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ABSTRACT 
 

AN ADAPTIVE NEURO-FUZZY MODELING OF THE EFFECTS OF 

WATER-IN-DIESEL EMULSION ON DIESEL SPRAYS 

 

This thesis is prepared as an outcome of the Energy Engineering Master of Science 

program at Izmir Institute of Technology, IZTECH, in Turkey. The main purpose of this 

study is to analyse the effects of water content in diesel fuel spray behaviours using 

adaptive neuro-fuzzy inference system models (ANFIS) for compression ignition 

engines. 

The investigations are carried out using numerical models of ANFIS in MATLAB 

R2011a, generating simulations from training and test datasets based on recent 

experimental studies from the literature. The thesis primarily tests the use and the fitness 

of ANFIS models, modifying the neural network structure so that the simulations 

acceptably reach the experimental results accurately. Then secondarily, the simulation is 

used to investigate the effects of parameters originally not available in the related study. 

The investigation mainly focusses on water in diesel emulsions from pure diesel 

to an emulsion with 20% water content. Operational conditions such as chamber ambient 

pressure, injection pressure, chamber ambient temperature are also investigated to find 

their effects over spray penetration. 

It was found that the increase of water content in the diesel fuel did not have a 

relevant effect at very low and very high temperatures, however at medium-high 

temperatures it increased spray penetration. Furthermore, it was observed that the 

increase of chamber ambient pressure and chamber ambient temperature reduced the 

spray penetration as expected.  
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ÖZET 
 

SU İÇEREN DİZEL EMÜLSİYONLARININ DİZEL SPREYLER 

ÜZERİNDEKİ ETKİSİNİN UYARLANIR SİNİRSEL BULANIK 

MANTIK İLE MODELLENMESİ 

 

Bu çalışma İzmir Yüksek Teknoloji Enstitüsü, Enerji Mühendisliği Yüksek Lisans 

programının bitirme tezidir. 

Tezin ana amacı su içeren dizel emülsiyonlarının dizel spreyler üzerindeki 

etkisinin uyarlanır sinirsel bulanık mantık (ANFIS) ile modellenerek incelenmesidir. 

Çalışmalar literatürdeki güncel deneysel çalışmalardan baz alınan bilgilerin 

MATLAB R2011a yazılımı üzerinden ANFIS modellere eğitim ve test datası olarak 

aktarılmasıyla gerçekleştirilmiştir. Tez öncelikle ANFIS modeli kullanılabilirliğini ve 

doğruluğunu incelemektedir. Buna ulaşırken ANFIS modellerin girdi yapıları modifiye 

edilmiştir böylece simülasyonun deneysel sonuçlara göre yeterli doğrulukta sonuçlar 

vermesi sağlanmıştır. Sonrasında ANFIS model ilgili literatür çalışmalarında mevcut 

bulunmayan bir parametrenin sonuçlar üzerindeki etkisinin incelenmesi amacıyla 

kullanılmıştır. 

Çalışmalar genel olarak su içeren dizel emülsiyonlar üzerine yapılmıştır. Saf 

dizelden %20 su katkılı dizele kadar olan yakıtlar incelenmiştir. Ayrıca silindir ortam 

basıncı, enjeksiyon basıncı ve silindir ortam sıcaklığı gibi farklı operasyonel koşulların 

sprey penetrasyonu üzerine etkileri de incelenmiştir. 

Çalışmalar sonucunda dizel yakıt içindeki su içeriğinin artmasının, enjeksiyon 

basıncına benzer şekilde, sprey penetrasyonunu olumlu etkilediği görülmüştür. Diğer 

taraftan, silindir ortam basıncı ve silindir ortam sıcaklığının penetrasyon miktarını 

olumsuz etkilediği gözlemlenmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Thesis’ Aim and Objectives 

 

Nowadays, the effects of the vehicles on air pollution have been remarkably 

increasing day after day with increasing number of vehicles. The emissions regulations 

are getting more stringent annually which spread all around the world. Moreover, 

continuously increasing price of the fuel is forcing the industry to produce more efficient 

engines. Under these circumstances, the basic challenges in automotive industry are as 

follows: 

 

• Higher power output 

• Lower specific fuel consumption 

• Lower emission values 

• Lower noise 

• More comfortable driving 

 

The emission of combustion products into the atmosphere has been recently 

discussed seriously along with the use of the internal combustion engines. The regulations 

of national and regional authorities all around the world as well as the global agreements 

have become more stringent. The comprehension and the concerns about global pollution 

have been remarkably increased (Mohan et al., 2013). The emissions of soot, particular 

matter (PM) and nitrogen oxides (NOX) are concerned in particular (Namasivayam et al., 

2010). 

The engines’ emissions and specific fuel consumption are obviously related with 

the engine performance and this is closely related to the fuel and air mixture within the 

cylinder. Thus the understanding of the spray behaviour in the combustion chamber is so 

essential. The spray penetration after the fuel injection is one of the main parameter in 

terms of spray behaviour of an internal combustion engine. 
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This study focuses on the effects of water additive through emulsifiers which 

forms water-in-diesel emulsions on spray penetration. Such emulsions have pointed the 

potential to improve the spray behaviours of a compression ignition (CI) engine. This can 

be defined by the enhanced air fuel mixing process presented by improved atomization 

since microexplosions may take place due to the remarkable volatility difference between 

the different phases of the fuel. Moreover, water disassociation can form hydroxyl 

radicals during combustion which assist to oxidize the soot that being so decreasing soot 

emissions (Huo et al., 2014). 

 

1.2. Organization of Thesis 

 

The structure of the thesis can be summarized as follows: 

In Chapter 2, a literature survey is presented where studies on diesel sprays, 

studies on Artificial Neural Network (ANN) on Compression Ignition (CI) engines and 

studies on Adaptive Neuro-Fuzzy Inference System (ANFIS) on CI engines are 

examined. The studies on diesel sprays cover theoretical, experimental and numerical 

Computational Fluid Dynamics (CFD) studies. 

The studies on ANN and ANFIS related to internal combustion engines in the 

literature are tabulated and compared in terms of their models’ accuracy and error values. 

These investigations guide this thesis during the modelling especially on the inputting of 

the data to reach more accurate results. 

In Chapter 3, the water in diesel emulsion is explained in detail. The properties 

and effects of emulsions over fuels are examined. Then an ANFIS numerical approach is 

used in MATLAB to analyse the effects of emulsions. Finally, the performance criteria 

of tools are technically determined. 

In Chapter 4, the data collected from the experimental results available in the 

literature are explained. They are two recent experimental studies, in which this ANFIS 

approach is carried out. The data are tabulated dividing as training and test dataset and 

used in the ANFIS simulation. Afterwards, the combination of dataset of these separate 

studies is simulated at the same time to understand the effects of parameters which are 

originally not available in one of these studies. 

In Chapter 5, a full discussion of the results is presented. The training dataset is 

inputted and test dataset is used to control the software. The inspection of the software is 
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firstly disclosed. Then the results are shown calculating their accuracy with performance 

criteria. 

In the final chapter, Chapter 6, the methodology and results are simply explained. 

The advantages and drawbacks are then summarized as well as the conclusion on thesis’s 

results of spray penetration.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1. Studies on Diesel Spray 

 

Spray and combustion characteristics of fuels under a different range of conditions 

have been investigated and developed in recent years due to the increasing stringent 

emission regulations as well as the depletion of fossil fuels. The characterization of many 

parameters related to specific spray features such as tip penetration, spreading angle, 

liquid phase penetration etc. raised an important step forward in the understanding of the 

injection phenomena (Naber & Sieber, 1996; Roisman et al., 2007; Payri et al., 2014).  

In diesel engines, spray penetration is usually changed by the in-cylinder gas flow. 

Accurate prediction of diesel spray with gas flow is important to the optimal design of 

diesel fuel injection system in order to increase the efficiency and reduce emissions (Xu 

et al., 2016). 

 

2.1.1. Theoretical Studies on Diesel Spray 

 

The spray development initiates with the liquid fuel being injected in an ambient 

at high pressure and a certain temperature. Once the fuel is injected into the cylinder, the 

fuel spray penetrates along the axis and entrains the surrounding air. Because of 

consequently small temporal and spatial scales resulted from the high velocity spray, the 

diesel spray evolution is an intrinsically complicated problem (Xu et al., 2016). Also, it 

is hard to predict spray parameters accurately. 

In the past decades, semi-empirical formulas based on experimental data have 

been thoroughly used to forecast the penetration of the diesel sprays. Dent (1971) and 

Hay & Jones (1972) resolved that the penetration distance is proportional to the square 

root of time from experiment results from their spray experimental results. A more 

detailed analysis was developed that the penetration distance is proportional to the initial 

short time (jet break-up time) (Lefebvre, 1989; Borman & Ragland, 1998).  
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Reitz and Yoshizaki (1986) took the spray process as two stages, before and after 

break-up time, and gave distinctive formulas for the penetration of the two stages. 

Some studies took the in-cylinder gas flow into consideration in spray 

experiments, and provided correlations that account for in cylinder gas flow (Hiroyasu et 

al., 1980; Sinnamon et al., 1980; Takasu et al., 2013). 

Additionally, Naber (1996) and Desantes et al. (2006) aroused more detailed 

theoretical models out of the momentum flux conservation along the spray axis in order 

to predict spray penetration. Sazhin (2001) originated a model for fuel spray penetration 

from two-phase theory. Pastor et al. (2008) provided a research focusing on the transient 

formation of diesel sprays and derived a 1D model for the representation of mixing-

controlled inert diesel sprays. In that study, the increase in flame radial width and decrease 

in local density are found as governing the diesel flame development. 

 Xu et al. (2016) has recently demonstrated a theory concentrating on the 

penetration of diesel spray with gas flow. In order to perceive the effect of gas flow on 

the penetration of diesel spray, a one-dimensional spray model was developed from an 

idealized diesel spray, which is able to predict the spray behaviour under various gas flow 

conditions. The principles of conservation of mass and momentum were used in the 

derivation of idealizing the spray model with only axial gas flow as shown in Figure 2.1. 

Momentum of in-cylinder air flow was also taken into consideration. Proof of the model 

at stable condition was accomplished by comparing model forecasts with experimental 

measurements of diesel spray without gas flow from Naber's experiments (1996). 

Additionally, CFD simulations on penetration of diesel spray with gas flow were 

performed with the commercial code of AVL Fire. The one-dimensional model was 

corroborated by the penetration results with gas flow from CFD computations. Results of 

the paper displayed that a reasonable approximation of the spray development could be 

obtained for both with and without ambient gas flow conditions. 
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Figure 2.1. Schematic of the idealized spray model with only x-axial gas flow 

(Source: Xu et al., 2016) 

 

 

 The representational figure above shows the spray model where do is the orifice 

diameter, or nozzle hole; x is the distance along axial direction; U is the velocity vector 

of spray; θ is full cone angle of the real spray and A is the cross sectional area. Also, a 

control surface (red line in Figure 2.1) is specified in the idealized spray model, and 

utilized for the mass and momentum balances. 

