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ABSTRACT

FUZZY – SYLLOGISTIC REASONING

A syllogism  is  a  formal  logical  scheme  used  to  infer  a  conclusion  from  a  set  of 

premises. In a categorical syllogism, there are only two premises and each premise and 

conclusion is given in form a of quantity-quantified relationship between two objects. 

Different  order  of  objects  in  premises  produce  a  classification  known as  syllogistic 

figures. Ordered combinations of 3 quantifiers with a certain figure, known as moods, 

provide 256 combinations in total. However, only 25 of them are valid, i.e. conclusion 

follows from premises. The classical syllogistic system allows to model human thought 

as reasoning with syllogistic structures. However, a major lack is that there is still no 

systems that allow to arrive at a decision of syllogisms automatically. This work is an 

attempt to design a fully algorithmic approach that allows to calculate properties of a 

whole syllogistic system and provide automated reasoning for given data sets. Since 

there is a limitation of the classical syllogistic system such as fixed number of crisp 

quantifiers,  advanced  fuzzy-quantifiers  were  introduced   to  bypass  this  restriction. 

Based on the classical syllogistic concept extended by fuzzy-quantifiers, an algorithm 

for  fuzzy-syllogistic  reasoning  was  proposed  and  integrated  into  a  software  system 

developed for this purpose. Possible applications of syllogistic reasoning, in particular, 

ontology-based fuzzy-syllogistic reasoning were also discussed.   
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ÖZET

BULANIK TASIMSAL ÇIKARSAMA

Bir tasım önerme kümelerinden bir sonuç çıkarmak için kullanılan formel bir mantıksal 

şemadır. Kategorik bir tasımda yalnızca iki adet önerme bulunur ve her bir önerme ve 

sonuç  iki  nesne  arasındaki  nicelik-niceleyici  ilişkisinin  bir  şekli  olarak  verilidir. 

Önermelerdeki  nesnelerin  farklı  sıralanışı  tasımsal  sayılar  olarak  bilinen  bir 

sınıflandırma  üretir.   Kip  olarak  bilinen,  3  niceliğin  bir  sayı  ile  birlikte  sıralı 

kombinasyonları  256  adet  kombinasyon  üretir.  Ancak  bunların  yalnızca  25  tanesi 

geçerlidir,  yani  önermelerden  doğru  sonuç  çıkar.  Klasik  tasım  sistemi  insan 

düşüncesinin tasımsal yapılarla  çıkarsamasının modellenmesine imkan sağlar. Ancak, 

çıkarsamaların  otomatik  olarak  sonuca  varmasını  sağlayan  bir  sistemin  olmaması 

önemli bir eksikliktir.  Bu çalışma bütün bir tasımsal sistemin özelliklerini hesaplamaya 

izin  veren  ve  verili  kümeler  için  otomatik  çıkarsama  sağlayan  tam  algortimik  bir 

yaklaşımın tasarımı için bir  girişimdir.  Klasik tasımsal  sistemde kesin niceleyicilerin 

belirli bir sayıda olması gibi bir sınırlamayı aşmak için gelişmiş bulanık niceleyiciler 

önerilmiştir. Klasik tasımsal içeriğin bulanık niceleyicilerle genişletilmesine dayalı bir 

bulanık  tasımsal  çıkarsama  algoritması  ve  bu  amaçla  geliştirilmiş  bir  yazılım 

önerilmiştir.  Tasımsal  çıkarsamaların  olası  uygulamaları,  özellikle  ontoloji  tabanlı 

bulanık çıkarsama da ele alınmıştır.
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CHAPTER 1

INTRODUCTION

Reasoning is  the ability to make inferences which respectively may be defined 

as  processes  of  deriving  logical  conclusions  from predefined  statements  (premises). 

Reasoning is inseparably linked with the concepts of logic that involves attempts to 

describe  rules  or  norms  by  which  reasoning  operates.  The  oldest  known  works 

associated  with  the  rules  of  reasoning  belongs  to  the  Greek  philosopher  Aristotle. 

Despite the fact that Ancient Greeks had no separate logic as an independent science, 

Aristotle  identified  logic  clearly  for  the  first  time  as  a  distinct  field  of  study  by 

introducing the new word, known as "syllogism" (Ward, 2009). 

Automated reasoning is an area of computer science and mathematical logic, dedicated 

to understanding different aspects of reasoning and related to designing  algorithms and 

systems  that  automate  this  process.  Although  the  term  can  be  applied  to  various 

reasoning tasks, usually automated reasoning is considered with different forms of valid 

deductive  reasoning,  like  in  various  applications  of  automated  theorem  proving  or 

formal verification.

There are various ways for implementing inference mechanisms in automated 

reasoning  applications,  such  as  inductive,  deductive  and  other  types  of  logical 

reasoning. 

One possible solution may be using approaches based on syllogistic reasoning. A 

syllogism  is  a  deductive  logical  scheme  used  to  infer  a  conclusion  from  a  set  of 

premises. In a categorical syllogism, there are only two premises and each premise and 

conclusion is given in a form of quantity – quantified relationship between two of 3 

possible  objects:  S,  M or P. The S specifies  the  subject  of the conclusion,  P is  the 

predicate of the conclusion, and M is the middle term. Furthermore, there are 4 classical 

syllogistic quantifiers: universal quantifier (All), existential quantifier (Some) and their 

negations. 

Despite  the  fact  that  the  recently  developed  many  new  approaches  to  old 

syllogistic problems,  there are still many unexplored issues.  For example, the classical 

universal quantifier in the categorical syllogism is too strict because it does not allow 

  
1



for exceptions. However the existential quantifiers is too weak  because  it quantifies 

only over at least one object's instance. In daily life reasoning the quantity quantifiers 

like “most ”, “many ”, or “few ” are used much more often then classical ones, however  

they  are  not  applicable  to  classical  syllogistic.  Such  quantifiers  that  are  defined 

“between” the existential and the universal quantifier are called intermediate quantifiers 

(Pfeifer et al. 2005). Reasoning with intermediate quantifiers is called fuzzy syllogistic 

reasoning. 

The aim of this thesis is to develop a system, that allows to perform classical and 

fuzzy – syllogistic reasoning  and can be used as a core of various reasoning engines. 

The current work has been inspired by initial attempts to develop such kind of system, 

described in (Kumova et al. 2010). However their algorithmic approach for syllogistic 

reasoning  consider  just  a  subset  of  the  full  set  of  possible  relationships  between  3 

objects (P, M and S) in the categorical syllogism. Also any algorithm for generation of 

those  object's  relationships  is  not  implemented  and  no  intermediate  quantifiers  are 

considered. The current work is an attempt to overcome  these limitations and develop a 

fully algorithmic approach for all steps of the fuzzy – syllogistic reasoning considering 

the full set of potential object's relationships.

The study also considers the possible applications of a developed system, such 

as ontology – based syllogistic reasoning and case – based reasoning.    
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CHAPTER 2

RESEARCH APPROACH

It  has  been difficult  to  solve  categorical  syllogism  for   people  without  enough 

experience in logic.  Various external representations of syllogisms, such as Euler and 

Venn diagrams, linear  representation (Englebretsen 1996) and different diagrammatic 

schemes  (in  particular,  Method  of  Minimal  Representation  (Sharma  2013)  are 

traditionally  considered  as  effective  tools  to  support  deductive  reasoning.  Although 

there is no consensus about the effectiveness of existent representations,  experiments 

provided by (Mineshima et al. 2013), that examined the efficacy of Euler diagram in 

solving  syllogisms,  in  comparison  to  sentential  reasoning  and  reasoning  with  Venn 

diagrams, show that the performance of the Euler and Venn diagrams  was significantly 

better  than  the  linguistic  approaches.  (Lemon  et  al.  1998)  claim  that  linear 

representation  is  non-convenient  as  a  representation  scheme  for  general  logical 

inferences.  Thus,  it  seems that  representation  by using Euler  or Venn diagrams is  a 

better option for the modeling of  the syllogistic reasoning. Accordingly, Venn diagram 

representation was chosen as basis in the current work.

In this work, the proposed mathematical model of the syllogistic case is an improved 

version of  the model, described in (Kumova et al. 2010).  As it will be shown later, for 

three symmetrically  intersecting sets there are in total  7 possible sub-sets  in a Venn 

diagram, so we have reduced the number of bits needed to encode a  syllogistic case 

from 9 to 7. Also, algorithmic approaches for classical syllogistics will be  presented not 

only for the case of inclusive logic, but for the exclusive logic, too. The exclusive case 

is particularly interesting as the least studied in modern syllogistics. 

After  the development  of the classical  syllogistic  system, the fuzzy – syllogistic 

system as a novel extension of standard system will be proposed and implemented. Our 

implementation   is  significantly  different  from  the  existing  systems,  considered  in 

(Peterson 2000, Dubois 1988). Finally, based on the designed system, algorithms for 

ontology-based fuzzy-syllogistic reasoning will be designed. 
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Figure 2.1. Methodological approach
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Results and conclusions



Most  of  the  algorithms  mentioned  above  are  implemented  within  the  FSS 

application.  The  FSS  application  includes  various  statistical  information  about 

syllogistic  and  fuzzy-syllogistic  systems,  visual  representation  of  syllogistic  cases, 

generator of synthetic data for test purposes and also allows to perform classical and 

fuzzy-syllogistic reasoning on a given data.

Methodological approach consists of three stages: 

• Literature review which includes a literature survey about state of the art of the 

syllogistic  system,  such  as  possible  representations  of  syllogistic  reasoning, 

reasoning in inclusive/exclusive logic and possible applications. Also reasoning 

with intermediate quantifiers is considered.

• Development of algorithms which includes a description of data structures and 

ideas of algorithms for all steps of classical and fuzz-syllogistic reasoning with a 

corresponding pseudo code. During this stage, the FSR_project software system 

will be developed. 

• Development of applications which includes ideas and algorithms for possible 

applications  of  a  developed  system  to  different  problem  domains.  An 

implementation of ontology-bases syllogistic reasoning will be proposed . Also a 

possible application of CBR to current system will be discussed.   

A graphical representation of the methodological approach is shown in Fig. 2.1.

The thesis consists of 7 main chapters in addition to appendices. Organization of the 

chapters follows as:

• Chapters 1-2 consist  of  the brief introduction includes the motivation of the 

study and methodological approach that explains the steps on which this thesis 

was founded;

• Chapter 3 provides a background information about categorical syllogisms, their 

structure,  valid/invalid  forms  and  includes  a  brief  review  about  current 

approaches in reasoning with intermediate quantifiers.

• Chapter 4 focuses on algorithmic approaches of implementation of the classical 

syllogistic system and provide some statistics about it.

• Chapter 5 presents our solution for fuzzy-syllogistic reasoning.

• Chapter  6  considers  possible  applications  of  the  developed  system  with 

proposed  solutions  for  ontology-based  fuzzy-syllogistic  reasoning  and  CBR-
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based syllogistic reasoning.

• And in  the  last  chapter  contributions  of  this  thesis  and  some limitations  of 

developed system are given. 

During development stage of the thesis 2 papers and extended abstract has been 

accepted in conferences  related to  artificial intelligence and fuzzy logic:

• Zarechnev, M.,   Kumova,  B.I.  (2015).  Ontology  –  based  fuzzy –  syllogistic 

reasoning.  28th  International  Conference  on  Industrial,  Engineering  & Other 

Applications of Applied Intelligent Systems, Seoul, South Korea.

• Zarechnev,  M.,  Kumova,  B.İ.(2015).  Fuzzy-Syllogistic  Reasoning  under 

ontology.  Extended abstract. World Congress and School on Universal Logic 

(UNILOG),  June 2015, Istanbul, Turkey.

• Zarechnev, M., Kumova, B.I. (2015). Truth ratios of syllogistic moods. Accepted 

in the 2015 IEEE International Conference on Fuzzy Systems , August  2015 , 

Istanbul, Turkey, not published yet.
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CHAPTER 3

BACKGROUND INFORMATION

 The earliest  known works  related  to  formal  logic  belongs to  Aristotle.   All 

Aristotle's logic was built on the principle of deduction (sullogismos)(Smith, 2015). In 

order to understand a deduction and its content it is necessary to investigate Aristotle's  

whole theory. According to Aristotle, syllogism is “discourse in which, certain things 

being stated something other than what is stated follows of necessity from their being 

so”  (Aristotle,  1995).  But  in  practice  he specified  the  syllogism as  a  structure,  that 

contains two premises and a conclusion, each of which is a categorical proposition. The 

subject and predicate of the conclusion (denoted as S and P respectively) each occur in 

only one of the premises, together with a third term (the middle, denoted as M) that is 

found in both premises but not in the conclusion. A syllogism thus argues that because S 

and P are related in certain ways to M in the premises, they are related in a certain way 

to one another in the conclusion (see Table 3.3). 

In  modern  syllogistics,  the  general  structure  of  categorical  syllogism can be 

defined as follow:

(3.1)

where ψ1 , ψ2 and ψ3 are numerical, or more generally, fuzzy quantifiers (e.g. few, 

many, most (Peterson 1979), and A, B, C, D, E and F are crisp or fuzzy predicates. The 

predicates A, B, … F are assumed to be related in a specific way, giving rise to different  

types of syllogisms known as figures which will be explained in advance of this work. 

(Zadeh 1985).

3.1 Syllogistic Propositions

A syllogistic proposition or synonymously, categorical proposition, specifies a 

quantified relationship between two objects out of S, P or M. We shall  denote such 
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relationships with the operator ψ. Four different types are distinguished in the set ψ={A, 

E, I, O}:

Table 3.1. Syllogistic quantifiers

A Universal Affirmative All A are P E Universal Negative All A are not P

I Particular Affirmative Some S are P O Particular Negative Some S are not P

The set-theoretical representation of the syllogistic quantifiers by Euler diagrams is 

presented on Table 3.2.  Quantifiers I and O each have three cases respectively. The 

additional cases, bounded by the dashed line are controversial in the literature. Some do 

not consider them as valid (Brennan 2007) and some do (Wille 2005). Obviously, the 

additional case for quantifier I is equal to A, so we can consider A as a special case of I. 

Analogically, E is a special case of O. We will refer to existential quantifiers I and O 

that  include  the  additional  cases  as  quantifiers  of  inclusive  logic,  otherwise  as 

quantifiers of  exclusive logic. Later on the course of the work, it will be presented that 

known 24 true moods of the classical categorical syllogism are true only for inclusive 

existential quantifiers.

Table 3.2. Euler diagrams for syllogistic propositions consist of quantified object 
                        relationships (Source: Chakir 2010)

Operator Proposition Set – theoretical representation of logical cases

A All S are P

E All S are not P

I Some S are P

O Some S are not P
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3.2 Square of Opposition

The  square  of  opposition  is  a  diagrammatic  representation  of  the  logical 

relationships holding between certain syllogistic propositions. The concept of the square 

of opposition formulated by Aristotle in the fourth century BC and considered as first 

effort to systematize formal symbolic logical inference (Jacquette 2012). The square, 

traditionally  represented as follows (Fig. 3.1):

With the assumption that every category contains at least one member, square can be 

constructed by following statements:

• Pairs of {“Every S is P” and  “Some S is not P”} and {“No S is P” and 

“Some S is P”}  are contradictories. 

• “Every S is P” and “No S is P” are contraries. 

• “Some S is P” and “Some S is not P” are subcontraries. 

• “Some S is P” is a subaltern of “Every S is P”. 

• “Some S is not P” is a subaltern of “No S is P”.

In terms of logical square of opposition,  two propositions are contradictory if they 

cannot both be true and they cannot both be false. Contrary means that two propositions 

cannot  both  be  true  but  can  both  be  false.  In  contrast,  two  propositions  are 

subcontraries if they cannot both be false but can both be true. Finally,  a proposition is 

a  subaltern of another if it must be true if its superaltern is true, and the superaltern 

must be false if the subaltern is false (Parson 2014).
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3.3 Syllogistic Figures

Aristotle determined three different figures of syllogisms, according to how the 

middle term M is related to the other two terms in the premises. In one passage, he says 

that if one wants to prove S of P syllogistically, one finds a middle M such that either P 

is predicated of M, and M of S (first figure), M is predicated of both P and S (second 

figure), or else both P and S are predicated of M (third figure). All syllogisms must fall 

into one or another of these figures (Spade 2014). 

But it is obvious that there is fourth possibility, that P is predicated of M, and S of 

M.  Much  later,  logicians  separated  those  syllogisms  into  a  different  category,  now 

known as  fourth  figure.  Although  Aristotle  mentioned  these  syllogisms,  he  did  not 

group them under  a  specific  figure.  Noteworthy that  some logicians  included  these 

syllogisms under the first figure. However, in modern syllogystics, all  four figures are 

considered. 

Table 3.3. Syllogistic figures.

Figure Name 1 2 3 4

Major Premise
Minor Premise

Conclusion

MψP
SψM
SψP

PψM
SψM
SψP

MψP
MψS
SψP

PψM
MψS
SψP

3.4 Syllogistic Moods

The mood of a syllogism consists of the three letter names of the propositions 

that  make  up  that  syllogism.  For  example,  mood  AAA  for  Figure  1  denotes  the 

following syllogism:

All M are P
All S are M (3.2)
All S are P

Since the proposition operator may have four values for ψ, 64 syllogistic moods 

are possible for every figure and 256 moods for all four figures in total. 
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3.5 Valid Syllogistic Moods

The  vast  majority  of  the  256  possible  syllogistic  moods  are  non-valid  (the 

conclusion does not follow logically from the premises). The table below shows the 24 

valid forms in case of the inclusive logic. 

