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ABSTRACT 

 
KINEMATIC DESIGN AND ANALYSIS OF DEPLOYABLE VAULT 

AND PSEUDO-DOME STRUCTURES BASED ON ORIGAMI 
TECHNIQUES 

 
In recent years a need for more adaptable and flexible structures have been 

observed due to the changing spatial and functional needs.  One of the solutions for an 

adaptable space in architecture is deployable structures. These kinds of structures 

provide flexible solutions to the functional and spatial necessities of an environment.  

There are different kinds of deployable structures such as bar and foldable plate 

structures, membrane, inflatable, cable/strut etc. 

This study presents a method of designing a pseudo-dome flat-foldable and 

deployable plate structure (rigid origami) based on origami patterns that have a polar 

rotation deployment axis. To achieve this objective, first a method of designing flat-

foldable and linearly deployed barrel vault structures have been created by analyzing 

their geometrical properties. This analysis along with a workspace analysis provided 

knowledge on the geometrical relations between the cross-sections and deployment 

parameters. These relations allowed the design of a flat-foldable rigid origami structure 

based on the geometry of the cross-section using a pattern-generator. 

The method of using a pattern-generator to create an origami pattern has been 

modified to achieve a polar rotated deployable pseudo-dome structure. The design 

method allows the designer to calculate all the relevant parameters to create an origami 

structure by modifying three parameters for barrel vault foldable structures and two 

parameters for pseudo-dome structures. The created origami pattern is then transformed 

to a foldable deployable plate structure with the intended design requirements. The 

design processes for both design methods have been explained with case studies. 
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ÖZET 

 
ORİGAMİ TEKNİKLERİ TEMEL ALINARAK AÇILIR KAPANIR 

TONOZ VE KUBBEMSİ STRÜKTÜRLERİN KİNEMATİK TASARIMI 
VE ANALİZİ 

 

Son yıllarda mimarlık alanında değişim gösteren mekânsal ve fonksiyonel 

gereklilikler, esnek ve uyarlanabilen strüktürlere ihtiyaç duyulmasına neden olmuştur. 

Mimarlıkta uyarlanabilir mekânlara çözümlerden bir tanesi açılır-kapanır (katlanabilir) 

strüktürlerdir. Bu tür strüktürler çevre nedeni ile ihtiyaç duyulan fonksiyonel ve 

mekânsal gereksinimlere esnek çözümler sunmaktadır. Açılır-kapanır strüktürler çubuk 

veya plakalardan oluşabilmektedir.  

Bu çalışma merkezi dönme ekseni etrafında açılan, yassı-katlanan (flat-foldable) 

açılır kapanır düzlemsel -rijit origami- bir kubbemsi strüktür için bir tasarım yöntemi 

sunmaktadır.  Bu amaca ulaşmak için önce çizgisel eksen ile açılan, yassı-katlanan açılır 

kapanır düzlemsel beşik tonoz strüktürlerin geometrik özellikleri incelenmiştir. Bu 

analiz ve çalışma alanı analizleri sayesinde strüktürün arakesit ve açılma parametreleri 

arasındaki bağıntılar ortaya çıkmıştır. Bu bağıntılar, arakesit geometrisi temel alınarak 

oluşturulan örüntü-üretici (pattern-generator)  kullanılarak yassı-katlanan rijit origami 

strüktürlerin tasarımını sağlamıştır. 

Origami örüntüsü yaratmak için kullanılan örüntü-üretici yöntemi merkezi 

açılım dönme ekseni oluşması için geliştirilmiştir.  Tasarım yöntemi tasarımcının beşik 

tonoz strüktürler için üç, kubbemsi strüktürler için ise iki parametreyi değiştirerek 

origami örüntüsünü oluşturmak için gerekli tüm parametrelerin hesaplanmasını 

sağlamaktadır.  Belirlenmiş parametreler tarafından oluşturulan origami örüntüsü, 

uygulamanın gereklilikleri doğrultusunda açılır-kapanır plaka strüktüre 

dönüştürülmektedir. Çalışmanın sonunda her iki yöntemin tasarım süreci birer örnek 

inceleme ile sunulmaktadır.  
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CHAPTER 1 

 

INTRODUCTION 

 
Origami is a Japanese word which means “folding paper”. Paper folding is an 

ancient art, which is believed to have developed simultaneously in eastern and western 

civilizations (Hatori, 2011; Lister, 2005b).  The art of paper folding has evolved rapidly 

starting from the end of 19th century. Today origami is not only a primarily field of art, but 

also a topic in research of mathematics, engineering and architecture (Fei & Sujan, 2013).  

In the field of engineering and architecture the application of origami’s 

geometrical properties are studied under two main topics: folded plate structures and 

deployable structures. Folded plate structures have the static advantage created by the 

geometrical principle of the origami pattern allowing its application with different 

construction materials like timber and steel (Buri & Weinand, 2008).   

In recent years; the need for a more flexible space organization has risen in 

architecture, leading to researches in the field of kinetic architecture. The kinetic 

properties (developability and flat-foldability) of certain origami patterns allow the 

design of a multitude of different deployable structures. There are different kinds of 

deployable structures within the field of kinetic architecture which use origami 

principles; the most studied kinds are bar structures created with scissor mechanisms 

and textiles allowing structures to be light weighted, deployable and transportable 

(Thrall & Quaglia, 2014; De Temmerman et al, 2007b). There are also foldable plate 

structures, called rigid origami (Tachi, 2009b), created with rigid materials allowing the 

structure to still be deployable and transportable but also more resistant and durable. 

The use of an origami principle is different for both types of structures: the bar 

structures uses the crease lines as bars and the vertexes as the joints of the mechanism, 

while the rigid origami structures uses the crease lines as joints and the polygons as 

rigid material to create the mechanism.  

This research proposes a novel design method for a pseudo-dome deployable, 

developable and flat-foldable structure based on the geometrical principles of an 

origami pattern. In this study, first, the Yoshimura pattern, also named diamond pattern, 

is geometrically analyzed to determine the parameters required to design a barrel vault 



2 
 

deployable rigid origami structure with different arch types as cross-sections. Then a 

geometrical method to create a pseudo-dome structure has been demonstrated based on 

the study conducted on the barrel vault rigid origami structures. Furthermore the 

mobility calculations, for both barrel vault and pseudo-dome rigid origami structures, 

are provided to give insight to the deployability of the structure.  

The results of this study allows the designer to manipulate the parameters 

according to the needs of the designed space for both the barrel vault structures and 

pseudo-dome structures. 

 

1.1. Aim and Scope of the Research 

 
Many different rigid origami designs have been proposed based on different 

origami patterns, like Miura-ori, Yoshimura, and Waterbomb patterns. Many of these 

researches are concentrated on the linearly deployed, single curvature structures, like 

barrel vaults and tubular structures. Few studies are conducted on structures with double 

curvature that deploy radially, like domes.  One of the reasons for this is the complexity 

of designing a pattern that allows both flat-foldability and developability.  

The aim of this research is to propose a novel method of designing pseudo-dome 

rigid origami structures that is flat-foldable and developable and also provide insight on 

the movement during the deployment process and the mobility of the created pattern. To 

achieve this objective an analysis of barrel vaults with different cross-sections will be 

conducted which shares similarities with dome structures. The design process starts by 

the choice of suitable geometrical parameters, follows by a workspace analysis, and end 

with a mobility analysis to understand the kinematics of the created pattern. 

A brief history and classification of origami is also presented to be able to 

understand and determine which types of patterns are used in this research. A review is 

presented on the previous studies about origami inspired deployable structures, 

alongside the theorems and principles used in the design of these structures.  

 

1.2. Outline of the Thesis 

 
The second chapter begins with a presentation of the history of origami starting 

from eastern origins to the present applications of this art, then follows a classification 
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of origami types, created by the author, to identify the types of patterns that will be used 

within the context of this research. The origami terminology and the mathematic 

theorems about folding are given. The chapter ends with a review about general origami 

applications where origami inspired applications, deployable structures, fold types, 

pattern creation methods, patterns used in the research fields, and mechanisms are 

presented. 

The third chapter is divided into two sections: single centered and double 

centered barrel vaults. Single centered barrel vaults have semicircle and horseshoe 

arches as cross-sections, double centered barrel vaults have pointed equilateral, pointed 

obtuse and lancet arches. For both section a method of designing a MV-Pattern is 

presented under the geometrical properties title, where geometrical properties and the 

relations between parameters are explained. It is followed by the workspace analysis 

where the properties of the deployable structure, like the span, height, and volume, are 

put in relation with other parameters. Each section end with a mobility analysis that 

provide insight to the kinematics of the pattern created.     

The fourth chapter presents a novel method of creating a flat-foldable 

developable pseudo-dome rigid origami deployable structure. A segmentation method is 

presented in the first section allowing the design of the MV-Pattern. It is followed by a 

geometrical analysis which explains each step of the design of the pattern and the 

relation between the parameters. The chapter continues with a workspace analysis 

where the structure’s motion is analyzed during its folding process. Analysis reveals the 

relation between the parameters and the structure’s properties. This chapter ends with a 

mobility analysis allowing to understand the changes of kinematic properties when the 

design parameters changes.  

The fifth chapter presents two case studies where the design steps for specific 

emplacements are presented. The first case study is the design of a barrel vault rigid 

origami structure over an archeological site, which will provide cover when needed. The 

second case study is the design of a semi-pseudo-dome rigid origami structure to be 

used as a concert enclosure.  

The sixth chapter concludes the study by discussing the possible further studies 

and an evaluation of the proposed method.      
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CHAPTER 2 

 

REVIEW OF PREVIOUS WORKS 

 
This chapter presents the history of origami, a classification of types of origami 

and a section about the terminology and theorems about folding. It is followed by 

origami application section where a review is given about deployable structures, rigid 

origami, a general presentation of most used origami patterns in this field, and a brief 

review on studies on the mechanism of rigid origami structures.  

 

2.1. History of Origami  

 
The word “origami” is a Japanese word composed of two different roots, the verb 

“Oru” (折る) which means “to fold” and “kami” (紙) which means “paper”. There are 

different views about the origins of origami, some believe that its “invention” coincides 

with the invention of paper in 105 A.D. in China by an officer of the imperial court T’sai 

Lun, while others believe that it originates in the Heian period (794-185) in Japan. But 

there are also different views about the invention of the origami’s medium: paper. Hatori 

argues that the invention of paper (bark paper) dates back to 5000 B.C. to Meso-America, 

Hawaii and Southeast Asia (Hatori, History of Origami in the East and West before 

Interfusion, 2011).The papyrus paper which is believed to have been invented around 

3000 B.C., is also a kind of paper used by ancient Egyptians (Lister, 2005a). To be able to 

determine the origins of the creation of paper a precise definition of it is required.   

However, it is known that the knowledge of paper making travelled from China 

to Japan in 610 A.D. via Korea thanks to a Buddhist monk. Chinese traders transmitted 

the knowledge to Central Asia. In 751 A.D. Arabs occupying Samarkand took Chinese 

paper makers as hostages and learned the craft (Smith, 2005). Paper making was 

introduced to Egypt during the 10th century and from there it spreaded to Spain in the 

12th century and to Italy during the 13th century (Smith, 2005).  

As mentioned before the origins of paper folding are ambiguous, some attribute 

it to Chinese funerary art (Kenneway, 1987; Smith, 2005) where papers were folded to 

replicate the objects that should have been buried with people. This Chinese tradition of 
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replacing paper folded objects with real ones emerged from the increasing grave 

robbing theft (Kenneway, 1987). Others attribute the origin of origami to Japanese 

ceremonial wrappers (Hatori, History of Origami in the East and West before 

Interfusion, 2011), and finally some others to ancient Egypt map folding of papyrus 

paper (Lister, 2005a). David Lister believes that the most ancient example of paper 

folding dates from around 1150 B.C., an old Egyptian map found in the Nubian Desert 

which has a folding style resembling today’s road maps (Lister, 2005a).  

It is believed that the art of folding paper emerged simultaneously in the West and 

East. There are contradictory views about in which period, origami emerged in Japan. 

Some believe that folding started right after the introduction of paper in Japan during the 

6th century (Kenneway, 1987). Others believe that folding ceremonial wrappers are part 

of samurai warrior’s etiquette, which goes back to Muramochi period (1333-1573) 

(Hatori, History of Origami in the East and West before Interfusion, 2011). And there are 

also those believing that origami originates from the Heian period (794–1185) based on 

an anecdote from Abe no Seimei (Hatori, History of Origami in the East and West before 

Interfusion, 2011). Whether folding paper started during the Edo period or Muramochi 

period one thing is an accepted knowledge: the first origami examples had a ceremonial 

purpose. “Ocho Mecho” which are wrappers for sake bottles representing male and 

female butterflies, and “Noshi” which are ornaments attached to gifts, are examples of 

ceremonial origami which also had a religious purpose (Figure 2.1). 

 

 
 

Figure 2.1. Mecho (female, left) and Ocho (male, middle) (Source: Origami resource 
center (n.d.). Noshi (right) (Source: Abranera (2012). 

 

It is believed that there existed also an “utilitarian paper folding” between the 

ceremonial folds and recreational paper folding (Lister, 2005b). “Tato” which is a small 

paper container and paper “medicine balls” are examples to this style of origami (Lister, 

2005b). By the Edo period (1603–1868), the paper folding had become recreational as 
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well as ceremonial. It was a part of the Japanese oral culture transmitted from mother to 

daughter (Kenneway, 1987). Sadatake Ise detailed thirteen different wrapping methods, 

ceremonial origami models, in his book “Tsutsumi-no Ki” published in 1764 (Smith, 

2005). The first written instructions, for recreational purposes, appeared in Akisato 

Rito’s “Sembazuru Orikata” (thousand crane folding) in 1797 (Smith, 2005; Lister, 

2005b) (Figure 2.2). During the same year another book “Chushingura Oritaka” 

appeared. According to Lister these two books represent a division between two 

different types of origami, one is for adults with complex models requiring cutting, the 

other for children with almost no cutting (Lister, 2005b). 

 

 

 
Figure 2.2. Page from Sembazuru Orikata. 

(Source: Sembazuru Orikata, 1797) 
 

Another book appeared in 1801 titled “Toryu Orikatachi Taizen” (Encyclopedia 

of Contemporary Origami) written by Hokyu Ogani (Smith, 2005). A more broad 

compilation was published in 1845 by Adachi Kazuyuki titled “Kayara-gusa” (Hatori, 

History of Origami in the East and West before Interfusion, 2011). 
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In western civilizations at the beginning, as in Japan, origami was used for 

religious purposes: baptismal certificates are examples of ceremonial origami from 17th 

and 18th centuries (Hatori, History of Origami in the East and West before Interfusion, 

2011). In the play “the Duchess of Malfi” by Webster there is evidence of the origami 

model of paper fly-trap known today as “water bomb” (Lister, 2005b).  During the 19th 

century the recreational origami model known in Spanish as “pajarita” and “cocotte” in 

French appeared (Lister, 2005b), it can also be considered as a typical model of western 

origami (Hatori, History of Origami in the East and West before Interfusion, 2011) 

(Figure 2.3).  

 

 

 
Figure 2.3.  European traditional origami models (starting from left top corner; pig, 

house, sofa, waterbomb (balloon), paper plane (arrow), salt cellar, pajarita 
or cocotte, and windmill (Source: Hatori, 2011, p. 7). 

 

Around the middle of 19th century, the founder of the first modern kindergarten, 

Friedrich Wilhelm August Froebel, introduced origami as an “occupation” to his 

educational system (Hatori, History of Origami in the East and West before Interfusion, 

2011). This educational system introduced three different foldings, the first, “Folds of 

Truth” is a way of teaching mathematics, the second “Folds of Life” is a recreational 

folding of objects, and animals, the third “Folds of Beauty” is a decorative patterns 

(Lister, 1998). 

The analysis of the Japanese and European origami models shows an important 

difference between the crease patterns: while Japanese models’ crease patterns have 

arbitrary angles, European models use square grids (Hatori, History of Origami in the 

East and West before Interfusion, 2011; Lister, 2005b). Based on these differences, both 

Hatori (Hatori, History of Origami in the East and West before Interfusion, 2011) and 
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Lister (Lister, 2005b) believe that origami developed independently in Eastern and 

Western civilizations. 

With the end of the self-imposed isolation around the end of the 19th century 

(1870) Japanese conjurers travelled around to world bringing traditional Japanese 

origami models with them (Lister, 2005b). Around the same time Froebel’s 

kindergarten educational system was introduced to Japan which led to the blending of 

the two different folding styles (Lister, 1998).  

Starting from the creation of paper till around 1950, there was a handful of 

designs of origami figurines because it was mostly an oral tradition. In 1955 the 

exhibition of paper folding in Amsterdam by Akira Yoshizawa marks the “beginning of 

modern origami” (Lister, 2005c). Around the same time Yoshizawa also created a set of 

simple symbols - diagrams - that “transcends language boundaries” (Lang, 2003, p. 4), 

allowing the worldwide spread of the art. Slowly origami societies started to open 

around the world the first one being the Origami Center in New York in 1958 by Lillian 

Oppenheimer (Lister, 2005b). According to Lister, Oppenheimer named the paper 

folding art as “origami” to differentiate it from paper craft (Lister, n.d.). 

During the last sixty years, origami developed rapidly and, with the help of new 

computer based design methods, figurines became more complex and realistic. The art of 

paper folding became more than figurine design; today alongside new classical origami 

models we can observe new geometrical types, like modular origami, tessellation and 

Golden Venture Folding (3D origami), which is presumed to be an ancient type of paper 

folding from China. But the principles behind the paper folding art intrigued scientists, 

primarily the mathematicians, which led to a second field occupied with origami. Today 

we can not only see different type of artistic origami but also different applications of the 

folding principals in both the fields of architecture and engineering (rigid origami, 

foldable structures), and biomedical research (origami stent) (Fei & Sujan, 2013). 

 

2.2. Origami Classification 

 
It is difficult to classify all the existing types of origami firstly because it is 

difficult to access to all origami models made around the world and secondly, it is an art 

form which has developed rapidly in recent years and has become a focal point for 

mathematicians, engineers, and architects as well as for many other science fields.  
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According to Lee and Leounis (Lee & Leounis, 2011), origami can be classified 

under four main types: (1) traditional origami, (2) corrugations, (3) tessellation, and (4) 

modular (Table 2.2). Figurative models like the crane are under the title of traditional 

origami while models with geometric pattern are under the corrugation title. The third 

type, tessellation, is divided in to as 2D and 3D tessellations. The final type, modular 

origami, is origami models created by using multiple modules. 

 

Table 2.2. Origami Classifications and architectural speculation by Lee and Leounis. 
(Source: Lee & Leounis, 2011) 

 

 

 

In the third classification Chorna, from the point of view of art history, tried to 

analyze different styles and types, to determine different criteria to be able to classify 

origami models, and according to the criteria detected, to be able to establish origami as 

an art (Table 2.3) (Chorna, 2012). 

Chorna defines ten different types of origami: conventional origami, plastic 

origami, origami tessellations, pleat origami, Tachi’s origami (3D Origami), origami 

corrugations, curvilinear origami, crumpling origami, synthesized origami and modular 

origami. She subdivides origami tessellation and modular origami into two-dimensional 

and three-dimensional tessellations and homomodular and heteromodular respectively 

(Chorna, 2012). She also categorizes them according to their genres - animalistic, 

portrait, still life, teratological, geometrical and other -, to their content and function - 

applied, easel and monumental -, to their spacing - open or closed -, to their historical 
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features - whether the author is known or unknown -, and finally as an analogy to 

miniature (Chorna, 2012).  

 

Table 2.3: Systematization attempt of origami art by Chorna.  
(Source: Chorna, 2012) 

 

 

 

In this new attempt of classification, the four main types by Lee and Leounis  

(Lee & Leounis, 2011) are used but they are subdivided into categories based on their 

folding technique - folding and wet folding - for traditional origami, or based on their 

final form - two-dimensional or three-dimensional - for origami tessellation, and 

corrugations. And modular origami is subdivided based on the modules - homomodular 

and heteromodular - used in the creation of the model. 

The properties of four different types of origami can be classified under three main 

titles: sheet number, patterns, and movement. Origami models can be differentiated by the 

number of sheets they are using while creating a model; the sheet number property under 

this definition can be subdivided into single sheet and multiple sheet usage (Table 2.4). As 
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it has been pointed out by Lister in his study of origami history, there are different kinds of 

crease patterns used (Lister, 2005b). Crease patterns are the second property suggested for 

this classification which is subdivided as geometric patterns and grid patterns. A 

generalization has been made under the title of geometric patterns, which classifies patterns 

with mixed patterns - grid and radial together - under this title. Some are central while 

others have multiple central dispersions. The grid patterns are then subdivided into 

tessellation patterns and corrugation patterns. The last property is movement which 

differentiates whether the origami model is designed to be static or kinetic.  

Animal, plant and human figurine origami models alongside utilitarian ones, like 

containers, are placed under the title of traditional origami. A volumetric division has 

not been proposed for traditional origami but it should be pointed out that some are two-

dimensional, which means they are flat-folded, while others are three dimensional 

models, like containers. The difference between the subcategories of folding and wet 

folding lies in the ‘how’ the paper is used, and ‘how’ it is folded to achieve the final 

model. Folding refers to the models folded with sharp edges while wet folding refers to 

curved/smooth edge folding which is achieved by moistening the paper before starting 

the folding process. The wet folding technique has been developed by Akira Yoshizawa 

(Lister, 2005c). The unwritten rule of pure origami defines that the model has to be 

achieved only by folding, using glue or cutting paper are inacceptable. In traditional 

origami, most of the models are pure origami thus they are created using of a single 

paper. There are other figurine models where we can see the use of two or three pieces 

of paper in the creation. Most of the crease patterns have radial properties, but as 

indicated before, it is not possible to locate and categorize all the existing origami 

models.  Some traditional models like the flapping bird or seller origami models, 

designed as toys or entertainment purpose, are kinetic models. The world known 

traditional crane model or the pajarita models are static origami models.   

“Origami tessellations are geometric designs folded from a single sheet of paper, 

creating a repeating pattern of shapes from folded pleats and twists.” (Gjerde, 2009). 

Tessellation can also be described as a tilling of a surface using one or more polygons 

with no overlaps or gaps between them. There are two types of origami tessellations: the 

first one is the two-dimensional ones where the pattern is created by folding, twisting 

and locking the paper, which make the model a static one, and the second type is the 

three-dimensional ones where the paper is folded and twisted but not locked. Models 

like Reschs’s pattern (Tachi, 2013), and Huffman’s patterns (Davis et al., 2013) are 
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example to three-dimensional tessellations, where the models expands  and  retracts  

when force is  applied. Two-dimensional tessellations’ final states are flat surfaces but 

the three-dimensional tessellations have thickness in all three directions. Thus it can be 

said that in this subdivision the models do not create volume but are different in being 

planar or non-planar surfaces.  This volumetric subdivision can also be noticed in the 

classification by (Chorna, 2012). The patterns for both types of tessellations, are 

tessellation patterns under the grid pattern category. In both types regular and irregular 

tessellation patterns can be observed.  

On the other hand, modular origami is subdivided into two parts: homomodular 

and heteromodular (Chorna, 2012). Homodular origami models are composed of a 

single unit folded the same way, while heteromodular origamis are composed of 

different units folded differently. Both homomodular and heteromodular are subdivided 

according to their volumetric properties. The three-dimensional homomodular origamis 

are again subdivided into polyhedral and 3D origami, the later one being a Chinese 

folding technique of a single triangular module, also known as Golden Venture Folding. 

As the name suggests, the final model of all the models under this category use multiple 

number of sheets. Two-dimensional homomodular origami models are created when 

multiple planar modules are interlocked to create a surface, like origami quilts. 

Polyhedra created by multiple modules fell under the three-dimensional homomodular 

or heteromodular origami models depending on the module used. In the book “Modular 

Origami Polyhedra”, there are examples of the creation of polyhedrons using 

homomodules, like a 30-module dodecahedron (Simon, Arnstein, & Gurkewitz, 1999). 

Patterns of this type of origami models fell under radial patterns, but it should be 

pointed out that, especially for polyhedra creations, modules are geometrically created 

to form, when interlocked, a specific angle required for the vertex or edge of the 

polyhedron. There are few examples of kinetic modular origami; flexibola and curlicue, 

both can be seen in Table 2.4. 

“Origami Corrugation” is a technique of alternating mountain and valley folds in 

an arrangement that allows movement in a folded model” (Lee & Leounis, 2011). 