 

2.1.2. Experimental Studies on Diesel Spray 

 

Spray behaviours including spray penetration which are investigated 

experimentally are widely found in the literature. The most common methodology among 

the researches is that the investigations in optically accessible chambers using various 

types of high-speed camera configurations. The image files produced during experiments 

are then processed. After image processing tools the figures are structured to reach results 

and to complete study. The focus of these investigations includes atomization of emulsion 

spray as well as regular diesel spray. 

The definition and experimental characterization of many parameters related to 

specific spray features such as tip penetration, spreading angle, liquid phase penetration, 

lift-off length etc. brought an important step forward in the apprehension of the process 

(Naber & Sieber, 1996; Payri et al., 2014). Consequently, conceptual and numerical 

models have been developed to simulate the whole diesel injection process defining the 

http://tureng.com/tr/ingilizce-esanlam/representational
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complex physical and chemical processes that occur behind the experimental examination 

(Kiplimo et al., 2012; Musculus & Kattke, 2009). In all likelihood, the most important 

contributions in this direction are two conceptual models for conventional combustion 

and low temperature combustion based on different optical techniques proposed by Dec 

(1997) and Musculus (2013), which give detailed enhancement about how fuel-air mix in 

reacting conditions.  

The increasing need for more accurate and predictive models together with the 

possibility of performing more detailed experiments still highlight some lack of 

knowledge. Few studies in the literature address the effect that combustion has on the 

shape and mixing of the spray. Siebers's study (2009) showed that the reacting spray 

evolution depends on the ambient density of the cylinder. The similar trend was also 

observed by Pickett and Hoogterp (2009). The spray penetration under reacting 

conditions was studied by Desantes et al. (2014) and one outlined spreading angle was 

applied for asserting the radius of expansion. In Pickett’s study (2009), the reacting and 

non-reacting spray penetration were also investigated with the high speed “Schlieren” 

imaging technique. The Schlieren imaging technique allows to uncover gradients in the 

refractive index of a transparent medium (Benajes et al., 2013). The technique depends 

on the deviation of a light beam developed when light transits heterogeneous fluids.  

Atomized emulsion sprays were demonstrated in separate experiments by a 

number of investigators especially in terms of micro explosions. For the non-combusting 

spray, Mattiello et al. (1992) studied the water and fuel oil emulsion flames by laser light 

scattering. The scattered light concentration analysis of the polarization ratio revealed the 

incidence of micro-explosion in the flame. Wu et al. (2007) used laser holograph 

shawdography to visualize the spray in a diesel and water and ethanol emulsion in which 

a part could be seen in the main jet body which suggested the occurrence of micro-

explosions. Watanabe and Okazaki (2013) used high speed imaging to visualize the 

secondary atomization in an emulsified fuel spray flow by shadow imaging; they reported 

puffing and partial-micro-explosions, but complete micro-explosions were rarely 

observed. For the combusting spray, the direct flame photographs, temperature profiles 

and micro explosion frequencies have been shown by Fuchihata et al. (2003) in which 

they reported observation of small droplets with diameters less than 50 µm exploding in 

the spray flame. In the study of Raul et al. (2010), some ‘‘glowing spots’’ were detected 

inside the burning spray and might have resulted from micro-explosion. 
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Huo et al. (2014) investigated the initial liquid penetration in addition to some 

other combustion characteristics. They have shown that emulsified fuel remains a 

potential solution to meet the increasingly stringent emission legislations for internal 

combustion engines due to its capability of simultaneously reducing NOX and particular 

matter (PM). Emulsified diesels with 10% and 20% water by volume were studied and 

the stability of the water emulsified diesel was first investigated in terms of the 

hydrophilic-lipophilic-balance (HLB) value in that research. High speed imaging with a 

pulse duration of 25 ns was used to capture the spray and combustion process under 

various conditions. Results of that study showed that longer initial liquid penetration for 

emulsified diesel under low ambient temperatures and also longer ignition delay of 

emulsified diesel provided more air/fuel mixing time, thus significantly lowering the soot 

luminosity.  

 Payri et al. (2015) studied the shape of diesel spray at actual engine conditions in 

a constant pressure flow facility (CPF). The Schlieren imaging technique was used to 

carry out quantitative measurements of spray tip penetration and radial width, as shown 

in Figure 2.2.  Experimental layout: the test chamber is presented together with the 

optical setup. The effects of different operating parameters such as injection pressure, 

ambient temperature, ambient density, and O2 concentration, on the axial and radial 

expansion were also investigated. Based on those results, the reacting spray could be 

divided into three parts: an inert part, a transient one, and a quasi-steady one that lies 

between the two other regions. Results demonstrated that the radial expansion rises with 

increasing injection pressure and decreasing ambient temperature and ambient density. 

The oxygen concentration did not have any obvious effect on the radial expansion.  
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Figure 2.2.  Experimental layout: the test chamber is presented together with the 

optical setup (Source: Payri et al., 2015) 

 

 

 Palani et al. (2015) investigated that the combustion and emission characteristics 

of inedible oils and their derivatives were quite different from those of mineral diesel; in 

particular, inedible oils and their derivatives present higher molecular, relative density, 

and vaporization characteristics. The spray properties of fuel mainly depended on the fuel 

injection pressure, density, viscosity, ambient pressure, and temperature. Among those 

parameters, fuel injection pressure more importantly affected the spray structure. In that 

study, experiments were carried on using diesel, jatropha oil methyl-ester, karanja oil 

methyl-ester, and two other biodiesel blended fuels (JB20 and KB20; in which the number 

was indicating the volumetric ratio of the biodiesel) in a diesel engine with different 

injection pressures. Macroscopic spray properties, such as spray tip penetration, spray 

cone angle, and spray area, were acquired from images captured by a high-speed video 

camera. The sauter mean diameter and spray volume of all of the tested fuels were also 

estimated. Experimental results showed that the biodiesel blends demonstrate features 

different from those of diesel fuel. KB100 presented the highest spray tip penetration and 

spray area, followed by JB100 JB20, KB20 and diesel. Diesel fuel showed the best spray 

parameters in terms of spray cone angle (degree) and spray area (cm2) which was 

followed by JB20, KB20, KB100 and JB100. The tested fuels exhibited better spray 

characteristics at higher injection pressures to the lower ones. 

 Emberson et al. (2016) studied on Diesel fuel and water emulsions which have 

been shown to reduce emissions of NOX and PM from compression ignition engines. 
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They determined that there is a lack of work examining the influence of emulsification 

on the sprays formed during injection. Their work investigated the spray cone angle and 

tip penetration of Diesel fuel and water emulsions, containing 10% and 20% water (by 

mass). All experiments were conducted under non-reacting, non-vaporizing conditions in 

a constant volume pressure chamber filled with nitrogen. A focused shadowgraph system, 

with high speed photography, coupled with a research, high current LED system was 

used. Differences in the spray cone angles presented that the emulsification had an effect 

for the injections at a pressure of 500 bar. Emulsification did not have any perceptible 

effect on the spray tip penetration. Spray tip penetration displayed agreement with 

previous trends in terms of proportionality to time after start of injection however 

agreement with models found from the literature was not consistent. 

 

2.1.3. CFD Studies on Diesel Spray 

 

 Improvement of the performance of a direct injection diesel engine requires 

various multiple injection strategies and increased engine compression ratio. Lee et al. 

(2011) explored the properties of spray tip penetration with 0-D and 3-D CFD simulations 

over a wide range of ambient gas densities. They created a 0-D simulation of the 

experimental outputs of Naver and Siebers (1996) and Desantes et al. (2015) based on 

Abani and Reitz’s (2007) concept of an effective injection velocity. Moreover, CFD 

simulation was carried on for various gas jet models which introduced various gas jet 

velocity distributions. Lee and Reitz (2012) compared CFD simulations of the spray tip 

penetration with their own gas jet models and the KIVA-3V standard model which is a 

Fortran based Computational Fluid Dynamics software developed by Los Alamos 

National Laboratory (Amsden, 1997). Spray tip penetrations as a function of both changes 

in the compression ratio of a diesel engine and the injection strategies of a common rail 

injector were simulated using CFD in that study. The ‘original gas jet model’ of Abani et 

al. (2008) and the ‘normal gas jet profile model with breakup length formula’ (NGJBL) 

of Lee et al. (2011) were each applied to KIVA-3V model and the computed outputs were 

compared. For model validation, CFD simulation results were compared with the multiple 

injection study results of Tennison et al. (1998) which is under a compression ratio of 

18:1. 

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Computational_Fluid_Dynamics
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
https://en.wikipedia.org/wiki/Los_Alamos_National_Laboratory
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 Lee & Reitz (2013) studied diesel spray tip penetration with CFD by reorganizing 

the compression ratio from the conventional compression ratio of a diesel engine, 18:1, 

to an ultra-high compression ratio of 100:1 as well as changing the gas densities. The 

spray tip penetration was CFD simulated by adopting both the ‘Gas jet spray model’, and 

‘Normal gas jet profile model with breakup length formula’ (NGJBL model) into the 

KIVA-3V code. The spray tip penetration was CFD simulated for various spray patterns, 

such as single injection, pilot injection and split injection. The CFD simulation of the 

spray tip penetration with an 18:1 compression ratio was compared with a previous study 

with identical experimental conditions and showed that the ‘Gas jet spray model’ over 

predicted it. The CFD simulation results with the ‘KIVA-3V Standard spray model’ and 

the NGJBL model were generally in good agreement with the experimental data. The 

spray tip penetration was CFD simulated with the NGJBL model with step-by-step 

increased compression ratio. The spray tip penetration rapidly decreased for the range of 

compression ratio of 18:1–45:1 as the compression ratio increases and the spray tip 

penetration did not change much with increasing compression ratios in the range of 60:1–

100:1. The CFD simulation results of the spray tip penetration, with respect to varying 

compression ratios, were generally in agreement with previous experimental studies. 

García-Oliver et al. (2011) also contributed a study on the combined 1D-3D CFD 

approach on diesel spray calculations; nevertheless, little study on theoretical derivation 

of diesel spray with gas flow was reported. A 1D3D–CFD coupled spray model was 

proposed in that work for the simulation of Diesel sprays under non-evaporative 

conditions and constant injection velocity in time. The basic idea of the model was to 

reduce the poor estimations of the gas velocity and droplets/gas relative velocity obtained 

with the standard 3D–CFD Eulerian–Lagrangian spray model, when coarse meshes were 

used. The coupling has been achieved in the calculation of the momentum source 

interaction term. General considerations, descriptions and implementation of the model 

in a commercial CFD code were defined. Diesel spray simulations performed using the 

proposed approach have been compared with those obtained with the standard 3D–CFD, 

1D models and experimental data. Encouraging results were found in terms of spray 

evolution when changing meshes and ambient conditions. 

In the paper of Postrioti & Battistoni (2010), a detailed numerical and 

experimental analysis of a spray momentum flux measurement device capability was 

presented. Particular attention was devoted to transient, engine-like injection events in 

terms of spray momentum flux measurement. The measurement of spray momentum flux 
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in steady flow conditions, coupled with knowledge of the injection rate, was steadily used 

to estimate the flow average velocity at the nozzle exit and the extent of flow cavitation 

inside the nozzle in terms of a velocity reduction coefficient and a flow section reduction 

coefficient. In that study, the problem of analyzing spray evolution in short injection 

events by means of jet momentum flux measurement was approached. The research was 

based on 3D-CFD analysis with theoretical background of Momentum Conservations 

Equations of the spray target interaction in a momentum measurement device as below 

Figure 2.3. 