Table 3.4.  Valid syllogistic moods in case of inclusive logic

Figure 1 Figure 2 Figure 3 Figure 4

AAA
AAI
AII

EAE
EAO
EIO

AEE
AEO
AOO
EAE
EAO
EIO

AAI
AII
IAI

EAO
OAO
EIO

AEE
AEO
AAI
EAO
EIO
IAI

Currently, only 24 syllogistic moods are considered as valid. However, using our 

algorithmic calculation of truth ratios for moods, we have found one further valid mood, 

which is in the syllogistic figure 4: AAO.

3.6 Examples of Valid/Non-Valid/Invalid Moods

All 24 valid syllogistic moods have mnemonic names, for example,   “bArbArA” 

stands for AAA, “cElArEnt” for EAE, etc.

The most famous example of valid syllogistic mood is BARBARA (AAA-1):

All men are mortal
   All Greeks are men (3.3)

All Greeks are mortal

There is only one combination of M, P and S, that satisfies these premises. The 

corresponding Euler diagram is shown on Fig. 3.2.

One can see that conclusion follows from the premises, so the considered mood is 

totally valid. 

Applying the syllogism above to the mood AAE-1, we get the following syllogism: 
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All men are mortal All M are P

   All Greeks are men All S are M (3.4)

All Greeks are not  mortal All S are not P

               Figure 1:

MψP
S  ψ  M
SψP

 

S (subject): Greeks

P (predicate): Mortal

M (middle): Men

Figure 3.2. Euler diagram for the mood BARBARA-1

There exists only one combination of M, P and S that satisfies premises (see Fig. 

3.3). 

Figure 3.3. Euler diagram for the mood AAE-1

 However, conclusion does not follow from the premises (condition in conclusion 

All S are not P is not satisfied), so we can say that this mood is totally invalid, i.e. it is  

impossible to find any combination of M, P and S, that satisfies these premises and the 

conclusion at the same time.

Finally, considering the mood AIA-1, we can construct the following syllogism:

All men are mortal All M are P

   Some   Greeks are men Some   S are M   (3.5)

All Greeks are  mortal All S are P

For this  mood,  there  are  9 combinations  of  M, P and S in  total  that  satisfy the 
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premises (see Table 3.5).

From 9 combinations, 3 of them satisfy the conclusion whereas 6 of them do not, so 

we can say that this mood is non-valid.

Table 3.5. Euler diagrams for combinations of M, P and S sets that satisfy premises of
                 the syllogistic mood AIA-1

# Euler diagram
Does conclusion follows 

from the premises?

1 Yes 

2 Yes 

3 Yes 

4 No

5 No

(Cont. on next page)
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Table 3.5. (cont.)

6 No

7 No

8 No

9 No

Manual solving of syllogisms is very time-consuming process, because for  certain 

syllogistic  moods there are up to 65 combinations of sets M, P and S,  that satisfy 

premises. So, finding the  algorithmic approach for automated decision of syllogisms is 

the actual problem in the field of natural logic. In the succeeding sections it is going to 

be proposed a solution to this problem.

3.7 Extensions of the Classical Approach

In  recent  years  various  approaches  to  some  essential  problems  of  logic,  in 

particular, to classical syllogistics, were considered in philosophy, linguistics and certain 

applications of artificial intelligence. However, there are still many unresolved problems 

in this field, such as issues with weakness and strictness of universal and existensional 

quantifiers  (Pfeifer  2005),  reasoning  with  unlimited  numbers  of  terms,  relative 

quantifiers and so on.
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The current  approaches  to  the extension of  the syllogistic  reasoning can be 

divided into two independently developing  groups:

• approaches, based on introducing new crisp (Peterson 2000) or fuzzy quantifiers 

(Zadeh  1985,  Dubois  1988)(such  as  much,  many,  few...),  additional  to  the 

classical ones.

• approaches,  based  on  the  increase  of  number  of  terms  and  premises  (N), 

consisting  syllogism  (N>2)  without  introducing  new  quantifiers  (Sommers 

1982).  

These approaches are briefly discussed in the rest of this chapter. 

3.8 Interval Syllogistics: the Dubois's Approach

In a framework, developed  by Dubois (Dubois 1993), fuzzy quantifiers, represented 

by linguistic variables, have interval representation. The example of Dubois's interval 

syllogism is shown bellow:

[0.05, 0.1] People who have children are single 
[0.15, 0.2] People who have children are young           (3.6) 
[0, 0.1] People who have children are young and single

Given approach is  based on calculating  of  minimum and maximum possible 

interval  values for  quantifier in conclusion, considering the intervals, appeared in the 

premises.

Dubois identified 3 types of quantifiers:

• Imprecise quantifiers: interval quantifiers with the exact boundaries (between 

100% and 90% of students get grade AA,  less than 10% of students get  grade 

FF , more than 80% of students get grade BB or lower...)

• Precise quantifiers: quantifiers with exact values (48% of students are females)

• Fuzzy  quantifiers,  interval  quantifiers  with  imprecise  boundaries  (most of 

students are mails) .

The imprecise or precise quantifiers in conclusion are modeled as interval function, 

fuzzy quantifiers in conclusion are represented by trapezoidal function. The quantifiers 

in  premises  are  restrictions  for  the  concluding  quantifier.  So,  calculation  of  the 

concluding quantifier is an optimization problem and consists in finding the best and 

worst  proportions among the terms of the conclusion according to the corresponding 

  
15



proportions of  the terms  in the premises. Dubois proposed three syllogistic patterns, 

two of  which (Pattern II and Pattern III) extends the Aristotelian inference scheme. The 

Pattern I can be used to reproduce the syllogistic figures like in the classical approach 

but,  as shown in (Pereira-Fariña et al. 2014), it is compatible only with  Figure 1. 

3.9 Fuzzy Syllogism: Zadeh’s Approach

As  was mentioned before, Zadeh's scheme for general syllogism looks as follows:

where Q1 , Q2 and Q are fuzzy quantifiers (most, many, some ... ) and A, B, C, D, E and 

F are interrelated fuzzy properties or terms. Zadeh proposed different patterns, based on 

this general scheme, but with different number of constraints among the terms or fuzzy 

properties.

Zadeh's  model  consists of two approaches: the fuzzy-quantification framework and 

the theory of inferencing.

In  the  fuzzy-quantification  approach,  Zadeh  defined  two  types  of  linguistic 

quantifiers: absolute (for instance, almost 10, ...) and proportional (for instance, more 

than  half,...).  Absolute   quantifiers  denote  absolute  quantities  (in  our  case,  10), 

proportional  quantifiers  refer  to  a  proportion  of  cardinalities  of  elements  in  the 

corresponding sets. 

Zadeh interpreted absolute and proportional linguistic quantifiers as absolutely or 

proportional fuzzy-numbers respectively.

The procedure proposed for combining fuzzy numbers with the corresponding fuzzy 

sets represented in the properties  of  Σ-count scalar cardinality for fuzzy sets (Zadeh 

1983).  Σ-count is a simple scalar-valued measure, that helps to replace the intersection 

and  cardinality  operations  for  crisp  sets  with  corresponding  fuzzy-operations. 

Intersection is replaced with a T – norm (usually, min) and cardinality with a scalar-

valued cardinality. Thus, Σ-count  is the sum of membership values of the elements in 

the fuzzy sets (Fuzzy Sets and Systems 2003). 

In  the  theory  of  inference,  Zadeh’s  approach  manages  the  usual  quantified 

statements “Q A's are B's”, where Q is a proportional fuzzy number (equivalent to the 
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Q1 A ' s are B ' s
Q2 C ' s are D ' s

Q E ' s areF ' s

(3.7)



corresponding linguistic proportional quantifier) and A and B are (fuzzy or crisp) sets.

The  inference  process  is  based  on  quantifier  extension  principle  (QEP),  which 

establishes that: 

      if C = f (P1; P2; ... ; Pn ), then Q = φ f (Q1; Q2; ... ; Qn ),                (3.8)

where C is the conclusion, P1; P2; ... ; Pn are the premises, f is a function, Q is the 

quantifier of the conclusion, Q1; Q2; ... ; Qn  are the quantifiers of the premises and φ f is 

an extension of  f obtained using the extension principle. The main idea of QEP is to 

apply the extension principle  to  f  to  obtain a fuzzy function  φf that  can be directly 

applied  to  the  corresponding  fuzzy  numbers.  Since  fuzzy  numbers  are  used  in  the 

calculations,  the corresponding arithmetic  operations must be performed using fuzzy 

arithmetic.    

3.10 Intermediate Quantifiers: Peterson's Approach and Extensions

The initial detailed conception of intermediate quantifiers was proposed by Peterson 

(Peterson 1979). Peterson introduced the first version of  complete square of opposition 

with  intermediate  quantifiers,  which  was  a  generalization  of  the  classical  square  of 

opposition.  In  his  approach,  Peterson  considered  new quantifiers,  such  Almost_All, 

Many and their complements. Thomson (Thomson 1982) extended this approach with 

the intermediate quantifier Most and introduced a complete square of opposition with 

contradictions, contraries and subalterns as presented in  Fig. 3.4.

Pairs of statements A and E, P and B, T and D compose contrary pairs (denoted with 

the dashed lines), so for each pair, statements in which can not be both true at the same 

time,  however  they can be both false (i.e.  if  the statement  A is  true (All  B are A), 

statement E (No B are A) cannot be true). Statements K and G, and I and O compose 

sub-contrary pairs  (denoted with the dotted lines), so statements in pair  can be true 

simultaneously, so situations where I and O both are true at the same time, are allowed.

Like in classical square of opposition, in Peterson's square pairs of statements A-O, 

I-E, P-G, and K-B are contradictory statements. It means if one statement in pair is true, 

the other one is false or otherwise.

Peterson noticed the immediate entailment of statements. As a consequence, we can 

show the following valid implications: A→P→T→K→I and E→B→D→G→O. If the 
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statement A is true, it means that statement P is also true, in the same way, due the true P 

statement, T statement is also true. 

It should be noted that the implications are valid in the given directions only, i.e. from 

universal  term  to  particular  (i.e.  in  case  of  affirmative  statements,  from  A to  I 

statements, if statement T is true, it does not mean that  P is also true). It is very close to 

the semantic meanings of the statements: statement A is stronger than P or I, so if A is 

true, then P, T, K, I must also be true (Turunen 2014).
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Figure 3.4. Complete square of opposition 
         (Source: Peterson 2000)



CHAPTER 4

4 SYLLOGISTIC SYSTEM

In  this  chapter  algorithmic  approaches  of  implementation  of  the  classical 

syllogistic system will be considered.

4.1 Algorithmic Decision of Syllogistic Moods

In this section  the all steps of algorithmic decision of syllogistic moods with the 

appropriate data structures will be discussed. 

4.1.1 Set – Theoretical Analysis

A Venn diagram for three sets includes 8 subsets which are composed of some 

combination of inclusions or exclusions of  these sets, making the whole system (Venn 

1880) (see Fig 4.1 a). We do not consider the complement of [(M∪S∪P) in  U] = U\

(M∪S∪P), because only the relations between the three sets, representing syllogistic 

statements,  are important  in our model.  Thus,  for three intersecting sets  there are 7 

possible subsets in a Venn diagram. If intersections of sets are relaxed and the three sets 

are  labeled as P, M and S, then 109 set relationships are possible (Kumova unp.). At 

least, one subset of each set is assumed to be non-empty. Excluding sets combinations 

where at least 2 sets are equivalent finally we end up with 96 set combinations. These 

96 relationships are distinct, but re-occur in the 256 moods as basic syllogistic cases. 

The 7 subsets with the 96 distinct set relationships  in case of relaxed symmetry are 

fundamental to the design of an algorithmic decision of syllogistic moods. 

4.1.2 Data Structure for Case Representation

Based on these 7 sub-sets, we have proposed a data - structure for modeling of 
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the syllogistic cases. Each case is presented as a sequence of 7 bits. Each bit is related  

with a particular subset in a Venn–diagram (see Table 4.1). This structure is efficient in 

processing and memory consumption: 7 bits are minimal number that allows to recover 

fully the corresponding Venn – diagram.

Table 4.1. Identification of the seven possible subsets of three sets as distinct spaces

Space ID 1 2 3 4 5 6 7

Subset S-(P+M) P-(M+S) M-(S+P) (M∩S)-P (M∩P)-S (S∩P)-M M∩S∩P

4.1.3 Generation of Cases

The  efficient  way  of  case  generation  is  using  of  recursive  procedure,  with 

recursion  depth  is  equivalent  to  number  of  subsets.  On  each  level  of  recursion, 

corresponding bit is added to the described data structure, represented by a dynamical 

array of bits. On the last level the verification procedure is performed, and if current 

case passed the verification, it is added to the resulting set of cases. 

In our approach the goal is to generate all possible combinations (cases) from 7 

elements, where elements are from {0; 1} (the total number of such of permutations is 

27=128). 
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Figure 4.1.  Venn – diagram for 3 symmetrically intersecting sets.

U
3 1

   5     6

  4

7

2

             S

P

M           



4.1.4 Evaluation of Cases

Each case from a resulting set must contain at least one non-zero subset from 

each of M, P, S sets, and any of the sets (M, P or S) must not be equivalent to each other. 

Obviously, for a particular case, if at least one bit from { 1,  4,  6,  7    } (subsets, 

that built-up set M, see Fig.1 b) is set to 1, this case contains elements from M. It gives  

us a simple criterion for case evaluation: 

  {cons_M}: Δ∀ i from Cases[128]: Δ∃ i: Δ 1 Δ∨ 4 Δ∨ 6 Δ∨ 7  → Δi ⊂ M. (4.1)

In the same way: 

{cons_P}: Δ∀ i from Cases[128]: Δ∃ i: Δ 2 Δ∨ 5 Δ∨ 6 Δ∨ 7  → Δi  ⊂ P. (4.2)
{cons_S}: Δ∀ i from Cases[128]: Δ∃ i: Δ 3 Δ∨ 4 Δ∨ 5 Δ∨ 7  → Δi ⊂ S. (4.3)

Applying given criteria at the same time, we obtain a set of 109 cases, which 

consists of at least one non-empty subset of each S, M and P simultaneously. However, 

resulting  set  includes  degenerate  cases,  such as  M=P=S (0000001)  or  M=P etc.  To 

exclude equivalent sets we propose next criterion to evaluate equivalent sets (two sets 

are equivalent if they have non-empty intersection and empty compliments): 

{S_eq_P}: Δ∀ i from Cases[109]: Δ∃ i: (Δ 6 Δ∨ 7 ) ¬Δ∧ 1 ¬Δ∧ 2  → Δi [S = P] 

{P_eq_M}: Δ∀ i from Cases[109]: Δ∃ i: (Δ 5 Δ∨ 7 ) ¬Δ∧ 2 ¬Δ∧ 3   → Δi [P= M] (4.4)
{M_eq_S}: Δ∀ i from Cases[109]:  Δ∃ i: (Δ 4 Δ∨ 7 ) ¬Δ∧ 1 ¬Δ∧ 3   → Δi [M= S] 

The final set consist of 96 cases Σ=[1,96] (see Appendix A) which are essential data 

for deciding of syllogistic moods. Euler diagrams for the all cases are listed in Appendix 

B. Pseudo-code for case-generation is presented in Listing 4.1. 
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4.1.5 Verification Rules

The basic idea of the algorithm for determining the true and false cases of a given 

mood  is  based  on  selecting  the  possible  set  relationships  that  satisfy  premises  for 

considering mood and splitting resulting set into 2 sets of true and false cases according 

to the conclusion meaning, out of all 96 possible set relationships.

As  was  discussed  above,  each  mood  is  presented  in  form  of  triple  syllogistic 

quantifiers {A, E, I, O} together with the number of related figure, and total number of 

moods for all figures is 256.

The validation process includes the validation of each of 3 syllogistic statements (2 

premises and conclusion). Since there are 4 syllogistic quantifiers, 4 possible situations 

for validation functions are possible:

All_Are(set1, set2,  );Δ
All_AreNot(set1, set2,  );Δ  (4.5)
Some_Are(set1, set2,  );Δ
Some_AreNot(set1, set2,  );Δ

where set1 and set2 represent the sets from {M, P, S}, and  Δ is the particular case 
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generateCases( , rec_depth)Δ
{

for (int i = 0; i<2; i++)
{

       Δrec_depth= i; //set correspondent bit to i
      if (rec_depth == 0)  //stop recursion
       {
          if (cons_S( )   cons_M( )   cons_P( )) Δ ∧ Δ ∧ Δ
         {
           //need to exclude equivalent sets 

  //(checking all possible combinations)

if not([(S_eq_P( )) (P_eq_S( ))]  Δ ∧ Δ ∨
[(S_eq_M( )) (M_eq_S( ))]   Δ ∧ Δ ∨
[(M_eq_P( )) (P_eq_M( ))])Δ ∧ Δ

append_current_ _to_  ;  Δ Σ
}                   

       } else generateCases( , rec_depth ­ 1)Δ
}

}
Listing 4.1. Procedure of cases-generation



from Σ=[1,96].

