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SYMBOLS 

AB : Borehole area 

Abed : Area of cuttings bed 

Awell : Area of the well 

Aυ : Projected area of each diamond 

Aυw : Projected area of worn section of a diamond 

C : Complexity parameter 

Cc : Cuttings concentration for a stationary bed 

Cf : Formation drillability parameter 

D : Well depth 

E : Rock hardness 

Es : Specific energy 

Fj : Jet impact force 

Fjm : Modified jet impact force 

H : Normalized bit tooth height 

K : Drillability of formation 

K(x,x´) : Kernel function 

L(y,f(x)): Loss function 

M : Margin 

N : Rotary speed 

Ns : Number of diamond stress 

Q : Volumetric flow rate 

R : Rate of penetration 

Remp[f] : Empirical risk function 

Rn : Normalized rate of penetration 

R2 : Confidence level 

S : Confined rock strength 

Sc : Compressive strength 

T : Bit torque 

V : Volume of the rock removal 

W : Weight on bit 

Wb : Bit weight 

Wf : Wear function 

b : Bias 

db : Bit diameter 

dbe : Bearing diameter 

dn : Bit nozzle diameter 

e : Residual 

em : Mechanical efficiency 

fc(Pe) : Chip holddown function 

gp : Pore pressure gradient 

h : Bit tooth dullness 

hvc : VC dimension 
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l : Number of training data 

m : Number of insert penetrations per revolution 

ni : Number of insert in contact with the rock at the bottom 

p : Differential pressure 

pc : Circulating bottomhole pressure 

pp : Pore pressure 

vactual : Mud velocity in annulus 

vcritical : Mud critical velocity in annulus 

t : Time 

w : Weight vector 

ŷ : Predicted value 

y̅ : Mean value 

Φ : Lagrangian 

α,β,η : Lagrange multipliers 

γ : RBF kernel parameter 

γf : Fluid specific gravity 

ε : SVR tolerance control parameter 

ζ : Bit-specific coefficient of sliding friction 

λ : Rotary speed exponent 

μ : Plastic viscosity 

ρ : Mud density 

ρc : Equivalent circulating density 

σp : Ultimate strength of rock at a differential pressure 

υ : SVR controller parameter 

υk : Kinematic viscosity 

ξ : Slack variables 

ψ : Chip formation angle 
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PENETRATION RATE OPTIMIZATION WITH SUPPORT VECTOR 

REGRESSION METHOD 

SUMMARY 

Drilling operations constitute the major part of the exploration costs. During 

operations, drill bits are the primary part needs to be changed frequently due to its 

quick wearing nature. In order to reduce the drilling cost, the optimum bit pulling 

time must be determined. To determine the optimum bit pulling time, either rate of 

penetration or the tooth wearing parameter must be estimated. The most common 

method that developed for estimating the optimum time for bit change is “Bourgoyne 

and Young” method. In this method, eight parameter coefficients are needed. To 

obtain these coefficients, thirty different data which can be taken from either 

different shale zones inside thirty different wells in a field or thirty different shale 

points from one well is needed. However, when there is not enough data taken from 

thirty different shale sections, the accuracy of “Bourgoyne and Young” method 

decreases. 

To construct the functional relationship with the data and parameter coefficients, a 

regression analysis must be performed. In this study, two kind of regression 

technique is used and the results are compared to each other. First technique is the 

multiple regression analysis, which is also used in “Bourgoyne and Young” method. 

This analysis applies least-squares-principled-regression to the data and calculates 

the parameter coefficients in order to estimate the target function. The second 

technique is one of different types of machine learning algorithms, called Support 

Vector Regression. In this technique, first, the data is divided into train and test 

datasets. Then, the regression model is constructed by using train datasets. At last, 

the model is applied to test datasets in order to predict the target values for the 

function. 

For the calculations, the selection of training and testing data sets are divided into 

cases with different scenarios. The results of different predictor methods for each 

scenario are compared with each other in the corresponding case. The results show 

the significant effect of data selection on the accuracy of penetration rate prediction. 

One of the most powerful methods in machine learning, Support Vector Regression, 

is used for rate of penetration optimization for the first time in the literature with this 

thesis study. In this way, the chance for further investigations and studies on the 

practicability of Support Vector Regression on penetration rate optimization is 

created. 
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DESTEK VEKTÖR REGRESYONU YÖNTEMİ İLE İLERLEME HIZI 

OPTİMİZASYONU 

ÖZET 

Günümüzde enerji kaynaklarına olan talep artışı nedeniyle petrol, gaz ve jeotermal 

kaynak arayışları önemini daha da arttırarak korumaktadır. Bu talep artışını 

karşılamak amacıyla daha önce araştırma yapılmamış yeraltı derinliklerinde ve su 

derinliğinin 3000 metreyi bulduğu açık denizlerde yeni kaynak araştırmaları devam 

etmektedir. Bu araştırma giderlerinin büyük bir çoğunluğunu sondaj operasyonları 

oluşturmaktadır. Doğası gereği, sondaj esnasında kulenin ve sondaj dizisinin en çok 

aşınmaya uğrayan, çabuk eskiyip değiştirilmesine ihtiyaç duyulan elemanı matkaptır. 

Sondajın metraj veya perfornas maliyetini düşürmek için bir matkabın hem uzun süre 

çalışması, hem de iyi iş yapması istenir. Matkap çalıştıkça aşınacağı için ilerleme 

hızı azalır ve sondaj maliyeti artmaya başlar. Bu sebepten dolayı, matkabın aşınma 

durumunun dikkatle takip edilmesi gerekmektedir. Eğer matkap zamanından önce 

kuyudan çıkarılırsa, başka kuyularda tekrar kullanılma özelliğini çoğunlukla 

kaybeder. Eğer matkap fazla aşınır ve bu durum fark edilmezse, bazı kısımları (diş, 

kon, vs.) parçalanarak kuyunun içinde kalır. Bu kalan parçalar çıkarılıp kuyu 

temizlenmeden sondaja devam edilemeyeceği için tahlisiye olarak adlandırılan 

kurtarma operasyonlarının yapılmasını zorunlu kılar. Bu durum, zaman ve para 

kaybına yol açtığı gibi tahlisiye operasyonunun yüzde yüz başarı ile 

gerçekleşeceğinin garantisi de yoktur. 

Sondaj esnasındaki ilerleme hızı birçok parametreye bağlıdır. Bu sebeple, ilerleme 

hızını tahmin veya optimize etmek oldukça karışıktır. Ancak yaygın optimizasyon 

yöntemleri kullanılarak, oyma dişli matkaplar için en iyi parametre 

kombinasyonlarının seçilmesiyle en düşük maliyeti oluşturan matematiksel modeller 

türetilmiştir. Bu matematiksel modellerden en kapsamlı ve en yaygın olanı 

Bourgoyne ve Young (BY) yöntemidir. BY yönteminde en iyi ilerleme hızını tahmin 

edebilmek için sekiz parametre içeren en az otuz girdi veri setine ihtiyaç vardır. Bu 

otuz veri seti, ya bir sahadaki otuz farklı kuyudan ayrı ayrı şeyl zonlarından alınmış 

olmalı ya da bir kuyuda otuz farklı derinlikteki şeyl noktalarından elde edilmiş 

olmalıdır. Herhangi bir sebeple elde yeterli veri olmadığı durumlarda BvY 

yönteminin doğruluğu azalmakta ve önemli hatalara yol açmaktadır. Bu nedenle, 

verinin yetersiz olduğu durumlarda alternatif yöntemler kullanılması zorunludur. Bu 

alternatif yöntemlerden en yaygın olanı, yapay öğrenme yöntemlerinin en 

etkililerinden biri olan Destek Vektör Regresyonu (DVR)’dur. DVR’nin ilerleme hızı 

tahmini problemine uygulanabilirliği literatürde ilk kez bu çalışma ile gösterilecektir. 

Bu çalışmada, ilerleme hızını tahmin etmek için iki farklı regresyon tekniği 

kullanılmıştır. İlk teknik, BvY’nin uyguladığı çoklu regresyon analizidir. İlerleme 

hızı probleminde bir bağımlı parametreyi tek bir bağımsız parametre ile 

bağdaştırmak mümkün değildir. Ayrıca, bu parametreler aynı zamanda birbirlerini de 

etkilemektedir. Bu nedenle, bu şekilde birden çok parametrenin bulunduğu 
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durumlarda tekli regresyon analizi yapmak mümkün olmamaktadır. Çoklu regresyon 

analizi, parametrelerin birbirleri ile olan ilişkilerini çeşitli yöntemlerle belirleyip, her 

bir parametre için korelasyon katsayısı hesaplar. Daha sonra bu korelasyon 

katsayıları sayesinde tahmin modeli oluşturulur. Tahmin modeli oluşturulduktan 

sonra uygunluk katsayısı adı verilen R2 değeri hesaplanır. Bu sayede katsayıların 

geçerliliği ve modelin uygunluğu gözlemlenir. R2 değeri 1’e ne kadar yakınsa 

oluşturulan model o kadar geçerlidir. Çalışmada irdelenmiş olan ilerleme hızı 

probleminde birbiriyle ilişkili sekiz parametre bulunmaktadır. Her bir sekiz 

parametre için ise otuz adet veri seti vardır. Bu otuz veri seti, en küçük kareler 

yöntemi kullanılarak modellenir ve sekiz adet korelasyon katsayısı bulunur. 

İkinci teknik ise güçlü bir yapay öğrenme yöntemi olan Destek Vektör Makinesi 

(DVM)’nin regresyon modelidir. Büyük miktarlardaki verilerin elle işlenmesi ve 

analizinin yapılması mümkün değildir. Bu tür problemlere çözüm olması amacıyla 

yapay öğrenme (makine öğrenmesi) yöntemleri geliştirilmiştir. Bu yöntemler, eldeki 

(geçmiş) verileri kullanarak, bu verilere en uygun modeli bulmaya çalışırlar. Bu 

işleme, öğrenme işlemi adı verilir. Model oluşturulduktan sonra yeni gelen (gelecek) 

veriler, bu modele göre analiz edilip sonuç üretilir. 

Yapay öğrenme yöntemleri farklı uygulamalara, analizlere ve beklentilere göre 

gruplara ayrılır. Bu gruplardan en yaygın olanları sınıflandırma, kümeleme ve 

regresyondur. DVM, sınıflandırma konusunda kullanılan oldukça etkili ve basit 

yöntemlerden birisidir. DVM’de sınıflandırma işlemi için aynı düzlemde bulunan iki 

grup, aralarına bir sınır çekilerek birbirinden ayrılır. Sınırın çekileceği yer ise iki 

grubun da elemanlarına en uzak olan yer olması gerekmektedir. Bu işlem, iki gruba 

da yakın ve birbirine paralel iki sınır çizgisi çekilerek yapılır. Daha sonra bu sınır 

çizgileri birbirlerine yaklaştırılarak ortak sınır çizgisi üretilir. DVM’de sınıflandırma 

işlemi iki grup arasında yapılabileceği gibi ikiden çok grup arasında da yapılabilir. 

DVM’de regresyon ile sınıflandırma arasında matematiksel olarak çok fark 

bulunmamaktadır. İki yöntem de yapısal risk minimizasyonu ve istatistiksel öğrenme 

teorisi ile çalışır. Çıktı olarak sınıflandırma bir çeşit etiket (label) verirken, regresyon 

bir sayı verir. Bu çalışmada, tahmin edilmesi istenen değer ilerleme hızı, yani sayısal 

bir değer olduğu için DVM’nin regresyon modeli kullanılmıştır. Bu model Destek 

Vektör Regresyonu (DVR) olarak adlandırılır. Yöntem, kullanılmak istenen veri 

setinin öğrenme (train) ve test olmak üzere iki alt veri setlerine bölünmesi ile 

uygulanır. Öğrenme veri seti kullanılarak, ilgili parametreler ve gözlemler arasındaki 

ilişki belirlenerek bir regresyon modeli oluşturulur. Daha sonra test veri seti, 

oluşturulan bu model üzerine uygulanarak hedef değer tahmin edilir. 

Bu çalışmada DVR’nin yaygın modellerinden biri olan Epsilon-duyarsız kayıp 

fonksiyonu ve nü kontrol parametreli model kullanılmıştır. Bu modelde, öğrenme 

veri setindeki her bir gözlem değerinden en fazla Epsilon kadar sapma yapacak ve 

mümkün olduğunca düz olacak şekilde bir fonksiyon bulunur. Diğer bir deyişle, 

Epsilon’dan küçük olan hatalar göz ardı edilir; fakat Epsilon’dan büyük sapmalar 

kabul edilmez. Belirlenen epsilon bandı civarında da gevşek değerlerin tolare 

edilebilirliğini belirleyen bir penaltı parametresi belirlenir. υ parametresi ise epsilon 

bandını kontrol edebilen kullanıcı tarafından belirlenen bir parametredir. 

Bu tez çalışmasında DVR yöntemi kullanılarak ilerleme hızı tahminleri BvY 

çalışmasındaki veri seti kullanımıyla gerçekleştirilmiştir. Veriler sekiz parametre 

kapsamında tanımlandığı için genel bir yaklaşım olarak parametre sayısının iki katı 

olan 16 veri, üç katı olan 24 veri ve tamamı girdi verisi olarak kullanılmıştır. Geri 
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kalan veriler ise test seti olarak kullanılmıştır. Veri seçimi rastgele olabildiği için çok 

sayıda analiz kombinasyonu ortaya çıkmaktadır. Veri seçiminde tercih edilen 

yaklaşıma bağlı olarak DVR yönteminin uygulanması farklı durumlar ve senaryolar 

için incelenmiştir. 

Farklı yöntemler ile elde edilen sonuçlar, her bir senaryo için ait olduğu durum 

altında irdelenmiştir. Sonuçlarda en iyi tahmin yapan yöntemin seçilen veri setine 

bağlı olduğu görülmüştür. Öğrenme veri setinin az olduğu durumlarda ilerleme hızı 

tahmini yapmak için DVR’nin çoklu regresyon yerine alternatif olarak 

kullanılabileceği belirlenmiştir. 

Makine öğrenmesi yöntemlerinin en etkililerinden biri olan DVR, ilerleme hızı 

optimizasyonu için literatürde ilk kez bu tez çalışmasında kullanılmıştır. Böylelikle, 

DVR’nin ilerleme hızı optimizasyonu problemine genelleştirilmiş bir çözüm 

sunabileceğinin araştırılması gibi yeni araştırma alanı ortaya çıkmıştır. 
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1.  INTRODUCTION 

Nowadays, exploration of petroleum, natural gas and geothermal sources is gaining 

importance due to the unending increase of demand on the energy sources. Drilling 

of oil and gas wells, therefore, has gained remarkable technological improvements 

during recent years. There is an ongoing resource exploration processes beneath the 

unexplored subsurface and in the subsea deeper than 3000 meters of water depth in 

order to fulfill the needs. Because of the cost-efficient policy of oil companies, 

importance of lowering cost, increasing performance and reducing problems have 

risen. Now, these vital issues can be optimized better by employing advancing 

technology and widely used computer science. 

Optimization is an important tool in most of the engineering problems. Optimization 

can be defined as “the process of finding the conditions that give the maximum or 

minimum value of a function.” (Rao, 2009, p. 1). In Figure 1.1, the corresponding 

minimum and maximum values of a function can be seen as an example. 

 

Figure 1.1 : Minimum and maximum of a function (Rao, 2009, p. 2). 

To use optimization, four concepts should be described: Objective, a perceptible 

assessment of the system performance; variables (unknowns), the certain 

characteristics of the system that the objective depends on; constraints, the restriction 



2 

of the variables; and modeling, the determination of objective, variables and 

constraints for a specific problem (Nocedal and Wright, 1999, p. 1). 

Once the modeling procedure is completed, in other words, the problem is 

mathematically formulated, numerical and computational techniques are used to find 

the optimum solution for the given problem in the reference of mathematical 

programming framework, as a part of operations research, which brings generic and 

flexible approaches in formulation and solution of engineering optimization 

problems (Iqbal, 2013, p. 10). Different methods of operations research is listed in 

Table 1.1. 

Table 1.1 : Methods of operations research, adapted from (Rao, 2009, p. 3). 

Mathematical Programming 

or Optimization Techniques 

Stochastic Process 

Techniques 
Statistical Methods 

Calculus methods Statistical decision theory Regression analysis 

Calculus of variations Markov processes Cluster analysis 

Nonlinear programming Queueing theory Pattern recognition 

Geometric programming Renewal theory Design of experiments 

Quadratic programming Simulation methods Discriminate analysis 

Linear programming Reliability theory  

Dynamic programming   

Integer programming   

Stochastic programming   

Separable programming   

Multiobjective programming   

Network methods   

Game theory   

Modern or Nontraditional Optimization Techniques 

Genetic algorithms   

Simulated annealing   

Ant colony optimization   

Particle swarm optimization   

Neural networks   

Fuzzy optimization   
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Cost efficiency in exploration operations has always been primary optimization 

problem for oil companies. Moreover, drilling operations constitute the major part of 

these exploration costs. The main aim in cost control while drilling is to minimize 

total well costs (Moore, 1986, p. 17). However, sustainability of cost control is 

another problem that can be faced during a drilling operation. For example, 

experiencing one good result of a particular problem may give contrary result for a 

similar problem. Thus, the logic of encountering cost efficiency problems might 

differ individually among the companies. 

Drill bits are essential instruments to drill a hole in the earth’s surface. Drill bits are 

among the primary drilling equipment, and selection of the optimum bit and 

operating conditions is one of the main problems that can be faced during a drilling 

operation (Bourgoyne Jr. et al, 1991, p. 190). In addition, drill bits are the primary 

part needs to be changed frequently due to its quick wearing nature. In order to 

reduce the drilling cost, drill bits are needed to operate well in long time. Therefore, 

the condition of drill bits should be monitored carefully either before, after or during 

the drilling operations. 

The aim of assessing the condition of a dull bit is for making out which time interval 

the bit should be used in (Bourgoyne Jr. et al, 1991, p. 214). There are two possible 

situations for a dull bit condition. Firstly, the bit should have been pulled out earlier 

from the well. This situation is called as “pull one green” (Langenkamp, 1994, p. 

337). It means if a drill bit is pulled green, the bit still has a remaining lifetime that 

can be used again. If this situation happens, there can be an occurrence of high rig 

cost by wasting time on unnecessary tripping (Bourgoyne Jr. et al, 1991, p. 214). 

Alternatively, as another result, when the bit that pulled green is decided to be used 

in another well by looking the unweared physical condition, it can fail in a quite 

short time and create unwanted costs. As a result, it is very crucial to determine the 

optimum bit changing time when considering high drilling rig cost, particularly in 

offshore drilling. 

The second situation provides a basis to the bit optimization –or drilling 

optimization. A drill bit will going to wear while drilling as time goes by (Devereux, 

2012, p. 147). Correspondingly, the rate of penetration (ROP) rapidly decreases as 

bit wears in time (Adams, 1985, p. 206). As a result, this condition creates extra cost. 

The infographic shown on the Figure 1.2, as a similar approach to the concept shown 
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in Figure 1.1, provides an example of non-linear relationship between time and 

drilling cost, which includes an optimum (minimum) value. 

 

Figure 1.2 : An example of time and cost relationship (Moore, 1986, p. 28). 

Theoretically stating, terminating the bit run is the optimum point where the drilling 

cost is the minimum. However, there is no commonly accepted rule of thumb among 

the operators on defining this optimum time since there are also other variables 

(difficult to be determined) affecting the cost-time curve. In addition, couple hours 

before and after the point of minimum cost-time curve may not alter the overall 

drilling cost much. The other parameters affecting the ROP and drilling cost except 

the terminating bit time and the bit wear are weight on bit (WOB), drill string 

rotation (rpm), drillability of formations, depth, mud density, formation pressure, 

drilling fluid hydraulics, jet impact force, bearing condition of bit, etc. It can be 

stated that maximizing ROP and/or minimizing drilling cost per footage drilled is a 

multi-parameter optimization problem requiring the usage of different optimization 

techniques. 

In addition, if the bit is used in a long time interval, it may be shattered and leave 

junk in the hole (Bourgoyne Jr. et al, 1991, p. 214). This situation will require 

workover operations in the well in order to continue drilling which means extra time 

loss and extra cost. Hence, to determine the safest time interval of bit use, the bit 

wear rate must be known at once (Bourgoyne et al, 1991, p. 214). 

In the past, several studies had been made to determine the optimum bit life by the 

means of optimum ROP and minimum cost. Yet, the effect of variables that effects 
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ROP is not fully recognized and complicated to model (Bourgoyne Jr. et al, p. 232). 

So, several mathematical models have been developed to optimize ROP and varying 

drilling parameters. The most commonly used model is introduced by Bourgoyne Jr. 

and Young Jr. (1974), which is deeply investigated in this study. 

Using current mathematical models manually requires significant calculation time. 

This situation can cause severe time loss and high possibility of calculation errors. In 

addition, it is impossible to analyse and optimize huge amount of datasets on paper. 

As mentioned before, thanks to the improving technology, computer softwares are 

very helpful to solve these kind of optimization problems. In the last years, there is a 

concept named “Machine Learning” developed for learning from data to make future 

predictions. According to Alpaydın (2010), “Machine learning is programming 

computers to optimize a performance criterion using example data or past 

experience.” In other words, machine learning is a useful conception when a dataset 

is available to analyse in some way. In this study, regression approach of Support 

Vector Machines (SVM), or Support Vector Regression (SVR), which is one of the 

most effective machine learning methods is used. 

This thesis is organized as follow: 

 Chapter 2 contains a general literature review on methods developed for 

optimizing ROP. Also, several new algorithms that applied to ROP 

optimization problem is to be explained. 

 Chapter 3 is about the statement of the problem and the scope of this thesis 

study. 

 Chapter 4 represents the Multiple Regression (MR) method. In this chapter, 

theory of the MR analysis, different approaches and the application to the 

ROP optimization problem, which is the study of Bourgoyne Jr. And Young 

Jr. (1974) is explained in details. 

 Chapter 5 is the theoretical explanation of SVR method. First the SVM 

method and its different approaches are described. Also, this is the 

algorithmic part of the thesis. Thus, the softwares and toolboxes for 

compiling and running the algorithms is going to be clarified. Then, the 

optimization and tuning process of SVR for the problem is explained. 



6 

 Chapter 6 is the part that the results are given. The results of two methods, 

MR and SVR, for numerous cases are going to be revealed, evaluated and 

compared to each other. 

 Chapter 7 is finally about the conclusion and recommendations. 

Chapters 2-3 are only an introduction to the topic. Chapters 4-5 are the theoretical 

and technical parts that deeply explains the mathematical concepts of MR and SVR 

methods. Also, Chapter 5 contains an example syntax of the code that performs MR 

and SVR, for those who wish to study the algorithm. 
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2.  LITERATURE REVIEW 

In past years, various studies have been made to optimize rate of penetration (ROP) 

and maintain cost control of drilling operations. Basically, it is desired to achieve the 

minimum cost and optimizing drilling parameters as well as obtaining the maximum 

rate of penetration (Bahari and Seyed, 2009, p. 451). The research field of the 

optimization of drilling operations will maintain its importance due to high oil prices 

in general. 

There are different approaches and methods to sustain optimal drilling conditions 

such as an analytical method of Galle and Woods (1963), a Monte Carlo approach 

(Reed, 1972), and a numerical method of Bourgoyne Jr. and Young Jr. (1974), which 

provides a basis for this thesis study. 

On the other hand, new computerized technologies have been started to be used in 

drilling optimization problems in recent decade like Trust-Region Approach (Bahari 

and Baradaran Seyed, 2007), Genetic Algorithms (Bahari et al, 2008), a real time 

multiple regression based method (Eren and Ozbayoglu, 2010), Artificial Neural 

Networks (ANN) (Bataee and Mohseni, 2011), and a progressive stochastic method 

(Rahimzadeh et al, 2011. Moreover, the research of practicability of SVM method in 

ROP optimization problem is performed first time in literature with this study. 

2.1 Former Studies on ROP Optimization 

In this part, the studies done before 2000 are reviewed. 

First drilling parameters optimization study has been done by Speer (1958). In his 

study, an elementary method to obtain the best combination of weight on bit (WOB), 

rotary speed, and hydraulic forces that yields minimum cost was handled. 

Experimental relations were established to determine the effect of WOB, rotary 

speed, and hydraulic forces on ROP. It was showed that formation drillability is 

important factor for optimum weight. Similarly, WOB is the decisive parameter for 
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optimum rotary speed. These relationships produced a chart for determining 

optimum drilling conditions from a limited field data. 

Garnier and van Lingen (1959) accomplished laboratory drilling experiments by 

using drag and roller cone bits at elevated mud, pore and confining pressures on 

rocks differing in strength and permeability. They found that the pressure difference 

between mud and pore pressure is the main factor that reduces ROP at a certain 

depth. 

Graham and Muench (1959) introduced optimum combinations of rotary speed and 

WOB in order to minimize the cost. In their study, a mathematical analysis was 

performed to find out if optimum combinations of bit weight and rotary speed are 

present that minimizes the cost to drill specific depth intervals. They used a field data 

to perform the analysis and derive empirical correlations in terms of bit life 

expectancy. 

Maurer (1962) derived an ROP formula for roller cone bits from their rock cratering 

mechanisms (2.1). He found that the ROP is directly proportional to rotary speed and 

to bit weight, and inversely proportional to bit diameter and rock strength. The 

mentioned formula is, 

 
𝑅 =

4

𝜋𝑑𝑏
2

𝑑𝑉

𝑑𝑡
 (2.1) 

where R is the ROP, db is the bit diameter, V is the volume of the rock removal, and t 

is the time. 

Galle and Woods (1963) presented a study of the best constant bit weight and rotary 

speed for rolling cutter bits to obtain minimum cost. They performed optimization to 

determine the best combination of constant weight and rotary speed, the best weight 

for any rotary speed, and the best rotary speed for any weight. Additionally, they 

introduced an equation of ROP as, 

 
𝑅 = 𝐶𝑓

�̅�𝑏
𝑘𝑟

𝑎𝑝
 (2.2) 

where, 
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�̅�𝑏 =

7.88𝑊𝑏

𝑑𝑏
 (2.3) 

and, 

 𝑟 = [𝑒−100/𝑁2
𝑁0.428 + 0.2𝑁(1 − 𝑒−100/𝑁2

)] (for hard formations) (2.4a) 

 𝑟 = [𝑒−100/𝑁2
𝑁0.75 + 0.5𝑁(1 − 𝑒−100/𝑁2

)] (for soft formations) (2.4b) 

and, 

 𝑎 = 0.928125ℎ2 + 6.0ℎ + 1 (2.5) 

In these equations, R is the ROP, Cf is the formation drillability parameter, Wb is bit 

weight, db is hole or bit diameter, N is rotary speed, and h is bit tooth dullness. In 

addition, k 1.0 for most formations except very soft formations, 0.6 for very soft 

formations, and p is 0.5 for self-sharpening or shipping-type bit tooth wear. 

Bingham (1965) stated an ROP equation based on laboratory data (2.6). In this 

equation, he assumed the threshold bit weight is negligible and ROP is a function of 

WOB and rotary speed. 

 
𝑅 = 𝐾 (

𝑊

𝑑𝑏
)
𝑎5

 (2.6) 

where R is the ROP, K is the drillability of formation, W is the WOB, db is the bit 

diameter and a5 is the exponent that determined experimentally. 

Eckel (1967) made microbit tests with a low permeability limestone. The tests were 

handled at constant bit weight and rotary speed with various properties such as flow 

rate and nozzle diameter. The tests showed that ROP with a constant circulation rate 

and nozzle velocity is a function of kinematic viscosity of the drilling fluid measured 

close to the bit nozzle shear rates, the effect of fluid properties and hydraulics on 

microbit ROP is defined by Reynolds number function, and ROP is independent of 

solid content and fluid loss at the same kinematic viscosity. 

Wardlaw (1969) showed an elementary relationship between drilling efficiency and 

ROP in terms of rotary speed and WOB. The factors affecting these two parameters 

defined as differential pressure on bottom, mud characteristics, circulation rate, jet 
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velocity and rock-bit design. Moreover, it was indicated that drilling performance 

was affected with hydraulic horsepower. 

Young Jr. (1969) developed and installed an on-site computer system to control bit 

weight and rotary speed. He indicated that the pre-actual tests showed that the system 

could be precious to reduce drilling costs. The ROP equation in terms of minimum 

cost drilling expressions was defined as, 

 
𝑅 =

𝐾(𝑊𝑏 − 𝑀)𝑁𝜆

1 + 𝐶2𝐻
 (2.7) 

where K is formation drillability, Wb is bit weight, M is translation constant, N is 

rotary speed, λ is rotary speed exponent, C2 is a constant, and H is normalized bit 

tooth height. 

Lummus (1970) noticed in his study that mud and hydraulic forces are the main 

factors affecting drilling optimization. He also indicated that drilling operations 

could be optimized when the rig is efficient to provide enough hydraulic forces, 

necessary rotation, and WOB. He also made another study showing the emphasis of 

data obtaining for drilling optimization (Lummus, 1971). The study mainly focused 

on planning and data collecting. The important data requirements were expressed as 

computer inputs to calculate optimum controllable drilling variables. 

Reed (1972) solved the variable weight-speed optimal drilling problem using Monte 

Carlo approach to create the drilling schedule that gives the minimum cost per foot. 

A fast computer program was written to perform linear and curvilinear smoothing 

techniques to create random and discrete paths in order to decrease the cost per foot 

at each step of the Monte Carlo iterations. He compared his results with Galle and 

Woods (1963) and indicated a performance improvement. 