 

 

Figure 2.3. The main terms in the Momentum Conservation Equation (free jet case) 

(Source: Postrioti & Battistoni, 2010) 

 

 

After a proper validation with experimental data (impact force time-history, spray 

penetration and cone angle obtained by spray imaging), the detailed analysis of the 3D 

flow field in different rig configurations and operating conditions led to significant 

awareness of the spray momentum measurement device operation. The obtained results 

showed that a properly designed momentum rig can be used for quantitative 

characterizations of the instantaneous momentum flux for each single jet in engine-like 

injection conditions, which are mostly important for the combustion process evolution in 

low-load conditions. 
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2.2. Artificial Neural Network (ANN) 

 

Artificial Neural Networks are made up of simple elements of neurons operating 

in parallel which collect inputs and generate outputs. These elements are inspired by 

biological nervous systems. As in nature, the connections between elements mainly 

regulate the network function. A neural network is able to be trained to perform a specific 

function modifying the values of the connections (neurons in biology), namely weights, 

between elements. 

Regularly, neural networks are regulated, or trained, so that a particular input 

guides to a specific target output. Here, the network is adjusted, based on a comparison 

of the output and the target, until the network output converges the target. Typically, 

many such input/target couples are required to train a network. 

 

 

 

Figure 2.4. A typical neural network operating schema 

 (Source: Mathworks-ANN, 2016) 

 

 

Neural networks have been trained to perform complex functions in various fields, 

including pattern recognition, identification, classification, speech, vision, control 

systems and simulations. 

Neural networks can also be trained to solve problems that are tough for 

conventional computers or manual calculations. The ANN provides the use of neural 

network paradigms that build up to engineering, financial, and other practical applications 

(Mathworks, ANN, 2016). 

Soft Computing is a common term for an aggregation of computing techniques 

(Zadeh, 1994). These well-known techniques comprise artificial neural networks, fuzzy 
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logic, evolutionary computation, machine learning and probabilistic reasoning in general. 

Soft computing methods separate from classical computing methods in terms of tolerance 

of imprecision, uncertainty, partial truth to achieve tractability, approximation, 

robustness, low solution cost and better rapport with reality (Das et al., 2013). 

The genetic algorithm (GA) has been essentially applied in engine optimization 

field because of its potential in optimization which is based on natural selection, the 

process that drives biological evolution. The GA modifies a population of individual 

solutions again and again. At each step, the GA choses individuals at random from the 

current population to be parents and uses them to produce the children for the next 

generation. Over successive generations, the population "evolves" toward an optimal 

solution. The GA can be applied to solve a variety of optimization problems that are not 

well suited for standard optimization algorithms, including problems in which the 

objective function is discontinuous, non-differentiable, stochastic, or highly nonlinear. 

The GA can address problems of mixed integer programming, where some components 

are restricted to be integer-valued (Mathworks, GA, 2016). Furthermore, the GA is 

commonly used in order to reduce and optimize the reaction rate of combustion by 

reducing the number of involved species (Perini et al., 2012). 

Levenberg-Marquardt (LM) is also a common algorithm used to solve especially 

non-linear least squares problems. The primary application of the LM algorithm is in the 

least squares curve fitting problem: given a set of m empirical datum pairs of independent 

and dependent variables, (xi, yi), optimize the parameters β of the model curve f(x, β) so 

that the sum of the squares of the deviations becomes minimal as below equation: 

 

𝑆(𝛽) = ∑ [ 𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽)]
2𝑚

𝑖=1     (2.1) 

 

Taghavifar et al. (2014) investigated spray behaviour adopting along GA in ANN. 

Spray behaviour in the model was a function of nozzle and engine variant parameters 

such as crank angle, nozzle tip mass flow rate, turbulence and nozzle discharge pressure. 

The outputs tried to reach were spray penetration and sauter mean diameter (SMD) as 

below layer models.  

 

 

https://en.wikipedia.org/wiki/Non-linear_least_squares
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Figure 2.5. ANN structure with single hidden layer  

(Source : Taghavifar et al., 2014) 

 

 

The model was based on the experimental data which were used in specified 

conditions and the data acquired from CFD extrapolation. It was found that the LM 

algorithm had the least mean square error (MSE) for each ANN and the ANN-GA (ANN 

with genetic algorithm) models at 30 neurons in hidden layer with R2 value of 0.998. 

Results also pointed out that the ANN-GA improved the spray specification modeling 

simply and with acceptable accuracy The ANN-GA and ANN performance comparison 

in terms of R2 and MSE was as below: 

 

 

Table 2.1. ANN-GA vs. ANN in the study of Taghavifar et al. (2014) 

 ANN-GA ANN 

R2 (SMD-training) 0,998 0,992 

MSE 0,3348 0,8994 

Structure 4-30-2 4-24-2 

 

 

Roy et al. (2014) presented the potential of ANN to predict the performance and 

exhaust emissions of an existing single cylinder four-stroke common rail direct injection 

(CRDI) engine under varying exhaust gas recovery (EGR) strategies using ANN based 

on experimental data. There were 4 input parameters which were load, fuel injection 

pressure, percentage of EGR and fuel injected per cycle.  
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The ANN model was developed to forecast 5 output parameters of brake specific 

fuel consumption (BSFC), brake thermal efficiency (BTE), CO2, NOX and particle 

matters (PM) in order to observe engine performance and emissions. The experimental 

data from CRDI setup and emission analyzer here were separated into three groups for 

the ANN model which were 70% for training the neural network, 15% for the network’s 

cross-validation and remaining 15% for testing the performance of ANN. After 

implementing the data as input layer, the 2 hidden layers with 10 neurons for each were 

used to reach the output layer on the MATLAB platform. The ANN model was enabled 

to forecast the performance and emissions with excellent agreement with mean absolute 

percentage error in the range of 1.1 - 4.6%.  

Cay et al. (2013) performed experimental investigations and then performed ANN 

validation over engine performance. They used the ANN to predict BSFC, AFR, 

emissions of CO and unburned hydrocarbons (UHC) of a spark ignition engine. The 

revealed experimental data of a four cylinder four stroke test engine operated at different 

engine speeds and torques were compared with the ANN modeling, the standard back 

propagation algorithm. The network structure was aimed for optimum choice of the 

training model. Four different algorithms of Quasi-Newton back propagation (BFGS), 

LM algorithm, resilient back propagation (RP) and scaled conjugate gradient learning 

algorithm (SCG) were used. The SCG learning algorithm gave optimal results with 

correlation coefficient (𝑅2) more than 0.99. After the studies, it was concluded that 

significant decrease in emission was observed with methanol however the engine 

performance was affected negatively due to methanol. 

Liu et al. (2013) suggested an ANN approach for a new-fangled misfire detection 

model of a turbocharged diesel engine. An explicit back propagation neural network has 

been improved to identify diesel combustion misfire according to some engine operating 

parameters such as engine speed, intake temperature, boost pressure, exhaust temperature, 

water temperature and fuel consumption. The parameters were selected by using engine 

fault mode tree analysis. The proposed neural network model was implemented in 

MATLAB/Neural Network Toolbox. The mean square error of the training target was 

lower than 0,001. 

Garg et al. (2012) worked on engine development research using an Artificial 

Neural Networks approach. They claimed that the ANN model resembles the logic in two 

premises: 
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• Knowledge is acquired by the network through a learning process 

• Inter-neuron connection strengths known as synaptic weights are used to store 

the knowledge 

 

They defined neural networks as parametrized computational non-linear 

algorithms for data/signal/image processing. The neural network was characterized by: 

• Architecture 

• Training or learning (determining weights on the connections) 

• Activation function 

 

Shamekhi et al. (2009) studied multi objective genetic algorithms to model several 

engine operations using Neural Networks. Multi objective optimization targets to find 

design variables like “x” that minimize or maximize “k” objective functions within “m” 

constraints. It could be formulated as follows (Ringuest, 1992; Samadani et al., 2008): 

 

min𝑓(𝑥⃗) = (𝑓1(𝑥⃗), 𝑓2(𝑥⃗),… , 𝑓𝑘(𝑥⃗))
𝑇            (2.2) 

s.t. 𝑥⃗ ∈ 𝑋 = [𝑥⃗ ∈ 𝑅𝑛|𝑢𝑗(𝑥⃗) ≤ 0(𝑗 = 1, . . . , 𝑚)] 

 

If the objective functions are in the trade-off relationship, it is strenuous to 

minimize or maximize all objective functions at the same time. In that case, the concept 

of superiority and Pareto optimum solution was suggested to be utilized (Shamekhi et al., 

2009). 

In the study of Najafi et al. (2016), some available studies using ANN and ANFIS 

have been compared with Najafi’s study itself as in Table 2.2. 

The correlation coefficient of ANFIS models (in grey) have been observed as 

producing more accurate results than ANN studies in the literature based on a correlation 

factor. This determination is one of the reason behind the election of ANFIS model 

instead of ANN model for this investigation which is also more practical explained in 

detail in the following pages. 
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Table 2.2. The comparison between several ANN and ANFIS studies 

Ref. Engine Fuel type Method Input Output 
Best 

Performance 

Sayın 

et al. 

(2007) 

Gasoline 

Gasoline 

with various 

octane 

number (91, 

93, 95, 95.3) 

ANN 

Lower 

heating 

value, 

torque, 

speed, air 

inlet 

temperature 

BSFC, BTE, 

exhaust gas 

temperature, 

CO, HC 

R=0.996 

Sharon 

et al. 

(2012) 

Diesel 

Biodiesel 

blend (B25, 

B50, B75, 

B100) 

ANN 
Power, bio-

fuel blend 

BSFC, BTE, 

Smoke 

number, 

CO, NOx, HC 

R=0.999 

Yusaf 

et al. 

(2010) 

CNG-

Diesel 

Dual CNG–

diesel fuel 
ANN 

Speed, fuel 

type 

Power, torque, 

BSFC, BTE, 

NOX, CO, 

CO2, O2, 

exhaust 

temperature 

R=0.99 

Cay, 

(2013) 
Gasoline Gasoline ANN 

Speed, 

torque, fuel 

flow rate, 

intake 

manifold 

mean 

temperature, 

cooling water 

inlet 

temperature 

BSFC, power, 

exhaust 

temperature 

R2=0.99 

Cay et 

al. 

(2013) 

Gasoline 
Gasoline, 

methanol 
ANN 

Speed, 

torque, fuel 

type, fuel 

flow 

BSFC, CO, 

HC, air–fuel 

ration 

R=0.999 

Hosoz 

et al. 

(2013) 

Diesel 

Diesel–

biodiesel 

blend (B0, 

B10, B20, 

B50, B75, 

B100) 

ANFIS 
Speed, load, 

fuel type 

Power, BSFC, 

BTE, HC, CO, 

NO, exhaust 

gas 

temperature 

R=1 

Kiani 

et al. 

(2010) 

Gasoline 

Gasoline–

ethanol 

blend  

(E0, E5, 

E10, E15, 

E20) 

ANN 

Speed, load, 

gasoline–

ethanol 

blend 

Power, torque, 

CO, CO2, 

NOx, HC 

R=0.99 

Canakc

i et al. 

