)

1
In light of our assumption, multiply both sides with 7 since we work on 4-dimensional

spacetime.

1 1 1 1
—guwX® ==g,—b* | R,,R"” — - R* 4.22
49w a 49“2a(P 2) (4.22)
N——
Xuv
b2 oo 1 2
X/W = @gﬂy RpoR — §R (423)

By substituting (4.23) in (4.17)

1
Sp-G = / d'eMpa®y=g(1+ §§R+0(A3)) 4.24)

All surviving terms without (1 + %R) are higher order terms because X is defined by
using square of Ricci tensor.

Here, we can explicitly see that Deser and Gibbons theory consist of cosmological
constant and general relativity. This theory reduces to Einstein Equations in the limit
of small curvature. Moreover, in case of Deser and Gibbons theory, metric is not only
provide invariance of the action, but also has dynamical role. Einstein equation can be
obtain by taking variation of action with respect to metric tensor.

As a result, Born-Infeld-Einstein Gravity yields to Cosmological Constant and

General Relativity
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4.1. Born-Infeld-Einstein Gravity with Abelian and Non-Abelian
Fields

In this section, we claim that BIE theory can be extended by adding new fields to

the action. Our suggestion is
1/2
Spip = / d*x M3, [ — det(agu, + bRy + cFuy + dF%, F, 0% + X,,)| (4.25)
Here F},, is Abelian Field strength tensor and defined as
Fu =0,A, —0,A, (4.26)
and F;ja is non-Abelian Field strength tensor, it is called also as Yang-Mills Field.
Fo = 0,A%, — 0,A%, — ge*, A A, (4.27)

where g is coupling constant and €%, is antisymmetric Levi-Civita symbol. Let us exam-

ine dimensional analysis:
o [Ru).[Fu) [F2,) = M
* [gu] = M°
o [a], [Xu] = M
o [b].[c] =M~
o [d=M3

By bracketing of ag,,,

~ - b c
aguw + bRMV + bl + dFauaFaﬂugaﬂ + X, = aguo (6011 + ERUV + ZFUV

d 1
& pac pa geoB 4 —xo ) (4.28)
a a* fpr a v
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if one makes definition given below,

b d 1
TRUV + gFaV + TFaJaFa/gl,gaB + TXUV — A°
a a a a

v

then Sg;g takes form as

Spig = /d4$M1231 [— det(ag,,) det(67, + Aau)]l/z

= [ [ detag)] " e, + A7)
By using (4.6) and (4.7)

[~ det(age)] " = [a'[~ det(gu)]
- Vg

(4.29)

(4.30)

(4.31)

In this theory, to obtain a reasonable results, we should expand the series up to fourth

order. Therefore, let us rewrite expansions: By using (3.7)

det (67, + A%,) = ) L {Tr (A%,) — %Tr [(A%,)7] + %Tr [(4%,)°] + O(A4)}

Tr(A°%,) — %Tr (A7) + Tr | }

det (0%, + A%,) = 1+Tr(A%,) - %Tr [(A7,)%] + %Tr [(47,)°]
— ST T (A7) 4 ¢ [Tr (47, + 04"

Tr(A°,) — %Tr [(AUU)Q] +=Tr [ ] + O(AY)

) (4.32)

b5 [T (47,

(4.33)
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If we expand binomial series up to 4" order, by using (3.10),

11
(1+2)"* =1+ 57t §x2 + %xB + O(AY (4.34)

and by choosing

t = Tr(A%)— L [(47,)°] + Ly [(4°,)°] + L [Tr (A7)

2 3 2
— ST LA T [(A%,)7] + S T (47, + O(AY) (435)
and so
2 = [Tr (A%)) — Tr (A%,) Tr [(A7,)°] + [Tr (A%,)) + O(AY) (4.36)
® = [Tr (A7) + O(AY) (4.37)

substituting (4.35),(4.36) and (4.37) in (4.34)

[det (67, + A7) = 1+ %Tr (A7) — iTr [(47,)%] + %Tr [(A7,)"]
b (A — T (A7) Tr [(47, )]
- % [Tr (A% )] + O(AY (4.38)

Then,

1 1 1
Spie = /d4a:Ml%ld2 —g{l + ETr(A" V) — ZTr[(A"V)2] + gTr[(A”V)?’]

b ITrAT ) — STr(ATTr(A7,)7) — S [Tr(A7,) + O(4") } 439
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Lt us calculate traces one by one:

Tr(A%,) = A
b d 1
— R4 —F+4-F" F% ¢ +-X (4.40)

a a a a

v

Since F' = 0 due to antisymmetric nature of F},,,

b d 1
Tr(A%) = =R+ ZFWaF‘lﬂygaﬁ +=X (4.41)

Then,

2
Tr(aT )P = R+

- 7l

2b
RF™  F* 3,9°° + SRX
a
+ a_FaV aFa BygaBFb/\ EFb 9}\959

1
+ SXFY L F 59" 4 —X? (4.42)
a

o b’ &’ av a o el e c wT 1
[TT(AV)]?) = $R3 + %F aF prg ﬂFb)\ EFb oxg HF K wF ™y + %Xg

3b%d 3b?
+ ~—3R2FaVaFa5Vgaﬁ+~—3R2X
a a

3bd? 6bd
+ ~_RFuw aFa ﬁygaﬁFb)\ EFb 6}\929 + ~_RXFCU/ aFa Bygaﬁ
a3 a3
3b 3d>
+ 5RX2+?XFaVaFaﬁygaﬁFbAane)\gae

3d
+ $X2FW oF 5,9 (4.43)

1.e.

o b3 3b2d av a (6%
[Tr(A2)]® D 533 + ?RQF 9% (4.44)
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To find Tr[(A° ,)?] and Tr[(A” ,)?] we should use (3.16)

Tri(A% ,)?] = A,,A"

and

b? 2bd 2b c?
o v a a af v v v
= ﬁRuvRM + ?F pa ™ g9 R + ?RWX“ + ?FWF”
2c d?
+ ?FMVXMV + ﬁFa ,uozFa 5Vga’3Fb“ EFb 5989
2d

&2

TT[(AO' V)3] — AHVAVHAR 12
b3 b%d

2 Gl R R+ Ty R R EF
vd . c2d
v ak, a v a ark . af
+ ?R R)\HF 'uF Y + ?Fn FHVF HaF ﬁg
2d d
+ C~_3Fan,uFaMVFV)\F)\K T %FaﬁuFauyF)\l{XV)\
a a
cd av a «a K b2d K v a alo
+ P 29 Fan X5, + = RO RV A7 G
CQd K WA a ac cd K a ac VA
T PP EF S X
cd VA 1a aoc K
+ S FPOFXE, (4.46)

By using (4.41) and (4.45)

b3 b2d
Tr(A° )Tr[(A° )4 D gRR“”RWvLd—R“”RWF“AaF“mgQB

3
2
C d a a (0% 14
- = F® F5\ g F,, F"

2cd
+ %F“AQF“MQO‘BFWXW (4.47)

1
F B 5,6°° X, + ﬁXWXW (4.45)
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If we consider all these terms given in (4.41),(4.42),(4.43),(4.45),(4.46)and (4.47), then
the action of BIE with Abelian and Non Abelian Fields becomes,

171b d 1
SB]E = /d4‘7’1]\4123'l&2 V _g{l + 5 |:5R + EFCW aFa Bugaﬁ + EX]

1102 2bc 2b c?
v a a af v v v
[ﬁRWR“ T P g R 4 SR, X 4 B P

4
b OZRLX Z—EF P g P g 4 2 T 5,0 X,

+ %XWX’“’} + % [%ZRRWRW + i—jR“”RwF“)‘aF“ﬁ/\ g°?

_ ng_j Fa)\a Fey s F F™ + Q&Lj Fa)\a Fy s Fl, X’“’}

v % [2—232 n %RFW oF 5,9 + E—SRX

n C&Z_zFaV LF° BygaﬁFbA P g%+ ?I_CQZXFW JF° 5Vgaﬁ i %Xﬂ

_ é [ 2_2 R R, "R, + b&ig R* R F™, Faiu

n lg_j R Ry Fo e, 4 Cdig F,"F,, Fo Fx go8

+ C;—jFWFaWF“FM + %F“”"F“WFMX”A

n %l Faepe PO X"+ lg_g R® RMFC, Fog,.

+ C;_ngﬁyFV)\FaAO—FaaH + g_ziFnyFaAUFaUHXVA

n %l FA P, Fao Xnyi|

+ % [2—21%3 + ?)%R?FWF%} + O(A‘*)} (4.48)

Let us define X, in light of Eq.(4.18),

10° b 2b 1
_ -7 e aff Y poak 8 af T p2
X = 5= < 5e RRas R — Z R R Ro + RopR™ — SR
b . d 2d
. —R, RaBFamaFa . _RV5R UFaBUFa
2alt Tt G ’ v
d d
_ —~R2 thaFaUH 4 :RRyoFaanaay> G (449)
8a a

Thus, if one substitute X, in the action, R?, R, R* and R**R" R, terms cancel out.

Furthermore, all terms which contain X, or X are higher order. Considering this situa-
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tion and making some arrangement, action takes the form as

SBIE

+ o+

2
/ d4:cM1%”/_—g{a2 + g [bR - g—aFWFW + dFWaFaﬁugﬂ
1 14 a a « av a (6%
= [ — 4bdR™F®, F%, " + 2bdRF®, F% g
2d2FaﬂaFaBVgaﬁFb;thV€geé + d2 Faz/aFaBVgaﬂFbAE Fbe)\geﬂ

1 3 raoB ra bAp b cen e 3 ra ac bup b cen 1C
= [d Fer8 po, FFY Fe1Fe 4 6d° ., F, " % Fenpe

ao a vp b, c c aoB a

8d°F 7P F, F*"PF™ FC, F 4+ bd*RF*PF% F*™F°
6bd*RF“, F*°, F*?F" — 12bd’ " F*, F*, F*"F" |
24bd’ R F°P Py, FY P — 6bc> RF™ F,,, + 24bc* R F°, F,

6c2dF™ F,, FoPF, + 24chF"VF"“F“WF“’70} } (4.50)
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4.2. Abelian - Non Abelian Mixing in BIE

In the end of very long calculations, we obtain an action given in Eq. (4.50). Let

us rewrite it and analyse term by term.