Study of Wilson and Bentsen (1972) were based on two variables, WOB and rotary 

speed, as well as the other parameters such as mud properties and bit type properly 

selected. They investigated to minimize the cost per foot drilled during a bit run, for 

a selected interval and over a series of intervals. It was also indicated that each of the 

investigations showed remarkable savings on costs. Additionally, the savings 

increased as the data requirements increased. 
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Bourgoyne Jr. and Young Jr. (1974) described a model (Bourgoyne and Young 

Model – BYM) based on a multiple regression analysis of a drilling data acquired in 

short time intervals. The study involved the effect of formation strength, formation 

depth, formation compaction, pressure differential across the bottom hole, bit 

diameter, bit weight, rotary speed, bit wear and bit hydraulics. The study presented 

involves in calculation steps for selecting bit weight, rotary speed, and bit hydraulics 

and formation pressure with applying regressed model on the drilling data. This 

model is the key point of this thesis study and is going to be explained in details in 

Chapter 4. 

Tansev (1975) presented a heuristic approach involving the interaction of raw data, 

regression and optimization techniques. In his study, ROP and bit life predictions has 

been made for several bit runs with regression analysis. He accounted for three 

variables, namely WOB, rotary speed and hydraulic. The ROP equations intersected 

with drilling cost equations and determined optimum variable values for minimum 

cost. He also mentioned that, drilling a uniform formation and using similar bits were 

the best choices for his approach. 

Doiron and Deane (1982) performed laboratory tests to measure the effects of 

hydraulic cleaning parameters on ROP for soft formation insert bits. It is mentioned 

that the ROP is directly proportional to bit hydraulic horsepower and reversely 

proportional to nozzle size or number. Moreover, decrease in drilling cost caused by 

the measured response of the ROP to enhance bottom hole cleaning was compared to 

operating costs required to fulfill the additional hydraulic power. It is reported that 

excessive bit hydraulic horsepower levels are cost effective for low ROP because of 

high overbalance pressure. 

Bizanti and Blick (1986) made test exploring the variables affecting the cutting 

removals with dimensional analysis. They indicated the rate of cutting removals was 

a function of dimensionless parameters such as Reynolds number, rotational 

Reynolds number, and Froude number. At the end of a regression analysis, they 

presented R2 and F-values to show the confidence level of the correlation. They also 

stated optimizing bottom hole cleaning would improve ROP in terms of minimum 

cost per foot. 
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Reza and Alcocer (1986) introduced a new non-linear multidimensional, 

dimensionless mathematical drilling model for deep well operations using the 

Buckingham Pi theorem dimensional analysis. They used WOB, rotary speed, 

kinematic viscosity, volumetric flow rate, bit diameter, differential pressure, 

temperature, and heat transfer coefficient as controlling parameters. The ROP model 

is given in (2.8). 

 𝑅

𝑁𝑑𝑏𝑒
= 𝐶1 (

𝑁𝑑𝑏𝑒
2

𝜐𝑘
)

𝑒1

(
𝑁𝑑𝑏𝑒

3

𝑄
)

𝑒2

(
𝐸𝑑𝑏𝑒

𝑊
)
𝑒3

(
𝑝𝑑𝑏𝑒

𝑊
)
𝑒4

 (2.8) 

In (2.8), R is ROP, N is rotary speed, dbe is bearing diameter, νk is kinematic 

viscosity, Q is volumetric flow rate, E is rock hardness, p is differential pressure, and 

W is WOB. In addition, C1, e1, e2, e3, and e4 are the unknown exponents and 

proportionally constants, which were calculated by the statistical regression curve 

fitting method.  

Simmons (1986) epitomized a technique including numerous drilling parameters 

such as hydraulics, WOB, and rotation to get maximum drilling efficiency, which 

can be controlled real-time on the field. The technique also allows the drilling 

supervisor on location to fine tune the parameters by modifying it to achieve the 

optimum drilling performance. This study also counted as one of the milestones of 

real-time drilling optimization studies (Eren, 2010, p. 30). 

Warren (1987) stated that the ROP gathered from roller-cone bits are limited because 

of the cuttings occurrence and cuttings removal. He presented an ROP model, which 

contains the effect of initial chip formation and cuttings removal (2.9). He also 

indicated that due to local cratering and global cleaning effects there could be a 

decrease in ROP at high borehole pressures. The mentioned ROP model was 

presented as, 

 
𝑅 = (

𝑐1𝐸
2𝑑𝑏

3

𝑁𝑊2
+

𝑐2

𝑁𝑑𝑏
+

𝑐3𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
)

−1

 (2.9) 

where R is ROP, c1, c2, c3 are dimensionless constants, E is rock hardness, db is bit 

diameter, N is rotary speed, W is WOB, γf is fluid specific gravity, µ is plastic 

viscosity, and Fjm is modified jet impact force. 
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Al-Betairi et al. (1988) reported an application of multiple regression analysis based 

on BYM. The model estimated optimum ROP, WOB, and rotary speed in terms of 

controllable and uncontrollable parameters. They used a field data taken from three 

wells in Arabian Gulf to validate the model. They indicated that the model 

coefficients are sensitive to the number of data points. 

Lubinski (1988) introduced three differential equations in terms of ROP, rate of tooth 

wear, and rate of bearing wear. It was stated that if the basic conditions were met, 

these equations could be used to optimize the drilling process. The mentioned basic 

conditions are acceptable bottom hole cleaning, properly selected rock-bit, and 

homogeneous formation. 

Maidla and Ohara (1991) developed a computer software that minimizes cost per 

foot for a single bit run and for the concurrent selection of a roller-cutter bit, bit 

wearing, WOB and drill string rotation. They compared their model (2.10) with 

BYM by using field data taken from five different offshore wells in a particular 

location. The outcome of the study indicates the ROP values of the fifth well can be 

predicted by using the coefficients of previous four wells with some cost saving. The 

model is described as, 

 

𝑅 = 𝑒𝑥𝑝(𝑏1 + 𝑦1 + ∑ 𝑏𝑘𝑦𝑘

6

𝑘=2

) (2.10) 

where, 

 𝑦1 = 𝑙𝑛(𝑁𝑑𝑏) (2.11) 

 
𝑦2 = 𝑙𝑛 (

𝑊

𝑆𝑐𝑑𝑏
2) (2.12) 

 𝑦3 =
𝑝𝑝 − 𝑝𝑐

𝑆𝑐
 (2.13) 

 
𝑦4 = 2 − 5 × 10−5 (

𝐷

𝑑𝑏
) (2.14) 

 
𝑦5 = 𝑙𝑛 (

𝐹𝑗

𝑆𝑐𝑑𝑏
2) (2.15) 
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𝑦6 = −

ℎ

𝑑𝑏
 (2.16) 

Here, R is ROP, N is rotary speed, db is bit diameter, W is WOB, Sc is compressive 

strength, pp is pore pressure, pc is circulating bottomhole pressure, D is well depth, Fj 

is jet impact force, and h is fractional tooth height worn away. Additionally, the 

constants b1 through b6 is calculated for each different bit choice. 

Pessier and Fear (1992) handled full-scale simulator tests under laboratory conditions 

to develop and validate a specific energy in rotary drilling model, which is 

introduced by Teale (1965): 

 
𝐸𝑠 =

𝑊

𝐴𝐵
+

120𝜋𝑁𝑇

𝐴𝐵𝑅
 (2.17) 

Here Es is specific energy, W is WOB, AB is borehole area, N is rotary speed, T is bit 

torque, and R is ROP. It was also reported that field data analysis gives good 

correlation results between simulator and field results. 

Wojtanowicz and Kuru (1993) presented a leading approach to drilling optimization 

called dynamic drilling strategy. It is mentioned that dynamic drilling strategy is a 

new technique, which combines the theory of single-bit control and multi-bit 

program for a well. The method was compared to conventional methods and field 

practices in the simulation part. Furthermore, cost-saving potential of 25% and 60%, 

respectively, was estimated. Finally, it is stated that the method seems to be the best 

cost-effective approach for long-lasting Polycrystalline Diamond Compact (PDC) 

bits in terms of reducing the number of bits needed. 

Rampersad et al. (1994) performed a utilization by creating a Geological Drilling 

Log (GDL) to optimize the drilling cost. The GDL is created by using specific 

drilling models for specific bit types for each formation profile interval taken foot by 

foot of the entire drilling section (2.18), (2.19). 

The tricone bit model is defined as, 

 
𝑅 = 𝑊𝑓 [𝑓𝑐(𝑃𝑒) (

𝑎𝑆2𝑑𝑏
3

𝑁𝑊2
+

𝑏

𝑁𝑑𝑏
) +

𝑐𝜌𝜇𝑑𝑏

𝐹𝑗𝑚
]

−1

 (2.18) 

The PDC bit model is defined as, 
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𝑅 =

14.14𝑁𝑠𝑁(𝐴𝑣 − 𝐴𝑣𝑤
)

𝑑𝑏

𝑎𝑑

𝑁𝑏𝑑𝑊𝑐𝑑
 (2.19) 

Here R is ROP, Wf is wear function, fc(Pe) is chip holddown function, S is confined 

rock strength, db is bit diameter, N is rotary speed, W is WOB, ρ is mud density, µ is 

mud plastic viscosity, Fjm is modified jet impact force, Ns is number of diamond 

stress, Aν is the projected area of each diamond, Aνw is the projected area of worn 

section of a diamond, and a,b,c,ad,bd,cd are constant coefficients. 

Cooper (1995) builded up a graphical user interfaced software that allows a student 

or engineer to drill a well and optimize the drilling process. The software had three 

parts: A lithology editor which lets the student to create different layers having 

different characterization, mineralization, etc.; a settings editor which all the 

operational parameters can be defined at; and the simulator algorithm that calculates 

ROP and the rate of tooth wear as drilling goes by. 

Mitchell (1995) introduced a contour method for determining optimal WOB and 

rotary speed for minimum cost per foot. The method involves structuring a plot like 

Figure 2.1 in two dimensional space.  

 

Figure 2.1 : Optimum WOB and rotary speed (Mitchell, 1995, p. 531). 

This procedure can be done by potting cost per foot contours with the past drilling 

data on the coordinates. The WOB is on the x-axis and the rotary speed is on the y-

axis. Several bit runs are necessary to draw each line, which have either including or 

excluding values within the contour. The most cost effective bits have the nearest 

optimal WOB and rotary speed. 
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Fear (1996) created a method that classifies which parameters are controlling ROP in 

a specific group of bit runs. The method needs some input data such as mud logging 

unit data, geological information, and drill bit characteristics in order to estimate 

correlations between ROP and controlling parameters or other aspects. Finally, these 

correlations are used to make suggestions to maximize the ROP. 

Barragan et al. (1997) developed a program for utilizing optimum drilling conditions 

using Monte Carlo Simulation and specially developed numerical methods. The 

output gives the optimum conditions that minimizes the cost per foot for each 

specific bit run through the entire well. The model does not rely on one particular 

ROP optimization method. The model itself tested with other methods such as BYM 

and Warren (1987). 

Bengisu et al. (1997) introduced a new methodology to estimate ROP during drilling 

operations. The neural network approach analyzes acquired data to correlate several 

parameters such as bit type, WOB, depth, and rotary speed. They used two different 

data sets. First data set included 8000 measurements taken at specific wellbore 

conditions, and the second data set contained 500 measurements taken from several 

wells. They also used a rig floor simulator to acquire data. In addition, it is stated that 

the simulated data could provide additional understanding of different parameters 

such as formation abrasiveness, bit tooth wear, and bit bearing wear as a function of 

drilling time, which are not quite possible to measure during drilling. 

Serpen et al. (1997) designed a project based on optimizing drilling processes to 

determine drilling parameters for decreasing time consumption and making 

predictions accurately. They created computer softwares using common drilling 

models available in the literature: Galle and Woods method, Constant-Energy 

Drilling method, drill-off tests, multiple regression approach, modified multiple 

regression approach, and drilling hydraulics optimization. 

Dubinsky and Baecker (1998) stated the dynamic action of a drill bit is a crucial 

factor in drilling efficiency by affecting ROP, hole conditions and the tripping 

frequency. They developed a simulator to improve the perceptive of the dynamic 

behavior to get better results in drilling optimization. The simulator reproduces 

dynamic condition variables such as hook load, rotary speed, mud properties, flow 

rate, BHA, borehole parameters, etc. The system also simulates the major drilling 
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dynamic dysfunctions like bouncing effects, drill string vibration, torque shocks, etc. 

It is mentioned that the system has self-learning qualities depends on the amount of 

data used for training the model. Additionally, they referred their study as an 

efficient training toolbox for MWD operators and drilling staff. 

Samuel and Miska (1998) presented an analytical model that optimizes performance 

and parameters for downhole motors (2.20). They also introduced a test called wear-

off test, which connects an operating window. The model is described as below: 

 
𝑅 = 𝐾 (

𝑊

4𝑑𝑏
)
𝑒1

(
𝑁

100
)

𝑒2

 (2.20) 

Here R is ROP, K is formation drillability, W is WOB, db is bit diameter, N is rotary 

speed, and e1 and e2 are the exponents. 

Millheim and Gaebler (1999) commenced a heuristic concept called Virtual 

Experience Simulation. They gathered data from 22 different wells and processed 

them by dividing into specific data sets in terms of geology, tripping, cementing, 

logging, ROP, and unscheduled events. By containing the field drilling experience 

and knowledge, these new data sets earns a value. It was believed by the authors that 

the study presents a new approach to evaluate field drilling experience. 

2.2 Recent Studies on ROP Optimization 

In this part, the researches made in and after 2000 are reviewed. 

Akgun (2002) suggested a different approach in estimating drilling performance. 

This approach introduces a comparison of drilling performance in terms of technical 

limit of the ROP, which means a maximum attainable ROP without risking drilling 

safety. It is also stated that the technical ROP limit can be reached if these conditions 

are met: Selecting minimum mud weight that prevents any kick occurrence and 

borehole collapses, WOB and rotary speed selected at their possible maximum 

values, and optimum flow rate giving  

John et al. (2002) described a modern information technology called InterACT, 

which aids data to be acquired from remote drilling wellsites in real-time. It is 

concluded that this technology provides cost efficiency in terms of rig time when 
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making operational decisions. The InterACT system is pictured as seen on Figure 

2.2. 

 

Figure 2.2 : The InterACT system (John et al, 2002, p. 2). 

Gelfgat et al. (2003) published a book having a chapter about drilling optimization 

with a new approach used in the former Soviet Union. They stated their inspection 

and analysis of the data taken from an optimization process of US well forms on the 

statistical knowledge from previously drilled wells or specific bit runs. This data also 

allowed them to make adjustments on drilling parameters. They reported that the 

efficiency of the approach depends on the following criteria: 

 A consistently high level of drilling technology and equipment provided by 

equipment and material supply companies, 

 availability and smooth operation of instrumentation and recording 

equipment for drilling operations, 

 exclusive use of the rotary drilling method that facilitates the optimization of 

drilling parameters within the acceptable range of rotational bit speed 

variation, 
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 a reliable system of payment for drilling crews that was not dependent on 

drilling results. 

Ursem et al. (2003) demonstrated an implementation of a holistic approach called 

Real Time Operations Center with a collaboration of Shell and Halliburton by using 

high-end technology. The basis of the technology relies on learning from the past and 

making best decisions without the involving of people. Moreover, they presented the 

areas where people issues were taken under consideration, which are collaborative 

environment, real time monitoring, managing knowledge, change element and new 

initiatives, value challenges and investment versus scope. 

Mochizuki et al. (2004) audited and classified technological elements in real-time 

optimization to analyze the value of real-time optimization projects. They analyzed 

case histories and demonstrated the effect on real-time optimization on the wellsite. 

They mentioned that the real-time optimization projects are quite difficult in type 

because of the involving of people, technology and process components. 

Rommetveit et al. (2004) designed an innovative project for automating and 

simulating drilling operations, called Drilltronics. The system gathers all available 

surface and downhole drilling data in real-time to optimize the drilling process. If a 

sensor fails, an advanced mirroring model takes place to estimate the missing 

parameter. Furthermore, it is stated that to full perform the system, all surface and 

downhole drilling data must be acquired in real-time. Additionally, the drilling 

equipment must be computer controllable with an interface, which supports 

automatic response to the model’s missing parameter calculations. 

Caicedo et al. (2005) developed a new ROP prediction model based on the specific 

energy theory and confined compressive strength (2.21). This new model has been 

validated by field and laboratory tests for improving drilling performance, reducing 

well costs, and estimation of optimum drilling parameters. The model was 

symbolized as, 

 
𝑅 =

13.33𝜁𝑁

𝑑𝑏 (
𝑆

𝑒𝑚𝑊 −
1
𝐴𝐵

)
 

(2.21) 
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Here R is ROP, ζ is bit-specific coefficient of sliding friction, N is rotary speed, db is 

bit diameter, S is confined rock strength, em is the mechanical efficiency, W is WOB, 

and AB is borehole area. 

Dupriest and Koederitz (2005) used the concept of Mechanical Specific Energy 

(MSE) to estimate the drilling efficiency of bits in laboratory conditions (2.22). It is 

indicated that the concept can be used more widely by drilling staff as a real-time 

optimization tool to maximize the ROP. They also mentioned the results exceeded 

the expectations by observing the average ROP of the six rigs selected for pilot was 

increased by 133%. The implementation of MSE can be formulated as, 

 
𝑀𝑆𝐸 =

480𝑇𝑁

𝑑𝑏
2𝑅

+
4𝑊

𝜋𝑑𝑏
2 (2.22) 

Here MSE is mechanical specific energy, T is bit torque, N is rotary speed, db is bit 

diameter, R is ROP, and W is WOB. 

Ipek et al. (2006) introduced a new method relating the performance of drill bits to 

cation exchange capacity of the drilled shaly formation. They built a relationship 

between drilling parameters by using normalized ROP, specific energy and cation 

exchange capacity (2.19), (2.23). 

 
𝑅𝑛 =

𝑅

(
𝑊
𝑑𝑏

)
2

(
𝑁
60)

 
(2.23) 

Here Rn is normalized ROP, R is ROP, W is WOB, db is bit diameter, and N is rotary 

speed. It is stated that the correlations indicated the potential diagnosis of bit balling 

and drilling ineffectiveness in over pressured shaly formation for PDC bits. 

Iversen et al. (2006) presented an integrated system for monitoring and controlling 

drilling process. The essential part of the system is the models for fluid flow and 

drilling mechanics are updated sequentially in real-time. It is stated that unwanted 

occurrences can be detected quickly in comparison to calibrated models. They also 

optimized the calibrated models for staying in the safe limits for drilling operations. 

Finally, they reported that the system might be helpful to increase safety and reduce 

down time on drilling operations. 
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Milter et al. (2006) performed real-time data transfer from an offshore well to land 

support centers for drilling and production processes. The transmitted data was given 

quality by applicable personnel who have an availability of high speed broadcasting 

connection. They stated that by applying the real-time data transmission unwanted 

events and well shut-in operations were reduced in number. 

Bahari and Baradaran Seyed (2007) wrote a computer software that applies four 

different mathematical methods to a field data to estimate the parameter coefficients. 

The methods were multiple regression, linear least square data fitting with non-

negativity constraints, non-linear least square data fitting with Gauss-Newton, and 

non-linear least square data fitting with trust-region. The results were compared to 

each other. It is stated that the trust-region method is the best mathematical model to 

estimate BYM parameter coefficients. Additionally, it is reported that the trust-

region method can be used in limited situations such as availability of a few data 

points and exceeding recommended parameter ranges. 

Judzis et al. (2007) tested and identified limiting factors of ROP performance in 

extended depths, the advancement of circulation systems, and bit design criteria, 

which are all improving drilling performance. They performed sixteen tests for 6-

inch bits at 10000 psi of wellbore pressure. The results showed that high-pressure 

tests with water and base oil gives excessive ROP values before mud circulation. It is 

also indicated, while drilling hard sandstone formation, ROP could drop about 75% 

if the mud is weighted. 

Monden and Chia (2007) made a series of real case studies with an operation support 

center that inspects the range and scale of measurements in terms of drilling 

optimization and minimizing downtime. They improved ROP by advanced software 

modeling of drilling parameters. The cases included either the reduction of shock and 

vibration the drill string. It is mentioned that the ROP is directly improved by 

balancing weight on bit and rotary speed. 

Osgouei (2007) proposed a modified BYM which includes the effect of formation 

compaction, formation pressure, equivalent circulating density, effective WOB, 

rotation of the bit, bit wear, hole cleaning, deviation, fluid loss, and hydraulics. In 

addition, he developed a bit wear model for roller cone and PDC bits. The model was 

tested with an offshore data taken from Persian Gulf. It was stated in comparison to 
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the field data, the model could predict the ROP with an error of ±25%. He described 

the regression variables as, 

 𝑦 = 𝑙𝑛(𝑅) (2.24) 

 𝑥2 = 8800 − 𝑇𝑉𝐷 (2.25) 

 𝑥3 = 𝑇𝑉𝐷0.69(𝑔𝑝 − 9) (2.26) 

 𝑥4 = 𝑇𝑉𝐷(𝑔𝑝 − 𝜌𝑐) (2.27) 

 

𝑥5 = 𝑙𝑛 (

𝑊
𝑑𝑏

⁄

4
) (2.28) 

 
𝑥6 = 𝑙𝑛 (

𝑁

100
) (2.29) 

 𝑥7 = −ℎ (2.30) 

 
𝑥8 = 𝑙𝑛 (

𝐹𝑗

1000
) (2.31) 

 

𝑥9 = 𝑙𝑛 (

𝐴𝑏𝑒𝑑
𝐴𝑤𝑒𝑙𝑙

⁄

0.2
) (𝑓𝑜𝑟 𝑟𝑜𝑙𝑙𝑒𝑟 − 𝑐𝑜𝑛𝑒 𝑏𝑖𝑡𝑠) (2.32a) 

 

𝑥9 = 𝑙𝑛 (

𝐴𝑏𝑒𝑑
𝐴𝑤𝑒𝑙𝑙

⁄

0.35
) (𝑓𝑜𝑟 𝑃𝐷𝐶 𝑏𝑖𝑡𝑠) (2.32b) 

 𝑥10 = 𝑙𝑛 (
𝜐𝑎𝑐𝑡𝑢𝑎𝑙

𝜐𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
) (2.33) 

 
𝑥11 = 𝑙𝑛 (

𝐶𝑐

100
) (𝑓𝑜𝑟 𝑟𝑜𝑙𝑙𝑒𝑟 − 𝑐𝑜𝑛𝑒 𝑏𝑖𝑡𝑠) (2.34a) 

 
𝑥11 = 𝑙𝑛 (

𝐶𝑐

25
) (𝑓𝑜𝑟 𝑃𝐷𝐶 𝑏𝑖𝑡𝑠) (2.34b) 

Here R is ROP, TVD is total vertical depth, gp is pore pressure gradient, ρc is 

equivalent circulating density, W is WOB, db is bit diameter, N is rotary speed, h is 
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final bit tooth dullness, Fj is jet impact force, Abed is area of cuttings bed, Awell is area 

of the well, vactual is mud velocity in annulus, vcritial is mud critical velocity in 

annulus, and Cc is cuttings concentration for a stationary bed (by volume), corrected 

for viscosity. 

Remmert et al. (2007) implemented an approach to manager ROP in real-time by 

customizing surveillance items to maximize bit cutter efficiency and energy 

transmission thru bit, simultaneously. They redesigned the hydraulic horsepower to 

decrease the effect of cuttings and monitored MSE regularly to optimize WOB and 

rotary speed in order to reduce vibrations and energy loss. 

Strathman et al. (2007) built a system that captures data from the well in real-time, 

stores in a historian, and makes available in trends in time. The system could capture 

up to 200 parameters per well with the frequency of 5 seconds through 20 wells. The 

solution was adjustable by the operator using different data and time sequences. It is 

also mentioned that the system makes companies reduce their cost to access the well 

data by letting them developing better plans. 

Tollefsen et al. (2007) presented a study performed in the Gulf of Mexico that 

permits an operator to drill safely in a very limited hydraulic envelop and eliminate a 

string of casing by using Logging-While-Drilling (LWD) tools. In this study, a 

predrill model created by using the velocities exported from a 3D modelling of 

northern Gulf of Mexico derived from checkshots and sonic logs. Furthermore, a 

new method was found to optimize drilling performance in a particular well by the 

help of LWD tools. The driller could maintain the wellbore stability via 

simultaneously updated LWD annular pressure measurements. In addition, it is stated 

that a full understanding of the hydraulic forces on a borehole can improve the ROP, 

safety, casing string design, kick prevention and optimized well completions. 

Iversen et al. (2007) introduced a new drilling control system installed on a rig that 

improves real-time optimization and automation. A field test was performed to 

identify the incorporation of calibrated models in terms of efficiency, safety and 

reliability. The system uses calibrated dynamic process models to calculate 

operational parameters. They stated that the automation system provides improved 

control of well conditions. 
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Bahari et al. (2008) implemented Genetic Algorithm (GA) to BYM to determine 

parameter coefficients with high accuracy. It is stated that GA can make 

improvements on coefficient estimation in situations, which BYM leads physically 

meaningless values. They also tested their new method with field data. It is reported 

that simulation results validated the new method on coefficient estimation. 

Iqbal (2008) made a simple analysis that re-evaluates the optimum values for the 

parameters like rotary speed and WOB by applying Galle and Woods (1963) method. 

He created a simple program that can change the specifications of optimum values 

and estimates the maximum ROP within available restrictions. Thus, the drilling cost 

decreases due to the increase of the ROP. 

Bahari and Baradaran Seyed (2009) investigated a case study in the Iranian 

Khangiran gas field. They performed a combination of two optimization techniques, 

which are comparative methods (cost per foot and specific energy) and mathematical 

methods. The summary of the optimization algorithm is shown in Figure 2.3. 

 

Figure 2.3 : Algorithm of the mathematical optimization procedure (Bahari and 

Baradaran Seyed, 2009, p. 452). 
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As a result of the study, it is stated that systematic combination of theory and 

application provides remarkable saving in time and money for drilling operations. 

Cayeux et al. (2009) designed a system based on an application of real-time process 

models to calculate hydraulic and mechanical forces, which requires a huge set of 

input data. Results of the calculations were applied directly to drilling control system 

that affects pipe acceleration, velocity, and the pump startup profile. The most 

important concept of the system is the data to be correct and high quality. 

Aadnøy (2010) indicated that the flow rate and the ROP must remain in specified 

limits to assure good hole cleaning performance. An example of presented charts is 

shown in Figure 2.4. 

 

Figure 2.4 : Hole cleaning chart example (Aadnøy, 2010, p. 26). 

Eren and Ozbayoglu (2010) developed a model based on BYM for drilling 

optimization using data gathered from modern well monitoring and data recording 

systems. The model was designed for predicting ROP as a function of valid drilling 

parameters. The general equation of ROP is optimized for effective functions at each 

individual data point. They also built a computer network system to pipe data 

simultaneously from the rig. They also mentioned that the ROP could be optimized 

in real-time as a function of independent variables such as weight on bit, rotation 

speed, mud weight, and formation characteristics. 

Hareland et al. (2010) presented an experimental setup for rock failure caused by the 

inserts of roller cone bits by processing experimental data. They developed a new 

ROP model derived directly related to the fractures exerted by a single insert (2.35). 

Moreover, the study involved prediction of ROP and rock compressive strength with 

an offset data. It is indicated that verification of the model is done by stating good 
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estimation of the interaction between the bit and the bottom hole rock. The ROP 

predictions evaluated from the model matched the data taken to be analysed. The 

new model is described as, 

 
𝑅 = 𝐾

80𝑛𝑖𝑚𝑁

𝑑𝑏
2𝑡𝑎𝑛2𝜓

(
𝑊

100𝑛𝑖𝜎𝑝
) (2.35) 

Here R is ROP, ni is the number of insert in contact with the rock at the bottom, m is 

the number of insert penetrations per revolution, N is rotary speed, db is bit diameter, 

ψ is chip formation angle, W is WOB, and σp is the ultimate strength of rock at a 

differential pressure. 

Moradi et al. (2010) introduced a soft computing approach for ROP prediction. They 

applied a method based on K-mean clustering to a field data to show that the 

accuracy of their model is higher than the other statistical models like Bourgoyne Jr. 

and Young Jr. (1974). The flowchart of the study is demonstrated on Figure 2.5. 

 

Figure 2.5 : Flowchart of a soft computing approach, adapted from (Moradi et al, 

2010, p. 1585). 
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Wu et al. (2010) discussed three main factors affecting ROP in their study. The 

factors are rock types, insert types, and insert wear. To analyse the effect of these 

factors on ROP, they developed a simulator. It was found as a result of simulation 

that the decrease in ROP for a limestone formation is greater than that for shale as 

the bit wears. However, if the WOB is very small the results showed the opposite 

results. It was also indicated that when WOB is low the effect of dull grade on ROP 

is differ in rock types. 

Bataee and Mohseni (2011) developed an optimization program that can be used in 

optimizing drilling parameters and estimating drilling time properly. They used ANN 

in their optimization program. It is concluded that ANN can find the actual values of 

parameters that maximize ROP despite no equation is capable of doing such 

estimation. The results also show that mud weight and ROP are inversely 

proportional. The best ROP was selected by achieving previous ROP using modelled 

function and applying proper drilling parameters. 

Esmaeili et al. (2012) conducted experimental tests with a laboratory scaled drilling 

rig to explore the effect of drill string vibration on ROP optimization. The sensors 

recorded vibration data and other drilling parameters. In the experiments, artificial 

sandstone cubes were drilled with several ranges of WOB and rotary speed. Linear 

and non-linear models were developed to analyse the data with the help of ANN for 

given data acquiring frequency. It is stated that the modelling has an important effect 

on ROP optimization. 

