

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2015

A COMPARATIVE STUDY ON HIERARCHICAL STATE MACHINE

PATTERN AND STATE PATTERN

Özdemir KAVAK

Department of Computer Engineering

Computer Engineering Programme

JANUARY 2015

ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A COMPARATIVE STUDY ON HIERARCHICAL STATE MACHINE

PATTERN AND STATE PATTERN

M.Sc. THESIS

Özdemir KAVAK

 (504111525)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Ahmet Cüneyd TANTUĞ

OCAK 2015

ĠSTANBUL TEKNĠK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

HĠYERARġĠK DURUM MAKĠNESĠ TASARIM KALIBI VE DURUM

TASARIM KALIBI ÜZERĠNE KARġILAġTIRMALI BĠR ÇALIġMA

YÜKSEK LĠSANS TEZĠ

Özdemir KAVAK

(504111525)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez DanıĢmanı: Yrd. Doç. Dr. Ahmet Cüneyd TANTUĞ

v

Thesis Advisor : Asst. Prof. Dr. Ahmet Cüneyd TANTUĞ

 Istanbul Technical University

Jury Members : Asst. Prof. Dr. Tolga OVATMAN

Istanbul Technical University

Asst. Prof. Dr. Mehmet AKTAġ

Yıldız Technical University

Özdemir KAVAK, a M.Sc. student of ITU Graduate School of Science Engineering

and Technology student ID 504111525, successfully defended the thesis entitled “A

COMPARATIVE STUDY ON HIERARCHICAL STATE MACHINE

PATTERN AND STATE PATTERN”, which he prepared after fulfilling the

requirements specified in the associated legislations, before the jury whose signatures

are below.

Date of Submission : 10 December 2014

Date of Defense : 20 January 2015

vi

vii

To my family,

viii

ix

FOREWORD

I would like to express my deepest gratitude to Assist. Prof. Dr. Ahmet Cüneyd

Tantuğ for his understanding, guidance, advice and supervision throughout the

development of this thesis study. I also would like to thank to my executives at

TÜBİTAK for the support and encouragement on this academic study.

December 2014

Özdemir Kavak

Computer Engineer

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii
LIST OF TABLES ... xv
LIST OF FIGURES ... xvii

SUMMARY ... xix
ÖZET .. xxi
1. INTRODUCTION .. 1

1.1 The Purpose and Scope of the Study ... 2
1.2 Outline .. 2

2. LITERATURE REVIEW .. 5
2.1 Previous Studies ... 5

3. SOFTWARE QUALITY ... 9
3.1 ISO/IEC 25010:2011 .. 9

3.1.1 Quality in use model ... 10
3.1.2 Software product quality model .. 11

3.1.2.1 Functional suitability .. 11

3.1.2.2 Reliability ... 11
3.1.2.3 Performance efficiency .. 11

3.1.2.4 Operability.. 12
3.1.2.5 Security .. 12
3.1.2.6 Compatibility ... 12
3.1.2.7 Transferability .. 12

3.1.2.8 Maintainability ... 12
3.2 Metrics ... 13

3.2.1 Object Oriented Metrics .. 14

3.2.1.1 Chidamber and Kemerer metrics ... 14
3.2.1.2 Lorenz and Kidd metrics .. 17

4. PROPOSED METRICS FOR STATE ORIENTED SOFTWARE DESIGN 19
4.1 Number of Handled Event (NHE) ... 19

4.2 Depth of State Inheritance Tree (DSIT) ... 20
4.3 Number of Child State (NOCS) ... 20
4.4 Number of Events Added (NEA) ... 21
4.5 Number of Events Overridden (NEO) ... 21
4.6 Complexity of Event Handler (CEH) ... 22

4.7 Complexity of Enter Handler (CEnH) ... 22
4.8 Complexity of Exit Handler (CExH) ... 22
4.9 Validation of Proposed Metrics ... 22

5. STATE MACHINE IMPLEMENTATION TECHNIQUES 25
5.1 Doubly Nested Switch Method .. 25

xii

5.2 State Table Method .. 26
5.3 State Pattern [25] .. 27
5.4 Hierarchical State Machine Pattern .. 30

6. METHODOLOGY ... 37
6.1 Goal .. 37
6.2 Case Study: Interlocking Simulator ... 37
6.3 Implementation... 39

6.3.1 Type-1 HSM pattern (single layer) ... 39
6.3.2 Type-2 HSM pattern (multi-layer) .. 39

6.3.3 Type-3 SP (multi-layer) .. 42
6.4 Gathering Metrics ... 42

7. RESULTS .. 45
7.1 Effect of Using Inheritance in HSM Pattern .. 45

7.1.1 Results ... 45
7.1.2 Evaluation of results .. 49

7.2 HSM Pattern and SP ... 50

7.2.1 Results ... 50
7.2.2 Evaluation of results .. 50

8. CONCLUSION ... 53

REFERENCES ... 55
CURRICULUM VITAE .. 59

xiii

ABBREVIATIONS

OO : Object oriented

GoF : Gang of Four

HSM : Hierarchical State Machine

FSM : Finite State Machine

SP : State Pattern

WMC : Weighted Method Call

DIT : Depth of Inheritance Tree

NOC : Number of Children

NOM : Number of Methods

CBO : Coupling Between Objects Classes

RFC : Response For a Class

LCOM : Lack of Cohesion in Methods

NMA : Number of Methods Added

NMO : Number of Methods Overridden

NIM : Number of Methods Inherited

SIX : Specialization Index per Class

NHE : Number of Handled Event

DSIT : Depth of State Inheritance Tree

NOCS : Number of Child State

NEA : Number of Events Added

NEO : Number of Events Overridden

CEH : Complexity of Event Handler

CEnH : Complexity of Enter Handler

CExH : Complexity of Exit Handler

ISO : International Organization for Standardization

xiv

xv

LIST OF TABLES

Page

Table 5.1 : State table .. 26

Table 7.1 : Significance test for Type-1 and Type-2... 49

Table 7.2 : Significance test for Type-2 and Type-3... 51

xvi

xvii

LIST OF FIGURES

Page

Figure 3.1 : ISO/IEC 25010 software product quality model 11
Figure 4.1 : NHE ... 19

Figure 4.2 : DSIT .. 20
Figure 4.3 : NEA ... 21
Figure 5.1 : Doubly nested switch method ... 25
Figure 5.2 : Signals and states ... 25

Figure 5.3 : UML class diagram of SP.. 27
Figure 5.4 : Light statechart .. 30
Figure 5.5 : UML class diagram of light state machine .. 30
Figure 5.6 : HSM transition topologies ... 32

Figure 5.7 : Statechart of a calculator ... 33
Figure 5.8 : UML class diagram of HSM pattern [27].. 34

Figure 6.1 : State diagram of interlocking simulator .. 38
Figure 6.2 : Implementation of state-2 .. 40

Figure 6.3 : UML statechart diagram for HSM pattern(Type-2) implementation 41
Figure 6.4 : UML class diagram of SP implementation ... 43
Figure 7.1 : NHE measurement .. 45

Figure 7.2 : DSIT measurement .. 46
Figure 7.3 : NOCS measurement .. 46

Figure 7.4 : NEA measurement .. 47
Figure 7.5 : CeH measurement ... 48
Figure 7.6 : CEnH measurement ... 48
Figure 7.7 : CExH measurement ... 49

xviii

xix

A COMPARATIVE STUDY ON

HIERARCHICAL STATE MACHINE PATTERN AND STATE PATTERN

SUMMARY

State machines are an indispensable element of our lives. People interact with these

state machines in order to purchase products from vending machines, to enter a

metro station through a turnstile, and so on. Large numbers of problems can be

modeled by the help of FSMs. Communication protocol design, electronic design

automation, language processing and other engineering applications are among these

problems.

FSMs are also important for implementing application behavior. FSM is a very

compact way to represent a set of complex rules and conditions. FSMs define simple

rules to manage complex behavior of the software.

There are many techniques for FSM implementation. If the literature is reviewed,

three implementation techniques draw attention; switch statement method, table

method, and OO SP. In addition, another technique of implementing a FSM is HSM

pattern. HSM pattern is different from other methods because it implements HSMs.

 All of these techniques have their own advantages and drawbacks. In this thesis

study, we focused on SP and HSM pattern. The effects of applying these design

concepts on software quality are investigated. SP is OO which is introduced by GoF,

however HSM pattern is not. At first glance, OO solution may seem to be more

effective than HSM pattern, however without a mathematically grounded

comparison, it is open to doubt.

In order to investigate the effect of these two design patterns on software quality in a

sane way, a module of interlocking software simulator, which is responsible for route

allocation for railway traffic management system, is picked up. Same module is

designed and implemented three times with the same functionality. Two versions of

the module is implemented using HSM pattern with and without inheritance. These

implementations are named as Type-1(without inheritance), Type-2(with

inheritance). Third version of the software is designed and implemented with SP and

named as Type-3. In SP implementation, inheritance is used as long as it makes

sense.

In this study, we aim to compare SP and HSM pattern from the viewpoint of

developers. Additionally, we also study the effect of inheritance in HSM pattern.

Software has many characteristics defining software quality. ISO/IEC-25010:2011

standard is reviewed in order to find quality characteristic, which is most important

concern of software developers. We found that maintainability, which is a software

quality characteristic in the standard, is most related to software design.

The next step of the study is to find a way for measuring maintainability of three

implementations. Previous studies are reviewed and some metrics are found. These

xx

metrics are WMC, DIT, NOCS, CBO, LCOM, RFC, which are introduced by

Chidamber and Kemerer, and NMA, NMO, NIM, SIX, which are introduced by

Lorenz and Kidd.

These metrics are well known for measuring the design of the software; however,

they are only applicable to OO software designs. SP implementation can be

measured with these CK and LK metrics; however, HSM pattern implementations of

interlocking simulator cannot be measured because HSM pattern is not OO.