Corrugations are also subdivided into two volumetric properties. The two-dimensional 

origami models in this type have thickness in z-direction - Miura-ori pattern - but do not 

create a volume, while the three-dimensional corrugated origami models – Yoshimura 

pattern - final state creates volumes.  
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Table 2.4. Origami Classification done by the author. 
(Sources: Wet folding, Dreamer (Dinh, n.d.), Christmas tree (Guarnieri, 2010), all other 

are folded by author.) 
 

 

 

There are various models of origami making difficult to create a classification 

but patterns used in this study need to be placed within this vast universe of origami. 

Corrugated origami with three-dimensional properties are patterns used in this study to 

create foldable and deployable structures.  
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2.3. Origami Terminology 

 
Starting from the medium of origami, the paper is defined as a flat surface; it is 

the initial state before starting the folding process. The next step is to fold the crease 

which can be defined as a line segment (Demaine & O'Rourke, 2007) or a trace left after 

the paper is folded and unfolded. There are two different ways to create a crease 

mountain fold and valley fold (Figure 2.4) which “can be considered as dual to each 

other” (Dureisseix, 2012). Generally the mountain fold is represented by dash-dot-dash 

line while valley fold is represented as a dashed line (Lang, 2004). But origami 

designers have their own system of representing the types of folds which is generally 

explained in their books.            

Origami models vary from one-fold models (Jackson, 2011) to complex models 

composed of multiple creases. Crease pattern [CP] is the network of creases on the 

surface of the paper. The designation of which creases will be mountain fold or valley 

fold is called mountain-valley assignment [MV-assignment] and when CP and MV-

assignment are represented together the network of the creases became a mountain-

valley pattern [MV-Pattern] (Demaine & O'Rourke, 2007). Some creases are created to 

be used as references for other creases, these reference creases are left as solid lines in 

the MV-Pattern of the origami model. For example, the diagonal drawn from the right 

top corner to the left bottom corner on the MV-Pattern of the traditional crane (Figure 

2.5b) is a reference crease.  

 

 
 

Figure 2.4. Mountain and Valley folds – drawn by the author. 
 

Mountain Fold 

Valley Fold 

Valley Fold 
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together is called a 4-edge vertex (Buri H. , Origami - Folded Plate Structures, 2010) or 

a degree-4 vertex (Weisstein). In this study the annotation to precise the type of vertexes 

will be 𝒗𝒌 and read as degree-k vertex, where k is the number of edges coming together 

to form the vertex; thus a degree-4 vertex will be annotated as 𝒗𝟒and a degree-6vertex 

as 𝒗𝟔. 

Flat-foldable is a model that can be folded flat on the ground without adding 

new creases, in other words the final folded state of the model can be put between the 

pages of a closed book. The question of flat-foldability is studied under two angles: the 

first is the local flat-foldability, LF-F, which regards the flat-foldability of a single 

vertex on a MV-Pattern. The second is the global flat-foldability, GF-F, which considers 

the flat-foldability of the whole model. While there are theorems like the Kawasaki-

Justin theorem or the Maekawa theorem for local flat-foldability, the question of global 

flat-foldability is still unsolved (Demaine & O'Rourke, 2007, p. 170; Hull T. , 2002).  

In the field of engineering and architecture the term developable surface refers 

to a surface which can be open completely to a flat surface. And the term non-

developable surface means that when the structure is completely unfolded the surface is 

not flat (Gattas & You, 2013; Gioia, Dureisseix, Motro, & Maurin, Design and Analysis 

of a Foldable/Unfoldable Corrugated Architectural Curved Envelop, 2012). In the same 

fields of study the word rigid-origami (Tachi, 2010b) is used as reference to origami 

inspired structures created by plates with thickness (Tachi, 2011). Most of the 

engineering or/and architectural studies on this subject assume the deployable structure 

uses perfect hinges, while the thickness of the plates is neglected (Gattas & You, 2013; 

Gioia, Dureisseix, Motro, & Maurin, Design and Analysis of a Foldable/Unfoldable 

Corrugated Architectural Curved Envelop, 2012). 

 

2.4. Origami Theorems 

 
There are different theorems on origami. The first one is Huzita-Justin axioms 

which define how lines can be drawn using points and lines. The other theorems 

presented in this section are on the flat-foldability conditions of single vertexes, LF-F, 

of patterns and guidelines that can be used to create a globally foldable, GF-F MV-

Pattern. 
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2.4.1. Huzita-Justin Axioms  

 
Huzita’s axioms “describes a set of six basic ways of defining a single fold by 

aligning various combinations of existing points, lines, and the fold line itself” (Lang, 

2003b).  

The seventh axiom was described by Hatori (Alperin & Lang, 2009), but later it 

has been found that all the seven axioms had already been presented by Jacque Justin in 

1989. That is the reason of the name Huzita-Justin axioms (Lang, 2003b; Alperin & 

Lang, 2009). These axioms describe how to create a crease by the combination of points 

and lines (Figure 2.7).  

 

 
 
Figure 2.7. Huzita-Justin Axioms drawn by the author based on representation from 

Alperin and Lang. (Source: (Alperin and Lang, 2009)) 
 

2.4.2. Flat Foldability 

 
As explained before, a model is flat-foldable when its final folded state is flat. 

LF-F is the flat-foldability condition of a single vertex on the surface of a CP while the 

GF-F is the general flat-foldability condition of the CP. There are two theorems 

regarding the LF-F and two methods/guidelines to achieve a GF-F model.  
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Local Flat-Foldability, LF-F 

There are two theorems on LF-F: the Maekawa theorem, the Kawasaki-Justin 

theorem. Both are explained and described in the analysis of the central vertex of the 

crane’s MV-Pattern, which is a flat-folded pattern. 

 

Maekawa’s Theorem 

The theorem is based on the number of mountain folds and valley folds 

connected to a single vertex. The value of the subtraction of number of mountain folds 

and valley folds should be absolute 2 for the vertex to be flat-foldable (eq. (2.1)). For 

this condition to be satisfied the number of crease lines that are connecting to the vertex 

needs to be of an even number (Mitani, 2011). 

 

 |𝑀 − 𝑉| = 2      (2.1) 
 

When the central vertex of the traditional crane pattern (Figure 2.8a) is analyzed 

and eq. (2.1) is applied, it is proven that the degree-6 vertex is flat-foldable. L are the 

lines connected to the vertex and the M or V denotes whether the line is mountain or 

valley fold. L1 and L4 are mountain folds and L2, L3, L5, and L6 are valley folds 

(Figure 2.8b).  

 

 |2 − 4| = 2   (2.2) 

 

Kawasaki-Justin Theorem 

Kawasaki-Justin theorem approach is based on the value of the angles 

surrounding a single vertex. For a vertex to be flat-foldable the sum of alternating 

angles has to be 180° (Figure 2.9). But there are some crease patterns where each 

vertex are flat-foldable based on this equation that do not fold flat globally, some 

examples of these type of patterns will be analyzed in the section about GF-F. 

 

𝛼1 +  𝛼3 +  𝛼5 + ⋯ + 𝛼2𝑛 −  1 = 𝛼2 + 𝛼4 +  𝛼6 + ⋯ +   𝛼2𝑛 =  180°  (2.3) 
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Figure 2.8. (a) traditional crane MV-Pattern, (b) closer view of the central vertex of the 
traditional crane - drawn by the author.  

 

The central vertex of a traditional crane MV-Pattern is again used to test the 

theorem (Figure 2.8). The central vertex is flat-foldable based on both Maekawa and 

Kawasaki-Justin theorems. 

 

 𝛼1= 45°   𝛼2= 45°   𝛼3= 90° (2.4) 

 𝛼4= 45°   𝛼5= 45°   𝛼6= 90° (2.5) 

  45° +  90° +  45° =  45° + 45° +  90° =  180°. (2.6) 

 

From this, it can be assumed that all sector angles sum to 360° (2𝜋) which can 

also be defined as the developability condition (Gioia et al., 2012). If the sum of all the 

angles surrounding a vertex is more or less than 360° then that model is non-

developable because it cannot open flat without a gap or overlap.  

 

Global Flat-Foldability 

As described before, a flat-foldable model is when the final folded state can be 

closed (neglecting the thickness of the paper) flat without adding new creases or cuts. If 

the final model is flat then the CP is globally flat-foldable. The conditions for GF-F 

have not been mathematically described yet (Hull T. , 2002; Demaine & O'Rourke, 

2007, p. 170). There are CPs and MV-Patterns that satisfy Kawasaki-Justin and 
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Maekawa theorems but are not globally flat-foldable (Hull T. , 2002). Figure 2.9 

presents two different CPs that satisfy the LF-F condition but do not satisfy the global 

flat-foldability because, when patterns are folded, the surfaces cross each other creating 

an obstacle to accomplish the folding motion. Both CP’s vertexes are analyzed and 

calculated according to local flat-foldability theorems. 

 

 
 

Figure 2.9. (a) CP-1 (b) CP-2. Both CPs are not globally flat-foldable. 
(Source: Hull, 2002) 

 

The first analysis has been conducted on the CP-1 of Figure 2.9. First, each 

vertex is calculated according to both Maekawa theorem and Kawasaki-Justin Theorem 

to verify the local flat-foldability condition (Figure 2.10). 

Maekawa Theorem: for a vertex to be flat-foldable, the value of the subtraction 

of mountain folds and valley folds should be ±2 as stated in eq. (2.1) (Figure 2.10a). All 

vertex equations satisfy the condition of Maekawa theorem but when the model is 

folded it can be observed that the paper does not fold flat because the surfaces cross 

each other.  

 

Vertex a : 3M - 1V = 2                                             (2.7) 

Vertex b : 3M - 1V = 2                                             (2.8) 

Vertex c : 3M - 1V = 2                                             (2.9) 
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Figure 2.10.  CP-1 – (a) MV-assignment done for the purpose (b) degree of the angles. 

Dashed dot lines are mountain folds and dashed lines are valley folds – 
redrawn by the author. 

 

Kawasaki-Justin Theorem: for the vertex to be flat-foldable the sum of 

alternating angles has to be 180°, eq. (2.3) (Figure 2.10b). All vertex equations satisfy 

the Kawasaki-Justin condition but again the paper is not flat-foldable.  

 

Vertex a : 120° + 60° =  90° + 90° = 180°                               (2.10) 

Vertex b : 120° + 60° =  90° + 90° = 180°                               (2.11) 

Vertex c : 120° + 60° =  90° + 90° = 180°                               (2.12) 

 

The second analysis has been conducted on CP-2 in Figure 2.9b to verify the 

local flat-foldability of the CP using both LF-F theorems. 

Maekawa Theorem: for a vertex to be flat-foldable the value of the subtraction 

of mountain folds and valley folds should be ±2 as stated in eq. (2.1) (Figure 2.11a). All 

vertex equations satisfy the condition of Maekawa theorem but the model does not fold 

flat. 

 

Vertex a : 3M - 1V = 2                                             (2.13) 

Vertex b : 3M - 1V = 2                                             (2.14) 
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Figure 2.11.  CP-2 - (a) MV-assignment done for the purpose (b) degree of the angles. 
Dashed dot lines are mountain folds and dashed lines are valley folds – 
redrawn by the author. 

 

Kawasaki-Justin Theorem: for the vertex to be flat-foldable the sum of 

alternating angles has to be 180°, eq. (2.3)  (Figure 2.11b). All vertex equations satisfy 

the Kawasaki-Justin condition but again the paper is not flat-foldable.  

 

Vertex a : 135° + 45° =  90° + 90° = 180°                           (2.15) 

Vertex b : 110° + 70° =  90° + 90° = 180°                           (2.16) 

 

Both CPs on Figure 2.9 are locally flat-foldable for each of their vertexes but not 

globally flat-foldable. Even though global flat-foldability has not been stated yet 

mathematically, Schneider (Schneider, 2004) and Mitani (Mitani, 2011) offers methods 

for creating globally flat-foldable CP by satisfying precise conditions. 

Schneider describes the required conditions for flat-foldable crease pattern as 

(Schneider, 2004): 
“1. All crease lines must be straight line segments. 

2. All interior vertices in the crease pattern must be of even degree. 

3. At each interior vertex, the sum of every other angle must be 180° 

4. There must exist a superposition ordering function that does not violate the non-

crossing condition.”  
Schneider’s first condition specifies that all creases should be straight lines, not 

curved, for the model to fold flat. The second and third conditions defines the 

Kawasaki-Justin theorem where alternating angles sum needs to be 180°. The last 
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condition defines a folding order so that the planes do not intersect in any given state of 

the folding, also defined as the noncrossing condition by Justin (Hull T. , 2002, p. 33). 

For the noncrossing condition to be satisfied, a folding sequence and order is required 

so that the folded planes do not intersect with each other. Figure 2.12 illustrates the 

noncrossing condition achieved at the central vertex of the crane MV-Pattern. 

 

 
 

Figure 2.12. Noncrossing condition. Central vertex of the traditional crane MV-
Patternleft, non-crossing representation of the folded central vertex on the 
right - drawn by the author. 

 

Mitani offers a numerical optimization method to design globally flat-foldable 

crease patterns (Mitani, 2011). He offers two conditions, which are Maekawa and 

Kawasaki-Justin theorems, followed by a five step method (Mitani, 2011): 
“Condition 1.1. The number of lines connecting to a single inner vertex is even. 

Condition 1.2. The sums of alternating angles are 180 degrees. 

Step 1. Place vertices on edges and inside a sheet of paper. 

Step 2. Generate lines that connect two vertices. 

Step 3. Adjust the number of lines so that condition 1.1 is satisfied. 

Step 4. Move the positions of the vertices so that condition 1.2 is satisfied. 

Step 5. Validate that the pattern is globally flat foldable.” 
These conditions allow the creation of a globally flat-foldable origami CP where, 

the MV-Pattern still needs to be folded physically or digitally to control the GF-F. 

Because it is not mathematically proven after the creation of the CP and the MV-

Assignment has been done based on the theorems explained above.  
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2.5. Origami Applications 

 
Origami is still an art form growing rapidly and in the last decade a rise in the 

use of its principles has been observed in various fields of study due to the advances on 

computer sciences which transformed origami into a science subject. Origami principles 

have been used in industrial design to create both foldable and static furniture (Rogers) 

and also to create packages with both functional and/or decorative purposes. Examples 

of origami principles can also be found in fashion industries using cloth or textile (De 

Ruysser, 2014; Dureisseix, 2012).  

Origami principles can be found in many forms from the smallest scale as a stent 

graph (Kuribayashi et al., 2006) in biomedical disciplines to a larger scale structure. In 

space applications, origami principles can be found in form of a lunar base, solar panels, 

and foldable telescopic lens (Fei & Sujan, 2013; Dureisseix, 2012; Gruber et al., 2007). 

In robotics, origami can be found as a self-folding structure (Peraza-Hernandez, Hartl, 

Malak Jr, & Lagoudas, 2014; Gray, Zeichner, Yim, & Kumar, 2011) or as oribotis 

which has a commanded folding and unfolding process (Gardiner, 2009). In automotive 

industries, its principles are used to design airbags (Cromvik & Eriksson, 2009).  

Other engineering applications are in material design as a morphing sandwich 

structure (Gattas & You, 2014; Gattas & You, 2015), a sandwich trusscore panels for 

sound insulation (Ishida, Morimura, & Hagiwara, 2014), a sandwich core material 

(Klett & Drechsler, 2011), a metamaterial (cellular materials) which is deployable and 

flat-foldable in two directions and stiff in one direction (Cheung, Tachi, Calisch, & 

Miura, Origami Interleaved Tube Cellular Materials, 2014) . 

 

2.5.1. Origami Structures 

 
Applications and studies are also conducted in the fields of architecture, and 

engineering in correlation with each other. In recent years, architectural needs have 

changed; more flexible forms are required to fit to the new functional needs which can 

be provided by an origami CP generating both structural properties and spatial qualities 

to a space. The form generated by an origami CP produces spatial structures, kinetic or 

static, that can be altered by modifications to the CP, which provides designers with a 

tool to accomplish various spatial forms (Gönenç Sorguç, Hagiwara, & Arslan Selçuk, 
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2009). Searches toward new adaptable forms in architecture led to the creation of 

deployable and kinetic structures using origami principles. According to Schenk, 

structures inspired by origami can be classified under three different types: (1) folded 

plate structure, (2) deployable structures and (3) transformable/kinetic structures 

(Schenk, 2012). 

Folded plate structures are static applications of origami principles and can be 

constructed with different materials like timber, glass alongside concrete and metal 

composite sheets. According to Sekularac et al. folded plate structures can be divided in 

three types based on their load transmission and direction of relying (Figure 2.13): 

linear, radial and spatial folded plate structures (Sekularac, Ivanovic Sekularac, & Ciric 

Tovarovic, 2012). While most seen architectural examples are linear (Figure 2.14) and 

radial folded plate structures (Figure 2.15), a combination of two of these types can also 

be constructed. The Church St. Paulus, Neuss, in Germany is an example of the 

combination of linear and central folded plate structures (Figure 2.14 (c)). 

 

 
 
Figure 2.13. (a) Linear folded plate structures (b) Radial folded plate structure (c) 

Spatial folded plate structure (Source: Sekularac, Ivanovic Sekularac, & 
Ciric Tovarovic, 2012). 

 

Geodesic domes can be considered as spatial folded plate structures even though 

they are generally classified as shell structures. But there are no constructed 

architectural examples of domes created based on origami principles, only research 

examples are available.  Falk et al. presented a form of exploration for folded plate 

domes based on timber where “Using a combination of geometry generation and 

performance optimization, parameters of folds, depth of folds, height of dome and the 

effect of perforations on structural efficiency, interior lighting and acoustics are 

explored” (Falk, Von Buelow, & Khodadadi, 2015) (Figure 2.15(a)). There is another 

ongoing research, an initiative, on origami domes called flexidome, consisting in 
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Transformable and/or kinetic structures are planar applications, like façades, of 

origami principles. Their application can be a foldable/deployable plate façades like Al 

Bahr Towers’ façades (Figure 2.16(a)) and Kiefer Technic Showroom (2.16(b)). 

 

2.5.2. Deployable Structures 

 
Deployable structures utilizing the origami principles can be analyzed under two 

types: the bar structures and foldable plate structures, the latter can also be called rigid 

origami. In rigid bar structures [pin-jointed bar framework] the creases are replaced by bars 

and vertices by joints (Figure 2.17(b)). According to Tachi “Rigid-foldable origami (or 

rigid origami) is a piecewise linear origami that is continuously transformable along its 

folds without deformation by bending or folding of any facet. Therefore, rigid origami can 

realize a deployment mechanism using stiff panels and hinges, which has advantages for 

various engineering purposes, especially for designs of kinetic architecture.” (Tachi, 2011). 

In rigid origami the creases are replaced by hinges and the polygons by a rigid material 

(Figure 2.17(c)). Applications like De Temmerman’s foldable mobile shelter system is an 

example of the bar structures (Figure 2.18 (a)), while Tachi’s rigid origami (Figure 2.18(b)) 

is a foldable plate structure example for deployable architecture. According to Tachi, 

deployable and transformable structures that are rigid-foldable and flat-foldable have the 

following advantages from an architectural point of view. 

 
“1. The existence of a collapsed state enables compact packaging of the structure. 

2. The synchronized complex folding motion produced by constrained rotational hinges 

can be controlled with simple manipulation. 

3. The transformation mechanism that does not rely on the flexibility of materials can be 

made out of thick rigid panels and hinges. 

4. The watertightness of the surface maintained throughout the transformation is 

potentially suitable for the envelope of a space, a partition, and the façade of a building.” 
(Tachi, 2010a) 

 

 
 

Figure 2.17. (a) Origami pattern (b) Bar structure (c) Rigid origami structure 
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Figure 2.18.  (a) De Temmerman’s Foldable Mobile Shelter (Source: De Temmerman et 

al., 2007b) (b) Tachi’s Rigid origami structure  (Source: Tachi, 2010b). 
 

In contrast to folded plate structures, deployable structures, whether they are bar 

or foldable plate structures are generally small scaled applications, like emergency 

shelters (Thrall & Quaglia, 2014) (Figure 2.18(a)) due to the complexity of the 

application. Research conducted on origami-inspired deployable structures are mostly 

based on pure geometry which makes the real life application difficult. The thickness of 

the material is one of the difficulties to consider while designing an origami-inspired 

foldable plate structure. Another difficulty is, as the scale increases, the kinematics and 

the structural behaviors, like load bearing, becomes more complex to calculate and to 

realize. Oricrete (Figure 2.19) is an example that approaches these problems with a 

different perspective. Concrete is cast on a reinforced fabric with spacers placed as 

crease lines of the pattern, once the concrete is hardened the spacers are removed and 

the structure is folded to its shape; once the desired shape is obtained, the fold lines are 

fixed by filling them with epoxy grout (Chudoba, van der Woerd, & Hegger, 2014a; 

Chudoba, van der Woerd, & Hegger, 2014b; Lebée, 2015). This method renders the 

creation of multiple spatial folded plate structures such as barrel vaults and domes. This 

structure type can be called a developable structure till it reaches its intended 3D form, 

and its joints are fixed at which point it has been transformed into a folded plate 

structure. 
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Figure 2.19. Oricrete creation process. 
 (Source: Chudoba R. et al., 2014a) 

 

2.5.2.1. Fold and Pattern Types 

 
There are two basic fold types that can be observed in patterns used in 

architectural and engineering applications. The first is the parallel fold where parallel 

lines are alternated folding of mountain and valley creating an accordion like form 

(Figure 2.20(a)); the second is the reverse fold which is created by reversing the 

direction of a mountain fold to a valley fold by creating a vertex, adding 2 diagonal 

mountain, as in this example (Figure 2.20(b)) or valley fold. According to Buri (Buri, 

2010) the angle β is in close relation with the fold angle δ and the angle α between the 

main fold and the diagonal line. 

At the initial state of the fold, when it is deployed both the fold angle δ and the 

dihedral angle β are equal to 180°. At the final folded state where the fold angle δ is 

equal to 0°, the dihedral angle β is equal to 180° minus 2 times the angle α (eq. (2.17)) 

(Buri & Weinand, 2008). 

 

𝛽 = 180° − 2𝛼                                              (2.17) 
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Figure 2.20. (a) Parallel fold and (b) Reverse fold - redrawn based on Buri. 
(Source: Buri H. , 2010) 

 

This relation between angles is used to create the CP using a generator line - 

generatrix (Buri, 2010). The application of this method can be observed in the study of 

rigid folding structures by Stavric and Wiltsche (Stavric & Wiltsche, Investigations on 

Quadrilaterral Patterns for Rigid Folding Structure, 2013). In this study the curved 

cross-section generatrix controls polygons to approximate the curve’s shape. Then the 

dihedral angle β is calculated for each vertex, and then based on the formula presented 

by Buri, the angles α are calculated (Figure 2.21) (Stavric & Wiltsche, Investigations on 

Quadrilaterral Patterns for Rigid Folding Structure, 2013).  

According to Buri and Weinand using the combination of parallel folds and 

reverse folds patterns like Yoshimura and Miura-ori and patterns can be created (Buri & 

Weinand, 2008).  
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Figure 2.21. Pattern generation by Stavric and Wiltsche. 
(Source:Stavric & Wiltsche, 2013) 

 

Another method of generating patterns has been presented by Jackson (Jackson, 

2011); corrugated patterns can be created by the simple congruence transformations 

[translation, rotation, reflection, glide reflection] (Figure 2.22). A single unit is repeated 

using congruence transformation to create the CP. The design and transformations 

applied define the CP and then the MV-assignment is done, which gives the MV-Pattern. 

Patterns created using the Jackson’s method are developable but some of them may not 

be flat-foldable like the example of rotation (Figure 2.22).However, patterns created 

using Buri’s method can be considered as flat-foldable because they are created by the 

desired cross-section. 
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Figure 2.22. Pattern creation by Jackson. 
(Source: Jackson, 2011) 

 

There are many existing patterns that can be designed by following the 

presented methods, but in engineering and architecture some corrugated patterns are 

used more than others because of their properties.  

Most studied corrugated patterns are: Miura-ori, Yoshimura/Diamond, 

Quadrilateral, Water Bomb, and Ron Resch 3D tessellation patterns. Tessellation can be 

described as a tilling of a surface using one or more polygons with no overlaps or gaps 

between them. According to Lee and Leounis corrugation in origami “is a technique of 

alternating mountain and valley folds in an arrangement that allows movement in a 

folded model” (Lee & Leounis, 2011). 