Gidh et al. (2012) developed a drilling parameter optimization system based on ANN 

to inform rig-site personnel in real-time to maximize the run length for all bits and 

downhole tools at maximum achievable ROP. The system uses drilling parameters 

obtained from offset log data. Additionally, prediction changes were imported to the 

ANN algorithm to improve the accuracy of future predictions. It is stated improved 

tool life, less trips, and conserving bit dull condition as the benefits of the system. 

Irawan et al. (2012) used BYM to study the effects of several parameters on drilling 

operations. The most important parameters indicated as depth, pore pressure, 

equivalent circulating density, bit weight, rotary speed, bit tooth wear, and jet impact 

force. At the end of the study, the multiple regression analysis results were used to 

estimate the best WOB that gives optimum drilling operation. The ROP for each 
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specific depth intervals were predicted by using a field data, and optimized WOB 

was calculated for several data selections. In addition, a drilling simulator called 

Drill-Sim 500 was used to prove the results performed on actual field data. 

Monazami et al. (2012) presented an application of ANN on predicting ROP by 

using several drilling data taken from an actual oil field. It is stated that ANN is a 

useful method to correlate complex parameters. Moreover, it is mentioned that this 

method can be used not only during well planning but also during drilling. To 

estimate the correlation coefficients a three layer feed-forward network has been 

developed. The results shows that ANN method can predict ROP with higher 

accuracy than conventional methods like BYM. 

Jacinto et al. (2013) investigated several techniques on prediction and optimization 

of ROP. The techniques were a Bayesian approach and Dynamic Evolving Neural-

Fuzzy Inference System (DENFIS). They used their systems on a pre-salt region in 

Brazilian offshore. They also indicated that native Bayes is not a good approach on 

ROP prediction because of the classification of the input values, low data quality and 

division of the input pattern’s nodes. On the other hand, DENFIS was capable of 

predicting ROP with low error. However, it is stated that the constraints of the 

system should be held by an expert due to extreme complexity. 

Jamshidi and Mostafavi (2013) developed two models by utilizing ANN. The first 

model is selecting correct bit by optimizing ROP and applying particular drilling 

parameters. The second model is using appropriate drilling parameters acquired from 

optimization stage to select the bit that maximizes ROP. Additionally, GA is applied 

to the models. The methods let current condition of a drilling system optimize the 

drilling efficiency by reducing the probability of early wear of the bit. 

Bilgin et al. (2014) performed in situ field tests to investigate the factors affecting 

drill bit wear mechanism and to obtain ideas about quality maintenance. The tests 

were performed under specific conditions in terms of rock formation characteristics 

and drill bit properties. They recorded bit wear radius until a threshold value was 

reached, then the bit were repaired and reused. The lifetime of the bits were 

expressed as achieving 29 mm of radius, which is the maximum allowable size. The 

results of the study is plotted in terms of drill bit diameter and drilling distance, 

which is shown in Figure 2.6. 
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Figure 2.6 : Decrease in drill bit diameter via wear characteristics (Bilgin et al, 

2014, p. 111). 

Hou et al. (2014) conducted a study includes statistical analysis of a large number of 

actual drilling practices and detailed information about drilling bits. They researched 

the 3D drillability distribution of a drilling area and optimized drilling parameters 

using ANN based ROP model. Additionally, they applied a number of optimal bit 

selection techniques to the area. It is concluded that the ROP of a single well can be 

increased by 30% by applying these selection techniques in order to bring a solution 

to speed problems in deep wells. 

Shishavan et al. (2014) combined both ROP and borehole pressure into a single 

controller system for a managed pressure drilling application. The system can control 

the drilling parameters such as pump flow rate, choke position, rotation rate, and 

WOB simultaneously. It is stated that stabilization of borehole pressure and 

maximization of ROP can be handled with automated operations. It is also reported 

that combining ROP and borehole control in a particular system can minimize risk, 

drilling costs, and operator workload. Additionally, consistency and predictability of 

gas influx reaction in shorter time is also one of the beneficial results of ROP and 

borehole combined system. 

Miyora et al. (2015) presented a case study by mathematically modelling various 

drilling parameters such as formation strength, depth, formation compaction, 

pressure differential, bit diameter, WOB, bit rotation and bit hydraulics. The multiple 

linear regression was used as mathematical model. An actual field data was used for 
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developing the drilling model. Additionally, several software toolboxes were used in 

data analysis. 

As an overview of the literature research based on ROP optimization, it can be said 

that the studies involve analytical, experimental, and statistical methods. Depending 

on the latest developments on computer technology, real-time analysis on the field 

has gained wide currency and has started to be used in automation processes to 

maximum ROP during drilling operations. However, despite all the methods and 

developments, there is no generalized solution for drilling parameters optimization. 

Besides, BYM is the most commonly used drilling model for ROP optimization, and 

provides basis to the recent studies. 

In this study, a method that has not applied for the purpose of ROP optimization – 

SVR is used. There are several fields of application of SVM in the petroleum 

industry such as stuck pipe prediction, well log analysis for the estimation of 

saturation, lithology, porosity and permeability, PVT and reservoir property 

estimation, multiphase flow pattern recognition, seismic anomaly determination, 

history matching, reservoir simulation, etc. SVR and SVM has gained importance in 

the studies of petroleum industry in recent years. The following figure shows the 

number of papers found in OnePetro database that SVM and SVR were used in. 

 

Figure 2.7 : Number of papers including SVM found in OnePetro database. 

It can be seen from Figure 2.7 that there is a sharp increase in the number of papers 

after 2009. Additionally, the trend in paper amount shows exponential increase. This 

means that the studies on SVM for petroleum industry will be increasing. 
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3.  STATEMENT OF THE PROBLEM AND SCOPE OF THE THESIS 

It is a fact that there exists a tight relationship between maximizing rate of 

penetration (ROP) and reducing drilling cost. Therefore, accurate prediction of ROP 

both in planning phase and during drilling operation of a well is of great importance. 

There are many approaches and models introduced by numerous researchers, yet the 

one introduced by Bourgoyne Jr. and Young Jr. (1974) is one of the most commonly 

accepted and used by drilling industry. Bourgoyne and Young model (BYM) is also 

the one that is cited and examined by numerous researchers. The BYM estimates the 

ROP by considering eight common drilling parameters, which are depth, formation 

drillability, bit weight, rotary speed, tooth wear, mud hydraulics (Reynolds number 

function), equivalent circulating density, and pore gradient. The goal is to find eight 

correlation coefficients representing these eight drilling parameters by multiple 

regressing the offset data and to predict ROP for the desired conditions. 

Theoretically speaking, estimating eight correlation coefficients from eight different 

parameters only eight input data is required. However, as stated by Bourgoyne Jr. 

and Young Jr. (1974) this mathematical expression is true if only the model 

represents the rotary drilling process with 100% accuracy (p. 374). Yet, it is a known 

fact that this situation never happens in real life. Additionally, it was also mentioned 

that negative values of coefficients could be faced with when a few input data were 

used for regression analysis (Bourgoyne Jr. and Young Jr., 1974, p. 374). Solving 

this kind of problem with lack of or unreliable data, a sensitivity study was 

performed by the researchers of the BYM study. To sum up, an overview of 

minimum number of input data points corresponding to parameter numbers must be 

available. As can be analysed mathematically, determining coefficients of eight 

parameter problem requires minimum of thirty data sets, and each data set comprises 

data of the eight parameters. As the parameter number decreases, the minimum 

required input data sets also decrease with a certain ratio.  

Another issue is pointed out by BYM that the data should be taken from more than 

one well and combined to estimate the coefficients with maximum accuracy 
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(Bourgoyne Jr. and Young Jr., 1974, p. 375). Additionally, the data should be 

acquired in short depth intervals from one type of formation, especially shale. That is 

because most of the shale are stiff and non-brittle, which can resist fracturing and 

losing physical characteristics by bonding and overstressing (Yen and Chilingarian, 

1976, p. 203). It is also stated that 2 to 5-ft is representative depth interval to keep the 

required data within reasonable limits (Bourgoyne Jr. and Young Jr., 1974, p. 375).  

The situation above can be handled for the fields having large amount of shale 

sections like Offshore Louisiana Area as mentioned in the BYM study. However, the 

following situations can be faced within the most cases: (1) unavailability of 

adequate shale sections through one well to acquire enough drilling data, (2) not 

having sufficient number of wells in one field containing abundant shale sections, (3) 

drilling in a formation having extreme complexity in lithology, particularly in south 

eastern region of Turkey (Okay, 2008, p. 20). 

Either one of these three cases results in restrictions on data acquisition or data 

insufficiency. When data is not adequate to regress and correlate the parameters, the 

reliability and confidence level of the regression analysis decreases. This situation 

causes unreasonable predictions for the target value or function, which is ROP. 

On the other hand, there is a need for alternate approaches estimating coefficients of 

eight parameters if the input data set is insufficient (much less than thirty), or some 

of the data sets are not consistent. Of course, there are numerous models and 

methodologies for this purpose. As revealed in the previous studies on statistical 

analysis in various disciplines that Support Vector Machines (SVM), a machine 

learning model gaining more prominence particularly in the last decade, requires less 

input data to produce learning model and makes predictions more accurately rather 

than Artificial Neural Network (ANN), (Tolun, 2008). Moreover, Al-Baiyat and 

Heinze (2012) stated that the SVM is more useful and user-friendly than ANN, 

because the SVM requires fewer parameters to be optimized. 

As detailed in the literature review chapter, the ANN brings more conservative 

prediction results in comparison to the BYM. Depending on the references given 

above, the SVM can be thought as a better predictor for ROP optimization problem. 

For these foundations, the applicability of SVM to optimize ROP is the main 

objective in this thesis study. By the best knowledge of this thesis author, the SVM is 
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investigated for the first time in the literature to predict ROP. The data provided by 

the study of Bourgoyne Jr. and Young Jr. (1974, p. 374) will be utilized for 

characterizing the effectiveness of SVM with respect to BYM. 
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4.  MULTIPLE REGRESSION AND BOURGOYNE & YOUNG METHOD 

In many cases of engineering applications, it is not possible to represent any 

dependent variable with only one independent variable. Engineering models are 

mostly the outcome of more than one subjects. Many variables can affect other 

variables by combination. These variables may also effect each other at the same 

time. For that reason, it is not achievable to perform simple regression analysis. 

According to Montgomery (2006), “A regression model that involves more than one 

regressor variable is called a multiple regression model.” (p. 63). 

First part of this chapter mainly includes the mathematical background and different 

approaches of multiple regression analysis. In second part, the parameters and 

application of BYM is explained in details.  

4.1 Theory of Multiple Regression Analysis 

The general idea of multiple regression analysis is to estimate the linear or nonlinear 

relationship between dependent variable and independent variables, and to evaluate 

the effect of more than one independent variables in terms of response (Yan and Su, 

2009, p. 41). Moreover, the computation of multiple regression analysis is more 

complex than simple regression, and the process may be problematic to interpret 

because of the relationships between independent variables (Freund et al, 2006, p. 

73). 

4.1.1 Introduction to multiple regression analysis 

As stated before that multiple regression analysis involves more than one regressor 

variable. As an example, it can be supposed that Rate of Penetration (ROP) depends 

on only two variables such as rotary speed and WOB. A multiple regression model 

that can represent this relationship is expressed as, 

 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜖 (4.1) 
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Here, Y represents ROP, x1 represents rotary speed, x2 represents WOB, and ϵ is 

random error term. Equation (4.1) can be described as multiple linear regression 

model with two regressors. Additionally, this model is linear, because Equation (4.1) 

is a linear function of the unknown parameters β0, β1, and β2. β0 is called as intercept, 

and β1 and β2 are called as partial regression coefficients, because β1 is the 

measurement of the expected change in Y per unit change in x1 when x2 is constant 

(Montgomery and Runger, 2003, p. 411). In other words, Y is the dependent variable 

as x1 and x2 are independent or regressor variables. The generalized form of multiple 

linear regression model with k regressor variables is, 

 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖 (4.2) 

Here, βj (j=0,1,…,k) is called as regression coefficients, where the model expresses a 

hyperplane in the k-dimensional space of the regressor variables {xj} (Montgomery 

and Runger, 2003, p. 412). 

4.1.2 Least squares estimation of the parameters 

The least squares principle is used in multiple regression analysis to estimate the 

regression coefficients. Supposing there are n > k observations expressed as, 

 (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘, 𝑦𝑖) | 𝑖 = 1,2, … , 𝑛 | 𝑛 > 𝑘  

Here xij denotes the ith observation or input point of xj. The data for multiple 

regression can be tabulated as shown in Table 4.1. 

Table 4.1 : Data tabulation for multiple regression. 

y x1 x2 … xk 

y1 x11 x12 … x1k 

y2 x21 x22 … x2k 

⁞ ⁞ ⁞  ⁞ 

yn xn1 xn2 … xnk 

If each observation is implemented in (4.2), the model forms as, 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖 (4.3) 

and, 
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𝑦𝑖 = 𝛽0 + ∑𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖

𝑘

𝑗=1

 | 𝑖 = 1,2, … , 𝑛 (4.4) 

The least squares principle for multiple regression forms as, 

 

𝐿 = ∑𝜖𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=1

)

2
𝑛

𝑖=1

 (4.5) 

It is desired to minimize L with respect to β0, β1, …, βk to get the minimum error 

(Montgomery and Runger, 2003, p. 414). The least squares estimates of β0, β1, …, βk 

must satisfy, 

 
𝜕𝐿

𝜕𝛽0
|
�̂�0,�̂�1,…,�̂�𝑘

= −2∑(𝑦𝑖 − �̂�0 − ∑�̂�𝑗𝑥𝑖𝑗

𝑘

𝑗=1

)

𝑛

𝑖=1

 (4.6a) 

and, 

 
𝜕𝐿

𝜕𝛽𝑗
|
�̂�0,�̂�1,…,�̂�𝑘

= −2∑(𝑦𝑖 − �̂�0 − ∑�̂�𝑗𝑥𝑖𝑗

𝑘

𝑗=1

)𝑥𝑖𝑗

𝑛

𝑖=1

| 𝑗 = 1,2, … , 𝑘 (4.6b) 

By simplifying (4.6) the least squares normal equations are obtained as expressed in 

(4.7). 

 
     𝑛�̂�0 +�̂�1 ∑ 𝑥𝑖1

𝑛

𝑖=1

�̂�0 ∑𝑥𝑖1

𝑛

𝑖=1

+�̂�1 ∑ 𝑥𝑖1
2

𝑛

𝑖=1

+�̂�2 ∑𝑥𝑖2

𝑛

𝑖=1

+   …

+�̂�2 ∑𝑥𝑖1𝑥𝑖2

𝑛

𝑖=1

+   …

+�̂�𝑘 ∑𝑥𝑖𝑘

𝑛

𝑖=1

= ∑ 𝑦𝑖

𝑛

𝑖=1

+�̂�𝑘 ∑𝑥𝑖1𝑥𝑖𝑘

𝑛

𝑖=1

= ∑ 𝑥𝑖1𝑦𝑖

𝑛

𝑖=1

  ⋮          ⋮

     �̂�0 ∑𝑥𝑖𝑘

𝑛

𝑖=1

+�̂�1 ∑ 𝑥𝑖𝑘𝑥𝑖1

𝑛

𝑖=1

          ⋮        ⋱

+�̂�2 ∑ 𝑥𝑖𝑘𝑥𝑖2

𝑛

𝑖=1

+   …

⋮           ⋮

+�̂�1 ∑𝑥𝑖𝑘
2

𝑛

𝑖=1

    = ∑𝑥𝑖𝑘𝑦𝑖

𝑛

𝑖=1

 (4.7) 

It should be noted that there are k + 1 normal equations in the equation system, 

which include an unknown regression coefficient individually. The solution of (4.7) 

by any appropriate method will be resulted in regression coefficients. 
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4.1.3 Matrix approach 

The multiple regression model can be expressed as a matrix notation as well. Former 

expression of a model including k regressor variable with n observations is shown in 

(4.3). The matrix notation of the same model is, 

 𝒚 = 𝑿𝜷 + 𝝐 (4.8) 

where, 

 

𝒚 = [

𝑦1

𝑦𝑛

⋮
𝑦𝑛

]  𝑿 = [

1 𝑥11

1 𝑥21

𝑥12 ⋯ 𝑥1𝑘

𝑥22 ⋯ 𝑥2𝑘

⋮ ⋮
1 𝑥𝑛1

⋮ ⋱ ⋮
𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]  𝜷 = [

𝛽0

𝛽1

⋮
𝛽𝑘

]  𝑎𝑛𝑑 𝝐 = [

𝜖1

𝜖2

⋮
𝜖𝑛

]  

It should be noted that y,X,β, and ϵ are vectors including (n×1) of observations, 

(n×p) of regressor variables, (p×1) of regression coefficients, and (n×1) of random 

errors, respectfully. 

According to least squares principle, the goal is finding the vector of least squares 

estimators (�̂�) that minimizes (4.9). 

 
𝐿 = ∑𝝐𝑖

2

𝑛

𝑖=1

= 𝝐′𝝐 = (𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷) (4.9) 

�̂� is the solution for β in the equations that can be defined as in (4.10). 

 𝜕𝐿

𝜕𝜷
= 𝟎 (4.10) 

The solution of the system is done via, 

 𝑿′𝑿�̂� = 𝑿′𝒚 (4.11) 

Equation (4.11) is the matrix form of (4.7). To solve (4.11) the both sides of the 

equation is multiplied by the inverse of X′X. Therefore, the least squares estimate is, 

 �̂� = (𝑿′𝑿)−𝟏𝑿′𝒚 (4.12) 

The matrix form of the normal equations can be expressed as below: 
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[
 
 
 
 
 
 
 
 
 𝑛 ∑𝑥𝑖1

𝑛

𝑖=1

∑𝑥𝑖2

𝑛

𝑖=1

⋯ ∑𝑥𝑖𝑘

𝑛

𝑖=1

∑𝑥𝑖1

𝑛

𝑖=1

∑𝑥𝑖1
2

𝑛

𝑖=1

∑𝑥𝑖1𝑥𝑖2

𝑛

𝑖=1

⋯ ∑𝑥𝑖1𝑥𝑖𝑘

𝑛

𝑖=1

⋮ ⋮ ⋮ ⋱   ⋮

∑𝑥𝑖𝑘

𝑛

𝑖=1

∑𝑥𝑖1𝑥𝑖𝑘

𝑛

𝑖=1

∑𝑥𝑖𝑘𝑥𝑖2

𝑛

𝑖=1

⋯ ∑𝑥𝑖𝑘
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
�̂�0

�̂�1

⋮

�̂�𝑘]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖1𝑦𝑖

𝑛

𝑖=1

⋮

∑𝑥𝑖𝑘𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 

  

In conclusion, the fitted regression model is expressed as, 

 

�̂�𝑖 = �̂�0 + ∑�̂�𝑗𝑥𝑖𝑗

𝑘

𝑗=1

 | 𝑖 = 1,2, … , 𝑛 (4.13) 

And the matrix notation of the same model is, 

 �̂� = 𝑿�̂� (4.14) 

The difference between observation and fitted value is called as residual and 

expressed as, 

 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 (4.15a) 

or, 

 𝒆 = 𝒚 − �̂� (4.15b) 

4.2 Bourgoyne and Young Method 

The drilling model introduced by Bourgoyne Jr. and Young Jr. (1974) is the most 

common method to predict ROP for given conditions during drilling operations in 

the industry. The model includes the effects of (1) formation strength, (2) formation 

depth, (3) formation compaction, (4) pressure differential across the hole bottom, (5) 

bit diameter and bit weight, (6) rotary speed, (7) bit wear, and (8) bit hydraulics on 

penetration rate. 

The BYM is described as a functional relationship between ROP and several drilling 

parameters as shown in Figure 4.1. 
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Figure 4.1 : Functional relationship of penetration rate. 

The equation form of the functional relationship that shown in Figure 4.1 can be 

described as, 

 𝑅 = (𝑓1)(𝑓2)(𝑓3)… (𝑓𝑛) (4.16) 

Each f term in (4.16) is expressed as a function of specific parameters. By 

considering multiple regression modeling principle, (4.16) can be presented as a form 

of (4.4). 

 

𝑅 = 𝑒𝑥𝑝(𝑎1 + ∑𝑎𝑗𝑥𝑗

8

𝑗=2

) (4.17) 

Here R is ROP, a1 through a8 are the regression coefficients that is determined by 

applying multiple regression analysis to offset data, and x2 through x8 are the 

functions related to several parameters. 

4.2.1 Effect of formation strength 

The effect of formation strength, or formation drillability, on ROP is represented 

directly by a1 constant. It is stated by Bourgoyne Jr. and Young Jr. (1974) that 

formation strength is inversely proportional to the natural logarithm of square of the 

drillability constant introduced by Maurer (1962). Moreover, it also stands for non-

modelled parameters such as mud type, and solid contents. 
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4.2.2 Effect of normal compaction 

The exponential relationship between penetration rate and depth of a normally 

compacted formation is introduced by microbit studies by Murray and Cunningham 

(1955). The exponentially natural trend is also pointed out by field data in the study 

of Combs (1968). The relationship between relative penetration rate and vertical well 

depth is plotted on Figure 4.2. 

 

Figure 4.2 : Effect of normal compaction on ROP, adapted from (Bourgoyne Jr. and 

Young Jr., 1974, p. 372). 

The effect of normal compaction is defined as, 

 𝑥2 = 10000 − 𝐷 (4.18) 

Here D is well depth [ft]. It should be noted in (4.18) the term ea2x2 is normalized to 

be 1 at 10000 ft for a normally compacted formation. 

4.2.3 Effect of under compaction 

Under compaction model is the effect of abnormally pressured formations. It is 

assumed that there is an exponential increment in ROP with increasing pore pressure 

gradient. It is mentioned that the exponential nature of under compaction is based on 
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the compaction theory (Bourgoyne Jr. and Young Jr., 1974, p. 372). The effect of 

under compaction is defined as, 

 𝑥3 = 𝐷0.69(𝑔𝑝 − 9) (4.19) 

Here gp is the pore pressure gradient of the formation [lb/gal]. It should be noted that 

the under compaction exponent is normalized to the formations having 9 lb/gal pore 

pressure gradient. In other words, the term ea2x2+a3x3 is going to be 1 for either a 

depth of 10000 ft or a pore pressure gradient of 9 lb/gal. 

4.2.4 Effect of overbalance 

Effect of overbalance can be described as the effect of pressure differential across the 

bottom hole on the ROP. According to the several studies performed by using field 

data and laboratory analyses, it is understood that there is an exponential relationship 

between ROP and excessive bottom hole pressure up to about 1000 psi (Vidrine and 

Benit, 1968; Combs, 1968; Cunningham and Eenink, 1958; Garnier and van Lingen, 

1959). An example plot of the exponential relationship between pressure difference 

and ROP is shown in Figure 4.3. 

 

Figure 4.3 : Effect of differential bottom-hole pressure on ROP, adapted from 

(Bourgoyne Jr. and Young Jr., 1974, p. 372). 
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The overbalance term of the BYM is expressed as, 

 𝑥4 = 𝐷(𝑔𝑝 − 𝜌𝑐) (4.20) 

Here ρc is the equivalent circulating mud density at the hole bottom [lb/gal]. It can be 

seen from (4.20) that the value of ea4x4 is 1 when there is no overbalance. 

4.2.5 Effect of bit weight and bit diameter 

The effect of bit weight and diameter has been studied by several researchers either 

in laboratory or field. According to Bourgoyne et al. (1991), the general approach is 

to plot the relationship between ROP and bit weight gathered experimentally while 

holding all other drilling parameters as constants. The typical relationship between 

ROP and bit weight is shown in Figure 4.4. 

 

Figure 4.4 : Typical response of penetration rate to increasing bit weight, adapted 

from (Bourgoyne et al, 1991, p. 226). 

In Figure 4.4, point (a) means there is no penetration rate until the threshold bit 

weight is reached; section (ab) represents a rapid increase in ROP with increasing 

moderate values of bit weight; section (bc) points out a linear trend between ROP 

and moderate bit weight; section (cd) shows more increase in bit weight produces a 
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slight increment on ROP; and section (de) declares excessive bit weight causes a 

decrease in ROP, which is called as bit floundering (Bourgoyne et al, 1991, p. 226). 

It is also stated by Bourgoyne et al. (1991) high values of bit weight is related to low 

efficiency in bottom hole cleaning at higher rates of cutting transportation process (p. 

226). 

The effect of bit weight and bit diameter on ROP is formulated as, 

 

𝑥5 = 𝑙𝑛 (

𝑊𝑏

𝑑𝑏
− (

𝑊𝑏

𝑑𝑏
)
𝑡

4 − (
𝑊𝑏

𝑑𝑏
)
𝑡

) (4.21) 

Here, Wb/db is the bit weight per inch of bit diameter [1000 lb/in], and (Wb/db)t is the 

threshold bit weight at which the bit begins to drill [1000 lb/in]. It is seen from (4.21) 

that the term ea5x5 is normalized to equal 1 for 4000 lb/in of bit diameter. 

The threshold bit weight is determined via drill-off tests at very low bit weight 

values. Drill-off tests, which provide the desired operational conditions to optimize 

ROP and bit life, aim to yield the highest ROP available with an applicable bit wear 

rate (Lyons, 2010, p. 315). The primary objective in drill-off tests is not maximizing 

ROP because of the probability of bit life decrease. A drill-off test, which involves 

applying a large amount of weight to the bit, then locking the brake and monitoring 

the reducing in bit weight with constant rotary speed, determines the response in 

ROP by changing bit weight in a short depth intervals by the application of Hook’s 

Law (Bourgoyne et al., 1991, p. 227). 

Additionally, it is mentioned by Bourgoyne et al. (1991) that the threshold bit weight 

usually has negligible small values in the areas having relatively soft formations (p. 

234). In this study, the threshold bit weight is assumed as zero, as in the original 

BYM study. 

4.2.6 Effect of rotary speed 

Similar to the effect of bit weight, the effect of rotary speed is directly proportional 

to ROP. The effect of rotary speed can be figured by plotting ROP vs. rotary speed 

while all other drilling parameters assumed as constants. An example plot is seen on 

Figure 4.5. 
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Figure 4.5 : Typical response of penetration rate to increasing rotary speed, adapted 

from (Bourgoyne et al, 1991, p. 226). 

As seen in Figure 4.5, the ROP generally has a linear relationship with increasing 

rotary speed at low values. At higher rotary speed values, the ROP tend to decrease 

after a point. This behaviour is related to less efficient bottomhole cleaning 

(Bourgoyne et al, 1991, p. 226). 

The effect of rotary speed on ROP is expressed as, 

 
𝑥6 = 𝑙𝑛 (

𝑁

100
) (4.22) 

Here N is rotary speed [rpm]. It is important that the term ea6x6 is normalized to be 

equal 1 at 100 rpm. 

4.2.7 Effect of tooth wear 

The effect of tooth wear was examined and modelled by researchers in the previous 

studies (Galle and Woods, 1963; Edwards, 1964). However, according to Bourgoyne 

Jr. and Young Jr. (1974), these models were complex to express and not suitable for 

performing multiple regression analysis (p. 372).  

The effect of tooth wear on ROP is modelled as, 
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 𝑥7 = −ℎ (4.22) 

Here, h is the fractional tooth height worn away. In Figure 4.6, there is a comparison 

of tooth wear models mentioned before. 

 

Figure 4.6 : Effect of tooth wear on penetration rate, adapted from (Bourgoyne Jr. 

and Young Jr., 1974, p. 373). 

As seen on Figure 4.6, the effect of tooth wear according to BYM is the most 

convenient behaviour to model. It is also mentioned that, the value of tooth wear 

exponent mainly depends on the bit type and formation type (Bourgoyne Jr. and 

Young Jr., 1974, p. 372). 

Basically, worn tooth height for a roller-cone bit is a measurement having a value 

between 0 to 8. As seen on Figure 4.7, 0 means new, and 8 means completely dull 

bit. Therefore, the fractional worn tooth height is the division of the average wear of 

the row of teeth to 8. 
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Figure 4.7 : Tooth wear chart for a roller-cone bit (Smith Bits, 2008). 

In addition, the tooth wear model of BYM is valid for roller-cone bits. When 

Polycrystalline Diamond Compact (PDC) or Tungsten Carbide Core (TCC) bits are 

used, the change in ROP can be negligible (Bourgoyne Jr. and Young Jr., 1974, p. 

372). Thus, in these kind of situations the regression coefficient of tooth wear 

function (a7) is assumed to be zero. 

4.2.8 Effect of bit hydraulics 

The effect of bit hydraulics was first based on the microbit experiments performed by 

Eckel (1967), which includes a Reynolds number group. The old model is expressed 

as, 

 𝑥8,𝑜𝑙𝑑 =
𝜌𝑞

350𝜇𝑑𝑛
 (4.23) 

Here, ρ is mud density [lb/gal], q is flow rate [gal/min], µ is the apparent viscosity at 

10000 sec-1 [cp], and dn is bit nozzle diameter [in]. The effect of the old model on 

ROP is seen on Figure 4.8. 

 

Figure 4.8 : ROP as a function of bit Reynolds number, (Bourgoyne et al, 1991, pp. 

230, 231). 
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Figure 4.8 is a summary of the study of Eckel (1967). It is seen that the ROP and 

Reynolds number function is directly proportional to each other. If the bit weight is 

increased, the trend is simply shifted upwards. However, the behaviour at the bit 

flounder point is not involved in Eckel’s study. Thus, as mentioned by Bourgoyne et 

al. (1991), Eckel’s model is not applicable to be used in field practice (p. 232). 