Despite the fact that SP and HSM pattern belong to different software paradigms,

they share a common property; both of them implement state machines. Starting

from this point of view, new metric suit proposed for these patterns. New metrics are

originated from CK and LK metrics. Proposed metrics are NHE, DSIT, NOCS, NEA,

NEO CEH, CEnH, and CExH.

NHE, CEH, CEnH, and CExH are complexity related metrics. DSIT and NOCS

measure inheritance. NEA and NEO correspond to NMA and NMO in LK metrics

respectively.

Three versions of the interlocking software are measured with these state-oriented

metrics. Comparisons are made as pairs; Type-1/Type-2 and Type-2/Type-3.

First comparison showed that using inheritance effectively in HSM pattern increases

software quality in terms of maintenance. Second comparison showed that SP

version of interlocking simulator become more complex than HSM pattern version,

thus increasing the effort required to maintain the software.

Comparison results of the different designs applied to the interlocking software

simulator, which is summarized above, discussed, and published in the related

conference and publications.

xxi

HĠYERARġĠK DURUM MAKĠNESĠ TASARIM KALIBI VE DURUM

TASARIM KALIBI ÜZERĠNE KARġILAġTIRMALI BĠR ÇALIġMA

ÖZET

Günlük hayatta durum makineleri önemli bir yere sahiptir. İnsanlar içecek satın

almak için satış makinelerini, bilet veya jeton ile metroya binmek için turnikeleri

kullanırlar. Etkileşimde bulunduğumuz tüm bu makineler durum makineleri ile

modellenmiştir. Bunun dışında çok sayıda problem durum makineleri kullanılarak

modellenebilir. İletişim protokolü tasarımı, elektronik devre tasarımı, dil işleme ve

diğer mühendislik uygulamaları bu problemlerden birkaçıdır.

Sonlu durum makineleri(SDM), yazılım davranışını gerçeklemekte de önemli bir

yere sahiptir. SDM’ler karmaşık kurallar ve koşullar kümesini gerçeklemenin kolay

bir yoludur. SDM, karmaşık yazılım davranışının programlanmasında basit kurallar

dizisi sağlar. SDM’leri yazılımda gerçeklemenin bir çok yolu vardır. Bu konuda

araştırma yapıldığında özellikle üç tekniğin çok kullanıldığı görülmektedir. Bu

teknikler switch cümlesi yöntemi, tablo yöntemi ve durum tasarım kalıbı yöntemidir.

Bu tekniklere ek olarak SDM gerçeklemenin bir diğer yolu da hiyerarşik durum

makinesi yazılım tasarım kalıbıdır. Hiyerarşik durum makinesi tasarım kalıbı metodu

diğer yöntemlerden gerçeklediği durum makinesinin hiyerarşik durumda olmasından

dolayı farklıdır.

Durum makinesi gerçeklemek için kullanılan bu yöntemlerin her birinin üstün

yönlerinin olduğu gibi sakıncalı yönleri de mevcuttur. Bu tezde durum tasarım kalıbı

ve hiyerarşik durum makinesi tasarım kalıbı ele alınmış, bu yöntemleri uygulamanın

yazılım kalitesi üzerindeki etkileri araştırılmıştır.

GoF tarafından ortaya konulan durum tasarım kalıbının temeli nesne yönelimli

olmasıdır. Fakat hiyerarşik durum makinesi yazılım tasarım kalıbı nesne yönelimli

değildir. İlk bakışta nesne yönelimli olan yöntemin hiyerarşik olan yöntemden daha

etkili olacağı düşünülebilir fakat sağlam temeller üzerine dayanan bir karşılaştırma

yapmadan kesin bir kanıya varmak tartışmaya açıktır.

Bu tasarım kalıplarının yazılım kalitesi üzerindeki etkisini araştırmak için demiryolu

sinyalizasyon sistemlerinde güzergah tanziminden sorumlu olan anklaşman yazılımı

benzetiminin bir modülü seçilmiştir. Bu sistemin seçilmesinin nedeni sistemin durum

makinesi ile gerçeklemeye uygun olmasıdır. Bunun yanında anklaşman yazılımında

durum geçişlerinde ve durumlara giriş ve çıkışta yapılması gereken işlemlerin

değişkenlerin set/reset edilmesi, zamanlayıcıların başlatılıp-durdurulması gibi

karmaşık olmayan işlemleri içermesi sebebiyle farklı tasarımları uygulamanın

etkilerini gözlemlemek daha basit olmuştur. Uygulama olarak benzetim yazılımı aynı

işlevsellikte üç kez tasarlanmış ve gerçeklenmiştir. İki sürüm hiyerarşik durum

makinesi tasarım kalıbıyla, kalıtım kullanmadan ve kalıtım kullanarak tasarlanmış ve

gerçeklenmiştir. Bu sürümler sırasıyla Type-1 ve Type-2 olarak isimlendirilmiştir.

xxii

Üçüncü sürümde durum yazılım tasarım kalıbı kullanılmış ve Type-3 olarak

isimlendirilmiştir.

Hiyerarşik durum makinesi tasarım kalıbının kalıtımlı ve kalıtımsız uygulanmasıyla,

kalıtımın yazılım kalitesi üzerindeki etkisi araştırılmıştır. Durum tasarım kalıbının

kullanıldığı sürümde anlam ifade ettiği sürece kalıtım kullanılmıştır. Type-2 ve

Type-3 tasarımlarında durumlar için kullanılan kalıtım ağacı birbirinin aynısıdır.

Böylece hiyerarşik durum makinesi tasarım kalıbı ve durum yazılım tasarım kalıbını

daha sağlıklı bir şekilde karşılaştırmak mümün olmuştur.

Bu tezde gerçeklenen farklı tasarımların karşılaştırması yazılımların kalitesi

üzerinden yapılmıştır. Fakat yazılım kalitesi bir çok kişi tarafından farklı

değerlendirilebilir; son kullanıcı için yazılım kalitesi kullanım kolaylığı olarak

tanımlanırken, testçi için kalite, yazılımın test edilebilirliğidir. Bu çalışmada

gerçeklenen tasarımların karşılaştırılması yazılım geliştiricinin bakış açısına göre

yapılmış, yazılım geliştiriciyi ilgilendirmeyen özellikler göz ardı edilmiştir. Yazılım

geliştiriciyi ilgilendiren yazılım kalite karakteristiklerini bulmak için ISO/IEC-

25010:2011 standardı incelenmiştir. Bu belgede bulunan yazılım bakım

yapılabilirliğinin, yazılım tasarımıyla en ilgili yazılım kalite karakteristiği olduğu

belirlenmiştir.

Çalışmadaki bir sonraki adım, gerçeklenen üç sürümün yazılım bakım

yapılabilirliğinin nasıl ölçüleceğini bulmak olmuştur. Bu amaçla önceki çalışmalar

taranmış ve bazı metrikler bulunmuştur. Bu metrikler Chidamber ve Kemerer

tarafından önerilen WMC, DIT, NOCS, CBO, LCOM, RFC ve Lorenz ve Kidd

tarafından önerilen NMA, NMO, NIM, SIX metrikleridir.

Yazılım dünyası tarafından tasarım kalitesini ölçmek için uzun zamandan beri

kullanılan bu metrikler sadece nesne yönelimli yazılımlar için geçerlidir. Durum

tasarım kalıbı ile gerçeklenen sürüm bu metrikler ile ölçülebilir fakat hiyerarşik

durum makinesi tasarım kalıbı kullanılarak gerçeklenen iki sürüm, nesne yönelimli

olmadıkları için bu metrikler ile ölçülemez. Bu sebepten dolayı gerçeklenen tüm

sürümlere uygulanabilecek bir metrik kümesine ihtiyaç duyulmuştur.

Durum tasarım kalıbı ve hiyerarşik durum makinesi tasarım kalıbı farklı

paradigmalara ait olsa da ortak bir özelliği paylaşmaktadırlar. Bu özellik ikisinin de

durum makinesi gerçeklemesidir. Bu yaklaşımdan yola çıkarak yeni bir metrik

kümesi önerilmiştir. Bu metriklerin tasarlanmasında CK ve LK metriklerinden

esinlenilmiştir. Önerilen metrikler NHE, DSIT, NOCS, NEA, NEO, CEH, CEnH ve

CexH’den oluşturmaktadır. NHE, DSIT, NOCS, NEA, NEO metrikleri nesne

yönelimli yazılım metriklerinde sırasıyla WMC, DIT, NOC, NMA ve NMO

metriklerine karşılık gelmektedir.

NHE, CEH, CenH ve CexH metrikleri karmaşıklıla ilgili iken DSIT ve NOCS

metrikleri kalıtımı ölçmektedir. NEA ve NEO, LK metriklerinde sırasıyla NMA ve

NMO metriklerine karşılık düşmektedir.

Gerçeklenen üç anklaşman benzetim yazılımı nesne yönelimli yazılım metriklerinden

esinlenerek oluşturulan durum yönelimli metrikler ile ölçülmüştür. Karşılaştırmalar,

Type-1 ve Type-2 kendi arasında, Type-2 ve Type-3 kendi arasında olmak üzere iki

şekilde yapılmıştır.

Type-1 ve Type-2 arasındaki karşılaştırma sonuçları, hiyerarşik durum makinesi

tasarım kalıbında kalıtımı etkili bir şekilde kullanmanın durumların ortalama

karmaşıklıklığını azalttığını göstermiştir. Böyle bir sonucun çıkmasının sebebi

xxiii

kalıtımı etkili bir şekilde kullanarak sorumlulukların durumlar arasında daha dengeli

bir şekilde dağıtılmış olmasıdır. İkinci karşılaştırma ise durum makinesi tasarım

kalıbı ile gerçeklenen Type-3’ün Type-2’den daha karmaşık olduğunu göstermiştir.