 

Miura-ori Pattern 

Miura-ori pattern, also called Herringbone pattern (Buri, 2010; Stavric & 

Wiltsche, 2013) (Figure2.23), created by Miura for solar panels, is a flat-foldable 

pattern. It is a quadrilateral pattern where there are 4 crease lines meeting in a vertex 

(degree-4 vertex). Miura-ori pattern - originally called developable double corrugation 

(DDC) - designed by Koryo Miura is one of the most studied and analyzed origami 
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pattern in engineering, architecture and mathematics (Miura, 2009). According to Miura 

the reason behind this intense research on this pattern is the deployability property: 

 
“• It is deployed simultaneously in orthogonal directions and is homogeneous in each 

direction. 

• It possesses a single degree of freedom of motion no matter how large the array. 

• Its deployment and retraction follow the same path.” (Miura, 2009) 

 

 
 
Figure 2.23.  Miura-ori pattern / Herringbone pattern – drawn based on (Source: Miura, 

2009) and folded by the author. 
 

Gattas alternated the pattern using a piecewise geometry method to create derivative 

patterns which allows the construction of different forms (Gattas & You, 2013b). The 

different patterns created by this method can connect with each other to respond to various 

needs in architecture. But some of the derivated patterns created are not developable, they 

do not fully open to become a flat surface (Gattas, Wu, & You, 2013a) . Gioia et al. 

proposed “foldable corrugated meshes” of non-developable foldable /unfoldable surfaces 

based on Miura-ori pattern to create corrugated architectural curved envelops (Gioia et al., 

2012). Tachi, analyzed and generalized rigid foldable quadrilateral mesh origami to be able 

to create a free-formed developable, flat-foldable, and rigid-foldable patterns (Tachi, 2009b). 

Schenk and Guest, proposed a folded textured sheet for structural applications based on 

Miura-ori and Eggbox patterns (Schenk & Guest, 2011). Cai et al. (Cai et al., 2015) studied 

the geometry and motion of pyramidal deployable structures inspired by leaf’s movement 

which shows similarities to the Miura-ori pattern. 

 

Yoshimura Pattern 

Yoshimura pattern also called Diamond pattern, (Buri, 2010; Stavric & Wiltsche, 

2013) is a triangular pattern where six crease lines are joined in a vertex (degree-6 
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vertex). Yoshimura pattern is also called triangular pattern due to its polygon’s shapes. 

Yoshimura pattern (Figure 2.24) has been developed by Yoshimura who observed thin 

cylinder’s behavior when exposed to compression forces (Miura & Tachi, 2010). It is a 

developable pattern with multiple degree of freedom (DOF). The diamond shape of the 

CP allows a cylindrical shape to emerge. This shape allows the creation of vault-like 

structures when the CP is modified to the need of the form.  

The geometrical analysis of this particular pattern has been presented by Foster 

and Krishnakumar (Foster & Krishnakumar, 1986/87) and expanded by Tonon (Tonon, 

1991) who presented the creation of a variety of forms such as barrel vaults and surfaces 

with double-curvature. This method did not particularly present patterns that are 

developable and/or flat-foldable and/or deployable. By modifying this method De 

Temmerman proposed barrel vaults and dome-like circular shaped deployable bar 

structures (De Temmerman, 2007a) and foldable plate emergency shelter structures (De 

Temmerman et al., 2007b). The structure’s pattern is created by congruent triangular 

modules, which can be divided into two to create the edge modules. In the method created 

by De Temmerman, the parameters required to create a deployable, flat-foldable pattern 

are the number of triangular plates in the span, the number of half-modules and the apex 

angle of triangular module. Cai et al. (Cai et al., 2016b) presented a motion analysis of 

regular and irregular Yoshimura pattern based barrel vault, which also presented a 

geometric analysis of a single unit. The method used in this research is also an adaptation 

of the geometrical principles proposed by both Tonon and De Temmerman. 

 

 
 

Figure 2.24. Yoshimura pattern / Diamond pattern – drawn and folded by the author. 
 

Quadrilateral patterns 

Quadrilateral patterns, also called reverse fold frame (Schramme, Boegle, & 

Ortolano Gonzalez, 2015), are corrugated patterns composed of tetragons (Figure 2.25). 



36 
 

Miura-ori is also a quadrilateral pattern but, because of its properties demonstrated by 

Miura (Miura, 2009), it has been differentiated from other patterns. These patterns have 

degree-4 vertexes and their unit’s shapes varies from parallelogram to trapezoids. 

Nojima (Nojima, 2002) presented multiple quadrilateral patterns to fold cylinders. In 

this study the way of positioning the major fold line of a pattern changes the 

deployment motion. When modules are multiplied along an inclined major fold line the 

final model has a spiral shape (Figure 2.26(b)), but if the modules are multiplied along a 

non-inclined major fold line the final model becomes a cylinder (Figure 2.26(a)). The 

same properties are presented for triangular patterns (Nojima, 2002). 

 

 
 

Figure 2.25. Quadrilateral pattern – drawn and folded by the author. 
 

There are multiple examples of tubular/prismatic structures created with 

quadrilateral patterns. Tachi (Tachi, 2009e) presented a cylindrical deployable structure 

with thick material and single degree of freedom using quadrilateral patterns. Miura and 

Tachi (Miura & Tachi, 2010) presented a family of collapsible and rigid-foldable 

cylindrical polyhedra. Liu et al. (Liu, Lv, Chen, & Lu, 2016) also presented deployable 

tubular structures using quadrilateral patterns. Lee and Gattas (Lee & Gattas, 2016) 

presented new accordion-type shelters with structural stability and stiffness using 

quadrilateral patterns. All designed shelters are deployable but not all types are flat-

foldable. 
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Figure 2.26. Nojima’s (a) non-inclined quadrilateral pattern (b) inclined quadrilateral 
pattern (Source: Nojima, 2002).  

 

Water Bomb Pattern 

Water bomb pattern (Figure 2.27) is also a corrugated pattern created by Shuzo 

Fujimoto, which is flat-foldable and developable. Compared to Miura-ori pattern, this 

CP is more flexible because it possesses multiple DOF (degree of freedom). This 

pattern is a triangular pattern, where the triangles vary in size, consisting of both 

degree-4 vertexes and degree-6 vertexes. Origami stent is the applied example of this 

pattern (Kuribayashi, et al., 2006). Parametric design and a structural analysis has been 

conducted on this pattern for rigid foldable origami structures by Curletto and 

Gambarotta (Curletto & Gambarotta, 2015). 

 

 
 

Figure 2.27. Water Bomb pattern – drawn and folded by the author. 
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Resch’s 3D Tessellation pattern 

Ron Resch pattern is a 3 dimensional tessellation with multiple DOF and 

flexible. The pattern is tessellated by different types of triangles. This pattern is 

developable but not flat-foldable. The final folded stage allows the creation of a smooth 

surface and creates a freeform structures because of its flexiblity. Tachi (Tachi, 2013) 

created new origami tessellations (Figure 2.29(a)) and also proposed designing free-

form structures (Figure 2.29(b)) by generalizing the Resch’s pattern. Freeform shapes 

can be created using the method of generalization presented by Tachi with tessellated 

origami patterns. Figure 2.28 presents one of the variation of Resch pattern, consisting 

of triangles and squares joining at degree-5 vertexes and degree-8 vertexes.  

 

 
 

Figure 2.28. Variation of Resch’s pattern – drawn and folded by the author. 
 

 
 
Figure 2.29. Resch patterns by Tachi (a) Variations of Resch’s pattern (b) freeform 

shapes of patterns. (Source: Tachi, 2013). 
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2.5.2.2. Kinematics of Origami-inspired Mechanisms 

 

All these patterns have their own deployment direction during a folding process 

which has been catalogued by Schamme et al. (Schramme, Boegle, & Ortolano 

Gonzalez, 2015). According to Schamme et al. there are three directions of deployment 

for origami patterns: translational, rotational and a combination of both (Schramme, 

Boegle, & Ortolano Gonzalez, 2015) (Figure 2.30). According to this study; Miura-ori 

has a bi-directional deployment with translational motion, Yoshimura patterns, referred 

as Diamond pattern, have a combination of translational and rotational motion during 

the folding process, Quadrilateral patterns, depending on the tessellation of the pattern 

can be translational like eggbox pattern or a combination of translational and rotational 

like herringbone and reverse fold frame patterns during their folding process. Resch’s 

pattern can have different types of motion (translational and/or spherical bending) 

because of multitude of degree of freedom. This study also reveals that Yoshimura 

pattern can have a different deployment motion: axial bending which demonstrates that 

the pattern has multiple degree of freedom.  

These presented motions are due to a mechanism existing in these patterns 

allowing the movement. It should be stated that even though developable and flat-

foldable patterns are considered as structures from an architectural point of view, they 

are mechanisms because of their continuous movement starting from the initial state to 

their final folded state (Lebée, 2015).  

Greenberg et al. (Greenberg et al., 2011) using graph theory observed that 

origami inspired mechanisms contained interconnected linkages forming a network of 

loops (Figure 2.31). Depending on the pattern the origami inspired mechanisms showed 

to be composed of interconnected 6-bar spherical linkages systems or 4-bar spherical 

linkage systems.  
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Figure 2.30. Deployment motion of patterns by Schmme et al. 

(Source: Schramme, Boegle, & Ortolano Gonzalez, 2015) 
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Figure 2.31. Origami inspired mechanisms (Source:Greenberg, Gong, Magleby, & 

Howell, 2011) – graphs redrawn by author based on (Greenberg, Gong, 
Magleby, & Howell, Identifying Links Between Origami and Compliant 
Mechanisms, 2011, p. 222). 

 

The number of loops in a mechanism are calculated using Euler’s equation 

(eq.(2.18)): where L stands for the number of loops, j for the number of joints, and l for 

the number of links.  

 

 𝐿 = 𝑗 − 𝑙 + 1                                                        (2.18) 

 

Origami patterns are a network of crease lines and vertexes, and in rigid origami 

crease lines are replaced by hinges which allows only rotational movement ® (Cai et al., 

2016a), making a degree-4 vertex, a spherical 4R linkage (Figure 2.32(a)) and a degree-

6 vertex, a spherical 6R linkage (Figure 2.32(b)). According to Schulze et al. (Schulze, 

Guest, & Fowler, 2014) a “mechanical linkage is called body-hinge structure if every 

joint of the linkage is a hinge”. These vertexes regardless of their degree, are assumed to 

be the central point of a spherical linkage making the pattern an assembly of spherical 

loops (Bowen et al., 2013; Greenberg , 2011).  
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Figure 2.32.  Spherical joints (a) 4R spherical linkage (b) 6R spherical linkage - drawn 
by the author. 

 

Rigid origami deployable structures are often modeled with zero thickness and 

perfect hinges which causes a problem when an application is required. The material, 

which should stay stable during the folding process requires to have a thickness which 

may change the panel’s dimensions or the placement of the hinges (Figure 2.33(b)) or 

the joints’ properties like in Figure 2.33f where the joints are rolling joints not hinges 

(Cai, 2016c). Tachi’s study about thick origami (Tachi, 2011) presented two flat-

foldable models: the axis-shift method (Figure 2.33(b)) where the joints were placed in 

different locations and tapered method (Figure 2.33(c)) where the material geometry 

have been tapered so that the mechanism closes. Edmondson et al. also proposed two 

other methods to compensate the thickness problem in rigid origami structures (Figure 

2.33(d)(e)).  
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Figure 2.33.  Joints (a) Zero-thickness model (b) Axis-shift method (Source: Tachi, 

2011) (c) Tapered panels (Source: Tachi, 2011) (d) Membrane folds 
method (Source: Edmondson et al., 2014) (e) Offset panel technique 
(Source: Edmondson et al, 2014) (f) Rolling joints connection method 
(Source: Cai, 2016c) - redrawn by the author based on the sources. 
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CHAPTER 3 

 

RIGID ORIGAMI BARREL VAULT STRUCTURES 

 
The MV-Pattern creation of a foldable plate structure can be generated from the 

cross-section of the selected geometry, based on a geometrical relation proved by Buri 

(Buri, 2010). In Buri’s dissertation we can observe that a MV-Pattern can be generated 

by a single line called “generatrix” (Buri, 2010). This method is also observed in the 

study of Stavric and Wiltsche, where a convex and concave generatrix was used to 

generate a folding pattern for rigid folding structures (Stavric & Wiltsche, 2013).  

In this study the method of using a generator line “generatrix” is applied to 

create MV-Patterns for some types of foldable barrel vaults with different cross-section. 

The generator line is referred to as pattern-generator in this study. Various types of 

arches, as the cross-section of the foldable barrel vault, has been selected to demonstrate 

different parameters that affect the creation of a crease pattern.  

In this chapter geometrical properties of different arch types, used as cross-

section, are analyzed. Five types of arches have been selected for this study, they can be 

grouped under two categories: single centered arches and double centered arches. 

Single centered arches are the semicircle and the horseshoe arches. Their 

geometrical properties have been analyzed and because they share common properties 

their parameters have been combined. Double centered arches, which are pointed 

equilateral, pointed obtuse, and lancet arches, also have common geometrical properties.  

Firstly geometrical properties are analyzed for both categories, starting from the 

final folded state, partially folded state and initial state which defines the design 

parameters. Secondly a workspace analysis is carried on to understand the relation 

between the folding angles and the height, span, and depth of the foldable barrel vault. 

And then a mobility analysis is carried out to understand the mechanism of the foldable 

barrel vault structures. Finally a conclusion about each category is presented.  
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3.1. Single Centered Barrel Vaults 

 
Single centered arches are created by a single circled cross section. There are 

different types of single centered arches but only the semicircle arch and horseshoe arch 

types are analyzed in this section of the study. The difference between the arches is 

defined by the value of the central angle Ω.  

In this section first geometrical properties of single centered rigid origami barrel 

vault structures are analyzed starting with the final folded state, followed by the 

partially folded state and then an MV-Pattern is created using the calculated parameters. 

Secondly a workspace analysis is conducted and finally a mobility analysis is presented. 

 

3.1.1. Geometrical Properties 

 
This section presents the geometrical properties of single centered arches, and 

the required parameters to create a MV-Pattern. The pattern is created by reverse 

engineering. The process starts with the final folded state, continues with the partially 

folded state and ends with the creation MV-Pattern based on the parameters, which is 

the initial state.  

 

3.1.1.1. Final Folded State 

 
The creation of a single centered folded plate structure starts by defining a radius 

r, the segment number n, and the value of the central angle Ω. Figure 3.1 represents the 

parameters of both horseshoe (Figure 3.1a) and semicircle (Figure 3.1b). The central 

angle Ω defines whether the cross section arch will be semicircle or horseshoe. If the 

central angle is equal to 180° the arch is a semicircle arch, but if the value of the central 

angle exceeds 180° then it becomes a horseshoe arch. The horseshoe arch is named 

according to the value of the central angle, for example Horseshoe 200° arch.  

The radius defines the height and width of the structure, and as the number of 

segments increases an approximation to a curve shape is reached as it can be observed 

in Figure 3.2. The pattern-generator is created by dividing the circle into equal 

segments. 
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Figure 3.1. (a) Horseshoe arch and (b) Semicircle arch parameters’ representations. 

Bold dashed lines: pattern-generators 
 

 

  

Figure 3.2: 3 segments, 4 segments, 6 segments, 9 segments semicircle arches (from left 
to right). 

 

The required parameters to be able to create the crease pattern is the length of 

the pattern-generator 𝒔𝒕, the folding angle α, and the edge angle λ. After defining the 

values of the parameters; r, n, and Ω, the first step is to calculate segments’ angle θ 

using eq. (3.1).  
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𝜃 =
Ω

𝑛
                                                      (3.1) 

 
Then using the value of the segment’s angle, the length of a segment s can be 

calculated using eq. (3.2). 

 

s = 2𝑟𝑠𝑖𝑛 (
𝜃

2
)                                                     (3.2) 

 

The length of the pattern-generator 𝒔𝒕  can be calculated by multiplying the 

segment’s length with the number of segments (eq. (3.3)).  

 

𝑠𝑡 = 𝑛 ∙ 𝑠                                                         (3.3) 

 

The interior angle β of the pattern-generator need to be calculated alongside the 

edge angle λ. To be able to calculate these two angles, 𝐴̂, 𝐵̂, and 𝐶̂ angles need to be 

calculated. The angle 𝐴̂ is one of the base angles of an isosceles triangle thus calculated 

using eq. (3.4). And the angle 𝐵̂ is the complementary angle of the central angle which 

is calculated using eq. (3.5). 

 

𝐴̂ =
𝜋−𝜃

2
                                                       (3.4) 

𝐵̂ = 2𝜋 − Ω                                                     (3.5) 

 

The angle 𝐶̂ is one of the base angles of an isosceles triangle thus calculated 

using eq. (3.6). It should be stated that this angle is equal to zero for a selected central 

angle equal to π. 

 

𝐶̂ =
𝜋−𝐵

2
                                               (3.6) 

To be able to calculate angle β the calculation for regular polygon need to be 

applied: the radii of the circumference circle of a regular polygon bisect the interior 

angles. Thus we can calculate angle β by multiplying angle 𝐴̂ by 2 (eq. (3.7)). 

 

𝛽 = 2𝐴̂ = 2 ∙ (
𝜋−𝜃

2
) = 𝜋 − 𝜃                                  (3.7) 
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The edge angle λ can be calculated by the addition of angles 𝐴̂ and 𝐶̂ (eq. (3.8)). 

This calculation presents the value of the edge angle at its final folded state. 

 

𝜆 =  𝐴̂ + 𝐶̂                                                    (3.8) 

 

The fold angle α depends on the angle β (Buri, 2010; Stavric & Wiltsche, 2013). 

The equation to calculate the angle α is; 

 

𝛼 =
𝜋−𝛽

2
                                             (3.9) 

 

The last value is the height of a single row 2h, which is the multiplication of the 

half-row’s height h (eq. (3.10)) with two. Figure 3.3 shows how the parameters are used 

in the creation of a single row of a crease pattern. Figure 3.4 shows the final folded state 

of a semicircle folded plate structure. 

 

ℎ = 𝑡𝑎𝑛𝛼 (
𝑠

2
)                                       (3.10) 

 

 
 

Figure 3.3. Single row CP and the parameters for the six segmented semicircle arch. 
 

3.1.1.2. Partially Folded State 

 
The second step in understanding the geometrical properties of a single centered 

foldable barrel vault is to define the relations between the parameters while the pattern 

is moving from its initial state to its final folded state. The vertex points of the pattern-

generator does not coincide with the vertexes of the crease pattern when the final folded 

state of a single crease pattern row (Figure 3.4) is analyzed. The pattern-generator line 

in Figure 3.4 has 5 vertexes while the final folded state has 6 vertexes. The final folded 

state of a semicircle rigid origami barrel vault has been created with the parameters r: 

2 m n: 6 Ω: 180° to demonstrate the geometrical relations on each vertexes (Figure 3.4).  
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The interior angle β is in relation with the folding angle α, as the value of the 

angle β decreases the value of α increases (eq. (3.9)) and vice versa. Similar relation can 

be observed, while the pattern moves from the initial state to the final folded state, 

between the folding angle α and the angle λ’ (eq. (3.11)) and also the bending angle μ 

(eq. (3.12)) (Figure 3.5). 

As it can be observed in Figure 3.4 the vertexes 𝑣1  and 𝑣6  are degree-4 

vertexes, 𝒗𝟒 and vertexes from 𝑣2 to 𝑣5 are degree-6 vertexes,  𝒗𝟔 . A reverse fold as 

explained in section 2.3 (Origami Terminology) is a degree-4 vertex, same as vertexes 

𝑣1
4 and 𝑣6

4. The calculation of the degree-4 vertexes’ bending angle λ’ on both vertexes 

𝑣1
4 and 𝑣6

4 is perform using eq. (3.11) provided by the research of Buri (Buri, 2010, pp. 

72-76). 

 

𝜆′ = 𝜋 − 2𝛼                                                      (3.11) 

 

The work of Buri (Buri, 2010) has been extended to be able to calculate the 

bending angle μ for degree-6 vertexes. In  𝒗𝟔 the bending angle μ is in relation with 

more than two fold angle, as it is in reverse fold (eq. (3.11)). There are four fold angles 

α that defines the bending angle thus the equation is modified accordingly (eq. (3.12)).   

 

𝜇 = 𝜋 − 4𝛼                                                         (3.12) 

 

 
 

Figure 3.4. (a) Elevation and (b) double row CP of a rigid origami barrel vault structure 
with 6 segments, created using the maximum value of h. 
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Figure 3.5. Vertexes 𝑣1
4 and 𝑣2

6’s parameters. 
 

 

 
 

Figure 3.6. Vertex 𝑣3
6 ’s parameters. 
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As it can be observed in Figure 3.4 the vertexes are not on the same line thus 

point a is 𝑣3
6 and d1 is 𝑣4

6 in Figure 3.6. 

The bending angle μ depends on the dihedral angle φ. As the dihedral angle’s 

value increases toward the value π the bending angle’s value also increases. On the initial 

state of the crease pattern both angles are equal to π. The isosceles triangle 𝚫d1b1d2 

demonstrate the relation between the dihedral angle φ and the inclination angle σ, as the 

dihedral angle increases both inclination angles decreases. In Figure 3.6 the line ab3 is the 

initial place of the crease line which moves toward the position ab1 which creates an xz-

plane. The line ac is the bisector of the angle b3ab1 creating two equal angles δ. The angle 

δ is the projected angle of the folding angle α on to the xz-plane. Eq. (3.12) can be 

modified by substituting the folding angle α by its projected angle δ (eq. (3.13)). 

The relation between the angles can be explained as follows: 

 

𝜇 = 𝜋 − 4𝛿                                                      (3.13) 

𝛿 = tan−1 (
𝑐𝑏1

𝑎𝑏1
)                                                (3.14) 

𝑐𝑏1 =  sin 𝜎 ∙ 𝑑1𝑏1                                               (3.15) 

𝑎𝑏1 =  
𝑑1𝑏1

tan 𝛼
                                                      (3.16) 

 

Substituting eqs. (3.15) and (3.16) in eq. (3.14), eq. (3.14) becomes: 

 

𝛿 = tan−1(
sin 𝜎 ∙𝑑1𝑏1∙tan 𝛼

𝑑1𝑏1
) = tan−1(sin 𝜎 ∙ tan 𝛼)                     (3.17) 

Substituting eq. (3.17) in eq. (3.13) the relation becomes: 

 

𝜇 = 𝜋 − 4 tan−1(sin 𝜎 ∙ tan 𝛼)                                   (3.18) 

 

The same relation exists on 𝒗𝟒 where the bending angle λ’ is given by eq. (3.19) 

based on the relation in eq. (3.11) (Buri, 2010, p. 76). 

 

𝜆′ = 𝜋 − 2 tan−1(sin 𝜎 ∙ tan 𝛼)                                   (3.19) 

 

Both types of vertexes have two positions; initial state and final folded state, 

which are considered as the limits of the crease pattern. The dihedral angle φ initial state 
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is equal to π because the pattern is flat and as the pattern closes the value decreases to 

its final folded state where it is equal to 0 (zero). The isosceles triangle 𝚫d1b1d2 defines 

the limits for the inclination angles σ as: 𝜎𝑚𝑖𝑛 = 0 for the initial state and 𝜎𝑚𝑎𝑥 = 𝜋 2⁄  

for the final folded state. The relation between the dihedral angle φ and the inclination 

angles σ can be defined as; 

 

𝜑 =  𝜋 − 2𝜎                                                   (3.20) 

 

The association of the angles of degree-6 vertexes, 𝒗𝟔 in their initial and final 

folded state can be described as: for σ = 0 eq. (3.21) for the initial state and for σ = π/2 

eq. (3.22) for the final folded state. 

 

𝜇𝑚𝑖𝑛 = 𝜋 − 4 tan−1(sin 𝜎 ∙ tan 𝛼) =  𝜋                             (3.21) 

𝜇𝑚𝑎𝑥 = 𝜋 − 4 tan−1(sin 𝜎 ∙ tan 𝛼) =  𝜋 − 4𝛼                        (3.22) 

 

For the degree-4 vertexes’, 𝒗𝟒 bending angle λ’ (𝑣1 and 𝑣6) the relation can be 

described as: for σ = 0 eq. (3.23) for the initial state and for σ = π/2 eq. (3.24) for the 

final folded state (Buri, 2010, p. 76). 