Considering  Venn-diagrams for  syllogistic  propositions  (see  Table  4.2),   we can 

construct conditions for each quantifier:

• If all elements of first set belong to second set (case All_Are), the all elements of 

first set must be in intersection of two sets1

• If all  element  of first  set  is  different  from second set (case All_AreNot),  the 

intersection of two sets must be empty;

• If  some  elements  of  first  set  belongs  to  second  set  (case  SomeAre),  the 

intersection  of two sets  must  be non-empty. Additionally, the complement  of 

first set in second set must be non-empty in case of exclusive logic, or may be 

empty in case of inclusive logic (see Table 4.2,  mentioned sets are bounded by 

dashed line).

• If some elements of first set do not belong to second set (case SomeAreNot), the 

complement  of  first  set  in  second  set  must  be  non-empty.  Additionally, 

intersection of two sets must be non-empty in case of exclusive logic, or can be 

empty for inclusive logic.

Thereby, the  criteria  for  quantifier  A (All_Are())  is  very  similar  to  the  one 

described in the previous section for equivalent cases. For example, for sets S, P and 

given case  Δ from Σ=[1,96], the pseudo-code of verification function is presented in 

Listing 4.2.

1 Subset filled with black on Venn-diagrams denotes empty subset
  

23

boolean AllAre(S, P,  )Δ  
{

return [(Δ
6  ∨Δ 7

) ¬∧ Δ
1   ¬∧ Δ

4
]

}

Listing 4.2. Verification function for quantifier A and sets S and P



Table 4.2. Venn-diagrams for syllogistic propositions

Operator ψ Venn-diagram for logical cases
Conditions

Exclusive logic Inclusive logic

A
S\P = Ø

S P  ≠ Ø

E
S\P ≠ Ø

S P =  Ø

I
S\P ≠ Ø

S P  ≠ Ø
S P  ≠ Ø

O
S\P ≠ Ø

S P  ≠ Ø
S\P ≠ Ø

 

The verification function for quantifier E for sets S, P and given case Δ from 

Σ=[1,96] is presented in Listing 4.3.

It is clearly from Table 2, that conditions for verification quantifiers I and O is identical 

in case of exclusive logic. At this point for sets S, P and given case Δ from Σ=[1,96] we 

can write following verification code (see Listing 4.4):
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    PS   

    PS   S   

    PS       PS   

    PS       PS   S   

boolean All_AreNot(S, P,  )Δ  
{

return [¬(Δ
6  ∨Δ 7

)]
}

Listing 4.3. Verification procedure for quantifier E and sets S and P

  boolean SomeAre_SomeAreNot_Excl(S, P,  )Δ  
{

return [(Δ
6  ∨Δ 1

) (∨ Δ
6  ∨Δ 4

) (∨ Δ
7
∨Δ

1
) (∨ Δ

7  ∨Δ 4
)]

}

Listing 4.4. Verification function for quantifiers I and O and sets S and P 
in case of exclusive logic



It should be noted again that the described procedure for quantifiers I and O is valid 

only in case of exclusive logic. Since our purpose is to develop a universal approach, we 

can define the type of used logic optionally and implement the quantifiers as below by 

Conditions for all possible set relationships are summarized in Table 4.3.

4.1.6 Algorithmic Decision of Mood

After implementation of verification functions we can propose a general algorithm 

for calculating truth/false cases  for a given mood Δ (see Fig. 4.2):

INPUT: mood μ:  sequence of 3 quantifiers from {A, I, E, O} and  number of the 

figure which corresponds to this mood

OUTPUT: TCΔ,  FCΔ:  2  lists,  containing  true  and  false  cases  for  given  mood 

respectively. 
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boolean SomeAre(set1, set2, Δ)
{

if (SomeAre_SomeAreNot_Excl(set1, set2, Δ)) return true;
if (use_inclusive_logic)  //need to consider additional

//case for inclusive logic
{
return AllAre(set1, set2, Δ);
}
return false;

}

boolean SomeAreNot(set1, set2, Δ)
{

if (SomeAre_SomeAreNot(set1, set2, Δ)) return true;
if (use_inclusive_logic)
{
return AllAreNot(set1,set2, Δ);
}
return false;

}

Listing 4.5. Generalized verification functions for quantifiers I and O and sets S and P



ALGORITHM:

1. GENERATE 96 possible set combinations with 7 relationships into a list of 

cases Σ[96]

2. VALIDATE  premission_1 of  given  mood  with  AllAre(),  AllAreNot(), 

SomeAre(), SomeAreNot() according to the quantifier under  all cases from Σ;

3.  Construct list of cases Σ1, that satisfy premise_1

4. VALIDATE  premission_2 of  given  mood  with  AllAre(),  AllAreNot(), 

SomeAre(),  SomeAreNot()  according  to  the  quantifier  under  cases  from  Σ1; 

construct list of cases Σ2 , that satisfy premise_1 and premise_2.

5. VALIDATE conclusion of given mood with AllAre(), AllAreNot(), SomeAre(), 

SomeAreNot() according to the quantifier for cases from Σ2; split Σ2 to TCΔ and 

FCΔ,  according  to  the  meaning  of  conclusion:  if  particular  case  satisfies 

conclusion, then add this case into TCΔ,otherwise into FCΔ.

Table 4.3. Verification rules for quantifiers A, E, I, O

Sets 
Relationship

A E
I, O

Exclusive logic, 
(I and O)

Inclusive 
logic, I

Inclusive 
logic, O

MP
(Δ 5 ∨Δ 7 )∧
¬Δ 3 ¬∧ Δ 4

¬Δ  5 ¬∧ Δ  7

(Δ 5 ∧Δ 3 ) (∨ Δ 5 ∧Δ 4 ) 
(∨ Δ 7 ∧Δ 2 ) (∨ Δ 7 ∧Δ 4 )

+ for A +for E

PM
(Δ 5 ∨Δ 7 )∧
¬Δ 2 ¬∧ Δ 6

(Δ 5 ∧Δ 2 ) (∨ Δ 5 ∧Δ 6 ) 
(∨ Δ 7 ∧Δ 2 ) (∨ Δ 7 ∧Δ 6 )

+ for A +for E

SM
(Δ 4 ∨Δ 7 )∧
¬Δ 1 ¬∧ Δ 6

¬Δ  4 ¬∧ Δ  7

(Δ 4 ∧Δ 1 ) (∨ Δ 4 ∧Δ 6 ) 
(∨ Δ 7 ∧Δ 1 ) (∨ Δ 7 ∧Δ 6 )

+ for A +for E

MS
(Δ 4 ∨Δ 7 )∧
¬Δ 3 ¬∧ Δ 5

(Δ 4 ∧Δ 3 ) (∨ Δ 4 ∧Δ 5 ) 
(∨ Δ 7 ∧Δ 3 ) (∨ Δ 7 ∧Δ 5 )

+ for A +for E

SP
(Δ 6 ∨Δ 7 )∧
¬Δ 1 ¬∧ Δ 4

¬Δ  6 ¬∧ Δ  7
(Δ 6 ∧Δ 1 ) (∨ Δ 6 ∧Δ 4 ) 
(∨ Δ 7 ∧Δ 1 ) (∨ Δ 7 ∧Δ 4 )

+ for A +for E
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4.1.7 Truth Ratio of the Particular Mood

Since we can calculate the number of true and false cases for each mood, we can 

introduce a measure of truth for a particular mood. We define a truth ratio τ as: 

where ||TC||  corresponds to  the cardinality  of  the  set  of  true cases,  whereas 

||TC+FC|| corresponds to the cardinality of the sum of  the sets of true and false cases.  

Thus, the truth ratio τ becomes a real number, normalized within [0.0, 1.0].

Knowing truth ratio τ we can identify absolutely true (τ = 1.0) and false (τ = 

0.0)  moods.  Absolutely  true moods coincide  with known valid  forms of  categorical 

syllogisms.  Absolutely  false  or  particularly  non–valid  moods  are  not  considered  in 

modern literature.  

4.2 Syllogistic reasoning

In this section the algorithm for syllogistic reasoning and sample reasoning are 

presented. 
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(4.6)

 

 

τ=
‖TC‖

‖TC+FC‖



4.2.1 Algorithm

The main goal of syllogistic reasoning is to find the most suitable moods that match 

the input data. The input data sets correspond to sets M, P and S. In our model, the  

criteria of suitability is defined by the mood(s) with the maximum truth ratio.

To verify how the statements of particular mood match the input data, we introduce 

the measure of similarity of two sets, denoted by φ, that is calculated as a fraction of 

cardinality of intersection of two sets to cardinality of the first set. For sets S and P, we 

can calculate φSP by the following formula:

(4.7)

where   1,  4,  6,  7 represent  the  corresponding  subsets  of  sets  S  and  P 

according to our model (see Figure 4.1 and Table 4.1). The formulas for calculating φ 

for the rest of possible sets relationships is shown in Table 4.4.

The value φ corresponds to syllogistic quantifiers as below: (see Table 4.5).

Now we can formulate the algorithm for syllogistic reasoning:

INPUT: 3 non-empty sets, labeled as S, P, M

OUTPUT: list of suitable moods, Lψ. 

ALGORITHM:

1. Calculate moods, that fully match with given data (φ for each statement of a 

particular  mood,  i.e  two  premises  and  a  conclusion,  must  match  with 

corresponding quantifier), put those moods into  L'ψ.  

2. Calculate truth ratio τ for all moods from  L'ψ.  

3. Put mood(s) with maximum truth ratio τ to the list  Lψ. 
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φSP=
‖6+7‖

‖1+4+6+7‖



Table 4.4. Calculation of φ for all possible sets relationships

Sets Relationship Formula

MP φMP=
‖5+7‖

‖3+4+5+7‖

PM φPM=
‖5+7‖

‖2+5+6+7‖

SM φSM=
‖4+7‖

‖1+4+6+7‖

MS φMS=
‖4+7‖

‖3+4+5+7‖

PS φPS=
‖6+7‖

‖2+5+6+7‖

Table 4.5. Relationships between φ and syllogistic quantifiers

    Value of φ    Corresponding quantifier Comments

φ = 1.0  A (All) Second set contains first set

φ = 0.0  E (All_Not) Intersection of two sets is empty

φ  (0.0; 1.0)∈  I (Some) / O (Some_Not) All  intermediate  states  not  including 

cases for A and E

4.2.2 Sample Reasoning

Let us consider the following example for the syllogistic reasoning. As input data, 

we have data sets M, P, S that consist the following elements:
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Table 4.6. Input data: elements of sets M, P and S 

Set Elements

M #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #16, #17

P #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #15, #16, #17 

S #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #13, #14, #17, 

According to the given cases,  we can calculate  the syllogistic  case that  satisfies 

input data. The corresponding case (case #20, see Appendix A) is shown in Table 4.7.

Table 4.7. Syllogistic case #20 corresponding to input data 

Sub-Set Number 1 2 3 4 5 6 7

Syllogistic Case S-M-P P-S-M M-S-P (M∩S)-P (M∩P)-S (S∩P)-M S∩P∩M

Case 0 1 0 0 1 0 1

 Now we need to check all 256 moods for compliance with the input data sets. 

For example, for mood AAA-1 corresponding syllogism is:

All M are P φMP = 1.0, statement matches with the input data 
All S are M φSM = 1.0, statement matches with the input data  (4.8)
All S are P φSP = 1.0, statement matches with the input data 

For mood AAE-1 corresponding syllogism is:

  All M are P  φMP = 1.0, statement matches with the input data 
All S are M    φSM = 1.0, statement matches with the input data (4.9)
All S are not P φSP = 1.0 ≠ 0.0, statement does not match with 

the input data

As it  is  seen  from the  example,  mood  AAA-1  fully  matches  to  input  data, 

whereas the conclusion of mood AAE-1 does not match with the input data, so we have 

to exclude this mood from consideration. In case of inclusive logic, there are 18 moods 

fully matching with the input data, which constitute the L'ψ (see Table 4.8.)

The  moods  with  maximal  truth  ratio  (AII-1,  AII-3,  AAI-1,  AAA-1)  can  be 

considered as the most suitable moods for the given data set.

To check these moods, we can construct Euler diagram for the given data and 

check all moods visually. 

The corresponding Euler diagram is shown on Fig. 4.3.
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Table 4.8. Results of the syllogistic reasoning

Mood(s)  τ Mood(s)  τ

AII-1, AII-3 1.000 AIA-1, AIA-3 0.400

AAI-1, AAA-1 1.000 IAA-1, IAA-2 0.285

III-1, III-2, III-3, III-4 0.885 IIA-1, IIA-2, IIA-3, IIA-4 0.142

IAI-1, IAI-2 0.714

Syllogisms,  corresponding to resulting moods:

AAA-1: AAI-1: AII-1: AII-3:
All M are P   All M are P  All M are P All M are P
All S are M     All S are M Some S are M Some M are S
All S are P  Some S are P Some S are P Some S are P

It is obvious  from the Euler diagram that all these syllogisms match with the input  

data.

In case of exclusive logic, there is only one mood, fully matching with the input 

data: AAA-1. As shown above, AAA-1 is a valid mood for the given data sets.

4.3 Statistics About Syllogistic Systems

In this section the statistics for the syllogistic systems for the cases inclusive and 

exclusive logics are presented. 
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Figure 4.3. Euler diagram for the considering data sets.



4.3.1 General Statistics

The algorithm introduced allows to calculate various statistical information about 

the structural properties of syllogistic systems. We have pointed out earlier that, in order 

to calculate valid moods according to the classical notion (6 true moods for each figure) 

it is necessary to include the additional cases for the syllogistic propositions I and O 

(inclusive logic) in the calculation.  In the case of inclusive logic,  there are 25 valid 

moods (see Table 3.4). The solutions found are fully consistent with the known valid 

syllogistic moods, but additionally we have found out that the mood AAO for the Figure 

4 is also true. The system obtained is absolutely symmetrical (there are 25 valid and 25 

fully invalid moods, which are symmetrical in terms of numbers of true/false cases, see 

Fig. 4.4).  The reason for that is the syllogistic propositions are basically a symmetric 

sub-set of the  12  distinct set relationships in total between any two sets out of three 

(Kumova  et  al.  2010).  Therefore,  the  additional  cases  for  I  and  O  are  required  to 

complement the symmetric relationships between the syllogistic propositions.  The full 

list of the moods with their truth ratio for inclusive logic can be found in the Appendix 

C.

Every mood has from 0 to 65 true and false cases respectively, which is a real sub-

set of the 96 distinct syllogistic cases. The total number of true or false cases varies 

from one mood to another, from 1 to 72 cases. For instance, mood AAA-1 has only 1 
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Figure 4.4. 256 moods sorted in ascending order by their truth ratio (inclusive logic). 
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true and 0 false cases, whereas mood AAA-2 has 1 true and 5 false cases. Hence, the 

truth ratio of AAA-1 is 1.0 and that of AAA-2 is 1/6. The algorithm calculates 6144 

syllogistic cases in total,  since all cases of the 256 moods map the 96 distinct cases 

multiple times. It is also interesting that for any given figure the total number of all true 

cases is equal to all false cases, i.e 768 true and 768 false cases. Thus, we get for all 4 

syllogistic figures the total number of 768 x 2 x 4 = 6144 cases.

The system, related to exclusive logic is considered in a separate class. We denote 

the syllogistic  system by  2S, which has an existential  and an exclusive version of a 

universal quantifier and their negations. Valid moods in case of exclusive logic is shown 

in  Table  4.9.: there are 11 valid moods in total. Note that these moods  include moods 

from the list of valid moods for inclusive logic, but there are  2 additional valid moods 

for Figure 3 (indicated bold). 

The distribution of truth ratios of syllogistic moods is asymmetrical. There are 

only 11 valid and 40 invalid syllogistic moods (see Fig. 4.5).  The full list of syllogistic  

moods with their truth ratios for exclusive logic is given in Appendix D.

Table 4.9. Valid syllogistic moods in case of exclusive logic (System  2S)

Figure 1 Figure 2 Figure 3 Figure 4

2/AAA
2/EAE

2/AEE
2/EAE

2/1IA1I
2/1OA1O
2/1OA1I
2/1IA1O

2/AEE
2/AA1O
2/AA1I

Each mood of 2S has from 0 to 40 true and from 0 to 48 false cases respectively. 

The total number of true or false cases in moods varies from 1 to 54.  

The algorithm calculates 4432 syllogistic cases in total. The distribution of these 

cases in syllogistic moods by figures is given in Table 4.10.
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Table 4.10. The distribution of true/false cases in syllogistic moods by figures for 
exclusive logic (System  2S)

Figure 1 Figure 2 Figure 3 Figure 4

TRUE cases 483 483 483 470

FALSE cases 617 621 645 630

Total: 1100 1104 1128 1100

4.3.2 Structural Properties

In this section the additional structural properties of syllogistic systems, such  as 

distinct mood and point-symmetric moods are considered.

4.3.2.1 Distinct Moods

Out of the 256 moods, there are only 136 distinct mood in S, in terms of identically 

true and false cases matched per mood and with equal truth ratios. Thus, the syllogistic  

system consists of 136 inference rules in total  for inclusive logic,  and 70 in case of 
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Figure 4.5. 256 moods sorted in ascending order by their truth ratio (exclusive logic). 



exclusive logic. The list of distinct moods for S and  2S is given in Appendices C-D.