It is stated that hydraulic horsepower and jet impact force is the most commonly used 

models to develop the correlations between bit hydraulics and the ROP (Bourgoyne 

et al, 1991; Wright et al, 2003). In addition, it is indicated by Bourgoyne et al. (1991) 

that the jet Reynolds number group, hydraulic horsepower, and jet impact force give 

similar results for correlating the effect of bit hydraulics on the ROP (p. 232). The 

basis of this outcome is the full-scale acquired data from the study of Tibbitts (1991), 

which was performed under simulated borehole conditions in drilling laboratory 

experiments. The summary of this study is seen on Figure 4.9. 

 

Figure 4.9 : The effect of different hydraulic models on ROP (Bourgoyne et al, 

1991, p. 231). 

In Figure 4.9, it can be seen the effect of different hydraulic models on the ROP in a 

field, under simulated borehole conditions. Hence, the effect of bit hydraulic on the 

ROP is formulated as, 

 
𝑥8 = 𝑙𝑛 (

𝐹𝑗

1000
) (4.24) 
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Here Fj is the hydraulic impact force beneath the bit [lbf]. The effect of jet impact 

force is normalized to be equal to 1 at 1000 lbf. 

It should be noted that, as seen on Figure 4.9, the behaviour of ROP with changing 

variables of Reynolds number function and jet impact force is similar. The data used 

in this thesis study involves Reynolds number function instead of jet impact force. 

Thus, the Reynolds number function is used for calculating the exponent of the effect 

of bit hydraulics. 
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5.  MACHINE LEARNING AND SUPPORT VECTOR REGRESSION 

Nowadays, computers have the capability of both making decisions about events and 

learning relationships between occurrences. The problems, which are impossible to 

formulate and solve mathematically, can be solved by computers via intuitive 

methods. The concept that equips and develops computers with these properties is 

called as artificial intelligence (Shi, 2011). 

The main point of artificial intelligence studies is to let computers solve the problem 

when there is no such an algorithm that solves the current problem. In order to 

manage this situation, all the data and information about the statement of the problem 

must be given to the computer previously. The accuracy and reliability of results 

depend on the number, righteousness and validity of the input data (Negnevitsky, 

2002).  

Data acquisition can be done via several approaches. For example, questionnaires, 

literature surveys, meetings with experts, interviews, working with specialists, or 

gathering information from previous samples related to current occurrence (learning 

from samples). The process of analyzing and extracting information from data is 

called as data mining (Witten and Frank, 2005). 

There are several artificial intelligence techniques that used to gather information. 

Expert Systems are the technology that develops computer software, which solve a 

problem, as a specialist will do (Malhotra, 2001). Expert Systems have four basic 

elements, which are procuring of data, database, estimation mechanism, and a user 

interface. The flowchart of the operation procedure of Expert Systems is shown in 

Figure 5.1. 
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Figure 5.1 : Expert Systems flowchart. 

Genetic Algorithms (GA) is another commonly used artificial intelligence technique 

to solve complex optimization problems. In GA, first, random searches are 

performed to solve a problem. Then, these searches are matched together to generate 

high performance solutions. This procedure continues until there is no better result 

generated. 

There are several notions and parameters in GA needs to be clarified. 

“Chromosomes” are each individual solutions of the problem that is needed to be 

solved by GA. One problem can has N solutions. GA is desired to find the best of 

these N solutions. Each element of a chromosome represents a unique property of the 

solution, which is called “gene”. “Search Space” is the first solution set to be used 

for searching the best solution. “Crossover” is generating new solution by pairing 

chromosomes. “Mutation” is changing a gene to make searching new solution easier 

and to change the direction of the search (Sivanandam and Deepa, 2008). Figure 5.2 

shows the flowchart of GA. 
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Figure 5.2 : Genetic Algorithms flowchart. 

Another method for artificial intelligence applications is the “Fuzzy Logic”. Most of 

the events occur in uncertain conditions. Unexpected situations may happen and 

affect decision making. Fuzzy Logic is the technology developed for let the computer 

decide in these circumstances. As a basis, Fuzzy Logic consists of three steps. First, 

fuzzifying, which is the process of determination of fuzzy proposition variables, and 

rule bases for the problem to be solved. Second, inference, which is estimation of 

solution area by using the rule bases of determined fuzzy proposition variables. 

Finally, defuzzifying, which is gathering only one value from estimated solution area 

(Sivanandam et al, 2007). The flowchart of a Fuzzy Logic algorithm is shown in 

Figure 5.3. 

 

Figure 5.3 : Fuzzy Logic flowchart. 

The most common and recent method among the artificial intelligence techniques is 

“Machine Learning”. Machine Learning (ML) is making computer learn from data. 

In ML, computers learn the information and experiences about instances by data 
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mining, decide about future occurrences and generate solutions for similar problems. 

Thus, ML applications can be met in many fields during daily life. ML related fields 

is shown in Figure 5.4 

 

Figure 5.4 : Machine Learning related fields. 

In ML, there is a binary classification process called as “task” to assign the objects to 

different classes. It is desired to establish a connection between features and classes, 

which is called as “model” by analysing “training sets” (Flach, 2012, p. 11). Figure 

5.5 shows the relation between the elements of ML. 

 

Figure 5.5 : An overview of how ML works (Flach, 2012, p. 11). 

In Figure 5.5, it is seen that in order to establish a task, a proper model mapped from 

data is required. The mapping process from a training dataset forms the learning 
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problem. In short, according to Flach (2012), “Tasks are addressed by models, 

whereas learning problems are solved by learning algorithms that produce models. 

Machine learning is concerned with using the right features to build the right models 

that achieve the right tasks.” (p. 12). 

There are mainly two settings for ML. First setting is Supervised Learning, which is 

called for the task to build an input-output relationship from a labelled training set 

(Zhang, 2001, p. 103). And the second is Unsupervised Learning, which is the 

learning process of the algorithm from unlabelled data (Ghahramani, 2004, p .3). The 

ML settings is summarized in Table 5.1. 

Table 5.1 : Summary of ML settings, adapted from (Flach, 2012, p. 18). 

 Predictive Model Descriptive Model 

Supervised Learning classification, regression Subgroup discovery 

Unsupervised Learning predictive clustering Descriptive clustering, 

  Association rule discovery 

ML methods divided into three subgroups in terms of modelling. First model is 

geometric model, which considers instances as in geometrical concepts such as 

coordinate systems, lines, planes, and distances (Mulmuley, 1994, p .26). Figure 5.6 

shows an example of geometric distribution of instances on a 2-dimensional space. 

 

Figure 5.6 : An example of linear classification in two dimensions. 

The second model is probabilistic model, which behaves as a Bayesian classifier in 

nature (Flach, 2012, p. 25). The main idea of this model is to transform two basic 

approaches, posterior probabilities and likelihoods, by using Bayes’ rule. The Bayes’ 

rule is expressed as,  
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𝑃(𝑌|𝑋) =

𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
 (5.1) 

Here P(Y) is the prior probability and P(X) is the probability of the data. 

The third type of model is logical model, which can be allowed to be translated into 

rules that people can understand and easily organised as a tree-structured decision 

mechanism (Flach, 2021, p. 32). An example of a decision tree is shown in Figure 

5.7. 

 

Figure 5.7 : An example of decision tree (Cyril et al, 2014, p. 5). 

To sum up and map the models of ML methods, the diagram shown in Figure 5.8 

was introduced by Flach (2012). 
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Figure 5.8 : Mapping of ML methods (Flach, 2012, p. 37). 

In Figure 5.8, the models that have same characteristics are plotted closer. Geometric 

models are on the top left, probabilistic models are on the bottom left, and logical 

models are on the right in the diagram. 

Among the geometric, probabilistic and logical models of ML, there is another 

abstract dimension that supports all of the ML models. This dimension can be 

defined as the perception between grouping and grading models. The main 

divergence between these models is the approach to handle the instance space. 

Grouping models divide instance space into segments, while grading models form a 

global model on the instance space (Flach, 2012, p. 36). 

To combine the settings and models of the ML methods, the listing in Figure 5.9 was 

represented by Flach (2012). 
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Figure 5.9 : ML taxonomy (Flach, 2012, p. 38). 

In Figure 3.8, there is a taxonomy that describes ML methods in terms of expansion 

to the ability of grading or grouping, model of logical, geometric or combination, and 

setting of supervised or unsupervised. 

In this thesis study, a supervised and geometric method of ML, Support Vector 

Machines (SVM), is used. The basic mathematics and the fundamental idea of SVM 

is explained in the following topics. 

5.1 Statistical Learning Theory 

Statistical Learning Theory was introduced by Vapnik (1998). The purpose of 

modelling is choosing a model from the hypothesis space that is the closest to the 

main function in the target space with a measurable error (Gunn, 1998, p. 2). 

There are two kind of errors occurring from two cases. First error is the 

approximation error, which is the measurement of the ability of functions to 

approach the target (Bousquet et al, 2004, p. 181). The second error is called as 

estimation error, which is the error of the learning process that occurred via 
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prediction rules based on a set of random examples (Kulkarni and Harman, 2011, p. 

14). These errors together create generalization error. The schematic presentation of 

the errors is shown in Figure 5.10. 

 

Figure 5.10 : Modelling errors. 

5.1.1 VC dimension 

Vapnik-Chervonenkis (VC) dimension is a scalar, which is a measure of the capacity 

of a function set. In other words, VC dimension is a scalar value, which can be 

calculated for any function set applied to a learning machine (Vapnik, 1999, p. 69). It 

is defined by Gunn (1998) that “The VC dimension of a set of functions is 𝑝 if and 

only if there exists a set of points {𝑥𝑖}𝑖=1
𝑝

 such that these points can be separated in all 

2𝑝 possible configurations, and that no set {𝑥𝑖}𝑖=1
𝑞

 exists where 𝑞 > 𝑝 satisfying this 

property.” (p.4). An example of VC dimension is shown in Figure 5.11. 

 

Figure 5.11 : VC dimension illustration. 

In Figure 5.11, the ability of the set of linear indicator functions to shatter three 

points in a plane is illustrated. It should be noticed that these linear functions cannot 

distribute four points. In this situation, the VC dimension is equal to the number of 
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free parameters whereas the set of linear indicator functions in 𝑛 dimensional space 

has 𝑛 + 1 VC dimension (Gunn, 1998, p. 4). 

5.1.2 Structural risk minimisation 

If a structure, which 𝑆ℎ is a hypothesis space of VC dimension (ℎ𝑉𝐶) is created as 

𝑆1 ⊂ 𝑆2 ⊂ ⋯ ⊂ 𝑆∞, the Structural Risk Minimization (SRM) is about solving the 

following expression. 

 

min
𝑆ℎ

𝑅𝑒𝑚𝑝[𝑓] +
√ℎ𝑉𝐶 ln (

2𝑙
ℎ

+ 1) − ln (
𝛿
4)

𝑙
 

(5.2) 

where, 

 

𝑅𝑒𝑚𝑝[𝑓] =
1

𝑙
∑𝐿 (𝑦𝑖 , 𝑓(𝑥𝑖))

𝑙

𝑖=1

 (5.3) 

Here 𝐿(𝑦, 𝑓(𝑥)) is the loss between the input 𝑥 with corresponding response 𝑦 and 

the response 𝑓(𝑥) estimated by the learning machine (Vapnik, 1991, p. 832). Hence, 

𝑅𝑒𝑚𝑝[𝑓] term is the empirical risk function. The second term of the expression above 

is the confidence interval between the bounds of the actual risk and the empirical risk 

(Vapnik, 1991, p. 834). 

It is stated by Gunn (1998) that multiple output problems have the capability of being 

reduced to a set of single output problems as an independent consideration, so that 

predicting a desired single output from multiple inputs is more convenient (p.4). 

5.2 Support Vector Machines for Classification 

Support Vector Machine (SVM) is a learning method, which bases on finding a 

hyperplane that separated the d-dimensional data in to its two classes perfectly, used 

for binary classification (Boswell, 2002, p. 1). The goal is to establish a classifier, 

which must be appropriate for unseen examples to generalize completely (Gunn, 

1998, p. 5). An example of classifiers and hyperplanes is shown in Figure 5.12. 
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Figure 5.12 : Classifier examples. 

As seen in Figure 5.12, there are several possibilities to separate the data with linear 

classifiers. However, there is only one classifier that maximizes the distance between 

itself and the nearest data point of each class, which is drawn in bold among other 

classifiers in Figure 5.12. The overview of classification concept is shown in Figure 

5.12. 

 

Figure 5.13 : Linear classification (Meyer, 2014, p. 2). 

As shown in Figure 5.12, the nearest data points are named as “support vectors”, the 

distance between support vectors is called as “margin” and the classifier that 

maximizes the margin is called as “optimal separating hyperplane” (Gunn, 1998, p. 

5). 
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5.2.1 The optimal separating hyperplane 

The problem is to separate the set of training vectors associated with two separate 

classes with a hyperplane, as expressed in (5.4) and (5.5). 

 𝐷 = {(𝑥1, 𝑦1),… , (𝑥𝑙 , 𝑦𝑙)} | 𝑥 ∈ ℝ𝑛, 𝑦 ∈ {−1,1} (5.4) 

 𝑓(𝑥) = 〈𝒘, 𝒙〉 + 𝑏 (5.5) 

Here 𝑤 is the weight vector, and 𝑏 is bias. If 𝑏 is considered as zero, the points of 𝑥 

that corresponds 〈𝒘, 𝒙〉 = 0, or in other expression 𝒘T𝒙 = 0, lie perpendicular to 𝒘 

and intersect origin. This situation represents a line in two dimensions, or a plane in 

three dimensions, which is generally named as “hyperplane”. The geometric meaning 

of 𝑏 is the translation of how far the hyperplane away from the origin (Ben-Hur and 

Weston, 2009, p. 2). 

 {𝒙 ∶ 𝑓(𝒙) = 𝒘T𝒙 + 𝑏 = 0} (5.6) 

The hyperplane expressed in (5.6) divides the space into two sides. Here 𝑓(𝒙) 

represents the linear discriminant function. The sign of 𝑓(𝒙) stands for which side of 

the hyperplane a point is present. 

If the error is assumed as zero, it can be said that the vectors are optimally separated 

by the hyperplane and the margin is maximum. Furthermore, it is stated by Vapnik 

(1995) that (5.6) includes repetitions and it is proper to apply an optimal canonical 

separating hyperplane (OCSH) without generality loss. Now, the constraint of the 

parameters can be described as, 

 min
𝑖

|〈𝒘, 𝒙𝑖〉 + 𝑏| = 1 (5.7) 

This strict constraint on the parameters helps in simplifying the formulation. 

According to Gunn (1998), “… the norm of the weight vector should be equal to the 

inverse of the distance, of the nearest point in the data set to the hyperplane.” (p. 6). 

An overview of OCSH is shown in Figure 5.14. 
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Figure 5.14 : Optimal canonical seperating hyperplane (Kecman, 2001, p. 154). 

In Figure 5.14, OCSH with maximum margin stays in the halfway of two classes. 

The closest points to the hyperplane are support vectors, which are x1 from Class 1, 

and x2 and x3 from Class 2. 

According to the geometric approach, an OCSH must recoup the following 

constraints: 

 𝑦𝑖[〈𝒘, 𝒙𝑖〉 + 𝑏] ≥ 1 | 𝑖 = 1,… 𝑙 (5.8) 

And the distance of a point (𝑥) from the hyperplane is, 

 
𝑑(𝑤, 𝑏; 𝑥) =

|〈𝒘, 𝒙𝑖〉 + 𝑏|

‖𝒘‖
 (5.9) 

Here 𝑙 is the number of training data. As mentioned before, the optimal hyperplane is 

maximizes the margin (𝑀) with respect to the constraints defined in (5.8). The 

margin is calculated explicitly in the following equations. 

 𝑀 = min
𝑥𝑖:𝑦𝑖=−1

𝑑(𝑤, 𝑏; 𝑥𝑖) + min
𝑥𝑖:𝑦𝑖=1

𝑑(𝑤, 𝑏; 𝑥𝑖) (5.10) 

 
𝑀 = min

𝑥𝑖:𝑦𝑖=−1

|〈𝒘, 𝒙𝑖〉 + 𝑏|

‖𝒘‖
+ min

𝑥𝑖:𝑦𝑖=1

|〈𝒘, 𝒙𝑖〉 + 𝑏|

‖𝒘‖
 (5.11) 

 
𝑀 =

1

‖𝒘‖
( min
𝑥𝑖:𝑦𝑖=−1

|〈𝒘, 𝒙𝑖〉 + 𝑏| + min
𝑥𝑖:𝑦𝑖=1

|〈𝒘, 𝒙𝑖〉 + 𝑏|) (5.12) 
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𝑀 =

2

‖𝒘‖
 (5.13) 

Therefore, the optimal separating hyperplane minimizes, 

 
Φ(𝑤) =

1

2
‖𝒘‖2 (5.14) 

As mentioned by Gunn (1998), (5.14) is independent of bias, because in (5.8) 

changing bias results in a movement in the normal direction to separating hyperplane 

itself (p. 7). Respectfully, the margin does not change. However, the hyperplane is 

not considered as optimal for this situation, because it is now nearer to one class than 

the other class. 

To minimize (5.14), SRM is implemented by defining holding bounds as ‖𝒘‖ < 𝐴. 

Hence, the distance between the hyperplane and any of the data points cannot be 

nearer than 1/𝐴. Figure 5.15 demonstrates the constaining canonical hyperplanes. 

 

Figure 5.15 : Canonical hyperplanes and constraints (Gunn, 1998, pp. 6,7). 

The bounding of the VC dimension of the canonical hyperplane set can be defined 

as, 

 ℎ𝑉𝐶 ≤ min[𝑅2𝐴2, 𝑛] + 1 (5.15) 

Here ℎ𝑉𝐶  is the VC dimension, 𝑅 is the radius of a hypersphere enclosing all the data 

points, and 𝑛 is the dimension. To minimize (5.14), the upper bound of the VC 

dimension need to be minimized. It is possible to minimize (5.14) under the 

constraints of (5.8) by using Lagrangian. 
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Φ(𝑤, 𝑏, 𝛼) =
1

2
‖𝒘‖2 − ∑ 𝛼𝑖(𝑦

𝑖[〈𝒘, 𝒙𝑖〉 + 𝑏] − 1)

𝑙

𝑖=1

 (5.16) 

Here 𝛼 is the Lagrangian multiplier. According to Gunn (1998), the Lagrangian must 

be minimized as for 𝑤, 𝑏 and maximized respecting 𝛼 ≥ 0 (p. 8). To make the 

problem be solved easier, (5.16) can be transformed to dual problem, which is given 

by, 

 
max

𝛼
𝑊(𝛼) = max

𝛼
(min

𝑤,𝑏
Φ(𝑤, 𝑏, 𝛼)) (5.17) 

The minimum of the Lagrangian with respect to 𝑤 and 𝑏 can be defined as, 

 𝜕Φ

𝜕𝑏
= 0 ⟹ ∑𝑎𝑖𝑦𝑖 = 0

𝑙

𝑖=1

 (5.18a) 

 𝜕Φ

𝜕𝑤
= 0 ⟹ ∑𝑎𝑖𝑦𝑖𝑥𝑖 = 𝑤

𝑙

𝑖=1

 (5.18b) 

By combining (5.17), (5.18a) and (5.18b), the primal problem can be transformed 

into dual problem, which can be described as, 

 

max
𝛼

𝑊(𝛼) = max
𝛼

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

+ ∑ 𝛼𝑘

𝑙

𝑘=1

 (5.19) 

And the solution to (5.19) is, 

 

𝛼∗ = argmin
𝛼

1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

− ∑ 𝛼𝑘

𝑙

𝑘=1

 (5.20) 

with following constraints: 

 

𝛼𝑖 ≥ 0 | 𝑖 = 1,… , 𝑙 |∑𝛼𝑗𝑦𝑗

𝑙

𝑗=1

= 0 (5.21) 
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Equations (5.18a), (5.18b), and the constraints given in (5.21) are called as Karush-

Kuhn-Tucker (KKT) conditions, which is introduced by Fletcher (2000). According 

to Burges (1998), “The KKT conditions are satisfied at the solution of any 

constrained optimization problem (convex or not), with any kind of constraints, 

provided that the intersection of the set of feasible directions with the set of descent 

directions coincides with the intersection of the set of feasible directions for 

linearized constraints with the set of descent directions.” (p. 10). 

Applying the constraints given in (5.21) to (5.20) and solving yields the optimal 

separating hyperplane, which is given by, 

 

𝑤∗ = ∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑙

𝑖=1

 (5.22) 

 
𝑏∗ = −

1

2
〈𝑤∗, 𝒙𝑟 + 𝒙𝑠〉 (5.23) 

Here 𝑥𝑟 and 𝑥𝑠 are any support vector from each corresponding class. 

In general, the classifiers can be described in two groups in terms of type, which are 

hard and soft margin classifiers (Boswell, 2002). The hard margin classifier is, 

 𝑓(𝑥) = sgn(〈𝑤∗, 𝒙〉 + 𝑏) (5.24) 

And the soft margin classifier is, 

 
𝑓(𝑥) = ℎ𝑉𝐶(〈𝑤∗, 𝒙〉 + 𝑏) where ℎ(𝑧) = {

−1 ∶   𝑧 < −1
𝑧 ∶   −1 ≤ 𝑧 ≤ 1

+1 ∶   𝑧 > 1
 (5.25) 

It is stated by Gunn (1998) that applying soft margin is more proper than hard margin 

since soft margin generates a real value between -1 and 1 as an output when the 

classifier is objected within the margin, where no training data presents (p. 9). 

Another KKT condition is described as, 

 𝛼𝑖(𝑦
𝑖[〈𝑤, 𝒙𝑖〉 + 𝑏] − 1) = 0 | 𝑖 = 1,… , 𝑙 (5.26) 

Thus, only the points 𝑥𝑖 that satisfy, 
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 𝑦𝑖[〈𝑤, 𝒙𝑖〉 + 𝑏] = 1 (5.27) 

have non-zero Lagrange multipliers, which are called as Support Vectors (SV). If the 

data is linearly separable, as can be seen on Figure 5.13, all the SV will be located on 

the margin, thus the number of SV can be very small. In addition, the hyperplane is 

resolved by a small subset of the training data, as the other points could be excluded 

from the training set, which will be resulted in same hyperplane answer (Gunn, 1998, 

p. 9). In this situation, the following equation will be valid. 

 

‖𝒘‖2 = ∑𝛼𝑖

𝑙

𝑖=1

= ∑ 𝛼𝑖

𝑖∈𝑆𝑉𝑠

= ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑗∈𝑆𝑉𝑠𝑖∈𝑆𝑉𝑠

 (5.28) 

Therefore, the bounds of the VC dimension of the classifier is, 

 
ℎ𝑉𝐶 ≤ min [𝑅2 ∑ ,𝑛

𝑖∈𝑆𝑉𝑠

] + 1 (5.29) 

5.2.2 The generalized optimal separating hyperplane 

All the expressions above are valid for the case that the training data is linearly 

separable. However, this situation is not present all the time in general as illustrated 

in Figure 5.16. 

 

Figure 5.16 : Generalized optimal separating hyperplane. 

There are two approaches to determine the generalized optimal separating 

hyperplane shown in Figure 5.16. First approach depends on the previous learning of 

the problem, and the second bases on estimating the noise in the data (Gunn, 1998, p. 

10). To make the hyperplane separate the data correctly, an additional cost function 
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related to misclassification is inserted. To generalize the optimal separating 

hyperplane, a penalty function with non-negative variables that introduced by Cortes 

and Vapnik (1995) is implemented. 

 𝐹(𝜉) = ∑𝜉𝑖

𝑖

 (5.30) 

Here 𝜉𝑖 are the slack variables, which is a measure of the misclassification errors. 

The optimization problem is now converted into minimizing the classification error 

and the bound of VC dimension of the classifier, simultaneously. Modifying the 

constraints in (5.8) for the non-separable case yields, 

 𝑦𝑖[〈𝒘, 𝒙𝑖〉 + 𝑏] ≥ 1 − 𝜉𝑖  | 𝑖 = 1,… 𝑙 | 𝜉𝑖 ≥ 0 (5.31) 

Thus, the generalized optimal separating hyperplane can be determined by 𝒘 that 

minimizes the Lagrangian. 

 
Φ(𝑤, 𝜉) =

1

2
‖𝒘‖2 + 𝐶 ∑𝜉𝑖

𝑖

 (5.32) 

Here 𝐶 is the complexity parameter, which is a user-defined value for adjusting 

margin maximization versus slack variable minimization. Choosing a high value of 𝐶 

will result in high penalty, while choosing a low value lets margin errors with 

possible misclassifications (Burges, 1998, p. 14). Naming of 𝐶 is mentioned by Flach 

(2012) that if more margin errors is allowed, fewer SVs will be needed, so that 𝐶 

controls the complexity of the SVM, which can be found similar to the regularization 

of least-squares regression (p. 217). 

The subject is finding solution to (5.32) under the constraints of (5.31), which can be 

performed via, 

 
Φ(𝑤, 𝑏, 𝛼, 𝜉, 𝛽) =

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑖

− ∑ 𝛼𝑖(𝑦
𝑖[𝒘T𝒙𝑖 + 𝑏] − 1 + 𝜉𝑖)

𝑙

𝑖=1

− ∑𝛽𝑖𝜉𝑖

𝑙

𝑗=1

 (5.33) 

Here 𝛼 and 𝛽 are the Lagrangian multipliers. The goal is to minimize the Lagrangian 

with respect to 𝑤, 𝑏, 𝑥 and maximize it with respect to 𝛼 and 𝛽. As mentioned 

before, Lagrangian duality lets (5.33) transform from primal problem to its dual 

problem, which is given by, 
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 max
𝛼

𝑊(𝛼, 𝛽) = max
𝛼,𝛽

(min
𝑤,𝑏,𝜉

Φ(𝑤, 𝑏, 𝛼, 𝜉, 𝛽)) (5.34) 

By combining (5.32), (5.33), and (5.34), the dual problem becomes, 

 

max
𝛼

𝑊(𝛼) = max
𝛼

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

+ ∑ 𝛼𝑘

𝑙

𝑘=1

 (5.19) 

And the solution to (5.19) is, 

 

𝛼∗ = argmin
𝛼

1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

− ∑ 𝛼𝑘

𝑙

𝑘=1

 (5.20) 

with following constraints: 

 

0 ≤ 𝛼𝑖 ≤ 𝐶 | 𝑖 = 1,… , 𝑙 |∑𝛼𝑗𝑦𝑗

𝑙

𝑗=1

= 0 (5.35) 

Additionally, Gunn (1998) stated that 𝐶 must be selected in order to emphasize the 

identity of the noise in the training data (p. 12). 

5.3 Kernel Functions 

As explained before, in SVM, the optimal separating hyperplane is regulated in order 

to maximize the generalization ability. However, if the training data is linearly non-

separable, the classifier may not have the capability of generalization despite the 

optimally determined hyperplane, hence the input space is mapped into a high-

dimensional space that created by dot product, which is named as “feature space” 

(Abe, 2010, p. 31). The mapping of the input space into a high-dimensional feature 

space is illustrated in Figure 5.17. 
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Figure 5.17 : Feature space illustration (Gunn, 1998, p. 14). 

Kernel function’s theory has a basis on Reproducing Kernel Hilbert Spaces (RKHS), 

which is introduced by several authors (Aronszajn, 1950; Girosi, 1997; Heckman, 

1997; Wahba, 1990) and Mercer’s Condition (Mercer, 1909). As stated above, kernel 

in input space is equal to an inner product in the feature space. Thus, kernel function 

is expressed as, 

 𝐾(𝒙, 𝒙′) = 〈𝜙(𝒙), 𝜙(𝒙′)〉 (5.36) 

where, 

 𝜙(𝒙) = (𝜙1(𝒙), … , 𝜙𝑙(𝒙))
T
 (5.37) 

Here 𝐾(𝑥, 𝑥′) is the kernel function, which performs linear or non-linear mapping of 

the input space into the feature space, 𝑥′ is unlabeled input, and 𝑙 is is the dimension 

number of the feature space. 

There are several kernel functions such as linear, polynomial, Gaussian radial basis 

function, exponential radial basis function, multi-layer perceptron, Fourier series, 

splines, B splines, additive kernels, and tensor product (Gunn, 1998). In this thesis 

study, the linear and Gaussian radial basis function kernels are used for calculations. 

Thus, only these kernels’ equations are given. For more details, please read the 

technical report of Gunn (1998). 

5.3.1 Linear kernels 

Linear kernels are used when the data to be classified is linearly separable in the 

input space (Abe, 2010, p. 34). In this situation, it is not necessary to map the input 

space into the feature space. Linear kernels are expressed as, 
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 𝐾(𝒙, 𝒙′) = 𝒙T𝒙′ (5.38) 

5.3.2 Gaussian radial basis function kernels 

Another kernel used in this thesis study is the radial basis functions (RBF) in 

Gaussian form, which can be expressed as, 

 𝐾(𝒙, 𝒙′) = exp(−𝛾‖𝒙 − 𝒙′‖2) (5.39) 

Here 𝛾 is a positive user-defined parameter, which controls the radius. 

5.4 Support Vector Regression 

The concept explained above is about SVM that classifies data inputs into different 

classes. However, the problem sometimes may require less rigid and more possible 

results. Support Vector Regression (SVR) is a kind of implementation of SVM, 

which generates a real number as an output (Flach, 2012). 

The main principle of SVR is same as SVM for classification with several minor 

differences. Basically, SVM is applicable to regression problems via importing an 

alternative loss function, which was introduced by Smola (1996). Different possible 

loss functions are shown in Figure 5.18. 