 

𝜆′𝑚𝑖𝑛 = 𝜋 − 2 tan−1(sin 𝜎 ∙ tan 𝛼) =  𝜋                             (3.23) 

𝜆′𝑚𝑎𝑥 = 𝜋 − 2 tan−1(sin 𝜎 ∙ tan 𝛼) =  𝜋 − 2𝛼                        (3.24) 

 

Table 3.1 presents all the values of the 𝒗𝟒 bending angle λ’, 𝒗𝟔 angle µ, dihedral 

angle φ, and inclination angle σ for their initial and final folded states. 

 

Table 3.1. Maximum and minimum values of the angles μ, λ’, φ, and σ. 
 

angles Initial state (min) Final folded state (max) 

μ (𝒗𝟔 bending angle) π 𝜋 − 4𝛼 

λ’ (𝒗𝟒 bending angle) π 𝜋 − 2𝛼 

φ (dihedral angle) π 0 

σ (inclination angle) 0 𝜋 2⁄  
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The required partially folded state for 𝒗𝟔 can be obtained either by defining the 

value of the dihedral angle φ, and then using eq. (3.20) the inclination angle σ can be 

solved, and finally substituted in eq. (3.18) to be able to calculate the bending angle μ. Or 

by defining the value of the inclination angle σ and substituted in eq. (3.18) to calculate 

the bending angle. Figure 3.7 shows the relation between the inclination angle and both 

bending angles for a semicircle arch with 6 segment and a radius of 2 m. As the 

inclination angle increases the bending angles decreases to reach their final folded state.  

 

 
 

Figure 3.7. Relation between angles μ and λ with σ for an n:6, r:2 semicircle arch. 
 

3.1.1.3. Initial State, MV-Pattern 

 
In this step, based on the calculated parameters, a single row of a CP is created. 

As presented in the previous step, the required parameters to be able to draw a single 

chain are the folding angle α, the edge angle λ and the total length of the pattern-

generator 𝒔𝒕. Table 3.2 shows all the parameters calculated in the previous step for a six 

segmented 2 m radius semicircle arch, and for a horseshoe 200° arch with five segments 

and 2 m radius. 

The lines A and B in Figure 3.8 are parallel to the pattern-generator and the 

distance between the pattern-generator and the lines is defined by the parameter h. The 

distance between lines A and B is the total height of a single row 2h. The value for the 

parameter h can be changed for the creation of a different CP. If the maximum value of 
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the h is used to create 2h the CP will be a triangular pattern where edge vertexes are 𝒗𝟒 

but all others are 𝒗𝟔 , but if a smaller value of h is used then the pattern will be a 

trapezoidal pattern where all vertexes are 𝒗𝟒. 

 

Table 3.2. Parameters for r: 2, n: 6 semicircle and r: 2, n: 5 horseshoe 200° arches. 
 

 r (m) n Ω° θ° s (m) st (m) 𝐴̂° 

Semicircle 2 6 180 30 1,035 6,21 75 

Horseshoe 2 5 200 40 1,368 6,84 70 

 𝐵̂° 𝐶̂° β° λ° α° h (m) 2h (m) 

Semicircle 180 0 150 75 15 0,138 0,277 

Horseshoe 160 10 140 80 20 0,248 0,497 

 

The crease line created by the folding angle α is placed on the edge of the first 

segment and then extended to both lines A and B.  Assuming line 1 is placed first to the 

end of the first segment, to be able to create a convex form using reverse fold the 

second line 2 need to be placed in the opposite direction of line 1, as a reflection, and so 

on for the third, fourth and fifth lines. Lines 6 and 7 are placed based on the edge angle 

λ. Both lines 6 and 7 need to have the same direction with the adjacent lines if the 

structure needs to touch the ground from the edges.  

 

 
 

Figure 3.8. Unfolded crease pattern for the six segmented semicircle arch. 
 

The reproduction of the row into a pattern is done by a simple congruence 

transformation: reflection by the line B, then the two rows together is translated in y-

direction (Figures 3.9 and 3.10). 

The created pattern needs an application of MV-Assignment to be applied to 

create the MV-Pattern. The MV-Pattern is applied based on Maekawa’s theorem where 

the difference of the number of mountain folds and valley folds should be equal to 2 at 

each vertex (Figures 3.9 and 3.10). For both figures full lines are mountain folds and 

dashed lines are valley folds. 
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The triangular pattern has both 𝒗𝟒 and 𝒗𝟔 (Figure 3.9). As it can be observed in 

Figure 3.9 for a single row the number of vertexes are equal to the number of segments 

n. As the number of segments increases the number of vertexes also increases, but only 

the number of 𝒗𝟔 increases because the 𝒗𝟒 are only positioned in the edge of the single 

row, and the additional segment does not change the conditions of the pattern. 

 

Table 3.3. Number of degree-4 and degree-6 vertexes on triangular patterns. 
 

n 𝒗𝟒 𝒗𝟔 v total 
3 2 1 3 
4 2 2 4 
5 2 3 5 
6 2 4 6 

 

 

 
 
Figure 3.9.  MV-Pattern created by using maximum value of h for a n: 6, semicircle 

arch. Triangular pattern (Yoshimura pattern) 
The trapezoidal pattern has only 𝒗𝟒  (Figure 3.10). As it can be observed in 

figure 3.10 for a single row the number of vertexes are not equal to the number of 

segments n, as it is in the triangular pattern. Because the maximum value of h has not 

been used, the diagonal lines created using the folding angle α do not intersect on the 

edge, thus no 𝒗𝟔  is created which leads to an all 𝒗𝟒  CP. The relation between the 

number of segments and the number of vertexes can be observed in Table 3.4. 

 

Table 3.4. Number of degree-4 vertexes on trapezoidal patterns. 
 

n 𝒗𝟒 𝒗𝟔 v total 
3 4 0 4 
4 6 0 6 
5 8 0 8 
6 10 0 10 
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Figure 3.10. MV-Pattern created by using h as 0,104 m, for a n: 6, semicircle arch. 

Trapezoidal pattern 
 

3.1.1.4. Conclusion  

 
In this section rules and limitations are discussed. While creating a pattern, some 

parameters need to be specified by the designer: the radius r, the number of segments n 

which defines the approximation of the form of the structure, and the central angle Ω 

which defines the type of arch required. The properties of these parameters are 

discussed together with the rigid foldability of the patterns created using the method of 

creation. The rigid foldability of the created MV-Pattern has been tested on both Rigid 

Origami Simulator and Freeform Origami softwares created by Tachi (Tachi, 2009a; 

Tachi, 2009c). 

It should also be stated that the process of creating a crease pattern and assigning 

mountain and valley folds to the crease lines do not differ for a semicircle arch barrel 

vault MV-Pattern and Horseshoe arch barrel vault MV-Pattern. 

If the structure needs to have a temporary stop point while reaching the final 

flat-folded state, the inclination angle σ needs to be specified by the designer. Also the 

edge angle λ needs to be recalculated so that the edges touch the ground at the desired 

dihedral angle. 

 

Height of a single row: The value of 2h has been calculated as the maximum 

value for the parameter which allows its manipulation. All values under the maximum 

value of h will create a trapezoidal pattern (Figure 3.10) while the use of maximum 

height for h will create a triangular pattern which has similarities with Yoshimura 

pattern (Figure 3.9).  

 

Central angle Ω: the value of the central angle defines the type of arch that will 

be used as the cross-section of a rigid origami folded plate structure. 
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If          Ω = π       Semicircle cross-section 

If          2π > Ω > π    Horseshoe cross-section    

All single centered arches’ trapezoidal and triangular MV-Patterns’ rigid 

foldability have been tested on Rigid Origami Simulator (Tachi, 2009c), and all created 

patterns have folded without problems. Same patterns have been tested on the Freeform 

Origami software (Tachi, 2009a); in this software, while all pattern flat-folded without 

deformation, the software suggested additional creases to the pattern created, which can 

be observed on Figures 3.11 and 3.12 as gray lines. 

When the suggested grey lines are applied to the triangular MV-Pattern the 

pattern become composed of v6, as it can be observed in Figure 3.13. As it can be 

observed while the dimensions do not change the form of the parts that touches, the 

ground change both in form and in geometry. 

Both trapezoidal and triangular MV-Patterns are developable and flat-foldable if 

the medium is assumed a surface with no thickness. Models using thick cardboard have 

been created to be able to understand the changes suggested by the Freeform Origami 

software. Models have showed that v4 do not flat folds without tearing the material 

while the v6 folds flat without resistance with axis-shift method (Figures 3.14 and 3.15). 

 

 
 

Figure 3.11.  Triangular pattern rigid origami horseshoe 200° barrel vault tested on 
FreeformOrigami software (Tachi, 2009a). 
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Figure 3.12.  Trapezoidal pattern rigid origami horseshoe 200° barrel vault tested on 
FreeformOrigami software (Tachi, 2009a). 

 

 
 

Figure 3.13.  Rearranged triangular pattern rigid origami horseshoe 200° barrel vault 
tested on FreeformOrigami software (Tachi, 2009a). 

 

 
 

Figure 3.14.  Models of trapezoidal pattern (left) and triangular pattern (right) for a 
semicircular cross-section. 
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Figure 3.15. Models of trapezoidal pattern (left) and triangular pattern (right) for a 
horseshoe cross-section. 

 

3.1.2. Workspace Analysis 

 
The workspace analysis is first carried by analyzing the geometrical properties 

of the depth and then followed by the analysis of the span and height based on the cross-

section of the rigid origami barrel vault structure. Both arch types demonstrated 

translational and rotational motion while folding (Figure 3.16). While the structure takes 

its single centered final folded state its depth and span decreases, but the height 

increases.  

 

 
 

Figure 3.16. r: 6m n:8 Ω:220 horseshoe arch motion - xz-plane (left) and yz-plane 
(right). 

 

3.1.2.1. Depth 

 
The relation between the inclination angle σ and the depth can be explained by 

analyzing the vertexes. As it has been stated before in the partially folded state of the 

pattern, the inclination angle σ is equal to zero, and the dihedral angle φ is equal to π 

(Table 3.1). The depth of the mechanism depends on the number of rows Rn used to 
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create the pattern. The calculations start with a double row where the relation between 

the inclination angle and distance between two vertexes is analyzed. The lines d1b1 and 

d2b1 and are equal to the height of the pattern 2h: d1b1 = d2b1 = 2h (Figure 3.17). 

The depth of the pattern depends on the length of line d1d2 named 𝑫𝒍, which in 

turn depends on the inclination angle σ. The relation is as the follows, based on the 

isosceles triangle rule: 

 

𝐷𝑙 = 2 ∙ (2ℎ) ∙ cos 𝜎                                             (3.25) 

 

 
 

Figure 3.17. Side view showing the relation between inclination angle σ and depth. 
Dashed lines are the pattern-generator, bold full lines are the section lines. 

 

As stated before, values of the inclination angle σ are 𝜎𝑚𝑖𝑛 = 0 for the initial 

state and 𝜎𝑚𝑎𝑥 = 𝜋 2⁄  for the final folded state. As the distance 𝑫𝒍 increases the value 

of the inclination angle decreases and thus the distance 𝑫𝒍 is equal to: 
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𝐷𝑙𝑚𝑎𝑥 = 2 ∙ (2ℎ) ∙ cos 𝜎𝑚𝑖𝑛 = 4ℎ                               (3.26) 

and 

𝐷𝑙𝑚𝑖𝑛 = 2 ∙ (2ℎ) ∙ cos 𝜎𝑚𝑎𝑥 = 0                                (3.27) 

 

The total depth 𝑻𝑫𝒍  depends on the number of rows 𝑹𝒏  in a pattern and the 

distance 𝑫𝒍 calculated by eq. (3.28). 𝑫𝒍 is the distance between two rows so, to be able 

to calculate the value for each additional row, the value of 𝑫𝒍 is divided by 2. 

𝑇𝐷𝑙 =
𝐷𝑙

2
∙ 𝑅𝑛                                                 (3.28)  

 

Substituting eq (3.25) in eq (3.28), the relation between the inclination angle and 

the total depth is obtained: 

 

𝑇𝐷𝑙 = 2ℎ ∙ cos 𝜎 ∙ 𝑅𝑛                                             (3.29) 

 

The relation between the inclination angle and the total depth of a horseshoe n: 8 

r: 6 m, Ω: 220° pattern with 10 rows and 2h: 0,697m can be observed in Figure 3.18 

where, as the inclination angle increases, the total depth decreases. 

 

 
 

Figure 3.18. Relation between the inclination angles σ and the total depth, 𝑻𝑫𝒍 of a 10 
row single centered barrel vault pattern.  
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3.1.2.2. Span and Height 

 

The span and height are affected by the cross-section of the type of the rigid 

origami barrel vault. The geometrical analysis is carried out on the pattern-generator’s 

properties during the folding process. The central point of the pattern-generator line has 

been fixed to be able to calculate the span and height differences occurring during the 

process. As it can be observed in Figure 3.19 as the MV-pattern folds the central point 

of the structures changes, the value of the inclination angle σ are: 0°, 10°, 30°, 50°, 70°, 

90°, where 90° is the final folded state of the MV-Pattern. Changes occurring to the 

span and the height are analyzed in this section in relation to the inclination angle σ. To 

carry the analysis, some parameters’ properties need to be put in relation with the 

inclination angle σ. These parameters are denoted with a d next to them to differentiate 

them (Figure 3.20). The calculations differs when the number of segment n is an even 

or odd number thus span and height for even numbers are denoted SE and HE and SO 

and HO for odd numbers.  

 

 
 

Figure 3.19.  (left) Horseshoe arch pattern-generator with even and odd number 
segments, (right) Semicircle arch pattern-generator with even and odd 
number of segments.  

 

Parameters required to calculate the span S and height H are the segments’ angle 

during the development process θd and the angle δ - projected angle of the folding angle α. 

Both parameters need to be in relation with the inclination angle σ to be able to calculate the 

differences of span and height during the development process. The relation between the 

projected angle δ and inclination angle σ has already been explained in eq. (3.17).  
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𝛿 = tan−1(
sin 𝜎 ∙𝑑1𝑏1∙tan 𝛼

𝑑1𝑏1
) = tan−1(sin 𝜎 ∙ tan 𝛼)                     (3.17) 

 

The relation of the segments’ angle θd can be explained by expending the 

geometrical relations presented in the previous section where eq. (3.7) is the value of the 

interior angle β in relation to segment’s angle θ, and eq. (3.9) where the relation of the 

folding angle α with the interior angle β is presented. By substituting eq. (3.7) in eq. (3.9) 

a relation between the folding angle α and segments’ angle θ can be achieved eq. (3.30). 

 

𝛼 =
𝜋−𝛽

2
=

𝜋−(𝜋−𝜃)

2
=

𝜃

2
               𝜃 = 2𝛼                       (3.30) 

 

Because the angle δ is the projected angle of the folding angle α and defines the 

relation between the inclination angle σ and the folding angle α, the eq. (3.30) can be 

modified to calculate the value of the segments’ angle during the development process 

θd (eq. (3.31)) by substituting the folding angle α by its projected angle δ.  

 

𝜃𝑑 = 2𝛿                                                   (3.31) 

 

In Figure 3.20 the parameters for both even and odd numbered horseshoe arch 

with central angle equal 200° can be observed. The pattern-generator noted as 1 is the 

final folded state where the inclination angle σ is equal to 90°, and the number 2 is the 

position of the pattern-generator when the inclination angle is equal to 30°. The central 

point of the pattern-generator is assumed fixed in order to calculate both the span and 

height of the rigid origami barrel vaults.  

 

Span: The span is calculated by adding each segments’ length projected to the x-

axis sd1 for both types of arches. The calculations differ if the number of segment is an 

even or odd number.  

Starting from the apex, for even numbered segmented arches, the deployment starts 

with the projected angle δ and with each segment the angle increases by the segments’ 

angle θd. Thus, the segment’s projected length is calculated using eq. (3.32) where i is equal 

to 0 (zero) for the first segment, 1 for the second, 2 for the third, and so on.  

 

𝑠𝐸𝑑1 = 𝑠 ∙ cos(𝛿 + 𝑖𝜃𝑑)                                         (3.32) 
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Figure 3.20.  Parameters for (above) Horseshoe 200 arch pattern-generator with even 
number of segments, (below) Horseshoe 200 arch pattern-generator with 
odd number of segments. 
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For patterns with an odd number of segments, which can be observed in Figure 3.20, 

calculation start from the central point of the pattern-generator and not the apex. The 

folding starts with the segments’ angle θd and with each segment the angle increases by the 

value of the angle θd. The projected segment’s length is calculated using eq. (3.33). 

 

𝑠𝑂𝑑1 = 𝑠 ∙ cos(𝑖𝜃𝑑)                                             (3.33) 

 

The span for both types of single centered arches are calculated by eq. (3.34) for 

even numbered segments and by eq (3.35) for odd numbered segments. For the even 

numbered arch the sum of the segments’ projected length is multiplied by 2 to have the 

total span of the arch. For the odd numbered arch, a segment’s length s is added to the 

sum of the projected lengths. 

 

𝑆𝐸 = 2𝑠(∑ cos(𝛿 + 𝑖𝜃𝑑)𝑛 2⁄
𝑖=0 )                                    (3.34) 

𝑆𝑂 = 𝑠 + 2𝑠(∑ cos(𝑖𝜃𝑑)𝑛−1 2⁄
𝑖=1 )                                   (3.35) 

 

The required parameters to calculate the span are the projected angle δ and the 

segments’ angle in development process θd.  Figure 3.21 shows the relation between the 

inclination and the span. As the inclination angle increases the span decreases. The 

maximum span of the pattern is obtained in its initial state. 

 

 
 

Figure 3.21.  Relation between the inclination angle and the span of a horseshoe arch r: 
4 n: 6 Ω: 200.  
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Height: The height is calculated by adding each segments’ length projected to 

the z-axis sd2 for both types of arches, eq. (3.36) and eq. (3.37) again the calculations 

differs if the segment number n is an even or odd number. 

 

𝑠𝐸𝑑2 = 𝑠 ∙ sin(𝛿 + 𝑖𝜃𝑑)                                       (3.36) 

𝑠𝑂𝑑2 = 𝑠 ∙ sin(𝑖𝜃𝑑)                                          (3.37) 

 
As it was with the span calculations each projected segments length sd2 is added 

to each other resulting in the eq. (3.38) for an even numbered arch, and eq. (3.39) for an 

even numbered arch.  

 

𝐻𝐸 = 𝑠(∑ sin(𝛿 + 𝑖𝜃𝑑)𝑛 2⁄
𝑖=0 )                                      (3.38) 

𝐻𝑂 = 𝑠(∑ sin(𝑖𝜃𝑑)𝑛−1 2⁄
𝑖=1 )                                        (3.39) 

 

The required parameters to calculate the height are the same as the span. Figure 

3.22 shows the relation between the inclination angle σ and the height H. As the 

inclination angle increases, the height increases too. 

 

 
 

Figure 3.22.  Relation between the inclination angle and the height of a horseshoe arch    
r: 4 n: 6 Ω: 200. 

  

0

10

20

30

40

50

60

70

80

90

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

in
cl

in
at

io
n 

an
gl

e 
-σ

(°
)

Height (m)



67 
 

3.1.2.3. Volume 

 
The volume is calculated by multiplying the cross-section area with the total 

depth 𝑻𝑫𝒍 (eq. (3.29)). Calculations for the volume are conducted using the arc of the 

pattern-generator. To be able to calculate the area of the cross-section changes occurring 

to the central angle’s Ωd, its complementary angle’s Bd and radius rd during the 

deployment are required. All these angles have a relation with the inclination angle 

which will lead to the relation between the inclination angle σ and the volume V. 

The radius during the deployment is calculated by the following equation. 

 

𝑟𝑑 =
𝑠

2 sin(
𝜃𝑑
2

)
                                                 (3.40) 

 

The central angle Ωd is calculated by multiplying the number of segment n with 

the deployment state segments’ angle θd (eq. (3.41)). The value of the segment’s angle 

has been calculated using eq. (3.31). 

 

Ω𝑑 = 𝜃𝑑 ∙ 𝑛                                                    (3.41) 

 

The complementary angle Bd of the central angle is calculated with the 

following equation: 

𝐵𝑑 = 2𝜋 − Ω𝑑                                                 (3.42) 

 

The area is calculated by the segment area equation which is valid for a central 

angle value equal or less than π (=<π) which present a problem when the cross-section 

is a horseshoe arch. For the semicircular cross-section the following equation is used to 

calculate the area: 

 

𝐴𝑟𝑒𝑎 =
1

2
𝑟𝑑

2(Ω𝑑 − sin(Ω𝑑))                                   (3.43) 
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Figure 3.23. Single centered barrel vaults’ volume parameters. 
 

The center point of the arch moves during the deployment process as it has been 

showed in Figure 3.19, for horseshoe arches, after a certain point, the central angle’s 

value becomes more than π (Figure 3.24 situation 3). In these cases the area of the 

cross-section is calculated by subtracting the sector area by the circle’s area (eq. (3.44). 

 

𝐴𝑟𝑒𝑎𝐻 = 𝜋𝑟𝑑
2 −  

1

2
𝑟𝑑

2(B𝑑 − sin(B𝑑)) = 𝑟𝑑
2 (𝜋 − (

𝐵𝑑−sin(𝐵𝑑)

2
))        (3.44) 

 

 
 

Figure 3.24. Single centered pattern-generator positions according to the inclination 
angle values (1) 10°, (2) 50°, and (3) 90° during folding process. 
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These changes appear during the deployment process; for this problem a solution 

has been incorporated in a Microsoft Excel 2013® calculation sheet (Appendix A). 

The volume V is calculated with the following equations depending on the 

condition. 

 

If    Ωd ≤ π   𝑉 = 𝑇𝐷𝑙 ∙ 𝐴𝑟𝑒𝑎      (3.45) 

If    Ωd > π     𝑉 = 𝑇𝐷𝑙 ∙ 𝐴𝑟𝑒𝑎𝐻    (3.46) 

 

Table 3.5. Parameter of figure 3.23 for a horseshoe arch n:6 r:4 Ω:200 Rn:10 
 

horseshoe n:6 r:4 Ω:200 
σ (°) Ωd (°) Bd (°) rd (m) Area (m2) TDl (m) V (m3) 

0 0,00 360,00 0,00 0,00 6,87 0,00 
5 17,94 342,06 43,98 4,92 6,84 33,67 

10 35,71 324,29 22,10 9,66 6,76 65,37 
15 53,17 306,83 14,85 14,07 6,64 93,32 
20 70,16 289,84 11,26 18,00 6,45 116,20 
25 86,53 273,47 9,14 21,39 6,23 133,15 
30 102,16 257,84 7,75 24,19 5,95 143,87 
35 116,92 243,08 6,78 26,40 5,63 148,55 
40 130,71 229,29 6,07 28,07 5,26 147,72 
45 143,43 216,57 5,54 29,27 4,86 142,15 
50 155,00 205,00 5,13 30,06 4,42 132,73 
55 165,35 194,65 4,82 30,54 3,94 120,33 
60 174,42 185,58 4,57 30,79 3,43 105,74 
65 182,17 177,83 4,38 30,87 2,90 89,63 
70 188,55 171,45 4,24 30,86 2,35 72,51 
75 193,55 166,45 4,13 30,80 1,78 54,76 
80 197,13 162,87 4,06 30,73 1,19 36,66 
85 199,28 160,72 4,01 30,68 0,60 18,37 
90 200,00 160,00 4,00 30,66 0,00 0,00 

 

Table 3.5 presents the values of a horseshoe arch with n:4, r:4, Ω:200 and 10 

rows. The condition presented occurs when the inclination angle σ increases from 60° to 

65° and the central angle’s value surpasses the condition: Ωd ≤ π for the volumetric 

calculations made using eq. (3.45). After this point eq. (3.46) is used for the area 

calculations. Figure 3.25 represent the data presented in Table 3.5. As it can be 

observed as the inclination increases the volume increases rapidly till reaching its peak 

when the inclination angle’s value is around 35°. From its peak as the inclination angle 
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increases the volume of the barrel vault shows a slow decreases until it reaches its final 

folded state where the volume is equal to zero.  

 

 
 

Figure 3.25.  Relation between the inclination angle and the volume of a horseshoe arch 
r: 4 n: 6 Ω: 200. 

 

3.1.3. Mobility Analysis  

 
Rigid origami barrel vault plate structures are obtained by the cross-section of the 

desired shape and designed with the required parameters of the geometrical properties of 

the selected cross-section arch type. This section only analyses the mobility of the single 

centered arch types. Rigid origami structures are considered as a mechanism, constructed 

by rigid panels and revolute joints allow motion. As discussed in previous chapters 

(2.5.2.2.) the origami-inspired structures are comprise of spherical loops.  