02
b R —S F, FM 4dF™ Fo aﬁ}
|:\/ 2&\&,—/—1— \Lﬂ/
2 3

a

SBIE = /d4$M12;»l\/ —g{&2 -+ 9

co| —

[ — 4bd R™F°, F, °° +2bd RF™, F, ¢°
-~ " N—————

4 5

. 2d2 FauaFaﬁygaBFb;LFbuengG +d2 FauaFaBVgaﬁFb)\ere)\gsi]
ke 7

1 ao a cen e a ac vp b cen e
+ | P PR PR, 46d° B, F FY R R,

48a L « - -~
8 9
3 rac a bvp b c c 2 acB ma bAp b
= 8d° FUF, P EY FS, P, +bd” RE*VF PV,
10 it
+ 6bd® RF°, F* F" F™ —12bd* R F*, F* F*"F"
12 13
+ 24bd® RF°, F*PF" F" —6bc* RF"F,, +24bc* R""F°,F,,
N —~ N—— ——
14 15 16
— 6c*d FM F,, F*PF, 4+24¢*d F°,F"" F*, F* ] } 4.51)
17 18

Here, the term labelled as 1 is just the Einstein-Hilbert term. It gives us General Relativity
in small curvature limit.

The term labelled as 2 is just Lagrangian of Field Strength. This term supplies us
to Electromagnetism.

3 is called as Yang-Mills term. It carries Non-Abelian part of the theory.

The terms 1, 2, 3 are not mixed terms. All of them are responsible for their own
fields. From there let us examine mixed terms.

The term labelled as 4,5,11,12,13 and 14 have mixing of Non-Abelian Field
Strength tensor and Curvature. It can be interpreted as graviton-gluon coupling and can
be detected by means of High Luminosity experiments.

6,7,8,9 and 10 are coupling of two Non Abelian fields such as gluon-gluon cou-
pling.

The terms 15 and 16 are the coupling of Curvature and Abelian Field Strength
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Tensor. One can deduce that it is photon graviton coupling.

17 and 18 are Abelian-Non Abelian Coupling. This is the main purpose of our the-
sis. Born-Infeld-Einstein Gravity allows the mixing of Abelian and Non-Abelian fields.
This term can be responsible for photon-gluon coupling and it can be observed by High

Luminosity Experiments.
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CHAPTER 5

BORN-INFELD-RIEMANN GRAVITY (BIR)

Born-Infeld Rieman Gravity was firstly proposed in (Soysal, 2012). Main idea
of this theory is using rank-4 tensor fields to obtain an invariant action. In this thesis we

suggest a new form of Born-Infeld -Riemann Gravity which contains both Abelian and

Non Abelian fields.

5.1. Born-Infeld-Riemann Gravity with Abelian and Non-Abelian

Fields
Our suggestion is

SBrr = /d4xMI23l [DDet (KQQIMVQ + )\RRMQVQ + AFFuauﬁ + S\Fﬁuayg

+Xﬂwﬁ>} s

where

guauﬂ = Y9wYap — GupYar
F#alfﬁ = FMQFvﬁ
pavB FauozFaVB

(5.2)

and dimensions of constants are

o [Ruavs] = M?
o [Fhuavs] = M*
o [Fhuas] = M*
® [Guowg] = M°

30



o [k]=M!

o \g] = M°
[ ] [)\F] = M_2
o [S\F] = M2

Thus, substituting Eq.(5.2) in (6.89)

SBIR = /d4$M]23[ |:DD6t ('%2 (guugaﬁ - g,uﬁgou/) + )\RR,uowﬁ + AFFMQFI/ﬁ

s 1/4
AARF o F g+ XWVB)} (5.3)

By bracketing  (k%(g,,/ 9og' — 9,5 Jor’)) and using Eq.(3.4)

1/4

SB]R = \/\d4$M]23l |:DD€t <H2(gu1/’go¢,3’ — gMB/gOéV/>:|

l/, / A N1 )\ N1
X [DD@t(I Byﬁ + H—I;]TLUMQVB R,u’o/uﬁ + /{—};]TLUMO“/B Fula/ v

XF ulaly/ﬁ/ a a 1 #/a/l///gl 1/4
I P — I X )| (5.4)

1%

If one use expansion of determinant given in Eq.(3.8) and Binomial expansion given in

Eq.(3.10)

S = d4 M2 DD 2 — 1/4
BIR XTVLpy et| K (g,uu’gaﬁ/ g,uﬁ’gcw/
1

]_ '3 ]_ ' B '3
X [1+ZT7"(A 75 = STl )7 4 ST P

+ (’)(A?’)} (5.5)

1/4
Spir = /d4$M§’l [DDet (Kz(guV’gaﬁ’ - g#ﬂ’.%cl/’)]

« [pet(1”,, 4 477 )] v (5.6)
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3! A =0 A !l 5\ !l 1 ! 3!
v'B _ ‘R ' F -/ F a8 rma oy
A g = ?R W ?F F 5+ FF F 5+ /<;2X V8 (5.7)
where
JEE T L (5.8)
vB T 9 vy B v B :
and
/O/VIBI ]. /l/l a/ﬁl /IBI all/l
Ino* =3 (g“ 9" —g""g ) (5.9)

Firstly, let us examine D Det </~$2 (G Gop — GupGou') ):

DDet <'%2 (glw'g@ﬁ' - gﬂﬁ’gou/’) > = k*DDet <guu’9a6/ - g,uﬁ’gau’> = k%D Det <Quau/5')

for D = 4 where
Q,uoa/’ﬁ’ = Guw'Gap — Gup' Gar'

Then,
4 4
DDet (QW%,) = (vV=9)" ¢, (5.10)
1/4
and since we need D Det (Q o 5,>

1/4
DDet (QW@ — V=deon (5.11)

Expansion of D Det (I VA /V 5t AVP IV ﬁ> is given also as in (3.7). From there

V/ / V/ / 1/Z‘l 1 Vl ’ 1 l/, /
[DDet([ ﬁvﬁ Y Vﬁ} =1+ ZTT(A 5,,[3) - gTT[(A ’ v8)]
1 v' g 2 3
—|—3—2[TT(A )"+ O(4%) (5.12)
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Tr(A" )= A" 17 (5.13)
Therefore

TT(Aylﬁ/l,B)

A% RQ

)\2
+ FF”ﬁF sFoPF,, +

2A\R

2ARAF RF“PF® 5+ 2 RX

2AR\
R RFYPE,, + /fF

[Tr(A™ )

2)\
FWPFe s FoPF,, + —FF”B FsX

2AFAF
K4

/\2 2\p
A A G P e 0 O v X + — X2 (5.15)
K

(A" )Y = SRR R”By,ﬁ,+

2\
R FaV/BFa /IB/ + _RR XVBV/B/

/\2

L2 /\
+ FF”BF g g BV s

F"?F,sF"PF°,,

2)\F v/ B v )\F avf ma b bu' 3!
+ 2ERY X V,B,+FF F® 0 Y o F

(5.16)

In the light of these traces, we have also some terms which contain ghost. To cancel out

these term let us rewrite X”° IV 5 by using Eq.(4.18)

X7y = 5 T o ZRQ] (67,67, 6",07) (5.17)
K
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By inserting Eq.(5.17) and all of the traces from the begining of the this chapter into the

action given in Eq.(5.6) we obtain,

SBIR

A A A

/d45L‘M l/ﬁ) oD /—|:1_'_ 4( RR FFVBFVB FFaVﬁFa )
/f

1 2)\3)\1:‘ VB V3 2)\R>\F V' B! avf a

g( ! R VﬁF FV'5/+ K4 R VBF Fl/’ﬁ’

2 2>\F/\F

FF” F g F,sF"% + F"P FgF™PF,,

)\2 !/
FFaVﬁFa IB/Fb Fbu B >

)\2
REYPF, 5+ RF“PF*,, + jFVﬂ F,sF°°F,,

4 <2/\R>\F
32\ gt
ArAp

K4

2A\RAF
K4

)\2
FaVBFa FUpFap + _FFal/ﬁFa FbUpr ) + O(A3>:| (518)

For simplicity, let us define two new tensors

V'8! 1 / /
Ky'py=R" 5~ R0, (5.19)
131 1 / /
V'3 av' B a apo ra v oB
K= F R — e, 667 (5.20)

and with the new tensors, the last form of BIR action is

SBIR

1/A A A

/d%M%ZRQCDD\/—g[l—i—Z(—RR—i— SLF Ey+ LR, )
K2

1 2)\3/\}7 V'3 vB 2)\R)‘F VB avf a
8( /<‘-/4 K ,BF Fl/prinLeB/ + K ﬁF F V/IB/
3\F s v, 2ApAp Vg VB
4K4F F’B’FuﬁF "’ P KF u,BF FV’B’
A%‘ v' B! av a
SRR P+ O(A7) (5.21)
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5.2. Abelian - Non Abelian Mixing in BIR

After long calculations we obtain the action given in Eq.(5.21). let us rewrite it

and examine term by term.