4.3.2.2 Point – Symmetric Moods

As it was noticed before, in case of inclusive logic,  the system obtained is fully 

symmetric in terms of the truth ratio of syllogistic moods. Actually, all these moods are 

pairwise point-symmetric in terms of the syllogistic cases with which they match and 

respectively with their truth ratios, too. The list of the first 2 point-symmetric moods is 

shown in Table  4.11. 

Table 4.11.  The list of  2 first point-symmetric moods 

# Mood  τ TC FC Mood  τ TC FC

1 EIO-1 1.00 11 0 EIA-1 0.00 0 11

2 EIO-2 1.00 11 0 EIA-2 0.00 0 11

Pairs  have  equal  propositional  quantifiers,  but  shifting  concluding  quantifiers. 

Almost all moods (250), shift from O to A, in total 63 pairs, or from I to E, in total 62  

pairs. The full list of point-symmetric moods is given in Appendix E.

4.4 Fuzzy-Approaches to Systems  S/2S

In  the  following  chapters  the  two  fuzzy-approaches  to  the  systems  S/2S  are 

described. Actually, non of them is fuzzyfication in terms of classical notion, but just 

attempts to interpret particular properties of the classical syllogistic system in a fuzzy – 

manner.  

4.4.1 Systems S/2S as Fuzzy-Syllogistic Systems

The system, discussed in (Çakir, 2010) is designed as the fuzzy-syllogistic system 

of possibilistic argument (in this case, the possibilistic argument stands for truth ratio τ). 

After  utilization  of  symmetric  distributions  of  truth  ratios,  a  membership  function 

FuzzySyllogisticMood(x)  with  a  symmetrical  possibility  distribution  is  defined. 

  
35



FuzzySyllogisticMood(x)  is  determined  by  the  linguistic  variables  such  as 

Certainly/Likely/Uncertainly/Unlikely/Certainly_Not  with  their  corresponding 

cardinalities. In the considered work (Kumova 2010), out of 256 syllogistic moods, the 

distribution of truth ratios are as follows:  25 moods have a ratio of 0 (false),  25 have 

ratio 1 (true), 100 moods have a ratio between 0 and 0.5, 100 have between 0.5 and 1,  

and 6 moods have a ratio of exactly 0.5. Since the considered system was built up by 41 

sets relationships in case of inclusive logic, we can generalize this idea for our systems 

S/2S.

For  the  systems  S/2S,  the  distribution  of  the  membership  function 

FuzzySyllogisticMood(x) is shown in Table 4.12. 

Table 4.12. The distribution of membership function FuzzySyllogisticMood(x) for
                    cases of inclusive/exclusive logic

Linguistic variable Inclusive logic Exclusive logic

Certainly (τ = 1.0) 25 11

Likely 103 70

Uncertainly  (τ = 0.5) 0 16

Unlikely 103 119

Certainly_Not (τ = 0.0) 25 40

The graphical representation of the membership function with respect to truth 

ratio distribution for  cases of inclusive/exclusive logic is presented in Fig. 4.6 and Fig. 

4.7 respectively. 

This  approach can be  considered as an attempt  to  fuzzyfication  of  classical 

syllogystic system without introducing new quantifiers, but just based on possibilistic 

distribution of conclusion values under given premises. In fact, it is a simple clustering 

of 256 syllogistic moods into different groups according to value of τ and it has not been 

noticed any significant practical value in the considered approach.
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  At present, an important application may be the utilization of fuzzy-quantifiers 

(reasoning with intermediate quantifiers). This problem will be considered in the next 

chapter. 

4.4.2 Improving Truth Ratios of Non-Valid Moods

Another  aspect  of  fuzzyfication  can  be  the  improvement  of  truth  ratios  of 

initially non-valid moods.

In the following example, according to the structure of syllogisms, we can apply 
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Figure 4.7. Membership function distribution with respect to truth ratio 
        (exclusive logic). 

Figure 4.6. Membership function distribution with respect to truth ratio 
       (inclusive logic). 



the fuzzyfication by introducing two new quantifiers such as A' = Almost_All and E' = 

Almost_None.

Consider the mood AIA-1:

All M are P
Some S are M   (4.10)
All S are P

According to the rules of the classical syllogistics, this syllogism is not valid; 

there are only 6 valid moods for syllogistic Figure 1, and AIA does not exist in this list. 

For this mood we have found 10 cases that satisfy the premises, but only 4 of them are  

additionally satisfy the conclusion, so  the truth ratio τ  is 4/10.

The Venn-diagrams for true and false cases for AIA-1 is shown in Fig. 4.8. As it 

is seen, if  the complement of S with respect to P and M is not empty ([S\P ≠ Ø]^[S\M ≠ 

Ø]) (case b), the conclusion turns out to be wrong. Using fuzzy-quantification we can 

achieve fully true conclusions under certain conditions. Assuming that the number  of 

elements in the complement of S is much fewer than the cardinality of S  and replacing 

the universal quantifier A by the fuzzy-quantifier A': AlmostAll, we get the following 

syllogism with true ratio τ = 1.0:

All M are P
Some S are M                      (4.11)
AlmostAll S are P

Thus,  under  certain  conditions  we  can  replace  one  quantifier  by  another. 

Obviously,  quantifier  A'  can  be  considered  as  a  special  case  of  the  quantifier  I 

(Almost_All has the “value of similarity of sets”  φ close to 1.0, but not 1.0 exactly, it is 

an  extreme  value  of  φ  for  the  quantifier  Some).  Likewise,  the  quantifier  E' 

(Almost_None) is a special case of the quantifier O.
Returning to the given example, AlmostAll S are P means that the proportion of 

elements of S being elements of P is very important.  Closer the proportion in S not 

being P is to 0, higher the probability of satisfaction of the condition AlmostAll S are P.
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Taking  this  into  account,  we  can  replace  quantifier  A by  I  and  E  by  O 

respectively, according to the cardinalities of the given sets.

Applying the fuzzy quantification to mood AIA-1 to the given example, we can 

obtain 2 modified moods such as AII-1 and III-1.  AII is  a fully valid mood for the 

syllogistic Figure 1. So, potentially, for this mood we can increase τ from 0.4 to 1.0.

Moods, of which truth ratios τ can be improved to 1.0, are listed in Table 4.13.

Table 4.13. List of non-valid moods for all figures that can be improved by
                              fuzzyfication (inclusive logic)

Figure 1

AIA (τ = 0.071) →AII EIE (τ = 0.272) →EIO

Figure 2

AOE (τ = 0.333) →AOO EIE (τ = 0.272) →EIO

Figure 3

AAA (τ = 0.250) →AAI

AAA (τ = 0.250) →AII

AAA (τ = 0.250) →IAI

AIA (τ = 0.400) →AII

EAE (τ = 0.200) →EIO

EAE (τ = 0.200) →EAO

EAE (τ = 0.200) →OAO

EIE (τ = 0.272) →EIO

IAA (τ = 0.100) →IAI

OAE (τ = 0.090) →OAO

Figure 4

AAA (τ = 0.0) →AAI

AAA (τ = 0.0) →IAI

AAE (τ = 0.0) →AAO

EAE (τ = 0.200) →EIO

EAE (τ = 0.200) →EAO

EIE (τ = 0.272) →EIO

IAA (τ = 0.100) →IAI
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Figure 4.8. Venn - diagrams for true a) and false b) syllogistic cases of the mood 
                  AIA-1



Note  that  the  described  conversion  is  not  generic,  as  it  depends  on  the  sets 

relationships and the cardinalities of the real data sets.

Discussed approach can not be applied to the system  2S,  because the procedure is 

based on changing of moods due the transition from inclusive logic to exclusive logic. 

Thus, in 2S no moods that can be improved from non-valid to valid.

Actually we do not introduce new fuzzy-quantifiers, but attempt to replace one crisp 

quantifier by another under the certain conditions, so it can be considered as pseudo-

fuzzy-quantification and can be applied to only syllogistic system S.
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CHAPTER 5

5 FUZZY-SYLLOGISTIC SYSTEM

The approaches examined by different researchers for the extending of classical 

syllogistics were briefly discussed in Chapter 3. 

By the time of the preparation this work, there has been encountered no general 

framework dealing with the two approaches discussed in the Section 3.7 at the same 

time. Particularly,  reasoning with the large numbers of premises with crisp and fuzzy 

quantifiers is considered in (Pereira-Fariña et al. 2014). However, their methods are not 

well formalized and designed framework looks too abstract and difficult to use. Thus, 

syllogistic  reasoning remains as an incomplete  task in  terms of general  solution for 

reasoning.

The reasoning with unlimited numbers of terms and premises in the reasoning 

scheme  is  beyond  the  scope  of  the  current  work.  In  this  work  we  concentrate  on 

increasing  of  the  number  of  classical  syllogistic  quantifiers  and  present  a  generic 

solution  for  the  reasoning  with  intermediate  quantifiers,  and  to  a  certain  degree 

extending the solutions that proposed in the works by (Novák 2008, Turunen 2014).

After the extension of the the classical syllogistic system to the systems based on 

the distribution of the truth ratios of syllogistic moods (systems S and 2S, discussed in 

Chapter 4), we introduce the fuzzy-syllogistic system 6S that has 10 new intermediate 

quantifiers  6/5I,  6/4I,  6/3I,  6/2I,  6/1I and  6/5O,  6/4O,  6/3O,  6/2O,  6/1O. Here, in contrast to the 

approaches, proposed in (Peterson 1979, Peterson 2000,  Novák 2008), we explicitly 

avoid  the  classical  inclusive  quantifiers  I,  O  and  their  linguistic  terms  Some  and 

SomeNot. Then, in analogy with the Aristotelian square of opposition and its extensions 

(Peterson 1979, Thompson 1982, Peterson 2000,  Novák 2008), we propose our version 

of  the  graph  of  opposition,  and  list  corresponding  valid  extended  fuzzy-syllogistic 

moods for system  6S.
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5.1 Fuzzy-Syllogistic System 6S and Fuzzy-Logical Graph of 

Opposition  6Ω

In this chapter we introduce the new system 6S, that consists of 6 affirmative and 6 

negative quantifiers, out of which there are 5 fuzzy quantifiers in each. The proposed 

system is related to the Peterson's square of opposition, but has significant conceptual 

differences.

(Peterson  2000,  Novák  2008,  Murinová et  al.  2014,   Turunen  2014)  consider 

quantifiers I and O together with new introduced intermediate quantifiers like Many or 

Most  and  use  them  in  a  complete  system  together.  According  to  the  modern 

interpretation  of  the  semantic  meaning  of  quantifier  I,   it  can  be  denoted  with  the 

statement “At least one element of... are”. However, we assume that this can be true 

only in case of inclusive logic.  As it  has been shown before,  there is  no difference 

between quantifiers I and O for inclusive logic, so it is focused on exclusive logic with 

the of use intermediate quantifiers in 6S.

We modify  the  list  of  quantifiers,  proposed  by  Peterson,  by  including  the  new 

quantifiers  such as “Half”  and “Several”  and excluding “Some”.  The full  list  of all 

quantifiers of 6S is given in Table 5.1:

Table 5.1. Fuzzy-quantifiers, used in 6S

Affirmative Negative
6/A: All S are P 6/E: All S are not P

6/5I: Many S are P 6/1O: Many S are not P
6/4I: Most S are P 6/2O: Most S are not P
6/3I: Half S are P 6/3O: Half S are not P

6/2I: Several S are P 6/3O: Several S are not P
6/1I: Few S are P 6/5O: Few S are not P

Each quantifier is associated with a certain interval (or exact value) of φ (measure of 

similarity of two sets, introduced in Chapter 4, section 4.2.1): quantifier A corresponds 

to φ = 1.0, quantifier 6/3I (half) to φ = 0.5, quantifier 6/5I (Many) to φ ∈ (0.75 … 1.0), as 

shown in Table 5.2.

Using the quantifiers from Table 5.1. and their ranges of φ, we propose a fuzzy-
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logical graph of opposition 6Ω (see Figure 5.1).

The dashed lines indicate contrary pairs, straight lines sub-contrary pairs and the 

arrows denote the relation superaltern–subaltern.

Table 5.2. Fuzzy-quantifiers from 6S associated with  φ

Affirmative φ Negative  φ
6/A: All S are P 1.00 6/E: All S are not P 0.00

6/5I: Many S are P (0.75 … 1.00) 6/1O: Many S are not P (0.00 … 0.25) 
6/4I: Most S are P (0.50 … 0.75] 6/2O: Most S are not P [0.25 … 0.50) 
6/3I: Half S are P 0.50 6/3O: Half S are not P 0.50

6/2I: Several S are P [0.25 … 0.50) 6/3O: Several S are not P (0.50 … 0.75] 
6/1I: Few S are P (0.00 … 0.25) 6/5O: Few S are not P (0.75 … 1.00) 
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Figure 5.1. Fuzzy-logical graph of opposition 6Ω



Note that pairs of quantifiers (6/5I; 6/1O), (6/4I; 6/2O), (6/3I; 6/3O), (6/2I; 6/4O) and (6/1I; 
6/5O) share the same ranges of φ, so paired quantifiers are interchangeable in accordance 

with immediate entailment of statements.

5.2 Valid Moods in  6S

Based on the  semantics  of  the  intermediate  statements  (in  particular  on  rule  of 

immediate entailment) and the fuzzy-logical graph of opposition, we determine the valid 

intermediate syllogisms.

All valid moods of the fuzzy-syllogistic system 6S are listed below.

Figure 1: 

Valid moods in the Aristotelian model:

1) Affirmative: AAA-AAI-AII

2) Negative: EAE-EAO-EIO

In our model:

Table 5.3. Valid moods in  6S for Figure 1.

Pattern A (Affirmative)
6/AAA
6/AA5I 6/A5I5I
6/AA4I 6/A5I4I 6/A4I4I
6/AA3I 6/A5I3I 6/A4I3I 6/A3I3I
6/AA2I 6/A5I2I 6/A4I2I 6/A3I2I 6/A2I2I
6/AA1I 6/A5I1I 6/A4I1I 6/A3I1I 6/A2I1I 6/A1I1I

Pattern E (Negative)
6/EAE
6/EA1O 6/E5I1O
6/EA2O 6/E5I2O 6/E4I2O
6/EA3O 6/E5I3O 6/E4I3O 6/E3I3O
6/EA4O 6/E5I4O 6/E4I4O 6/E3I4O 6/E2I4O
6/EA5O 6/E5I5O 6/E4I5O 6/E3I5O 6/E2I5O 6/E1I5O

Figure 2: 

Valid moods in Aristotelian model

1) AXX: AEE-AEO-AOO
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2) EXX: EAE-EAO-EIO

In our model:

Table 5.4. Valid moods in  6S for Figure 2.

Pattern 6/AXX
6/AEE

6/AE1O 6/A1O1O
6/AE2O 6/A1O2O 6/A2O2O
6/AE3O 6/A1O3O 6/A2O3O 6/A3O3O
6/AE4O 6/A1O4O 6/A2O4O 6/A3O4O 6/A4O4O
6/AE5O 6/A1O5O 6/A2O5O 6/A3O5O 6/A4O5O 6/A5O5O

 Pattern 6/EXX

EAE
6/EA1O 6/E5I1O
6/EA2O 6/E5I2O 6/E4I2O
6/EA3O 6/E5I3O 6/E4I3O 6/E3I3O
6/EA4O 6/E5I4O 6/E4I4O 6/E3I4O 6/E2I4O
6/EA5O 6/E5I4O 6/E4I5O 6/E3I5O 6/E2I5O 6/E1I5O

Figure 3: 

Valid moods in Aristotelian model

1) XXI: AAI-IAI; (AAI)-AII

2) XXO: EAO-OAO; (EAO)-EIO

In our model:

Table 5.5. Valid moods in  6S for Figure 3.

Pattern 6/XXI
6/AA5I
6/AA4I
6/AA3I
6/AA2I
6/AA1I

6/5IA5I
6/5IA4I
6/5IA3I
6/5IA2I
6/5IA1I

6/4IA5I
6/4IA4I
6/4IA3I
6/4IA2I
6/4IA1I

6/3IA5I
6/3IA4I
6/3IA3I
6/3IA2I
6/3IA1I

6/2IA5I
6/2IA4I
6/2IA3I
6/2IA2I
6/2IA1I

6/1IA5I
6/1IA4I
6/1IA3I
6/1IA2I
6/1IA1I

(Cont. on next page)
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Table 5.5. (cont.)