As it will be demonstrated, that when the kinematic diagram of a pattern is 

analyzed, both triangular and trapezoidal patterns are comprised of multiple loops. To 

be able to calculate the number of independent loops Euler’s equation (eq. (3.47)) is 

used, where L stands for the number of loops, j for the number of joints, and l for the 

number of links.  

 

𝐿 = 𝑗 − 𝑙 + 1                                                        (3.47) 
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A rigid body in space has six parameters that allows motion: three coordinates [x, 

y, and z] and three angles that define the rigid body’s position and orientation in space. 

When the movement of a rigid body is restricted, it becomes part of a subspace where 

the motion has been restricted by one or multiple constraints (Selvi, 2012). Spherical 

mechanisms used in rigid origami foldable structures have three constraints, thus 𝜆 = 3. 

When multiple subspaces are combined (Alizade et al., 2014) the number of the new 

subspace can be calculated by the eq. (3.48) presented by (Selvi, 2012, p. 52). The 

number of subspaces combined is n.  

 

𝜆𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ∑ 𝜆𝑘
𝑛
𝑘=1 + (1 − 𝑛)                                   (3.48) 

 

This section analyses the mobility of the created patterns using the Freudenstein 

and Alizade’s equation (eq.3.49):  

 

𝑀𝑛𝑟 = ∑ 𝑓𝑖
𝑗
𝑖=1 − ∑ 𝜆𝑘

𝐿
𝑘=1 + 𝑞 − 𝑗𝑝                                 (3.49) 

  

where M is the mobility, nr is the number of segments and rows in a pattern, fi is the 

degree of freedom for ith kinematic pair, λk is the degree of spaces or subspaces of kth 

loop, q is the number of excessive links, and 𝒋𝒑 is the number of passive joints. Since all 

joints are revolute joints (2.5.2.2.) in origami mechanisms, and there are no excessive 

links or passive joints the eq. (3.49) can be defined as: 

 

𝑀𝑛𝑟 = ∑ 𝑓𝑖
𝑗
𝑖=1 − ∑ 𝜆𝑘

𝐿
𝑘=1                                         (3.50) 

 

The patterns are analyzed first by calculating the number of independent loops 

using the Euler’s equation (eq.(3.47)), then their mobility is calculated using the eq. 

(3.50), finally the mobility is verified by the properties of structural group. “Structural 

(Assur) group: Smallest kinematic chain which when added to, or subtracted from, a 

mechanism results in a mechanism that has the same mobility as the original 

mechanism.” (IFToMM online dictionary). Basic elements of structural groups can be 

observed in figure 3.26. As one of the elements is added to a mechanism the mobility do 

not changes. 
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Figure 3.26. Element of structural group. 
(Source: Li & Dai, 2012, p. 2) 

 

The analysis starts with a double row of a six segmented pattern, then a single 

row is added for each step to understand the mobility of the pattern. Since the row is 

created with parameters, the pattern can grow in a single direction, so the pattern has 

only additional rows and not columns. The number of segments is a parameter that is 

specified by the designer to calculate all other parameters and even though it can be 

perceived as a change in the number of columns in a pattern, in this study it is not 

referred as such.   

 

3.1.3.1. Triangular Pattern 

 
In this section the mobility analysis is done first for a triangular pattern (h: max), 

with 6 segments and 5 segments. Multiple tables are presented to further understand the 

mobility calculations, and their kinematic diagrams. 

 

3.1.3.1.1. Six Segmented Pattern 

 
Double row: First the crease pattern with the numbers of panels is presented, and 

then the kinematic diagram with numbering for each link and joints are presented. As it 

can be observed from Figure 3.27, in a double row of a crease pattern there are twelve 

panels which can be considered as links. There are 14 joints for 12 links. 

The number of independent loops, 𝐿62 is calculated using eq. (3.47):      

L62 = 14 – 12 + 1 = 3, there are 3 loops for a double row triangular pattern. The first 

loop is a 4-bar spherical mechanism, and loops 2 and 3 are 6-bar spherical mechanisms. 

For all three loops 𝜆 = 3  because all the joints’ axis meet at a central point. The 
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mobility calculation for the double row pattern 𝑀62is made by substituting the number 

of joints and loops to eq. (3.50); 

For 14 revolute joints and three 𝜆 = 3  loops the mobility is equal to 5: 

M62 = 14 – (3 ∙ 3) = 5. 

 

Rigid origami deployable structures are often modeled with zero thickness and 

perfect hinges which causes a problem when an application is required. The material, 

which should stay stable during the folding process requires to have a thickness which 

may change the panel’s dimensions or the placement of the hinges (Figure 2.33(b)) or 

the joints’ properties like in Figure 2.33f where the joints are rolling joints not hinges 

(Cai, 2016c). Tachi’s study about thick origami (Tachi, 2011) presented two flat-

foldable models: the axis-shift method (Figure 2.33(b)) where the joints were placed in 

different locations and tapered method (Figure 2.33(c)) where the material geometry 

have been tapered so that the mechanism closes. Edmondson et al. also proposed two 

other methods to compensate the thickness problem in rigid origami structures (Figure 

2.33(d)(e)).  

 

 

 
 
Figure 3.27.  Triangular double row semicircle arch r:3 n:6 Ω:180° (a) crease pattern (b) 

kinematic diagram. 
 

The result can be verified by the properties of structural group; a loops of a 4-bar 

mechanism has a mobility of 1. To preserve the mobility when a second loop is added, 2 

more links need to be added because it is a loop of  𝜆 = 3. But as it can be observed in 

Figure 3.27, the second loop introduces 4 new links, because only 2 new links were 

sufficient, the additional 2 links increases the mobility to 3. Then a third loop adds 4 
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new links to the structural group, again increasing the mobility by 2 to 5. Thus the 

equation is verified.  

 

3 Rows: A third row is added to the double row crease pattern, which means that 

6 new links and 9 new joints are added to the mechanism, up to 18 links and 23 joints 

(Figure 3.28). Three new loops are also added with a new row, calculated using eq. 

(3.47): L63 = 23 – 18 + 1 = 6. With the third row, two 6-bar spherical loop and one 4-bar 

loop are added. The mobility calculation for a 3-row six segments pattern 𝑀63 is 

calculated using eq. (3.50): M63 = 23 – (6 ∙ 3) = 5. For 23 joints and six 𝜆 = 3 loops the 

mobility is again equal to 5. 

The mobility does not change when a new row is introduced to the mechanism. 

As stated before, to preserve the mobility within a structural group of 𝜆 = 3, 2 new 

links need to be added (Figure 3.28). The 4th loop introduces 2 more links [17 and 18] 

which preserves the mobility. The 5th loop introduces again 2 more links and not 4 more 

links like in the double row because the links 9, 10, 11 and 17 are already part of the 

structural group; so the mobility is again preserved. The last loop, like the 5th loop adds 

2 more links [13 and 14] which preserve the mobility. Even after a new row is 

introduced, the mobility is still equal to 5.  

 

 
 

Figure 3.28.  Triangular 3-row semicircle arch r:3 n:6 Ω:180° (a) crease pattern (b) 
kinematic diagram. 

 

4 Rows: One more row is added to the 3-row pattern, that is again 6 new links 

and 9 new joints are added to the mechanism, increasing the number of joints to 32 and 
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the number of links to 24 (Figure 3.29). 3 new loops are added to the mechanism 

increasing the total number of loops to 9: L64 = 32 – 24 + 1 = 9. 

The mobility is still equal to 5: M64 = 32 – (9 ∙ 3) = 5.  after a new row is added, 

making a 4-row pattern. 7th loop adds two more links [19 and 20] to the mechanism 

preserving the mobility. The 8th and 9th loops also added 2 new links each; links 21 and 

22 for the 8th loop, and links 23 and 24 for the 9th loop. The properties of structural 

groups confirms the calculations. 

For a pattern with 6 segments each time a row is added, the mobility is constant 

and equal to 5. Each row adds 6 new links, 9 new joints, and 3 new loops with 𝜆 = 3 

spherical loops. (Table 3.6). 

 

 
 

Figure 3.29. Triangular four rows semicircle arch r:3 n:6 Ω:180° (a) crease pattern                    
(b) kinematic diagram. 

 

3.1.3.1.2. Five Segmented Pattern 

 
Double row: Patterns created by 5 segments and 6 segments are compared to 

understand the difference in their mobility values. In double row the six segmented 

pattern have a 4-bar loop and two 6-bar loops, and as it has been stated with each row a 

4-bar loop and two 6-bar loops are added. In double row, the 5 segments pattern has 

three loops, as the 6 segmented pattern, but they are composed of two 4-bar loops and 
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one 6-bar loop (Figure 3.30): L52 = 12 – 10 + 1 = 3, which creates the difference 

between the numbers of joints and links. The mobility is equal to 3: M52 = 12 – (3 ∙ 3) = 5. 

The result can again be verified by the properties of structural group: a loop of a 

4-bar mechanism has a mobility of 1. When a 2nd loop, a 6-bar loop, is added 2 

additional links are introduced to the structural group which changes the mobility to 3. 

Till here the calculations are the same as the 6-segment double row. But when a 3rd loop 

added to the mechanism the mobility is preserved because only 2 new links are added [5 

and 10] (Figure 3.30). The mobility of a 5- segments double row triangular pattern is 

equal to 3. 

 

 

 
 

Figure 3.30.  Triangular double row semicircle arch r:3 n:5 Ω:180° (a) crease pattern     
(b) kinematic diagram. 

 

3 Rows: When  a third row is added, instead of adding one 6-bar loop and two 4-

bar loops, following the same logic observed in 6-segment pattern, a new row only adds 

two 6-bar loops. A 5 segments pattern with three rows has 5 loops, L53 = 19 –

 15 + 1 = 5, while the 6 segments pattern have 6 loops (Figure 3.31). 

The 4th loop adds 3 new links. Two links [14 and 15] are required to preserve the 

mobility thus one link [13] is additional and increases the mobility to 4. The 5th loop 

adds two new links [11 and 12] therefore preserve the mobility equal to 4: M53 = 19 –

 (5 ∙ 3) = 4. 
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Figure 3.31.  Triangular three rows semicircle arch r:3 n:5 Ω:180° (a) crease pattern           

(b) kinematic diagram. 
 

4 Rows: the 4th row adds 3 more loops to the mechanism. It adds two more 4-bar 

loops and a 6-bar loop adding up a total of 5 new links and 8 new joints (Figure 3.32). 

There are 8 loops calculated using eq. (3.47): L54 = 27 – 20 + 1 = 8 and the mobility is 

equal to 3: M54 = 27 – (8 ∙ 3) = 3.  

The 6th loop adds two new links [16 and 17] preserving the mobility equal to 4. 

The 7th loop adds two links [18 and 19] therefore preserve the mobility. The 8th loop 

adds only one new link [20] which is one less link then required to preserve the mobility, 

thus the mobility decreases by one, making the mobility equal to 3. Therefore, the result 

of the equation is verified.  
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Figure 3.32.  Triangular four rows semicircle arch r:3 n:5 Ω:180° (a) crease pattern (b) 
kinematic diagram. 

 

The approximation of the arch is defined by the number of the segments n, it is 

divided, thus the mobility analysis has been extended to observe if there are differences 

when the segment number changes. As it can be observed in table 3.6 when the segment 

number is an odd number the mobility changes and it is not constant when there is an 

even numbered segments. 

Table 3.6 presents the mobility calculations of patterns with different segments. 

When patterns with 6 and 4 segments are analyzed in the Table 3.6 it can be deducted 

that pattern with even number of segments the mobility is constantly preserved with 

each row. But when patterns with odd number of segments are analyzed it can be 

observed that the mobility is irregular. The irregularity have an order depending on the 

number of rows.  
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Table 3.6. Single centered triangular pattern mobility analysis with different number of 
segments and rows. 

 

 

3.1.3.2. Trapezoidal Pattern 

 
In this section trapezoidal pattern (h: 0.1m) created for a rigid foldable 

semicircle cross-sectioned barrel vault are analyzed. Six segmented crease pattern is 

analyzed; because the model tears during the folding process a different analysis has 

been conducted as an attempt to modify the pattern along with each row’s analysis. The 

analysis for an odd number of segments has not been presented because mobility 

calculations showed that there was no significant difference with the analysis of the 

r:3 Ω:180 h: max  Triangular Pattern 
# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:3 

# links 6 9 12 15 18 (+3) 

# joints 7 11 16 20 25 (+4) to odd  
(+5) to even 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+1) to odd  

(+2) to even 2 2 0 3 3 0 5 5 0 6 6 0 8 8 0 

M 1 2 1 2 1 (+1) to odd  
(-1) to even 

n:4 

# links 8 12 16 20 24 (+4) 

# joints 9 15 21 27 33 (+6) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+2) 
2 2 0 4 4 0 6 6 0 8 8 0 10 10 0 

M 3 3 3 3 3 0 

n:5 

# links 10 15 20 25 30 (+5) 

# joints 12 19 27 34 42 (+7) to odd  
(+8) to even 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+2) to odd  

(+3) to even 3 3 0 5 5 0 8 8 0 10 10 0 13 13 0 

M 3 4 3 4 3 (+1) to odd  
(-1) to even 

n:6 

# links 12 18 24 30 36 (+6) 
# joints 14 23 32 41 50 (+9) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+3) 
3 3 0 6 6 0 9 9 0 12 12 0 15 15 0 

M 5 5 5 5 5 0 

n:7 

# links 14 21 28 35 42 (+7) 

# joints 17 27 38 48 59 (+10) to odd  
(+11) to even 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+3) to odd  

(+4) to even 4 4 0 7 7 0 11 11 0 14 14 0 18 18 0 

M 5 6 5 6 5 (+1) to odd  
(-1) to even 
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triangular pattern. But for a deeper understanding of mobility in trapezoidal patterns a 

table has been presented with different number of segments. 

 

Double row: The number of links is equal to the triangular pattern but the 

number of joints increase from 14 to 16 (Figure 3.33). The number of loops, 𝐿62𝑇 for 

the trapezoidal pattern is calculated using eq. (3.47): L62T = 16 – 12 + 1 = 5, so for a 

double row trapezoidal pattern there are 5 loops. All loops are 4-bar spherical loops, 

because all the joints axis meet at a central point for all five loops, 𝜆 = 3.    

 

 
 

Figure 3.33.  Trapezoidal double row semicircle arch r:2 n:6 Ω:180° (a) crease pattern 
(b) kinematic diagram. 

 

The result can be verified by the properties of the structural group, a loop of a 4-

bar linkage has a mobility of 1: M62T = 16 – (5 ∙ 3) = 1. When a 2nd loop is added to 

preserve the mobility, 2 more links need to be added because it is a loop of  𝜆 = 3. Each 

new loop add 2 additional links thus the mobility does not change and the equation is 

verified. 

Joints where tears appeared during the folding process of the physical model 

have been removed. Joints 8 and 10 are removed from the mechanism, creating a 

mechanism with 3 loops (Figure 3.34). The new loops’ subspace number needs to be 

calculated using the eq. (3.48), where two 𝜆 = 3  mechanism are joined: 

λ = (3 + 3) + (1 – 2) = 5. 
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Figure 3.34. Modified Trapezoidal double row semicircle arch r:2 n:6 Ω:180° pattern 

kinematic diagram. 
 

The new loop B is created by the combination of loops 2 and 3 and its subspace 

number is 𝜆 = 5. The second new loop C is a combination of loops 4 and 5 and its 

subspace number is as calculated 𝜆 = 5. The new obtained 6-bar loop is called the 

double spherical linkage (Bennett, 1905). 

For a double row modified pattern the mobility is equal to 1 when calculated 

using eq. (3.50): M62TM = 16 – ((1 ∙ 3) + (2 ∙ 5)) = 1. 

The removal of these joints does not modify the mobility of the pattern. The 

properties of the structural group need to be reanalyzed since the modified mechanism 

is a mixture of 𝜆 = 3 and 𝜆 = 5  loops. The 1st loop A is a 𝜆 = 3  4-bar loop with 

mobility 1. To preserve the mobility with loops that have 𝜆 = 5 a structural group with 

4 new links is required. So, the mobility is preserved because the new loop B introduces 

4 new links [3, 4, 10, and 9] to the structural group. The last loop C also introduces 4 

new links [5, 6, 12, and 11] again preserving the mobility as 1.  

 

3 Rows: A third row is added to the double row crease pattern, that means 6 new 

links and 11 new joints are added to the mechanism. As it can be observed the 

additional row adds 5 more loops (Figure 3.35).  

There are 10 loops: L63T = 27 – 18 + 1 = 10. 

The double row’s mobility is equal to 1 as calculated, but with an additional row 

the mobility decreased to -3: M63T = 27 – (10 ∙ 3) = -3. The structural group properties 

need to be analyzed to understand the new value of mobility. The 6th loop is added with 

2 new links [18 and 17] preserving the mobility. The 7th loop only adds 1 new link to 

the structural group which decreases the mobility to 0. Each of the following loops, that 

is the 8th, 9th and 10th; introduce 1 new link instead of 2 new links each, which decreased 

the mobility to -3, creating an overconstrained mechanism. 
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Figure 3.35.  Trapezoidal three rows semicircle arch r:2 n:6 Ω:180° (a) crease pattern 
(b) kinematic diagram. 

 

 
 
Figure 3.36.  Modified Trapezoidal three rows semicircle arch r:2 n:6 Ω:180° pattern 

kinematic diagram. 
 

As it was with the double row pattern some creases tear during the folding 

process of the model. Additional to the joints [8 and 10] removed before, the joints 18 

and 20 are also removed from the mechanism. This creates a total of 6 loops in the 

mechanism instead of 10, but as before, when the specified joints are removed the loops’ 

[B, C, F, and E] subspace number becomes 𝜆 = 5 instead of  𝜆 = 3, calculated with the 

eq. (3.48). (Figure 3.36) 

The mobility of the modified pattern is equal: M63TM = 23 – ((2 ∙ 3) + (4 ∙ 5)) = -3. 

The value of the mobility does not change from the original trapezoid pattern. 

When the structural group is analyzed the additional loop D has a 𝜆 = 3 subspace which 

requires additional 2 links to preserve the mobility which is satisfied by the addition of 

links 18 and 17. On the other hand the loops E and F have 𝜆 = 5 and as stated before 

for such mechanisms, additional 4 links are required to preserve mobility. Both loop E 
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and loop F adds 2 links each [15 and 16 for loop E, 13 and 14 for loop F], instead of 

adding 4 links each which decreases the mobility to -3, confirming the equation. 

 

4 Rows: One new row is added to the 3-row pattern, which adds 6 new links and 

11 new joints to the mechanism. As it can be observed, the addition row adds 5 new 

loops that are 4-bar spherical loops (Figure 3.37). 

The 3-row pattern had 10 loops: and -3 mobility, the new loop introduced to the 

structural group, loop number 11, adds 2 new links [19 and 20]. The number of loops is 

15: L64T = 38 – 24 + 1 = 15, and mobility is equal to -7: M64T = 38 – (15 ∙ 3) = -7. After 

this loop each loops add 1 new link instead of 2 new links to the structural group, thus 

the value of the mobility became; -7, same value calculated as 𝑀64𝑇 . 

The joints removed from this pattern are joints; 8, 10, 18, 20, 30, and 32. By 

their removal the number of loops decreases to 9 (Figure 3.38). The new loops B, C, F, 

E, H and I are 𝜆 = 5 mechanisms (Table 3.8). 

The mobility of the modified pattern is equal: M64TM = 32 – ((3 ∙ 3) + (6 ∙ 5)) = -7. 

 

 
 
Figure 3.37.  Trapezoidal four rows semicircle arch r:2 n:6 Ω:180° (a) crease pattern (b) 

kinematic diagram. 
 

The first loop G added with the 4th row has a 𝜆 = 3 subspace, adds 2 new links 

[19 and 20], thus preserve the mobility equal to -3. The second loop H, required to add 

4 new links to the structural group because it is a 𝜆 = 5 loop, only adds 2 new links [21 

and 22]. The last loop I, which has the same properties as the previous loop, also adds 
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only 2 new links to the structural group. As a total the structural group lacks 4 links, 

which decreases the mobility by four, making the value -7, as calculated. 

 

 
 

Figure 3.38.  Modified Trapezoidal four rows semicircle arch r:2 n:6 Ω:180° pattern 
kinematic diagram. 

 

Table 3.7 presents calculations for a trapezoidal pattern with different number of 

segment. As it can be observed there are no differences between even and odd 

numbered segment numbers as it was in the triangular pattern. Except the double row 

pattern all other pattern’s mobility changes with each additional segment introduced to 

the mechanism. But during the folding process of the trapezoidal pattern tear from some 

of the joints, while the removal of the joints did not change the value of mobility it 

changed the kinematic properties of the pattern.  

As a conclusion there are differences between the mobility value of even and 

odd numbered segmented triangular patterns. The mobility values has been compared to 

a structural group analysis revealing the same value of mobility. The modified trapezoid 

pattern’s joint and link numbers (Table 3.8) are the same as the triangular pattern’s 

values (Table 3.7), but the comparison between the kinematic diagrams of the 

trapezoidal and triangular patterns reveals that the subspace’s numbers are different 

resulting in varied mobility. Lastly the joints removed from the trapezoidal patterns are 

the ones that tear during the model folding. The tear creases showed a similarity which 

suggest that the tearing did not occur randomly but, because no mobility changes have 

occurred it can be assumed that the cause for these tears were the thickness in the 

material. All tear appeared on the short creases forcing the pattern to be a 6-bar 

spherical loop pattern rather than a 4-bar spherical loop pattern.  
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Table 3.7.  Single centered trapezoidal pattern mobility analysis with different number 
of segments and rows. 

 
r:3 Ω:180 Semicircle  h < MAX  Trapezoidal pattern 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased 
by 

n:3 

# links 6 9 12 15 18 (+3) 

# joints 7 12 17 22 27 (+5) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+2) 
2 2 0 4 4 0 6 6 0 8 8 0 10 10 0 

M 1 0 -1 -2 -3 (-1) 

n:4 

# links 8 12 16 20 24 (+4) 

# joints 10 17 24 31 38 (+7) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+3) 
3 3 0 6 6 0 9 9 0 12 12 0 15 15 0 

M 1 -1 -3 -5 -7 (-2) 

n:5 

# links 10 15 20 25 30 (+5) 

# joints 13 22 31 40 49 (+9) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+4) 
4 4 0 8 8 0 12 12 0 16 16 0 20 20 0 

M 1 -2 -5 -8 -11 (-3) 

n:6 

# links 12 18 24 30 36 (+6) 

# joints 16 27 38 49 60 (+11) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+5) 
5 5 0 10 10 0 15 15 0 20 20 0 25 25 0 

M 1 -3 -7 -11 -15 (-4) 

n:7 

# links 14 21 28 35 42 (+7) 

# joints 19 32 45 58 71 (+13) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+6) 
6 6 0 12 12 0 18 18 0 24 24 0 30 30 0 

M 1 -4 -9 -14 -19 (-5) 
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Table 3.8.  Single centered modified trapezoidal pattern mobility analysis with different 
number of segments and rows. 

 
r:3 Ω:180 Semicircle  h < MAX  Trapezoidal pattern -MODIFIED 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:3 

# links 6 9 12 15 18 (+3) 

# joints 7 11 16 20 25 (+4) to odd  
(+5) to even 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 (+1) to odd  

(+2) to even 2 2 0 3 2 1 5 4 1 6 4 2 8 6 2 

M 1 0 -1 -2 -3 (-1) 

n:4 

# links 8 12 16 20 24 (+4) 

# joints 9 15 21 27 33 (+6) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+2) 
2 1 1 4 2 2 6 3 3 8 4 4 10 5 5 

M 1 -1 -3 -5 -7 (-2) 

n:5 

# links 10 15 20 25 30 (+5) 

# joints 12 19 27 34 42 (+7) to odd  
(+8) to even 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 (+2) to odd  

(+3) to even 3 2 1 5 3 2 8 4 4 10 4 6 13 6 7 

M 1 0 -5 -8 -11 (-3) 

n:6 

# links 12 18 24 30 36 (+6) 

# joints 14 23 32 41 50 (+9) 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 

(+3) 
3 1 2 6 2 4 9 3 6 12 4 8 15 5 10 

M 1 -3 -7 -11 -15 (-4) 

n:7 

# links 14 21 28 35 42 (+7) 

# joints 17 27 38 48 59 
(+10) to odd  

(+11) to 
even 

# loops 
Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 Total λ=3 λ=5 (+3) to odd  

(+4) to even 4 2 2 7 2 5 11 4 7 14 4 10 18 6 12 

M 1 -4 -9 -14 -19 (-5) 

 

3.1.4. Conclusion 

 
For a designer it is fundamental to be able to manipulate all the parameters while 

designing.  In this part of the study parameters for creating a single centered rigid 

origami foldable barrel vault has been presented. The parameters that can be defined by 

the designer are the radius, r, the number of segment, n which defines the 

approximation of the form, and the central angle Ω which defines whether the cross-
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section is a semicircle or horseshoe arch. These parameters defined, the designer can 

create an MV-Pattern based on the calculations presented on the geometrical properties. 