Me A S
Spir = /d“prm Copv/— [1+ (Z2r+ FFVﬁFV5+ ERE, )
H /‘i
~—

4 N \ 7
f 2 3
2/\R)\F V' B vp QAR)\F v'B avf pa
— 8( K/ K BF Fy/6/—|— K 5F FV/B/
1 5

3)\% l/ﬁ V/B/ 2)\FS\F l//ﬁ, I/ﬁ

+ 4K4F FogFygF" " + ) KF VBF Fp
ks 7

5‘% B’ B 3

+ KT P, +0(A )] (5.22)

(. J
~\~
8

Here, the term labelled as 1 is just the Einstein-Hilbert term. It gives us General
Relativity in small curvature limit.

The term labelled as 2 is just Lagrangian of Field Strength. This term supplies us
to Electromagnetism.

3 is called as Yang-Mills term. It carries Non-Abelian part of the theory.

The terms 1, 2, 3 are not mixed terms. All of them responsible for their own field.
From there let us examine mixed terms.

The term labelled as 4 has mixing of Abelian Field Strength tensor and Curvature.
It can be interpreted as graviton-photon coupling and can be detected by means of High
Luminosity experiments.

5 is the Curvature- Non Abelian Field Strength Tensor coupling and it can be
interpreted graviton-gluon coupling due to High Energy experiments.

The term 6 is coupling of Abelian Field Strength Tensors, such as photon-photon
coupling.

7 is Abelian-Non Abelian Coupling. This is the main purpose of our thesis.

8 is coupling of two Non Abelian fields such as gluon-gluon coupling.

As a result, Born-Infeld-Riemann Gravity allows the mixing of Abelian and Non-
Abelian fields. This term can be responsible for photon-gluon coupling and it can be

observed by High Luminosity Experiments.
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CHAPTER 6

APPLICATION TO COSMOLOGY

A large part of modern cosmological theories are based on cosmological principle.
Cosmological principle is the hypothesis that the universe is spatially flat and isotropic
(Weinberg, 1972). Thus the standard cosmology is based on maximally spatially sym-

metric FRW line element which is

ds® = —dt* + a*(t)6;;dr'dx’  for k=0 (6.1)

(Riotto, 2002).In this chapter we examine our theories in terms of cosmology and what

they give us about cosmology. Let us start with brief explanation for inflationary cosmol-

ogy.

6.1. Inflationary Cosmology

Although FEinstein claimed that universe must be static, Hubble’s observation
showed that universe was expanding with an accelerating rate (Hubble, 1929). In the
light of this observation and the others which were made after Hubble’s discovery inspire
the scientist to search a theory which explains accelerated universe. One of the expla-
nation is given by inflation. This theory was originally proposed by Alan Guth in 1980
(Guth, 1980). Inflation is the period of the accelerated expansion of the universe. Scalar
and vector fields can be source of the inflation. The expansion rate is related to the scale
factor which is originated from FRW metric (Appendix A). The evolution of the scale

factor is governed by Einstein Field Equations.

1

RW—Q

Ry, = 87GT,, (6.2)
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In the case of perfect fluid, energy momentum tensor becomes
T,, = Diag [p, a’P, a*P, aQP}
Let us examine Einstein Equation term by term. In case of 4t = 0 and v = 0
Roo — %RQOO = 8n Gy
In light of Appendix A, this term becomes

3a?

? = 87TGp

Here < has a special meaning. It is called Hubble parameter and defined as
a

ISHES

From there, Einstein Field Equations for ;n = 0 and v = 0 take the form as

St@@
H® = —=p

Moreover, in case of y =i and v = j
1
Rij — ERg” = 87TGT;']'

Using curvature tensor in FRW background (see Appendix A),

IR 1 (i@ a?\ )
(aa+2a)5ij—§6 a"‘? a5ij:87rG(aP6,-j)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
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In this equation we have second derivative of scale factor. We find the second and third
derivative of the scale factor by taking derivative on Eq. (6.5) with respect to time. Then

we obtain
i= (f1+H%)a & i = (H+30H + H)a (6.9)
By inserting this result in Eq.(6.8) and in case of ¢ = j Eq.(6.8) becomes,

H = —47G (p+ P) (6.10)

As a result, Einstein equation for perfect fluid becomes

. 87G
H=—47G (p+ P) & H? = WTp (6.11)
Since M? = 1
P 8n
s g— (p+ P) & I (6.12)
“ oy ~ 3z’ '

By using equations given in Eq.(6.12), we can write density and pressure in terms of

Hubble parameter. Thus
p = 3M%H? & P = —M3 (26 + 3H?) (6.13)
On the other hand, in terms of any scalar field- called as inflaton- H? and H can be written

as

H = —¢ (6.14)
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Then equation of motion for the scalar field is
¢+ 3Ho+9,V(¢) =0 (6.15)

Here, the term which contains gb is just the friction term. To get inflation from scalar field
let us assume that we have a very flat potential, i.e the field vary slowly with respect to
time (Vaudrevange, 2010). In the light of this assumption, we can avoid terms which

contains derivative of the fields. From there let us define slow roll parameter:

€= — (6.16)

Slow roll inflation is achieved where ¢ << 1. Moreover, to obtain a slow roll inflation,

we apply a constraint on the field ¢ such as

¢

<< 1 h = —
n where 7 o

(6.17)

In this thesis we obtain inflation field by means of Non Abelian field strength tensor. In
(§4) and (§) 5 we showed that Non Abelian field strength tensor embedded into geometry.
Thus, by the definition given below, we embedded not only Non-Abelian fields but also
inflaton field to the geometry. We obtain a scalar field such as inflaton, by applying gauge
fixing to the Non Abelian Field Strength tensor in FRW background. Gauge fixing is

given as

pw=0—=0
A® = (6.18)
{ p=1i— ¢(t)0%

Non-Abelian Field Strength tensor is

Fe,, =0,A, — 0,47 — QEZcAbMACV
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By applying gauge fixing in FRW background, it takes the form as

FaOi — éaai & FaO'L' — an(bdai
Ffy = —gd’c; & P =—a"gp%" (6.19)

and also notice that for Abelian part we should use metric tensor also for raising and

lowering indices.

F% = —a2Fy and F"Y = a *F} (6.20)

In the following sections, we use these forms given in Eq. (6.19) and Eq. (6.20) for both
Abelian and Non Abelian Field Strength tensor.
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6.2. BIE in FRW Background

In this section we consider Born-Infeld-Einstein gravity in FRW Background to
understand its effect on cosmology. The action of BIE with Abelian and Non-Abelian
Fields was found in Eq. (4.50) and it is

a c?
S = /d4a:M2 \/—g{d2+_[b R —— F, F*™ +d F™, augag}
BIE Pl 2 \0,./ 2(1&1/_/ 2,3

| =

[ — 4bd R™ F*,  F%, 9" +2bd RF*, F*;, g
s . —_————
3 4
_ 2d2 ;FauaFaﬁygaﬁFbEMFbVegei +d2 FaVaFaﬂVgaﬂFbkere)\gsi]
5 6

1 3 rracB ha bp b cen e 3 1a aa bup b cen e
+ %—a[d ool oy PR PR, 6d Y, P, FYPFY, Fn s,

.

7 8
3 aof ra bup b c c 2 acfB ma bAp b
= 8d* PR FYOFY F, P, +bd® R F, PP,

~\~ ~\~

9 10
+  6bd? RF‘LWF“C“VF”””FI’“p —12bd® R™F*, F*° F*"F"

-~ ~~

11 12
+ 24bd* R FPF%, F, F" —6bc* RF"F,, +24bc® R"“F°,F,,
N N—— N’

-

13 14 15
— 6d F*F,, F*PF' +24d F°, F""F°, F* ] } (6.21)
16 17

Here we should expand action given above in FRW background. Curvature terms give us
scalar factor and its derivative. Non Abelian fields give us also scalar field which inflates
the universe. Let us examine terms in the action one by one: The term labelled as 0 is the
just Curvature scalar. Expansion of this is given in Appendix A.

The term labelled as 1 is Abelian Field Strength Tensor. Since it is Abelian, it can

not be expand in FRW backgorund. It can be written just as

1 — 2Fy F™ + F; F7’ (6.22)

41



Non Abelian Field Strength Tensor given in 2 in FRW background it takes the form as

9 s 62 ((252 _ a*292q§4)

(6.23)

3 1s the mixing of Ricci Tensor and Non Abelian Field Strength tensor. It is given as

3 — 120 (ia + @?) <¢b2 - a_292gb4>

(6.24)

4 is combination of curvature scalar and Non Abelian Field Strength Tensor and expansion

of that term is
4 — 36a~* (da + c'L2) <gz52 — a_292gz54>
Non Abelian Field Strength tensors are combined in 5
5 — 36a" <¢4 — 20?70 + a*4g4<b8)
and also the other type of mixing of Non Abelian Fields is given in 6,
6 — Ga—* <2¢4 _ a_292¢2gb4>
In 7 we also see mixing of Non Abelian Fields
7y 216a-° (q'bﬁ — 307202 " + 301y 2 e® — a—696¢12)
Then the expansion of 8,

8 = 36a~° (2&56 Y a*4g4¢2¢8)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)
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and 9 takes the form as
9 s 6q=° (5(;'56 — 0 2@t — 207 1gh 208 + 4a76g6¢12)
Coupling of curvature terms and four Non Abelian fields are given in 10

10 — 216a”° (da + &°) (q’54 —2a7 2% %" + a‘4g4¢8>

for 11,
11 — 3645 (iia + a2 (2&4 — a‘292<z52¢4)
for 12,
12 - 360~ (200 +42) 6" — 3 (i + a?) a 2g?d%"
+ (da + 2d2) a’4g4¢8}
and 13

13 — 60 (5ia + %) ¢* — 42473 (ia + 24%) g>¢¢*
+72a7" (da + 2a°) g*¢®

Abelian fields and curvature couplings signed as 14 and 15 are combined like as
14415 — 2a? (14daFy, F*° + 50’ F; F7')
Expansion of Abelian-Non Abelian coupling are given in 16