6/A5I5I
6/A5I4I
6/A5I3I
6/A5I2I
6/A5I1I

6/5I5I5I
6/5I5I4I
6/5I5I3I
6/5I5I2I
6/5I5I1I

6/4I5I5I
6/4I5I4I
6/4I5I3I
6/4I5I2I
6/4I5I1I

6/3I5I5I
6/3I5I4I
6/3I5I3I
6/3I5I2I
6/3I5I1I

6/2I5I5I
6/2I5I4I
6/2I5I3I
6/2I5I2I
6/2I5I1I

6/1I5I5I
6/1I5I4I
6/1I5I3I
6/1I5I2I
6/1I5I1I

6/A4I5I
6/A4I4I
6/A4I3I
6/A4I2I
6/A4I1I

6/5I4I5I
6/5I4I4I
6/5I4I3I
6/5I4I2I
6/5I4I1I

6/4I4I5I
6/4I4I4I
6/4I4I3I
6/4I4I2I
6/4I4I1I

6/3I4I5I
6/3I4I5I
6/3I4I5I
6/3I4I5I
6/3I4I5I

6/2I4I5I
6/2I4I4I
6/2I4I3I
6/2I4I2I
6/2I4I1I

6/A3I5I
6/A3I4I
6/A3I3I
6/A3I2I
6/A3I1I

6/5I3I5I
6/5I3I4I
6/5I3I3I
6/5I3I2I
6/5I3I1I

6/4I3I5I
6/4I3I4I
6/4I3I3I
6/4I3I2I
6/4I3I1I

6/3I3I5I
6/3I3I4I
6/3I3I3I
6/3I3I2I
6/3I3I1I

6/A2I5I
6/A2I4I
6/A2I3I
6/A2I2I
6/A2I1I

6/5I2I5I
6/5I2I4I
6/5I2I3I
6/5I2I2I
6/5I2I1I

6/4I2I5I
6/4I2I4I
6/4I2I3I
6/4I2I2I
6/4I2I1I

6/A1I5I
6/A1I4I
6/A1I3I
6/A1I2I
6/A1I1I

6/5I1I5I
6/5I1I4I
6/5I1I3I
6/5I1I2I
6/5I1I1I

Pattern 6/XXO
6/EA1O
6/EA2O
6/EA3O
6/EA4O
6/EA5O

1OA1O
1OA2O
1OA3O
1OA4O
1OA5O

2OA1O
2OA2O
2OA3O
2OA4O
2OA5O

3OA1O
3OA2O
3OA3O
3OA4O
3OA5O

4OA1O
4OA2O
4OA3O
4OA4O
4OA5O

5OA1O
5OA2O
5OA3O
5OA4O
5OA5O

6/E5I1O
6/E5I2O
6/E5I3O
6/E5I4O
6/E5I5O

1O5I1O
1O5I2O
1O5I3O
1O5I4O
1O5I5O

2O5I1O
2O5I2O
2O5I3O
2O5I4O
2O5I5O

3O5I1O
3O5I2O
3O5I3O
3O5I4O
3O5I5O

4O5I1O
4O5I2O
4O5I3O
4O5I4O
4O5I5O

5O5I1O
5O5I2O
5O5I3O
5O5I4O
5O5I5O

6/E4I1O
6/E4I2O
6/E4I3O
6/E4I4O
6/E4I5O

1O4I1O
1O4I2O
1O4I3O
1O4I4O
1O4I5O

2O4I1O
2O4I2O
2O4I3O
2O4I4O
2O4I5O

3O4I1O
3O4I2O
3O4I3O
3O4I4O
3O4I5O

4O4I1O
4O4I2O
4O4I3O
4O4I4O
4O4I5O

(Cont. on next page)
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Table 5.5. (cont.)
6/E3I1O
6/E3I2O
6/E3I3O
6/E3I4O
6/E3I5O

1O3I1O
1O3I2O
1O3I3O
1O3I4O
1O3I5O

2O3I1O
2O3I2O
2O3I3O
2O3I4O
2O3I5O

3O3I1O
3O3I2O
3O3I3O
3O3I4O
3O3I5O

6/E2I1O
6/E2I2O
6/E2I3O
6/E2I4O
6/E2I5O

1O2I1O
1O2I2O
1O2I3O
1O2I4O
1O2I5O

2O2I1O
2O2I2O
2O2I3O
2O2I4O
2O2I5O

6/E1I1O
6/E1I2O
6/E1I3O
6/E1I4O
6/E1I5O

1O1I1O
1O1I2O
1O1I3O
1O1I4O
1O1I5O

Figure 4: 

Valid moods in Aristotelian model:

1) AAI-IAI

2) AEE-AEO

3) EAO-EIO

4) AAO

In our model:

Table 5.6. Valid moods in  6S for Figure 4.

6/AA5I
6/AA4I
6/AA3I
6/AA2I
6/AA1I

6/AEE

EA1O
EA2O
EA3O
EA4O
EA5O

AA1O
AA2O
AA3O
AA4O
AA5O

6/5IA5I
6/5IA4I
6/5IA3I
6/5IA2I
6/5IA1I

6/AE1O

6/E5I1O
6/E5I2O
6/E5I3O
6/E5I4O
6/E5I5O

6/4IA5I
6/4IA4I
6/4IA3I
6/4IA2I
6/4IA1I

6/AE2O

6/E4I1O
6/E4I2O
6/E4I3O
6/E4I4O
6/E4I5O

(Cont. on next page)
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Table 5.6. (cont.)
6/3IA5I
6/3IA4I
6/3IA3I
6/3IA2I
6/3IA1I

6/AE3O

6/E3I1O
6/E3I2O
6/E3I3O
6/E3I4O
6/E3I5O

6/2IA5I
6/2IA4I
6/2IA3I
6/2IA2I
6/2IA1I

6/AE4O

6/E2I1O
6/E2I2O
6/E2I3O
6/E2I4O
6/E2I5O

6/1IA5I
6/1IA4I
6/1IA3I
6/1IA2I
6/1IA1I

6/AE5O

6/E1I1O
6/E1I2O
6/E1I3O
6/E1I4O
6/E1I5O

Totally, we have introduced 285 valid moods for the system 6S.  Note that due the 

transitivity of quantifiers 6/I and 6/O in 6S, the number of valid moods may be increased 

in accordance with the fuzzy-logical graph of opposition 6Ω.

5.3 Sample Reasoning

Consider the example from Chapter 4, section 4.2. As input data, we have data 

sets M, P and S that consist of the following elements:

Table 5.7. Input data: elements of sets M, P and S

Set Elements

M #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #16, #17

P #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #15, #16, #17 

S #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #13, #14, #17, 

After performing the reasoning under above data, we get the following results (see 

Table 5.8).
The results is consistent with the results obtained in the section 4.2. However, the 

number of moods in this case considerably smaller because of using of exclusive logic. 

Note that there are 4 new moods, which do not exist in section 4.2: A1OA-3,  5I1OA-4, 
5I1OA-4 and 1O1OA-4 resulting from the transitivity of quantifiers  6/I and 6/O in  6S.
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Table 5.8. Results of fuzzy-syllogistic reasoning

Moods Truth ratio, τ 

Valid moods,  τ = 1.0 6/AAA-1 1.00

Non-valid moods,  
τ  (1.0 … 0.0)∈

5IAA-2 0.375
1OAA-2 0.375

A5IA-3 0.500

A1OA-3 0.500
5I5IA-4 0.170

5I1OA-4 0.170
5I1OA-4 0.170

1O1OA-4 0.170

Considering another example, where input sets defined as follows:

Table 5.9. Input data: elements of sets M, P and S for the 2nd example

Set Elements

M #4, #5, #6, #7, #8, #9, #10, #11, #12, #13, #14, #15, #16

P #4, #5, #6, #7, #8, #9, #10, #11, #12, #13

S #1, #2, #3, #4, #5, #6, #7, #8, #9, #10

 We get the following results (see Table 5.10).

According to our model,  mood  6/A1O1O-2  is valid (truth ratio τ = 1.0).

The corresponding syllogism is:

All P are M
Few   S are not M (5.1)
Few S are  not P

A simple verification shows that the syllogism is correct. 
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Table 5.10. Results of fuzzy-syllogistic reasoning for the 2nd example

Moods Truth ratio, τ 

Valid moods,  τ = 1.0 6/A1O1O-2 1.00

Non-valid moods,  
τ  (1.0 … 0.0)∈

6/A5I1O-2; 6/A4I1O-4; 0.928
6/A2O1O-4 0.928

1O4I3O-3; 1O5I1O-1; 
1O1O1O-1

0.915

5I1O1O-1 0.895
5I4I5I-3 0.885

1O2O1O-3 0.871
1O1O5I-1 0.865
5I4I1O-3 0.857

5O1O1O-1 0.850
5I2O5I-3 0.845
1O4I5I-3 0.845
5I4O5I-3 0.816

1O2O5I-3 0.814
6/A5I5I-2 0.714

6/A1O5I-2 0.666
6/A2O5I-4 0.642
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CHAPTER 6

6 APPLICATIONS OF SYLLOGISTIC REASONING 

Since  reasoning  is  associated  with  thinking,  cognition  and  intellect,  it  is  an 

important component in architectures of proactive and deliberative AI agents. Cognitive 

architecture  requires  mechanisms  that  draw  inferences  using  internal  knowledge 

structures as a part of reasoning component. Deductive reasoning is an important and 

widely studied form of inference that lets one combine general and specific beliefs to 

conclude others that  they entail  logically  (Langley 2006). At this  point of view, the 

syllogistic  system  involves  different  deductive  inference  schemes  and  may  be  the 

essential solution that implements such mechanisms like deductive reasoning. 

According to the (Swarup at  al.  2005), one of the central  goals of a cognitive 

architecture should attain an ability to collect and use experience about its environment. 

The agent should adapt to its environment, and become increasingly better at solving 

new  tasks.  Thus,  the  agent  should  be  able  to  use  information  from  previously 

encountered tasks to enhance the learning of new tasks in case the tasks are similar. The 

syllogistic  system can be adapted  for  learning tasks  in  case of  continuous  flows of 

incoming data. Based on concepts of case-based reasoning we propose an algorithm for 

iterative  syllogistic  reasoning.  For  each  portion  of  new data,  we  perform only  few 

calculations based on previous experience and it can be really effective in case of big 

volumes of incoming data. 

Another possible application of syllogistic system is inference on the Semantic Web. 

Inference on the Semantic Web is the basic mechanism for various tasks such as the 

consistency check of an ontology in order to improve data integration, the construction 

of  a  concept  taxonomy  etc.  The  main  technique  for  inference  implementations  in 

existing  solutions  is  using  reasoners,  based  on  deductive  inference  schemes.  Since 

syllogistic reasoner includes various deductive inference rules, it seems possible to use 

them for reasoning under ontologies. 
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6.1 Syllogistic Reasoning in Cognitive Architectures

Syllogistic system is closely linked to the grammatical structure of natural language 

due to the fact that syllogistic structures are part of the natural logic that we normally 

use. Medieval logicians tried to extend particular fields of natural logic in such a way to 

find  various  patterns  of  reasoning  with  very  simple  inference  rules,  that  allowing 

quantifiers with shared  features  and at the same time staying close to linguistic syntax. 

Syllogistic reasoning has also captured the attention of cognitive scientists, who try 

to   infer  conclusions  about  what  goes  on  in  the  human  brain  when  we  combine 

predicates and reason about objects (Logic In Action 2014). 

As part of theory of human cognition, syllogistic systems can be used in different 

cognitive  systems  representing  simple  reasoning  component.  The  one  attempt  of 

modeling of human syllogistic reasoning in Soar Cognitive architecture belongs to Polk 

and Newell (Polk at al. 1988). The syllogistic reasoning system in their work modeled 

many of the answer patterns that people give on a variety of syllogistic problems. 

We propose framework architecture for syllogistic agent (see Fig. 6.1) that includes 

fuzzy-syllogistic  reasoner  (FSR)  as  a  main  reasoning component  which  works  with 

ontology-bases data structures. 

In the sample scenario we are planning to work with ontologies, constructed from 

text corpora.  Sample architecture includes  sensors, actuators,  memory and reasoning 

component. Sensor1... SensorN are used to read environment properties (in our case text 

corpora) and store data in temporary buffers (Information Bases). At this stage we can 

build text ontologies using various statistical approaches. 

Generated  ontologies  are  the  input  for  Synthesizer  module  that  construct  new 

ontology based on certain algorithms. 

The ontology  is  permanently  updated  by  Synthesizer  and this  ontology consists 

current Agent's knowledge about Environment. At the same time Executor can retrieve 

data from knowledge base (KB) (reading cycle is proceeded according to the system 

events) and performs reasoning process (produce conclusion about input data). Executor 

controls  actuators  that  affect  the  Environment.  The  key  elements  of  architecture 

(Synthesizer and Executor)  use the functionality of FSR for performing appropriate 

operations. 
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The important point that data from sensors is coming continuously in small portions. 

It is possible to perform reasoning only for new coming data without considering all 

data in KB for updating global knowledge. The problem is very similar to using of case-

based reasoning to learning tasks (Kolodner 1992). Reasoner can become more efficient 

by remembering  old solutions and adapting  them to new data  rather than having to 

derive answers from scratch each time. 

6.2 Case-Based Reasoning

Case-based reasoning (CBR) is the process of solving new problems based on the 

previous experience.  Considering the syllogistic system as a system with continuous 

flows of input data (i.e. as a part of learning mechanism of AI agents), there is no need 

to recalculate suitable case for each iteration of learning process with whole data every 

time while new data is coming to the system. It is possible to define a simple set of 

constraints for current syllogistic sets, so if new data satisfy these constraints, the case 

does not change, otherwise we need to change it. So, for each portion of new-coming 

data there is a simple procedure for case-defining. 

Now we can define an algorithm for syllogistic reasoning based on CBR. The basic 

steps of CBR cycle (Aamodt 1994) are: 
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1.  RETRIEVE the current case from KB 

2.  REUSE the knowledge to solve problem 

3.  REVISE the proposed solution 

4.  RETAIN current case for next step. 

Now we can discuss these steps in detail. 

The  input  data  for  the  first  step  is  the  new portion  of  data  (in  our  case,  some 

elements of sets M, P or S) from  sensors of AI agent.  We need to retrieve the case from 

previous  step  and  analyze  new  data  with  constraints  coming  from  retrieved  case. 

Actually, constraints are related to zero-bits from case structure ( 1  .. 7),  so we need   

to check new data only for satisfaction of these constraints. If the case is not changed 

we can skip the rest of the steps of  the current cycle. 

If the input data does not satisfy case-constraints, we have to construct an updated 

case by changing subsets, that are not satisfied, from zero to one. Then, we can apply 

the second step by searching the moods matching updated case in the KB. We have only 

96 predefined cases, so we can use hashing or sorting cases by number of non-empty 

cases for search optimization. If a matching case is not found we can skip the following 

steps and clear current state because the current data is not suitable for our model. This 

situation is possible at the beginning of the agent's work where we have insufficient 

amount of data (empty S, M, P sets). With high probability, after few working cycles, 

the input data will be sufficient for performing the reasoning. 

On the third step, if the matching case was found in the set of predefined cases, it is 

necessary to find  moods,  suitable for the current case. 

In  the last  step we have  to  save current  data,  such as  the matched  case,  list  of 

corresponding moods and updated data sets (M, P and S) for the future use. 

This procedure provides iterative process of reasoning with the minimum possible 

numbers of calculation, that can be very effective for the big data sets. 

The general algorithm for syllogistic reasoning with CBR is presented bellow: 

1. Initialization 

A) Calculate and store the 96 possible syllogistic cases. 

B) Calculate list of corresponding moods for all 96 cases.

2.  Define data sets M, P, S 

3.  Reasoning 

A) From incoming data stream select data related to sets M, P, S 
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B) For this data provide all steps of CBR cycle 

As it is seen, in the step 3A the algorithm involves data-selection for reasoning. This 

depends on target domain and current task and is open to discussion which data is to 

retrieve.

6.3 Inference on the Semantic Web. Ontology-Based Fuzzy-   

Syllogistic Reasoning

Generally,  inference  on  the  Semantic  Web  can  be  defined  as  discovering  new 

relationships between resources in existing ontologies, where data is modeled as a set of 

labeled relationships between resources.

A typical ontology consists of two different types of statements: facts (set of facts is 

known  as  assertion  component,  ABox)  and  terminological  component 

(conceptualization,  associated  with  the  facts,   TBox).  Statements  in  TBox  can  be 

defined via vocabularies or rule sets. In general, ontologies concentrate on classification 

methods,  defining  classes,  subclasses  and  their  relationships  together  with  their 

instances.  Rules, on the other hand, concentrate on defining a general mechanism on 

discovering and generating new relationships based on existing ones, much like logic 

programs, for example Prolog (Breitman 2007). 

Inference  mechanisms in the Semantic  Web are conceptual  tools  for  performing 

several tasks such as the finding of relationships between concepts, consistency check 

of an ontology etc. 

Let us consider the simple ontology, that includes a relationship such as “Socrates is 

a man”. In the Tbox, one of the rules may be defined as "All men are mortal". That 

means that reasoning engine can understand the notion of "X is Y"  and can add the 

statement “Socrates is mortal” to the set of relationships, although that was not a part of 

the  original  data.  Thus,  by  means  of  inference  new  relationships  which  were  not 

existing before can be invented.

Ontologies potentially will be widely used in information systems in the near future, 

so ontology construction  is  still  an active topic of research.  The major  problems in 

building and using ontologies are the knowledge acquisition and the time-consuming 

construction  (Pan  et  al.  2009).  Integration  of  different  ontologies  or  knowledge 

exchange between ontology applications is yet another difficulty.
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6.3.1 Ontology-Based Fuzzy-Syllogistic Reasoning

Our objective  is  to  implement  syllogistic  reasoning to  ontologies  and iteratively 

quantify ontological relationships among concepts by using FSR. In this process, FSR 

does not directly produce an ontology. Concepts and relationships of a given ontology 

are evaluated and altered by the FSR.

Among the various possible ways to construct ontologies for a given domain, the 

most widely used approaches are the generation of an ontology from the text-based 

sources  (Shamsfard  at  al.  2003).  There  are  several  open-source  tools  for  ontology 

generation  from  text  corpora  available  for  research  purposes,  such  as  Text2Onto 

(Cimiano at al. 2005), WebKB (Craven et al. 1998) or DLLearner2.