The designer can also control the foldable structure’s movement using the calculations 

on both the geometrical properties and workspace analysis. There are limitations while 

creating the MV-Pattern; the height of the pattern h cannot surpass the calculated value, 

otherwise the diagonals created based on the fold angle, α will crisscross, which will 

lead to a failed pattern. But the height of a single row h can be less than the calculated 

value creating a trapezoidal pattern instead of a triangular pattern. Height, span, and 

depth calculations are in relation with the inclination angle σ which facilitate the 

understanding of the motion of the rigid origami foldable barrel vault. The depth 

calculations do not differs if the number of segment n is an even or odd number, but the 

span and height calculations are different for each, which has been presented in the 

workspace analysis. Because the span and height calculations are based on the 

geometrical properties of the pattern-generator the calculation method do not changes 

when the MV-Pattern is a triangular one or trapezoidal one. A calculation sheet has 

been prepared in Microsoft Excel 2013® to facilitate the calculations is presented in 

Appendix A. Mobility calculations present differences for a triangular pattern when the 

number of segments are even or odd. Trapezoidal patterns tear during the folding of the 

physical model which has been analyzed and results demonstrated that removing those 

specific joints did not changed the mobility. For all three mobility calculation (tables 3.6, 

3.7, and 3.8) a set of patterns and kinematic diagrams have been provided in Appendix 

B.  

 

3.2. Double Centered Barrel Vaults 

 
Double centered arches are created by the intersection of two arcs’ cross section. 

There are different types of double centered arches but in this study only the pointed 

equilateral, lancet, and obtuse arch types are analyzed. The difference between these 

arches is defined by the relation between the radii of the arcs r and the distance between 

centers of the arcs a. 

In this section the final folded state of the double centered rigid origami barrel 

vault structure is analyzed first, then the geometrical properties of the partially folded 
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state. The section continues with a workspace analysis and finishes with mobility 

analyzes of the pattern created using the defined parameters. 

 

3.2.1. Geometrical Properties 

 
This section present the geometrical properties of double centered arches and the 

creation of a MV-Pattern using these parameters. Using the reverse engineering, first 

the final folded state of the pattern, followed by the partially folded state, and lastly the 

initial state is analyzed. Then the creation of an MV-Pattern is explained based on the 

presented parameters. 

 

3.2.1.1. Final Folded State 

 
The creation of a double centered folded plate structure starts by defining three 

parameters: the distance between the centers of two arcs a, the radius r, and the number 

of segment n for a single arc. Figure 3.39 represents the parameters for all three types of 

double centered arches: (a) pointed equilateral arch, (b) lancet, and (c) obtuse arch. As 

the number of segments increases an approximation to the curved shaped of the arches 

is achieved, as it is for the single centered foldable barrel vaults. 

Parameters required to create a double centered rigid origami barrel vault MV-

Pattern are: length of pattern-generator st, folding angle α, and the angle λ. First step to 

be able to create a crease pattern is to define the values of the parameters; a the distance 

between the center points, r the radius of arcs and n the number of segment for a single 

arc which in turn multiplied by 2 gives the total number of segments nt. While defining 

theses parameters some properties of these arches need to be defined: 

 If the required cross sectioned of the barrel vault is an equilateral arch: r = a 

 If the required cross sectioned of the barrel vault is an obtuse arch: r > a 

 If the required cross sectioned of the barrel vault is a lancet arch: (a/2) < r < a.  

In case of the Lancet arch the radius r has higher and lower value limits 

depending on the distance between the two centers a. If the distance between the centers 

a is more than 2r the arcs do not intersect thus no arch is created. The parameter b is the 

distance between r and a, it is required to calculate the distance between the edges of 

the pattern, and it is calculated using eq. (3.51). 
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Figure 3.39. Parameters for (a) Pointed Equilateral arch, (b) Lancet arch, and (c) 
Obtuse arch. Bold dashed lines: pattern-generators. 
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𝑏 = |𝑟 − 𝑎|                                                    (3.51) 

 

After defining these three parameters, the first step to be able to calculate the 

other parameters is to calculate the angle 𝐴̂ using eq. (3.52). 

 

𝐴̂ =  cos−1 (
𝑎

2𝑟
)                                               (3.52) 

 

Then the segments’ angle θ is calculated using the angle 𝐴̂ with eq. (3.53). 

 

𝜃 =
𝐴

𝑛
                                                         (3.53) 

 

The length of the segment s and the pattern-generator’s length st is calculated 

using the same eqs. (3.2) and (3.3) as in the single centered arches calculations.  

Angles 𝐵̂, 𝐶̂, and 𝐷̂, need to be calculated to be able to calculated the folding 

angles α and interior angles β using the following equations: 

 

𝐵̂ =  𝜋 − 2𝐴̂                                                  (3.54) 

𝐶̂ = (
𝜋−𝜃

2
)                                                    (3.55) 

𝐷̂ = 𝐶̂ − 𝐵̂                                                    (3.56) 

 

The angle 𝐷̂, in case of a lancet arch, can have a minus sign which means that 

the line between the center points and the apex is passing outside the pattern-generator 

line (Figure 3.40). In Figure 3.40(a) the angle 𝐷̂  has a positive value but in Figure 

3.40(b) a negative one. 

 

 
 

Figure 3.40. Different lancet arches. 
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If Figure 3.39 is analyzed in contrast to single centered arches there are two 

different interior angles β1 and β2. The interior angle β2 is the angle of the apex, and the 

angle β1 is the other interior angle of the pattern-generator. The interior angles β1 and 

β2 are calculated using eqs. (3.57) and (3.58), respectively.  

 

𝛽1 = 2𝐶̂                                                      (3.57) 

𝛽2 = 𝐵̂ + 2𝐷̂                                                  (3.58) 

 

Different interior angles signifies that there are two different folding angles 

corresponding to these angles calculated using eq. (3.59) for the folding angle α1 and eq. 

(3.60) for the apex’s folding angle α2. 

 

𝛼1 =
𝜋−𝛽1

2
                                                    (3.59) 

𝛼2 =
𝜋−𝛽2

2
                                                    (3.60) 

 

The edge angle λ is equal to the angle 𝐶̂.  

 

𝜆 = 𝐶̂                                                        (3.61) 

 

And last values to be calculated are the half-row’s height h and the total height 

of the row 2h. Two different folding angles means two different half-row heights: h1 

calculated with the folding angle α1 (eq. (3.62)) and h2 calculated with the folding angle 

α2 (eq. (3.63)). 

 

ℎ1 = 𝑡𝑎𝑛𝛼1 (
𝑠

2
)                                                (3.62) 

ℎ2 = 𝑡𝑎𝑛𝛼2 (
𝑠

2
)                                               (3.63) 

 

Only one of the half-row height can be used for the crease pattern. The smallest 

value between h1 or h2 should be used if the bigger value is selected then the diagonal 

lines created by the smallest folding angle will crisscross within the height of the single 

row. 
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All the parameters required to draw a crease pattern has been demonstrated. 

Figure 3.41 demonstrates how parameters should be applied to draw a single row of a 

CP for a double centered foldable barrel vault.  

 

 
Figure 3.41. Single row crease pattern and the parameters for six segmented pointed 

equilateral arch. 
 

3.2.1.2. Partially Folded State 

 
The second step is the geometrical properties of the partially folded state of 

double centered foldable barrel vault. This section presents the relation between the 

parameters while the structure moves from the initial state to its final folded state. The 

geometrical relations between the folding angle α and inclination angle σ with the 

bending angle μ have been demonstrated on the previous section for both type of 

vertexes; 𝑣4 and 𝑣6  with eqs. (3.19) and (3.18). In double centered cross-section 

foldable barrel vault structures there are two different folding angles α1 and α2 which 

demand a modification to the previous equations.  

For double centered cross-sectioned vaults the number of pattern-generator’s 

vertexes are not equal to the number of vertexes of the pattern as it was in the single 

centered cross-sectioned vaults (Figure 3.41). Except from vertexes v4 and v5 all others 

are created using the folding angle α1. Only the vertexes v2 and v7 are degree-6 vertexes 

v6 and all other angles are degree-4 vertexes v4. 

The vertexes  𝑣4
4 and  𝑣5

4 are created using the folding angle α2 because this type 

of arches are created using two arcs making an apex point on the general cross-section 

which is different from the regular cross-section of single centered barrel vaults. 

Firstly the degree-4 vertex equations are presented by modifying eq. (3.19) with 

the correct folding angle parameters. The vertexes 𝑣1
4, 𝑣3

4, 𝑣6
4 and  𝑣8

4 are created using 

the folding angle α1 thus the equation for these vertexes’ bending angle λ’ is: 

 

𝜆′ = 𝜋 − 2 tan−1(sin 𝜎 ∙ tan 𝛼1)                                (3.64) 
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The vertexes 𝑣4
4  and  𝑣5

4 are created using a different folding angle α2, thus their 

bending angle μ2 is denoted differently in the following equation.  

 

𝜇2 = 𝜋 − 2 tan−1(sin 𝜎 ∙ tan 𝛼2)                             (3.65) 

 

Then the bending angle μ1 for the vertexes 𝑣2
6 and  𝑣7

6  is: 

 

𝜇1 = 𝜋 − 4 tan−1(sin 𝜎 ∙ tan 𝛼1)                             (3.66) 

 

As it can be observed in the Figure 3.42 the apex is constituted by two vertexes 𝑣4
4 

and 𝑣5
4 , this condition do not changes when the number of segment n changes because 

the cross-section is constituted by two arcs. When the segment number n is increased or 

decreased only the number of v6 changes, the geometrical properties of v4 do not changes. 

The apex will always be surrounded by four v4, the closest ones, in this example (Figure 

3.42) 𝑣4
4 and  𝑣5

4, are created using the folding angle α2 and the other two, 𝑣3
4 and 𝑣6

4, are 

created using folding angle α1. And the first and last angles will always be v4, so when the 

number of segment increases only the number of v6 will increase. 

 

 
Figure 3.42.  (a) Elevation and (b) MV-Pattern of a six segmented obtuse arch, created 

using maximum value of h1. 
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Figure 3.43. Vertexes 𝑣1

4 ,𝑣2
6 , 𝑣3

4 and 𝑣4
4’s parameters. 

 

The relation of these three different bending angles with the inclination angle σ 

and dihedral angle φ do not differs. The maximum and minimum values for these 

bending angles can be observed in Table 3.9. 

 

Table 3.9. Maximum and minimum values of the angles μ1, μ2, λ’, φ, and σ. 
 

angles Initial state (min) Final folded state (max) 
μ1 (𝒗𝟔 bending angle) π 𝜋 − 4𝛼1 
μ2 (𝒗𝟒 bending angle) π 𝜋 − 2𝛼2 
λ’ (𝒗𝟒 bending angle) π 𝜋 − 2𝛼1 

φ (dihedral angle) π 0 
σ (inclination angle) 0 𝜋 2⁄  

 

Figure 3.44 shows the relation between the inclination angle and all bending 

angles for an obtuse arch with 6 segments, a radius of 3 m, and a distance between the 

centers a equal to 2 m. As the inclination angle increases the bending angles decreases 

to reach their final folded state.  
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Figure 3.44.  Relation between bending angles and inclination angle σ for a nT: 6 r: 3 

a:2 obtuse arch. 
 

3.2.1.3. Initial State, MV-Pattern 

 
In this step a single row of CP will be created using the calculated parameters 

presented in the previous steps. The required parameters to draw a single chain for a 

double centered cross-sectioned barrel vault are the angle α1 and α2, the radius, r and a 

the distance between the two centers. Table 3.10 shows all the parameters calculated in 

the previous step for all three different types of double centered arches.  

First the pattern-generator is drawn based on the parameter sT, then two parallel 

lines A and B (Figure 3.45) are drawn to both side in a calculated equal distance h. In 

contrast to single centered arches, the double centered arches have two different height 

parameters h1 and h2 because there are two different folding angles α1 and α2. As 

explained on the previous step, the smallest value out of h1 and h2 need to be used so 

that there are no crisscrossing diagonal lines. The lowest value of half-row height also 

means the lowest value out of folding angles α1 and α2 because the parameters h is 

dependable on the folding angle. Analyzing Table 3.10 it can be observed that the 

lowest half-row value is h1. The row height 2h required to create the CP is the value of 

h1 multiplied by 2. As it was with the single centered barrel vaults, the use of the 

maximum value of 2h1 creates a triangular pattern and if a lesser value is used the CP 

becomes a trapezoidal pattern.  
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Table 3.10. Parameters for Obtuse, Pointed Equilateral, and Lancet arches. 
 

 r (m) a (m) n θ° s (m) st (m) 𝐴̂° 

Obtuse 3 2 3 23,51 1,222 7,33 70,52 

Equilateral 3 3 3 20 1,047 6,25 60 

Lancet 3 4 3 16,06 0,838 5,02 48,18 

 𝐵̂° 𝐶̂° 𝐷̂° β1° β2° α1° α2° 

Obtuse 38,94 78,24 39,30 156,49 117,54 11,75 31,22 

Equilateral 60 80 20 160 100 10 40 

Lancet 83,62 81,96 -1,65 163,93 80,31 8,03 49,84 

 λ° b (m) h1 (m) h2 (m) 2h (m) nT  

Obtuse 78,24 1 0,127 0,370 0,254 6  

Equilateral 80 0 0,091 0,437 0,183 6  

Lancet 81,96 1 0,059 0,496 0,118 6  

 

The first two diagonals [1 and 2] are placed on the intersection points of the 

pattern-generator using the value of the folding angle α1. Then the 3rd diagonal is placed 

using the folding angle α2, then the following two lines [4 and 5] are placed. All five 

diagonals should be on opposite directions to each other to be able to create a convex 

form when the CP is folded (Figure 3.45). Lastly the edge diagonals are placed using 

the edge angle λ parameter given by eq. (3.61).  

 

 
 

Figure 3.45. Unfolded crease pattern for the six segmented obtuse arch. 
 

The creation of the pattern from a row is done by simple congruence 

transformation, reflection by line B which creates the first double row, then the double 

row is translated as many times as needed in y-direction (Figures 3.46 and 3.47). 

The created CP need an MV-Assignment which will turn it into a MV-Pattern. 

The MV-Assignment is done by following Maekawa’s theorem. For both Figures 3.46 

and 3.47 the full lines are mountain folds and the dashed lines are valley folds. 

The triangular pattern (Figure 3.46) created using the maximum value of 2h1 

have a variety of vertexes because of the use of different folding angles on its creation 

due to the geometrical shape selected as a cross-section. There are 8 vertexes: two are v6 
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and six are v4. The number of v4 do not changes as the number of segment increases, 

only the number of v6 increases, as it was in the triangular pattern of a single circled 

barrel vault pattern.  

 

Table 3.11. Number of vertexes on triangular patterns. 
 

nT 𝒗𝟒 𝒗𝟔 v total 
4 6 0 6 
6 6 2 8 
8 6 4 10 

10 6 6 12 
 

As it can be observed the number of segments nT is always an even number 

because the division of segment n is done to only one of the arc then the number is 

multiplied by 2 to calculate the segment number nT for the whole cross-section. The 

designer should take this property into account while deciding the segment number n.  

 

 
 

Figure 3.46.  MV-Pattern created by using maximum value of h for a nT: 6, obtuse arch. 
Triangular pattern. 

 

As it was with the single centered barrel vaults, the use of the maximum value of 

2h1 creates a triangular pattern and if a lesser value is used the CP becomes a 

trapezoidal pattern. The trapezoidal pattern (Figure 3.47) has been created using a lower 

value than the maximum value resulting only in v4 type vertexes (Table 3.12), as it was 

for the single centered trapezoidal pattern. 

 

Table 3.12. Number of vertexes on trapezoidal patterns. 
 

n 𝒗𝟒 𝒗𝟔 v total 
4 6 0 6 
6 8 0 8 
8 10 0 10 

10 12 0 12 
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Figure 3.47.  MV-Pattern created by using value of h as 0,08 m for a nT: 6, obtuse arch. 

Triangular pattern. 
 

3.2.1.4. Conclusion 

 
In this section the limitations used while creating a double centered barrel vault 

have been discussed. As it is for the single centered barrel vault structures, some 

parameters need to be specified by the designer for the double centered barrel vaults. 

These parameters are the radius r, the distance between the two center points, a, of the arc 

constituting the cross-section, and the number of segments n. The number of segment n is 

the number of segments for only one of the arc, the value then is multiplied by two to 

obtain the total number of segment nT. The properties of these parameters have been 

discussed alongside the rigid foldability of the patterns created using the method of 

creation. The rigid foldability of the created MV-Pattern has been tested on both Rigid 

Origami Simulator and Freeform Origami softwares created by Tachi (Tachi, 2009a; 

Tachi, 2009c). 

The process of transforming a CP into a MV-Pattern do not change between the 

double centered barrel vault types: pointed equilateral, lancet and obtuse. 

As it is in the single centered barrel vaults, if the structure needs to have a 

temporary stop point within the folding process the inclination angle σ can be specified 

which will give the height, span, and depth of the desired point. The edge angle λ need 

to be recalculated for this specific point, which is explained in the following section.  

Radius and the distance between centers: Whether the cross-section is a pointed 

equilateral arch, a lancet arch or an obtuse arch depends on the values attributed to the 

parameters r, radius and a, the distance between the two centers. The relations between 

these two parameters are listed below. 

For an equilateral arch:              r = a 

For an obtuse arch:                    r > a 

For a lancet arch:               (a/2) < r < a. 
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If the value attributed to r is more that 2a the arcs will not intersect, thus no 

cross-section will be created. It has been observed that as the distance between the 

centers increases the folding angle α1 becomes more acute, which decreases the height 

of a single row. 

Height of a single row: The double centered vaults possess two different half- 

row heights, h1 and h2 because of the geometry of the cross-section creating two 

different folding angle α1 and α2. The smallest value between the two heights need to be 

selected to be able to calculate the single row height 2h. Calculations showed that the 

smallest value is always h1 because the apex interior angle β2 is more acute than the 

interior angle β1 resulting in a bigger folding angle α2 than the folding angle α1 which in 

return result in a higher height value h2. To use the higher half-row value h2 will result 

in the crisscrossing of the diagonal lines created using the folding angle α1. Using the 

maximum value of 2h1 as the single row’s height will result in a triangular pattern, 

while the use of a smaller value than 2h1 will result in a trapezoidal pattern.  

Specific angle: The angle 𝐷̂ can have negative/minus sign: this is because the 

lancet arch’s radius lines from the centers to the apex are outside the pattern itself as it 

can be observed in Figure 3.40. 

All arch types’ trapezoidal and triangular MV-Patterns’ rigid foldability have 

been tested on Rigid Origami Simulator (Tachi, 2009c), all patterns created have folded 

without problems. Same patterns have been tested on the Freeform Origami software 

(Tachi, 2009a) in this software while all pattern flat-folded without deformation, the 

software suggested additional creases to the pattern created, which can be observed on 

Figures 3.48 and 3.49 as gray lines. 

When the suggested grey lines are applied to the triangular MV-Pattern the 

pattern become composed of v6, as it can be observed in the figure 3.50 while the 

dimensions do not change the edge form change both in form and geometry. 

Both trapezoidal and triangular MV-Patterns are developable and flat-foldable if 

the medium surface is assumed to have no thickness. Models using thick cardboard 

have been created to be able to understand the changes suggested by the Freeform 

Origami software. Models have showed that v4 do not flat folds without tearing the 

material while the v6 folds flat without resistance with axis-shift method (Figures 3.51) 
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Figure 3.48. Triangular pattern rigid origami obtuse barrel vault tested on Freeform-

Origami software (Tachi, 2009a). 
 

 

 
 
Figure 3.49. Trapezoidal pattern rigid origami obtuse barrel vault tested on Freeform-

Origami software (Tachi, 2009a). 
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Figure 3.50.  Rearranged triangular pattern rigid origami obtuse barrel vault tested on 
Freeform-Origami software (Tachi, 2009a). 

 
 

 
 
Figure 3.51.  Model of trapezoidal pattern (left) and triangular pattern (right) for an 

obtuse barrel vault. 
 

3.2.2. Workspace Analysis 

 
The workspace analysis for double centered rigid origami barrel vault is first 

carried out by analyzing the geometrical properties of the depth and then by the analysis 

of the span, height, and volume based on the cross-section. Translational and rotational 

motions were observed in all types of arches while folding. While the structure takes its 

final folded state its depth and span decreases, but the height increases, as it is with the 

single centered structures.  
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3.2.2.1. Depth 

 
The same geometrical relation exists between the properties of the double 

centered barrel vault and the single centered barrel vault, so eq. (3.29) for the depth 

calculation can be used with a small modification for these mechanism. As stated before 

the double centered mechanisms have two different folding angles α1 and α2 resulting in 

two different single row height h. So, as it was in the previous calculations the lowest 

value of single row’s height should be used, which is h1. This modification has been 

added to eq. (3.29) to calculate the depth of the double centered barrel vaults (eq. (3.67)). 

 

𝑇𝐷𝑙 = 2ℎ1 ∙ cos 𝜎 ∙ 𝑅𝑛                                             (3.67) 

 

The depth depend on the number of row 𝑅𝑛 the design requires, the single row’s 

height h1, and the inclination angle σ. As the inclination angle increases the depth 

decreases as it can be observed in figure 3.52. Figure 3.52 has been created for a double 

centered lancet arch with r: 3 m, n: 3, a:4 m, 2h1: 0,118 m, and 10 rows. 

 

 
 

Figure 3.52.  Relation between the inclination angles σ and the total depth, 𝑻𝑫𝒍 of a 10 
row double centered barrel vault pattern.  

 

3.2.2.2. Span and Height 

 
The span and height are affected by the cross-section of the type of arch. The span 

and height calculation are created by analyzing the geometrical properties of the pattern-

generator to understand parameters related to the deployment process. In double centered 
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arches, as it was in the single centered arches, the pattern-generator’s apex is considered 

fixed for the calculations. As the MV-Pattern folds from its initial state where inclination 

angle σ is equal to 0 (zero) to its final folded state where the inclination angle σ is equal to 

90°, the span and height changes in relation to this angle. In Figure 3.53 all types of arches 

pattern-generators have been demonstrated, with inclination angle values of 0°, 10°, 30°, 

50°, 70°, 90°, and the placement of each center during the folding motion.  

In Figure 3.54 parameters valid for all types of double centered arches can be 

observed on the drawing of the obtuse arch. The pattern-generator noted as 1 is the 

final folded state, and the pattern-generator noted as 2 is its position when the 

inclination angle is equal to 30°. 

 

 
 

Figure 3.53. Lancet, Pointed equilateral and Obtuse arches’ development with n:3 and nT:6. 
 

To be able to calculate the height H and span S the segments’ angles θ and δ 

values need to be in relation with the inclination angle σ. The relation of the angle δ 

with the inclination angle σ has already been explained in eq. (3.17). In double centered 

arches, as explained in the previous section, there are two types of folding angles α1 and 

α2 which created two different projected angle δ1 and δ2 which are defined by the 

following equations respectively: 
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𝛿1 = tan−1(sin 𝜎 ∙ tan 𝛼1)                                      (3.68) 

𝛿2 = tan−1(sin 𝜎 ∙ tan 𝛼2)                                      (3.69) 

 

Because both the span and height calculations are done using the pattern-

generator, the required angles to be able to calculate the segments’ angle θ are the 

interior angles β1d and β2d. The relation of the interior angles with the inclination angle 

σ is achieved by the following equations: 

 

𝛽1𝑑 = 𝜋 − 2𝛿1                                                (3.70) 

𝛽2𝑑 = 𝜋 − 2𝛿2                                                (3.71) 

 

 
 

Figure 3.54: Parameters for Obtuse arch’s pattern-generator with n:3 and nT:6. 
 