16 — 1242 <¢2 B a_2g2¢>4> Fy O 4 602 <¢2 _ a_292¢4> F; Fii

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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and 17
17 — 842 (2@2 + a*2g2¢4> Fo 'O+ 4072 @2 + 2a*2g2¢4> F R (637)

The next step we should follow to substitute these expansions into the action. However
there are coefficients in action which are unknown. We have four coefficients in the
action which are a, b, ¢, d. To determine these coefficients, let us use well-known actions-
Einstein-Hilbert, Electromagnetism and Yang-Mills. Because the first way to understand
we have a consistent theory or not is to seek Einstein-Hilbert action in the limit of small
curvature (Escobar, 2012). Thus curvature terms in the action, should be the same as

Einstein-Hilbert term (Carroll, 2004).
Sen = % / d*z/—gM} R (6.38)
and Yang-Mills action (Quigg, 1983)
Sym = _Tl / d'z/—gF*F° (6.39)
Electromagnetism Action (Quigg, 1983)
Spa = _Tl / d*z/—gF“PF 4 (6.40)

Then by comparing these well-known actions to the our action, coefficients can be deter-

mined as
1 1

ab=1, A= , d=——
M;?z 2a]\/[§l
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1
+ 32“4 [3 <da + aQ) (452 - a‘292¢4) = ((Qda v a2)¢'>2 - (da + 2a2)a‘2g2¢4)
2 3a~ 4 2
: gl
- % ( 2a7292¢52¢4> + az( (éz —a 92¢4> (2F0 F™ + Fi ") >
+ 83 (467 +20720%0") FouF™ + (6 + 2072%") Fyy ") |

3a% -9 . ) : 9 9 . PN
+ ﬁw [T (aa + a2) <2¢4 —a 292¢2¢4) — 3( (2aa + a2) o*

S = / d'vv/=g] [M%cﬂ +3M2a~? (da + 62) — Fy, FV 1 ga2 (62~ cﬂg?qb‘*ﬂ

aaro; 0 a I
(120 Fy P + 50 Fyy F7) | +

— 3a7? (da + a2) 92¢2gb4 +a™? (da + 2@2) g4¢8>

n <(5da+a2) ¢34 72 (da+a2) 92q'52¢4—|— 1944 (da—{—2a2) g4¢8>}
-6

a 16 —2 234 44 —4 42,8 -6 6,12
+ W[((ﬁ —2a"°g°9 9" — 12a" "¢ p"¢° + 17a g¢>
+ 27 (da + a?) (&2—a—292¢4>2” (6.41)

Let us define
a’ = eM?

where M denotes mass (which is approximately in the order of ), but not equal to it)
and

e =41

. Then the action becomes,

1
S = /d4:c\/_{e]\/[2 L+ 3M2a”? (da + a?) — P E"

)« Bl ) (70

- <(2da +a?) ¢ —a~? (aa +20%) g0 ) + = " (1240 PP + 50 Fyy ) }

St (e (o)
+ a? <<¢2 — a*2g2¢4> (2F F° + FijFﬂ))

+ (4@2 + 2a_292gz54> FpF' + <g252 + 2a—292¢4) EjFﬁ] } (6.42)
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we neglect d terms since they give very small contribution to the

1
an
62]\/[4]\/[13 62]\/[4]\/[;[
action. Let us examine FRW background briefly:
One of the solutions of the Einstein Equations is FRW solution. FRW solution
defines universe as isotropic and homogeneous. Metric tensor for FRW solution is given
as

ds® = —dt* + a(t)?6;;dx" da?

where a(t) denotes Scale Factor which is responsible from expanding of the universe.
Scale factor is also related to radius of the universe. Moreover scale factor is a dimension-
less quantity since metric tensor is also dimensionless. In matrix form, metric tensor for

FRW background is written as

I = (6.43)

det (g,) = (6.44)

detg, =—1] 0 a(t)> 0 [+0+0+0 (6.45)
0 0 a(t)?
det g, = —a® (6.46)
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Substituting det (g, ) in

V—g9=1/—det(g.)
, v/—¢g becomes,

V—g=a’ (6.47)

As we mention before, scale factor (a(t)) correlates with radius of the universe (R). Thus

let us make a definition:
R=¢a (6.48)

where £ is a constant that does not depend on time and [¢] = M ~'. Then,

R
/ d'z = / dt / Pr = / dtR? = / dt&3a® (6.49)
0

Therefore,
/d4a:\/—g: /dt§3a6 (6.50)

Let us substitute (6.50) to the action

3,6
S = / dt{eg3a6M2M3l+3g3M%a4 ia + a°) —TGFWFW

p

3&at /. _ 383a? 7 .. N . PN
i ; (gb2—a 292gb4>+26M2[(aa—|—2a2)¢2—(Qaa+a2)aQg2gz§4
3&63a?

a2 ' ) 5. :
+ L (126aF, F° + 562 F,, U }+ [—¢4—5a—2g2¢2¢4
6 ( i) 8eM2M3 L2

CI/2 . .
+ 304t + 3( (3&;52 + 1Oa_292¢4> Fy, ™

+ (11(;‘52 v 13a—292¢4> F]Ffﬂ } 6.51)

We obtain a theory which consists of two scalar field, a(t) and ¢(¢). Both fields only
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depend on a parameter, time. Also,

€ a® M? M, (6.52)

denotes vacuum energy.

6.2.1. Inflation from BIE?

To examine inflationary setup, we choose ¢ = 0 and so all contributions coming

from Abelian Field Strength Tensor disappear in action. Hence,

3a~2

S = / d4:v\/_—g{eM2M§l +3M%a~? (da + a°) + (052 — a’292¢4)

3a~* .
s | (da +20%) ¢ — (20 + %) a7
3a~* 5 iy —2 232 4 —4 4.8
g |59 5e e 4 307" } (6.53)
pl
and inserting Eq.(6.50)

S= / ar{ {eg%ﬁMQM;l + 38 M2a* (ia + a?) + o (4 - a‘%f&)]

2
383a’ 7 .. L9\ .. ) _
—22\32 [ (aa + 2a2) — (Qaa + a2) a 292¢4}
353(12 D 1y -2 212 /4 —4 4,8
+86M—2M§,[§¢ — 5a722$%6" + 30~y qs” (6.54)

Eq.(6.54) is the action without Abelian contributions. Since the action does not contain
second derivative of ¢, i.e. ¢, the theory does not contain ghosts.

Let us find Equations of motion. Since we have two dynamical variables, we
should have e.o.m for both of them. Let us start with ¢(¢). To obtain equations of motions,

we can use Euler-Lagrange equation which is (see Appendix B)

d (OLesp\  (OLess _
7 () - (58) - 69
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Our Lagrange is

I _{ 345 M2M2 + 33 M2d (a . 3534 2 2 2.4
eff =1 |€€a o+ 38 MYt (da + a%) + ¢* —a’g’¢

3&a% 7 .. .9\ 19 .. 22\ 92 9,4
+W[(aa+2a)¢ — (2da+a*) a gqﬁ]

3,2
sa [%4 — 50 2g0%" + 307 'g'6" |} (6.56)

T8 1

From there inserting Eq. (6.56) in (6.55)

d 3¢%a? . 1568%a? 1568,
0= 3 3 4] 2 3 2 4
dt [ ol (00 +20) 0+ 1 hmpd — i
53 2 308% 5, 9% , 7
— | —663a%g%¢® — 2ia + a%) g°p3 — G2 P® + g*o" | (6.57)
[ ar )9 aed?nz? eM2M?

By taking derivative with respect to time,

3 .
[12§3a3agb +38%a"p + ]6[2 (3a2(z'd +a®d + 4ad® + 4a2dd) 10)
3¢%a’ 30¢° 3 458° 5o+
o (@04 280) 04 gy Eetd’ + a0
156 5., 158 : 2,3
“aeearz? go0" - deM2DMI2, PPVER Ve ]
63 305'3 €3a72
—| —68%a%g%¢0° — —= (2ida + a®) g°¢° — W 95 + AL — = ¢7] (6.58)
If we divide both sides with 3¢% and arrange a little bit,
0 = [a + o (da + 2a%) + La%z > g2¢4]¢5
eM? 46M2M§l 4EM2M§Z
10 .13 2 43 12
ARV asg” + dedr iz’ '
+ [4@ a+ — e (7a ad + a®d + 4aa )]gb
2 . . -2
+ [2@ g+ — WYE (2aa +a ) ]gb?’ M2M29 o7 (6.59)
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and replacing derivatives of scale factor with Hubble parameter by using Eq. (6.12)

4

- 15 . 5 .
0 = [o (Frv B 21 4 — o g2
e ) e T a7 )?
10 2 13 243 12
7 2H v
* 4€M2M2l& I VERVERS ¢
+ [aatH + — M2 (7a* (118 + 1) +a* (i1 + 310 + H*) + 4a* 1) |
+ [QanQ L2 (2H + 3H2) 2] ¢+ S0 ghe (6.60)
eM? eM2MZ '

and finally equation for motion for ¢(¢) in terms of Hubble Parameter is

at . 15 . 5 ..
0 — [ (H 3H2> 272 2 .4
Crar\"T NEPTEIVEN ¢ sedrearz? ks
10 2 13 312
U 2H v
T s o+ serrearz? ¥’
+ [4a o (H Y 10HH + 12H3) ]gis
2 ) a2
+ [ ~ (2H+ 3H2> ]¢3 M2 WY 47 6.61)

In the case of inflation, since variation on ¢ should be negligible, we can avoid terms in
equation of motion for ¢(¢) which consist of derivative of ¢. Then only surviving terms

are

sa”" T <2H i 3H2> 3

R .