(2009) 

Diesel 

Diesel–

biodiesel 

blend (B5, 

B20, B50, 

B100) 

ANN 

Speed, fuel 

properties, 

environment

al conditions 

Flow rates, 

maximum 

injection 

pressure, 

emissions, 

engine load, 

maximum 

cylinder gas 

pressure, BTE 

R2=0.99 

(Cont. on next page) 
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Table 2.2. (Cont.) 

Ref. Engine Fuel type Method Input Output 
Best 

Performance 

Roy & 

Ghosh 

et al. 

(2015) 

Diesel Diesel 

Gene 

Expression 

Program 

Load, fuel 

injection 

pressure, 

EGR, fuel 

injected per 

cycle 

BSFC, BTE, 

CO2, NOx, 

PM 

R=0.999 

Ganesa

n et al. 

(2015) 

Diesel 

Generator 
Diesel ANN 

Speed, 

torque, load 

CO2, 

CO/CO2, 

gross 

efficiency, 

flue gas 

temperature 

R2=0.999 

Roy & 

Das et 

al. 

(2015) 

Diesel Diesel ANFIS 

Load, fuel 

injection 

pressure, 

CNG energy 

share 

BSFC, BTE, 

NOx, PM, HC 
R=0.999 

Najafi 

et al. 

(2016) 

Gasoline 

Gasoline–

ethanol 

blend (E0, 

E5, E10, 

E15, E20) 

ANFIS 

Speed, 

gasoline–

ethanol 

blend 

Power, torque, 

BTE, 

volumetric 

efficiency, 

BSFC, 

CO, HC, CO2, 

NOx 

R=1 

 

 

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

 

Theoretical background and modelling methodology of ANFIS are given in details 

in Chapter 3. It is a sort of artificial neural network which is based on Takagi–Sugeno 

fuzzy inference system (1985). Since it integrates both neural networks and fuzzy logic 

principles, it has the potential to catch the advantages of both in a single framework. Its 

inference system corresponds to a set of fuzzy IF–THEN rules that have the learning 

ability to simulate nonlinear functions. Thus and so ANFIS is regarded as a general 

figurer.  

Najafi et al. (2016) studied a SI engine operating with ethanol gasoline blends of 

0%, 5%, 10%, 15% and 20% namely E0, E5, E10, E15 and E20 respectively in order to 

disclose the use of support vector machine (SVM) and ANFIS to predict the performance 

parameters and the exhaust emissions. The engine was run at various speeds for each test 

fuel, and 45 different test conditions were created during the experiments. The brake 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Inference_system
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wiktionary.org/wiki/framework
https://en.wikipedia.org/wiki/Conditional_(programming)
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power, the engine torque, the brake thermal efficiency, and the volumetric efficiency are 

increased using ethanol blends, while the brake specific fuel consumption (bsfc) is 

decreased, when they were compared with neat gasoline fuel. Additionally, the 

concentration of CO and HC in the exhaust pipe decreased after ethanol blends were 

introduced, but CO2 and NOX emissions increased. In order to forecast the engine 

parameters, all the experimental data were arbitrarily divided into training and testing 

data. For the SVM modelling, different values for the radial basis function (RBF) kernel 

width and the penalty parameters (C) were considered, and the optimum values were then 

found. For the ANFIS modelling, 200 training epochs and the Gaussian curve 

membership function (gaussmf) were found to be the optimum choices for the training 

process. The results showed that the SVM predicted the engine performance and the 

exhaust emissions with the correlation coefficient (R) and the accuracy in the ranges of 

0.66–1 and 65%–99%, respectively, while these same parameters were in the ranges of 

0.76–1 and 79%-99%, respectively, for the ANFIS. The results demonstrate that the SVM 

and ANFIS are both capable of predicting the SI engine performance and emissions. 

Nevertheless, the performance of the ANFIS was obviously higher than that of the SVM. 

The ANFIS, which is based on the Sugeno fuzzy inference model (SFIM), builds 

an input output mapping according to both the fuzzy “if” and “then” rules and the 

specified “input” and “output” data couples (Reddy & Mohanta, 2007). The “if” and 

“then” rules of the fuzzy system are usually employed to obtain the inference of an 

indefinite model, which could treat information in a system as well as experimental data. 

Using specific “input” and “output” training data couples, with the aid of sound 

membership functions, the “if” and “then” rules are structured. The ANFIS could arrange 

the membership function using the back-propagation gradient descent. The ANFIS 

simulated the Takagi–Sugeno–Kang (TSK) fuzzy rule of Type 3, where the consequent 

part of the rule is a linear combination of the inputs and a constant (Sugeno & Kang, 

1988). The final output of the system is weighted by the average of each rules output. The 

form of the Type 3 rule used in the paper simulated in the system was as follows:  

 

If 𝑥1 is 𝐴1 and 𝑥2 is 𝐴2 and ... 𝑥𝑝 is 𝐴𝑝, 

Then 𝑦 =  𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑝𝑥𝑝 
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where [x1, x2, . . ., xp] are the input variables, [A1, A2, . . ., Ap] are fuzzy sets, 

which were settled during the training process, [c0, c1, . . ., cp] are the resultant 

parameters, and y is the output variable (Sisman-Yılmaz et al., 2004). 

In the study of Najafi et al. (2016), the analysis was structured by also other 

methods such as multi layer perceptron (ANN-MLP), radial basis function (ANN-RBF) 

and support vector machine (SVM). After all the methods were applied, the accuracy and 

the errors were found in terms of correlation coefficient (R), root mean squar error 

(RMSE), Mean Relative Estimation Error (MRE) and accuracy in order to find the 

performance of those methods. The comparison of performance criteria among those 

methods has been tabulated as below: 

 

Table 2.3. Performance comparison between the proposed and traditional methods 

(Source: Najafi et al., 2016) 

 

 

 

 

According to Table 2.3 above, it can be observed that ANFIS had better 

performances than the MLP based ANN and RBF based ANN and SVM in the prediction 

of the engine performance and exhaust emissions. 

Baneshi et al. (2015) searched for the comparison of different network types in 

ANN. They selected best logs (for the sake of minimum information and maximum 

accuracy) for some parameters of hydrocarbon resources in oil and gas industry such as 

porosity, saturation, sonic, and density logs which are predicted by adaptive neuro fuzzy 

intelligence system, radial basis function, and artificial neural network models. The best 

models for each parameter were optimized and optimal epoch, neuron, function, and 

spread clarified. The parameters and indexes used in the models were density (RT), bulk 

density (RHOB), matrix density (DT) neutron log liquid filled porosity (NPHI), and 

formation water (SW).  
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The best correlation coefficient between target data and models output found 

when SE was input and RT and NPHI were outputs. Relative error percentage (REP) was 

minimum as 1.54% using DT & NPHI as inputs and RHOB as output in ANFIS model 

among ANN, RBF and ANFIS. Epoch 70 gave better results in terms of REP percentage 

during the study of finding the optimal epoch of network with try and error method in the 

epoch range of 0 – 200. One hidden layer with 12 neurons had the minimum error among 

the cases in the range of 0 - 22 neurons. For training functions, “trainlm” gave the lowest 

REP of test data of 6.76% among the bunch of membership functions (trainbfg, traincgp, 

traincgb, traincgf, trainoss, trainscg, trainrp, traingdx, traingda, traingd, traingdm). The 

optimum application points during neural network analysis are also tabulated as below as 

per their studies: 

 

 

Table 2.4.  The best method among Neural Network applications in the study of Baneshi 

et al. (2015) 

Input 

Variables 

Output 

Variabless 
Model Epoch 

Neuron Numbers 

in Hidden Layer 

Training 

Function 
REP % 

DT & 

NPHI 
RHOB ANFIS 70 12 trainlm 1.54% 

 

 

Yetilmezsoy et al. (2011) studied the prediction of water-in-oil emulsions stability 

by ANFIS with basic compositional factors such as density, viscosity and percentages of 

SARA (saturates, aromatics, resins, and asphaltenes) components. In that study, it was 

noted that most of the regression models could not capture the non-linear relationships 

involved in the formation of these emulsions.  

In the computational method, the optimum fuzzy rule base sets were generated by 

grid partition and subtractive clustering fuzzy inference systems. The stability estimation 

was carried on applying hybrid learning algorithm and the performance of the model was 

tested by the means of distinct test data set randomly selected from the experimental 

domain. The ANFIS-based forecasts in that study were compared to the common 

regression approach by means of various descriptive statistical indicators, such as root 

mean-square error (RMSE), index of agreement (IA), the factor of two (FA2), fractional 

variance (FV), proportion of systematic error (PSE), etc. 

With trying various types of fuzzy inference system (FIS) structures and several 

numbers of training epochs ranging from 1 to 100, the lowest root mean square error 



 

23 

 

(RMSE = 2.0907) and the highest determination coefficient (R2 = 0.967) were obtained 

with subtractive clustering method of a first-order Sugeno type FIS. For the optimum 

ANFIS structure, input variables were fuzzified with four Gaussian membership 

functions, and the number of training epochs was computed as 21. In the computational 

analysis, the predictive performance of the ANFIS model was examined for the following 

ranges of the clustering parameters: range of influence (ROI) = 0.45–0.60, squash factor 

(SF) = 1.20–1.35, accept ratio (AR) = 0.40–0.55, and reject ratio (RR) = 0.10–0.20. 

Results indicated that ROI, SF, AR and RR were obtained to be 0.54, 1.25, 0.50 and 0.15, 

respectively, for the best FIS structure. It was clearly concluded that the proposed ANFIS 

model demonstrated a superior predictive performance on forecasting of water-in-oil 

emulsions stability. Findings of that study clearly indicated that the neuro-fuzzy modeling 

could be successfully used for predicting the stability of a specific water-in-oil mixture 

to provide a good discrimination between several visual stability conditions. 

Lee et al. (2007) investigated on that Adaptive Neuro-Fuzzy Inference System 

(ANFIS) fundamentally compensates the requirement for manual optimisation of the 

fuzzy system parameters. System parameters were automatically adapted by a neural 

network; for example, the membership function boards, leading to improved performance 

without operator intervention. In the ANFIS model, the estimation of spray penetration 

length and cone angle could be developed because the conjunction of neural network and 

fuzzy logic enabled the system to train itself and to improve its results based on 

experimentally available data. The neuro fuzzy system with the training capability of a 

neural network and with the advantages of the rule oriented fuzzy system could improve 

the performance significantly and provide a model in order to integrate the experienced 

observations into the categorization process. 

Ultimately, Table 2.5 below also summarizes the current researches using ANFIS 

model for combustion characteristics validating experimental and/or CFD studies. The 

table includes engine types which are generally compression ignition, input parameters, 

output parameters, membership function types and the performance values in terms of R2, 

RMSE, MRE and accuracy. According to these results, MF type of gaussmf, gbellmf and 

trapmf have more accurate results than gauss2mf and psigmf for this kind of analyses. 

The performance values are conditionally formatted and colored in the table at right most 

coloumns. In the light of these studies, the results are separately evaluated to determine 

the parameters of this main study. 
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Table 2.5. Various ANFIS models simulating combustion with their performance 

Ref. 
Eng. 