The segments’ angle that is changing during the deployment is subscribed as θd 

representing the value of the angle during the folding process. The segments’ angle is 

calculated using the following equation: 
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𝜃𝑑 = 𝜋 − 2 (
𝛽1𝑑

2
) = 𝜋 − 𝛽1𝑑                                       (3.72) 

 

If eq. (3.70) is substituted in eq. (3.72) the value of the segment’s angle during 

the deployment process θd can be put in relation with the projected angle δ1 (eq. (3.73)). 
 

𝜃𝑑 = 𝜋 − (𝜋 − 2𝛿1) = 2𝛿1                                        (3.73) 
 

Span: The span is calculated by adding each segment’s length projected to the x-

axis sd1 to each other starting from the apex; it is calculated by eq.(3.74). 
 

𝑠𝑑1 = 𝑠 ∙ cos(𝛿2 + 𝑖𝜃𝑑)                                           (3.74) 
 

The span is calculated with eq. (3.75) because the calculations are done starting 

from the apex to calculate the total span the sum of the projected segment’s length is 

multiplied by 2.  
 

𝑆 = 2𝑠(∑ cos(𝛿2 + 𝑖𝜃𝑑)𝑛−1
𝑖=0 )                                       (3.75) 

 

As the inclination angle σ decreases the span S increases as it can be observed in 

Figure 3.55. 

 

 
 
Figure 3.55.  Relation between the inclination angle σ and the span S of an obtuse arch 

r: 4 m, a: 2 m, and n: 3. 
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Height: the height H is calculated with the same method as the span (eq. (3.77)); 

by adding segment’s length sd2 projected to the z-axis (eq. (3.76)).  

 

𝑠𝑑2 = 𝑠 ∙ sin(𝛿2 + 𝑖𝜃𝑑)                                           (3.76) 

𝐻 = 𝑠(∑ sin(𝛿2 + 𝑖𝜃𝑑)𝑛−1
𝑖=0 )                                       (3.77) 

 

Where i is a series of number starting from 0 till (n-1) – n as the number of 

segments. Figure 3.56 shows that as the inclination angle σ increases so does the height 

H of the structure. 

 

 
  
Figure 3.56.  Relation between the inclination angle σ and the height H of an obtuse 

arch r: 4 m, a: 2 m, and n: 3. 
 

3.2.2.3. Volume 

 
The volume is calculated with the same method used in single centered arches; 

by multiplying the depth TDl with the cross-section area A. The cross-section area is 

calculated by adding two segments’ areas to area of the triangle created between the 

apex and the edges of the pattern-generator. The area are showed in Figure 3.57. The 

area of the triangle AT is calculated with eq. (3.78) where the parameters height H (eq. 

(3.77)) and span S (eq. (3.75)) are used. 

 

𝐴𝑇 =
𝑆∙𝐻

2
                                                      (3.78) 
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The segment area is calculated using the parameters radius rd and angle 𝑨̂d 

which are the values during the deployment process. The angle 𝑨̂ d is obtained by 

multiplying the deployment process segment’s angle θd with the number of segments n 

(eq.(3.79)). 

 

𝐴𝑑 = 𝑛 ∙ 𝜃𝑑                                                  (3.79) 

𝑟𝑑 =
𝑠

2 sin(
𝜃𝑑
2

)
                                               (3.80) 

 

Eq. 3.80 calculates the radius during the development process, it is the same 

equation as eq. (3.40) presented in the single centered barrel vault development radius. 

 

 
 

Figure 3.57. Double centered barrel vaults’ volume parameters. 
 

The segments’ area AS is calculated using the previous two parameters; eq. 

(3.81): 

 

𝐴𝑆 =
1

2
𝑟𝑑

2(A𝑑 − sin(A𝑑))                                       (3.81) 
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The cross-section area is calculated using the following equation where the 

triangle’s area AT is added to the sector area AS, which is multiplied by two because 

there are two arcs thus two sectors. 

 

𝐴 =
𝑆∙𝐻

2
+ 2 (

1

2
𝑟𝑑

2(A𝑑 − sin(A𝑑))) =
(𝑆∙𝐻)+2𝑟𝑑

2(A𝑑−sin(A𝑑))

2
            (3.82) 

 

The volume is calculated by multiplying the depth (eq. (3.67)) with the cross-

section area (eq. (3.82)). 

 

𝑉 = 𝑇𝐷𝑙 ∙ 𝐴𝑟𝑒𝑎                                                (3.83) 

 

A calculation sheet has been prepared in Microsoft Excel 2013® for all the 

parameters in both geometrical analysis and workspace analysis sections (Appendix C). 

Figure 3.58 represent the volume of an obtuse arch with n:3 r:4m and a:2m 

created with the volume equation (eq. (3.83)). As it can be observed the volume has a 

rapid increase till it reaches its peak around the 35° of inclination angle, then it slowly 

decreases to its final folded state, as it was in the single centered arches’ volume 

calculations. 

 

 
 

Figure 3.58.  Relation between the inclination angle σ and the volume V of an obtuse 
arch r: 4 m, a: 2 m, and n: 3. 

  

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

in
cl

in
at

io
n 

an
gl

e 
-σ

(°
)

Volume (m3)



109 
 

3.2.3. Mobility Analysis 

 
This section analyses the mobility of double centered arch types using the same 

method used in single centered arch types. The CP of different types of arches have the 

same properties, so this analysis is conducted on only one type of arch’s CP. The 

analysis starts with a double row of a six segmented obtuse arch CP, because the 

pattern’s segment number n is defined for only one arc composing the arch, and since 

the defined number is multiplied by 2 to have the total number of segment nT, it creates 

a CP with always an even numbered segments, thus no difference occurs to the mobility 

when n increases as it existed in the single centered arch’s CP. Since the CP can grow 

in a single direction the analysis will be conducted by adding 1 row to the previous one 

starting from a double row. Firstly, triangular patterns and their modified versions, and 

then trapezoidal patterns and their modified versions will be presented. 

The CP is analyzed first by calculating the number of independent loops using 

the Euler’s equation (eq.(3.47)), then their mobility is calculated using the modified 

version of the Freudenstein and Alizade’s mobility equation (eq.(3.49)), and finally the 

mobility is verified by the properties of structural groups.  

 

3.2.3.1. Triangular Patterns 

 
In this section the mobility analysis is conducted for a triangular pattern (h: max) 

with 6 segments. The analysis starts with a double row CP analysis followed by an 

attempt on modifying the pattern by removing joints based on the tears that appeared 

during the folding process of the physical model. The analysis continues by adding a 

single row each time to understand the changes occurring in the mobility. Multiple 

tables are presented concerning the mobility calculations at the end of the section.  

 

Double row: The panels of a rigid origami structures are considered as links. The 

number of links in this mechanism is 12, and the number of joints is 15 (Figure 3.59). The 

number of independent loops, 𝐿62is calculated using eq. (3.47) for a double row triangular 

pattern there are 4 loops: L642 = 15 – 12 + 1 = 4. The 1st loop is a 6-bar mechanism and all 

the remaining three loops are 4-bar mechanism. All four loops are 𝜆 = 3 because all joints’ 

axis meet at a central point. The mobility calculation for the double row pattern 𝑀62is made 
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by substituting the number of joints and loops to eq. (3.50). For 15 revolute joints and 4  

𝜆 = 3 loops, the mobility is equal to 3: M62 = 15 – (4 ∙ 3) = 3. 

 

 
 
Figure 3.59.  Triangular double row obtuse arch n:3 nT:6 (a) crease pattern (b) 

kinematic diagram. 
 

The result can be verified by the properties of structural groups: a loop of 4-bar 

spherical linkage has a mobility of 1. When a second loop is added to a 𝜆 = 3 

mechanism only 2 links are required to preserve the mobility. The 2nd and 3rd loops add 

2 new links each preserving the mobility equal to 1. The 4th loops also adds 4 new links 

[5, 6, 11, and 12] two of these links are additional links increasing the mobility by 2 to 3.   

During the folding process of the physical model some tears developed 

suggesting the mechanism has excessive joints. To analyse this, the joints where the 

tears appeared are removed and a modified kinematic diagram is created. In this case of 

the double row of double centered arch the joint 8 is removed from the mechanism 

(Figure 3.60). 

 

 
 

Figure 3.60. Modified triangular double row obtuse arch n:3 nT:6 pattern’s kinematic 
diagram. 

 

Selvi’s equation (eq. (3.48)) is used to calculate the new loop B subspace, created 

by the combination of loops 2 and 3; which is equal to 𝜆 = 5: λ = (3 + 3) + (1 – 2) = 5 

(Selvi, 2012). 
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By removing the joint number 8, the total number of joints within the mechanism 

decreases to 14. The mobility for a modified: M62M = 14 – ((2 ∙ 3) + (1 ∙ 5)) = 3. 

Removing this joint did not change the mobility. The structural group properties 

need to be reanalyzed since the mechanism became a mix of loops with different 

subspace number. The first loop A is a 4-bar spherical mechanism with 𝜆 = 3 with a 

mobility equal to 1, the second loop B has 𝜆 = 5, which requires additional 4 links to 

preserve mobility. The second loop B adds 4 new links [4, 5, 10, and 11] to the 

structural group preserving the mobility. The third loop C is a 𝜆 = 3 6-bar mechanism 

adding 4 new links [5, 6, and 11, 12] increasing the mobility to 3, which verifies the 

new calculated mobility.  

 

3 Rows: A third row is added to the mechanism which adds 6 new link and 10 

new joints. The new row adds 4 new loops (Figure 3.61), making 8 loops in total also 

calculated using eq. (3.47): L63 = 25 – 18 + 1 = 8. 

The mobility of the CP decreases with the introduction of a new row:  

M63 = 25 – (8 ∙ 3) = 1. The mobility can be verified using the structural group properties 

by continuing to analyze the double row pattern which has a calculated mobility equal 

to 3. The 5th loop adds 2 new links [17 and 18] to the mechanism that requires only 2 

new links to conserve the mobility, thus with this loop the mobility is preserved. The 6th 

and 7th loops add only 1 new link each decreasing the mobility to 1. The last loop 8th 

adds 2 new links preserving the mobility equal to1. 

 

 
 

Figure 3.61.  Triangular 3 row obtuse arch n:3 nT:6 (a) crease pattern (b) kinematic 
diagram. 
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The tears that appeared during the folding process occurred at the joints 8 and 18 

which have been removed to create the modified pattern (Figure 3.62). The new loops’ 

subspace number have been calculated using the eq. (3.48), the loops B and E have   

𝜆 = 5. The new mobility is also equal to 1: M63M = 23 – ((4 ∙ 3) + (2 ∙ 5)) = 1. 

As the mobility calculation for a modified 3 rows pattern shows removing the 

joints did not affect the value of the mobility.  

 

 
 

Figure 3.62. Modified triangular 3 row obtuse arch n:3 nT:6 pattern’s kinematic diagram. 
 

When the structural group properties are analyzed the new loop D adds 2 new 

links [17, and 18] to the mechanism which preserve the mobility equal to 3. The loop E, 

composed of the 6th and 7th loop add 2 new links [14 and 15], but according to structural 

group properties for a 𝜆 = 5 mechanism to be able to preserve the mobility 4 new links 

should be added. When the loop E introduces 2 new links the mobility decreases by 2 

making the mobility equal to 1. The last loop F adds 2 new links [13 and 14] preserving 

the mobility equal to 1.  

 

4 Rows: A fourth row is added to mechanism introducing 6 new links and 10 

new joints. The 4-row pattern have a total of 24 links and 35 joints (Figure 3.63). there 

are 12 loops: L64 = 35 – 24 + 1 = 12. 

Again the mobility decreases with the introduction of a new row, the new 

mobility is equal to -1: M64 = 35 – (12 ∙ 3) = −1. The mobility is once more verified by 

the structural properties; the new loop, 9th loop, introduces 2 new links to the 

mechanism [19, and 20] preserving the mobility equal to 1. The 10th and 11th loops adds 

each one 1 new link [22;and 23] where each one needed to add 2 new links to preserve 
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the mobility, so the mobility decreases to -1. The 12th loop introduces 2 new links [23 

and 24] preserving the mobility equal to -1 which verifies the calculations. 

Additional to the joints removed in the 3 row pattern, joint 28 is removed 

creating a modified pattern with 24 links and 32 joints (Figure 3.64). The new loop H 

created by removing joint 28 constitutes a double spherical linkage with 𝜆 = 5. 

The new modified mechanism has 9 loops instead of 12 loops. Again, removing 

joints make no difference in the mobility value: M64M = 14 – ((6 ∙ 3) + (3 ∙ 5)) = −1. 

When the structural group is analyzed the new loop G introduced 2 new links 

[19 and 20] preserving the mobility equal to 1. Loop H introduces 2 new links [21 and 

22] which should have introduced 4 new links to preserve the mobility because it’s a 

double spherical linkage. The introduction of loop H decreases the mobility by 2 

making the mobility value equal to -2. The last loop J adds 2 more links [23 and 24] 

which preserve the mobility equal to -1.  

 

 
 

Figure 3.63.  Triangular 4 row obtuse arch n:3 nT:6 (a) crease pattern (b) kinematic 
diagram. 
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Figure 3.64.  Modified triangular four rows obtuse arch n:3 nT:6 pattern’s kinematic 
diagram. 

 

Table 3.13 presents results for a triangular pattern with different number of 

segments. As it can be observed for any number of segments, as the number of row 

increases the mobility decreases, and as the number of segment increases more rows are 

required to achieve an overconstrained mechanism. Removing the joints that tear during 

the folding process did not affect the mobility value but only the number of joints and 

loops. Kinematic diagrams and patterns for Tables 3.13 and 3.14 can be analyzed in 

Appendix D. 
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Table 3.13.  Double centered triangular pattern mobility analysis with different number 
of segments and rows. 

 
r:5 a:2 Obtuse  h: max Triangular Pattern 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:2  
nT:4 

# links 8 12 16 20 24 (+4) 
# joints 10 17 24 31 38 (+7) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+3) 

 3 3 0 6 6 0 9 9 0 12 12 0 15 15 0 
M 1 -1 -3 -5 -7 (-2) 

n:3  
nT:6 

# links 12 18 24 30 36 (+6) 

# joints 15 25 35 45 55 (+10) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+4) 
4 4 0 8 8 0 12 12 0 16 16 0 20 20 0 

M 3 1 -1 -3 -5 (-2) 

n:4  
nT:8 

# links 16 24 32 40 48 (+8) 
# joints 20 33 46 59 72 (+13) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+5) 
5 5 0 10 10 0 15 15 0 20 20 0 25 25 0 

M 5 3 1 -1 -3 (-2) 

n:5  
nT:1

0 

# links 20 30 40 50 60 (+10) 
# joints 25 41 57 73 89 (+16) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+6) 
6 6 0 12 12 0 18 18 0 24 24 0 30 30 0 

M 7 5 3 1 -1 (-2) 

 
 
Table 3.14. Double centered modified triangular pattern mobility analysis with different 

number of segments and rows. 
 

r:5 a:2 Obtuse  h: max  Triangular Pattern - MODIFIED 
# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:2  
nT:4 

# links 8 12 16 20 24 (+4) 

# joints 9 15 21 27 33 (+6) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 
(+2) 

2 1 1 4 2 2 6 3 3 8 4 4 10 5 5 
M 1 -1 -3 -5 -7 (-2) 

n:3  
nT:6 

# links 12 18 24 30 36 (+6) 
# joints 14 23 32 41 50 (+9) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+3) 
3 2 1 6 4 2 9 6 3 12 8 4 15 10 5 

M 3 1 -1 -3 -5 (-2) 

n:4  
nT:8 

# links 16 24 32 40 48 (+8) 

# joints 19 31 43 55 67 (+12) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+4) 
4 3 1 8 6 2 12 9 3 16 12 4 20 15 5 

M 5 3 1 -1 -3 (-2) 

n:5  
nT:1

0 

# links 20 30 40 50 60 (+10) 
# joints 24 39 54 69 84 (+15) 

# loops T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+5) 
5 4 1 10 8 2 15 12 3 20 16 4 25 20 5 

M 7 5 3 1 -1 (-2) 
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3.2.3.2. Trapezoidal Patterns 

 
In this section the mobility analysis is conducted for a trapezoidal pattern (h < 

max) with 6 segments. If the pattern have been created with a smaller value than the 

maximum value of the pattern’s height h the pattern created has trapezoidal panels. The 

steps followed in this section are the same as the previous one: first the CP is analyzed, 

then its modified kinematic diagram.  

 

Double row: there are 12 links and 16 joints in a double row trapezoidal 

mechanism. (Figure 3.65). The number of independent loops, 𝐿62𝑇 is calculated using 

eq. (3.48):.L62T = 16 – 12 + 1 = 5. All loops are 4-bar spherical loops with 𝜆 = 3.  

The mobility is equal to 1: M62T = 16 – (5 ∙ 3) = 1. When the structural group 

properties are analyzed, the first loop is a 4-bar linkage with a mobility equal to 1. Each 

loops add 2 new links to the mechanism so the mobility is preserved.  

 

 
 
Figure 3.65.  Trapezoidal double row obtuse arch n:3 nT:6 (a) crease pattern (b) 

kinematic diagram. 
 

The joints 8 and 10 are removed from the mechanism (Figure 3.66) because the 

tears appeared at those joints during the folding process of the physical model. The loop 

A is a 4-bar spherical loop with mobility equal to 1. The 2nd and 3rd loops B and C are 

𝜆 = 5 mechanisms each and add 4 new links [3, 4, 9, and 10; 5, 6, 11, and 12] which 

preserves the mobility equal to 1: M62TM = 14 – ((1 ∙ 3) + (2 ∙ 5)) = 1. 
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Figure 3.66.  Modified trapezoidal double row obtuse arch n:3 nT:6 pattern’s kinematic 
diagram. 

 

3 Rows: A third row is added to the mechanism introducing 6 new links and 11 

new joints. The new row adds 5 new loops to the mechanism (Figure 3.67): . 

L63T = 27 – 18 + 1 = 10. 

The double row trapezoidal pattern’s mobility was 1: M63T = 27 – (10 ∙ 3) = −3. 

The 6th loop adds 2 new links to the mechanism preserving the mobility. All the 

following loops 7th, 8th, 9th and 10th each add only one link. To preserve the mobility 

each of the loops should have introduced 2 new links, thus decreasing by 4 the value of 

mobility to -3 as calculated. 

Some of the creases tear [joints: 8, 10, 18, and 20] during the folding process 

which have been removed to modify the kinematic diagram (Figure 3.68). By removing 

these joints the mechanism became a 6-bar spherical mechanism combined with 

different subspace numbers. The loops B, C, F and E are 𝜆 = 5  mechanisms. The 

mobility calculation for the modified pattern: M63TM = 23 – ((2 ∙ 3) + (4 ∙ 5)) = −3. 

 

 
 
Figure 3.67.  Trapezoidal 3 row obtuse arch n:3 nT:6 (a) crease pattern (b) kinematic 

diagram. 



118 
 

In the modified 3 rows trapezoidal pattern the new loop introduces 2 new links 

[17 and 18] preserving the mobility equal to 1. But the following two loops E and F are 

𝜆 = 5 mechanisms which requires that they each add 4 new links to the mechanism, but 

instead each adds only 2 new links [15 and 16; 13 and 14] decreasing the mobility to -3 

which justify the calculations.  

 

 
 

Figure 3.68. Modified trapezoidal 3 row obtuse arch n:3 nT:6 pattern’s kinematic diagram. 

 

4 Rows: a fourth row is added to the mechanism which increases the number of 

loops to 15, the number of links to 24, and the number of joints to 38 (Figure 3.69). There 

are 15 loops: L64T = 38 – 24 + 1 = 15, and the mobility is -7: M64T = 38 – (15 ∙ 3) = −7. 

 

 
 
Figure 3.69.  Trapezoidal 4 row obtuse arch n:3 nT:6 (a) crease pattern (b) kinematic 

diagram. 
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The 11th loop adds 2 new links [19 and 20] to the mechanism preserving the 

mobility calculated on the 3-row trapezoidal pattern equal to -3. All the following loops 

12th, 13th, 14th, and 15th each adding 1 new links; although each should have added 2 

new links. Because each loop adds 1 link the mobility decreases by 4 which makes it 

equal to -7 as calculated. 

The removal of joints 8, 10, 18, 20, 30 and 32 from this pattern modified the 

kinematic diagram from a 15 loops mechanism to 9 loop mechanism (Figure 3.70) with 

the same number of links and 32 joints. The new loops H and J are 𝜆 = 5 loops. 

 

 
 

Figure 3.70. Modified trapezoidal 4 row obtuse arch n:3 nT:6 pattern’s kinematic 

diagram. 

 

The loop G adds 2 new links to the mechanism preserving the mobility 

calculated in 3 row pattern as -3. To preserve the mobility the loops H and J should add 

4 new links each because they are λ=5 mechanisms, but because each add only 2 new 

links the mobility decreases to -7, as calculated: M64TM = 32 – ((3 ∙ 3) + (6 ∙ 5)) = −3. 

Tables 3.15 and 3.16 present the results of the mobility calculations for both the 

trapezoidal pattern and the modified trapezoidal pattern. As it can be observed the 

mobility does not change when the pattern is modified by removing joints, but the 

kinematic properties of the pattern changes. Kinematic diagrams and patterns are 

presented in Appendix D. 
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Table 3.15. Double centered trapezoidal pattern mobility analysis with different number 
of segments and rows. 

 
r:5 a:2 Obtuse  h < MAX  Trapezoidal pattern 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:2  
nT:4 

# links 8 12 16 20 24 (+4) 
# joints 10 17 24 31 38 (+7) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+3) 
3 3 0 6 6 0 9 9 0 12 12 0 15 15 0 

M 1 -1 -3 -5 -7 (-2) 

n:3  
nT:6 

# links 12 18 24 30 36 (+6) 
# joints 16 27 38 49 60 (+11) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+5) 
5 5 0 10 10 0 15 15 0 20 20 0 25 25 0 

M 1 -3 -7 -11 -15 (-4) 

n:4  
nT:8 

# links 16 24 32 40 48 (+8) 
# joints 22 37 52 67 82 (+15) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+7) 
7 7 0 14 14 0 21 21 0 28 28 0 35 35 0 

M 1 -5 -11 -17 -23 (-6) 

n:5  
nT:10 

# links 20 30 40 50 60 (+10) 
# joints 28 47 66 85 104 (+19) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+9) 
9 9 0 18 18 0 27 27 0 36 36 0 45 45 0 

M 1 -7 -15 -23 -31 (-8) 

 

 
Table 3.16. Double centered modified triangular pattern mobility analysis with different 

number of segments and rows. 
 

r:5 a:2 Obtuse  h < MAX  Trapezoidal pattern -MODIFIED 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased 
by 

n:2  
nT:4 

# links 8 12 16 20 24 (+4) 
# joints 9 15 21 27 33 (+6) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+2) 
2 1 1 4 2 2 6 3 3 8 4 4 10 5 5 

M 1 -1 -3 -5 -7 (-2) 

n:3  
nT:6 

# links 12 18 24 30 36 (+6) 
# joints 14 23 32 41 50 (+9) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+3) 
3 1 2 6 2 4 9 3 6 12 4 8 15 5 10 

M 1 -3 -7 -11 -15 (-4) 

n:4  
nT:8 

# links 16 24 32 40 48 (+8) 
# joints 19 31 43 55 67 (+12) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+4) 
4 1 3 8 2 6 12 3 9 16 4 12 20 5 15 

M 1 -5 -11 -17 -23 (-6) 

n:5  
nT:10 

# links 20 30 40 50 60 (+10) 
# joints 24 39 54 69 84 (+15) 

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+5) 
5 1 4 10 2 8 15 3 12 20 4 16 25 5 20 

M 1 -7 -15 -23 -31 (-8) 
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As a conclusion the mobility calculations have been performed for both type of 

patterns and each calculation has been compared to a structural group analysis revealing the 

same value. When the tables of both modified triangular and modified trapezoidal patterns 

are analyzed, it reveals that all the properties are the same. As it was in the single centered 

arches, the tears occurring in the creases showed a similarity suggesting it is not random. It 

has also been observed that the trapezoidal patterns of both single centered and double 

centered arches have the same properties – mobility, number of links, joints and loops. 