The  most  convenient  tool  for  our  purposes  is  Text2Onto,  because  it  allows  to 

generate  ontologies  automatically  and the generated ontology is  sufficiently  good in 

terms  of  numbers  of  concepts  and  corresponding  relationships  extracted  from  text 

corpora.

6.3.2 Building a Source Ontology

To generate a source ontology it is necessary to prepare a source data (in our case, 

text corpus for the particular domain). In case of Text2Onto, the text corpus may be a 

set of plain text documents, html pages and other unstructured or semi-structured text 

sources. The integration of this tool with the web search engine seems to be an optimal 

solution for collecting and preparing a text corpus for a given domain. Furthermore, as a 

result of stepwise synthesizing concepts and properties, we obtain a domain ontology 

for  a  given  corpus.  The  resulting  ontology  includes  a  set  of  nodes,  represented  by 

terminal or intermediate nodes, with linked relationships (Fig.6.2.  a).

2 http://dl-learner.org/
  

56



6.3.3 Building a Graph of Dependencies

For  an  existing  ontology  we  can  build  a  graph of  dependencies,  which  reflects 

quantitative relationships between concepts of the original ontology, so that FSR can be 

applied.

Such a graph of dependencies contains all concepts and concept attributes of the 

original  ontology  and  additionally  all  quantities  that  contributed  to  their 

conceptualizations during the ontology learning process.

Every  attribute  of  a  particular  concept  from  a  source  ontology  is  further 

decomposed, e.g. new sub-concepts (subclasses) are created for each attribute value. 

This helps revealing hidden dependencies. All subclasses, constructed from attributes, 

must be linked with their parent class by direct link (from attribute-subclass to parent).

Now we can link all concepts (classes) in our graph according to the below procedure. 

Let the number of all (sub)classes (terminal and intermediate) be equal to  N. For 

every  subclass  SubCli  we  need  to  consider  N-1 subclasses.  Analysis  should  be 

performed on pairs. For each pair of subclasses there are following possible conditions:
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Figure 6.2. Structural schema of a simple ontology (a); 1 – 4 types of possible class 
relationships (b) and a sample graph of dependencies (c).



• SubCli is  subclass  for  SubClj  (or  vice  versa)  (Fig.6.2. a,  Subclass2  and 

Subclass3): direct link from subclass to superclass on the graph of dependencies;

• SubCli and  SubClj  have  no  shared  subclasses  (Fig.6.2. a,  Subclass1  and 

Subclass3): no link between the classes on the graph of dependencies;

• SubCli and  SubClj  have  shared  subclasses  (Fig.6.2. a,  Subclass3  and 

SubclassK): in this case we need to calculate the value of F as fraction  of shared 

subclasses to number of all subclasses for each of 2 subclasses (nodes), if F=1 

for one of the nodes, then this node becomes subclass of the other node and we 

need to create a direct link from subclass to superclass; if F<1, we need to create 

a  non-direct  link  (nodes  have  shared  subclasses  but  each  of  them  is  a  not 

superclass of another).

After performing these operations we will get the graph of dependencies, which is a 

reflection of the input ontology (Fig. 6.2 c).

There are 4 possible types of relationships between the classes (Fig. 6.2 b, 1-4 ):

• direct  link  from  CLASS_1  to  CLASS_2:  CLASS_2  includes  all  elements  from 

CLASS_1, corresponds to  the syllogistic quantifier A;

• direct  link  from  CLASS_2  to  CLASS_1:  CLASS_1  includes  all  elements  from 

CLASS_2, corresponds to the  syllogistic  quantifier  I or O  (some elements  of 

CLASS_1 in CLASS_2);

• non-direct link from CLASS_1 to CLASS_2 (or vice versa): some elements from 

CLASS_1  in  CLASS_2,  at  the  same  time,  some  elements  from  CLASS_2  in 

CLASS_1:  corresponds  to  the  quantifiers  I,  O (appropriate  quantifier  can  be 

selected according to cardinality of given sets);

• no link between classes: corresponds to  quantifier E.

FSR with  such  a  dependency  graph  enables  reasoning  with  256  possible  fuzzy 

inferences per triple concept relationships.

In some cases,  the transitive  concept  of  a  triple  can  be  removed,  as  that  is  not 

included in the conclusion.  This helps  reducing the complexity of the ontology and 

increases the level of abstraction over details that are no more required in reasoning.
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6.3.4 Reasoning with Ontologies: Procedure

A sample algorithm for ontology-based syllogistic reasoning is presented below :

1. Calculate truth ratios of all 256 syllogistic moods.

2. For given ontology, build dependency graph as was described above.

3. Select the triple of sets for analysis and label them as  M, P and S.

4. Construct 4 syllogistic figures and associate quantifiers appropriate for 

the quantities of the premises from the graph of dependencies; apply all 

possible quantifiers in conclusions.

5. Calculate truth ratios for all possible moods.

6. Select  the  moods  with  the  highest  truth  ratio  τ;  if  τ<1.0,  apply  the 

fuzzification if possible.

6.3.5 Sample Application

Let us perform the steps of the algorithm on a sample ontology (Fig. 6.3. a). One can 

see that there are four classes,  HUMANS (with the attribute #gender),  PHILOSOPHERS, 

SCIENTISTS and ARTISTS. Also there are six instances of the class HUMANS.

First of all, we need to distinguish all attributes of each class as separate subclasses. 

As  shown  on  (Fig.  6.3.  b),  we  have  created  2  subclasses  of  HUMANS, 

humans_gender_male and humans_gender_female. Subclasses have direct link to their 

superclass, because this operation can be considered as decomposition of superclass. 

Thus,  all  subclasses  are  part  of  a  superclass  and  relation  between  subclass  and 

superclass  is  “part-of”.  In  terms  of  syllogistic  quantification  this  relationship 

corresponds to quantifier  A (All elements of subclass are elements of superclass).

We are  not  interested  in  the  instances  of  classes  but  the  number  of  them  (the 

cardinality)  for  each  (sub)class.  So,   all  instances  are  removed  from the  graph and 

cardinalities of each subclass are calculated.
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Now we can  see  that  all  PHILOSOPHERS are  male  (direct  link  from subclass  to 

superclass), some of SCIENTISTS and ARTISTS are women, some are man. The constructed 

graph is suitable for performing by FSR.

To  perform  reasoning,  we  need  to  select  3  classes.  For  now  it  looks  quite 

indefinable,  but when we embed our system in a real application,  like an intelligent 

agent, the selected classes will be determined by the logic of the agent.

Let  us  consider  the  relationships  between  SCIENTISTS and  PHILOSOPHERS classes 

through people_gender_male class (Fig. 6.3 b, dashed area).

According  to  the  structure  of  syllogisms,  the  middle  term  (M)  is 

humans_gender_male  class,  predicate  (P)  is  SCIENTISTS class  and  subject  (S)  is 

PHILOSOPHERS class.

So, for four syllogistic figures we have the following combinations:

Figure 1 Figure 2 Figure 3 Figure 4
{I, O}: M P {I, O}: P M {I, O}: M P {I, O}: P M
{A}: S M {A}: S M {I, O}: M S {I, O}: M S
{?}: S P {?}: S P {?}: S P {?}: S P

The problem is to find the most appropriate quantifier in conclusion. The quantifiers 

for the premises were selected according to the relationships  between classes in the 

graph  of  dependencies.  For  example,  direct  link  from  PHILOSOPHERS to 

humans_gender_male  (S  M)  corresponds  to  the  quantifier  A,  non-direct  link  from 

SCIENTISTS to humans_gender_male (P M) can be an I or O quantified relationship.

By calculating truth ratios of all possible moods, we obtain the following results:
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Figure 6.3. Sample ontology (a) and graph of dependencies for sample ontology (b). 



Figure 1 Figure 2 Figure 3 Figure 4
IAA=0.285 IAA=0.285 IIA=0.142 IIA=0.142
IAE=0.285 IAE=0.285 IIE=0.144 IIE=0.144
IAI=0.714 IAI=0.714 III=0.885 III=0.885
IAA=0.714 IAA=0.714 IIO=0.857 IIO=0.857
OAA=0.214 OAA=0.333 IOA=0.183 IOA=0.183
OAE=0.357 OAE=0.333 IOE=0.154 IOE=0.154
OAI=0.642 OAI=0.666 IOI=0.845 IOI=0.845
OAA=0.785 OAA=0.666 IOE=0.816 IOE=0.816

OIA=0.084 OIA=0.134
OIE=0.157 OIE=0.104
OII=0.845 OII=0.895

OIO=0.915 OIO=0.865
OOA=0.128 OOA=0.194
OOE=0.185 OOE=0.134
OOI=0.814 OOI=0.865
OOE=0.871 OOE=0.805

The highest truth ratio is OIO3=0.915. We cannot apply fuzzy-quantification based 

on moods relaxation to a given mood, because it does not contain A or E quantifiers. 

Based on the below results we can retrieve the most suitable syllogism for the given 

data:

O: Some Male are not Scientists
I: Some   Male   are   Philosophers
O: Some Philosophers are not  Scientist

with truth ratio  τ=0.915. Considering the OIO3 mood, we can see that it  has 71 

syllogistic cases and only 6 cases are false.

In  analogy  with  previous  example,  consider  following  scenario:  M= 

humans_gender_male class, S=PHILOSOPHERS, P=HUMANS. So, we want to investigate 

the relationship between PHILOSOPHERS and HUMANS.

Possible moods are listed below:

Figure 1 Figure 2 Figure 3 Figure 4
{A}: M P {I, O}: P M {A}: M P {I, O}: P M
{A}: S M {A}: S M {I, O}: M S {I, O}: M S
{?}: S P {?}: S P {?}: S P {?}: S P

After calculating the truth ratio for all moods, only three moods AAA1, AAI1 and 

AII3 have τ=1.0:

A: All Male are Humans     A: All Male are  Humans
A: All   Philosophers   are   Male                      I: Some   Male   are   Philosophers     
{A, I}: All (Some)Philosophers are Humans    I: Some Philosophers are Humans

  
61



Actually, we can remove the link between Philosophers and humans_gender_men 

and create direct (or non-direct) link between Philosophers and Humans. Performing the 

same operation for Scientists and Artists classes, it is possible to remove all links to 

humans_gender_men. Since there is no link, related with the class, we can simply delete 

this class from the graph. This leads to an increase in the abstraction level and decrease 

of complexity in the resulting ontology, which is a desired result.
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CHAPTER 7

CONCLUSION

Currently,  the  categorical  syllogism  is  the  most  studied  scheme  of  deductive 

reasoning, so mathematical formalization with algorithmic implementation is of great 

interest to researchers in the fields of AI and cognitive sciences. The main contributions 

of this thesis are as follows:

 an algorithm for generation of a complete set  of syllogistic cases for three sets 

of input data  was proposed;

 an  algorithm  for  calculation  of  truth  ratios  of  the  syllogistic  moods  was 

generalized for cases of inclusive/exclusive logics;

  structural properties of syllogistic systems S/2S were revealed and evaluated;

 different aspects of fuzzification in S/2S  were considered;

 the extension of classical system with intermediate quantifiers (system 6S)  was 

examined;

  possible applications of the developed system as FSR component in cognitive 

architectures or ontology-based fuzzy-syllogistic reasoning were suggested.

Most  of  the  algorithms,  proposed  in  this  thesis  were  implemented  within  the 

FSR_project  which  consists  of  two  parts:  the  fuzzy-syllogistic  reasoning  engine 

(FSREngine)  and  thin  client  for  the  FSREngine  (FSR_GUI).  The  FSREngine  is 

implemented as a shared library and can be integrated in various applications related to 

the  syllogistic  reasoning.  The  FRSEngine  supports  all  functions,  related  to 

syllogistic/fuzzy-syllogistic  reasoning.  The  FSR_GUI  consists  of  various  tools  for 

analyzing structural properties of systems S/2S/6S. Also FSR_GUI allows to perform 

fuzzy-syllogistic reasoning under a given data, that can be generated by the FSR_GUI 

or defined by the user (see Appendix F).

The designed systems have some limitations caused by logics applied. Currently, 

only two premises can be used to infer conclusion, so it is necessary to decompose input 

data, such as ontologies on triple sets. Overcoming this restriction will allow the system 

to become a universal mechanism for modeling of  decision  making.
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APPENDIX A

96 DISTINCT SYLLOGISTIC CASES

96  distinct  syllogistic  cases calculated  in  accordance  with  the  algorithm 

discussed  in Section 4.1.4

Table A.1. Syllogistic cases

Case
Space 

combination
Case

Space 
combination

Case
Space 

combination
Case

Space 
combination

1 0000110 25 0101100 49 1001100 73 1101000

2 0000111 26 0101101 50 1001101 74 1101001

3 0001010 27 0101110 51 1001110 75 1101010

4 0001011 28 0101111 52 1001111 76 1101011

5 0001100 29 0110001 53 1010001 77 1101100

6 0001101 30 0110010 54 1010010 78 1101101

7 0001110 31 0110011 55 1010011 79 1101110

8 0001111 32 0110101 56 1010100 80 1101111

9 0010101 33 0110110 57 1010101 81 1110000

10 0010110 34 0110111 58 1010110 82 1110001

11 0010111 35 0111000 59 1010111 83 1110010

12 0011001 36 0111001 60 1011001 84 1110011

13 0011010 37 0111010 61 1011010 85 1110100

14 0011011 38 0111011 62 1011011 86 1110101

15 0011100 39 0111100 63 1011100 87 1110110

16 0011101 40 0111101 64 1011101 88 1110111

17 0011110 41 0111110 65 1011110 89 1111000

18 0011111 42 0111111 66 1011111 90 1111001

19 0100011 43 1000011 67 1100001 91 1111010

20 0100101 44 1000110 68 1100011 92 1111011

21 0100110 45 1000111 69 1100100 93 1111100

22 0100111 46 1001001 70 1100101 94 1111101

23 0101010 47 1001010 71 1100110 95 1111110

24 0101011 48 1001011 72 1100111 96 1111111
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APPENDIX B

EULER DIAGRAMS FOR THE  96 DISTINCT  CASES

Table B.1. Euler diagrams for the 96 syllogistic cases

Case Euler diagram Case Euler diagram 

1 5

2 6

3 7

4 8

(Cont. on next page)

  
69



Table B.1. (cont.)

9 14

10 15

11 16

12 17

13 18

(Cont. on next page)
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Table B.1. (cont.)

19 24

20 25

21 26

22 27

23 28

(Cont. on next page)

  
71



Table B.1. (cont.)

29 34

30 35

31 36

32 37

33 38

(Cont. on next page)
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Table B.1. (cont.)

39 44

40 45

41 46

42 47

43 48

(Cont. on next page)
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Table B.1. (cont.)

49 54

50 55

51 56

52 57

53 58

(Cont. on next page)
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Table B.1. (cont.)

59 64

60 65

61 66

62 67

63 68

(Cont. on next page)

  
75



Table B.1. (cont.)

69 74

70 75

71 76

72 77

73 78

(Cont. on next page)
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Table B.1. (cont.)

79 84

80 85

81 86

82 87

83 88

(Cont. on next page)
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Table B.1. (cont.)

89 93

90 94

91 95

92 96
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APPENDIX C

DISTINCT SYLLOGISTIC MOODS WITH THEIR 

TRUTH RATIOS  FOR SYSTEM S

Table С.1. Distinct syllogistic moods for system S

#

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t3 f #

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t f

1 1.000 EIO-4; EIO-3; 

EIO-2; EIO-1; 

4 11 0 20 0.909 AOI-3; 1 10 1

2 1.000 OAO-3; 1 11 0 21 0.909 OAI-3; 1 10 1

3 1.000 AII-3; AII-1; 2 10 0 22 0.902 OOI-2; 1 65 7

4 1.000 IAI-4; IAI-3; 2 10 0 23 0.900 EOO-4; EOO-3; 2 9 1

5 1.000 AOO-2; 1 9 0 24 0.900 IAO-4; IAO-3; 2 9 1

6 1.000 EAO-4; EAO-3; 2 5 0 25 0.895 IOI-2; IOI-1; 2 60 7

7 1.000 AAI-3; 1 4 0 26 0.895 OII-4; OII-2; 2 60 9

8 1.000 AAI-1; AAA-1; 2 1 0 27 0.885 III-4; III-3; III-2; 

III-1; 

4 62 9

9 1.000 AAO-4; AAI-4; 2 1 0 28 0.871 OOO-3; 1 61 9

10 1.000 AEO-4; AEO-2; 

AEE-4; AEE-2; 

4 1 0 29 0.865 OIO-4; OIO-2; 2 58 9

11 1.000 EAO-2; EAO-1; 

EAE-2; EAE-1; 

4 1 0 30 0.865 OOI-1; 1 58 10

12 0.928 AIO-4; AIO-2; 2 13 1 31 0.865 OOI-4; 1 58 10

13 0.928 AOI-1; 1 13 1 32 0.857 IIO-4; IIO-3; IIO-

2; IIO-1; 

4 60 11

14 0.928 AOO-4; 1 13 1 33 0.850 IOO-2; IOO-1; 2 57 11

15 0.928 EOO-2; EOO-1; 2 13 1 34 0.847 OOO-2; 1 61 11

16 0.928 OAI-4; 1 13 1 35 0.845 IOI-4; IOI-3; 2 60 1

17 0.928 OAO-4; 1 13 1 36 0.845 OII-3; OII-1; 2 60 13

18 0.915 OIO-3; OIO-1; 2 65 6 37 0.833 AAO-2; 1 5 13

19 0.910 OOO-1; 1 61 6 38 0.816 IOO-4; IOO-3; 2 58 13

(Cont. on next page)

3 t denotes number of true cases, f denotes number of false cases for the corresponding mood
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Table C.1. (cont.)