Type 
Inputs Outputs Input MF 

Performance Criteria 

R² RMSE 

MRE 

(%) 

ACC. 

(%) 

Najafi, 

(2016) 
CI 

Speed (rpm), 

Ethanol blend 

ratio (%) 

Power (kW), 

Torque (N.m), 

BSFC (g), 

Volumetric 

Efficiency (%), 

BTE (%), CO, 

HC, CO2, NOx 

gaussmf 1.00 0.51 1.19 98.8 

Najafi, 

(2016) 
CI 

Speed (rpm), 

Ethanol blend 

ratio (%) 

Power (kW) gbellmf 1.00 0.76 1.71 98.3 

Najafi, 

(2016) 
CI 

Speed (rpm), 

Ethanol blend 

ratio (%) 

Power (kW) trapmf 1.00 0.96 2.36 97.6 

Roy, 

(2015) 
CI 

Load (%) 

Fuel Injection 

Pressure (Mpa) 

CNG Energy 

Share (%) 

BSFC (g/kW.h), 

BTE (%), 

NOx (g/kW.h), 

PM (g/kW.h), HC 

(g/kW.h) 

gaussmf 1.00 0.91    

Roy, 

(2015) 
CI 

Load (%) 

Injection timing 

(°) 

LPG content (%) 

BSEC (kJ/kWh) 

trapmf 

gbellmf 

trimf 

0.99 0.10   93.3 

Roy, 

(2015) 
CI 

Load (%) 

Injection timing 

(°) 

LPG content (%) 

BTE (%) 

gauss2mf 

gbellmf 

psigmf 

0.98 0.11   86.7 

Roy, 

(2015) 
CI 

Load (%) 

Injection timing 

(°) 

LPG content (%) 

EGT (°C) 
gauss2mf 

trimf 
0.98 0.31   93.3 

Roy, 

(2015) 
CI 

Load (%) 

Injection timing 

(°) 

LPG content (%) 

Smoke (Hartridge 

Smoke Unit) 

trimf 

gbellmf 
0.93 0.23   46.7 

Baneshi, 

(2015) 
- 

DT (Density Log) 

NPHI (Liquid 

Filled Porosity) 

RHOB (Bulk 

Density) 

PHIE       7.48   

Baneshi, 

(2015) 
- DT NPHI RHOB--       1.54   

Baneshi, 

(2015) 
- NPHI RHOB DT       2.82   

Baneshi, 

(2015) 
- 

RT 

NPHI 

RHOB 

DT 

SW (Formation 

Water) 
      30.38   

Baneshi, 

(2015) 
- 

RT 

NPHI 

RHOB 

DT 

SW (Formation 

Water) 
      30.38   

(Cont. on next page) 
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Table 2.5. (Cont.) 

Ref. 
Eng. 

Type 
Inputs Outputs Input MF 

Performance Criteria 

R² RMSE 

MRE 

(%) 

ACC. 

(%) 

Mariani, 

(2014) 
CI 

EGR Valve 

Position (%) 

Lambda probe (-) 

VGT Control 

Valve Position 

(%) 

Volumetric 

Oxygen 

Concentration (%) 

trimf   0.18 4.50   

Mariani, 

(2014) 
CI 

EGR Valve 

Position (%) 

Lambda probe (-) 

VGT Control 

Valve Position 

(%) 

Volumetric 

Oxygen 

Concentration (%) 

gaussmf   0.24 13.50   

Mariani, 

(2014) 
CI 

EGR Valve 

Position (%) 

Lambda probe (-) 

VGT Control 

Valve Position 

(%) 

Volumetric 

Oxygen 

Concentration (%) 

trimf   0.26 7.00   

Hosoz, 

(2013) 
CI 

Speed (rpm) 

Load (%) 

Biodiesel content 

(0% to 100%) 

Brake power 

(kW), 

Exhaust gas 

temperature (°C), 

BSFC (g/kWh), 

BTE (%), HC, 

CO, NO, 

  1.00 0.09 1.40   

Yetilme

zsoy, 

(2011) 

CI 

Density 

Viscosity 

Additives of 

SARA 

Emulsion stability gaussmf 0.97 2.09     

Lee, 

(2007) 
CI 

Pressure (Mpa) 

Density (kg/m3) 
Penetration (mm) trimf 1.00       

 

 

 In this study, an adaptive neuro-fuzzy model is developed for the study of the 

effects of water-in-diesel emulsions on diesel sprays. The model is validated by two 

separate papers based on experimental study and one paper based on CFD analysis 

focusing on combustion performance and spray behaviours. The effects of chamber 

pressure, injection pressure, and ambient temperature are also investigated as well as 

emulsion, namely diesel-water fraction. 
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CHAPTER 3 

 

MATERIAL & METHODOLOGY 

 

3.1. Material: Emulsion 

 

A diesel fuel emulsion is a well-mixed type of diesel fuel with water. Diesel, 

namely automotive gasoil (AGO), is defined as “continues phase” in the mixture whereas 

the water is defined as “dispersed phase”. In various applications, it is observed that water 

is added to the diesel fuel in the range of 10–30% by mass or volume (Barnaud et al., 

2000). A small amount of emulsifier usually in the range 1–5% is used to stabilize the 

emulsion increasing its kinetic stability. A class of emulsifier is also called as surfactant; 

this name comes from surface active agents.  

An emulsifier, or surfactant, is a matter which is adsorbed at the interface of the 

system and alters the inter-facial free energy of the interface.  In general, a hydrophilic 

surfactant with a certain hydrophilic-lipophilic-balance (HLB) value is added into water 

for decreasing the interfacial tension and retarding the aggregation, concentration, and 

creaming between oil and water phases. Meanwhile, a lipophilic surfactant is added into 

diesel to stabilize the oil phase. A magnetic stirrer is mostly used to mix and heat the 

water and diesel while hydrophilic and lipophilic surfactants were added in separately 

(Huo et al., 2014; Emberson et al., 2016). After using surfactant, the emulsion of diesel 

fuel with water can be utilized in the CI engine as regular fuel.  

In various studies, it is shown that the use of diesel fuel emulsions reduces NOX, 

CO, soot, hydrocarbons (HC) and PM emissions (Fahd et al., 2013; Lin & Chen, 2008; 

Maiboom & Tauzia, 2011; Nadeem et al., 2006; Liu et al., 2011; Armas et al., 2005; Park 

& K. Y. Huh, 2000; Qi et al., 2010). Fuel emulsification is regarded as a potential solution 

to the emission issues and it has received much attention in the last decades (Valdmanis 

& Wurlfhorst, 1970; Song & Lee, 2000; Musculus et al., 2003; Kadota & Yamasaki, 

2002; Lin & Lin, 2007). Additionally, it has been showed that the brake thermal efficiency 

of a CI engine is slightly improved using emulsion as fuel (Armas et al., 2005; Qi et al., 

2010; Abu-Zaid, 2004; Lif & Holmberg, 2006). 
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There has been very little work done researching the spray behaviours of diesel 

fuel emulsions, which causes the general lack of understanding concerning their use in 

direct injection CI engines. This study goes some way to address this through the ANFIS 

modelling of various experimental studies on diesel fuel emulsion sprays. For this aim, a 

few spray parameters, i.e. chamber pressure, injection pressure, ambient temperature and 

diesel-water fraction, are used to find out the effects on the spray cone angle and the spray 

tip penetration. 

 

3.2. Methodology 

 

3.2.1. Theoretical Background of Anfis 

 

In a neural network model, the training set data basically builds the system. 

However, using a neuro-fuzzy configuration, the system is built by fuzzy logic definitions 

and then it is refined using neural network training algorithms. For the architecture of the 

model, ANFIS have membership functions and rules to be designed fed by the 

experimental data employing human knowledge, experience about the target system to be 

exploited. The ANFIS can then refine the fuzzy with ‘if-then’ rules and membership 

functions to describe the input-output behaviour of a complex system. In practical 

applications Sugeno type FIS models have been considered which are more suitable for 

constructing fuzzy models due to their more compact and computationally efficient 

representation of data than the Mamdani fuzzy systems (Lee et al., 2007). A typical zero-

order Sugeno fuzzy system has the form as below: 

 

    If x is A and y is B, then 𝑧 =  𝑐.        (3.1) 

 

where A and B are fuzzy sets and z is a sharply defined function. Alternatively, a 

more general first-order Sugeno can be used by setting to a higher order function: 

 

          𝑧 =  𝑝𝑥 +  𝑞𝑦 +  𝑐.          (3.2) 

 

However, a higher order system of times brings an unjustifiable level of 

complexity because of the algorithm needed to optimise the parameters. For this reason, 
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a zero-order Sugeno FIS is used in most of the investigations. Figure 3.1 demonstrates 

the equivalent ANFIS architecture which consisted of five layers (Jang, 1993):  

 

 

Figure 3.1. ANFIS Sugone Fuzzy System  

(Source: Jang, 1993) 

 

 

Variables x and y correspond to input values of A1, A2 and B1, B2 respectively in 

the Layer 1. A1, A2, B1 and B2 can be either the linguistic labels (small, large, high, low 

etc.) as well as numerical values used in the fuzzy theory for dividing the membership 

functions. The membership relationship between the output and input in this layer can be 

expressed as: 

 

    𝑂1,𝑖  =  𝜇𝐴𝑖(𝑥), 𝑖 =  1, 2       (3.3) 

    𝑂1,𝑗  =  𝜇𝐵𝑗(𝑥), 𝑗 =  1, 2        (3.4) 

 

where 𝑂1,𝑖 and 𝑂1,𝑗 represent the output functions, 𝜇𝐴𝑖 and 𝜇𝐵𝑗 are the membership 

functions. 

 Layer 2, commonly referred to as the ‘rule layer’ consists of two fixed nodes in 

Figure 3.1 above which represent the fuzzy strengths of each rule. The product rules can 

be used to calculate the weighting function for the fuzzy operator ‘AND’ of a Sugeno 

FIS.  

The output W1 and W2 are the weight functions for the next layer. The input and 

output relationship in this layer is: 

 

       𝑂2,𝑖  =  𝑊𝑖  =  𝜇𝐴𝑖(𝑥) 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2                    (3.5) 
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where 𝑂2,𝑖 is the output of second layer. 

The third layer is the normalised layer and its function is to normalise the weight 

function: 

 

    𝑂3,𝑖 = 𝜛𝑖 =
𝜔𝑖

𝜔1+𝜔2
, 𝑖 = 1,2         (3.6) 

 

where 𝑂3,𝑖 is the output of third layer. 

 The fourth layer holding the adaptive nodes is the defuzzification layer. The 

output from this layer is “𝜛(𝑝𝑥 + 𝑞𝑦 + 𝑟)”, where 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are the consequent 

parameters of the node. The input and output relationship in this layer can be defined as: 

 

            𝑂4,𝑖 = 𝜛𝑖𝑓𝑖 =  𝜛𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 =  1, 2        (3.7) 

 

where 𝑂4,𝑖 is the output of the fourth layer. 