 

Figure 5.18 : Loss functions (Gunn, 1998, p. 29). 
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In Figure 5.18, (a) is the quadratic loss function, which is related to the generic least-

squares error criteria. (b) is the Laplacian type of loss function, which has less 

sensitivity to deviation rather than the quadratic loss function. (c) is the loss function 

proposed by Huber (1964), which includes optimal features when the data 

distribution is unknown. However, as mentioned by Gunn (1998), these loss 

functions does not produce any sparseness in support vectors (p. 30). Thus, the loss 

function (d) introduced by Vapnik (1999), which has a similar approach with 

Huber’s loss function is used to obtain support vectors. 

5.4.1 ε-insensitive regression 

Assuming an approximation problem including the set of data in (5.40). 

 𝒟 = {(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙)} | 𝑥 ∈ ℝ𝑛 | 𝑦 ∈ ℝ (5.40) 

Using a linear function such as mentioned before, 

 𝑓(𝑥) = 〈𝒘, 𝒙〉 + 𝑏 (5.5) 

The optimal regression function can be found by minimizing (5.41). 

 
Φ(𝑤, 𝜉) =

1

2
‖𝒘‖2 + 𝐶 ∑(𝜉𝑖

−, 𝜉𝑖
+)

𝑖

 (5.41) 

Here 𝜉− and 𝜉+ are the lower and upper constraints of slack variables, respectively. 

The loss function of (d) in Figure 5.18, in other words ε-insensitive loss function, can 

be expressed as, 

 
𝐿𝜀(𝑦) = {

0, |𝑓(𝒙) − 𝑦| < 𝜀
|𝑓(𝒙) − 𝑦| − 𝜀, otherwise

 (5.42) 

The illustration of ε-insensitive loss function and slack variables are shown in Figure 

5.19. 
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Figure 5.19 : ε-insensitive loss function and slack variables (Smola and Schölkopf, 

2003, p. 2). 

The solution to the problem in (5.42) is, 

 
�̅�, �̅�∗ = arg min

𝛼,𝛼∗

1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝒙𝑖 , 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

− ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑙

𝑖=1

+ ∑(𝛼𝑖 − 𝛼𝑖
∗)𝜀

𝑙

𝑖=1

 (5.43) 

with following constraints: 

 

0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 𝐶 | 𝑖 = 1,… , 𝑙 |∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑙

𝑖=1

= 0 (5.44) 

Solving (5.43) with the constraints of (5.44) yields the Lagrange multipliers, 𝛼 and 

𝛼∗. Thus, the function of regression becomes, 

 

�̅� = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝒙𝑖

𝑙

𝑖=1

 (5.45) 

 
�̅� = −

1

2
〈�̅�, (𝒙𝑟 + 𝒙𝑠)〉 (5.46) 

The solution satisfies the KKT conditions, which are, 

 �̅�𝑖�̅�𝑖
∗ = 0 | 𝑖 = 1,… , 𝑙 (5.47) 

Hence, support vectors are non-zero Lagrange multipliers. If 𝜀 is set at 0, the 

optimization problem becomes, 
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min
𝛽

1

2
∑∑𝛽𝑖𝛽𝑗〈𝒙𝑖, 𝒙𝑗〉

𝑙

𝑗=1

𝑙

𝑖=1

− ∑𝛽𝑖𝑦𝑖

𝑙

𝑖=1

 (5.48) 

with following constraints: 

 

−𝐶 ≤ 𝛽𝑖 ≤ 𝐶 | 𝑖 = 1,… , 𝑙 |  ∑𝛽𝑖

𝑙

𝑖=1

= 0 (5.49) 

Thus, the function of regression becomes, 

 

�̅� = ∑𝛽𝑖𝒙𝑖

𝑙

𝑖=1

 (5.50) 

 
�̅� = −

1

2
〈�̅�, (𝒙𝑟 + 𝒙𝑠)〉 (5.46) 

5.4.2 ν regression 

The summary of 𝜀-insensitive regression can be described as follows. For 

determining the function of (5.5) with the data given as (5.40), each 𝒙𝑖 has an error 

of 𝜀, while all the other values above 𝜀 are slack variables, 𝜉𝑖, that correspond to the 

cost of the main function with the regularization constant, 𝐶 (Schölkopf et al, 1998). 

However, it is quite difficult to determine the optimum value of 𝜀 (Abe, 2010, 

p.431). One of the approaches to solve this optimization problem was proposed by 

Smola et al. (1998) and Jeng and Chuang (2002), which assumes the estimated 

optimum value is proportional to the standard deviation of the noise in the data. 

Another approach is introduced by Schölkopf et al. (1998) which modifies the model 

by optimizing it during training phase with a controller parameter, 𝜈. 

In 𝜈-regression, the amount of 𝜀 is adjusted contrary to the complexity of the model 

and slack variables with a constant, 𝜈, by minimizing following equation (Schölkopf 

et al, 1998). 

 

Φ(𝑤, 𝜉, 𝜀) =
1

2
‖𝒘‖2 + 𝐶 (𝜈𝜀 +

1

𝑙
∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

) (5.47) 

with following constraints: 
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 (〈𝒘, 𝒙𝒊〉 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖 (5.48) 

 𝑦𝑖 − (〈𝒘, 𝒙𝒊〉 + 𝑏) ≤ 𝜀 + 𝜉𝑖
∗ (5.49) 

 𝜉 ≥ 0 | 𝜀 ≥ 0 (5.50) 

Here 𝜉𝑖 and 𝜉𝑖
∗ are non-negative slack variables. The solution is, 

 Φ(𝑤, 𝑏, 𝛼, 𝜉, 𝛽, 𝜀, 𝜂) =  

 1

2
‖𝒘‖2 + 𝐶𝜈𝜀 +

𝐶

𝑙
∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑙

𝑖=1

− ∑𝛼𝑖(𝜉𝑖 + 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝑏 + 𝜀)

𝑙

𝑖=1

 (5.51) 

 

−∑𝛼𝑖
∗(𝜉𝑖

∗ + 𝑦𝑖 − 〈𝒘, 𝒙𝑖〉 − 𝑏 + 𝜀)

𝑙

𝑖=1

− 𝛽𝜀 − ∑(𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)

𝑙

𝑖=1

  

Here 𝛼, 𝛽 and 𝜂 are non-negative Lagrange multipliers. In order to minimize (5.47) 

the saddle point of (5.51) needs to be found by minimizing primal variables, 𝒘, 𝜀, 𝑏, 

𝜉 and maximizing dual variables, 𝛼, 𝛽, 𝜂 (Schölkopf et al, 1998). Setting the 

derivatives of primal variables to zero yields, 

 

𝒘 = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝒙𝑖

𝑙

𝑖=1

 (5.52) 

and, 

 

𝐶𝜈 − ∑(𝛼𝑖 + 𝛼𝑖
∗) − 𝛽

𝑙

𝑖=1

= 0 (5.53) 

As a summary, 𝜈-SVR optimization problem becomes as maximizing, 

 

𝑊(𝛼) = −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)〈𝒙𝑖, 𝒙𝑗〉(𝛼𝑗 − 𝛼𝑗
∗)

𝑙

𝑖,𝑗=1

− ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑦𝑖

𝑙

𝑖=1

 (5.54) 

with the following constraints: 



76 

 

∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

= 0 (5.55) 

 
0 ≤ 𝛼 ≤

𝐶

𝑙
 (5.56) 

 

∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

= 𝐶𝜐 (5.57) 

5.5 Cross Validation and Overfitting 

As mentioned before, the main concept of the machine learning is to train a learning 

model on a training data set, and apply this model to a new data set to make 

predictions. The focus is to maximize the predicting accuracy on the new data set. 

Achieving maximum accuracy on the training data set is not necessary. However, in 

this situation, there is a risk in terms of fitting the noise in the data to learning curve 

by memorizing training data rather than establishing a general predictive bias, which 

is called as “overfitting” (Dietterich, 1995, p. 326). An example of the overfitting 

problem is shown in Figure 5.20. 

 

Figure 5.20 : Overfitting example (Bishop, 2006, p. 7). 
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In Figure 5.20, M represents the order of the polynomial. The green curve is the true 

function that used to generate the data, which is not a polynomial. The data in this 

example has a uniform distribution in x-axis, while having noise in y-axis. As seen 

on the figure, when the order of the polynomial increased, the curve fits the training 

data in excellent way. Moreover, the curve crosses each data point with zero error. 

However, there is an extreme oscillation when order of the polynomial is nine, and 

the representation of the original function is quite poor. This phenomenon is known 

as overfitting. 

As depending on the order of the polynomial, the overfitting problem can depend on 

the number of input data as well. An example to this kind of a problem is shown in 

Figure 5.21. 

 

Figure 5.21 : Reducing overfitting (Bishop, 2006, p. 9). 

Here N represents the amount of input data points. It can be seen from Figure 5.21 

that as the number of input data increases the model becomes more complex to fit the 

curve in a more meaningful way. According to Bishop (2006), “One rough heuristic 

that is sometimes advocated is that the number of data points should be no less than 

some multiple (say 5 or 10) of the number of adaptive parameters in the model.” (p. 

9). 

In order to overcome the overfitting problem, a kind of a statistical analysis called 

“cross validation” is need to be applied to the training data set. Cross validation is a 

validation technique to determine the assessment of generalizing the statistical results 

on an independent data set, different from test data set (Flach, 2012). Thus, if a 

learning algorithm is evaluated, rather than a given model, it is needed to create a 

new data set separate from the test data. If the data set has limitations in terms of 
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input number, the cross validation process is applied by using two common 

approaches. 

5.5.1 K-fold cross validation 

First, the data is randomly divided into 𝑘 folds. One of the folds is set separately for 

testing purpose. The model is trained on the remaining 𝑘 − 1 folds and evaluated on 

the test fold for 𝑘 folds until each fold has been used for testing once (Flach, 2012, p. 

349). The most common setting for 𝑘-fold cross validation is to set 𝑘 to 10, which is 

called as “10-fold cross validation”. 

5.5.2 Leave-one-out cross validation 

A second approach to 𝑘-fold cross validation is setting 𝑘 to 𝑛, and training on all 

training inputs except one for 𝑛 times. This process is called as “leave-one-out cross 

validation”. The statistical meaning of this kind of cross validation is estimating the 

accuracy of each fold as 0 or 1, while getting a distribution similar to normal 

distribution due to the central limit theorem by averaging 𝑛 of the folds (Flach, 2012, 

p. 350). 

5.6 Toolboxes 

Solving all the optimization problems explained above analytically for the data sets 

containing huge number of inputs is not quite possible. Therefore, several toolboxes 

have been introduced for machine learning applications. The programming language, 

the libraries and other toolboxes used in this thesis study is licensed under GNU 

General Public License. 

5.6.1 R programming language 

R is a statistical console suite created as a free-licensed implementation of the S 

programming language developed by Rick Becker, John Chambers and Alan Wilks 

at Bell Laboratories. In recent times, R become very popular thanks to the 

developing methods for interactive data analysis (Venables and Smith, 2014, p. 2). 

The most useful property of the R programming language is to be expandable by a 

large collection of external libraries called packages. 
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5.6.2 LIBSVM 

LIBSVM is a library have been developing by Chang and Lin (2012) since 2000 for 

the usage of SVM. LIBSVM is the most common and widely used SVM library 

(Chang and Lin, 2011, p. 1). LIBSVM works in two steps. In the first step, a training 

data is set to produce a model. In the second step, the model is used on a test set to 

make predictions. 

5.6.3 e1071 package 

e1071 is an award-winning C++ implementation of the LIBSVM that can be 

imported in R programming language as a package (Meyer, 2014). e1071 performs 

most of the SVM features, such as 𝐶 and 𝜈-classification, novelty detection, 𝜀 and 𝜈-

regression. e1071 also contains linear, polynomial, RBF, sigmoid kernels, formula 

interface, and 𝑘-fold cross validation. 

A simple code of the program written in R programming language using e1071 

package for the calculations of this thesis study is given in Syntax 1. Full code with 

detailed explanations is available in Appendix B. 

Syntax 1 
library(xlsx) 

library(e1071) 

dataset <- read.xlsx("data.xls",1) 

dataset.train <- dataset[dataset$subset=="train",2:ncol(dataset)] 

dataset.test <- dataset[dataset$subset=="test",2:ncol(dataset)] 

def.pred <- mean(dataset.train$x1) 

def.rss <- sum((dataset.test$x1-def.pred)^2) 

reg <- lm(x1 ~., data = dataset.train) 

reg.pred <- predict(reg,newdata = dataset.test) 

reg.rss <- sum((dataset.test$x1-reg.pred)^2) 

obj <- tune.svm(x1 ~.,data = dataset.train, scale = T, type = "eps-regression", 

kernel = "linear", cost = seq(from=0.005,to=50.0,by=0.005),epsilon=0.1, 

tolerance=0.001, shrinking=T, fitted=T) 

k <- which.min(obj$performances[,3]) 

c <- obj$performances[,1][k] 

RMSE <- obj$performances[,3] 

Cost <- obj$performances[,1] 

plot(Cost,RMSE,type="l") 

epsilon.svr <- svm(x1 ~.,data = dataset.train, scale = T, type = "eps-

regression", kernel = "linear", cost = c, 

epsilon=0.1,tolerance=0.001,shrinking=T,fitted=T) 

esvr2.pred <- predict(epsilon.svr,newdata = dataset.test) 

esvr2.rss <- sum((dataset.test$x1-esvr2.pred)^2) 

5.7 Statistical Comparison Criteria 

To compare the results gathered from either multiple regression analysis or all the 

SVR implementations explained above, several statistical comparison criteria were 

used. The criteria is the basic statistical components being used in most of the 
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statistical analysis applications, which are residual sum of squares, R2, pseudo-R2, 

root mean squared error, and p-value. 

5.7.1 Residual sum of squares 

As explained in Chapter 4, residual is the difference between predicted and observed 

value of a function. By modifying the equation form of residual, (4.15a), Residual 

sum of squares (RSS) can be expressed as, 

 𝑅𝑆𝑆 = ∑(𝑦𝑖 − �̂�𝑖)
2

𝑖

 (5.58) 

As a summary, RSS gives the measure of the variation of the observed values around 

the fitted curve. 

5.7.2 R2 

R2, or coefficient of determination, is a measure of the perfectness of the fitted curve. 

According to Fonticella (n.d.), “…the R2 statistic measures how significantly the 

slope of the fitted line differs from zero, which is not the same as a good fit.” (p. 56). 

As an equation form, R2 can be described as, 

 
𝑅2 =

𝑅𝑆𝑆

𝑇𝑆𝑆
 (5.59) 

where, 

 𝑇𝑆𝑆 = ∑(𝑦𝑖 − �̅�)2

𝑖

 (5.60) 

Here TSS stands for Total sum of squares, which is a measure of the variation of the 

observed values around the mean. 

An important drawback of the R2 is the disability of decrease when the model gains 

additional informative variables, although these variables have no relevance with the 

function (Dufour, 2011, p. 5). Thus, the approach that tends to maximize R2 can be 

deceptive. To overcome this handicap, adjusted R2 is introduced to be used instead of 

R2, since increasing number of unnecessary variables creates a penalty on the R2. 

Adjusted R2 is expressed as, 
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𝑅𝑎𝑑𝑗

2 = 1 − (
𝑅𝑆𝑆

𝑇𝑆𝑆
) (

𝑛 − 1

𝑛 − 𝑝
) (5.61) 

Here 𝑛 is the number of samples, and 𝑝 is the number of regressors. 

5.7.3 Pseudo-R2 

Pseudo-R2 is an alternative form used for determining the validity of a model on a 

reference situation (Williams, 2015, p. 3). It is recommended to use Pseudo-R2 to 

overcome any overfitting problem if the number of data inputs are limited (Mittlböck 

and Heinzl, 2004). 

As explained in the previous chapters, according to least square principle, the default 

model is simply the mean of the dependent variable computed on the training 

sample. Thus, the RSS of the default model is, 

 𝑅𝑆𝑆𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = ∑(𝑦𝑖 − �̅�𝑡𝑟𝑎𝑖𝑛)

𝑖

 (5.62) 

Hence, the Pseudo-R2 criterion can be defined as, 

 
𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = 1 −

𝑅𝑆𝑆

𝑅𝑆𝑆𝑑𝑒𝑓𝑎𝑢𝑙𝑡
 (5.63) 

The statistical meaning of (5.63) can be described as following. 

• 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = 1 ⇒ Perfect model 

• 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = 0 ⇒ Not better than default model 

• 𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 < 0 ⇒ Worse than default model 

5.7.4 Root mean squared error 

Root mean squared error (RMSE) is a measure of verification, which standardize the 

variables between matching points of predictions and observations (Barnston, 1992, 

p. 700). RMSE can be expressed as, 

 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑𝑒𝑖

2

𝑖

 (5.64) 
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6.  RESULTS AND DISCUSSIONS  

Interpreting the results, the datasets in Appendix A are employed in the calculations. 

The data set given in Table A.1 obtained from Bourgoyne Jr. and Young Jr. (1974) is 

used to calculate the optimization of ROP. Assignment of the dependent and 

independent variables, and the steps of multiple regression solution are given in 

Appendix A, in details. 

The main goal of the calculations are to determine the applicability of SVR for ROP 

optimization when there are insufficient data inputs for multiple regression analysis. 

To achieve a general idea, several case scenarios are also designed. The calculation 

sequence constructed as the following cases. 

Case 1: Training top 16 depth data are used for testing deeper data points. 

Case 2: Training bottom 16 depth data are used for testing shallower data points. 

Case 3: Training odd-numbered data points are used for testing remaining. 

Case 4: Training even-numbered data points are used for testing remaining. 

Case 5: Training several 24 data points are used for testing remaining. 

Case 6: Training all data points are used for testing several data points. 

Case 7: Training different data set are used for testing all data points (for 

comparison). 

In testing parts of the calculations, different variations of data combinations are used 

as testing sets. These combinations are categorized under different scenarios and the 

results are discussed separately. 

The cost parameter, 𝐶, is calculated via 10-fold cross validation within a given 

interval. The cost value gives minimum root mean squared error (RMSE) is selected 

as the optimum cost parameter for the corresponding data set and SVR method. The 

other SVR parameters are selected through the best performance of the current 

method. 
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6.1 Case 1: Training Top 16 Depth Interval 

In Case 1, first 16 data points of Table A.1 are used as training data set. The 

coefficients of MR analysis for this training data are given in Table 6.1. 

Table 6.1 : Multiple regression coefficients of Case 1. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,923E+00 3,880E-05 1,262E-04 4,354E-05 5,732E-01 5,913E-01 4,619E-01 -1,665E-01 

6.1.1 Testing #17-18-19-20 

In this testing scenario, the ROP values of the inputs numbered #17-18-19-20 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.1. 

 

Figure 6.1 : Cost graphics of Case 1 for testing #17-18-19-20. 
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The basic statistical analysis of the whole data set is given in Table 6.2. 

Table 6.2 : Statistics of the data set in Case 1 for testing #17-18-19-20. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,850 -1480 1758 -10844 -0,755 -0,218 -0,408 -0,074 

Median 2,760 -1268 312 -7529 -0,730 -0,255 -0,390 -0,024 

Variance 0,257 1595326 4567737 85108973 0,177 0,044 0,051 0,097 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.3. 

Table 6.3 : Statistical results of MR in Case 1 for learning and testing #17-18-19-20. 

RSSdefault R2 Adjusted R2 p-value 

3,16 0,84 0,71 0,01 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.4. 

Table 6.4 : Statistical results of the methods in Case 1 for testing #17-18-19-20. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,80 0,46 1,60 1,15 0,76 

Pseudo-R2 0,75 0,85 0,50 0,64 0,76 

C  5,485 1 6,64 2,04 

# of SV  13 15 11 14 

CV Error  0,06 0,15 0,11 0,11 

RMSE 0,45 0,34 0,63 0,54 0,44 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.5. The ROP values are in 

unit of [ft/hr]. 

Table 6.5 : ROP predictions in Case 1 for #17-18-19-20. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

17 42,1 43,0 19,6 39,8 24,1 42,7 

18 38,5 38,9 20,4 36,4 25,9 38,6 

19 33,1 32,8 20,9 29,8 27,2 43,4 

20 29,3 23,2 15,6 34,0 16,0 12,5 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.2. 
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Figure 6.2 : ROP prediction trends in Case 1 for testing #17-18-19-20. 

The comparison of each prediction with actual ROP is plotted in Figure 6.3. 

 

Figure 6.3 : ROP prediction comparison in Case 1 for testing #27-28-29-30. 
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It can be seen from Figure 6.2 and 6.3 that the best predictive method in Case 1 for 

testing #17-18-19-20 is 𝜀-SVR with linear kernel, since it has the best correlation 

between predicted and actual ROP values. Additionally, 𝜀-SVR with linear kernel 

has the minimum errors and maximum Pseudo-R2 ratio among the other methods, as 

seen in the results. 

6.1.2 Testing #22-23-24-25 

In this testing scenario, the ROP values of the inputs numbered #22-23-24-25 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.4. 

 

Figure 6.4 : Cost graphics of Case 1 for testing #22-23-24-25. 

The basic statistical analysis of the whole data set is given in Table 6.6. 
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Table 6.6 : Statistics of the data set in Case 1 for testing #22-23-24-25. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,774 -1797 1862 -11399 -0,809 -0,224 -0,389 -0,089 

Median 2,769 -1268 312 -7474 -0,738 -0,255 -0,355 -0,037 

Variance 0,137 3210229 5332154 83943489 0,131 0,046 0,051 0,050 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.7. 

Table 6.7 : Statistical results of MR in Case 1 for learning and testing #22-23-24-25. 

RSSdefault R2 Adjusted R2 p-value 

0,55 0,84 0,71 0,01 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.8. 

Table 6.8 : Statistical results of the methods in Case 1 for testing #22-23-24-25. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,37 0,07 0,26 0,36 0,27 

Pseudo-R2 0,33 0,87 0,52 0,34 0,52 

C  1,97 1,6 0,55 1,58 

# of SV  14 14 12 14 

CV Error  0,07 0,12 0,07 0,09 

RMSE 0,30 0,13 0,26 0,30 0,26 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.9. The ROP values are in 

unit of [ft/hr]. 

Table 6.9 : ROP predictions in Case 1 for #22-23-24-25. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

22 25,1 19,9 15,8 16,6 15,8 19,0 

23 24,4 19,5 16,1 18,2 16,1 18,7 

24 31,1 16,4 15,9 11,8 15,9 20,2 

25 32,1 31,5 18,4 34,1 18,3 27,1 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.5. 
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Figure 6.5 : ROP prediction trends in Case 1 for testing #22-23-24-25. 

The comparison of each prediction with actual ROP is plotted in Figure 6.6. 

 

Figure 6.6 : ROP prediction comparison in Case 1 for testing #22-23-24-25. 
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Similarly to first scenario, as seen on Figure 6.5 and 6.6, the highest correlation is in 

𝜀-SVR with linear kernel. Moreover, 𝜀-SVR with linear kernel has all the minimum 

errors and maximum Pseudo-R2 value. In addition, the best approaches are seemed to 

be linear kernel methods, because RBF kernels do not give representative results for 

good prediction. 

6.1.3 Testing #27-28-29-30 

In this testing scenario, the ROP values of the inputs numbered #27-28-29-30 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.7. 

 

Figure 6.7 : Cost graphics of Case 1 for testing #27-28-29-30. 

The basic statistical analysis of the whole data set is given in Table 6.10. 
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Table 6.10 : Statistics of the data set in Case 1 for testing #27-28-29-30. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,668 -2317 2034 -13085 -0,713 -0,235 -0,413 -0,133 

Median 2,670 -1268 312 -8226 -0,669 -0,236 -0,390 -0,054 

Variance 0,126 8250056 6815509 95070470 0,202 0,050 0,050 0,048 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.11. 

Table 6.11 : Statistical results of MR in Case 1 for learning and testing #27-28-29-

30. 

RSSdefault R2 Adjusted R2 p-value 

0,30 0,84 0,71 0,01 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.12. 

Table 6.12 : Statistical results of the methods in Case 1 for testing #27-28-29-30. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 2,07 0,12 0,32 0,23 0,40 

Pseudo-R2 -6,02 0,60 -0,08 0,21 -0,36 

C  1,27 0,005 7,035 1,565 

# of SV  14 14 12 14 

CV Error  0,08 0,15 0,08 0,09 

RMSE 0,72 0,17 0,28 0,24 0,32 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.13. The ROP values are in 

unit of [ft/hr]. 

Table 6.13 : ROP predictions in Case 1 for #27-28-29-30. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

27 21,3 10,8 15,2 14,2 15,9 12,6 

28 34,0 12,2 15,2 22,4 15,9 14,9 

29 20,9 11,7 15,2 11,3 15,9 13,8 

30 23,7 7,7 15,2 10,1 15,9 9,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.8. 
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Figure 6.8 : ROP prediction trends in Case 1 for testing #27-28-29-30. 

The comparison of each prediction with actual ROP is plotted in Figure 6.9. 

 

Figure 6.9 : ROP prediction comparison in Case 1 for testing #27-28-29-30. 
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Similarly to first and second scenario, the best prediction is in 𝜀-SVR with linear 

kernel. Furthermore, all the minimum errors and maximum Pseudo-R2 value are in 𝜀-

SVR with linear kernel. Additionally, the best predictors are seemed to be linear 

kernel methods as in the second scenario. It is quite obvious that RBF kernels do not 

represent meaningful results because of the visualisation of data. 

6.1.4 Testing #17-21-26-30 

In this testing scenario, the ROP values of the inputs numbered #17-21-26-30 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.10. 

 

Figure 6.10 : Cost graphics of Case 1 for testing #17-21-26-30. 

The basic statistical analysis of the whole data set is given in Table 6.14. 
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Table 6.14 : Statistics of the data set in Case 1 for testing #17-21-26-30. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,750 -1976 1912 -7529 -0,730 -0,255 -0,390 -0,037 

Median 2,747 -1268 312 -11806 -0,783 -0,231 -0,408 -0,148 

Variance 0,188 6113043 5869719 90241467 0,189 0,048 0,066 0,149 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.15. 

Table 6.15 : Statistical results of MR in Case 1 for learning and testing #17-21-26-

30. 

RSSdefault R2 Adjusted R2 p-value 

1,48 0,84 0,71 0,01 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.16. 

Table 6.16 : Statistical results of the methods in Case 1 for testing #17-21-26-30. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 1,12 0,004 0,81 0,22 0,70 

Pseudo-R2 0,24 0,998 0,45 0,85 0,53 

C  5,54 1,72 8,225 2,28 

# of SV  13 13 11 15 

CV Error  0,06 0,11 0,06 0,15 

RMSE 0,53 0,03 0,45 0,23 0,42 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.17. The ROP values are in 

unit of [ft/hr]. 

Table 6.17 : ROP predictions in Case 1 for #17-21-26-30. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

17 42,1 43,1 22,8 41,2 25,3 42,7 

21 23,9 20,2 15,9 33,2 16,1 21,1 

26 22,4 14,7 16,1 14,3 16,4 14,8 

30 23,7 8,7 15,9 10,1 16,1 9,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.11. 
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Figure 6.11 : ROP prediction trends in Case 1 for testing #17-21-26-30. 

The comparison of each prediction with actual ROP is plotted in Figure 6.12. 

 

Figure 6.12 : ROP prediction comparison in Case 1 for testing #17-21-26-30. 
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Correspondingly to previous scenarios, 𝜀-SVR with linear kernel is the best 

predictor. Likewise, 𝜀-SVR with linear kernel has all the minimum errors and 

maximum Pseudo-R2 value. In addition, the best predictors are seemed to be linear 

kernel methods rather than MR. Similarly, RBF kernels do not seemed to be suitable 

for this case as good predictive methods. 

The cumulative comparative statistical results for Case 1 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 1 in terms of RSSmodel is shown in Figure 6.13. 

 

Figure 6.13 : RSSmodel values for Case 1. 

It can be seen from Figure 6.13 that MR and RBF kernels have the maximum RSS 

values. On the other hand, linear kernels have less RSS values, especially 𝜀-SVR 

with linear kernel has the minimum RSS for all scenarios. 

The comparison of the scenarios in Case 1 in terms of CV error is shown in Figure 

6.14. 
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Figure 6.14 : CV error values for Case 1. 

In overall, 𝜀-SVR with linear kernel has the best cross validation result among other 

SVR methods. 

The testing errors of Case 1 in terms of RMSE is given in Figure 6.15. 

 

Figure 6.15 : Testing errors for Case 1. 

As shown in Figure 6.15, 𝜀-SVR with linear kernel has the minimum testing error. 

The Pseudo-R2 comparison for Case 1 is given in Figure 6.16. 
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Figure 6.16 : Pseudo-R2 values for Case 1. 

It can be understood from Figure 6.16 that 𝜀-SVR with linear kernel has the highest 

Pseudo-R2 values for all the scenarios in Case 1. Additionally, data are shown 

includes negative values; i.e. the predictor model completely fails. 

6.2 Case 2: Training Bottom 16 Depth Interval 

In Case 2, last 16 data points of Table A.1 are used as training data set. The 

coefficients of MR analysis for this training data are given in Table 6.18. 

Table 6.18 : Multiple regression coefficients of Case 2. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,176E+00 2,228E-04 3,094E-04 4,142E-05 2,972E-01 -3,543E-01 3,832E-01 2,299E-01 

6.2.1 Testing #11-12-13-14 

In this testing scenario, the ROP values of the inputs numbered #11-12-13-14 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.17. 
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Figure 6.17 : Cost graphics of Case 2 for testing #11-12-13-14. 