~ enz? ot { MRS VE ¢ (6.62)
g 2
Then we can also neglect the term which contains %—3;{) because of M?2. Then it
becomes,

0— 30 7o+ 2a%g%H (6.63)

eM2M?, '
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As aresult, it takes the form as

(6.64)

This is the equation of ¢ in case of inflation.
The next step we should do is to find density and pressure for BIE gravity. Density

and pressure are found by using

OLey
= iy,
p 9 ¢ £f
d(a’Legy)
P — —_— .
- (6.65)

(Maleknejad, 2011). Lagrangian of the system given is

3a72% /.
oy = VR 3 o)+ (o)

3a— .
s | (0 + 20%) 62 — (20 +a?) a2
€
+ ﬂ §q'§4 _ 5a*2g2¢2¢4 + 3a74g¢8 (6.66)
RMMZ, |2 '
By using L.y,
OLecsy or Ba™t Loy 1564 -, 15072 . ,
OLerr _ 3 2 - 6.67
¢ o+ g (Gat2) o ez’ darap? 07 e

Substituting this result in Eq. (6.65),

. : 3a7% /,

p = —EM2M§I - SMila_2 (da+ a®) + GT <¢2 + a_2g2¢4)
Ba=t .. -2\ 2 .. 2\ 2 92 4

2 [(aa—l—Qa )(b +(2aa+a )a g ¢}
3a™* [15 .

W ?¢4 o 5a7292¢&2¢4 o 3a4g4¢8] (668)
pl
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By replacing @ and a by H and H? using Eq. (6.12),

: 3 .
p= —eMzMﬁl — 3]\/[51 <H + 2H2) + 5@’2 <<;52 + a’2g2¢4)

3a~? : 2\ ;2 : 2\ —2 2.4

e [<H+3H )¢ v <2H+3H )a g H

3a~* 15 2 232 4 4 4,3
+86M—2]\4§l |:7¢ —5a g ¢ (b —3a g ¢ (669)

This is density of the system in terms of Hubble parameter. To find pressure,

3 .
a*Lesy = a’eM* M2+ 3M2a (da + %) + Ea <¢2 _ a’292¢4)

a7 T, oy PN

+ EHVE [(aa + 2a2) P — (2aa + a2) a 292¢4}

- _sa §¢34 — 5a72¢*¢*¢" + 3ag" ¢ (6.70)
SEMQMI?Z 2 '

Thus inserting Eq. (6.70) in (6.65),

L gy AT
P = eM’M}+ M}a™* (2ia + a*) + = (¢2 + a_292¢4)

-4

.9 792 -2 n 22\ 2.4
+ e [—2& " +a (4aa+3a )g qb]
L0 [ 152202t — 150ttt 6.71)
SMP |2

and by using Eq. (6.12), it becomes

. a_2 .
P o= MM+ Mia~? (20 +317) + L (8 + 072"
—2

+ & [—2H2q'52 + a2 <4Ha + 7H2> 92¢4}
eM?

0 Th s ma 22t 15a gt 6.72)
SMZME | 2 '

From now we have density and pressure equations given by BIE with Abelian and Non
Abelian Fields. Einstein’s Field Equations in FRW background also gives us density and

pressure equations. Let us equate density equations, one of them is calculated by us and
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the other is given in Eq. (6.13).

3M51H2 = _€M2le _ 3M102[H _ 6M;lH2 + §a72 ((z)z +CL7292¢4)

3a_2<ﬁ2 . 9a—2(z'52 3a_4g2¢4 ) 9a_4gg¢4
H H+— " " g+ — 2"}
+ 2e M? + 2e M? + eM? + 2e M?
N 3a* { E& _ Ba2g2dRgt — 3a—4g4¢8} (6.73)
86M2M§l 2
If we arrange it,
2 9a? 12 —2 2,4 2 2 2 12 —2 2,4 .
( 9A4bl_.26ﬂ42 <¢ ta’yg ¢)> )ff + 3A4él_-26ﬂ42 <¢ 20790 ) H
3 )
= —eMQMgl + §a_2 <gz52 + a_292¢4>
3a* 15 . _ . _
v [?& — 50 2¢%¢2¢" — 3a 4g4¢8] (6.74)
p

By applying slow roll condition given in Eq. (6.17)

9a~2 _
( 9M§z - (772H2(/§2 Ta 292<]§4) >H2

3a~? B .

+ (3M§l — g (TH¢" +2a 292q§4)> H
3 _ _

— _€M2M5l+§a 2(772H2¢2+a 292¢4)

3a~* [

15 _ _
86M2M2 _774H4¢4 — ba 2g2772H2¢6 — 3a 4g4¢8:| (675)
pl

2

All terms which consist of 7 negligible because of 7 << 1. Then equation given above

becomes,

—4 2.4 —4.2 14N
<9M§,—9a g¢)H2+(3M§l—3a 9¢>H

2e M? eM?
3 —9q73
_ .7\{27\f2 c -4 2,4 T 448 6.76
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Finally, inserting Eq.(6.64)

2 2 2 2 2\ 1 2712 2202 6M2M131
(007, = M) H? + (3M;, — 2M7) H = —eM> M, + MMy, — ———" (6.77)

Combining terms which are related to each other and dividing both sides with Mgl

eM?

6H? + H = —
+ 2

(6.78)

Let us follow same procedure for pressure. By using Eq. (6.13),

. . a_Q .
—Mp (20 +3H) = MM+ M (26 +3H?) + Z- (82 + a~2g%")

a—2

eM?

<—2H2¢'>2 ta? <4H n 7H2> g2¢4)

a—4

—9 4 -2 2.2 4 —4 4.8
— | — 15 - 15 6.79

and then

4a=4 : 2a7%., Ta™!
2 2 44 2 2 4 172
( —4Mw—m9¢>H+(—6Mw— ar? ~ar? ¢)H
a=? /.
= MM+ = (8 + a7 )
t % (_—5<b4+15a‘292¢2¢4—15a‘4g4¢8> (6.80)
8eM>M,; \ 2
Applying slow roll condition given in Eq. (6.17),
4a~* : 2a72 Ta™*
2 2 14 2 2772 42 4\ 172
(- Gete') H + (—GMM “apT T - I ) "
-2
a _
= MM+ — (1*H*¢" +ag’¢")
a/_4 _5 4
R H44 15 —222H2 6_15 —4 4.8 6.81
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omitting terms which contain 7,

a4 . Ta™
2 2 4 2 4 2
(—4Mpl - 9% ) H+ (—GMPZ - =592 > H
-4 15a~8
— MPM2 + gt — g 6.82
MMy + 57970 gererz? ¢ (6.82)

By inserting Eq.(6.64)

(v 20 (AN )y T (200
p p

eM? 392 eM? 3¢
2 /2eM?*M? 15¢% 42 MAMA
— MM+ L o) 2 6.83
A 5 < 347 BeM2MZ \ 9g (6:85)
and hence combining terms
—20M?, . 32M?2 —37eM?M?
nf - P —— 2 (6.84)
3 3 6
Dividing both sides with A,
—20 . 32 —37eM?
Il - C I (6.85)

3 3 6

In the end, the last step to understand whether Born-Infeld-Einstein Gravity with Non
Abelian Fields gives us inflation or not is to solve Eq.(6.78) and (6.85) together. Then the

result is

H? = %EMQ (6.86)
and

H= %d\ﬁ (6.87)
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Finally let us calculate slow roll parameter ¢ given in Eq.(6.16). For a successful infla-

tionary model, this parameter should supply the condition ¢ << 1

—H
;e

—127eM?
()
—57eM?
( 176 )

4,46 (6.88)

12

As a result Born-Infeld-Einstein Gravity with Non Abelian Fields does not explain Infla-

tion
6.3. BIR in FRW Background

We examine Born-Infeld-Riemann Gravity in detail in (§5.1). In this section we

explain how BIR with Abelian - Non Abelian Fields gives us inflation.

1
S = / d%MﬁﬁQCDm/—g{l + 1z </\RR + ArFPF,g + )\ﬁF‘“’BF“VB>

1 VB l/lﬁl V3 Cl,l/,ﬁ/ “
— S [P T By 2K T
3)\QF vp I/lﬁ, vp I/lﬁ, 2 v bl//B/ b
+ ZEFPRSFY By + 20K P By + XA F F,,ﬁ]
+ oh} (6.89)

Here Eq.(6.89) is the last BIR action of the theory where K Ryf 1y and K F”f /5 defined in
Eq.(5.19) and Eq. (5.20) respectively. Let us expand these tensors one by one and see
what they gives in the case of FRW background and gauge fixing.

56



In light of Appendix A,
K 07 ROi ER 50 51
R 0j 05 — 4 0,77J

1

1 .
— —R§",

_ _ipp0
- g“RuOJ 4 J

_ i0 150 —
= |9 R+ 97 Iy,

0 a—2§k Ry

1 .

(CL_QRkj - ZR&W) (51%

= (a—Q
—1

i @’ ki
) (a B —) W

(da + 2a°) 6p; — g

. 1 )
017 0 ¢
_ROOij 5ij

) 1 )
— i 0 )
= —9" R0 — ZR(sj

i0 10 ik 0
= — R+ R". ..
g 005 g k0j
a—25ik Ry
< aa + 2&2) Okj —
oa 7'2 -
2 a a® )~~~

5

-1 (5a T7a
- (2 s
2 (a * a2) I

—a Rk] — —R(Skj) (Skl
6

J

4

1 1
- R,

R6",

i a ki

(6.90)

(6.91)
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07
KR jk

ij
Kg ok

) 1 )
01 0 ¢i
0
i 0
g“Rpjk

i0 150 il o
9 R+ 9" Ry

0 a—25il
—2 0
a Rijk
CL_QRik (50]-

~—
0

0 (6.92)

o 1
0

gjuRi/J,Ok
GOR o + g Ry,
0 a—26§7l
a’QRijOk
0
0 (6.93)
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ij
Kpu

g log g
L R

o 1o
g'R pkl — ZR‘S k‘sjz

i0 1oi im i Lo o
GR oy + 9" R _ZR(;k(sjz

0 a—2§im

. , 1 .
a 28" Ryd', ——R&kaﬂl

( 2R — Réml(SJ) 5,

. .2
(i + 202) Gy — ° (9 + C‘—> 5ml] gimei,
a

4

— (— - a—) 5,6 51,
2 a a? \/—/

5Jl

—1
- - J g
2 (a a2)5 O

a?