The fifth layer consists of a single fixed node which is the summation of the 

weighted output of the consequent parameters in layer 4. The output layer is given by: 

 

    𝑂5,𝑖 = ∑ 𝜛𝑖𝑓𝑖𝑖 =  
∑ 𝜔𝑖𝑓𝑖𝑖

∑ 𝜔𝑖𝑖
, 𝑖 =  1, 2                              (3.8) 

 

The nodes in the input layer are adaptive. Any appropriate membership functions 

can be used for the system. In the study, “trimf”, “pimf”, “gaussmf” are chosen in general 

to describe the parameters due to their smoothness and direct notation (Lee et al., 2007). 

The triangular MF (trimf) is formally expressed as (Mariani et al., 2014): 

 

       𝑀𝐹(𝑥, 𝑎, 𝑏, 𝑐) =  𝑓(𝑥, 𝑎, 𝑏, 𝑐) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
 

𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

 
𝑐−𝑥

𝑐−𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐 

 
0, 𝑐 ≤ 𝑥

                      (3.9) 

 

where x is one of the four input variables in the first layer and the parameters a, b 

and c describe the shape of the triangular MF. 
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The symmetric Gaussian MF (gaussmf) is expressed as (Mariani et al., 2014): 

 

   𝑀𝐹(𝑥, 𝜎, 𝑐) = 𝑓(𝑥, 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2                             (3.10) 

 

Where the function is dependent on the two parameters of σ and c, while x is one 

of the four input variables in the first layer. 

The Π -shaped built-in MF (pimf) is a spline-based curve so named because of its 

Π shape (can be seen from Figure 3.2). The membership function is evaluated at the points 

determined by the vector x. The parameters a and d locate the "feet" of the curve, while 

b and c locate its "shoulders." It is expressed as below (Mathworks, FUZZY, 2016): 

 

  𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0, 𝑥 ≤ 𝑎
 

2 (
𝑥−𝑎

𝑏−𝑎
)
2

, 𝑎 ≤ 𝑥 ≤
𝑎+𝑏

2
 

1 − 2 (
𝑥−𝑏

𝑏−𝑎
)
2

,
𝑎+𝑏

2
≤ 𝑥 ≤ 𝑏 

 
1, 𝑏 ≤ 𝑥 ≤ 𝑐

 

1 − 2 (
𝑥−𝑐

𝑑−𝑐
)
2

, 𝑐 ≤ 𝑥 ≤
𝑐+𝑑

2
 

2 (
𝑥−𝑑

𝑑−𝑐
)
2

,
𝑐+𝑑

2
≤ 𝑥 ≤ 𝑑

 
0, 𝑥 ≥ 𝑑

                   (3.11) 

 

Trapezoidal-shaped membership function (trapmf), based on a trapezoidal curve, 

is a function of a vector, x, and depends on four scalar parameters a, b, c, and d, as given 

by (Mathworks, FUZZY, 2016): 

 

          𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = max (min (
𝑥−𝑎

𝑏−𝑎
, 1,

𝑑−𝑥

𝑑−𝑐
) , 0)               (3.12) 

 

Difference between two sigmoidal functions membership function (dsigmf) is a 

sigmoidal membership function depends on the two parameters a and c expressed as 

below (Mathworks, FUZZY, 2016): 
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      𝑓(𝑥; 𝑎, 𝑐) =
1

1+𝑒−𝑎(𝑥−𝑐)
                   (3.13) 

 

 The membership function dsigmf depends on four parameters, a1, c1, a2, and c2, 

and it is the difference between two of these sigmoidal functions:  

 

    𝑓1(𝑥;  𝑎1, 𝑐1)  −  𝑓2(𝑥;  𝑎2, 𝑐2)      (3.14) 

  

 Generalized bell-shaped membership function (gbellmf) is a generalized bell 

function depends on three parameters a, b, and c as given by (Mathworks, FUZZY, 2016): 

 

     𝑓(𝑥; 𝑎, 𝑏, 𝑐) =
1

1+|
𝑥−𝑐

𝑎
|
2𝑏      (3.15) 

 

 where the parameter b is usually positive. The parameter c locates the center of 

the curve. Enter the parameter vector params, the second argument for gbellmf, as the 

vector whose entries are a, b, and c, respectively. 

 The plot below reveals the structure type of the all membership functions in use: 

 

 

Figure 3.2. A plot view of the membership functions used in ANFIS 
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Another main term during applying ANFIS model into MATLAB is the “epoch” 

number. The training process stops if the designated epoch number is reached or the error 

goal is achieved, whichever comes first. 

 

3.2.2. Anfis Modelling in Matlab 

 

ANFIS is fundamentally a training programme for Sugeno-type fuzzy inference 

system. It uses a mixture learning algorithm to tune the parameters of neural network and 

a Sugeno-type fuzzy inference system (FIS). The algorithm employs a hybrid of the least-

squares and back-propagation gradient extraction methods to model a training data set. 

ANFIS additionally corroborates models using a controlling data set to test for overfitting 

of the training data (Jang, 1993). 

The ANFIS methodology is applied with the software of MATLAB R2011a 

during this study since its accuracy and consistency is verified by several studies in the 

literature (Mariani et al., 2014; Roy et al., 2015; Liu et al., 2013). The below commands 

and applications are the tools used in Matlab (Mathworks, ANFIS, 2016): 

 

Input arguments for anfis are:  

• trnData: Training data, defined as a matrix. For an FIS with N inputs, trnData 

has “N+1” columns, where the first N columns hold input data and the final 

column comprises output data. 

• initFis: FIS structure utilized to state a primary set of membership functions 

for training, specified as one of the following: 

o Positive integer: Sets the number of membership functions for all 

inputs and creates an initial FIS using genfis1. 

o Vector of positive integers: Sets the number of membership functions 

for each input separately and creates an initial FIS using genfis1. 

o An FIS structure, produced using genfis1 or genfis2, that fulfils 

conditions below: 

▪ First or zeroth order Sugeno-type system. 

▪ Single output, acquired using weighted average 

defuzzification. All output membership functions must be the 

same type and be either linear or constant.  
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▪ No rule sharing. Dissimilar rules cannot use the same output 

membership function.  

▪ Unity weight for each rule. 

▪ No custom membership functions or defuzzification methods. 

Unless “initFis” is defined, ANFIS utilizes genfis1 to produce a default initial FIS 

for training. The default FIS contains two Gaussian MF for each input. 

• trnOpt: Training options, specified as a vector of scalars that represent the 

options below: 

o trnOpt(1) — Training epoch number (default: 10) 

o trnOpt(2) — Training error target (default: 0) 

o trnOpt(3) — Initial step size (default: 0.01) 

o trnOpt(4) — Step size decrease rate (default: 0.9) 

o trnOpt(5) — Step size increase rate (default: 1.1) 

The training process stops when it reaches the designated epoch number or 

achieves the training error goal. Then, display options (dispOpt) are applied to specify 

information in the Command Window. 

 

Output arguments for ANFIS are as followings: 

• FIS: FIS structure whose parameters are adjusted using the training data, 

returned as a structure. 

• Error: Root mean squared training data errors at each training epoch, returned 

as an array of scalars. 

• Stepsize: Step sizes at each training epoch, returned as an array of scalars. 

• chkFis — FIS structure that corresponds to the epoch at which chkErr is 

minimum. 

• chkErr — Root mean squared checking data errors at each training epoch, 

returned as an array of scalars. 

 

 In this study, the ANFIS models are applied selecting the 80% of data for training 

dataset and 20% for test dataset, leaving maximum and minimum values in the training 

dataset. The datasets are extracted from the figures of the papers explained in “Chapter 4 

– Data” in details. Afterwards the program is employed using tools above and results of 

3D surfaces and scatter plots are displayed in order to reach the results. 
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3.2.3. Performance Criteria 

 

In order to evaluate the performance of a method in prediction, several criteria are 

calculated. The criteria used in this study are the correlation coefficient (R), the root mean 

square error (RMSE), and the accuracy. R evaluates the strength of the relationship 

between the experimental and predicted results (Najafi et al., 2016), is defined as: 

 

    𝑅(𝑎, 𝑝) =
𝑐𝑜𝑣(𝑎,𝑝)

√𝑐𝑜𝑣(𝑎,𝑎)𝑐𝑜𝑣(𝑝,𝑝)
      (3.16) 

 

where 𝑐𝑜𝑣(𝑎, 𝑝) is the covariance between sets 𝑎 and 𝑝. 𝑎 and 𝑝 denote the actual 

output and forecasted output sets, individually (Sayin et al., 2007).  

RMSE is determined as follows: 

 

    𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑖 − 𝑝𝑖)2
𝑛
𝑖=1       (3.17) 

 

where 𝑛 is the number of the points in the data set. 

Accuracy, a simple representation of prediction performance (Widodo & Yang, 

2011), is calculated as follows: 

 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑎𝑖−𝑝𝑖

𝑎𝑖
) . 100    (3.18) 

 

where 𝑎𝑖 is the actual value and 𝑝𝑖 is the forecasting value, namely simulation 

results in our study.  
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CHAPTER 4 

 

EXPERIMENTAL DATA RESOURCES 

 

4.1. Selecting the Base Studies from Literature 

 

In this thesis, the spray characteristics in terms of spray penetration and angle has 

been investigated using Sugeno approach in ANFIS model via Matlab R2011a based on 

two studies namely experimental data in the literature. The experimental investigations 

are also covering the emulsion analysis since they are looking for the spray and 

combustion characteristics of water-emulsified diesel which can be correlated with the 

aim of this thesis. 

The dynamics and effects of the inputs gathered from both experimental and 

numerical studies are tried to be understood over the spray penetration at the same time. 

The studies are: 

 

• “Optical characterization of Diesel and water emulsion fuel injection sprays 

using shawdography” by D. R. Emberson, B. Ihracska, S. Imran and A. Diez 

in 2016 published by Fuel vol:172. 

• “Study on the spray and combustion characteristics of water–emulsified 

diesel” by Ming Huo, Shenlun Lin, Haifeng Liu and Chia-fon F. Lee in 2014 

published by Fuel vol:123 

 

 After refining the data from the sources above, they were utilized in the model 

using the process given in details in the following sections.  
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4.2. Experimental Data 

 

To begin with the detailed description of data gathering, we provide the main 

properties of two data sources which note variables as “Var.” and constants as “Const.” 

with their units in box brackets in Table 4.1. below: 

 

 

Table 4.1. Model Progress Data Sets 

 

A
m

b
ie

n
t 

P
re

ss
u

re
 

F
u

el
 

D
ie

se
l 

F
ra

ct
io

n
 

In
je

ct
io

n
 

P
re

ss
u

re
 

C
h

am
b

er
 

T
em

p
er

at
u

re
 

T
im

e 

N
o

zz
le

 

D
ia

m
et

er
 

N
o

zz
le

 
H

o
le

 

N
u

m
b

er
s 

N
o

zz
le

 
H

o
le

 

L
en

g
th

 

N
o

zz
le

 
H

o
le

 

D
ia

m
et

er
 

N
o

zz
le

 
H

o
le

 

A
n

g
le

 

S
p

ra
y
 

C
o
n

e 

A
n

g
le

 

S
p

ra
y

 

P
en

et
ra

ti
o

n
 

Emberson, 

(2016) 

[bar] 

Var 

[%] 

Var 

[bar] 

Var 

[°C] 

Const 

[µs] 

Var 

[µm] 

Const 

[ ] 

Const 

[µm] 

Const. 