The basic statistical analysis of the whole data set is given in Table 6.19. 

Table 6.19 : Statistics of the data set in Case 2 for testing #11-12-13-14. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,860 -4226 4656 -15129 -0,508 -0,302 -0,338 -0,286 

Median 2,721 -3902 5201 -12258 -0,532 -0,274 -0,300 -0,180 

Variance 0,273 4731468 3380847 68364534 0,108 0,013 0,054 0,257 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.20. 

Table 6.20 : Statistical results of MR in Case 2 for learning and testing #11-12-13-

14. 

RSSdefault R2 Adjusted R2 p-value 

2,17 0,88 0,78 0,003 
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The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.21. 

Table 6.21 : Statistical results of the methods in Case 2 for testing #11-12-13-14. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,42 0,77 1,26 1,82 1,36 

Pseudo-R2 0,81 0,64 0,42 0,16 0,37 

C   0,205 1,17 0,09 0,94 

# of SV   14 14 12 14 

CV Error   0,10 0,08 0,09 0,10 

RMSE 0,32 0,44 0,56 0,67 0,58 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.22. The ROP values are in 

unit of [ft/hr]. 

Table 6.22 : ROP predictions in Case 2 for #11-12-13-14. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

11 9,9 30,0 16,7 35,3 17,0 14,0 

12 8,3 18,1 16,6 21,7 16,9 13,5 

13 6,6 8,6 16,1 12,8 16,5 6,2 

14 7,5 10,0 16,2 15,3 16,7 9,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.18. 

 

Figure 6.18 : ROP prediction trends in Case 2 for testing #11-12-13-14. 

The comparison of each prediction with actual ROP is plotted in Figure 6.19. 
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Figure 6.19 : ROP prediction comparison in Case 2 for testing #11-12-13-14. 

It can be seen from Figure 6.18 and 6.19 that the best predictive method in Case 2 for 

testing #11-12-13-14 is MR, since it has the minimum error and maximum Pseudo-

R2 ratio among the other methods. 

6.2.2 Testing #6-7-8-9 

In this testing scenario, the ROP values of the inputs numbered #6-7-8-9 are desired 

to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.20. 
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Figure 6.20 : Cost graphics of Case 2 for testing #6-7-8-9. 

The basic statistical analysis of the whole data set is given in Table 6.23. 

Table 6.23 : Statistics of the data set in Case 2 for testing #6-7-8-9. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,948 -4006 4394 -11378 -0,550 -0,295 -0,422 -0,282 

Median 2,869 -3902 5201 -9262 -0,532 -0,274 -0,410 -0,165 

Variance 0,189 6043537 5236731 34618792 0,126 0,010 0,054 0,259 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.24. 

Table 6.24 : Statistical results of MR in Case 2 for learning and testing #6-7-8-9. 

RSSdefault R2 Adjusted R2 p-value 

0,27 0,88 0,78 0,003 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.25. 
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Table 6.25 : Statistical results of the methods in Case 2 for testing #6-7-8-9. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,46 0,10 0,08 0,09 0,09 

Pseudo-R2 -0,72 0,61 0,69 0,67 0,68 

C  3,2 1,21 9,98 1,04 

# of SV  14 14 13 13 

CV Error  0,08 0,06 0,11 0,09 

RMSE 0,34 0,16 0,14 0,15 0,15 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.26. The ROP values are in 

unit of [ft/hr]. 

Table 6.26 : ROP predictions in Case 2 for #6-7-8-9. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

6 11,1 16,3 16,7 14,3 16,9 19,0 

7 10,8 15,7 16,7 14,0 16,9 13,0 

8 12,6 18,8 16,7 16,7 16,9 16,6 

9 12,5 18,9 16,7 16,7 16,9 15,9 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.21. 

 

Figure 6.21 : ROP prediction trends in Case 2 for testing #6-7-8-9. 

The comparison of each prediction with actual ROP is plotted in Figure 6.22. 
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Figure 6.22 : ROP prediction comparison in Case 2 for testing #6-7-8-9. 

For this scenario, it is hard to make comments on the best prediction. Maximum 

correlation seems to be 𝜐-SVR with linear kernel from Figure 6.22. Minimum 

RSSmodel value for 𝜐-SVR with linear kernel supports this idea. However, 𝜐-SVR 

with linear kernel has the highest CV error. Additionally, in Figure 6.21, it can be 

seen that the behaviour of trends of all predictive models do not resemble to actual 

ROP’s. For this situation, it is not quite possible to determine the best predictor. 

6.2.3 Testing #1-2-3-4 

In this testing scenario, the ROP values of the inputs numbered #1-2-3-4 are desired 

to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.23. 
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Figure 6.23 : Cost graphics of Case 2 for testing #1-2-3-4. 

The basic statistical analysis of the whole data set is given in Table 6.27. 

Table 6.27 : Statistics of the data set in Case 2 for testing #1-2-3-4. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,952 -3849 4363 -11455 -0,612 -0,209 -0,410 -0,285 

Median 2,936 -3902 5201 -9262 -0,507 -0,255 -0,390 -0,195 

Variance 0,209 7247692 5510558 33773810 0,225 0,041 0,061 0,258 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.28. 

Table 6.28 : Statistical results of MR in Case 2 for learning and testing #1-2-3-4. 

RSSdefault R2 Adjusted R2 p-value 

0,63 0,88 0,78 0,003 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.29. 
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Table 6.29 : Statistical results of the methods in Case 2 for testing #1-2-3-4. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 1,16 0,40 0,47 0,48 0,47 

Pseudo-R2 -0,84 0,36 0,25 0,23 0,25 

C  2 1,185 2 2,12 

# of SV  13 13 13 14 

CV Error  0,11 0,07 0,08 0,09 

RMSE 0,54 0,32 0,34 0,35 0,34 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.30. The ROP values are in 

unit of [ft/hr]. 

Table 6.30 : ROP predictions in Case 2 for #1-2-3-4. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 13,6 20,6 16,7 25,6 16,7 23,0 

2 11,1 15,9 16,7 20,9 16,7 22,0 

3 7,4 10,2 16,7 14,6 16,7 14,0 

4 10,8 15,4 16,7 19,8 16,7 10,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.24. 

 

Figure 6.24 : ROP prediction trends in Case 2 for testing #1-2-3-4. 

The comparison of each prediction with actual ROP is plotted in Figure 6.25. 
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Figure 6.25 : ROP prediction comparison in Case 2 for testing #1-2-3-4. 

It can be understood from Figure 6.25 that, 𝜐-SVR with linear kernel has the best 

predictions, as also can be seen from Figure 6.24. Furthermore, the minimum errors 

and maximum Pseudo-R2 value are in 𝜐-SVR with linear kernel. Additionally, the 

best predictors are seemed to be linear kernel methods as in the third scenario. It is 

quite obvious that RBF kernels do not generate meaningful results. 

6.2.4 Testing #1-5-10-14 

In this testing scenario, the ROP values of the inputs numbered #1-5-10-14 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.26. 
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Figure 6.26 : Cost graphics of Case 2 for testing #1-5-10-14. 

The basic statistical analysis of the whole data set is given in Table 6.31. 

Table 6.31 : Statistics of the data set in Case 2 for testing #1-5-10-14. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,940 -4014 4510 -12705 -0,533 -0,266 -0,398 -0,280 

Median 2,851 -3902 5201 -10219 -0,507 -0,268 -0,365 -0,165 

Variance 0,209 6164838 4509132 55304663 0,141 0,017 0,064 0,260 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.32. 

Table 6.32 : Statistical results of MR in Case 2 for learning and testing #1-5-10-14. 

RSSdefault R2 Adjusted R2 p-value 

0,66 0,88 0,78 0,003 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.33. 
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Table 6.33 : Statistical results of the methods in Case 2 for testing #1-5-10-14. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,55 0,09 0,39 0,22 0,41 

Pseudo-R2 0,16 0,87 0,41 0,66 0,37 

C  2 1,05 2 0,845 

# of SV  13 14 13 14 

CV Error  0,11 0,10 0,11 0,12 

RMSE 0,37 0,15 0,31 0,24 0,32 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.34. The ROP values are in 

unit of [ft/hr]. 

Table 6.34 : ROP predictions in Case 2 for #1-5-10-14. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 13,6 20,6 16,8 25,6 17,2 23,0 

5 10,7 15,4 16,8 19,7 17,2 16,0 

10 12,5 19,2 16,8 23,5 17,2 15,7 

14 7,5 8,0 16,3 9,0 16,8 9,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.27. 

 

Figure 6.27 : ROP prediction trends in Case 2 for testing #1-5-10-14. 

The comparison of each prediction with actual ROP is plotted in Figure 6.28. 
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Figure 6.28 : ROP prediction comparison in Case 2 for testing #1-5-10-14. 

For testing #1-5-10-14, 𝜀-SVR with linear kernel is seemed to be the best predictor. 

Likewise, 𝜀-SVR with linear kernel has all the minimum errors and maximum 

Pseudo-R2 value. In addition, the best predictors are seemed to be linear kernel 

methods rather than MR. Similarly, RBF kernels do not seemed to be suitable for this 

case as good predictive methods. 

The cumulative comparative statistical results for Case 2 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 2 in terms of RSSmodel is shown in Figure 6.29. 
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Figure 6.29 : RSSmodel values for Case 2. 

It can be seen from Figure 6.29 that MR has the maximum RSS values in most of the 

scenarios. On the other hand, linear kernels have less RSS values, especially 𝜀-SVR 

with linear kernel has the minimum RSS for the most scenarios. 

The comparison of the scenarios in Case 2 in terms of CV error is shown in Figure 

6.30. 

 

Figure 6.30 : CV error values for Case 2. 

In overall, 𝜀-SVR with RBF kernel has the best cross validation result among other 

SVR methods. 

The testing errors of Case 2 in terms of RMSE is given in Figure 6.31. 
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Figure 6.31 : Testing errors for Case 2. 

As shown in Figure 6.31, 𝜀-SVR with linear kernel has the minimum testing error for 

the most of the scenarios. 

The Pseudo-R2 comparison for Case 2 is given in Figure 6.32. 

 

Figure 6.32 : Pseudo-R2 values for Case 2. 

It can be understood from Figure 6.32 that 𝜀-SVR with linear kernel can be preferred 

as a predicting method for these kind of scenarios. However, it is seen that the results 

are changeable according to the tested data inputs. 
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6.3 Case 3: Training Odd Numbered Data Points 

In Case 3, the odd numbered data points of Table A.1 are used as training data set. 

The coefficients of MR analysis for this training data are given in Table 6.35. 

Table 6.35 : Multiple regression coefficients of Case 3. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,611E+00 2,299E-04 2,763E-04 4,796E-05 2,935E-01 9,691E-02 3,088E-01 7,415E-02 

6.3.1 Testing #2-4-6-8 

In this testing scenario, the ROP values of the inputs numbered #2-4-6-8 are desired 

to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.33. 

 

Figure 6.33 : Cost graphics of Case 3 for testing #2-4-6-8. 
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The basic statistical analysis of the whole data set is given in Table 6.36. 

Table 6.36 : Statistics of the data set in Case 3 for testing #2-4-6-8. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,852 -2222 2390 -10711 -0,787 -0,210 -0,423 -0,126 

Median 2,773 -1475 316 -7675 -0,782 -0,261 -0,380 -0,037 

Variance 0,209 5227401 6941166 65892589 0,206 0,041 0,056 0,155 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.37. 

Table 6.37 : Statistical results of MR in Case 3 for learning and testing #2-4-6-8. 

RSSdefault R2 Adjusted R2 p-value 

0,38 0,97 0,94 6,478E-05 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.38. 

Table 6.38 : Statistical results of the methods in Case 3 for testing #2-4-6-8. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,24 0,27 0,37 0,24 0,43 

Pseudo-R2 0,37 0,29 0,02 0,36 -0,14 

C  1,775 4,775 3,935 6,15 

# of SV  12 14 13 15 

CV Error  0,04 0,09 0,02 0,07 

RMSE 0,24 0,26 0,30 0,25 0,33 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.39. The ROP values are in 

unit of [ft/hr]. 

Table 6.39 : ROP predictions in Case 3 for #2-4-6-8. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

2 19,1 19,2 16,8 19,0 16,6 22,0 

4 15,3 16,0 16,0 15,3 16,7 10,0 

6 15,6 15,8 14,6 15,7 14,1 19,0 

8 16,2 16,8 15,3 16,4 16,0 16,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.34. 
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Figure 6.34 : ROP prediction trends in Case 3 for testing #2-4-6-8. 

The comparison of each prediction with actual ROP is plotted in Figure 6.35. 

 

Figure 6.35 : ROP prediction comparison in Case 3 for testing #2-4-6-8. 
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It can be seen from Figure 6.35 and 6.34 that the best predictive methods in Case 3 

for testing #2-4-6-8 are MR and SVR methods with linear kernel, especially 𝜐-SVR, 

since they have the minimum error and maximum Pseudo-R2 ratio among the other 

methods. 

6.3.2 Testing #12-14-16-18 

In this testing scenario, the ROP values of the inputs numbered #12-14-16-18 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.36. 

 

Figure 6.36 : Cost graphics of Case 3 for testing #12-14-16-18. 

The basic statistical analysis of the whole data set is given in Table 6.40. 
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Table 6.40 : Statistics of the data set in Case 3 for testing #12-14-16-18. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,895 -2663 3064 -13182 -0,646 -0,244 -0,391 -0,112 

Median 2,766 -2315 3588 -8406 -0,571 -0,261 -0,310 -0,024 

Variance 0,265 4293926 6092889 86121025 0,183 0,034 0,062 0,162 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.41. 

Table 6.41 : Statistical results of MR in Case 3 for testing #12-14-16-18. 

RSSdefault R2 Adjusted R2 p-value 

0,38 0,97 0,94 6,478E-05 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.42. 

Table 6.42 : Statistical results of the methods in Case 3 for testing #12-14-16-18. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,24 0,16 0,14 0,19 0,21 

Pseudo-R2 0,83 0,88 0,90 0,86 0,85 

C  2,35 4,775 5,13 5,425 

# of SV  12 14 13 15 

CV Error  0,03 0,12 0,02 0,08 

RMSE 0,24 0,20 0,19 0,22 0,23 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.43. The ROP values are in 

unit of [ft/hr]. 

Table 6.43 : ROP predictions in Case 3 for #12-14-16-18. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

12 8,8 9,4 10,3 9,1 10,0 13,5 

14 7,9 8,0 8,1 7,9 7,6 9,6 

16 33,8 31,6 37,4 32,3 38,3 31,4 

18 42,3 39,4 43,2 40,3 45,9 38,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.37. 
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Figure 6.37 : ROP prediction trends in Case 3 for testing #12-14-16-18. 

The comparison of each prediction with actual ROP is plotted in Figure 6.38. 

 

Figure 6.38 : ROP prediction comparison in Case 3 for testing #12-14-16-18. 
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For this scenario, the maximum correlation seems to be 𝜀-SVR with linear kernel 

from Figure 6.37 and 6.38. However, 𝜀-SVR with RBF kernel has the maximum 

Pseudo-R2 value, the minimum errors, and the minimum RSSmodel. On the other 

hand, residuals of 𝜀-SVR with RBF kernel are greater than 𝜀-SVR with linear 

kernel’s. Thus, any judgement should lead a misleading decision for this situation. 

Further calculations for similar scenarios should be repeated. 

6.3.3 Testing #22-24-26-28 

In this testing scenario, the ROP values of the inputs numbered #22-24-26-28 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.39. 

 

Figure 6.39 : Cost graphics of Case 3 for testing #22-24-26-28. 

The basic statistical analysis of the whole data set is given in Table 6.44. 
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Table 6.44 : Statistics of the data set in Case 3 for testing #22-24-26-28. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,863 -3275 3587 -12054 -0,656 -0,245 -0,438 -0,225 

Median 2,766 -3250 5031 -9180 -0,571 -0,261 -0,400 -0,130 

Variance 0,193 5552579 6745246 59969496 0,188 0,031 0,063 0,190 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.45. 

Table 6.45 : Statistical results of MR in Case 3 for learning and testing #22-24-26-

28. 

RSSdefault R2 Adjusted R2 p-value 

0,08 0,97 0,94 6,748E-05 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.46. 

Table 6.46 : Statistical results of the methods in Case 3 for testing #22-24-26-28. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,16 0,15 0,12 0,16 0,10 

Pseudo-R2 -0,95 -0,85 -0,48 -0,94 -0,25 

C  2,355 4,775 6,72 6,85 

# of SV  12 14 13 15 

CV Error  0,11 0,10 0,02 0,11 

RMSE 0,20 0,20 0,18 0,20 0,16 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.47. The ROP values are in 

unit of [ft/hr]. 

Table 6.47 : ROP predictions in Case 3 for #22-24-26-28. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

22 25,1 25,0 18,3 24,7 18,0 19,0 

24 22,4 21,9 17,5 22,2 17,3 20,2 

26 17,7 17,6 18,9 17,8 18,2 14,8 

28 18,3 18,3 18,3 18,7 17,9 14,9 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.40. 
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Figure 6.40 : ROP prediction trends in Case 3 for testing #22-24-26-28. 

The comparison of each prediction with actual ROP is plotted in Figure 6.41. 

 

Figure 6.41 : ROP prediction comparison in Case 3 for testing #22-24-26-28. 
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It can be understood from Figure 6.41 that, SVR methods with RBF kernel seemed to 

be the best predictors. However, in Figure 6.40 it can be seen that none of the 

methods have good approximation to the prediction model. Furthermore, all the 

models have negative Pseudo-R2 value, which means the predictor model is worse 

than our default model. 

6.3.4 Testing #2-10-20-30 

In this testing scenario, the ROP values of the inputs numbered #2-10-20-30 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.42. 

 

Figure 6.42 : Cost graphics of Case 3 for testing #2-10-20-30. 

The basic statistical analysis of the whole data set is given in Table 6.48. 
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Table 6.48 : Statistics of the data set in Case 3 for testing #2-10-20-30. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,822 -2934 3040 -11500 -0,711 -0,228 -0,431 -0,231 

Median 2,754 -2315 3588 -7950 -0,678 -0,261 -0,400 -0,120 

Variance 0,221 8011840 7518806 72720305 0,199 0,045 0,065 0,235 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.49. 

Table 6.49 : Statistical results of MR in Case 3 for learning and testing #2-10-20-30. 

RSSdefault R2 Adjusted R2 p-value 

0,63 0,97 0,94 6,478E-05 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.50. 

Table 6.50 : Statistical results of the methods in Case 3 for testing #2-10-20-30. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,53 0,41 0,49 0,46 0,51 

Pseudo-R2 0,15 0,35 0,23 0,28 0,19 

C  2,235 4,725 2,99 5,505 

# of SV  12 14 13 15 

CV Error  0,03 0,12 0,03 0,09 

RMSE 0,37 0,32 0,35 0,34 0,36 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.51. The ROP values are in 

unit of [ft/hr]. 

Table 6.51 : ROP predictions in Case 3 for #2-10-20-30. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

2 19,1 19,2 16,8 19,0 16,6 22,0 

10 16,9 17,1 15,2 17,1 15,6 15,7 

20 24,8 23,2 18,8 23,9 19,2 12,5 

30 7,4 8,7 14,8 8,3 14,8 9,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.43. 
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Figure 6.43 : ROP prediction trends in Case 3 for testing #2-10-20-30. 

The comparison of each prediction with actual ROP is plotted in Figure 6.44. 

 

Figure 6.44 : ROP prediction comparison in Case 3 for testing #2-10-20-30. 
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For testing #2-10-20-30, 𝜀-SVR with linear kernel can be considered as the best 

predictor. Likewise, 𝜀-SVR with linear kernel has all the minimum errors and 

maximum Pseudo-R2 value. Additionally, the best predictors are seemed to be linear 

kernel methods rather than MR. Moreover, RBF kernels do not seemed to be suitable 

for this case as good predictive methods. 

The cumulative comparative statistical results for Case 3 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 3 in terms of RSSmodel is shown in Figure 6.45. 

 

Figure 6.45 : RSSmodel values for Case 3. 

It can be seen from Figure 6.45 that MR has the maximum RSS values in most of the 

scenarios. On the contrary, linear kernels have less RSS values, especially 𝜀-SVR 

with linear kernel has the minimum RSS for the most scenarios. 

The comparison of the scenarios in Case 3 in terms of CV error is shown in Figure 

6.46. 
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Figure 6.46 : CV error values for Case 3. 

In Figure 6.46 it can be said that, in overall, SVR methods with linear kernel have the 

best cross validation results. 

The testing errors of Case 3 in terms of RMSE is given in Figure 6.47. 

 

Figure 6.47 : Testing errors for Case 3. 

As shown in Figure 6.47, SVR methods with linear kernel have the minimum testing 

error for the most of the scenarios. 

The Pseudo-R2 comparison for Case 3 is given in Figure 6.48. 
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Figure 6.48 : Pseudo-R2 values for Case 3. 

It can be understood from Figure 6.48 that 𝜀-SVR with linear kernel and MR can be 

preferred as a predicting method for most of the scenarios. However, there are 

negative results, which means the predicting model is not good enough. The results 

seems unstable. Predicting deep data inputs do not give satisfactory results. 

6.4 Case 4: Training Even Numbered Data Points 

In Case 4, the even numbered data points of Table A.1 are used as training data set. 

The coefficients of MR analysis for this training data are given in Table 6.52. 

Table 6.52 : Multiple regression coefficients of Case 4. 

a1 a2 a3 a4 a5 a6 a7 a8 

4,133E+00 1,600E-04 1,394E-04 3,835E-05 7,668E-01 3,250E-01 4,638E-01 2,327E-01 

6.4.1 Testing #1-3-5-7 

In this testing scenario, the ROP values of the inputs numbered #1-3-5-7 are desired 

to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.49. 
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Figure 6.49 : Cost graphics of Case 4 for testing #1-3-5-7. 

The basic statistical analysis of the whole data set is given in Table 6.53. 

Table 6.53 : Statistics of the data set in Case 4 for testing #1-3-5-7. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,792 -2546 2578 -10588 -0,750 -0,214 -0,421 -0,231 

Median 2,754 -1775 709 -7833 -0,678 -0,211 -0,380 -0,070 

Variance 0,141 7863902 7682863 54500063 0,192 0,048 0,067 0,141 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.54. 

Table 6.54 : Statistical results of MR in Case 4 for learning and testing #1-3-5-7. 

RSSdefault R2 Adjusted R2 p-value 

0,19 0,89 0,77 0,008 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.55. 
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Table 6.55 : Statistical results of the methods in Case 4 for testing #1-3-5-7. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,21 0,09 0,34 0,11 0,36 

Pseudo-R2 -0,09 0,52 -0,76 0,41 -0,87 

C  1,63 3,01 1,11 2,97 

# of SV  14 14 12 15 

CV Error  0,06 0,10 0,08 0,08 

RMSE 0,23 0,15 0,29 0,17 0,30 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.56. The ROP values are in 

unit of [ft/hr]. 

Table 6.56 : ROP predictions in Case 4 for #1-3-5-7. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 29,0 27,6 18,9 28,0 19,0 23,0 

3 10,5 12,7 18,5 12,5 18,7 14,0 

5 12,8 14,7 10,8 14,5 10,7 16,0 

7 15,2 16,0 17,0 16,4 17,3 13,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.50. 

 

Figure 6.50 : ROP prediction trends in Case 4 for testing #1-3-5-7. 

The comparison of each prediction with actual ROP is plotted in Figure 6.51. 



130 

 

Figure 6.51 : ROP prediction comparison in Case 4 for testing #1-3-5-7. 

It can be seen from Figure 6.51 and 6.50 that the best predictive methods in Case 4 

for testing #1-3-5-7 are the SVR methods with linear kernel, especially 𝜀-SVR, since 

they have the minimum RSS and RMSE and maximum Pseudo-R2 ratio among the 

other methods. 

6.4.2 Testing #11-13-15-17 

In this testing scenario, the ROP values of the inputs numbered #11-13-15-17 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.52. 
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Figure 6.52 : Cost graphics of Case 4 for testing #11-13-15-17. 

The basic statistical analysis of the whole data set is given in Table 6.57. 

Table 6.57 : Statistics of the data set in Case 4 for testing #11-13-15-17. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,784 -2972 3151 -13304 -0,617 -0,277 -0,342 -0,206 

Median 2,741 -2315 3588 -10118 -0,571 -0,261 -0,330 -0,070 

Variance 0,236 6460831 6537582 83289886 0,142 0,029 0,049 0,156 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.58. 

Table 6.58 : Statistical results of MR in Case 4 for testing #11-13-15-17. 

RSSdefault R2 Adjusted R2 p-value 

1,89 0,89 0,77 0,008 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.59. 
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Table 6.59 : Statistical results of the methods in Case 4 for testing #11-13-15-17. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,13 0,09 0,36 0,15 0,32 

Pseudo-R2 0,93 0,95 0,81 0,92 0,83 

C  0,98 2,925 1,22 3,08 

# of SV  14 14 13 15 

CV Error  0,08 0,12 0,08 0,11 

RMSE 0,18 0,15 0,30 0,19 0,28 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.60. The ROP values are in 

unit of [ft/hr]. 

Table 6.60 : ROP predictions in Case 4 for #11-13-15-17. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

11 15,2 16,3 16,0 16,5 16,5 14,0 

13 8,5 8,0 10,6 8,6 10,1 6,2 

15 18,3 16,5 18,1 17,0 17,3 15,5 

17 45,4 41,6 35,7 39,8 34,7 42,7 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.53. 

 

Figure 6.53 : ROP prediction trends in Case 4 for testing #11-13-15-17. 

The comparison of each prediction with actual ROP is plotted in Figure 6.54. 
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Figure 6.54 : ROP prediction comparison in Case 4 for testing #11-13-15-17. 

For this scenario, the maximum correlation seems to be 𝜀-SVR with linear kernel 

from Figure 6.54 and 6.53. Besides, 𝜀-SVR with linear kernel has the maximum 

Pseudo-R2 value, the minimum errors, and the minimum RSSmodel value. Thus, 𝜀-

SVR with linear kernel is the best predicting method. 

6.4.3 Testing #21-23-25-27 

In this testing scenario, the ROP values of the inputs numbered #21-23-25-27 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.55. 
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Figure 6.55 : Cost graphics of Case 4 for testing #21-23-25-27. 

The basic statistical analysis of the whole data set is given in Table 6.61. 

Table 6.61 : Statistics of the data set in Case 4 for testing #21-23-25-27. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,829 -3578 3753 -12090 -0,687 -0,259 -0,352 -0,320 

Median 2,809 -3795 5173 -10118 -0,659 -0,249 -0,330 -0,160 

Variance 0,152 6967823 6846027 56090453 0,144 0,028 0,049 0,245 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.62. 

Table 6.62 : Statistical results of MR in Case 4 for learning and testing #21-23-25-

27. 

RSSdefault R2 Adjusted R2 p-value 

0,40 0,89 0,77 0,008 
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The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.63. 

Table 6.63 : Statistical results of the methods in Case 4 for testing #21-23-25-27. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,78 0,69 0,38 0,93 0,46 

Pseudo-R2 -0,92 -0,71 0,06 -1,29 -0,13 

C  0,98 3,07 0,845 3,07 

# of SV  14 14 12 15 

CV Error  0,08 0,10 0,06 0,09 

RMSE 0,44 0,42 0,31 0,48 0,34 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.64. The ROP values are in 

unit of [ft/hr]. 

Table 6.64 : ROP predictions in Case 4 for #21-23-25-27. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

21 8,9 9,2 12,0 8,1 11,2 21,1 

23 17,0 17,8 22,9 17,2 22,6 18,7 

25 23,7 26,6 26,2 25,6 25,3 27,1 

27 12,5 12,8 14,4 12,7 14,1 12,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.56. 

 

Figure 6.56 : ROP prediction trends in Case 4 for testing #21-23-25-27. 

The comparison of each prediction with actual ROP is plotted in Figure 6.57. 
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Figure 6.57 : ROP prediction comparison in Case 4 for testing #21-23-25-27. 

It can be understood from Figure 6.57 that, SVR methods with linear kernel seemed 

to be the best predictors. However, in Figure 6.56 it can be seen that none of the 

methods have good approximation to the prediction model. Because, the residual of 

one data point is generating high deviation. The reason for that situation is the 

insufficient input number for the learning process. 

6.4.4 Testing #1-9-19-29 

In this testing scenario, the ROP values of the inputs numbered #1-9-19-29 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.58. 
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Figure 6.58 : Cost graphics of Case 4 for testing #1-9-19-29. 

The basic statistical analysis of the whole data set is given in Table 6.65. 

Table 6.65 : Statistics of the data set in Case 4 for testing #1-9-19-29. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,854 -3082 3183 -11154 -0,607 -0,263 -0,432 -0,234 

Median 2,766 -2900 4733 -8277 -0,549 -0,274 -0,420 -0,130 

Variance 0,188 8062064 7638290 55711976 0,143 0,039 0,068 0,145 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.66. 

Table 6.66 : Statistical results of MR in Case 4 for learning and testing #1-9-19-29. 

RSSdefault R2 Adjusted R2 p-value 

1,10 0,89 0,77 0,008 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.67. 
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Table 6.67 : Statistical results of the methods in Case 4 for testing #1-9-19-29. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,14 0,16 0,11 0,20 0,13 

Pseudo-R2 0,87 0,85 0,90 0,82 0,88 

C  1,27 3,095 1,185 3,35 

# of SV  14 14 13 15 

CV Error  0,14 0,08 0,08 0,10 

RMSE 0,19 0,20 0,16 0,22 0,18 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.68. The ROP values are in 

unit of [ft/hr]. 