Bu sonucun ana sebebi iki tasarım kalıbının giriş ve çıkış işlemlerinin

gerçeklenmesinde izledikleri yöntemlerin farklı olmasıdır. Sonuç olarak

karmaşıklığın yüksek olmasından dolayı durum makinesi tasarım kalıbı ile

gerçeklenen yazılımın bakım yapılabilirlik maliyeti hiyerarşik durum makinesi

tasarım kalıbı ile gerçeklenen yazılıma göre daha yüksek olacaktır.

Anklaşman yazılımına uygulanan yukarıda bahsi geçen bu farklı tasarımların

karşılaştırma sonuçları ilgili konferansta sunulmuş ve yayınlanmıştır.

xxiv

1

1. INTRODUCTION

In modern life, the behavior of finite state machines can be found in many devices

such as vending machines, elevators, traffic lights, combination locks, automated

teller machines, or turnstiles. These machines perform sequence of predetermined

actions when initiated by a triggering event or condition.

Finite state machine (FSM) or finite state automaton, or simply state machine is a

model of behaviors, which consist of finite number of states, transitions between

these states and transactions.

Finite state machines are important in many different fields. These fields include

electrical engineering, linguistics, computer science, mathematics, logic and so on. In

computer science, FSMs are used in design of digital system hardware, software

engineering, speech recognition, network protocols, and implementation of

application behavior.

A software application, which has event-based behavior, can be implemented easily

with techniques based on state machines.

In the 1980’s, another type of state machine is introduced: statecharts [1]. Statecharts

introduce hierarchically nested states. It provides a way of capturing common

behavior for reuse purposes.

State machines can be implemented by using several techniques. Although SP

implementation is one of the most popular methods, nowadays usage of hierarchical

state machine (HSM) pattern is increasing. In this thesis, our motivation is making a

metric based comparison between HSM and SP pattern. In addition, effect of

increase in usage of inheritance in HSM pattern is analyzed. SP and HSM pattern

belongs to different software methodologies, thus usage of OO metrics is not

applicable. On the other hand, they share an important common property; both

patterns implement state machines. For this reason, a new metric suit for state-

oriented programming is proposed. As a result of this study, it is shown that using

inheritance effectively in HSM pattern increases software quality. It is also shown

2

that HSM pattern is more maintainable than SP pattern because HSM pattern handles

enter/exit actions more effectively than SP.

1.1 The Purpose and Scope of the Study

The purpose of the study is to investigate the effect of using different techniques for

implementing state machines on software quality.

Within the scope of this study, same software is designed and implemented by

applying different software designs. Changes on metric values have been evaluated

from the viewpoint of software developer. For this purpose, ISO/IEC:25010:2011

software quality model is investigated in order to find design related characteristics

of software. In this thesis, quality term is used to refer maintainability of the

software.

Furthermore, in this thesis, in order to compare these software implementations with

same metrics, new state-oriented metric suit that can be used for all implementations,

is proposed.

1.2 Outline

This thesis is organized as follows:

In section 2, literature review is performed. Previous studies, which are related to

topic of this study, are examined.

In section 3, information about software quality is given. ISO-25010:2011 standard

is explained. Quality characteristics are reviewed from the perspective of software

developer. Some of the OO software metrics are given and explained.

In section 4, proposed metrics for state oriented software design, state-oriented

metrics are proposed and explained with simple examples.

In section 5, information about state machine implementation techniques is given.

In section 6, methodology, interlocking simulator software is implemented three

times with the same functionality; HSM pattern is used with and without inheritance

as well as SP pattern based version of the same software.

3

In section 7, results, each of interlocking simulator implementations are measured

with proposed state-oriented metrics. With the help of state-oriented metrics the

effect of inheritance usage in HSM pattern analyzed and given. Furthermore, In the

light of obtained metric scores, HSM pattern, and SP implementations are compared.

In last section, conclusion of the study is presented, and some future works are

suggested.

4

5

2. LITERATURE REVIEW

2.1 Previous Studies

Previous studies can be grouped under two main categories;

 Empirical studies which measure effects of the software patterns

 Studies which investigate how to measure maintainability

In [2], factors of testability, which is a sub-characteristic of maintainability, are

investigated. Software metrics related to testability are evaluated by means of two

case studies of large Java projects. It is shown that size related metrics such as NOM

are correlated with testability of software because a large class is required to be

tested with a large corresponding test class. Results obtained from case study show

that inheritance metrics, DIT and NOC, are not correlated with testability. However,

if all inherited methods of a class are needed to be tested, DIT metric can be used to

measure testing effort needed.

In [3], in order to find maintainability related metrics, an empirical study is done

based on the maintenance history of a OO system. It is found that the size and import

coupling metrics are strong predictors for measuring maintainability for the analyzed

projects.

In their paper [4], Basili et al. collected data on eight medium-sized projects, which

are designed and implemented to meet same requirements. They stated that CK

metrics, except LCOM, are good indicator for class fault-proneness. Results showed

that high WMC, DIT, RFC, CBO increases the probability of fault detection.

Unexpectedly, empirical results showed that the larger the NOC, the lower the

probability of fault detection. This result is explained by the fact that the most of the

investigated classes have at most one child and reused classes have many children.

Fault proneness is a very important asset when the maintainability is a subject matter.

In [5] and [6], some of the CK metrics, which are DIT, NOC, RFC, LCOM, WMC,

and some other size metrics are suggested as a maintainability predictor metrics.

6

Software having lower metric scores of these metrics is considered more

maintainable [7].

In [8], the effects of the application of some design pattern on software metrics are

researched. Mediator, Bridge, and Visitor patterns are compared with their non-

pattern alternatives. It is stated that applying bridge pattern decreases average NOC

and DIT metric score. It is also shown that application of Mediator pattern decreases

CBO. However, these results are not obtained from a project having large number of

classes, or a framework.

In [9], an experimental work is done to investigate the software maintenance that

employ some design patterns (abstract factory, composite, decorator, façade,

observer, and visitor) and compare them with their simpler alternatives. In this study,

it is stated that using design pattern has positive effects in most of maintenance

activities. Although, maintenance time increases in a few cases, it is suggested that

design patterns should be chosen incase unexpected new requirements may appear.

In [10], Bieman et al. conducted an industrial case study to investigate the correlation

between code changes and design patterns. In case studies, it is found that classes

playing roles in design patterns are more change-prone than other classes. However,

it is also stated that pattern participant classes provide the most significant

functionality to the system and they are expected to be changed more frequently than

other classes. As we consider non-pattern version of the designs, most of the changes

are modification whereas changes are addition of new classes in design pattern.

In their study [11], Ampatzoglou et al. propose a methodology for comparing design

patterns to equivalent adhoc designs with respect to several quality attributes. Some

design patterns are evaluated with respect to various quality characteristics. In three

cases, design patterns provide a more maintainable design. However, there are also

cases implying that design pattern is not the best solution.

In [12], relation between OO design patterns, OO metrics, and software error-

proneness is studied. For this purpose, various open source software projects and

experimental source codes have been analyzed in order to find defected parts of

software designs by the help of OO metrics. In the light of obtained metric results,

defected parts of the software were redesigned and implemented with appropriate

design patterns. In this study, all of the projects analyzed are design pattern free and

7

object-oriented. Power-Grab project is redesigned using façade, state, and singleton

design patterns. As a result, it is stated that state pattern significantly reduced WMC

and CBO values. However, designs used in original version of Power-Grab project

are not mentioned.

In [13], the connection between design patterns and OO quality metrics are

investigated similar to [12]. However, in this thesis, effect of design pattern usage on

software maintainability is sought. First, a project called Routing Software is

analyzed and suitable design patterns are applied. Routing Software is redesigned

and implemented in four phases. Output of each phase is used as an input of next

phase, so design patterns are applied cumulatively. In some phases, more than one

design pattern is applied, and then results are evaluated. Applying design pattern at

the same time or applying one after another may effect results. In this thesis, state

pattern is not investigated.

In [14], the effect of some OO and real time software design patterns on another

aspect of software, which is performance, is investigated. For this purpose, non-OO

projects have been redesigned and implemented by using OO language with and

without OO and real time software design patterns. Responsibilities of software

programs developed are same as the original version. It is shown that by applying

state pattern carefully, some improvement in overall performance of real time

software can be obtained.

8

9

3. SOFTWARE QUALITY

Assuring the quality of software is the most challenging activity throughout the

software life cycle. In [15], software quality is defined as:

“degree to which the software product satisfies stated and implied needs when used

under specified condition”.

Through the years, some software quality models are published to define software

characteristics that effect software quality.

Quality models help software team to

 define software requirements

 confirm the scope of requirement description

 define software design goals

 define software testing goals

 define quality control condition

 define acceptance condition for a finalized software product [15]

Quality of the software might change according to people because stated and implied

expectations from software may be different. For an end user, quality can be

described as ease of use whereas quality can be code readability for a developer.

3.1 ISO/IEC 25010:2011

ISO/IEC 25010:2011 standard is one of the established quality model. This

international standard defines “a software product quality” and “a quality in use

model”.

The characteristics defined by quality in use model and product quality model are

applicable to all computer systems and software products. The characteristics defined

10

in this standard provide technical language for defining, measuring, and evaluating

system and software product quality.

A quality in use model has five characteristics. These characteristics are valid when a

product is used in a particular context of use. A product quality model has eight

characteristics, which are about dynamic attributes of the computer system and static

attributes of the software.

3.1.1 Quality in use model

Quality in use is a measure of the quality of the software, hardware, and

environment. Characteristics of the users, goals, and social environment also effect

quality in use. Quality in use model has three characteristics;

 Usability in use

o Effectiveness in use

o Efficiency in use

o Satisfaction in use

o Usability in use compliance

 Flexibility in use

o Context conformity in use

o Context extendibility in use

o Accessibility in use

o Flexibility in use compliance

 Safety

o Operator health and safety

o Public health and safety

o Environmental harm in use

o Commercial damage in use

o Safety compliance

11

Quality in use model is related to complete human-computer system. Characteristics

of this model mostly related to human factor. In this thesis, software is evaluated

from the viewpoint of developer or tester. Thus, quality in use model is not an

appropriate model.