#

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t f #

Truth 

ratio, 

τ

Moods
M

ood
s in

 
grou

p t f

39 0.814 OOI-3; 1 57 1 64 0.642 OEO-4; OEO-2; 2 9 5

40 0.805 OOO-4; 1 54 1 65 0.636 IEO-4; IEO-3; 

IEO-2; IEO-1; 

4 7 4

41 0.800 AEI-3; AEI-1; 2 4 3 66 0.600 AIO-3; AIO-1; 2 6 4

42 0.800 EAI-4; EAI-3; 2 4 3 67 0.600 AEO-3; AEO-1; 2 3 2

43 0.785 EOI-2; EOI-1; 2 11 3 68 0.545 AOO-3; 1 6 5

44 0.785 OAO-1; 1 11 1 69 0.454 AOA-3; 1 5 6

45 0.785 OEI-4; OEI-2; 2 11 1 70 0.400 AEA-3; AEA-1; 2 2 3

46 0.750 AAO-3; 1 3 1 71 0.400 AIA-3; AIA-1; 2 4 6

47 0.750 EEI-4; EEI-3; 

EEI-2; EEI-1; 

4 3 1 72 0.363 IEA-4; IEA-3; 

IEA-2; IEA-1; 

4 4 7

48 0.750 EEO-4; EEO-3; 

EEO-2; EEO-1; 

4 3 1 73 0.357 AOA-1; 1 5 9

49 0.727 EII-4; EII-3; EII-

2; EII-1; 

4 8 3 74 0.357 AOE-4; 1 5 9

50 0.727 IEI-4; IEI-3; IEI-

2; IEI-1; 

4 8 3 75 0.357 OAE-1; 1 5 9

51 0.714 AII-4; AII-2; 2 10 4 76 0.357 OEA-4; OEA-2; 2 5 9

52 0.714 IAI-2; IAI-1; 2 10 4 77 0.333 AAE-2; 1 2 4

53 0.714 IAO-2; IAO-1; 2 10 4 78 0.333 AOE-2; 1 3 6

54 0.700 EOI-4; EOI-3; 2 7 3 79 0.333 OAA-2; 1 3 6

55 0.700 OEI-3; OEI-1; 2 7 3 80 0.333 OAE-2; 1 3 6

56 0.700 OEO-3; OEO-1; 2 7 3 81 0.300 EOE-4; EOE-3; 2 3 7

57 0.666 AOI-2; 1 6 3 82 0.300 OEA-3; OEA-1; 2 3 7

58 0.666 OAI-2; 1 6 3 83 0.300 OEE-3; OEE-1; 2 3 7

59 0.666 OAO-2; 1 6 3 84 0.285 AIE-4; AIE-2; 2 4 10

60 0.666 AAI-2; 1 4 2 85 0.285 IAA-2; IAA-1; 2 4 10

61 0.642 AOI-4; 1 9 5 88 0.272 IEE-4; IEE-3; 

IEE-2; IEE-1; 

4 3 8

62 0.642 AOO-1; 1 9 5 89 0.250 AAA-3; 1 1 3

63 0.642 OAI-1; 1 9 5 90 0.250 EEA-4; EEA-3; 

EEA-2; EEA-1; 

4 1 3

(Cont. on next page)
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Table C.1. (cont.)

#

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t f #

Truth 

ratio, 

τ

Moods
M

ood
s in

 
grou

p t f

93 0.214 OAA-1; 1 3 11 114 0.100 IAA-4; IAA-3; 2 1

94 0.214 OEE-4; OEE-2; 2 3 11 115 0.097 OOE-2; 1 7 65

93 0.200 AEE-3; AEE-1; 2 1 4 116 0.090 AOE-3; 1 1 10

94 0.200 EAE-4; EAE-3; 2 1 4 117 0.090 OAE-3; 1 1 10

95 0.194 OOA-4; 1 13 54 118 0.089 OOA-1; 1 6 61

96 0.185 OOE-3; 1 13 57 119 0.084 OIA-3; OIA-1; 2 6 65

97 0.183 IOA-4; IOA-3; 2 13 58 120 0.071 AIA-4; AIA-2; 2 1 13

98 0.166 AAA-2; 1 1 1 121 0.071 AOA-4; 1 1 13

99 0.154 IOE-4; IOE-3; 2 11 3 122 0.071 AOE-1; 1 1 13

100 0.154 OIE-3; OIE-1; 2 11 3 123 0.071 EOA-2; EOA-1; 2 1 13

101 0.152 OOA-2; 1 11 124 0.071 OAA-4; 1 1 13

102 0.149 IOA-2; IOA-1; 2 10 125 0.071 OAE-4; 1 1 13

103 0.142 IIA-4; IIA-3; IIA-

2; IIA-1; 

4 10 126 0.000 EAI-1; EAA-1; 

EAI-2; EAA-2; 

4 0 1

104 0.134 OIA-4; OIA-2; 2 9 127 0.000 AEI-2; AEA-2; 

AEI-4; AEA-4; 

4 0 1

105 0.134 OOE-1; 1 9 128 0.000 AAO-1; AAE-1; 2 0 1

106 0.134 OOE-4; 1 9 129 0.000 AAE-4; AAA-4; 2 0 1

107 0.128 OOA-3; 1 9 130 0.000 AAE-3; 1 0 4

108 0.114 IIE-4; IIE-3; IIE-

2; IIE-1; 

4 8 131 0.000 EAA-3; EAA-4; 2 0 5

109 0.104 IOE-2; IOE-1; 2 7 132 0.000 AOA-2; 1 0 9

110 0.104 OIE-4; OIE-2; 2 7 133 0.000 IAE-3; IAE-4; 2 0 10

111 0.100 EOA-4; EOA-3; 2 1 134 0.000 AIE-1; AIE-3; 2 0 10

112 0.100 IAA-4; IAA-3; 2 1 135 0.000 OAA-3; 1 0 11

113 0.100 EOA-4; EOA-3; 2 1 136 0.000 EIA-1; EIA-2; 

EIA-3; EIA-4; 

4 0 11
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APPENDIX D

DISTINCT SYLLOGISTIC MOODS WITH THEIR 

TRUTH RATIOS FOR SYSTEM 2S

Table D.1. Distinct syllogistic moods for system 2S

#

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t4 f #

Truth 

ratio, 

τ

Moods

M
ood

s in
 

grou
p t f

1 1.000 OAO-3; OAI-3; 

IAO-3; IAI-3; 

4 6 0 8 0.833 OOO-2; OOI-2; 

OIO-2; OII-2; 

IOO-2; IOI-2; 

IIO-2; III-2; 

8 40 8

2 1.000 AAA-1; 1 1 0 9 0.800 EOO-2; EOO-1; 

EOI-2; EOI-1; 

EIO-2; EIO-1; 

EII-2; EII-1; 

8 8 2

3 1.000 AAO-4; AAI-4; 2 1 0 10 0.800 EAO-4; EAO-3; 

EAI-4; EAI-3; 

4 4 1

4 1.000 AEE-4; AEE-2; 2 1 0 11 0.750 AOO-2; AOI-2; 

AIO-2; AII-2; 

4 6 2

5 1.000 EAE-2; EAE-1; 2 1 0 12 0.750 AAO-3; AAI-3; 2 3 1

6 0.888 OAO-4; OAI-4; 

IAO-4; IAI-4; 

4 8 1 13 0.744 OOO-4; OOI-4; 

OIO-4; OII-4; 

IOO-4; IOI-4; 

IIO-4; III-4; 

8 35 12

7 0.851 OOO-1; OOI-1; 

OIO-1; OII-1; 

IOO-1; IOI-1; 

IIO-1; III-1; 

8 40 7 14 0.740 OOO-3; OOI-3; 

OIO-3; OII-3; 

IOO-3; IOI-3; 

IIO-3; III-3; 

8 40 14

(Cont. on next page)

4 t denotes number of true cases, f denotes number of false cases for the corresponding mood
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Table D.1. (cont.)

# Truth 

ratio, 

τ

Moods Mood
s in 

group

t f # Truth 

ratio, 

τ

Moods Moo
ds in 
grou

p

t f

15 0.666 AOO-1; AOI-1; 

AIO-1; AII-1; 

4 6 3 28 0.375 OAO-2; OAI-2; 

IAO-2; IAI-2; 

4 3

16 0.666 EOO-4; EOO-3; 

EOI-4; EOI-3; 

EIO-4; EIO-3; 

EII-4; EII-3; 

8 4 2 29 0.333 AAE-2; 1 2

17 0.615 AOO-4; AOI-4; 

AIO-4; AII-4; 

4 8 30 0.333 EOE-4; EOE-3; 

EIE-4; EIE-3; 

4 2 4

18 0.500 AAO-2; AAI-2; 2 3 31 0.333 OEA-3; OEA-1; 

IEA-3; IEA-1; 

4 2 4

19 0.500 AOA-3; AIA-3; 2 3 32 0.333 OEE-3; OEE-1; 

IEE-3; IEE-1; 

4 2 4

20 0.500 AOO-3; AOI-3; 

AIO-3; AII-3; 

4 3 33 0.333 OEO-3; OEO-1; 

OEI-3; OEI-1; 

IEO-3; IEO-1; 

IEI-3; IEI-1; 

8 2 4

21 0.500 EEO-4; EEO-3; 

EEO-2; EEO-1; 

EEI-4; EEI-3; 

EEI-2; EEI-1; 

8 2 34 0.333 AOA-1; AIA-1; 2 3 6

22 0.461 OAO-1; OAI-1; 

IAO-1; IAI-1; 

4 6 35 0.307 AOE-4; AIE-4; 2 4 9

23 0.400 AEA-3; AEA-1; 2 2 36 0.307 OAE-1; IAE-1; 2 4 9

24 0.400 AEO-3; AEO-1; 

AEI-3; AEI-1; 

4 2 37 0.250 AAA-3; 1 1 3

25 0.400 OEA-4; OEA-2; 

IEA-4; IEA-2; 

4 4 38 0.250 EEA-4; EEA-3; 

EEA-2; EEA-1; 

4 1 3

26 0.400 OEO-4; OEO-2; 

OEI-4; OEI-2; 

IEO-4; IEO-2; 

IEI-4; IEI-2; 

8 4 39 0.250 EEE-4; EEE-3; 

EEE-2; EEE-1; 

4 1 3

27 0.375 OAA-2; IAA-2; 2 3 40 0.250 AOE-2; AIE-2; 2 2 6

(Cont. on next page)
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Table D.1. (cont.)

# Truth 

ratio, 

τ

Moods Mood
s in 

group

t f # Truth 

ratio, 

τ

Moods Moo
ds in 
grou

p

t f

41 0.250 OAE-2; IAE-2; 2 2 6 56 0.063 OOA-1; OIA-1; 

IOA-1; IIA-1; 

4 3 44

42 0.230 OAA-1; IAA-1; 2 3 10 57 0.041 OOE-2; OIE-2; 

IOE-2; IIE-2; 

4 2 46

43 0.200 AEE-3; AEE-1; 2 1 4 58 0.000 EAO-1; EAI-1; 

EAA-1; EAO-2; 

EAI-2; EAA-2; 

6 0 1

44 0.200 EAE-4; EAE-3; 2 1 4 59 0.000 AEO-2; AEI-2; 

AEA-2; AEO-4; 

AEI-4; AEA-4; 

6 0 1

45 0.200 EOE-2; EOE-1; 

EIE-2; EIE-1; 

4 2 8 60 0.000 AAO-1; AAI-1; 

AAE-1; 

3 0 1

46 0.200 OEE-4; OEE-2; 

IEE-4; IEE-2; 

4 2 8 61 0.000 AAE-4; AAA-4; 2 0 1

47 0.170 OOA-4; OIA-4; 

IOA-4; IIA-4; 

4 8 39 62 0.000 AAE-3; 1 0 4

48 0.166 AAA-2; 1 1 5 63 0.000 EAA-3; EAA-4; 2 0 5

49 0.148 OOE-3; OIE-3; 

IOE-3; IIE-3; 

4 8 46 64 0.000 OAE-3; OAA-3; 

IAE-3; IAA-3; 

4 0 6

50 0.125 OOA-2; OIA-2; 

IOA-2; IIA-2; 

4 6 42 65 0.000 EOA-3; EOA-4; 

EIA-3; EIA-4; 

4 0 6

51 0.111 OAA-4; IAA-4; 2 1 8 66 0.000 AOE-3; AIE-3; 2 0 6

52 0.111 OOA-3; OIA-3; 

IOA-3; IIA-3; 

4 6 48 67 0.000 AOA-2; AIA-2; 2 0 8

53 0.085 OOE-1; OIE-1; 

IOE-1; IIE-1; 

4 4 43 68 0.000 OAE-4; IAE-4; 2 0 9

54 0.085 OOE-4; OIE-4; 

IOE-4; IIE-4; 

4 4 43 69 0.000 AOE-1; AIE-1; 2 0 9

55 0.076 AOA-4; AIA-4; 2 1 12 70 0.000 EOA-1; EOA-2; 

EIA-1; EIA-2; 

4 0 10
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APPENDIX E

          POINT-SYMMETRIC  MOODS (FOR SYSTEM S)

Table E.1. Symmetric moods for system S

# Mood
Truth 

ratio, τ
t5 f Mood

Truth 

ratio, τ
t f

1 EIO-4 1.000 11 0 EIA-4 0.000 0 11

2 EIO-3 1.000 11 0 EIA-3 0.000 0 11

3 EIO-2 1.000 11 0 EIA-2 0.000 0 11

4 EIO-1 1.000 11 0 EIA-1 0.000 0 11

5 OAO-3 1.000 11 0 OAA-3 0.000 0 11

6 AII-3 1.000 10 0 AIE-3 0.000 0 10

7 AII-1 1.000 10 0 AIE-1 0.000 0 10

8 IAI-4 1.000 10 0 IAE-4 0.000 0 10

9 IAI-3 1.000 10 0 IAE-3 0.000 0 10

10 AOO-2 1.000 9 0 AOA-2 0.000 0 9

11 EAO-4 1.000 5 0 EAA-4 0.000 0 5

12 EAO-3 1.000 5 0 EAA-3 0.000 0 5

13 AAI-3 1.000 4 0 AAE-3 0.000 0 4

14 AAI-1 1.000 1 0 AAO-1 0.000 0 1

15 AAA-1 1.000 1 0 AAO-1 0.000 0 1

16 AAO-4 1.000 1 0 AAE-4 0.000 0 1

17 AAI-4 1.000 1 0 AAE-4 0.000 0 1

18 AEO-4 1.000 1 0 AEA-4 0.000 0 1

19 AEO-2 1.000 1 0 AEI-4 0.000 0 1

20 AEE-4 1.000 1 0 AEA-2 0.000 0 1

21 AEE-2 1.000 1 0 AEI-2 0.000 0 1

22 EAO-2 1.000 1 0 EAA-2 0.000 0 1

23 EAO-1 1.000 1 0 EAI-2 0.000 0 1

24 EAE-2 1.000 1 0 EAA-1 0.000 0 1

25 EAE-1 1.000 1 0 EAI-1 0.000 0 1

26 AIO-4 0.928 13 1 AIA-4 0.071 1 13

27 AIO-2 0.928 13 1 AIA-4 0.071 1 13

(Cont. on next page)

5 t denotes number of true cases, f denotes number of false cases for the corresponding mood
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Table E.1. (cont.)

# Mood
Truth 

ratio, τ
t f Mood

Truth 

ratio, τ
t f

28 AOI-1 0.928 13 1 AOE-1 0.071 1 13

29 AOO-4 0.928 13 1 AOA-4 0.071 1 13

30 EOO-2 0.928 13 1 EOA-2 0.071 1 13

31 EOO-1 0.928 13 1 EOA-2 0.071 1 13

32 OAI-4 0.928 13 1 OAE-4 0.071 1 13

33 OAO-4 0.928 13 1 OAA-4 0.071 1 13

34 OIO-3 0.915 65 6 OIA-1 0.084 6 65

35 OIO-1 0.915 65 6 OIA-3 0.084 6 65

36 OOO-1 0.910 61 6 OOA-1 0.089 6 61

37 AOI-3 0.909 10 1 AOE-3 0.090 1 10

38 OAI-3 0.909 10 1 OAE-3 0.090 1 10

39 OOI-2 0.902 65 7 OOE-2 0.097 7 65

40 EOO-4 0.900 9 1 EOA-4 0.100 1 9

41 EOO-3 0.900 9 1 EOA-4 0.100 1 9

42 IAO-4 0.900 9 1 IAA-4 0.100 1 9

43 IAO-3 0.900 9 1 IAA-4 0.100 1 9

44 IOI-2 0.895 60 7 IOE-2 0.104 7 60

45 IOI-1 0.895 60 7 IOE-2 0.104 7 60

46 OII-4 0.895 60 7 OIE-4 0.104 7 60

47 OII-2 0.895 60 7 OIE-4 0.104 7 60

48 III-4 0.885 62 8 IIE-1 0.114 8 62

49 III-3 0.885 62 8 IIE-2 0.114 8 62

50 III-2 0.885 62 8 IIE-3 0.114 8 62

51 III-1 0.885 62 8 IIE-4 0.114 8 62

52 OOO-3 0.871 61 9 OOA-3 0.128 9 61

53 OIO-4 0.865 58 9 OIA-4 0.134 9 58

54 OIO-2 0.865 58 9 OIA-4 0.134 9 58

55 OOI-1 0.865 58 9 OOE-1 0.134 9 58

56 OOI-4 0.865 58 9 OOE-4 0.134 9 58

57 IIO-4 0.857 60 10 IIA-1 0.142 10 60

58 IIO-3 0.857 60 10 IIA-2 0.142 10 60

59 IIO-2 0.857 60 10 IIA-3 0.142 10 60

60 IIO-1 0.857 60 10 IIA-4 0.142 10 60

(Cont. on next page)
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Table E.1. (cont.)