Table 6.68 : ROP predictions in Case 4 for #1-9-19-29. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 29,0 27,6 18,9 28,3 18,9 23,0 

9 16,6 16,8 16,4 17,4 16,4 15,9 

19 32,7 31,3 33,8 29,9 33,3 43,4 

29 12,8 12,0 12,8 12,8 12,0 13,8 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.59. 

 

Figure 6.59 : ROP prediction trends in Case 4 for testing #1-9-19-29. 

The comparison of each prediction with actual ROP is plotted in Figure 6.60. 
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Figure 6.60 : ROP prediction comparison in Case 4 for testing #1-9-19-29. 

For testing #1-9-19-29, SVR methods with RBF kernel can be considered as the best 

predictors. Likewise, 𝜀-SVR with RBF kernel has all the minimum errors and 

maximum Pseudo-R2 value. Additionally, 𝜐-SVR with RBF kernel has the minimum 

RSSmodel value. 

The cumulative comparative statistical results for Case 4 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 4 in terms of RSSmodel is shown in Figure 6.61. 
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Figure 6.61 : RSSmodel values for Case 4. 

It can be seen from Figure 6.61 that SVR methods with RBF kernel have the 

maximum RSS values in the first two scenarios. However, the results are the exact 

opposite for the third and fourth scenarios. 

The comparison of the scenarios in Case 4 in terms of CV error is shown in Figure 

6.62. 

 

Figure 6.62 : CV error values for Case 4. 

In Figure 6.62 it can be said that, the results are variable. In summary, linear kernels 

can be considered as better than RBF kernels in terms of CV error. 

The testing errors of Case 4 in terms of RMSE is given in Figure 6.63. 
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Figure 6.63 : Testing errors for Case 4. 

As shown in Figure 6.63, the results are similar with Figure 6.61. SVR methods with 

RBF kernel have the maximum error in the first two scenarios. However, the results 

are total opposite for other scenarios. 

The Pseudo-R2 comparison for Case 4 is given in Figure 6.64. 

 

Figure 6.64 : Pseudo-R2 values for Case 4. 

It can be understood from Figure 6.64 that 𝜀-SVR with linear kernel can be preferred 

as a predicting method for most of the scenarios. However, same as the previous 

case, there are negative results, which means the models are not good enough to 

make accurate predictions. 
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6.5 Case 5: Training Several 24 Data Points 

In Case 5, several 24 data points of Table A.1 are used as training data set. 

6.5.1 Training first 24, testing last 6 data inputs 

In this testing scenario, the ROP values of the last 6 data inputs are desired to be 

predicted. The coefficients of MR analysis for this training data are given in Table 

6.69. 

Table 6.69 : Multiple regression coefficients in Case 5 for testing last 6. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,851E+00 1,536E-04 1,827E-04 4,302E-05 4,815E-01 3,086E-01 4,408E-01 1,273E-01 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.65. 

 

Figure 6.65 : Cost graphics of Case 5 for testing last 6. 
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The basic statistical analysis of the whole data set is given in Table 6.70. 

Table 6.70 : Statistics of the data set in Case 5 for testing last 6. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,833 -2952 3135 -11916 -0,680 -0,248 -0,401 -0,213 

Median 2,760 -2608 4160 -8342 -0,647 -0,261 -0,380 -0,095 

Variance 0,199 6530787 7008892 66623679 0,174 0,035 0,060 0,181 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.71. 

Table 6.71 : Statistical results of MR in Case 5 for learning and testing last 6. 

RSSdefault R2 Adjusted R2 p-value 

0,87 0,85 0,78 1,90E-05 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.72. 

Table 6.72 : Statistical results of the methods in Case 5 for testing last 6. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,10 0,08 0,78 1,15 0,72 

Pseudo-R2 0,88 0,91 0,11 -0,31 0,17 

C  1,75 1,605 1,11 1,17 

# of SV  19 18 15 18 

CV Error  0,08 0,06 0,08 0,11 

RMSE 0,13 0,12 0,36 0,44 0,35 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.73. The ROP values are in 

unit of [ft/hr]. 

Table 6.73 : ROP predictions in Case 5 for last 6. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

25 27,1 27,5 24,6 32,2 24,7 27,1 

26 16,3 15,2 18,8 20,1 18,8 14,8 

27 13,8 13,8 16,6 17,3 17,1 12,6 

28 19,5 18,2 20,6 24,7 19,4 14,9 

29 13,3 11,9 18,3 18,6 18,0 13,8 

30 9,9 9,9 17,5 19,2 17,3 9,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.66. 
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Figure 6.66 : ROP prediction trends in Case 5 for testing last 6. 

The comparison of each prediction with actual ROP is plotted in Figure 6.67. 

 

Figure 6.67 : ROP prediction comparison in Case 5 for testing last 6. 
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It can be seen from Figure 6.67 and 6.66 that the best predictive methods in Case 5 

for testing last 6 are MR and 𝜀-SVR with linear kernel, since they have the minimum 

RSS and RMSE and maximum Pseudo-R2 ratio among the other methods. 

6.5.2 Training last 24, testing first 6 data inputs 

In this testing scenario, the ROP values of the first 6 data inputs are desired to be 

predicted. The coefficients of MR analysis for this training data are given in Table 

6.74. 

Table 6.74 : Multiple regression coefficients in Case 5 for testing first 6. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,586E+00 1,909E-04 2,265E-04 4,371E-05 3,484E-01 -2,815E-01 5,072E-01 1,948E-01 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.68. 

 

Figure 6.68 : Cost graphics of Case 5 for testing first 6. 
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The basic statistical analysis of the whole data set is given in Table 6.75. 

Table 6.75 : Statistics of the data set in Case 5 for testing first 6. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,833 -2952 3135 -11916 -0,680 -0,248 -0,401 -0,213 

Median 2,760 -2608 4160 -8342 -0,647 -0,261 -0,380 -0,095 

Variance 0,199 6530787 7008892 66623679 0,174 0,035 0,060 0,181 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.76. 

Table 6.76 : Statistical results of MR in Case 5 for testing first 6. 

RSSdefault R2 Adjusted R2 p-value 

0,49 0,90 0,86 4,76E-07 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.77. 

Table 6.77 : Statistical results of the methods in Case 5 for testing first 6. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,59 0,29 0,64 0,64 0,65 

Pseudo-R2 -0,19 0,40 -0,30 -0,29 -0,31 

C  0,94 4,37 2,915 1,37 

# of SV  16 21 14 21 

CV Error  0,07 0,07 0,05 0,06 

RMSE 0,31 0,22 0,33 0,33 0,33 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.78. The ROP values are in 

unit of [ft/hr]. 

Table 6.78 : ROP predictions in Case 5 for first 6. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 17,9 23,1 14,2 17,2 14,2 23,0 

2 14,9 17,4 13,9 14,5 13,9 22,0 

3 9,5 11,1 13,9 9,4 14,0 14,0 

4 14,6 13,9 12,9 14,7 12,7 10,0 

5 14,3 13,3 12,8 14,5 13,1 16,0 

6 14,5 15,4 14,3 14,6 13,7 19,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.69. 
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Figure 6.69 : ROP prediction trends in Case 5 for testing first 6. 

The comparison of each prediction with actual ROP is plotted in Figure 6.70. 

 

Figure 6.70 : ROP prediction comparison in Case 5 for testing first 6. 
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For this scenario, the best approach is seems to be in 𝜀-SVR with linear kernel, 

which can be understood from Figure 6.70 and 6.69. Besides, 𝜀-SVR with linear 

kernel has the maximum Pseudo-R2 value, the minimum errors, and the minimum 

RSSmodel value. 

6.5.3 Training mid 24, testing #1-2-3-28-29-30 

In this testing scenario, the ROP values of the inputs numbered #1-2-3-28-29-30 are 

desired to be predicted. The coefficients of MR analysis for this training data are 

given in Table 6.79. 

Table 6.79 : Multiple regression coefficients in Case 5 for testing #1-2-3-28-29-30. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,774E+00 1,775E-04 2,008E-04 4,465E-05 5,175E-01 -1,508E-01 4,883E-01 1,156E-01 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.71. 

 

Figure 6.71 : Cost graphics of Case 5 for testing #1-2-3-28-29-30. 
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The basic statistical analysis of the whole data set is given in Table 6.80. 

Table 6.80 : Statistics of the data set in Case 5 for testing #1-2-3-28-29-30. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,833 -2952 3135 -11916 -0,680 -0,248 -0,401 -0,213 

Median 2,760 -2608 4160 -8342 -0,647 -0,261 -0,380 -0,095 

Variance 0,199 6530787 7008892 66623679 0,174 0,035 0,060 0,181 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.81. 

Table 6.81 : Statistical results of MR in Case 5 for learning and testing #1-2-3-28-

29-30. 

RSSdefault R2 Adjusted R2 p-value 

0,69 0,87 0,81 6,45E-06 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.82. 

Table 6.82 : Statistical results of the methods in Case 5 for testing #1-2-3-28-29-30. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,38 0,92 0,75 0,53 0,74 

Pseudo-R2 0,46 -0,33 -0,08 0,24 -0,07 

C  0,36 2,405 0,48 2,35 

# of SV  19 20 15 21 

CV Error  0,08 0,07 0,08 0,08 

RMSE 0,25 0,39 0,35 0,30 0,35 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.83. The ROP values are in 

unit of [ft/hr]. 

Table 6.83 : ROP predictions in Case 5 for #1-2-3-28-29-30. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 20,5 21,6 14,5 20,2 14,5 23,0 

2 15,1 14,9 13,3 16,2 13,3 22,0 

3 9,3 8,6 14,1 10,4 14,1 14,0 

28 18,3 22,1 18,5 19,5 18,5 14,9 

29 13,2 15,8 15,0 15,6 15,0 13,8 

30 10,0 16,3 14,5 14,7 14,5 9,0 
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The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.72. 

 

Figure 6.72 : ROP prediction trends in Case 5 for testing #1-2-3-28-29-30. 

The comparison of each prediction with actual ROP is plotted in Figure 6.73. 

 

Figure 6.73 : ROP prediction comparison in Case 5 for testing #1-2-3-28-29-30. 
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It can be understood from Figure 6.73 and 6.72 that, MR seemed to be the best 

predictor method for this scenario. Moreover, MR has the maximum Pseudo-R2 

value, minimum RMSE and RSS among other methods. 

6.5.4 Training several 24, testing #4-7-10-18-22-27 

In this testing scenario, the ROP values of the inputs numbered #4-7-10-18-22-27 are 

desired to be predicted while remaining data are trained. The coefficients of MR 

analysis for this training data are given in Table 6.84. 

Table 6.84 : Multiple regression coefficients in Case 5 for testing #4-7-10-18-22-27. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,717E+00 1,701E-04 2,006E-04 4,528E-05 2,710E-01 4,090E-02 4,611E+00 2,365E-01 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.74. 

 

Figure 6.74 : Cost graphics of Case 5 for testing #4-7-10-18-22-27. 
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The basic statistical analysis of the whole data set is given in Table 6.85. 

Table 6.85 : Statistics of the data set in Case 5 for testing #4-7-10-18-22-27. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,833 -2952 3135 -11916 -0,680 -0,248 -0,401 -0,213 

Median 2,760 -2608 4160 -8342 -0,647 -0,261 -0,380 -0,095 

Variance 0,199 6530787 7008892 66623679 0,174 0,035 0,060 0,181 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.86. 

Table 6.86 : Statistical results of MR in Case 5 for learning and testing #4-7-10-18-

22-27. 

RSSdefault R2 Adjusted R2 p-value 

1,14 0,89 0,85 1,11E-06 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.87. 

Table 6.87 : Statistical results of the methods in Case 5 for testing #4-7-10-18-22-

27. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,47 0,34 0,35 0,49 0,35 

Pseudo-R2 0,59 0,70 0,69 0,57 0,69 

C  0,9 1,47 0,9 1,285 

# of SV  20 21 16 19 

CV Error  0,05 0,09 0,06 0,08 

RMSE 0,28 0,24 0,24 0,29 0,24 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.88. The ROP values are in 

unit of [ft/hr]. 

Table 6.88 : ROP predictions in Case 5 for #4-7-10-18-22-27. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

4 17,8 16,8 16,2 18,3 15,8 10,0 

7 16,4 16,1 17,6 16,8 17,6 13,0 

10 17,9 17,4 17,5 18,0 17,8 15,7 

18 39,6 37,1 34,1 35,6 32,7 38,6 

22 24,3 21,3 18,8 23,1 18,9 19,0 

27 13,0 13,2 13,2 13,2 13,5 12,6 
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The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.75. 

 

Figure 6.75 : ROP prediction trends in Case 5 for testing #4-7-10-18-22-27. 

The comparison of each prediction with actual ROP is plotted in Figure 6.76. 

 

Figure 6.76 : ROP prediction comparison in Case 5 for testing #4-7-10-18-22-27. 
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For testing #4-7-10-18-22-27, 𝜀-SVR with linear kernel and other RBF kernels can 

be considered as the best predictors. Similarly, these methods have all the minimum 

errors and maximum Pseudo-R2 value. 

The cumulative comparative statistical results for Case 5 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 4 in terms of RSSmodel is shown in Figure 6.77. 

 

Figure 6.77 : RSSmodel values for Case 5. 

It can be seen from Figure 6.77 that 𝜀-SVR with linear kernel has the minimum RSS 

values for most of the scenarios. On the other hand, RBF kernels and 𝜐-SVR with 

linear kernel have maximum RSS in Case 5. 

Additionally, for almost all the scenarios, MR gives the highest RSS value among 

other methods. This situation it can be said that, SVR methods with linear kernel 

may be considered as a better predictor than MR. 

The comparison of the scenarios in Case 5 in terms of CV error is shown in Figure 

6.78. 
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Figure 6.78 : CV error values for Case 5. 

From Figure 6.78 it can be seen that, the results are variable, similar to the previous 

case. It is hard to make any generalization for this case in terms of CV error. 

The testing errors of Case 5 in terms of RMSE is given in Figure 6.79. 

 

Figure 6.79 : Testing errors for Case 5. 

As shown in Figure 6.79, the results are similar with Figure 6.77. 𝜀-SVR with linear 

kernel can be taken into consideration as better predictor than other methods for most 

of the scenarios. 

The Pseudo-R2 comparison for Case 5 is given in Figure 6.80. 
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Figure 6.80 : Pseudo-R2 values for Case 5. 

It can be understood from Figure 6.80 that 𝜀-SVR with linear kernel can be preferred 

as a predicting method for most of the scenarios. However, same as the previous 

cases, there are negative results, which means the models are not good enough to 

make accurate predictions. Similarly to the previous calculations, there are quite 

unstable results. 

6.6 Case 6: Training All Data Points 

In Case 6, all data points of Table A.1 are used as training data set. The comparison 

of the coefficients of MR analysis founded in this study with the study of Bourgoyne 

Jr. and Young Jr. (1974) is given in Table 6.89. 

Table 6.89 : Multiple regression coefficients of Case 6. 

 This Study B&Y 

a1 3,77E-00 3,78E-00 

a2 0,18E-03 0,17E-03 

a3 0,20E-03 0,20E-03 

a4 0,43E-04 0,43E-04 

a5 0,42E-00 0,43E-00 

a6 0,18E-00 0,21E-00 

a7 0,41E-00 0,41E-00 

a8 0,16E-00 0,16E-00 

There are slight differences between calculated coefficients and the results of the 

study of Bourgoyne Jr. and Young Jr. (1974), especially in the rotary speed 

exponent, a6. 
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6.6.1 Testing #1-2-3-4-5 

In this testing scenario, the ROP values of the inputs numbered #1-2-3-4-5 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.81. 

 

Figure 6.81 : Cost graphics of Case 6 for testing #1-2-3-4-5. 

The basic statistical analysis of the whole data set is given in Table 6.90. 

Table 6.90 : Statistics of the data set in Case 6 for testing #1-2-3-4-5. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,826 -2534 2687 -11077 -0,757 -0,206 -0,409 -0,191 

Median 2,766 -1940 2211 -7833 -0,678 -0,249 -0,380 -0,037 

Variance 0,184 6666268 7216663 61347257 0,209 0,046 0,061 0,158 
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The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.91. 

Table 6.91 : Statistical results of MR in Case 6 for learning and testing #1-2-3-4-5. 

RSSdefault R2 Adjusted R2 p-value 

0,48 0,86 0,81 5,47E-08 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.92. 

Table 6.92 : Statistical results of the methods in Case 6 for testing #1-2-3-4-5. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,22 0,23 0,17 0,23 0,19 

Pseudo-R2 0,54 0,51 0,64 0,53 0,60 

C  0,83 0,9 0,505 0,915 

# of SV  25 25 20 21 

CV Error  0,05 0,10 0,07 0,08 

RMSE 0,21 0,22 0,19 0,21 0,20 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.93. The ROP values are in 

unit of [ft/hr]. 

Table 6.93 : ROP predictions in Case 6 for #1-2-3-4-5. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 23,6 24,0 22,0 23,9 20,3 23,0 

2 19,0 20,7 18,7 20,4 19,1 22,0 

3 12,5 13,4 14,6 13,5 15,9 14,0 

4 15,2 16,0 14,4 15,9 14,2 10,0 

5 14,4 14,8 14,4 14,9 14,1 16,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.82. 
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Figure 6.82 : ROP prediction trends in Case 6 for testing #1-2-3-4-5. 

The comparison of each prediction with actual ROP is plotted in Figure 6.83. 

 

Figure 6.83 : ROP prediction comparison in Case 6 for testing #1-2-3-4-5. 
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It can be seen from Figure 6.82 and 6.83 that the best predictive methods in Case 6 

for testing #1-2-3-4-5 are 𝜀-SVR with linear and RBF kernels, since they have the 

best correlation between predicted and actual ROP values. Additionally, 𝜀-SVR with 

RBF kernel has the minimum errors and maximum Pseudo-R2 ratio among the other 

methods, as seen in the results. 

6.6.2 Testing #26-27-28-29-30 

In this testing scenario, the ROP values of the inputs numbered #26-27-28-29-30 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.84. 

 

Figure 6.84 : Cost graphics of Case 6 for testing #26-27-28-29-30. 

The basic statistical analysis of the whole data set is given in Table 6.94. 
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Table 6.94 : Statistics of the data set in Case 6 for testing #26-27-28-29-30. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,792 -3546 3586 -12764 -0,620 -0,259 -0,411 -0,246 

Median 2,701 -3055 4980 -10118 -0,549 -0,261 -0,380 -0,130 

Variance 0,185 8141601 7266751 63638495 0,177 0,032 0,071 0,166 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.95. 

Table 6.95 : Statistical results of MR in Case 6 for learning and testing #26-27-28-

29-30. 

RSSdefault R2 Adjusted R2 p-value 

0,57 0,86 0,81 5,47E-08 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.96. 

Table 6.96 : Statistical results of the methods in Case 6 for testing #26-27-28-29-30. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,05 0,04 0,01 0,06 0,04 

Pseudo-R2 0,92 0,93 0,97 0,89 0,94 

C  0,83 0,995 6,185 1,27 

# of SV  25 25 19 21 

CV Error  0,05 0,08 0,06 0,08 

RMSE 0,10 0,09 0,05 0,11 0,09 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.97. The ROP values are in 

unit of [ft/hr]. 

Table 6.97 : ROP predictions in Case 6 for #26-27-28-29-30. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

26 15,8 15,5 15,5 16,0 16,2 14,8 

27 12,9 13,2 13,2 13,4 13,8 12,6 

28 17,7 17,2 15,6 18,2 16,3 14,9 

29 12,6 12,2 14,1 12,7 14,6 13,8 

30 8,6 9,4 9,8 9,7 9,9 9,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.85. 
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Figure 6.85 : ROP prediction trends in Case 6 for testing #26-27-28-29-30. 

The comparison of each prediction with actual ROP is plotted in Figure 6.86. 

 

Figure 6.86 : ROP prediction comparison in Case 6 for testing #26-27-28-29-30. 
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As seen on Figure 6.85 and 6.86, the highest correlation is in 𝜀-SVR with RBF 

kernel. Moreover, 𝜀-SVR with RBF kernel has minimum RMSE and RSS, plus 

maximum Pseudo-R2 value. Additionally, it is noticeable that the performance of MR 

increased since training data number is set to 30. 

6.6.3 Testing #14-15-16-17-18 

In this testing scenario, the ROP values of the inputs numbered #14-15-16-17-18 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.87. 

 

Figure 6.87 : Cost graphics of Case 6 for testing #14-15-16-17-18. 

The basic statistical analysis of the whole data set is given in Table 6.98. 
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Table 6.98 : Statistics of the data set in Case 6 for testing #14-15-16-17-18. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,881 -2911 3281 -12555 -0,629 -0,248 -0,383 -0,164 

Median 2,766 -2900 4733 -8406 -0,571 -0,261 -0,380 -0,037 

Variance 0,233 5603844 6235732 73921080 0,170 0,030 0,056 0,170 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.99. 

Table 6.99 : Statistical results of MR in Case 6 for learning and testing #14-15-16-

17-18. 

RSSdefault R2 Adjusted R2 p-value 

2,23 0,86 0,81 5,47E-08 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.100. 

Table 6.100 : Statistical results of the methods in Case 6 for testing #14-15-16-17-

18. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,01 0,01 0,03 0,02 0,08 

Pseudo-R2 0,997 0,996 0,987 0,990 0,964 

C  0,785 1,415 0,775 1,12 

# of SV  25 23 20 21 

CV Error  0,05 0,08 0,06 0,08 

RMSE 0,04 0,04 0,08 0,07 0,13 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.101. The ROP values are in 

unit of [ft/hr]. 

Table 6.101 : ROP predictions in Case 6 for #14-15-16-17-18. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

14 8,9 9,2 9,9 8,9 10,7 9,6 

15 15,8 15,2 16,2 14,9 16,5 15,5 

16 31,0 30,1 31,7 29,5 30,4 31,4 

17 42,2 40,8 36,6 39,5 34,0 42,7 

18 38,8 36,9 36,9 36,1 34,6 38,6 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.88. 
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Figure 6.88 : ROP prediction trends in Case 6 for testing #14-15-16-17-18. 

The comparison of each prediction with actual ROP is plotted in Figure 6.89. 

 

Figure 6.89 : ROP prediction comparison in Case 6 for testing #14-15-16-17-18. 
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According to the Figures 6.88 and 6.89, the best predictor method for this scenario is 

MR. Furthermore, the minimum RMSE and RSS with maximum Pseudo-R2 value 

are in MR. Additionally, the second best results are in 𝜀-SVR with linear kernel. For 

this scenario, MR and 𝜀-SVR with linear kernel give similar accuracy in terms of 

ROP prediction. However, the best method is different than the previous scenario. 

6.6.4 Testing #1-6-11-16-21 

In this testing scenario, the ROP values of the inputs numbered #1-6-11-16-21 are 

desired to be predicted. 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.90. 

 

Figure 6.90 : Cost graphics of Case 6 for testing #1-6-11-16-21. 

The basic statistical analysis of the whole data set is given in Table 6.102. 
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Table 6.102 : Statistics of the data set in Case 6 for testing #1-6-11-16-21. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,863 -2770 2982 -11327 -0,694 -0,235 -0,414 -0,229 

Median 2,773 -2315 3588 -8406 -0,659 -0,261 -0,400 -0,070 

Variance 0,186 6157823 6959063 59561363 0,169 0,034 0,058 0,217 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.103. 

Table 6.103 : Statistical results of MR in Case 6 for learning and testing #1-6-11-16-

21. 

RSSdefault R2 Adjusted R2 p-value 

0,58 0,86 0,81 5,47E-08 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.104. 

Table 6.104 : Statistical results of the methods in Case 6 for testing #1-6-11-16-21. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,17 0,42 0,02 0,23 0,07 

Pseudo-R2 0,70 0,26 0,97 0,59 0,88 

C  24 1,655 1,805 0,98 

# of SV  20 21 19 21 

CV Error  0,05 0,06 0,06 0,08 

RMSE 0,18 0,29 0,06 0,22 0,12 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.105. The ROP values are in 

unit of [ft/hr]. 

Table 6.105 : ROP predictions in Case 6 for #1-6-11-16-21. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 23,6 24,1 22,0 24,2 20,4 10,0 

6 15,9 16,4 17,3 16,3 16,8 13,0 

11 14,4 15,4 15,1 15,2 15,8 15,7 

16 31,0 30,0 31,8 29,3 30,1 38,6 

21 14,6 11,4 20,2 13,5 18,3 19,0 

The cumulative comparison of actual and predicted ROP values is plotted on Figure 

6.91. 
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Figure 6.91 : ROP prediction trends in Case 6 for testing #1-6-11-16-21. 

The comparison of each prediction with actual ROP is plotted in Figure 6.92. 

 

Figure 6.92 : ROP prediction comparison in Case 6 for testing #1-6-11-16-21. 
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Correspondingly to previous scenarios, 𝜀-SVR with RBF kernel is the best predictor. 

Likewise, 𝜀-SVR with RBF kernel has all the minimum errors and maximum 

Pseudo-R2 value. In addition, the best predictors are seemed to be RBF kernel 

methods rather than MR for this scenario. 

It should be noticed that the most accurate methods in prediction changes in every 

different scenario, although the training set remains same in Case 6. Similar to the 

previous cases, an appropriate generalization is not achievable due to varying 

indicators. 

The cumulative comparative statistical results for Case 6 are placed on several charts. 

Negative values are excluded from the graphics. The comparison of the scenarios in 

Case 6 in terms of RSSmodel is shown in Figure 6.93. 

 

Figure 6.93 : RSSmodel values for Case 6. 

It can be seen from Figure 6.93 that RSS values are variable. The results are data 

dependent, and it is not a good approximation to make a generalization on the RSS of 

methods. 

The comparison of the scenarios in Case 6 in terms of CV error is shown in Figure 

6.94. 
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Figure 6.94 : CV error values for Case 6. 

In overall, SVR methods with linear kernel have the best cross validation results. 

The testing errors of Case 6 in terms of RMSE is given in Figure 6.95. 

 

Figure 6.95 : Testing errors for Case 6. 

As shown in Figure 6.95, SVR methods with RBF kernel have the minimum testing 

error in most of the scenarios. 

The Pseudo-R2 comparison for Case 6 is given in Figure 6.96. 
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Figure 6.96 : Pseudo-R2 values for Case 6. 

It can be understood from Figure 6.96 that SVR with RBF shows better accuracy in 

predicting testing data for Case 6. Furthermore, it can be understood that, the 

accuracy of prediction may vary with changing test dataset. 

6.6.5 Testing all 

In this testing scenario, all the data in Table A.1 is desired to be predicted. 

The basic statistical analysis of the whole data set is given in Table 6.106. 

Table 6.106 : Statistics of the data set in Case 6 for testing all. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 2,833 -2952 3135 -11916 -0,680 -0,248 -0,401 -0,213 

Median 2,760 -2608 4160 -8342 -0,647 -0,261 -0,380 -0,095 

Variance 0,196 6420096 6890097 65494464 0,171 0,034 0,059 0,178 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.107. 

Table 6.107 : Statistical results of MR in Case 6 for learning and testing all. 

RSSdefault R2 Adjusted R2 p-value 

5,78 0,86 0,81 5,47E-8 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.97. 
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Figure 6.97 : Cost graphics of Case 6 for testing all. 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.108. 

Table 6.108 : Statistical results of the methods in Case 6 for testing all. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 0,82 0,97 0,73 0,92 0,64 

Pseudo-R2 0,86 0,83 0,87 0,84 0,89 

C  0,995 0,91 0,75 1,295 

# of SV  25 25 20 21 

CV Error  0,06 0,08 0,06 0,09 

RMSE 0,16 0,18 0,16 0,17 0,15 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.109. The ROP values are in 

unit of [ft/hr]. 
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Table 6.109 : ROP predictions in Case 6 for all. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 23,6 24,1 22,0 24,4 21,0 23,0 

2 19,0 20,7 18,7 20,3 20,1 22,0 

3 12,5 13,4 14,6 12,9 15,3 14,0 

4 15,2 16,0 14,3 15,8 14,0 10,0 

5 14,4 14,8 14,4 14,8 14,0 16,0 

6 15,9 16,1 17,5 16,2 17,4 19,0 

7 15,3 15,4 16,5 15,5 16,4 13,0 

8 16,5 16,4 16,3 16,8 16,2 16,6 

9 16,4 15,9 16,2 16,4 16,7 15,9 

10 16,9 16,5 16,4 17,0 16,9 15,7 

11 14,4 15,1 16,0 15,2 15,3 14,0 

12 10,3 10,2 12,9 10,3 12,3 13,5 

13   7,3   7,2   9,3   7,0   8,8   6,2 

14   8,9   9,2 10,0   8,9 10,2   9,6 

15 15,8 15,2 16,2 15,5 16,0 15,5 

16 31,0 30,1 30,2 31,7 30,8 31,4 

17 42,2 40,8 34,1 44,0 34,7 42,7 

18 38,8 36,9 34,4 39,7 35,3 38,6 

19 33,4 31,9 31,6 34,1 32,6 43,4 

20 18,4 15,1 15,4 16,5 16,3 12,5 

21 14,6 11,5 17,6 12,7 19,3 21,1 

22 21,7 20,2 18,4 21,6 19,2 19,0 

23 19,5 19,1 19,6 19,9 20,5 18,7 

24 19,3 17,2 16,7 18,6 18,2 20,2 

25 26,4 28,3 25,9 29,3 26,0 27,1 

26 15,8 15,5 15,5 16,0 16,2 14,8 

27 12,9 13,2 13,2 13,4 13,8 12,6 

28 17,7 17,2 15,6 18,2 16,3 14,9 

29 12,6 12,2 14,1 12,7 14,5 13,8 

30   8,6   9,4 10,1   9,7   9,8   9,0 

The cumulative comparison of actual and predicted ROP values versus depth is 

plotted on Figure 6.98. 
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Figure 6.98 : ROP prediction trends in Case 6 for testing all. 