Due to symmetry conditions of Riemann Tensor,

KR% = KROOij
KRi;‘)O - KRO()ij
KROjik - _KRij(')k
KRiék: = _KRiio

(6.94)

(6.95)

59



Let us expand K R”f,ﬁ, F" P F,5. We expand indices v, 3, v, 3’ respectively.

K P Fy = K% P R+ K0, R Ey

K%, F Fyg +KROVZ,B,F” i)
U

Ky B R+ K, PP Fy)

KROOZ,B Fo Foi+ K,,° Fjﬁ Fm)

R 0B

i FOfBF + K9 PR,

RO R kB )
KR%ZO&FOZ + KR FOJFO@)
KR%FJ Foi + Ky ijJ’“FOZ)

(
(
(
+ (K 0 Fo8 R, 10+KZQ,FJ F)
(%
(
(

KRl?)o FOO Fo+ Kg'y FOJRO)
(KR 70 OFzO‘i‘KR FY szO)
R 00 FOO F;] +KR1] FOkF )

+ ( R koFkon + KRZ?chMFZJ

= K4 FY Foi + K% F Foy + K% F* Fo + K"y, F¥ Fyo

+ o+

ikl
KR le E]

K 10 FJOFZO+KRZOkFJkEO+KR FOkE]"f_KRU FkOF

(6.96)

In this step we can use Eq. (6.90), (6.91), (6.92), (6.93), (6.94) and (6.95). Also by using

antisymmetric property of Abelian Field Strength tensor

F,

w = —F,, or F'' = — "I

Eq.(6.96) becomes

;o .. ) 1 .. -2 N
K" F'PBF,, = 4(a+2 2) FYFyy — = (9—“—) FiF,
a

R v

2\a a?

(6.97)

v av’ ﬁ/ a : : vB v ﬁ/
Letus expand K" g B 7 F*, 5. This term has the same structure with K.", g B0 Fup
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since both Abelian and Non Abelian Field Strength tensors are antisymmetric. Thus all
diagonal elements of Non-Abelian Field Strength tensor are also zero. Then, we can use

the expansion given in Eq.(6.96) for this term too.

K FY Py = Kl PP, + Kl P Py + K5 F9F FY,
+ KRi%jFanFaiO + KRigoFajOF(];;U + KRingaijaio

+ KR P F 4 K FOF + KR FUR S (6.98)
By using Eq. (6.19), (6.90), (6.91, )(6.92), (6.93), (6.94) and (6.95)
.. . 2 .. . 2
vB '8 a o -2 a a 12 o fa a 2 .4

We calculated terms which are related to curvature until now. The next step to obtain
a theory based on FRW background is to find contributions which comes from Non
Abelian Field Strength Tensor. We can see this part in the action as K F”f ' oz V3
and K F”f 'y Fo's p “ - To find these terms, firstly let us calculate K F"f g which is
given in Eq. (5.20).

7 a0i ha 1 apo a )
A

The term called as A is in general form and we use it for all of K l'f 2 Then we should

calculate it firstly.

FapaFapJ — FaOJFaOU + FaiJFaz’a
_ ( a0 Fe+ fravi FGO@) 4 ( faid Fe+ Fraij Faw)
0
(—a_2g255aiq35“i> 4 [(a—Qééaz) <¢5Qi> X (_a—4g¢2€aij) (_g¢2€aij)}
— 6a 2 (a_292¢4 - gé?) (6.101)
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From there,

= (o) 5m)] - (o),

_2 . .
- “T <¢2 — 3a*2g2¢4> 5 (6.102)
i a0i a 1 apo a %
Kyl = FOFy = 2P 1%, 8,6 (6.103)
~——

6

By using Eq.(6.19)and (6.101), it becomes;

. a_2 . _ .
K% = 5 <5¢2 — 34 292¢4> 5 (6.104)
K 02 _ FaOiFa ]'FapO'Fa 50 (51
F jk  — ik Z po Y Yk
0
— FaOiFajk
= a ’gdd’c, (6.105)
K i _ FaijFa . lFapaFa 51 5j
F 0k — 0k 4 po ~ 0¥ k
0
— FaijF(zOk
= —atgop’e” (6.106)

g g 1 o
KFzgd — Faz] Fakl o ZFapUFapgézk(sjl
—4_ 12 aij 2 a 6%/ 594 9\ ki j
= [(—a™tge%e) (—go*ey)] — = (a7%0%6" — 6°) 04,
72 . . . . .
_ a2 (3¢2 B a_292¢4> 5.8, — a~tg?pt6 5, 6.107)

62



since

aij _a VISV
€ep = 0507 — 0507,

For the other components of K ,» We can use antisymmetry property, which supplies

5
us equations given below, of Non Abelian Field Strength Tensor.

07 __ 70

KF 05 — KF 70
K - K 20
FjO — SYF 0Oy
K K 20
F]k: F jk

Kp%, = —Ku", (6.108)
Let us expand KF”f,ﬁ, s F,,5 one by one.

K. PP Fs = K% F”5F05+K oy Fig

K 00 /Fyﬁ FOO +KF05’B’FVIBFOi>

(
0
(K P B+ K1, P R
= (KFOSB, FO% Fyy + K% Fjﬁ' Fi)
+ <KF’gﬁ/F05 Fo+ K" ,Fjﬁ/Fm)
- ( K", YR KL F’fﬁ'Fij)
(

KiS 00L__ FOO Foi + K55 FO]FOz)

+ (Kg° JOFJ Foi + K% F7F Fy)
Ko F°0 Fio + K9 FOJFiO)

( F ]OFJOEO + KF F]szo)
+ < F’%[) FOO F +KFZ] FOkF >

Fli:oFkOF + KF%FMFU>

= KpUFYFo+ K% F ' o + K% F7* Fo; + K '), F¥ Fyg

+ Kp%FFy + K% F*Fy + K%, FOFy; + K5, FMF;
+ K" FME, (6.109)
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By using Eq. (6.102), (6.104), (6.105), (6.106), (6.107), (6.108) and (6.20)

K, F 8 By = —4a 2O Fy; — da~gd* Fyy %"
_2 . ..
+ “7 (3¢2 + a_2g2gz54> Fiif, 6.110)

and also we have
K7 FY P F s = 12079 — 150 °¢°¢°¢" + 30 "¢ (6.111)
and finally inserting Eq. (A.11), (6.19), (6.97), (6.99), (6.110), (6.111) in (6.89)

3\ 32 3 .
s = [auge CDDr{1+_R(9+a )+_2(a—492¢4_a—2¢2)
a 2 g
Y e

1

A 1 .. .2 ] .
+ —I;F”ﬁFyg——4[2)\R)\F<8 2oL ) FOR, - g—a F”F)
4K 8K a a a a®

3

6ARA (4a—2q'52 (g + 22—2) 4241 ( Zz) )
3Z%FVEF i Fy

Nede (=8 (07202 oy + a~900° FY Fore,”)

(a_4gz¢4 + 3a_2q32> FijEj>

AL <4a’4¢4 — 507542026 + cfgg“qf‘)] } 6.112)

+

+ o+ 4+ 4

This is action of Born-Infeld-Riemann Gravity in FRW Background (for simplicity, we
avoid O(A?%)). Here we have three different coefficients which are Ag, \r and M. To
determine these coefficients, let us use well-known actions- Einstein-Hilbert, Electromag-
netism and Yang-Mills.Because the first way to understand we have a consistent theory or
not is to seek Einstein-Hilbert action in the limit of small curvature (Escobar, 2012). Thus

curvature terms in the action, which is signed as 1, should be the same as Einstein-Hilbert
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term (Carroll, 2004).

1
Sen =5 / d*z/—gM3R (6.113)

The term labeled as 2 should be the same as Yang-Mills action (Quigg, 1983)

—1
Sy = T / d'z/=gF*’F° (6.114)

and 3 should be the same as Electromagnetism Action (Quigg, 1983)

-1
Sem = T / d*o/—gF*F,4 (6.115)

If we compare these terms one by one, it does not hard to find coefficients. Then

Inserting these in Eq.(6.112),

3a2
2

S = /d4x\/—g { Mgl/fchp + 3]\/[]3&_2 (da + d2) + (¢2 — a_2gz¢4>

1 -2 ‘ g
— PR, - 4;% 8 (s +222) F™ Py — (ia — %) FUF
+ da? (o +20%) & — o (o - 02) g%
3 /AN
— PR P,
32M51/€2CDD A VA
a72 . ) ..
8( 2RO 4 0 2R Fy 0K zj)
+ 8Mp2lli2CDD|: (b 0 ta g ¢ J Ek
_ (3(;.52 +a_292gz54> Fiijiji|
3a”" 14 —2 232 4 —4 4,8
- SMT[4¢ 507 2g% 326t + a ggb” (6.116)
pl’% CpD

This is the exact Born-Infeld-Riemann action in FRW background.
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6.3.1. Inflation from BIR?