3.1.2 Software product quality model

Software product quality model has eight characteristics, which are divided in to sub-

characteristics i.e. Figure 3.1.

Figure 3.1 : ISO/IEC 25010 software product quality model.

Software product quality model is suitable for determining quality characteristics that

concern software developer’s quality expectations. Thus, in this thesis, software

product quality model is chosen as a quality model.

3.1.2.1 Functional suitability

Functionality is the software’s ability to meet stated requirements. In this thesis, SP,

and HSM pattern versions of interlocking simulator has same functionality.

3.1.2.2 Reliability

Reliability characteristic is related to performance of software product. Performance

is not a subject matter in this thesis.

3.1.2.3 Performance efficiency

Performance efficiency is associated with time behavior and resource utilization of

software. Performance related issues are not within the scope of this thesis.

12

3.1.2.4 Operability

When operability is a subject matter, software is expected to be understood, learned,

and used easily by the user. The software should provide help incase users need

assistance. It also has to be attractive to the user. Moreover, users with specified

disabilities can use software product easily. This type of quality characteristic is not

within the scope of this thesis.

3.1.2.5 Security

A system must protect its elements from accidental or malicious access, usage,

alteration, destruction, or disclosure. Security related sub-characteristic of quality

model is not within the scope of this thesis.

3.1.2.6 Compatibility

Compatibility is the capability of more than one software modules sharing the same

hardware or software environment to transfer data or carry out their tasks.

Compatibility is not within the scope of this thesis.

3.1.2.7 Transferability

Transferability is the ability to transfer software product from one environment to

another. All implementations run on the same environment, thus this type of quality

characteristic is not within the scope of this thesis.

3.1.2.8 Maintainability

Maintainability is the degree to which the software product can be modified. Bug fix

and improvements are accepted as modification. Changes in environment and

requirements can be reasons for software modification. Modularity, reusability,

analyzability, changeability, modification stability, testability, and compliance are

sub-characteristics of maintainability.

Modularity emphasizes that alteration of one component of the software must have

minimal effect on other components. A component is desired to be independent of

other components. Reusability is the capability of using a software asset in another

software system.

13

Analyzability sub-characteristic states that software product can be examined for

defects or causes of failures in the software.

Changeability is the degree to which software product enables modification

including changes in designing, coding, and documentation. Software product

expected to be stable after modification. Modification of software should not cause

unexpected behavior according to modification stability sub-characteristic.

Testability is the validation of the modification applied to the software.

Maintainability compliance is the conformity of software to the standards or rules

about maintainability.

After we reviewed software quality characteristics, we found that maintainability is

one of the most design related software characteristics. In this thesis, software

designs are evaluated from the viewpoint of maintainability.

Before measuring the software in terms of the characteristics explained above, these

characteristics need to be supported by a measurable basis. Software quality metrics

are used for this purpose.

From earlier studies [2, 4, 5, 6, 12], OO software metrics are determined to compare

different designs implemented in this thesis. These metrics are WMC, DIT, NMA,

NMO, and NOCS.

3.2 Metrics

In order to describe entities in real world, numbers or symbols are assigned to them

as attributes [16].

In [17], Fenton gives definition of measurement:

“Measurement is the process by which numbers or symbols are assigned to

attributes of entities in the real world in such a way as to describe them according to

clearly defined rules.”

A metric is a property to measure any attribute of any system. Software metrics

describe various activities related to measurement in software engineering. These

activities vary from obtaining numbers characterizing properties of software code to

models, which help engineers make prediction about the resource needs and software

quality [18].

14

Software metrics help engineers understand design and structure of software without

reading source code.

Many software metrics, which measures size, complexity, and coupling attributes of

software, are introduced through the years. Object-oriented metrics are the most

applied among these metrics.

3.2.1 Object Oriented Metrics

3.2.1.1 Chidamber and Kemerer metrics

Need for process improvement in software development forced managers to use new

and improved approaches like object-orientation. Chidamber and Kemerer defined

six new OO metrics in [19]. These metrics have strong theoretical and mathematical

background, where as previously proposed metrics are criticized for being not

theoretically grounded. The metrics are evaluated against previously introduced

measurement principles.

Weighted methods per class (WMC)

Definition: Let be a class. Assume are methods of with

complexity respectively. Then;

 ∑

 (4.1)

Complexity is not defined elaborately by CK. Decision of how to calculate the

complexity of a method is left to analyzer. Usually McCabe’s cyclomatic

complexity, which is the maximum number of linearly independent execution paths,

is chosen to calculate WMC [20].

If a class has n methods with complexity score of one, then WMC is equal to the

number of methods, which is n.

Viewpoints:

 The complexity of methods and the number of methods of a class give idea

about how much time and effort needed to develop and maintain the class.

 A class having large number of methods has more impact on its children

classes, because children inherit all methods in the class.

15

 Classes having large numbers of methods are possibly more application

specific then class with few methods.

Depth of inheritance tree (DIT)

Definition: The depth of inheritance tree is the depth of inheritance of the class. If

multiple inheritance is involved, DIT is the maximum distance from the node to the

root of the tree.

Viewpoints:

 A class that is deeper in the hierarchy is likely to inherit large number of

methods. Inheriting greater numbers of methods results in more complex

class and its behavior becomes unpredictable.

 The deeper the class in the hierarchy tree, the greater the design complexity,

because more methods are inherited.

 Classes located in the deep level of inheritance tree are likely to reuse

inherited methods.

Lorenz and Kidd suggested a threshold of six levels for individual classes. In [21], it

is stated that classes deep in the inheritance tree are more error prone.

Number of children (NOC)

Definition: NOC is the number of immediate subclasses of a class in the inheritance

tree.

Viewpoints:

 Having large number of children for a class indicates high degree of reuse for

that class.

 A class with great number of children may indicate improper abstraction of

that class.

 The number of children may indicate the impact a class has on the software

design. A Class with large number of children may need more testing of the

methods in that class.

Coupling between object classes (CBO)

16

Definition: Coupling between object classes represents the number of classes

coupled to that class. If a class uses methods or attributes of other class, that class is

said to be coupled to other class. Being inherited from another class is also accepted

as coupling.

Viewpoints:

 Strongly coupled object classes are undesirable because they are obstacle to

modular design and they prevent reuse. Reusing a class in another software is

easier if the class is independent.

 Inter-object class couples needs to be minimized in order to get modular

design. High number of coupled classes makes software sensitive to changes.

Maintaining such software is difficult.

 The metric is useful for estimating the complexity of testing different parts of

software. Designs with high inter-object class coupling require tough testing

to detect bugs.

Response for a class (RFC)

Definition: Let * + be set of all methods in the class and * + be set of methods

called by method ,

 * + ⋃

(3.2)

 | | (3.3)

Viewpoints:

 If large number of methods is executed in response to a message, tester needs

deep understanding in order to test and debug the class because it becomes

more sophisticated.

 Execution of large number of methods in response to message calls results in

class that is more complex.

 Considering maximum number for possible responses helps allocating

enough time for testing.

17

Lack of cohesion of methods (LCOM)

Definition: Let be a class with methods (). Let { } be a set of

instance variables used by .

There are n such sets * + * +. Let {()| } and

{()| }. If all sets * + * + are then let . Then, LCOM of

a class is given in equations (3.4) and (3.5).

 | | | | | | | | (3.4)

 (3.5)

LCOM measures the correlation between the methods and the local instance

variables of a class. A high score of LCOM points out lack of cohesion.

Viewpoints:

 Cohesiveness of methods is preferable, because it encourages encapsulation.

 Lack of cohesion suggests that classes should be divided in to smaller classes.

 Finding dissimilarity of methods assists in discovery of flaws in the design of

classes.

Low cohesion may increase number of errors during the development process

because it increases complexity.

3.2.1.2 Lorenz and Kidd metrics

Lorenz and Kidd have introduced some OO metrics [7].

Number of methods added (NMA)

Definition: Number of methods defined in a sub-class. Overridden and inherited

methods are not included in NMA.

Viewpoints:

 The less added new methods to inherited class, the more inheritance is

justified.

18

It is good to add less new methods to classes, which are located deep in the

inheritance tree. Extending a class by adding new methods results in more error-

prone class [21].

Number of methods overridden (NMO)

Definition: NMO is the number of methods overridden by a subclass.

Viewpoints:

 Classes having large number of overridden methods point out design

problem.

The more overriding methods the class have, the greater the confusion.

Number of methods inherited (NMI)

Definition: NMI is the total number of methods inherited by a subclass.

Specialization index per class (SIX)

Definition: SIX is calculated by using DIT, NMO, NMA, and NMI. It is given in

equation (3.6).

 (3.6)

It measures the extent to which sub-classes replace their superclass’s behavior.

Viewpoints:

 Base classes SIX metric score is zero.

Redefining a method as early as possible decreases time spend to development and

maintain the class, because inheritance in deep levels decreases understandability

[30].

19

4. PROPOSED METRICS FOR STATE ORIENTED SOFTWARE DESIGN

CK defined six metrics for OO software [19]. In addition, NMA and NMO metrics

are introduced in [7]. All these OO metrics are good indicators for evaluating

software quality. Although the software quality of SP implementation can be

measured with these metrics, HSM pattern’s quality cannot be measured because of

being not OO. In order to compare SP and HSM pattern, new metric suit is required.

For this purpose some metrics are introduced which are originated from OO metrics.

Additionally, several state related metrics are introduced and added to metric suit

because both SP and HSM pattern implement states. These new metrics can give

ideas about software quality of both SP and HSM pattern.