The comparison of each prediction with actual ROP is plotted in Figure 6.99. 
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Figure 6.99 : ROP prediction comparison in Case 6 for testing all. 

It can be understood from Figures 6.98 and 6.99 that, 𝜐-SVR with RBF kernel 

seemed to be the best predictor for the whole data set, since it has the minimum 

RMSE, RSS and maximum Pseudo-R2. 

6.7 Case 7: Training Different Data Set 

In this case, all the data in Table A.2 is desired to be predicted. 

The basic statistical analysis of the whole data set is given in Table 6.110. 

Table 6.110 : Statistics of the data set in Case 7 for testing all. 

 y x2 x3 x4 x5 x6 x7 x8 

Mean 3,351 1362 -4 -9635 -0,890 0,217 -0,335 0,009 

Median 3,332 637 -127 -9727 -0,821 0,182 -0,250 0,060 

Variance 0,880 11954156 120896 22371525 0,285 0,087 0,123 0,049 

The coefficients of MR analysis for this training data are given in Table 6.111. 
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Table 6.111 : Multiple regression coefficients in Case 7 for testing all. 

a1 a2 a3 a4 a5 a6 a7 a8 

3,907E+00 9,453E-05 6,862E-05 8,642E-05 3,731E-01 2,232E+00 2,480E-02 6,701E-01 

The statistical results of the multiple regression analysis for the given testing data set 

are expressed in Table 6.112. 

Table 6.112 : Statistical results of MR in Case 7 for learning and testing all. 

RSSdefault R2 Adjusted R2 p-value 

21,57 0,72 0,60 0,001 

The plots of the determination of cost parameter via 10-fold cross validation are 

shown in Figure 6.100. 

 

Figure 6.100 : Cost graphics of Case 7 for testing all. 

The statistical results of different predictive methods for the given testing data set by 

using current training data set are represented in Table 6.113. 
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Table 6.113 : Statistical results of the methods in Case 7 for testing all. 

 MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 

RSSmodel 6,07 9,17 7,53 8,26 2,18 

Pseudo-R2 0,72 0,57 0,65 0,62 0,90 

C  0,055 0,53 0,1 3,61 

# of SV  22 21 16 22 

CV Error  0,49 0,57 0,66 0,63 

RMSE 0,49 0,61 0,55 0,57 0,30 

The actual and predicted ROP values of the testing data set by using current training 

set and different predictive methods are given in Table 6.113. The ROP values are in 

unit of [ft/hr]. 

Table 6.114 : ROP predictions in Case 7 for all. 

Test No MR 
𝜺-SVR 

“Linear” 

𝜺-SVR 

“RBF” 

𝝊-SVR 

“Linear” 

𝝊-SVR 

“RBF” 
Actual 

1 70 64 48 74 123 171 

2 47 61 29 64 22 20 

3 70 63 59 75 148 160 

4 69 50 59 63 89 82 

5 72 45 49 58 47 49 

6 71 47 47 56 47 43 

7 43 41 58 47 69 64 

8 35 33 34 37 33 36 

9 35 31 30 35 28 27 

10 24 47 27 49 15 14 

11 78 55 58 64 77 83 

12 59 50 42 53 43 46 

13 44 42 42 42 43 47 

14 22 21 21 25 18 19 

15 8 15 16 14 11 3 

16 45 42 37 44 37 34 

17 7 14 14 12 13 16 

18 23 35 32 34 32 35 

19 7 13 13 12 12 12 

20 7 12 14 11 5 5 

21 20 24 26 22 28 26 

22 22 21 23 21 26 28 

23 17 17 18 17 12 11 

24 16 16 19 16 15 21 

25 16 16 20 16 16 15 

The cumulative comparison of actual and predicted ROP values versus depth is 

plotted on Figure 6.101. 



178 

 

Figure 6.101 : ROP prediction trends in Case 7 for testing all. 

The comparison of each prediction with actual ROP is plotted in Figure 6.102. 
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Figure 6.102 : ROP prediction comparison in Case 7 for testing all. 

It is seen from Figures 6.101 and 6.102 that, similarly to the previous case, 𝜐-SVR 

with RBF kernel is the most accurate predictor for the whole data set. Additionally, 

𝜐-SVR with RBF kernel has the minimum RMSE, RSS and maximum Pseudo-R2 

values among the other methods. 

6.8 Discussions and General Interpretations 

It is stated by Flach (2012) that SVM makes better estimation with less training data 

when compared to the other major machine learning methods. Similarly, it can be 

seen from the results that SVR can make predictions with good approximation when 

the number of training data is limited. This situation can be confirmed by the results 

of first 4 cases. Additionally, in almost all cases, SVR methods generated better 

predictions when compared to MR. 
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As mentioned in Chapter 2, some of the machine learning methods, such as SVM, 

ANN and GA, were used in most of the recent drilling optimization studies. 

Additionally, ANN and GA were selected particularly for ROP prediction and 

optimization studies. Moreover, according to Tolun (2008) SVM can make more 

accurate predictions rather than ANN, especially when there is less number of 

training data. Similarly, it can be stated that SVM (or SVR) can be preferred as the 

predictor method when the data is limited. 
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7.  CONCLUSIONS AND RECOMMENDATIONS 

As summary, one of the most commonly used machine learning methods, Support 

Vector Regression (SVR), is applied to the data set taken from the study of 

Bourgoyne Jr. and Young Jr. (1974) with different implementations and kernel 

functions. The results of SVR and multiple regression were compared to each other 

in a statistical point of view to determine the best predictor in each case. 

The study is concluded with the following outcomes. 

• When the number of training data is insufficient (being less than 30 data set), 

the accuracy of MR is low. However, if the number of training data increases, 

MR analysis gives more accurate results, as expected. 

• For the scenarios including limited number of training data, SVR methods 

with linear kernels give more accurate on ROP predictions. Yet, when the 

number of training data is increased, RBF kernels, especially in 𝜐-SVR, 

generates better predictions. This outcome can be confirmed by the results of 

Case 6 and 7. 

• The Pseudo-R2 results are unstable in overall. The number of training data 

and the selection of test data have a remarkable effect on the prediction 

accuracy. 

• It is considered that the data taken from the study of Bourgoyne Jr. and 

Young Jr. (1974) is inconsistent in itself, since there are leaps in ROP at some 

certain points of depth. This situation creates noise in the selected training 

data set. Thus, a preliminary statistical analysis should be applied to the data 

set before selecting training data, which is a subject of another possible study. 

• There are slight differences between the MR coefficients found in this study 

and the study of Bourgoyne Jr. and Young Jr. (1974). 

• The data collecting technology in 1974 is considered to be not reliable. 

Hence, the methods should be tested with a field data taken with recent 
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technology. However, the data number is not enough to generalize on the best 

predicting method. A data set with more input numbers is needed for further 

calculations. 

• Different implementations of SVR is applied first time in the literature to the 

data set taken from the study of Bourgoyne Jr. and Young Jr. (1974). The 

results are data-specific. Thus, the best ROP predicting methods of SVR 

determined in this study, which are 𝜀-SVR “Linear” for limited data and 𝜐-

SVR “RBF” for sufficient data, are not a generalized solution to the ROP 

optimization problem. 

• It is recommended to rely on MR for ROP optimization if there is sufficient 

amount of data. On the other hand, if the data is limited, such as 50% of the 

data required for MR, SVR can be used instead of MR to obtain more 

accurate predictions. 

• The investigation on the applicability of SVR for ROP optimization in real-

time drilling operations is recommended for further studies. 
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APPENDIX A 

Table A.1 : The main data set (Bourgoyne Jr. and Young Jr., 1974, p. 375). 

Data 

Entry 

Depth 

[ft] 

ROP 

[ft/hr] 

Bit 

Weight 

[1.000 

lb/in] 

Rotary 

Speed 

[rpm] 

Tooth 

Wear 

Reynolds 

Number 

Function 

ECD 

[lb/gal] 

Pore 

Gradient 

[lb/gal] 

  1   9.515 23,0 2,58 113   0,77   0,964   9,5   9,0 

  2   9.830 22,0 1,15 126   0,38   0,964   9,5   9,0 

  3 10.130 14,0 0,81 129   0,74   0,827   9,6   9,0 

  4 10.250 10,0 0,95   87   0,15   0,976   9,7   9,0 

  5 10.390 16,0 1,02   78   0,24   0,984   9,7   9,0 

  6 10.500 19,0 1,69   81   0,61   0,984   9,7   9,1 

  7 10.575 13,0 1,56   81   0,73   0,984   9,7   9,2 

  8 10.840 16,6 1,63   67   0,38   0,932   9,8   9,3 

  9 10.960 15,9 1,83   65   0,57   0,878   9,8   9,4 

10 11.060 15,7 2,03   69   0,72   0,878   9,8   9,5 

11 11.475 14,0 1,69   77   0,20   0,887 10,3   9,5 

12 11.775 13,5 2,31   58   0,12   0,852 11,8 10,1 

13 11.940   6,2 2,26   67 0,2   0,976 15,3 12,4 

14 12.070   9,6 2,07   84   0,08   0,993 15,7 13,0 

15 12.315 15,5 3,11   69   0,40   1,185 16,3 14,4 

16 12.900 31,4 2,82   85   0,42   1,150 16,7 15,9 

17 12.975 42,7 3,48   77   0,17   1,221 16,7 16,1 

18 13.055 38,6 3,29   75   0,29   1,161 16,8 16,2 

19 13.250 43,4 2,82   76   0,43   1,161 16,8 16,2 

20 13.795 12,5 1,60   81   0,56   0,272 16,8 16,2 

21 14.010 21,1 1,04   75   0,46   0,201 16,8 16,2 

22 14.455 19,0 1,76   64   0,16   0,748 16,9 16,2 

23 14.695 18,7 2,00   76   0,27   0,819 17,1 16,2 

24 14.905 20,2 2,35   75   0,33   0,419 17,2 16,4 

25 15.350 27,1 2,12   85   0,31 1,29 17,0 16,5 

26 15.740 14,8 2,35   78   0,81   0,802 17,3 16,5 

27 16.155 12,6 2,47   80   0,12   0,670 17,9 16,5 

28 16.325 14,9 3,76   81   0,50   0,532 17,5 16,6 

29 17.060 13,8 3,76   65   0,91   0,748 17,6 16,6 

30 20.265   9,0 3,41   60   0,01   0,512 17,7 16,6 
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Table A.2 : The recent data set (Irawan and Anwar, 2012, p. 62). 

Data 

Entry 

Depth 

[ft] 

ROP 

[ft/hr] 

Bit 

Weight 

[1.000 

lb/in] 

Rotary 

Speed 

[rpm] 

Tooth 

Wear 

Reynolds 

Number 

Function 

ECD 

[lb/gal] 

Pore 

Gradient 

[lb/gal] 

  1   2150 171 0,82 120 0,500 0,882   8,93   8,365 

  2   2155   20 0,57 110 0,125 0,819   9,06   8,365 

  3   3591 160 0,82 120 0,500 1,290   9,11   8,365 

  4   5190   82 1,63 120 0,750 1,290   9,11   8,365 

  5   5872   49 2,45 120 0,875 1,290   9,11   8,365 

  6   6000   43 2,45 120 0,250 1,290   9,11   8,365 

  7   6080   64 1,63 120 0,625 1,062   9,49   8,365 

  8   6322   36 2,45 120 0,875 0,772   9,67   8,365 

  9   6592   27 2,85 120 1,000 0,772   9,67   8,365 

10   6679   14 0,41 120 0,625 1,338   9,69   8,365 

11   7341   83 1,63 180 0,375 1,145   9,69   8,365 

12   8921   46 1,63 180 0,000 1,216   9,68   8,365 

13   9363   47 1,63 180 0,000 0,868   9,88   8,571 

14   9652   19 2,85 100 1,000 1,192   9,96   8,960 

15   9660    3 2,45   65 0,125 1,192   9,96   8,960 

16 10662   34 1,22 180 0,000 1,097   9,96   8,910 

17 10735   16 2,86   65 0,125 1,192   9,96   8,900 

18 10900   35 0,82 150 0,000 1,034   9,96   8,890 

19 11214   12 3,27   70 0,250 1,114   9,96   8,880 

20 11224    5 2,94 100 0,375 0,903 11,10   9,390 

21 11481   26 1,76 170 0,000 0,975 11,02   9,370 

22 12885   28 1,76 160 0,000 0,975 11,02   9,860 

23 13180   11 1,76 130 0,000 0,825 10,96 10,120 

24 13810   21 1,76 150 0,000 0,632 10,97 10,040 

25 14300   15 1,76 160 0,000 0,632 10,95   9,980 

The solution of multiple regression analysis for the data taken from the study of 

Bourgoyne Jr. and Young Jr. (1974) is given below explicitly. 

The ROP model is defined as, 

 

𝑅 = 𝑒𝑥𝑝(𝑎1 + ∑𝑎𝑗𝑥𝑗

8

𝑗=2

) (A.1.1) 

 𝑥2 = 10000 − 𝐷 (A.1.2) 

 𝑥3 = 𝐷0.69(𝑔𝑝 − 9) (A.1.3) 

 𝑥4 = 𝐷(𝑔𝑝 − 𝜌𝑐) (A.1.4) 

 

𝑥5 = ln(

𝑊𝑏

𝑑𝑏
− (

𝑊𝑏

𝑑𝑏
)
𝑡

4 − (
𝑊𝑏

𝑑𝑏
)
𝑡

) (A.1.5) 
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𝑥6 = ln (

𝑁

100
) (A.1.6) 

 𝑥7 = −ℎ (A.1.7) 

 
𝑥8 = ln (

𝐹𝑗

1000
) (A.1.8) 

Table A.3 : Values of parameter functions. 

y x2 x3 x4 x5 x6 x7 x8 

3,1 485 0 -4757,5 -0,439 0,122 -0,77 -0,037 

3,1 170 0 -4915 -1,247 0,231 -0,38 -0,037 

2,6 -130 0 -6078 -1,597 0,255 -0,74 -0,190 

2,3 -250 0 -7175 -1,438 -0,139 -0,15 -0,024 

2,8 -390 0 -7273 -1,366 -0,248 -0,24 -0,016 

2,9 -500 59,514 -6300 -0,862 -0,211 -0,61 -0,016 

2,6 -575 119,614 -5287,5 -0,942 -0,211 -0,73 -0,016 

2,8 -840 182,512 -5420 -0,898 -0,400 -0,38 -0,070 

2,8 -960 245,205 -4384 -0,782 -0,431 -0,57 -0,130 

2,8 -1060 308,433 -3318 -0,678 -0,371 -0,72 -0,130 

2,6 -1475 316,373 -9180 -0,862 -0,261 -0,20 -0,120 

2,6 -1775 708,526 -20017,5 -0,549 -0,545 -0,12 -0,160 

1,8 -1940 2211,118 -34626 -0,571 -0,400 -0,20 -0,024 

2,3 -2070 2620,825 -32589 -0,659 -0,174 -0,08 -0,007 

2,7 -2315 3587,513 -23398,5 -0,252 -0,371 -0,40 0,170 

3,4 -2900 4733,212 -10320 -0,350 -0,163 -0,42 0,140 

3,8 -2975 4889,928 -7785 -0,139 -0,261 -0,17 0,200 

3,7 -3055 4979,876 -7833 -0,195 -0,288 -0,29 0,149 

3,8 -3250 5031,083 -7950 -0,350 -0,274 -0,43 0,149 

2,5 -3795 5172,976 -8277 -0,916 -0,211 -0,56 -1,302 

3,0 -4010 5228,472 -8406 -1,347 -0,288 -0,46 -1,604 

2,9 -4455 5342,506 -10118,5 -0,821 -0,446 -0,16 -0,290 

2,9 -4695 5403,554 -13225,5 -0,693 -0,274 -0,27 -0,200 

3,0 -4905 5608,294 -11924 -0,532 -0,288 -0,33 -0,870 

3,3 -5350 5800,642 -7675 -0,635 -0,163 -0,31 0,255 

2,7 -5740 5901,936 -12592 -0,532 -0,248 -0,81 -0,221 

2,5 -6155 6008,874 -22617 -0,482 -0,223 -0,12 -0,400 

2,7 -6325 6133,132 -14692,5 -0,062 -0,211 -0,50 -0,631 

2,6 -7060 6322,359 -17060 -0,062 -0,431 -0,91 -0,290 

2,2 -10265 7119,816 -22291,5 -0,160 -0,511 -0,01 -0,669 

The equation (A.1.1) is transformed into, 

 𝑦 = 𝑎1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯+ 𝑎8𝑥8 (A.1.9) 

where, 
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 𝑦 = ln (𝑅) (A.1.10) 

Then, the eight least squares equations are solved simultaneously for the correlation 

coefficients, a1 through a8, for θ=30. 

 ∑𝑦 = 𝑎1𝜃 + 𝑎2 ∑𝑥2 + 𝑎3 ∑𝑥3 + ⋯+ 𝑎8 ∑𝑥8 (A.1.11) 

 ∑𝑦𝑥2 = 𝑎1 ∑𝑥2 + 𝑎2 ∑𝑥2𝑥2 + 𝑎3 ∑𝑥3𝑥2 + ⋯+ 𝑎8 ∑𝑥8𝑥2 (A.1.12) 

 ∑𝑦𝑥3 = 𝑎1 ∑𝑥3 + 𝑎2 ∑𝑥2𝑥3 + 𝑎3 ∑𝑥3𝑥3 + ⋯+ 𝑎8 ∑𝑥8𝑥3 (A.1.13) 

 ∑𝑦𝑥4 = 𝑎1 ∑𝑥4 + 𝑎2 ∑𝑥2𝑥4 + 𝑎3 ∑𝑥3𝑥4 + ⋯+ 𝑎8 ∑𝑥8𝑥4 (A.1.14) 

 ∑𝑦𝑥5 = 𝑎1 ∑𝑥5 + 𝑎2 ∑𝑥2𝑥5 + 𝑎3 ∑𝑥3𝑥5 + ⋯+ 𝑎8 ∑𝑥8𝑥5 (A.1.15) 

 ∑𝑦𝑥6 = 𝑎1 ∑𝑥6 + 𝑎2 ∑𝑥2𝑥6 + 𝑎3 ∑𝑥3𝑥6 + ⋯+ 𝑎8 ∑𝑥8𝑥6 (A.1.16) 

 ∑𝑦𝑥7 = 𝑎1 ∑𝑥3 + 𝑎7 ∑𝑥2𝑥7 + 𝑎3 ∑𝑥3𝑥7 + ⋯+ 𝑎8 ∑𝑥8𝑥7 (A.1.17) 

 ∑𝑦𝑥8 = 𝑎1 ∑𝑥8 + 𝑎2 ∑𝑥2𝑥8 + 𝑎3 ∑𝑥3𝑥8 + ⋯+ 𝑎8 ∑𝑥8𝑥8 (A.1.18) 

The solution is found via Cramer’s rule. 

 

Δ =

|

|

|

|

|

𝜃 ∑𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

|

|

 (A.1.19) 
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𝑎1 =

|

|

|

∑𝑥1 ∑𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥1𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥1𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥1𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥1𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥1𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥1𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥1𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.20) 

 

𝑎2 =

|

|

|

𝜃 ∑ 𝑥1 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥1𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥1𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥1𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥1𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥1𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥1𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥1𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.21) 

 

𝑎3 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥1 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥1𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥1𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥1𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥1𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥1𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥1𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥1𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.22) 

 

𝑎4 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥3 ∑𝑥1 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥1𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥1𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥1𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥1𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥1𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥1𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥1𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.23) 

 

𝑎5 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥1 ∑𝑥6 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥1𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥1𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥1𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥1𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥1𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥1𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥1𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.24) 
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𝑎6 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥1 ∑𝑥7 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥1𝑥2 ∑𝑥7𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥1𝑥3 ∑𝑥7𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥1𝑥4 ∑𝑥7𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥1𝑥5 ∑𝑥7𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥1𝑥6 ∑𝑥7𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥1𝑥7 ∑𝑥7𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥1𝑥8 ∑𝑥7𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.25) 

 

𝑎7 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥1 ∑𝑥8

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥1𝑥2 ∑𝑥8𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥1𝑥3 ∑𝑥8𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥1𝑥4 ∑𝑥8𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥1𝑥5 ∑𝑥8𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥1𝑥6 ∑𝑥8𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥1𝑥7 ∑𝑥8𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥1𝑥8 ∑𝑥8𝑥8

|

|

|

Δ
 

(A.1.26) 

 

𝑎8 =

|

|

|

𝜃 ∑ 𝑥2 ∑𝑥3 ∑𝑥4 ∑𝑥5 ∑𝑥6 ∑𝑥7 ∑𝑥1

∑𝑥2 ∑𝑥2𝑥2 ∑𝑥3𝑥2 ∑𝑥4𝑥2 ∑𝑥5𝑥2 ∑𝑥6𝑥2 ∑𝑥7𝑥2 ∑𝑥1𝑥2

∑𝑥3 ∑𝑥2𝑥3 ∑𝑥3𝑥3 ∑𝑥4𝑥3 ∑𝑥5𝑥3 ∑𝑥6𝑥3 ∑𝑥7𝑥3 ∑𝑥1𝑥3

∑𝑥4 ∑𝑥2𝑥4 ∑𝑥3𝑥4 ∑𝑥4𝑥4 ∑𝑥5𝑥4 ∑𝑥6𝑥4 ∑𝑥7𝑥4 ∑𝑥1𝑥4

∑𝑥5 ∑𝑥2𝑥5 ∑𝑥3𝑥5 ∑𝑥4𝑥5 ∑𝑥5𝑥5 ∑𝑥6𝑥5 ∑𝑥7𝑥5 ∑𝑥1𝑥5

∑𝑥6 ∑𝑥2𝑥6 ∑𝑥3𝑥6 ∑𝑥4𝑥6 ∑𝑥5𝑥6 ∑𝑥6𝑥6 ∑𝑥7𝑥6 ∑𝑥1𝑥6

∑𝑥7 ∑𝑥2𝑥7 ∑𝑥3𝑥7 ∑𝑥4𝑥7 ∑𝑥5𝑥7 ∑𝑥6𝑥7 ∑𝑥7𝑥7 ∑𝑥1𝑥7

∑𝑥8 ∑𝑥2𝑥8 ∑𝑥3𝑥8 ∑𝑥4𝑥8 ∑𝑥5𝑥8 ∑𝑥6𝑥8 ∑𝑥7𝑥8 ∑𝑥1𝑥8

|

|

|

Δ
 

(A.1.27) 

Hence, the correlation coefficients for the data in Table A.1 are, 

𝑎1 = 3,76 

𝑎2 = 1,75 × 10−4 

𝑎3 = 2,00 × 10−4 

𝑎4 = 4,28 × 10−5 

𝑎5 = 0,42 

𝑎6 = 0,18 

𝑎7 = 0,41 

𝑎8 = 0,16 
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APPENDIX B 

The program code written in R programming language with e1071 library for 

applying multiple regression analysis and SVR to any given data is shown in Syntax 

2. 

Syntax 2 
#Calling libraries 

library(xlsx) 

library(e1071) 

 

#Setting working directory 

setwd("C:/datasets") 

 

#Importing data from Excel file 

dataset <- read.xlsx("data.xls",1) 

 

#Viewing statistics of the loaded dataset 

summary(dataset) 

var(dataset$x1) 

var(dataset$x2) 

var(dataset$x3) 

var(dataset$x4) 

var(dataset$x5) 

var(dataset$x6) 

var(dataset$x7) 

var(dataset$x8) 

 

#Partitioning dataset into train and test subgroups 

dataset.train <- dataset[dataset$subset=="train",2:ncol(dataset)] 

dataset.test <- dataset[dataset$subset=="test",2:ncol(dataset)] 

print(dataset.train) 

print(dataset.test) 

 

#Calculating RSSdefault 

def.pred <- mean(dataset.train$x1) 

def.rss <- sum((dataset.test$x1-def.pred)^2) 

print(def.rss) 

 

######################################### 

#Performing multiple regression analysis# 

######################################### 

 

reg <- lm(x1 ~., data = dataset.train) 

print(summary(reg)) 

reg.pred <- predict(reg,newdata = dataset.test) 

reg.rss <- sum((dataset.test$x1-reg.pred)^2) #Calculating RSSmodel 

print(reg.rss) 

print(1.0-reg.rss/def.rss) #Calculating Pseudo-R2 

print(reg.pred) 

print(exp(reg.pred)) 

 

######################################### 

#Performing Epsilon-SVR w/ Linear kernel# 

######################################### 

 

#10-fold Cross Validation 

 

obj <- tune.svm(x1 ~.,data = dataset.train, scale = T, type = "eps-regression", 

kernel = "linear", cost = seq(from=0.005,to=10.0,by=0.005),epsilon=0.1, 

tolerance=0.001, shrinking=T, fitted=T) 

print(obj) 

k <- which.min(obj$performances[,3]) 

c <- obj$performances[,1][k] 

RMSE <- obj$performances[,3] 

Cost <- obj$performances[,1] 

plot(Cost,RMSE,type="l") 
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#Regression 

epsilon.svr <- svm(x1 ~.,data = dataset.train, scale = T, type = "eps-

regression", kernel = "linear", cost = c, 

epsilon=0.1,tolerance=0.001,shrinking=T,fitted=T) 

print(epsilon.svr) 

esvr2.pred <- predict(epsilon.svr,newdata = dataset.test) 

esvr2.rss <- sum((dataset.test$x1-esvr2.pred)^2) #Calculating RSSmodel 

print(esvr2.rss) 

print(1.0-esvr2.rss/def.rss) #Calculating Pseudo-R2 

print(esvr2.pred) 

print(exp(esvr2.pred)) 

 

###################################### 

#Performing Epsilon-SVR w/ RBF kernel# 

###################################### 

 

#10-fold Cross Validation 

obj <- tune.svm(x1 ~.,data = dataset.train, scale = T, type = "eps-regression", 

kernel = "radial", cost = seq(from=0.005,to=10.0,by=0.005),epsilon=0.1, 

tolerance=0.001, shrinking=T, fitted=T) 

print(obj) 

k <- which.min(obj$performances[,3]) 

c <- obj$performances[,1][k] 

RMSE <- obj$performances[,3] 

Cost <- obj$performances[,1] 

plot(Cost,RMSE,type="l") 

 

#Regression 

epsilon.svr <- svm(x1 ~.,data = dataset.train, scale = T, type = "eps-

regression", kernel = "radial", cost = c, 

epsilon=0.1,tolerance=0.001,shrinking=T,fitted=T) 

print(epsilon.svr) 

esvr3.pred <- predict(epsilon.svr,newdata = dataset.test) 

esvr3.rss <- sum((dataset.test$x1-esvr3.pred)^2) #Calculating RSSmodel 

print(esvr3.rss) 

print(1.0-esvr3.rss/def.rss)#Calculating Pseudo-R2 

print(esvr3.pred) 

print(exp(esvr3.pred)) 

 

#################################### 

#Performing Nu-SVR w/ Linear kernel# 

#################################### 

 

#10-fold Cross Validation 

obj <- tune.svm(x1 ~.,data = dataset.train, scale = T, type = "nu-regression", 

kernel = "linear", cost = seq(from=0.005,to=10.0,by=0.005),nu=0.5, 

tolerance=0.001, shrinking=T, fitted=T) 

print(obj) 

k <- which.min(obj$performances[,3]) 

c <- obj$performances[,1][k] 

RMSE <- obj$performances[,3] 

Cost <- obj$performances[,1] 

plot(Cost,RMSE,type="l") 

 

#Regression 

nu.svr <- svm(x1 ~.,data = dataset.train, scale = T, type = "nu-regression", 

kernel = "linear", cost = c, 

nu=0.5,tolerance=0.001,shrinking=T,fitted=T) 

print(nu.svr) 

nusvr2.pred <- predict(nu.svr,newdata = dataset.test) 

nusvr2.rss <- sum((dataset.test$x1-nusvr2.pred)^2) #Calculating RSSmodel 

print(nusvr2.rss) 

print(1.0-nusvr2.rss/def.rss) #Calculating Pseudo-R2 

print(nusvr2.pred) 

print(exp(nusvr2.pred)) 

 

################################# 

#Performing Nu-SVR w/ RBF kernel# 

################################# 

 

#10-fold Cross Validation 

obj <- tune.svm(x1 ~.,data = dataset.train, scale = T, type = "nu-regression", 
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kernel = "radial", cost = seq(from=0.005,to=10.0,by=0.005),nu=0.5, 

tolerance=0.001, shrinking=T, fitted=T) 

print(obj) 

k <- which.min(obj$performances[,3]) 

c <- obj$performances[,1][k] 

RMSE <- obj$performances[,3] 

Cost <- obj$performances[,1] 

plot(Cost,RMSE,type="l") 

 

#Regression 

nu.svr <- svm(x1 ~.,data = dataset.train, scale = T, type = "nu-regression", 

kernel = "radial", cost = c, 

nu=0.5,tolerance=0.001,shrinking=T,fitted=T) 

print(nu.svr) 

nusvr3.pred <- predict(nu.svr,newdata = dataset.test) 

nusvr3.rss <- sum((dataset.test$x1-nusvr3.pred)^2) #Calculating RSSmodel 

print(nusvr3.rss) 

print(1.0-nusvr3.rss/def.rss) #Calculating Pseudo-R2 

print(nusvr3.pred) 

print(exp(nusvr3.pred)) 
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