To examine inflationary setup, let us set Ar = 0. Then the action becomes,

3a=2 /.
= /d4x\/—_9 { Mzz/‘ﬁzCDD + 3]\/[31&_2 (da + az) + a2_ (¢2 - a_292¢4>
—2

-1 C; [4a‘2 (da + 2&2) gz.ﬁ2 —a™? (da — d2) g2¢>4}
R“CppD
3a”" 14 292324 | 44,8
pl

For \/—g and f d4x, we can use Eq. (6.47)and (6.49) respectively. Then, we obtain

a theory which only depends on two scalar field, a(t) and ¢(t). Moreover, let us label
k? = eM? where € = +1

353014

S = / dt { §abeM* Myepp + 36%a" My (ia + %) + =5 (d’ﬂ — a”g%“)

£3a2 .
- 0 [4 (da +2a%) ¢* — a™* (da — %) g%ﬂ
R“Cpp
3¢%a? 14 -2 232 44 —4 4.8
pl

To understand the dynamics of the system, we should examine equations of the motions.
We have two dynamical variable which are scalar field ¢(¢) and scalar factor a(t). Let us

start with ¢(¢) . Effective Lagrange of the system is given as

3 3,4 .
Legy = {§3G6EM2M§ZCDD +38%a* MY (da + a*) + {a (¢2 _ a‘292¢4)

2
3,2 .
4:23 [4 (da + 2('12) - a_2 da — a* }
DD
3&3a? _ _
— m |:4§Z5 —da 292¢ Cb +a 4g4¢8:|} (6119)
p

By using Euler-Lagrange equation (see Appendix B)

4 (a[’eff) _ 9Ly (6.120)

dt \ ¢ o
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Subsituting Eq. (6.120) in (6.119)

d .28 9\ 68%a* 15¢ '
0 = — 1|3 3.4, ) 2 o 3 2 4
dt [ f “ (b €M2CDD (aa+ “ )¢ €M2M5lCDD 4€M2M5ZCDD9 ¢¢
3 15¢3 .

— | — 683020203 £ . .2\ 23 22,3

|- 660" + i (0 — %) g% + 3 O 0
38a? |

- = 6.121

eMQMI?chDg ] ( )

By taking derivative with respect to time,

. - 263 :
o 3 3. 4 B 3 2. .. .3 2. .
0 = 3¢ <4aa¢+a¢> —GMQCDD[(CL a+3aaa+4aa+4aaa)¢
. . 6&3 . -
2 2‘2 o 2% 3 22
+ a® (da+2a )qﬁ] —EMQM,?ZCDD ( aag® + 3a°¢ gb)
154°¢° 74 12 13 3.2 2,3 979" . -2
IS 4 6 L _
* I (6" +4°6°) + 6600 — 737 (i — ?)
1583020203 3,—2,447
_ I geig | g9 (6.122)

26M2M5ICDD €M2M5lCDD

Dividing both sides with £3 and arranging all terms,

2a> 18a2¢)? 15¢%p* .
4 . .92
0= 130" = Fpeyy (G0 +20°) = o A MM ¢
DD € plCDD € plCDD
_ 12aa i3 15gQ¢3 ‘9
EMQMI?[CDD 2€M2M§lCDD
2a%d 6a’ad 8aa .
12a%a — — —
+ [ @ EMQCDD EMZCDD GMQCDD:| (b
2 (aa — a®) 3a"2g"
622—9— . Y 6.123
+ |: ga €M2CDD €M2M5ZCDD ( )
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This is the equation of ¢(¢). In this step, we should write the equation of motion in terms

of Hubble Parameter and its derivatives which are given in Eq.(6.5) and (6.9) respectively.

4 . 18022 1502 % .
0= |3a' — 7 (M1 +307) - Sa¢ o0 ¢
eM CpD eM MplCDD 4e M MplCDD
12¢*°H ., 1562¢% .,

_€M2M510DD QEMQM]?ICDD
24" (H L 6HH + 8H3>

12¢*H —
* 4 EMQCDD

¢

+ (6.124)

64%a% — g*a’H 3 3a"%g* 7
GMchD €M2M510DD

Now, we should be able to analysis whether the theory enables us to slow-roll inflation
or not. We explain inflationary model at the beginning of this chapter. As you see in
(Section 6.1), in the case of slow roll inflation, scalar field ¢(¢) should be vary slowly
with time. Thus we can avoid the term which contains derivatives of ¢(t) in Eq.(6.124).

Then it becomes,

a’q® . 302
O — 6 2.2 H 3 4 4,7
@9 €M2CDD ¢ * EMQMPQlCDDg (b
a’g® .
Here, we can also avoid 2—H since it is so small due to M?2. Then
€ CDD
0 = 6a%g?¢® + Lg% (6.125)
EMQM]?lCDD

a

- 7 (6.126)

<¢)4 _ —2eM*Mpcpp

One can easily see that € should be —1.
4

After finding <?) in terms of M ,M,,; and g, let us find density and pressure of
a

the theory in case of perfect fluid (see §6.1). Density and pressure of the system is given
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in Eq. (6.65) (Maleknejad, 2011). Also by taking into account Eq. (6.117)

3a~2
2

Lepy = { eM?Mcpp + 3M%a~? (da + a°) + <¢2 — a2 ¢4>

-2

4072 (it +20%) * — o™ (ia — i) g%']
€ CDD
3a—4[4q54 — 5024232 +a—4g4¢8i|} (6.127)
8Mp216M26DD '
Thus,
OLcyy Y 207 6a=* ., 15a7%¢%¢* .
— =3 s — — 6.128
50 "0 Ay, et @) e T oy @12

By inserting Eq. (6.127) and (6.128) in (6.65),

3a7% /.
p = —eM*MZicpp —3Mya~? (da+ a*) + aT (¢2 + a‘292¢4>
a*4 . . 5 _ . .
= gy [+ 0+ 2) &+ a7 (10— %) 0]
B 3a~4 [12& + a2t — a—4g4¢8} (6.129)
SEMQMI?ZCDD ‘

This is density which the theory enable us. To analyze inflation, we can replace @ and a2

with Hubble Parameter given in Eq. (6.5) and (6.9). Then p becomes

. 3a2 /.
p = —eM*MZiepp — 3M? (H n 2H2) + aT (¢2 + a_292¢4>
a72 . . .
- 4 (H 3H2> 2 -2 2 4Hi|
IPens [ + O +a g%
3a~%

— 1120+ 507 2% ¢t — a g S 6.130
SEMQMEICDD[¢+ag¢¢ a~'g'o’| (6.130)
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To find P,

3 .
PLiyg = PMMepp + 303 (ia+ ) + 5 (- a6")

2
—46MC;C [4a’2 (da + 2a2) <b2 —a? (da — a2) g2<;54]
DD
3a~! 4 —2 9192 /4 4 4,8
P, 10— 80 o] | ©6.131)
pl

By inserting Eq. (6.131) in (6.65)

L gy 0T
P = eM?’MZcpp + Mya™? (2ia + a*) + 5 <¢52 + a_292¢4>

—4

a .
822 — a2 (%ia — a2 24}
* Tty 89— (e = i) g%
a_4 i )
T |46~ 1507256 + sa g | 6.132
* Sy 19~ 0P+ 5 (6.132)

Also, we replace @ and ? with Hubble Parameter given in Eq. (6.5) and (6.9) for P too.

Then it becomes

. a_2 .
P = GMQM,?lCDD + M;?l <2H + 3H2> + > (sz + a_2g2¢4>
2

a . .
SH2d? — g2 <2H HQ) 2 4}
+ 126M2CDD[ 9" —a +HY) g9
a_4 . .
o [4 1150202026 + 5a g 8] (6.133)

Finally Eq. (6.130) and (6.133) is what our theory gives us as density and pressure of our

universe.

We find that density and pressure in terms of Hubble parameter in Eq. (6.13). If
we insert it in Eq. (6.130) and (6.133) we will have two equation which both of them only
depend on Hubble parameter. Hence Eq. (6.130) becomes,

70



. 3a~2 /.
BME = —eM*Mpepp —3MJ (H +20) + =— (6% + 72" )
a_2 . . .
_ —4<H 3H2> 2 *224[{]
4€M20DD |: + (b ta g (b
. ?;a——i [12&4 F 5022020 — a_4g4¢8} (6.134)
8eM MplCDD
By arranging,
a0 (46> +a72g%") | #1 + {902 + e
Pl 4€M20DD Pl EMQCDD
2772 3a7% 11y -2 2 4
= —eM"M,cpp + 5 [gb +a ggb]
_ Bet [12&4 +5a 2202 + a_4g4¢8} (6.135)
8€M2Mp2[CDD
By applying slow roll condition given in Eq.(6.17)
M2 a? A2 F2 62 —2.244\ | 7 9M2 3a~? 2p7242| fp2
lerm(ﬂ ¢’ +a?g’") | H + pl+mn ¢
3 —2
= —eM2M;chD + ¢ [772H2gz52 —|—a_292¢4]
3a~4
— 120" H*¢* + 5a 2¢*n* H?*¢® + a~*¢*¢® (6.136)
8€M2M510DD[ ' H'p g H?¢ g*¢°]
Since n << 1, we can neglect all terms which contains 7. Then
2 2 (¢ g 2 772 2772 35(¢ !
[BMpl Tl ]H+9Mle = —eMMjepp +50° (=
3 (oY
- — = 6.137
86M2M102chDg <a) ( )
and inserting Eq.(6.126),
5 —11
S+ 9H? = TEM%DD (6.138)
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This is the equation given p under slow roll- conditions. We have another equation which

is P. We can follow the same procedure which is done for p. let us start with inserting

Eq. (6.13) in (6.133)

-2 .