4.1 Number of Handled Event (NHE)

If complexity of all methods is optimal (namely one), then WMC for a class is the

number of implemented methods for that class. In OO programming, classes provide

functionalities via methods. In state oriented programming, functionalities are

provided by states which handling events. Number of events handled by a state can

help engineer measure quality. Class with high WMC score indicates complexity

[13]. Thus, same approach is also valid for NMA metric. If WMC of a class is too

high, it is better to divide this class into smaller ones [12]. Similarly, a state handling

too many events needs to be divided into smaller ones.

Figure 4.1 : NHE.

20

In Figure 4.1, S1 handles three events; e1, e2, e3.

NHE(S1): 3

4.2 Depth of State Inheritance Tree (DSIT)

DSIT metric provides position of a state in the state machine as DIT metric provides

the position of a class in the inheritance tree. A state located in the deeper level can

use event handler provided by a predecessor of that state.

Figure 4.2 : DSIT.

DSIT scores of states in Figure 4.2 are given below;

DSIT(S1): 0

DSIT(S11):1

DSIT(S12):1

DSIT(S121):2

DSIT(S122):2

4.3 Number of Child State (NOCS)

In OO programming, NOC metric simply measures the number of immediate

descendants of the class. NOC can be adapted to state oriented metric with NOCS.

NOCS measures the number of immediate descendants of a state.

Class having high NOC and WMC values indicates a design problem. Similarly, if a

state has too many child state (NOCS) and handles too many events (NHE), it has a

design problem too.

21

Metric scores of states in Figure 4.2 are given below;

NOCS(S1): 2

NOCS(S11):0

NOCS(S12):2

NOCS(S121):0

NOCS(S122):0

4.4 Number of Events Added (NEA)

In OO programming, functionalities are added via methods, NMA metric measures

this attribute. On the other hand, states function by handling events. Corresponding

NMA metric in the proposed metric suit is NEA.

In OO, adding too many methods shows that inheritance is misused. Similarly,

improper usage of inheritance can be measured by NEA metric in state machines.

Figure 4.3 : NEA.

In Figure 4.3, S11 is inherited from S1. It handles three events; e1, e2, and e4,

however only e4 is new event added to the inheritance. Thus, NEA score of S11 is

one.

4.5 Number of Events Overridden (NEO)

NMO is the number of implemented methods in a sub-class. Similarly, a state can

handle event that is already handled by its super state. For a state, number of events

that are overridden in sub-state is represented by NEO metric.

22

Inherited attributes should be used without modification. Otherwise, inheritance loses

its significance. In OO, high score of NMO metric indicates a design problem [13].

Similarly, increase in NEO score implies poor design.

In Figure 4.3, S1 handles three (e1, e2, e3) events. S11 handles e1 and e2 although

they are handled by its super state S1. Thus, NEO value of S11 is two.

4.6 Complexity of Event Handler (CEH)

CEH represents complexity while handling event. In HSM pattern implementation,

this metric is obtained by calculating complexity of method implementing the state.

Enter, exit and init conditions of state implementation are also counted. In SP, CEH

is calculated by summing complexity of all event handlers for a state class.

4.7 Complexity of Enter Handler (CEnH)

For a state, CEnH is the complexity of executing enter actions.

4.8 Complexity of Exit Handler (CExH)

For a state, CExH is the complexity of executing exit actions.

4.9 Validation of Proposed Metrics

Weyuker has developed some essential properties that a metric has to satisfy [22].

These properties are listed below;

 Monotonicity

 Granularity

 Interaction Increases Complexity

 Noncoarseness

 Nonuniqueness

 Design Details are Important

 Permutation

 Renaming property

23

 Nonequivalence of Interaction

Chidamber and Kemerer validated their OO metrics according to this list except the

permutation property, which is stated to be inappropriate for OO design metrics by

Cherniavsky and Smith in [23].

In this thesis, proposed metrics are state oriented. However, they can be validated

like OO metrics.

Let A and B be two distinct states, then () () () ()

This property states that metric for combined state is equal or greater than either of

the component states; A and B.

According to granularity property of Weyuker, there must be a finite number of class

sharing same metric value. This property is met by our state metrics because there

are a finite number of states with same metric score.

 () () () , where A and B are the two different states. This

property states when two states are merged, metric value of combined state may be

greater than the sum of two individual state metric value. Interaction between states

may increase complexity.

 () (), where A and B are the two different states. This property states

that for a given state A, there is at least one state, B, such that their metric value is not

equal.

 () (), where A and B are the two different states. This property states

that there exist some states that their metric values are same. This property is valid

for our proposed metrics.

 () (), where A and B are the two different states. Their

metric scores may be different. Design and implementation details of A and B

influence the metric score.

In SP, states are represented as classes whereas they are represented as methods in

HSM pattern. Changing states names, which means changing class name in SP and

changing method name in HSM pattern does not alter metric value. Thus, Weyuker’s

renaming property is satisfied.

Let A and B be states with same metric score. Then,

24

 () () () ()

 () () () ()

This property states that if another state C is merged with these states separately; new

combined states metric score may be different because interaction of C with A and B

may be different.

25

5. STATE MACHINE IMPLEMENTATION TECHNIQUES

5.1 Doubly Nested Switch Method

Doubly nested switch method is the most popular technique among other approaches.

Algorithm consists of two levels of switch statements as illustrated in Figure 5.1.

First level is controlled by a scalar state variable and second level is controlled by an

event signal variable [24]. Coder can nest the switches first by event and then by

state.

void dispatch(unsigned const sig) {

switch(myState) {

 case STATE_1:

 switch(sig) {

 case SIGNAL_1:

 tran(STATE_X)

 ...

 break;

 case SIGNAL_2:

 tran(STATE_Y)

 ...

 break;

 }

 break;

 case STATE_2:

 switch(sig) {

 case SIGNAL_1:

 ...

 break;

 ...

 }

 break;

 ...

}

Figure 5.1 : Doubly nested switch method.

Signals and states are typically represented as enumerations as shown in Figure 5.2.

enum Signal {

SIGNAL_1, SIGNAL_2, SIGNAL_3, ...

};

enum State {

STATE_X, STATE_Y, STATE_Z, ...

};

Figure 5.2 : Signals and states.

26

Main advantage of doubly nested switch method is being simple to implement. It

requires enumerating states and triggers to represent states and events. It also has a

small memory usage because it requires one scalar variable to store current state.

However doubly nested switch method does not promote code reuse. Event

dispatching time is not constant. It depends on the number of cases and location of

the event and state in the switch block. Nested switch implementation does not

support hierarchical structure. This makes manual added entry/exit actions more

error prone. One state’s entry action is distributed and repeated in many places, thus

it results in maintenance problems.

5.2 State Table Method

State table contains arrays of transitions for each state [24]. The content of the cells

are transitions, which are represented as pairs (action, next state) as shown in Table

5.1.

Table 5.1 : State table.

 Events→
 States→

 EVENT_1 EVENT_2 EVENT_3 EVENT_4

STATE_1

STATE_2

STATE_3 action1()
STATE_1

STATE_4

In state table approach, dispatching process consists of three steps:

 Identification of transition to be taken as a state table lookup

 Execution of action

 Changing current state

State table consists of two parts: a generic and reusable processor part and an

application specific part. Initializing transition table, defining action functions,

enumerating states and signals depend on the application.

27

State table implementation maps directly to the regular state table representation of a

FSM. It requires enumeration of events and states. This method provides relatively

good performance for event dispatching. It takes constant time, (). Event

processor code can be re-used without any change.

Beside these advantages, it also has disadvantages. First, it requires a large state

table, which is sparse and wasteful. In order to represent functions, it requires a large

number of fine grain functions. State table initialization is also complicated. Finally,

it is not hierarchical. To deal with state nesting, entry/exit actions, and transition

guards, hardcoding is required in the transition action functions. This hardcoding

makes table state approach error-prone and hard to maintain.

5.3 State Pattern [25]

State pattern is a behavioral object-oriented pattern which is introduced in [25] by

GoF. Problem definition of state pattern consists of an object whose behavior is

dependent on its state. Solution to this problem follows as

 For each state, create class implementing a common interface

 Delegate operations, which are state-dependent, from the context object to its

current state object

 Make sure the context object always points to a state object which reflects its

current state

In SP, states are represented as sub-classes of an abstract state class. Abstract state

class defines a common interface for handling events. UML class diagram is shown

in Figure 5.3.

Figure 5.3 : UML class diagram of SP.

28

SP depends on polymorphic attributes of OO programming [26]. Each event

corresponds to a virtual method. Context class handles the processing and delegates

all events for processing to the current state object. State transitions are accomplished

by reassigning pointer to the current state object. In order to add new events, new

methods to the abstract state class and concrete class which handles them must be

added. Adding new states is done by sub-classing the abstract state class.

State sub-classes override only event-handler methods corresponding to events that

are handled in these states. Concrete class declares all concrete states as static

members. Context class also grants friendship to all concrete sub-classes so sub-

classes can access context class’s attributes. Accessing context attributes from sub-

state methods is not direct and violets encapsulation.

For every signal event, context class duplicates the interface of the abstract state

class by declaring a method. However, implementation of these methods is fixed as

prescribed by the SP. Context class invokes appropriate methods of the state class

polymorphically. After being invoked by the context class, concrete state sub-classes

implement the specific actions inside their event methods.

Some of the advantages of SP are summarized below. It localizes the state specific

behavior in separate sub-state classes. State transitions are very efficient because it is

handled by reassigning current state pointer to the new state. By using late binding

mechanism, state pattern provides good performance for event dispatching. If action

execution is omitted, event dispatching takes constant time. This performance is

mostly better than indexing into state table and invoking a method via function

pointer. However, this performance is only valid when the selection of the

appropriate event handler is not taken into consideration. In practice, in order to

perform such selections switch statement is used.