[µm] 

Const 

[deg] 

Const 

[deg] 

Output 

[mm] 

Output 

Huo,  

(2014) 

[bar] 

Const 

[%] 

Var 

[MPa] 

Const 

[K] 

Var 

[µs] 

Var 

N/A [ ] 

Const 

N/A 

 

[µm] 

Const 

N/A N/A [mm] 

Output 

 

 

Among the data above consisting of 10 different inputs and 2 different outputs at 

all, this study focused on the variable ones while excluding the constant ones noted as 

“Const.” and not available ones noted as “N/A”. The reason behind this selection is the 

motivation to analyze the effects of the inputs over the output in which the inputs are 

required to be varying whilst outputs are changing. 

In the first data set, which is obtained from Emberson study (Emberson et al., 

2016), the spray penetration data are extracted in detail from Figure 4.1 and Figure 4.2 

below generated using the shadowgraph image sequences in that study. The cases are 

separated in terms of their emulsion rates as D (100% Diesel), D10 (90% Diesel + 10% 

Water) and D20 (80% Diesel + 20% Water) and their chamber pressure and fuel injection 

pressure. Hereby, the neat diesel fuel has the properties of the density of 814 kg/m3 and 

the viscosity of 0.00588 Pa.s. 
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Figure 4.1.  Fuel injection spray angle with time for varying fuel types at Pamb=20bar 

and Pinj=500bar (Source: Emberson et al., 2016) 

 

 

Figure 4.1 have been attained during the experiments to find the injection spray 

angles with time for varying fuel types, namely emulsion rates, while the chamber 

ambient pressure is 20 bar which corresponds to the ambient gas density of 22.6 kg/m3 

and the injection pressure is 500 bar. This study has been repeated while the ambient 

pressure is 30 bar which subtends to the ambient gas density of 34.5 kg/m3 and the 

injection pressures are 700 bar and 1000 bar. Error bars are the magnitude of one standard 

deviation for the 15 injections used for determining the average. 

Figure 4.2 of Emberson et al. (2016) depicts the spray penetration values for the 

same scenarios used in fuel injection spray angles, again determined using the 

shadowgraph image sequences. 
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.  

Figure 4.2.  Fuel injection spray tip penetration variation with time after SOI for Diesel 

fuel, D10 and D20 when Pamb is 20 bar and Pinj are 500, 700 and 1000 bar 

respectively (Source: Emberson et al., 2016) 

 

 

Spray penetration values are available as well for Pamb of 30 bar in with the same 

density values given mentioned above. Error bars corresponding to one standard 

deviation. 

The independent variable inputs are taken into account to see the varying effects 

of the inputs over the output of spray penetration. In the data set obtained by Emberson 

et al. (2016), the nozzle geometrical details and chamber ambient temperature were 

constant inputs. Among the variable inputs, ambient gas density, fuel fraction, density, 

viscosity, injected fuel mass and injection duration were dependent on rest of the 

variables; therefore, they are also excluded in this study. The independent variable inputs 

are taken into account among inputs because the marginal effects on outputs can be 

observed only with these parameters. Therefore, the chamber ambient pressure, fuel 

diesel fraction, injection pressure and time after start of injection are taken into account 

during the simulations shown as “independent variable inputs” to reach the outputs of 

spray penetration and spray angle as in Figure 4.3 below: 
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Figure 4.3. Constant and variable inputs of the data in Emberson et al. (2016) 

 

 

Data from Figure 4.2 and other variations are then tabulated separately to be used 

in the ANFIS analysis as explained in Chapter 3. From the study of Emberson et al. (2016) 

all the 2155 data are extracted to be used in the ANFIS models. They are also tabulated 

below displaying only the extreme values. 

 

 

Table 4.2. The dataset from Emberson et al. (2016) 

Chamber 
Ambient 
Pressure 

bar 

Fuel 
Diesel 

Fraction 
- 

Injection 
Pressure 

bar 

Time 
us 

Penetration 
mm 

20 1.0 500 0 0.0 
20 0.9 500 0 0.0 
20 0.8 500 0 0.0 
30 1.0 500 0 0.0 
30 0.9 500 0 0.0 
. . . . . 
. . . . . 
. . . . . 

20 1.0 1000 1050 45.2 
20 0.8 1000 1050 45.2 
20 0.8 1000 1100 45.4 

20 1.0 1000 1150 46.0 
20 0.8 1000 1150 46.0 

 

 

The second data set for this study is shown in Figure 4.4 from Huo et al. (2014). 

They presented a study of the effect of water content in emulsions as well as the effect of 

ambient temperature on sprays focussing on the effects of ambient temperatures which 

are 800 K and 1200 K, and various emulsion rates, in which the indicating number 
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represents the volumetric ratio of water that are neat ULSD (ultralow sulphur diesel), 

W10 (90% ULSD + 10% Water) and W20 (80% ULSD + 20% Water) over the spray 

penetration amount. The neat ULSD fuel has the properties of the density of 840 kg/m3 

and the viscosity of 0.00252 Pa.s. The images showing inside the combustion chamber 

are from the start of the injection with a time interval of 67 µs between consecutive 

images. The quantitative measurement of the liquid penetration, based on the leading edge 

detection from the images, is shown in Figure 4.4 below: 

 

 

 

Figure 4.4.  Liquid penetration under various ambient temperatures of 800K and 1200K 

and various fuel types in Huo et al. (2014) 

 

 

From this study, the independent variable inputs selected are chamber ambient 

temperature, time and diesel fractions, in the simulations to reach the output of penetration 

as shown in Figure 4.5. 
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Figure 4.5. Constant and variable inputs of the data in Huo et al. (2014) 

 

 

The data for spray penetration in Figure 4.4 are then tabulated separately for the 

ANFIS analysis as explained in Chapter 3 using the independent variable inputs 

mentioned above. Totally 244 data extracted from Huo et al. (2014) which is used in the 

ANFIS model. The dataset is displayed below Table 4.3 only with end values. 

 

 

Table 4.3. The dataset from Huo et al. (2014) 

Chamber 
Ambient 

Temperature 
°C 

Fuel 
Diesel 

Fraction 
- 

Time 
µs 

Penetration 
mm 

527 1 0 0.0 

527 1 80 1.3 

527 1 160 3.0 

527 1 240 5.5 

527 1 320 7.8 

. . . . 

. . . . 

. . . . 

927 0.8 560 5.0 

927 0.8 640 5.5 

927 0.8 720 6.3 

927 0.8 800 6.8 

927 0.8 880 6.9 

 

 

As final modelling, the dataset of Emberson’s and Huo’s studies are combined 

shown in Table 4.4; to find the effects of ambient temperature over spray penetration 

which is currently not available in Emberson’s study. In Emberson’s study, only the 298 

K of ambient temperature is investigated during its experiments. Thanks to the simulation, 
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ambient temperature values of 800 K and 1200 K are also modelled benefitting from the 

results of Huo’s study. Thereby the study of Emberson is repeated with new ambient 

temperature conditions through the simulation.  

There are number of 394 rows and 2.364 data extracted from studies to be used in 

the ANFIS model. The dataset is displayed only with extreme values as below: 

 

 

Table 4.4. The combined dataset of previous experimental studies  

Chamber 

Ambient 

Pressure 

bar 

Fuel 

Diesel 

Fraction 

- 

Injection 

Pressure 

bar 

Time 

µs 

Chamber 

Ambient 

Temperature 

°C 

Penetration 

mm 

20 1 500 0 25 0.0 

20 1 700 0 25 0.0 

20 0.9 700 0 25 0.0 

20 0.8 700 0 25 0.0 

20 0.8 500 0 25 0.0 

. . . . . . 

. . . . . . 

. . . . . . 

51 1 700 240 927 2.2 

51 1 700 320 927 3.0 

51 1 700 400 927 4.0 

51 1 700 480 927 5.0 

51 1 700 720 927 6.5 

 

 

All the figures and data mentioned above in two studies are then tabulated to 

utilize following the ANFIS Sugeno approach in MATLAB R2011a to forecast in an 

adaptive neuro-fuzzy modeling for the effects of water-in-diesel emulsions on diesel 

sprays. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

 This study mainly focuses on two objectives, the first is finding the most accurate 

model in terms of root mean square error (RMSE) after setting the ANFIS properties (MF 

types and epoch numbers) and the other one is studying the best models’ results in order 

to understand the effects of each parameters on spray patterns for emulsified fuels. 

 The steps during simulation, namely generating results, are explained as 

followings. Primarily, the dataset is divided into two groups, the first is the training 

dataset with 80% of the all dataset including initial and end entries. The second one is the 

test dataset with the remaining 20% of all. All entries in these two datasets are selected 

randomly only leaving extreme values in the training dataset.  The datasets are loaded 

into the ANFIS model in MATLAB with matrices called workspaces. Afterwards, the 

membership functions, rule numbers and rule types are selected in accordance with a 

variety of inputs. The optimum epoch number is then found the principle of that when 

epoch number is not adequate, the model becomes less accurate due to lack of neural 

networks in the system and when it is higher than required, it causes less accuracy again 

since it increases complicacy of neural networks which then diverges the results. All these 

arrangements are made with iteration and benefitting from previous studies on the 

ANFIS. 

 

5.1. Remodelling the First Experimental Study  

 

 The study of Emberson et al. (2016) is evaluated firstly. The dataset from the 

figures belonging to that study is simulated in 17 different models shown below. The 

models are structured based on various input MF functions such as trimf, pimf and 

gaussmf, and the MF output type of “constant” and “linear” is tested to reach more 

accurate models. Then the epoch numbers are varied to find the best model option 

comparing the RMSE values of each and every model. 
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Figure 5.1. The RMSE of various ANFIS models from data of Emberson et al. (2016) 

 

 

 As seen from Figure 5.1, the Model 01 (amber bar in the figure) is found as the 

optimum one because it has one of the lowest RMSE value while its rule number of 96 

and epoch number of 20 are not as much as the others which provides leaner transactions 

in the software which means less processing during running the simulation. Model 01 

contains MF structure of 2-3-3-8, MF input of trimf and MF output of constant with 20 

epoch number. The structure of the model produces 96 rules shown as blue layer in Figure 

5.2 within the neural network model among 5 main layers.  
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Figure 5.2. ANFIS Model Structure with neural networks and layers for Model01 (MF 

Structure: 2-3-3-8, Input MF: trimf, Epoch:20) 

 

 

 MATLAB provides a graph of the errors of the simulation results with respect to 

the given output results, which are experimental results from studies in our thesis. Figure 

5.3 illustrates an example for this displaying testing data as blue dots and FIS outputs as 

red stars on top, and the overall RMSE of 0.37927 at the bottom. The RMSE value 

corresponds to a commendable accuracy of 98,4% in terms of test dataset. 
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Figure 5.3. ANFIS Interface for Model 01 modelling with testing data as blue dot & FIS 

output as red star at the top with RMSE of 0.37927 at the bottom 

 

 

 

Figure 5.4.  Spray penetration vs. diesel fraction at injection pressure where Pamb = 30 

bar and t = 1000 µs 

  

 From Figure 5.4, the penetration values at 30 bar of ambient pressure and 1000 µs 

after SOI are shown with respect to injection pressure and diesel fractions not only with 

one to one inputs of the paper but also with interpolated values. The penetration is as 
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expected increasing with the increasing injection pressure. In terms of the water fractions, 

the neat diesel has a lower range of variety of penetration than the emulsion. As well as 

the values are very close in each diesel fraction for the emulsions including water more 

than 10%, the emulsion of 20% of water has the lowest and highest penetration at all with 

minimum and maximum injection pressure subsequently. Also it is apparent that the 

penetration up to the injection pressure of 750 bar increases more drastically than after 

the 750 bar. 