# Mood
Truth 

ratio, τ
t f Mood

Truth 

ratio, τ
t f

61 IOO-2 0.850 57 10 IOA-1 0.149 10 57

62 IOO-1 0.850 57 10 IOA-2 0.149 10 57

63 OOO-2 0.847 61 11 OOA-2 0.152 11 61

64 IOI-4 0.845 60 11 IOE-4 0.154 11 60

65 IOI-3 0.845 60 11 IOE-4 0.154 11 60

66 OII-3 0.845 60 11 OIE-3 0.154 11 60

67 OII-1 0.845 60 11 OIE-3 0.154 11 60

68 AAO-2 0.833 5 1 AAA-2 0.166 1 5

69 IOO-4 0.816 58 13 IOA-3 0.183 13 58

70 IOO-3 0.816 58 13 IOA-4 0.183 13 58

71 OOI-3 0.814 57 13 OOE-3 0.185 13 57

72 OOO-4 0.805 54 13 OOA-4 0.194 13 54

73 AEI-3 0.800 4 1 AEE-3 0.200 1 4

74 AEI-1 0.800 4 1 AEE-3 0.200 1 4

75 EAI-4 0.800 4 1 EAE-4 0.200 1 4

76 EAI-3 0.800 4 1 EAE-4 0.200 1 4

77 EOI-2 0.785 11 3 EOE-2 0.214 3 11

78 EOI-1 0.785 11 3 EOE-2 0.214 3 11

79 OAO-1 0.785 11 3 OAA-1 0.214 3 11

80 OEI-4 0.785 11 3 OEE-4 0.214 3 11

81 OEI-2 0.785 11 3 OEE-4 0.214 3 11

82 AAO-3 0.750 3 1 AAA-3 0.250 1 3

83 EEI-4 0.750 3 1 EEE-2 0.250 1 3

84 EEI-3 0.750 3 1 EEE-3 0.250 1 3

85 EEI-2 0.750 3 1 EEE-4 0.250 1 3

86 EEI-1 0.750 3 1 EEE-4 0.250 1 3

87 EEO-4 0.750 3 1 EEA-2 0.250 1 3

88 EEO-3 0.750 3 1 EEA-3 0.250 1 3

89 EEO-2 0.750 3 1 EEA-4 0.250 1 3

90 EEO-1 0.750 3 1 EEA-4 0.250 1 3

91 EII-4 0.727 8 3 EIE-4 0.272 3 8

92 EII-3 0.727 8 3 EIE-4 0.272 3 8

93 EII-2 0.727 8 3 EIE-4 0.272 3 8

(Cont. on next page)
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Table E.1. (cont.)

# Mood
Truth 

ratio, τ
t f Mood

Truth 

ratio, τ
t f

94 EII-1 0.727 8 3 EIE-4 0.272 3 8

95 IEI-4 0.727 8 3 IEE-4 0.272 3 8

96 IEI-3 0.727 8 3 IEE-4 0.272 3 8

97 IEI-2 0.727 8 3 IEE-4 0.272 3 8

98 IEI-1 0.727 8 3 IEE-4 0.272 3 8

99 AII-4 0.714 10 4 AIE-4 0.285 4 10

100 AII-2 0.714 10 4 AIE-4 0.285 4 10

101 IAI-2 0.714 10 4 IAE-2 0.285 4 10

102 IAI-1 0.714 10 4 IAE-2 0.285 4 10

103 IAO-2 0.714 10 4 IAA-2 0.285 4 10

104 IAO-1 0.714 10 4 IAA-2 0.285 4 10

105 EOI-4 0.700 7 3 EOE-4 0.300 3 7

106 EOI-3 0.700 7 3 EOE-4 0.300 3 7

107 OEI-3 0.700 7 3 OEE-3 0.300 3 7

108 OEI-1 0.700 7 3 OEE-3 0.300 3 7

109 OEO-3 0.700 7 3 OEA-3 0.300 3 7

110 OEO-1 0.700 7 3 OEA-3 0.300 3 7

111 AOI-2 0.666 6 3 AOE-2 0.333 3 6

112 OAI-2 0.666 6 3 OAE-2 0.333 3 6

113 OAO-2 0.666 6 3 OAA-2 0.333 3 6

114 AAI-2 0.666 4 2 AAE-2 0.333 2 4

115 AOI-4 0.642 9 5 AOE-4 0.357 5 9

116 AOO-1 0.642 9 5 AOA-1 0.357 5 9

117 OAI-1 0.642 9 5 OAE-1 0.357 5 9

118 OEO-4 0.642 9 5 OEA-4 0.357 5 9

119 OEO-2 0.642 9 5 OEA-4 0.357 5 9

120 IEO-4 0.636 7 4 IEA-1 0.363 4 7

121 IEO-3 0.636 7 4 IEA-2 0.363 4 7

122 IEO-2 0.636 7 4 IEA-3 0.363 4 7

123 IEO-1 0.636 7 4 IEA-4 0.363 4 7

124 AIO-3 0.600 6 4 AIA-1 0.400 4 6

125 AIO-1 0.600 6 4 AIA-3 0.400 4 6

126 AEO-3 0.600 3 2 AEA-1 0.400 2 3

127 AEO-1 0.600 3 2 AEA-3 0.400 2 3

128 AOO-3 0.545 6 5 AOA-3 0.454 5 6
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APPENDIX F

FSR_PROJECT

Most  of  the  algorithms,  discussed  in  this  thesis  were  implemented  within  the 

FSR_project  software  system.  FSR_project  consists  of  two  parts:  FSREngine  and 

FSR_GUI_Client. The simplified UML diagram (without data types) is shown in Fig. 

E.1. FSREngine is implemented as a shared library and provides an interface for fuzzy-

syllogistic reasoning.  FSREngine class supply with the following methods (see Listing 

E.1).

class FSRENGINESHARED_EXPORT FSR_Engine
{
public:
     FSR_Engine(bool A_in_I , bool E_in_O);
     ~FSR_Engine();

//statistical information about syllogystic system
     void recalculateStatTable(bool A_in_I , bool E_in_O);
     QListStatElem getStatTable();
     QList<QListQChar> getMoods();
     QList<QListBool> getCases();
     QList<groupedMoods> getGroupedMoods();
     QList<distinctMoods> getDistinctMoods();
     QList<symmetricMoods> getSymmetricMoods();

//get lists of true and false cases for given figure
   bool getTC_FCforFig(int figureNumber, QList<QListInt> &TCList,

QList<QListInt> &FCList);
     //get statistical information by given mood

elemStatTableCell getStatisticsByMood(QString mood, int figNum);
QList<fuzzyMoods> calculateRelaxedMoods(bool AlmostA, bool AlmostE);

   
//Reasoning on real data
  QList<FSRResultElem> SyllReas_ClassicVersion(QList<QString> setM, 

QList<QString> setP, QList<QString> setS, bool A_in_I,
bool E_in_O, bool useDistMoods = false);

    
 QList<FSRRelaxedResultElem> SyllReasWithRelaxedMoods(QList<QString> 

setM, QList<QString> setP, QList<QString> setS, bool 

A_in_I, bool E_in_O, bool useDistMoods = false);

  QList<FSRFuzzyResultElem> SyllReasWithFuzzyMoods(QList<QString> 

setM, QList<QString> setP, Qlist<QString> setS, bool 

A_in_I, bool E_in_O, bool useDistMoods = false);

//private part of class
}

Listing E.1. Open interface of  FSREngine class
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Figure E.1: UML diagram of  the FSR_Project



The FSR_GUI_Client is an thin client for FSREngine shared library. It consists of 

different  modules,  such as  visualization  module  (includes  all  classes  related  to  sets 

visualization,  various  plots,  graphs  etc.),  XML_module  (includes  classes,  related  to 

XML processing) and Analyzer module (includes classes, related to processing of input 

data for reasoning). 

FSR_GUI_Client: GUI and functionality

GUI  of   FSR_GUI_Client  consists  of  5  tabs,  such  as  “Cases”,  “Moods”, 

“Statistics”,  “Sets  Analysis”,  “Mood  relaxation”  and  “Info”.  Bellow  is  a  brief 

description of  each tab with elements and functionality.

E.1. Tab “Cases”

The  tab  “Cases”  consists  of  96  syllogistic  cases  with  Euler  diagram and  set-

theoretical representation for each case (see Fig. E.2). If the check-box “Sort by the 

number of spaces” is selected, the list of cases is grouped by the number of space in  

ascending order.  

Figure E.2: FSR_GUI Application, tab “Cases”
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E.2. Tab “Moods”

The tab “Moods” consist of the list of the moods for each of 4 figures with their 

truth ratios and detailed information about true/false cases of each mood (see Fig. E.3). 

For  each case  the  Euler  diagram and set-theoretical  representation  is  provided.  The 

check-boxes  “A  case  in  I”  and  “E  case  in  O”   enables  the  ability  of  using 

inclusive/exclusive logic in accordance with the algorithms from Section 4.1. The states 

of these check-boxes affect the whole system, including statistics and analysis modules. 

Figure E.3: FSR_GUI Application, tab “Moods”

E.3. Tab “Statistics”

The tab “Statistics” includes various statistical information about systems S/2S in 

tabular and graphical form.  In group of plots, each plot is produced so that it consists of 

only true or only false cases for the all of the moods (according to the value of radio-

buttons “Only T cases”, “Only F cases”) .

E.3.1. Statistics: Mood/Figure

If the radio-button “Moods/Figure” is marked, a table is displayed  with all moods in 
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alphabetical order grouped by figures and with their truth ratios (see Fig. E.4.).  

Figure E.4: FSR_GUI Application, tab “Statistics”, moods, grouped by figures with 

their truth ratios

E.3.2. Statistics: Mood

If the radio-button “Mood” is checked, a table is displayed with all moods with their 

truth  ratios  sorted  in  descending  order  (see  Fig.  E.5.).  For  each  mood  a  detailed 

information about corresponding of truth/false cases is provided.

E.3.3. Statistics: Truth ratio

If the radio-button “Truth ratio” is checked, a table is displayed with all possible 

values  of  truth  ratios(see  Fig.  E.6.).  For  each  group  of  the  truth  ratios  a  detailed  

information about the corresponding moods is provided.

E.3.4. Statistics: Symmetric moods

If the radio-button “Symmetric moods” is checked, a table  is displayed with all 128 

symmetric moods (see Fig. E.7.) Note that the function is available only in case of using 
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inclusive logic in accordance with the explanation in Section 4.3.2.2.

Figure E.5: FSR_GUI Application, tab “Statistics”, moods, grouped by their truth    

ratios in descending order

Figure E.6: FSR_GUI Application, tab “Statistics”, truth ratios grouped by 

descending order
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 Figure E.7: FSR_GUI Application, tab “Statistics”, list of symmetric moods

E.3.5. Statistics: Distinct moods

If the radio-button “Distinct moods” is checked, the table is displayed with all of 

136 distinct moods in case of inclusive logic and 70 distinct moods in case of exclusive 

logic (see Fig. E.8.).

Figure E.8: FSR_GUI Application, tab “Statistics”, list of distinct moods
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E.3.6. Plots: Graph of distinct moods

The plot  “Graph of  distinct  moods”  shows relationships  between  the  syllogistic 

cases  for the group of distinct  moods (see Fig.  E.9.).  The plot  reveals  the moods, 

containing  the minimum or  the maximum number of cases  and sub-moods (moods, 

fully  contained  in  other  moods).  The  circles  represent  the  distinct  groups  of  cases 

whereas  the  colored  links  represent  group  of  moods.  Thus,  the  cases  inside  of  a 

particular mood are connected by the link of the same color. 

Figure E.9: FSR_GUI Application, tab “Statistics”, graph of distinct moods

E.3.7. Plots: Plot  of similarity of moods

The  plot  of  similarity  of  moods  shows  the  moods  consisting  of  cases  from  a 

particular mood in increasing order of the value of the mismatching function (see Fig. 

E.10.). The value of the mismatching function is calculated according to the formula:

Total mismatching = ||missing cases|| + ||unequal cases||          (E.1)
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where  ||missing cases|| denotes the number of missing cases (difference between 

the number of cases in a chosen mood and any mood which has at least one common 

case together), ||unequal cases|| denotes the number of unequal cases (number of cases 

in a chosen mood different from the cases in any mood which has at least one common 

case together). The moods with low value of mismatching is closer to each other in term 

of shared syllogistic cases.

Figure E.10: FSR_GUI Application, tab “Statistics”, plot of similarity of moods

E.3.8. Plots: Moods

The plot “Moods” shows the distribution of the syllogistic cases in moods (see Fig. 

E.11). 

If check-box “Distinct moods” is checked, the distribution of cases in distinct moods 

is shown. 

E.4. Tab  “Sets Analysis”

The tab “Set Analysis” includes tools for set analysis. Currently, classical syllogistic 

reasoning (for systems S/2S),  reasoning with moods relaxation (discussed in Section 

4.4.2, only for system S) and fuzzy-syllogistic reasoning (for system 6S) are available. 

All types of reasonings can be performed also with distinct moods. The main tool for 

performing of reasoning is Sets Analysis Wizard.  

  
97



Figure E.11: FSR_GUI Application, tab “Statistics”, plot of case distribution in moods

E.4.1. Sets Analysis Wizard

The Sets Analysis  Wizard provides an interface to prepare data  for reasoning. It 

includes two main steps: input data selection and setting of reasoning parameters (see 

Fig. E.12).

It is possible to use prearranged xml – file with sets description (format of xml – file 

is  defined  in  Section  E.4.2)  or  generate  input  data  for  a  particular  mood.  The sets 

generator (see Fig. E.13) allows to choose a mood and a number of elements for each 

set (M, P ans S) (up to 100 elements per set).  

Figure E.12: FSR_GUI Application, Sets Analysis Wizards, data source 

and parameters selection dialogs
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After the input data is loaded, it is necessary to select reasoning options, such as 

types of reasonings and moods.  

Figure E.13: FSR_GUI Application, Sets Analysis Wizards, generating of input data

E.4.2. Format of the XML file, using for sets definition

Each element of input data takes a string ID and a value of member function for sets 

M, P and S. If FM, FP or FS is set to 0.0, element is considered as not belonging to the  

corresponding set.  The syntax of XML file is shown in Listing E.2.
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E.4.3. Different types of reasoning 

It is possible to perform different types of reasoning in the designed system. The 

output for the classical syllogistic reasoning is shown in Fig. E.14.  In the table, the 

value of φ (for reference, see Section 4.2.1.) is calculated for premises and conclusion.

 If the value φ does not satisfy corresponding quantifier, it is marked as “X”. The 

moods,  fully  matching  with  the  input  data  (the  input  data  satisfies  premises  and 

conclusion of the corresponding mood) are marked by light green color, whereas the 

moods with the best truth ratio are marked by green color. 

Figure E.14: FSR_GUI Application, tab “Sets Analysis”, results of performing 

of classical reasoning
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   Nn

<?xml version="1.0"?> 
<FSS> 
<elem ID ="#1"> 
  <FM>0.5</FM> 
  <FP>0.5</FP> 
  <FS>0.0</FS> 
</elem>
...
</FSS>

Listing E.2. Syntax of XML – file for sets definition



The output for reasoning with relaxed moods is shown in Fig. E.15. In the table, in 

the column “Improved TR” the updated value of truth ratio is shown in case that truth 

ratio of corresponding mood is improved after applying fuzzification. The moods with 

the highest truth ratio are marked by green. 

The  output  of  fuzzy-syllogistic  reasoning  is  similar  to  reasoning  with  relaxed 

moods. However, the conception of improved mood could not be applied in this case. 

E.5. Tab “Mood relaxation”

The relaxed moods are calculated in accordance with the suggestions proposed in 

the Section 4.4.2. The moods that can be improved are marked by green. The quantifiers 

(Almost_A or/and Almost_E) can be selected along with a number of syllogistic figure 

(see Fig. E.16).

Figure E.15: FSR_GUI Application, tab “Sets Analysis”, results of performing 

of moods relaxation
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Figure E.16: FSR_GUI Application, tab “Mood relaxation”

6.4 E.6. Tab “Info”

The  tab  “Info”  includes  reference  information  about  syllogisms  (mainly  from 

http://en.wikipedia.org/wiki/Syllogism) located in a simple HTML-browser with basic 

navigation tools (see Fig. E.17). 

Figure E.17: FSR_GUI Application, tab “Info”
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