Signature of each event handler can be customized, and event parameters can be

made explicit. SP implementation does not require enumerating states and events as

nested switch and state table implementations do. It is memory efficient.

SP localizes state-specific behavior into state classes. It also divides behavior for

different states into separate state classes. By implementing new sub-classes, new

states and transitions can be added without modifying other state classes. SP

distributes behavior for different states across several state sub-classes, which

29

increases the number of classes. Having many states is not compact but it is far better

than a class, which has large conditional statements.

In state programming, large conditional statements are not desirable because they

result in less explicit code. Modification and extension of such code is very difficult

and error prone. On the other hand, SP encapsulates each state transition and action

in a sub-class.

HSM pattern guarantees execution of entry and exit actions upon entering/exiting

states [27]. SP is not designed to do so. However enter and exit actions can be

executed in SP too but same functionality cannot be obtained with this pattern

because HSM pattern uses HSM engine to manage execution order of entry-exit

events, where SP depends on polymorphism. SP design is not hierarchical. Thus,

manual handling of entry and exit events is error-prone and complex. This

disadvantage is explained below with simple example: light state machine.

Let event evOn occurs while current state is Off. Execution order follows as

 Off::exit()

 Off::evOn()

 On::on()

 Bright::brighten()

sequentially as shown in Figure 5.4. Let event evDim occurs when current state is

Dark. Execution order follows as

 Dark::exit()

 Dark::evDim()

 Bright::brighten()

30

Figure 5.4 : Light statechart.

SP does not define in which order enter and exit transactions are executed. However,

when state changes, previous state’s exit action can be executed. Then new state’s

enter action can be executed. However, as shown in HSM model in Figure 5.4,

actions to be executed depend on the target state to be reached. For this reason,

Bright’s entry action, which is Entry(), must be implemented in two different ways

which is impossible (Figure 5.5). This situation can be handled in some way

however, this increases complexity.

Figure 5.5 : UML class diagram of light state machine.

5.4 Hierarchical State Machine Pattern

In order to understand HSM pattern clearly, hierarchical state machine must be

understood first.

HSM implements features of UML state charts [27]:

 Nested states and handling of group transitions and reactions

31

 Guaranteed execution of entry and exit actions

 Guaranteed execution of initialization for each state

 Simple implementation of conditional event responses(guards)

 Inheriting and specializing state models

Transition Topology Types on Nested States

There are seven types of transition in HSM. They are shown in Figure 5.6.

 a- self-transition [source = target]: It does not probe any of super-states. It

can be checked directly because source and target states are same.

 b- [source = target->super]: It probes the super-state of the target state. It

involves entry to source, however it does not involve exit from target.

 c- [source->super = target->super]: It is the most common transition

topology. Additional probing is required for the super-state of the source

state. First source state is exited and later target state is entered.

 d- [source->super = target]: This transition does not require additional

probing. It involves exit from source target. However it does not involve

enter to the target state.

 e- [source = any of target->super…]: Probing the super-state of the target is

required until a match is found or until the top state is hit. The array entry[]

stores the target state hierarchy and it is used to retrace the entry in the

reverse order. This type of transition does not require exiting the source state.

 f- [source->super = any of target->super…]: Traversal of the target state

hierarchy which is stored in the array entry[] is required in order to find LCA.

After finding LCA, the subsequent entry proceeds from lca-1.

g- [any of source->super… = any of target…]: For every super-state of the source,

traversal of the target state hierarchy which is stored in the array entry[] is required.

32

(a)

 (b)

 (c)

 (d)

 (e)

(f)

 (g)
(h)

Figure 5.6 : HSM transition topologies.

To demonstrate how HSM works, some transitions are explained in detail on

calculator HSM. Calculator HSM is shown in Figure 5.7.

33

Figure 5.7 : Statechart of a calculator.

Calculator HSM has 15 state, 11 of them has no sub-state. It has 8 events which are

C, CE, numbers (1,..,9), 0, POINT, OPER, EQUALS, IDCANCEL.

Two scenarios, which are highlighted in Figure 5.7, are explained below.

 While in result state, OPER event occurs: First, result state tries to handle

OPER event, however it cannot handle it, so it forwards it to its super state

ready. LCA of the source and target states are calc state. Before entering the

target state, exit routine is executed two times according to LCA. This results

in exiting result and ready. After exit operations, source state opEntered is

entered. This transition is shown in Figure 5.7 via red drawings.

 While in int1 state, C event occurs: When C event occurs HSM goes to the

starting state, which is begin state. int1 state cannot handle C event itself, so it

forwards to its super-state, however super-state operand1 cannot handle C

34

event too. Forwarding this event goes on until the event is handled by a state.

In this HSM, only calc state can handle C event. Exit is executed from the

source state until the calc state, so int1, operand1 are exited respectively.

Handling of event C by calc state is self-transition. In this situation, target

state is calc. However, HSM’s current state cannot point to a state, which has

child states. First HSM goes into ready state and begin state respectively.

This ensures execution of entry routines of ready and begin states

respectively. This transition is shown in Figure 5.7 via blue drawings.

HSM pattern implementation uses some attributes of previously introduced

approaches.

HSM pattern is not an OO design pattern like SP. In HSM pattern, states are

represented as instances of State class. In SP, State class is intended for sub-classing;

however, in HSM pattern purpose of State class is for inclusion as is. In Samek’s

approach [27], state machine is constructed by composition, not inheritance. State

specific behaviors are handled in the event handler method of State class. UML class

diagram of HSM pattern is shown in Figure 5.8.

Figure 5.8 : UML class diagram of HSM pattern [27].

State machine contains at least one state, which is top state. Concrete HSMs are

created by inheriting from HSM class, adding arbitrary numbers of new states, and

defining event handlers. Unlike the SP, event handler methods of HSM or its sub-

classes have direct access to concrete class’s attributes. In event handlers, one level

of switch statement is required for event handling. Each event handler communicates

35

with the HSM engine with a return value. If event handler can process that event, it

returns a null pointer. Otherwise, it returns the message (event) itself for further

processing by higher-level states.

All event handler methods implement entry/exit actions, and other default transitions.

Pre-defined events include ENTRY_EVT, EXIT_EVT and START_EVT. These events

are created and dispatched to the event handlers by the state machine engine upon

each transition.

Hierarchical structure of state machine is decided upon construction. In the

constructor of concrete HSM class, topology of state machine is constructed by

initializing the participating states. Initializing includes setting the super state

pointers, which define the hierarchical structure of state machine and event handlers

for each state.

Exit actions precedes any actions associated with the transition and these actions

precedes any entry actions associated with newly entered state. In order to find which

exit actions to execute, LCA of the source and sink state is found. Exit actions are

executed until the least LCA state is reached. Enter actions are executed in order

from LCA to the target state. Calculating LCA of two states is expensive, however it

is not necessary to find it repeatedly because same source and sink always have same

LCA result. It can be calculated once and stored for future use.

36

37

6. METHODOLOGY

6.1 Goal

In this work, the primary effort is finding answers for the following two questions:

 What are the advantages of HSM pattern over SP from the quality

perspective?

 Does properly used inheritance increase software quality in HSM pattern?

6.2 Case Study: Interlocking Simulator

In this thesis, one module of interlocking simulator is implemented. For comparison

purpose, same functionality is coded by applying different software designs in C++;

 Type-1 HSM pattern (single layer)

 Type-2 HSM pattern (multi-layer)

 Type-3 SP (multi-layer)

Interlocking is a system of signal equipment that prevents conflicting actions. An

interlocking’s responsibility is prevent signals from giving proceed sign unless the

route to be used is proven safe. Safety depends on many field side elements such as

level crossings, switches, tracks etc., and thus increases the number of states in state

machine model.

When allocating a route, interlocking software’s state moves from one state to

another depending the field side equipment’s condition. When changing state, some

operations are executed such as changing direction of switch, closing-opening

crossover arm and so on. Most of the transactions are setting and resetting boolean

variables, starting, pausing and stopping timers etc. There is no conditional statement

in transactions. For handling events, good design is required otherwise developer can

be lost in complexity.

38

Figure 6.1 : State diagram of interlocking simulator.

39

Interlocking simulator module’s FSM diagram is given in Figure 6.1. The FSM has

13 states and over 50 transitions. This FSM also contains enter and exit actions to be

executed upon entering and exiting states.

6.3 Implementation

Interlocking module is redesigned and implemented according to the methods listed

above.

6.3.1 Type-1 HSM pattern (single layer)

Interlocking software module is implemented by using Samek’s HSM engine [27]. In

this design, all states are inherited from top state. None of the states is inherited from

other states. This version of interlocking simulator is intended for investigating and

measuring effects of absence of inheritance on software quality in HSM pattern.

Type-1 has 13 states. All of these states are leaf because none of states is inherited

except top state.

6.3.2 Type-2 HSM pattern (multi-layer)

Same software is re-designed and implemented. However, this time similar states are

grouped under the same super states in order to take advantage of inheritance

property of HSM.

Type-2 is implemented to compare it with the Type-1 for understanding effects of

inheritance usage in HSM.

This design has 18 states, 39 transitions. 13 of the states are leaf. Each state is

implemented as a separate method. States handle enter, exit and other events in their

handler method.

In Type-2, number of states is increased however; number of handled events per state

is decreased.

State-2 is implemented via Stt_2_Hndlr function as shown in Figure 6.2.

40

Msg const * Tanzim_HSM::Stt_2_Hndlr(Msg const *msg)

{

 switch (msg->evt){

 case ENTRY_EVT:

 Field::instance()->bitValues[

 m_route->getAddress("TalepReddedildiAs")] =

true;

 Field::instance()->bitValues[

 m_route->getAddress("TalepKabulAs")] = false;

 m_route->timer_t4.start();

 return 0;

 case EXIT_EVT:

 Field::instance()->bitValues[

 m_route->getAddress("TalepReddedildiAs")] =

false;

 m_route->timer_t4.stop();

 return 0;

 case START_EVT:

 return 0;

 case evt_e57:

 STATE_TRAN(&Stt_0);

 return 0;

 }

 return msg;

}

Figure 6.2 : Implementation of state-2.