-2

a . .
SH24? — ¢~2 <2H H2) 2 4]
* 12€M20DD [ ¢ “ + g ¢
a_4 . .
tom— 400 = 1507200 + 5470t (6.139)
and again arranging,
| a4 o g*6* | Fr + | 6013 - e (862 — o 2g%*) | 1®
pl 66M20DD Pl 126M20DD
-2
= eM*Mcpp + % [qbQ + a_292¢4]
a_4 . _ . _
Ty [4¢4— 1502622 ¢" + 5a 4g4¢8] (6.140)
pl“DD
applying slow roll condition (Eq.(6.17)),
—4AM? + a? g2¢4]H+ _6M2 — N (8772H2¢2 . a_292¢4)
pl GGMQCDD Pl 12€M26DD
a2
= EM MlCDD+ T |: 2H2¢2+CL—2 2¢4:|
—4
a
———— A0 H ¢ — 15472 g** H?¢® + 5a”"g"¢" 6.141
+86M2MZCDD[77 ¢ a*¢*n’ H?¢® + 5a™"g"¢°] (6.141)
and omitting terms with 7
1 AN\ 1 A\
—4M2 — (L }H —6M?4 — ————* [ = H?
[ + GEMQCDDg (a) + pl 126M26DD9 a
4

¢ 5 ()
— eM2M? Py 42 4
‘ pcoD + 2g (a SeM2M chDg a

(6.142)
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inserting Eq. (6.126) in (6.142),

—13 . 37 5
——H - —H?="eM? 6.143
3 6 26 CDD ( )

In this step, to find H and H? in terms of M, the only thing we should do to solve Eq.
(6.138) and (6.143). Hence the solution is given below:

—347
H2 = 6M2CDD &

. 4
H = —¢M?
849 849

M CpD (6144)

4
At the beginning of this section, where we find (é) , we state that e = —1. By using
a

this argument

347 . =4
H? = @M%DD & H= @M%DD (6.145)

In the end, our last step is to examine whether the theory gives us inflation or not. The
way to understand this is to find slow roll parameter €. If € is so small from 1, the theory

gives us inflation. Thus let us insert Eq. (6.145) in (6.16).

~H
H?

4
M2
(849 cDD)

347
2
( 849 M CDD)
4

= — .14
347 (6.146)

Then finally,

e~0,01 (6.147)

The result is Born-Infeld-Riemann Gravity with Non-Abelian Fields explains Inflation.
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CHAPTER 7

CONCLUSION

In this thesis work we have studied Born-Infeld type extensions of the GR. We
analyzed BIE known in literature with our own BIR extension. In the former the invariant
volume involves determinant of a rank-two tensor, in the latter a rank-four tensor. Their
implications can thus differ form each other.

In the thesis we have first given a general framework in which Abelian and Non-
Abelian fields mix with each other and with the background geometry. Here we have also
indicated how GR appears as a limiting case.

Then, we turned to the analysis of the inflationary cosmology. For successful
inflation we need universe to slowly roll down on flat potential of the inflaton. The inflaton
field here is provided by the SU(2) non-Abelian gauge field. We find that this gauge-
inflation is successfully realized in BIR but not in BIE. Inflation thus provides an explicit
example of the difference between two extensions.

The Abelian-Non Abelian mixing gives rise to photon emission during inflation.
This process is exceedingly slow, and its effects can be hard to detect. In this thesis study
we have not been able to analyze this point in the depth it requires.

The major result of the thesis is that, when we consider both BIE and BIR in ho-
mogeneous, isotropic and spatially flat backgrounds, the BIR explains inflationary phase
while BIE does not. Therefore not only electromagnetism and SU(2) Yang-Mills theory

but also inflaton itself is embedded in geometry.
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APPENDIX A

METRIC THEORY OF GRAVITATION

The most fundamental formulation of General Relativity (GR) was suggested by
Einstein in 1916 and it was called as metrical formulation of Gravity. Naturally, modifica-
tions of the GR has been done since that time and mainly these are called as Metric-Affine
gravity and Affine gravity. However, in this thesis we have followed the Einstein’s route.
Therefore, all of calculations given in this thesis was made by using Metrical theory of
Gravity.

According to Einstein’s formulation of GR, spacetime is a differentiable manifold,
and metric tensor, which is symbolized as g,g, is responsible for curving and twirling of
the spacetime (Carroll, 2004). This is just a collection of clocks and rulers needed for
measuring distances and angles.

If one wants to examine any smooth manifold in a general framework, it obtains
two independent dynamical objects: metric tensor and connection- connection is a guiding
force for geodesic motion. However, in the light of Metrical theory of gravity, metric
tensor is the most important concept since all of the notions including connection are

related to itself. Connection can be written in terms of metric tensor just as given below:

1
Tas = 59" (Bagsp + 09 — Opfos) (A.1)

which is especially known as the Levi-Civita connection. Since metric tensor is symmet-
ric, it is also symmetric in lower indices (Carroll, 2004) (Weinberg, 1972). Hence, as
you see in Eq.(A.1), GR is described by a single variable and it is the metric tensor.

The main success of General relativity is to define of curvature of spacetime.

Spacetime curvature is basically related to the connection of smooth manifold.
A _ A A A T A T
R aﬂﬂ — a'ur ,BOé - aﬁr ey + F /“—F 501 - F ETF po (A.2)

Then, since connection depends on metric tensor, not only connection on smooth man-

ifold, but also curvature is related to the metric tensor. By using Kronecker delta *
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and metric tensor g, we obtain different forms of Curvature tensor. Let us write these

respectively. The first form is also called as Ricci Tensor.

Raﬁ = RAauB(sf\L

= R4 (A.3)
The other is obtained by using Ricci Tensor and called as Ricci Scalar or Scalar Curvature:
R=g"Ras (A4)

These are the fundamental equations of General Relativity. The field equations of GR are

obtained by varying the Einstein-Hilbert action which is

$lol = [ ey {SMAR() + Lous 0.0) (A5)

Since this action only depends on metric tensor, variation is only taken with respect to it.
Here, Mp, = (871G N)‘l/ 2 is the Planck scale or the fundamental scale of gravity.

Variation of equation Eq.(A.5) gives the Einstein equations of gravitation

1 1
RHV - §R9;w = M_I%lTlﬂj (A6)
whose right-hand side
T, = 0 S, A7
W—W mat[g>¢] (A7)

is the energy-momentum tensor of matter and radiation. Here,

sz/%v%@m@w (A8)

is the action of the matter and radiation fields ). The curvature scalar and matter La-
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grangian L, both involve the same metric tensor g,,, .

It is important to that the field equations (A.6) arises from the gravitational action
(A.5) by adding an extrinsic curvature term. The reason is that, curvature scalar R(g)
involves second derivatives of the metric tensor, and in applying the variational equations
it is not sufficient to specify dg,, at the boundary. One must also specify its derivatives
0049, at the boundary. This additional piece does not admit construction of the Einstein-
Hilbert action directly; one adds a term (extrinsic curvature) to cancel the excess term.

The metric formalism is the most common approach to gravitation because equiva-
lence principle is automatic, geodesic equations are plain, and tensor algebra is simplified
(metric tensor is covariantly constant). Equivalence principle means that gravitational
force acting on a point mass can be altered by choosing an accelerated (non-inertial) co-
ordinate system. In other words, there is always a frame where connection can be set to
zero. This point corresponds to a locally-flat coordinate system. The curvature tensor in-
volves both Levi-Civita connection and its derivatives, and making the connection vanish
does not mean that curvature vanishes.

On the other hand, experiments and observation show that, our universe is ho-
mogeneous, isotropic and locally flat. These properties can be achieved by FRW metric

tensor which is

dr?

ds? = —dt? 2 | ——
S + a(t) T

+ 17 (d6? + sin® 0d¢?) (A.9)

in spherical coordinates. Here,
e [ < 0 corresponds to open universe
e i = 0 corresponds to (spatially) flat universe
e k > 0 corresponds to closed universe

In this thesis we work on locally flat spacetime and so we set & = 0 then also in Cartesian

coordinates,

ds® = —dt* + a(t)*6"” dx;dx; (A.10)
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By inserting this metric tensor into the Ricci tensor and Ricci Scalar, we obtain

—3a
ROO =
a
R()i — O
Rz‘j = (CLCL+2CL2) 5@'
.. .2
R - 6(9+“—2) (A11)
a a

As a consequence, metrical theory of gravity is the most fundamental theory and contains
only one dynamical variable which is metric tensor. Thus all notions are related to metric
tensor. In FRW universe, metric tensor defined by scalar factor a(¢) which is related o the
radius of the universe. Then curvature tensor is also related to the scalar factor and its first

and second derivatives.
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APPENDIX B

CLASSICAL FIELD THEORY

In this step we examine how the equations of motions are obtained. In the stage
of understanding the dynamics of theories, the most important role is played by equations
of motions. In classical field theory, the way of finding equations of motion is called
variational method. So, we should firstly explain variational method. To achieve this aim,

let us consider a Lagrangian density £(¢, gzﬁ) where the action is given as;

S:/ﬁL:/#ﬂx¢QW) (B.1)

By considering small variation in this field;

¢i - ¢i + 5¢7,
Dud' — 00" + 8(0,0") = 0,9 + 0,,(6¢") (B.2)
Lagrangian Density varies;
L(¢',0,0") = L(¢' +0¢",0,0" + 0,(6¢")) (B.3)

thus action varies by virtue of this small variation S — S + 05. Hence;

[ oL (o
o= [ a3 -0 (755 .

We assume that ¢° is the same at the end points of the integral. Thus, by using this

assumption, we conclude that 5.5 should be zero. On the other hand §¢’ should be different
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from zero. Thus the only choice to obtain .5 = 0 is

oL oL
35~ () 0 o

This equation is called as Euler-Lagrange Equation and it leads to field equations (Carroll,
2004). Therefore, by using variational principle, we obtain the equation of motion for a

Lagrangian which has one dynamical variable such as metrical theory of gravity.
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