 It is also observed that addition of water slightly increases ultimate spray 

penetration value. The difference between 10% and 20% water addition is negligible at 

injection pressure of 1000 bar. The reason behind that water has higher volatility and less 

viscosity than diesel which causes higher displacement in the same injection conditions. 

Additionally, at lower injection pressure values, the emulsion decreases penetration since 

neat diesel has higher penetration value by around 3%. 

 

5.2. Remodelling the Second Experimental Study 

 

Following the same approach as the previous study, several ANFIS models based 

on Huo et al. (2014) were applied investigating firstly MF structure, namely rule numbers, 

from 1-1-2 (2 rules) to 4-6-16 (384 rules). It is observed that 2-3-4, 4-3-4 and 2-6-4 give 

the most accurate outputs as seen Figure 5.5 below. The “2-3-4” rules are selected to be 

utilized for further investigations since it requires lower processing during computation 

due to lower number of rules than others. 
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Figure 5.5.  RMSE vs the MF structure in terms of rule numbers are firstly studied from 

1-1-2 to 4-6-16 (number of 2 rules to 384 rules) 

 

 Secondly, the input and output types of each and every MF is studied and RMSE 

values are investigated. It is observed that input of “gaussmf” and output type of “linear” 

gives the best result as RMSE of 0.40056 while trimf-linear is as 7.5927 with highest 

RMSE in Figure 5.6. 

 

 
Figure 5.6. RMSE vs MF input function and output type 

 

 

 Then, the epoch numbers are investigated and it is found that the best result of 

ANFIS is obtained with 1 epoch number with RMSE of 0.39944 with the rule number of 

2-3-4, input type of “gaussmf” and output type of linear. In Figure 5.7 below, it is 
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interestingly observed that the higher epoch numbers are giving the same RMSE of 

0.40056 till the epoch number of 1000. In general, the training in every epoch tries to 

converge to the value of the model output to the target. However, it is observed here that 

the model creates the converged model in its first try. 

 

 
Figure 5.7. RMSE vs Epoch Numbers 

 

 

 In Figure 5.7 above, it is seen that in general, the training in every epoch tries to 

converge the value of the model output to better match the target. 

 After the construction of ANFIS model based on Huo et al. (2014) inputs and 

outputs the results of MATLAB are extracted. First the effects of diesel fraction between 

neat diesel and 20% water content with time over penetration are observed when ambient 

temperature is 800 K. 

 

 
Figure 5.8. Penetration vs diesel fraction and time ASOI at Tamb=800 K 
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 It is observed form Figure 5.8 that, the penetration is highest with 10% water 

content around 42 mm. Moreover, it is seen that the emulsions increase penetration where 

20% water content has the penetration of around 32 mm while neat diesel has the 

penetration of 21 mm. The theoretical background of these circumstances is that diesel 

fraction has higher penetration with water content since the water has lower volatility 

than neat diesel. 

  From Figure 5.9, the effects of ambient temperature and diesel fraction over 

penetration are examined for the selected moments at 300 µs, 600 µs, and 880 µs. It is 

obviously seen that the maximum penetration value is increasing with increasing time. In 

earlier, the 20% water content and lowest ambient temperature of 527 °C has the highest 

penetration. After then the 10% water content reaches the maximum penetration with 

time. In Huo’s study (2014), it is stated that due to the low volatility of the water under 

low ambient temperatures, emulsified diesel demonstrates longer penetration. Then at 

very high ambient temperatures like 1200 K, emulsified fuel performs similar liquid 

penetration length with neat diesel stating that the ambient temperature impact surpasses 

the physical properties of fuel such as viscosity, volatility and surface tension. Moreover, 

it is expressed that 10% water content are fattened at early stages of the spray evolution. 

However, spray pattern beginning fattened does point out more striking breakup through 

the process since the increase of water content may also cause to longer micro-explosion 

delay and so lower micro-explosion strength, which may interpret the reason of longer 

penetration for 10% water content regarding to 20% water content. Additionally, it is 

observed that the ambient temperature decreases penetration for all time in three surface 

plots below.  

 

 

Figure 5.9.  The effects of diesel fraction (from Neat Diesel to 80% Diesel+20% Water 

Emulsion) with Ambient Temperature when time = 300 µs, 600 µs and 

880 µs subsequently 
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5.3. Study Based on Combined Data  

 

 The study based on the data combining the Huo’s and Emberson’s studies dataset 

is performed during this study. The Huo’s study includes the effects of ambient 

temperature in addition to Emberson’s analysis. By means of the ANFIS model the inputs 

and outputs of these two separate experiments are combined. Thereby the effects of 

ambient temperature are tried to be observed in the conditions of Emberson’s works 

which was not available in the original study. 

 The training dataset is modelled with the program and the allocated testing data is 

then compared with actual experimental data. As it is seen from Figure 5.10 the model 

outputs are quite similar with actual experimental results except for 3 results at the latest 

part (in red stars). The input of these deviant outputs than transferred to training dataset 

form testing dataset to train a more accurate model. 

 

 

Figure 5.10.  The comparison of ANFIS study with software model output (in red stars) 

and actual experimental outputs (in blue dots) 

 

 

 After arranging the training and test dataset in order to reach to most accurate 

results in terms of modelling, Figure 5.11 has been reached. The accuracy of the model 

is 98.4% with the RMSE of 0.96 which is quite satisfactory. 

 



 

52 

 

 

Figure 5.11.  The comparison of ANFIS study with software model output (in red stars) 

and actual experimental outputs (in blue dots) after revisions of dataset 

 

 

 The simulation in Matlab is achieved with ANFIS model which has the trimf 

membership function with the total rule numbers of 864 in a structure of 4-3-3-8-3 

benefitting from previous studies in previous subsections. 

 The figures below demonstrate the results including not only previous papers data 

but also interpolated data in the range of studies’ dataset namely creating new results. 

  In Figure 5.12, it is clearly seen that the penetration is higher with lower ambient 

temperature. The figure is produced benefitting from two separate studies one of which 

is focused ambient temperature only at 300 K and the other one is at 800 K and 1200 K.  

At 1200 K, the penetration amount is lower and the duration is shorter since it reaches a 

quasisteady state promptly after initiation of injection. The higher ambient temperature 

conditions given, the higher evaporation and more violent dissolution of spray jet 

overcomed the impact of other properties such as volatility and surface tension. At 500 

K, there is seen a drop-in penetration after 800 µs. The spray penetration prediction is 

shown in Figure 5.12. It can be seen that as the temperature increases the spray penetration 

decreases. The model is based on available data at 300 K, 800 K and 1200 K. The 

prediction data during the first 400 µs appears to be quite reliable. However, as the 

injection duration continues, the penetration values for the extrapolated conditions, 

namely 500 K and 700 K, appear to increase more rapidly than it should be expected.  

This could be due to the difference in injection duration input into the model. Whereas 
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for 300 K the injection duration input was 1200 µs, for the higher temperature conditions 

it was longer as the penetration dropped due to the start of combustion process, see (Huo 

et al., 2014). The problem the model is facing at this stage is that it is not only 

extrapolating data in terms of temperature but also in terms of injection duration. Thus, 

the error appears to be of higher magnitude. This would explain the sudden decrease of 

penetration for the 500 K case after 800 µs ASOI.  

 The conditions of two base studies are not totally same therefore the program tries 

to reach best predicted results that it can be concluded that the overall penetration value 

is lower in 500 K by compared with the lower temperature values. 

 

 

Figure 5.12.  Effects of Ambient Temperature over Penetration at Injection Pressure of 

700 bar with 10% Water Content 

 

 

 Figure 5.13 shows the spray penetration as a function of water content in diesel 

fuel for two ambient temperature conditions. It can be seen that at 300 K the addition of 

water has little effect on the liquid penetration. The lower volatility of water does not 

appear to increase penetration much because of the low ambient temperature. As 

temperature is increased, the emulsions spray penetration increases, since the lower water 

volatility has higher effect at higher temperatures. As the water content is increase the 

model shows an increase in spray penetration. This appears to be the case for lower 

temperature and the early stages of injection. However, for very high temperatures the 

ambient conditions overcome the volatility effects on the sprays. It appears that the model 

shows a shorter penetration for the 20% water content when compared with the 10% water 
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content at 900K. This is inherent from the experimental data imported from (Huo et al., 

2014). They showed that at these medium-high temperatures the increase of water content 

to levels of about 20% provoked a deformation in the spray structure, making it wider 

and shorter.  

    

 

Figure 5.13.  Effects of Diesel Fraction over Penetration at Injection Pressure of 700 bar 

and Ambient Temperature of 300 K and 900 K 
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CHAPTER 6 

 

CONCLUSION 

 

 This study has investigated a numerical way of estimating the spray penetration 

value in a compression ignition engine using water emulsified diesel fuel as well as neat 

diesel. Our estimations are obtained using ANFIS tools of Matlab benefitting from two 

different studies from literature which are: 

 

• “Optical characterization of Diesel and water emulsion fuel injection sprays using 

shawdography” by Emberson et al. (2016). 

• “Study on the spray and combustion characteristics of water–emulsified diesel” 

by Huo et al. (2014). 

 

 The analysis of results indicates several important conclusions for the use of the 

software tool. 

 First, ANFIS models provide an accurate estimate of penetration as the forecasted 

values of models fit quite well to the actual data. Comparing to curve fitting or other 

mathematical tools, ANFIS shows some crucial advantages such as that ANFIS can 

generate different calculations depending on membership functions, rule numbers and 

epoch number while the other tools can only create one result per dataset. Additionally, 

ANFIS can tolerate more the deviated data points with its training capability while such 

data remarkably affect estimations in curve fitting.  

 Second, the membership functions of “trimf” and “gaussmf” outperforms the 

other membership functions during the study producing less RMSE. The rule number in 

accordance with variety of inputs also creates more accurate results. 

 Third, ANFIS models are quite robust to reach interpolated values of actual data. 

On the other hand, the extrapolated results of the ANFIS models are not satisfactory. 

 Finally, the most important lesson we get from our analysis is that ANFIS with 

true modelling structure can be useful to reach highly accurate results as well as 

generating outputs combining the datasets of different experiments relevantly without the 

need of repeating experiments. 
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 The study above with ANFIS models has shown that the emulsion increases liquid 

penetration especially with 10% water in diesel emulsions likewise injection pressure. 

 Ambient temperature on the other hand decreases liquid penetration in general. 

With respect to the ambient temperature of 300 K, the liquid penetration is halved in 900 

K and it reduces to its quarter in 1200 K.   

 For further study, the current studies having a larger number of data and range of 

data can be investigated for the comparison of spray behaviours in which data set may 

create more accurate results comparatively. 
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