Upon entering and exiting state-2, enter and exit actions are executed respectively.

HSM engine calls state functions with event parameters representing the event. As

seen in the Figure 6.2, state-2 handles enter, exit and evt_e57. Handling these

different type of events is implemented with single layer switch-case statement. State

transition occurs only in evt_e57 for state-2. If state-2 handles the event, its handler

function returns null. If state-2 cannot handle the event, it returns the event for

further processing by higher level of states.

41

Figure 6.3 : UML statechart diagram for HSM pattern(Type-2) implementation.

42

6.3.3 Type-3 SP (multi-layer)

SP implies implementing each state in a separate class. It does not say anything about

inheriting a state class from other classes. However, in our OO design, inheritance is

heavily used as HSM pattern (multi-layer) implementation. Type-2 and Type-3

designs share same state inheritance tree. Type-3 SP design UML class diagram is

shown in Figure 6.4.

In all implementations, including Type-3, state and event names are given as

numbers, because it is hard to give meaningful names for all states and events.

Route_BaseState is abstract and root. Tz_Stt_0__2_4__12, Tz_Stt_1_4_5,

Tz_Stt_7__9, and Tz_Stt_7_9 classes are also abstract. State machine’s current state

cannot point to these abstract states. State machine current state can be leaf states;

Tz_Stt_0, Tz_Stt_1, Tz_Stt_2, Tz_Stt_3, Tz_Stt_4, Tz_Stt_5, Tz_Stt_7, Tz_Stt_8,

Tz_Stt_9, Tz_Stt_10, Tz_Stt_11, Tz_Stt_12, Tz_Stt_13.

Abstract states are used for grouping other states that handles same events with

same operations. For example, Tz_Stt_7 and Tz_Stt_9 are inherited from Tz_Stt_7_9,

because they handle evt_e12 and evt_e13 in a same manner.

Enter and exit methods are added to class in case they are necessary.

6.4 Gathering Metrics

In this study, all metrics used for measuring these implementations are collected

manually for each implementation, because there is no tool that can collect the

metrics proposed in this thesis.

When calculating NHE in HSM pattern implementations, Type-1 and Type-2,

number of cases in switch-case statement in method implementing state is counted.

START_EVT, EXIT_EVT and ENTER_EVT are not counted. In SP implementation,

Type-3, event handler methods of state class including inherited event handler

methods are counted. In Type-3, Route_BaseState is omitted because it is abstract,

thus does not handle any event.

43

Figure 6.4 : UML class diagram of SP implementation.

44

DSIT and NOCS are calculated from the state inheritance topology of designs. In

HSM pattern designs, top state’s DSIT score is zero. In SP pattern, base class, which

is Route_BaseState, is also included when DSIT is calculated.

In HSM pattern implementations, NOCS is calculated by summing the number of

child state for each state. In SP implementation, NOCS is calculated like NOC of a

class.

NEA is calculated by only summing the number of events handled in state’s handler

method. Events that are also handled in super state of the state are not counted. In SP,

event handler methods only added to inheritance are summed. Overriding event

handler methods of state class is not counted.

In HSM implementations, Type-1 and Type-2, NEO is calculated by summing events

that are also handled by super-state. In SP, It is calculated by summing number of

overridden event handler methods of a class.

For a state in HSM pattern implementations, CEH is calculated as the McCabe

complexity of the method representing the state. START_EVT, EXIT_EVT and

ENTER_EVT in switch-case statement are also included to calculation. In SP, CEH is

sum of complexity of all event handler methods of a state.

In Type-1 and Type-2, CEnH and CExH is McCabe complexity of enter and exit

operations respectively. In SP, CEnH and CExH is McCabe complexity of enter and

exit methods of a class respectively.

45

7. RESULTS

First, effect of inheritance in HSM pattern is investigated. Latter, HSM pattern and

SP are compared in terms of software quality by the help of metrics provided above.

7.1 Effect of Using Inheritance in HSM Pattern

First, simulator software is implemented without inheritance. Then same simulator is

designed and implemented with inheritance. Metric results obtained from Type-1 and

Type-2 is explained below.

7.1.1 Results

NHE: If complexity of a state increases, NHE of the state increases too, thus

decreases software quality like WMC does in OO programming. In Type-1,

maximum score of NHE is 8, whereas Type-2 has NHE score of 6 as illustrated in

Figure 7.1. The average score of NHE in Type-1 is 3.92 whereas average score of

NHE is 2.22 in Type-2. By using inheritance in HSM pattern effectively, interlocking

simulator’s NHE metric score decreases 43,3%.

Figure 7.1 : NHE measurement.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

NHE

46

DSIT: In Type-1, none of the states are inherited from another state, thus state with

maximum DSIT has DSIT value of 1. However, in Type-2, states have maximum 4

DSIT score as shown in Figure 7.2. The average DSIT score of all states increases

from 0.92 to 2.22 in Type-2. This result indicates that Type-2 benefits from

inheritance more than Type-1 does.

Figure 7.2 : DSIT measurement.

NOCS: Figure 7.3 shows the NOCS scores of three implementations. In Type-1 and

Type-2, top states have 13 and 7 child states respectively. In Type-1, maximum score

of NOCS is too high because all states are inherited from top state. As stated in [19],

high values of NOC may point to misusage of abstraction. Similarly, in state

programming, high score of NOCS indicates that inheritance is not used properly in

Type-1.

Figure 7.3 : NOCS measurement.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

DSIT

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

MinMax Avg Std MinMax Avg Std MinMax Avg Std

Type-1 Type-2 Type-3

NOCS

47

NEA: NEA scores are given in Figure 7.4. In Type-1, inheritance is not used, thus

score of NEA is same as NHE. Maximum NEA score of states is 8, average score of

all states is 3.92 in Type-1. In Type-2, maximum score decreases to 6. Average score

also decreases to 2.22. By applying inheritance, average NEA score decreases

43,3%. In OO programming, as stated in [21], new methods added by subclass

results in error-prone class. Same approach is also valid for states and NEA metric.

In Type-1 and Type-2, NHE and NEA metric scores are same although they measure

different attributes of states. This situation is resulted from states, which does not

override its base (super) state’s event handler.

Figure 7.4 : NEA measurement.

NEO: NEO score of both implementations is zero, because none of states overrides

its parent state’s handlers. NEO metric is not decisive for comparing Type-1 and

Type-2 implementations.

CEH: Figure 7.5 shows the CEH scores of three implementations. Average

complexity of states in Type-1 is 6.92. The most complex state has CEH score of 11.

In Type-2, state, which is the most complex, has CEH score of 9. In Type-2 average

CEH score is 5.22. These results indicate that inheritance decreases complexity of

states 24.5% in interlocking simulator.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

NEA

48

Figure 7.5 : CeH measurement.

CEnH-CExH: Complexity of enter and exit actions are one in both implementations

for each state. This result is optimum.

Figure 7.6 : CEnH measurement.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

CeH

0,00

0,50

1,00

1,50

2,00

2,50

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

CEnH

49

Figure 7.7 : CExH measurement.

7.1.2 Evaluation of results

Statistical testing for significant difference between Type-1 and Type-2 is given in

Table 7.1. If t is greater than 1.96, then difference is significant otherwise not.

Table 7.1 : Significance test for Type-1 and Type-2.

Metrics t(test statistics, confidence level: 95%)

NHE

3.127

DSIT

7.606

NOCS

0.027

NEA

3.127

NEO

NAN

CEH

3.127

CEnH

NAN

CExH

NAN

Table 7.1 shows that NHE, DSIT, NEA, and CEH are significant for comparison.

By comparing Type-1 and Type-2 from the perspective of inheritance, we found that

DSIT metric is inversely proportional to the complexity metrics. As inheritance is

applied in Type-2, average values of NHE, NEA, and CEH are decreased. By sub-

stating, responsibilities are distributed among states and this results in decrease in

average complexity. Complex software is hard to maintain and error-prone. Such

software modules also need to be tested more elaborately. Cost of handling enter and

exit events in both Type-1 and Type-2 is same because they implement these events

in a same manner.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

Min Max Avg Std Min Max Avg Std Min Max Avg Std

Type-1 Type-2 Type-3

CExH

50

7.2 HSM Pattern and SP

In Type-3, same simulator is designed and implemented by using SP. Comparison of

Type-2 and Type 3 is given below.

7.2.1 Results

NHE: Maximum NHE score of a state in both Type-2 and Type-3 is same, 6.

However average score is slightly greater in SP (2.35-2.22, 5,5% decrease as shown

in Figure 7.1). NHE metric scores of both implementation are similar because they

handle same events in same states.

DSIT and NOCS: Both implementations have same DSIT and NOCS score because

their state inheritance tree is same. These inheritance-related metrics do not help us

compare Type-2 and Type-3 implementations.

NEA: NEA score is same as NHE in Type-2 and Type-3 because none of states re-

defines its base (super) state’s behavior.

NEO: In all implementations, states do not override its base state’s properties. Thus

NEO score is zero for all implementations. NEO results do not help us compare these

implementations in this study.

CeH: Type-2 and Type-3 have maximum CeH scores 9 and 10 respectively as shown

in Figure 7.5. Average CEH scores of Type-2 and Type-3 are 5.22 and 6

respectively. Type-2 is less complex than the Type-3 but it is strong.

CEnH: All states in Type-2 have one CEnH score. However, in Type-3, one state

has CEnH score of 2 as shown in Figure 7.6. Type-2 handles enter actions slightly

effectively than Type-3.

CExH: All states in Type-2 have CExH score of one. Maximum CExH score in

Type-3 is 4, average CExH score is 1.58 as shown in Figure 7.7. Complexity of

handling exit actions in Type-3 is 50% higher than Type-2. This indicates that SP

cannot handle exit actions as effective as Type-2 does.

7.2.2 Evaluation of results

Statistical testing for significant difference between Type-2 and Type-3 is given in

Table 7.2.

51

Table 7.2 : Significance test for Type-2 and Type-3.

Metrics t(test statistics, confidence level: 95%)

NHE

0.345

DSIT

0

NOCS

0

NEA

0.35

NEO

NAN

CEH

2.784

CEnH

1.286

CExH

4.085

Table 7.2 shows that CEH, CExH are significant for comparison. CEnH seems not to

be significant because state machine we implemented handle few numbers of enter

events.

In Type-2 and Type-3, inheritance related metric scores (DSIT, NOCS) are same

because they share same state topology. NHE and CEH metric results are also similar

because they have same set of states handling events. Main difference between Type-

2 and Type-3 is the way they handle enter and exit events. We found that CEnH and

CExH scores of HSM pattern is less than SP. HSM pattern handles these events more

effectively with the help of HSM engine. In some cases, execution order of enter/exit

events depends on the source state or state to be reached. This makes SP pattern

implementation more complex than HSM pattern version.

52

53

8. CONCLUSION

In this thesis, effects of applying different designs for state machines are empirically

studied from the perspective of software maintainability. For experimental work,

interlocking software simulator is designed and implemented three times with same

functionality. Two versions are implemented with HSM pattern, third version is

implemented with SP. In this study, comparison results are based on metrics.

CK and LK provide software metrics, such as WMC, DIT, NOC, NMA, and NMO.

These metrics are well known and trustworthy; however, they are only applicable to

OO software. SP can be measured with CK and LK metrics; however, these metrics

are not suitable for HSM pattern, because of being not OO. For this reason, new

metric suit is required.

We proposed state oriented metrics; NHE, DSIT, NOCS, NEA, NEO, CEH, CEnH

and CExH. These metrics are originated from CK and LK metrics; however, CK and

LK metrics measure class attributes where as our proposed metrics measure state

attributes.

NHE is the number of events handled by a state. DSIT and NOCS metrics are similar

to their corresponding OO metrics DIT and NOC respectively. DSIT metric provides

position of the state in the state inheritance tree. NOCS is the number of child states

that state has. NEA is the number of handled events added to the inheritance.

Overridden events in a state are not counted. NEO represents the number of

overridden events. CEH measures the complexity of state. CEnH and CExH

measures enter and exit events respectively.

We measured three implementations with our state-oriented metrics. Comparisons

are made as pairs; first, two versions of HSM pattern are compared. Main difference

of these implementations is inheritance usage. Our empirical study showed that

inheritance usage decreases average complexity of states. In the next comparison, we

handle HSM pattern and SP implementations. These implementations are designed

according to same inheritance tree. Metric-based comparisons show that HSM

54

pattern is good at handling enter and exit events. SP gets more complex when

handling these events, thus decreases the maintainability of code.

In the light of results provided by this study, if a state machine to be implemented

has complex enter and exit actions, it is wise to choose HSM pattern.

In this study, because of the practical reasons, comparisons are made on different

versions of the same state machine model. This study does not claim any

generalization of the observations on the experiments. Before generalizing the

results, different systems that can be model with state machines need to be studied

and verified. Nonetheless, this empirical study provides valuable information about

SP and HSM pattern.

In this study, we aim to compare different designs applied to same state machine

model from the viewpoint of maintenance. However, software has many quality

characteristics. As a future work, effects of applying HSM pattern and SP on

different aspects of software quality such as performance efficiency, compatibility,

reliability can be studied. Moreover, SP variants such as Reflective State Pattern [28]

or Persistent State Pattern [29] can be studied empirically.

As a summary, we made two main contributions in this project. One of them is

introducing new state-oriented metric suit. By the help of this metrics, any software

project, which belongs to different programming paradigm, can be measured. There

are some empirical studies about SP [12], that analyzing the effect of using SP on

software quality. However, there is no other work on the effect of HSM pattern on

software quality in the literature.

55

REFERENCES

[1] Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science

of Computer Programming, 8(3), 231-274.

[2] Deursen, A., & Bruntink, M. (2004, September). Predicting class testability

using object-oriented metrics. Source Code Analysis and

Manipulation, 2004 IEEE International Workshop on (pp. 136-145).

IEEE.

[3] Dagpinar, M., & Jahnke, J. H. (2003). Predicting maintainability with object-

oriented metrics –an empirical comparision. In Proceedings of the 10
th

Working Conference on Reverse Engineering(WCRE). IEEE

Computer Society, 2003, 155-164. doi:10.1109/WCRE.2003.1287246.

[4] Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-

oriented design metrics as quality indicators. Software Engineering,

IEEE Transactions on, 22(10), 751-761.

[5] Koten, C. V., & Gray, A. R. (2006). An application of Bayesian network for

predicting object-oriented software maintainability. Information and

Software Technology, 48(1), 59-67.

[6] Zhou, Y., & Leung, H. (2007). Predicting object-oriented software

maintainability using multivariate adaptive regression splines. Journal

of Systems and Software, 80(8), 1349-1361.

[7] Lorenz, M., & Kidd J. (1994). Object-Oriented Software Metrics (pp. 66-71),

Prentice Hall

[8] Huston, B. (2001). The effects of design pattern application on metric scores.

Journal of Systems and Software, 58(3), 261-269.

[9] Prechelt, L., Unger, B., Tichy, W. F., Brossler, P., & Votta, L. G. (2001). A

controlled experiment in maintenance: comparing design patterns to

simpler solutions. Software Engineering, IEEE Transactions on,

27(12), 1134-1144.

[10] Bieman, J. M., Straw, G., Wang, H., Munger, P.W., Alexander, R.T. (2003,

September). "Design patterns and change proneness: an examination

of five evolving systems". Proceedings of 9th Software Metrics

Symposium. pp. 40–49, IEEE. doi: 10.1109/METRIC.2003.1232454

[11] Ampatzoglou, A., Frantzeskou, G., & Stamelos, I. (2012). A methodology to

assess the impact of design patterns on software quality. Information

and Software Technology, 54(4), 331-346.

[12] Aydınöz, B. (2006). "The effect of design patterns on object-oriented metrics

and software error-proneness" MSc. Thesis, Middle East Technical

University

56

[13] Türk, T. (2009). "The effect of software design patterns on object-oriented

software quality and maintainability" MSc. Thesis, Middle East

Technical University

[14] Ayata, M. (2010). "Effect of some software design patterns on real time

software performance" MSc. Thesis, Middle East Technical

University

[15] ISO/IEC-25010 (2011). Systems and software engineering – Systems and

software Quality Requirements and Evaluation(SQuaRE) – Systems

and software quality models, International Organization for

Standardization/International Electrotechnical Commission, New

York.

[16] Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman &

Hall.

[17] Fenton, N. E., & Pfleeger, S. L. (1996). Software Metrics- A Rigorous and

Practical Approach. (pp. 5). International Thomson Computer Press.

[18] Fenton, N. E., & Neil, M. (2000). Software metrics: roadmap. Proceedings of

the Conference on The Future of Software Engineering, 357-370.

doi:10.1145/336512.336588.

[19] Chidamber, S. R., & Kemerer, C. F. (1994). A metric suit for object oriented

design. Software Engineering, IEEE Transactions on, 20(6), 476-493.

[20] McCabe, T. J. (1976). Complexity measure. Software Engineering, IEEE

Transactions on, 2(4), 308-320.

[21] Briand, L. C., Daly, J., Porter, V. & Wüst, J. (1998). "A Comprehensive

Empirical Validation of Design Measures for Object-Oriented

Systems". 5th International Symposium on Software Metrics. pp. 246.

[22] Weyuker, T. J. (1988). Evaluating software complexity measures. Software

Engineering, IEEE Transactions on, 14(9), 1357-1365.

[23] Cherniavsky, J. C., & Smith, C. H. (1991). On Weyuker’s axioms for software

complexity measures. Software Engineering, IEEE Transactions on,

17(6), 636-638.

[24] Douglass, B. P. (1997). Real-Time UML: Developing Efficient Objects for

Embedded Systems. Addison-Wesley Longman.

[25] Erich, G., Helm R., Johnson R., & Vlissides J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. (pp. 305-314).

Addison-Wesley.

[26] Douglass, B. P. (1999). Doing Hard Time: Developing Real-Time Systems with

UML, Objects, Frameworks, and Patterns (pp. 647-651). Addison-

Wesley.

[27] Samek, M., & Montgomery, P. (2010). State-oriented programming.

Embedded Systems Programming, 13(8), 22-42.

[28] Ferreira, L. L., & Rubira, C. M. (1998). The reflective state pattern.

Conference on Pattern Languages of Programs (PLOP’98), 1998.

57

[29] Saude, A. V., Victorio, R. A. S. S., & Coutinho, G. C. A. (2010). Persistent

State Pattern. In Proceedings of the 17
th

 Conference on Pattern

Languages of Programs (PLOP’10), 2010, doi:

10.1145/2493288.2493293.

[30] URL-1

<http://support.objecteering.com/objecteering6.1/help/us/metrics/metr

ics_in_detail/specialization_index.htm >, date retrieved: 15.10.2014

58

59

CURRICULUM VITAE

Name Surname: Özdemir KAVAK

Place and Date of Birth: Dinar/1987

E-Mail: ozdemirkavak@gmail.com

B.Sc.: Istanbul Technical University Computer Engineering 2010

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 Tantuğ, A. C., Kavak, Ö., 2014. A Comparative Study on State

Programming: Hierarchical State Machine (HSM) Pattern and State Pattern,

6
th

 International Conference on Software Technology and

Engineering(ICSTE 2014), Lecture Notes on Software Engineering, 3(3),

229-233.