 

3.2.4. Conclusion 

 
In this part of the study parameters for creating a double centered rigid origami 

foldable barrel vault has been presented. The parameters that can be defined by the 

designer are the radius, r, the number of segment, n for a single arc, nT for the entire 

structure, and the distance between the centers a which defines whether the cross-

section is a lancet, pointed equilateral or obtuse arch. Once these parameters defined, an 

MV-Pattern can be created based on the calculations presented on the geometrical 

properties section. If in a certain point during the folding stage the structure need to be 

stopped and fixed in that precise form the calculations from the partially folded state of 

geometrical properties and the workspace analysis calculations can be used.  As it was 

in the single centered rigid origami barrel vault structures, the double centered 

structures also have a limitation regarding the height of a single row h. In double 

centered structures due to the form of the cross-section there are two different folding 

angles; one is the arc’s folding angle α1 and the second is the apex’s folding angle α2. 

Two different folding angle creates two different height h1 and h2, during the creation of 

the pattern the smaller of the two height should be selected. If the highest value is 

selected the diagonal lines will crisscross within the height of the pattern which in turn 

will lead to a failure in creating a foldable pattern. But the height can be less than the 

calculated maximum height which will create a trapezoidal pattern. In the workspace 

analysis calculations for the depth, span, height, and volume of the rigid origami 

structure has been put in relation with the inclination angle σ to facilitate the 

understanding of the properties of the structure during the folding process. Span and 

height calculations are based on the pattern-generator so that they are independent c 

from the height of the row which affect whether the pattern is triangular or trapezoidal 
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one. A calculation sheet has been prepared in Microsoft Excel 2013® to facilitate the 

calculations which is presented in Appendix C. In both triangular and trapezoidal 

patterns tears appeared in the process of folding the physical model, these creases where 

in relation with the removed joints. Removing those joints did not change the mobility 

calculations. For all four mobility calculation (Tables 3.13, 3.14, 3.15, and 3.16) a set of 

patterns and kinematic diagrams have been provided in Appendix D.  

 

3.3. Conclusion 

 
In this chapter a method of designing a MV-Pattern for each type of rigid 

origami barrel vault using a pattern-generator has been presented. The two types of 

rigid origami barrel vaults are defined by the properties of the arch selected as the cross-

section; semicircle and horseshoe arch are single centered, while lancet, pointed 

equilateral and obtuse are double centered arches. The pattern generation for both types 

starts with the definition of three parameters which in turn define all the other 

parameters required to design a rigid origami barrel vault. The relations between 

parameters have been demonstrated in the geometrical properties section. A calculation 

sheet prepared in Microsoft Excel 2013® for each barrel vault type has been provided to 

facilitate the calculations of the parameters. In the workspace analysis of each type, 

parameters of the deployment of the structure have been demonstrated in relation to one 

parameters - inclination angle - that defines the depth, span, height and volume of the 

structure during this process. Mobility analysis carried out for both type demonstrated 

that tears occurring during the folding of the physical model were related to the 

thickness of the material used because when these specific joints have been removed, 

the mobility did not changed.  
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CHAPTER 4 

 

DEPLOYABLE PSEUDO-DOME STRUCTURE 

 
In this chapter a novel method of creating deployable pseudo-dome structures 

has been presented. The structure is called pseudo-dome because the form created by 

folding is an approximation to a dome form. The method of using a pattern-generator is 

applied to create a quarter of a circle as a cross-section that is rotated to create a 

developable MV-Pattern.  

In this chapter first the cross-section is analyzed to create a segmentation that 

allows the creation of a central pattern which can rotate to create a pseudo-dome. Then 

follows by a geometrical analysis starting from the final folded state and initial state 

simultaneously and finishing with the analysis of the partially folded state of the MV-

Pattern. The geometrical analysis is followed by the workspace analysis where the 

relations between the folding angles and the span, height, area, and volume are 

presented to understand the parameters’ changes during the deployment movement. 

Then a mobility analysis is carried out to understand the kinematics of the created MV-

Pattern. Lastly a conclusion is presented. 

 

4.1. Segmentation 

 
The geometrical form of the cross-section needs to be selected to be able to create 

a segmentation. A pseudo-dome can be created by rotating a crease pattern along an axis 

(Figure 4.1). Two methods where analyzed and because the first method, where a 

semicircle is used as a cross-section (Figure 4.1(a)) creates a non-developable pattern, the 

method chosen in this study is the second one (Figure 4.1(b)) where a quarter of a circle is 

rotated 360° around the z-axis creating a developable pattern. Figure 4.1 demonstrates the 

two methods: (a) a semicircle cross-section is rotated along the x-axis, the pattern-

generator is segmented and when the crease pattern is created, as it can be observed the 

created pattern is a non-developable pattern, (b) a quarter of a circle is used as a cross-

section which is then rotated along the z-axis, the pattern-generator is segmented and 

based on these segments a crease pattern is created which is a developable one.   
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Figure 4.1.  Dome creation methods (a) Polar rotation of a semicircle along the x-axis                 

(b) Polar rotation of a quarter of a circle around z-axis. 
 

For rigid origami deployable structures, an approximation to a dome can be 

achieved by increasing the number of segments (Figure 4.2) as it was in barrel vault 

structures. But the segmentation cannot be the same as in deployable barrel vaults 

where the segments were divided equally creating equilateral polygonal segments with 

an accordion-like translational deployment. A pattern that will have a rotational 

deployment needs to have a central point to prevent surfaces to intersect with each other. 

So, to achieve a radially deployable MV-Pattern, the segments’ length needs to decrease 

toward the central point. 

Different methods have been explored to create this specific decreasing 

segmentation. First hands-on model folding have been tried which presented difficulties 

on the generalization of the crease pattern creation. Then mathematical methods have 

been explored: geometric and arithmetic progressions. Arithmetic sequence proved to 

create an increasing segmentation that can be controlled by parameters like the first 

segment angle and number of segments, which provided a foldable crease pattern. 
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Figure 4.2. Segmentation of an arc by 3, 4, 5, 6, 7, and 8; and the top view of the 

segmented domes.  
 

Parameters to define the segmentation by arithmetic sequence are the radius of 

the arc r, the number of segments n, and finally the first segment’s angle θ1. By defining 

these parameters all the parameters required to create an MV-Pattern for a rigid origami 

pseudo-dome structure can be calculated. The pattern-generator created by this division 

is used differently than it is used in barrel vault structures where the pattern-generator 

was the center of a single row. In this method the pattern generator is the folding lines. 

In an arithmetic sequence the sum of the sequence is calculated with the 

following eq. (4.1): 

 

𝑆𝑛 =
𝑛(𝜃1+𝜃𝑙)

2
                                                     (4.1) 
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where Sn is the sum of the angles in the sequence, n is the number of segments, θ1 the 

first term of the sequence (both defined by the designer), and θl the last term of the 

sequence which is the last angle. The sum of the angles should be π/2 because the arc is 

a 90° and the division needs to be within this range. The parameter that needs to be 

calculated from this equation is the last angle θl,: the equation for the last angle becomes 

eq. (4.2): 

 

𝜃𝑙 = (
𝜋

2
∙2

𝑛
) − 𝜃1 = (

𝜋

𝑛
) − 𝜃1                                        (4.2) 

 

When the last angle has been calculated the common difference CD can be 

calculated allowing the calculation of all the angles. It can be calculated by eq. (4.3), 

where n is the number of segments and θ1 the first term of the sequence (the segment 

closer to the central point) are the parameters defined by the designer, θl is the last angle 

of the arithmetic sequence calculated with eq. (4.2). 

 

𝐶𝐷 =
𝜃𝑙−𝜃1

𝑛−1
                                                     (4.3) 

 

For each segment, the segment’s angle θk can be calculated by eq. (4.4), where k 

θk is the segment’s angle for segment k. The numbering of the segments is done from 

the top to the bottom of the cross-section (Figure 4.3). Using eq. (4.4) each segment’s 

angle needs to be calculated separately. 

 

𝜃𝑘 = 𝜃1 + ((𝑘 − 1)𝐶𝐷)                                        (4.4) 

 

All calculations have been implemented in Microsoft Excel 2013® medium 

(Appendix E), where a graphic interface simulates the segmentation based on the 

changes on parameters r, n and θ1.  

 

4.2. Geometrical Analysis 

 
This section presents the parameters based on geometrical properties and their 

calculations for the creation of an MV-Pattern for a rigid origami pseudo-dome 
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structure. This section starts with the analysis of the final folded state and the initial 

state, MV-Pattern, and ends with the partially folded state of the structure.  

Contrary to the rigid origami barrel vault structure, the geometrical analysis of 

the final and initial state are conducted simultaneously because of the geometry of the 

rigid origami pseudo-dome structure. 

 

4.2.1. Final Folded State and Initial State 

 
In the previous section all the angles have been calculated using eq. (4.4). To be 

able to draw the MV-Pattern more parameters are required. 

Segment length sn for each segment’s angle can be calculated using eq. (4.5), 

which is the same equation used to calculate the segments’ length in rigid origami barrel 

vaults eq. (3.2). Where n is the segment number and θn is the segment’s angle of the 

calculated segment length. 

 

𝑠𝑛 = 2𝑟 sin (
𝜃𝑛

2
)                                                 (4.5) 

 

To be able to calculate angles between the segments, the interior angle β has to 

be calculated based on the angles 𝑨̂. The angles 𝑨̂𝒏 are different for each segment and 

are in relation with the segment’s angle θn. The relation between these parameters are 

presented in eq. (4.6). 

 

𝐴̂𝑛 =
𝜋−𝜃𝑛

2
                                                        (4.6) 

 

As observed in Figure 4.3 the number of interior angles β is equal to 𝑛 − 1. For 

example for the cross-section illustrated in Figure 4.3 where there are four segments, 

four segment angles, and three interior angles. The calculation of the interior angles βi is 

done by eq. (4.7). 

 

𝛽𝑖 = 𝐴̂𝑖+1 + 𝐴̂𝑖                                                  (4.7) 
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Figure 4.3. Parameters of the cross-section of a pseudo-dome r: 5m, n: 4, θ1: 9°. 
 

There are two different denotations: a parameter with n, is numbered based on 

the number of segments as the segment’s angle θn, segment length sn, and angles An, 

and parameter with i, is numbered based on the number of interior angles βi, meaning [n 

- 1], like the folding angles αi1, αi2 and their projected angles δi1, δi2, interior angle’s 

segment length ai, and the bending angles µi. When a parameter that has been defined 

by an n but instead it is denoted with i, the parameter should be calculated based on the 

value of i.   

The interior angle’s segment length ai cannot be calculated by the crease pattern, 

the calculations are done using the segment angles θi  (Figure 4.4(b)), except for the last 

segment’s length al which can only be calculated after the calculation of all the folding 

angles α. The interior angel’s segment length is calculated by eq. (4.8), where i is the 

number of the segment needing to be calculated. 

 

𝑎𝑖 = 2𝑟 cos (
𝜋−(𝜃𝑖+𝜃𝑖+1)

2
)                                          (4.8) 
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Figure 4.4. Parameters of (a) the final folded state and (b) the crease pattern, for a dome 

with r: 5m, n: 4, θ1: 9°. 
 

The folding angles α have to be calculated in order to comprehend the geometry 

of the initial folded state. The folding angles are different for each triangle creating the 

pattern; the denotation of the folding angles has been done according to their position in 

respect to the central point of the pattern, and their complementary angle which are the 

interior angles β. For example the triangle with the interior angle β3 from Figure 4.4(b); 

its opposite segment’s length has been denoted a3, the angle closer to the central point, 

the first angle α31; the first subscript refers to the interior angle’s number, and the 

second subscript defines that it is the first folding of the triangle closest to the central 

point. The second folding angle has been denoted with the same logic α32, defining the 

second folding angle of the third interior angle.  

None of the triangles is neither an isosceles nor a right triangle, they are obtuse 

scalene triangles, thus to be able to calculate the folding angles the law of sines (eq. 

(4.9)) has been used, where i defines the number of the interior angle. 
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sin 𝛽𝑖

𝑎𝑖
=

sin 𝛼𝑖1

𝑠(𝑖+1)
=

sin 𝛼𝑖2

𝑠𝑖
                                         (4.9) 

 

If eq. (4.9) is applied to the third triangle with the interior angle β3 the equation 

would be: 

 
sin 𝛽3

𝑎3
=

sin 𝛼31

𝑠4
=

sin 𝛼32

𝑠3
                                       (4.9) 

 

which gives eq. (4.10) for the first folding angle αi1, and eq. (4.11) for the second 

folding angle αi2. Where si is the segment length for the required interior angle’s 

number calculated using eq. (4.5).   

 

𝛼𝑖1 = sin−1 (
sin 𝛽𝑖∙𝑠(𝑖+1)

𝑎𝑖
)                                           (4.10) 

𝛼𝑖2 = sin−1 (
sin 𝛽𝑖∙𝑠𝑖

𝑎𝑖
)                                              (4.11) 

 

The height of each triangle hi has been calculated using eq. (4.12), which is 

subscribed according to the interior angle β, and where i stands for the required interior 

angle’s number (Figure 4.4(b)). 

 

ℎ𝑖 = sin 𝛼𝑖1 ∙ 𝑠𝑖                                               (4.12) 

 

The last parameters to calculate are the folding angles αl1 and αl2, the segments’ 

length al and hl which defines the maximum height of the single row. The folding 

angles αl1 and αl2 are calculated by eqs. (4.13) and (4.14) respectively, where i is the 

number of the last interior angle. 

 

𝛼𝑙1 = 𝜋 − (𝛽𝑖 + 𝛼(𝑖−1)2)                                        (4.13) 

𝛼𝑙2 =
𝜋

2
− 𝛼𝑙1                                                   (4.14) 

 

Using the calculated last folding angles the segment length of hl and al can be 

calculated by eqs. (4.15) and (4.16) respectively, again where i is the number of the last 

interior angle. 
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ℎ𝑙 =  𝑠(𝑖+1) sin 𝛼𝑙1                                                 (4.15) 

𝑎𝑙 = 𝑠(𝑖+1) sin 𝛼𝑙2                                                (4.16) 

 

A single row of the crease pattern is created by placing the segments according 

to their respective interior angles by reversing their directions, as illustrated in Figure 

4.4, and then the vertexes are joined. And so the row is mirrored with respect to one of 

the edge and the central point. The pattern created using these parameters has a MV- 

Assignment based on Maekawa’s theorem (Figure 4.5). Parameters required to draw the 

MV-Pattern in Figure 4.5 have been presented in Table 4.1. 

 

Table 4.1. Parameters for a r: 5m n: 5 and θ1: 6° rigid origami dome pattern. 
 

r (m) n θ1(°) θl (°) CD   
5 5 6 30 6  

 
segments angle θi (°) 

θ1 θ2 θ3 θ4 θ5 
6,00 12,00 18,00 24,00 30,00 

segment length si (m) 
s1 s2 s3 s4 s5 

0,5234 1,0453 1,5643 2,0791 2,5882 

angle Ai (°) 
A1 A2 A3 A4 A5 
87 84,00 81,00 78,00 75,00 

interior angle βi (°) 
β1 β2 β3 β4  

171,00 165,00 159,00 153,00  

side length ai (m) 
a1 a2 a3 a4 al 

1,5643 2,5882 3,5837 4,5399 2,4615 

folding angles αi1 αi2 (°) 

α11 α21 α31 α41 αl1 
6,00 9,00 12,00 15,00 18,00 
α12 α22 α32 α42 αl2 
3,00 6,00 9,00 12,00 72,00 

height hi (m) 
h1 h2 h3 h4 hl 

0,0547 0,1635 0,3252 0,5381 0,7998 
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Figure 4.5. MV-Pattern for a dome with r: 5m, n: 5, θ1: 6°. 
 

4.2.2. Partially Folded State 

 
In this section the geometrical properties of the partially folded state will be 

analyzed. In contrary to single centered rigid origami barrel vaults, rigid origami 

pseudo-dome structures have multiple bending angles, because of the general geometry 

of the pattern. 
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The denotation of the bending angles µi are in relation to the vertex’s numbering, 

which is also in relation to the interior angle’s number βi (Figure 4.6). The vertexes are 

numbered starting from the central point of the pattern V0, up to the decided number of 

segment Vi. Rigid origami barrel vault structures’ patterns are regular polygons thus the 

relation of the bending angle µ with the folding angle α, in degree-6 vertexes are the 

same (eq. (3.12)). As it has been presented in the previous section, the folding angles αi1 

and αi2 are different for each vertex. Thus, for a pseudo-dome pattern with degree-6 

vertexes eq. (3.12) have been modified as eq. (4.17), where i is the number of the 

interior angle. Figure 4.6 shows the denotations for all angles and vertexes. The 

projected angles δ of the folding angles and their respected folding angles α have the 

same denotation. It is assumed that both the inclination angles σ, and dihedral angles φ, 

are the same for each fold. 

 

𝜇𝑖
6 = 𝜋 − 2(𝛿(𝑖−1)2 + 𝛿(𝑖+1)1)                                     (4.17) 

 

The calculations for the projected angle 𝛿(𝑖−1)2 is done using the length of the 

crease lines between the vertexes, thus the lines are denoted based on their vertexes’ 

number in the end points.  

 

𝛿(𝑖−1)2 = tan−1 (
𝑉(𝑖−1)𝑑𝑉(𝑖−1)𝑐

𝑉𝑖𝑎𝑉(𝑖−1)𝑐
)                                       (4.18) 

 

The lines 𝑉(𝑖−1)𝑑𝑉(𝑖−1)𝑐 and 𝑉𝑖𝑎𝑉(𝑖−1)𝑐 are calculated as follows: 

 

𝑉(𝑖−1)𝑑𝑉(𝑖−1)𝑐 = 𝑠𝑖𝑛𝜎 ∙ ℎ(𝑖−1)                                       (4.19) 

𝑉𝑖𝑎𝑉(𝑖−1)𝑐 =
ℎ(𝑖−1)

𝑡𝑎𝑛𝛼(𝑖−1)2
                                             (4.20) 

 

Substituting eqs. (4.19) and (4.20) in eq.(4.18) the equation for the projected 

angle becomes as follows: 

 

 𝛿(𝑖−1)2 = tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖−1)2)                                 (4.21) 
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Figure 4.6. Parameters of a partially folded state of a dome with r: 5m, n: 5, θ1: 6°. 
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The calculations for the projected angle 𝛿(𝑖+1)1 are as follows: 

 

𝛿(𝑖+1)1 = tan−1 (
𝑉(𝑖+1)𝑑𝑉(𝑖+1)𝑐

𝑉𝑖𝑎𝑉(𝑖+1)𝑐
)                                     (4.22) 

 

The lines 𝑉(𝑖+1)𝑑𝑉(𝑖+1)𝑐 and 𝑉𝑖𝑎𝑉(𝑖+1)𝑐 are calculated as follows: 

 

𝑉(𝑖+1)𝑑𝑉(𝑖+1)𝑐 = 𝑠𝑖𝑛𝜎 ∙ ℎ(𝑖+1)                                       (4.23) 

𝑉𝑖𝑎𝑉(𝑖+1)𝑐 =
ℎ(𝑖+1)

𝑡𝑎𝑛𝛼(𝑖+1)1
                                             (4.24) 

 

Substituting eqs. (4.23) and 84.24) in eq. (4.22) the projected angles becomes: 

 

 𝛿(𝑖+1)1 = tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖+1)1)                                (4.25) 

 

Substituting eqs. (4.21) and (4.25) in eq.(4.17) the relation between the bending 

angle µ and the inclination angle σ becomes: 

 

𝜇𝑖
6 = 𝜋 − 2(tan−1(sin 𝜎 ∙ tan 𝛼(𝑖−1)2) + tan−1(sin 𝜎 ∙ tan 𝛼(𝑖+1)1))                (4.26) 

 

As it can be observed in Figure 4.6 the first vertexes following the central point 

are degree-4 vertexes. The relation between the bending angle µ and the projected 

angles δ of the folding angles for degree-4 vertexes is: 

 

𝜇𝑖
4 = 𝜋 − 2(𝛿(𝑖+1)1)                                              (4.27) 

 

Same relation has been applied to calculate the first bending angle creating eq. 

(4.28): 

 

𝜇𝑖
4 = 𝜋 − 2(tan−1(sin 𝜎 ∙ tan 𝛼(𝑖+1)1))                             (4.28) 

 

The dihedral angle φ is calculated by eq. (4.29): 

 

𝜑 = 𝜋 − 2𝜎                                                   (4.29) 
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The association of the angles in degree-6 vertexes in their initial and final folded 

state can be described as: 

 

𝜇𝑖𝑚𝑖𝑛
6 = 𝜋 − 2 ((tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖−1)2) ) + (tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖+1)1) )) = 𝜋           (4.30) 

 

𝜇𝑖𝑚𝑎𝑥
6 = 𝜋 − 2 ((tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖−1)2) ) + (tan−1(𝑠𝑖𝑛𝜎 ∙ 𝑡𝑎𝑛𝛼(𝑖+1)1) )) 

= 𝜋 − 2(𝛼(𝑖−1)2 + 𝛼(𝑖+1)1)                                                                                 (4.31) 
 

The association of the angles in 4-edge vertexes are: 

 

𝜇𝑖𝑚𝑖𝑛
4 = 𝜋 − 2(tan−1(sin 𝜎 ∙ tan 𝛼(𝑖+1)1)) = 𝜋                              (4.32) 

𝜇𝑖𝑚𝑎𝑥
4 = 𝜋 − 2(tan−1(sin 𝜎 ∙ tan 𝛼(𝑖+1)1)) = 𝜋 − 2(𝛼(𝑖+1)1)                         (4.33) 

 

Table 4.2. Maximum and minimum values of the angles μ, φ, and σ for a pseudo-dome 
pattern. 

 

angles Initial state (min) Final folded state (max)  

μ6 (bending angle) π 𝜋 − 2(𝛼(𝑖−1)2 + 𝛼(𝑖+1)1) 

μ4 (bending angle) π 𝜋 − 2(𝛼(𝑖+1)1) 

φ (dihedral angle) π 0 

σ (inclination angle) 0 𝜋 2⁄  

 

The designer may choose to select the dihedral angle, calculate the inclination 

angle using eq. (4.29), and then place the result to eq. (4.26); or he/she may choose to 

select the inclination angle and substitute it in eq. (4.26) to calculate each bending angle.  

The relation of the bending angles of a dome presented in the previous section 

(Figures 4.5 and 4.6) with defined parameters r:5 n:5 θ1:6 has been presented in Figure 

4.7. The first bending angle µ1 is a degree-4 vertex and the other ones are degree-6 

vertexes.  
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Figure 4.7.  Relation between the bending angles and inclination angle for a dome r: 5m, 

n: 5, θ1: 6°. 
 

4.2.3. Conclusion 

 
In this section limitations have been discussed. For creating a pseudo-dome pattern 

the designer has to select some parameters: the radius r, the segment number n, and the 

decree of the first angle θ1 to calculate the arithmetic series. These parameters allow the 

calculations of all the geometrical properties of the pattern. In this section a created pattern 

has also been tested in the RigidOrigami software created by Tachi (Tachi, 2009c). 

Segmentation: for the pattern to be an approximation of a dome, the 

segmentation has to be created by an arithmetic sequence, so to have segments’ length 

that increases from the top (center of the pattern) to the bottom of the structure, the 

following rule has to be satisfied. The last segment’s angle has to be bigger than the first 

segment’s angle: 

 

𝜃𝑛 > 𝜃1 

 

Central Angle: the central point denoted as V0 in Figure 4.8, is the tip of the 

central angle. This angle needs to be a division of 2π, to be able to create a full rigid 

origami dome structure. 
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There are some combinations of r, n and θ1 that do not produce a pattern or need 

a complementary triangle to produce a pattern. These combinations can be determined 

by the following rules: 

 If 𝛼21 + 𝛽1 = 180°  the central angle is the folding angle 𝛼11 

 If 𝛼21 + 𝛽1 > 180°  the pattern’s last triangles overlap thus no pattern can be 

created. 

 If  𝛼21 + 𝛽1 < 180°  a complementary triangle is needed to determine the 

central angle (Figure 4.8). 

 

 
 

Figure 4.8. (a) r: 5m, n: 4, θ1: 9° Pattern (b) r: 5m, n: 4, θ1: 6° Overlapping Pattern (c) 
r: 5m, n: 4, θ1: 12° Complementary Pattern. 

 

In the third situation, where a complementary angle is needed, new parameters 

are included to the calculations denoted with the number zero, as it can be observed in 

Figure 4.8. The calculations are done as follows: 
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𝛽0 = 𝜋 − 𝛼11                                                         (4.34) 

𝛼02 = 𝜋 − (𝛽1 + 𝛼21)                                                (4.35) 

𝛼01 = 𝜋 − (𝛽0 + 𝛼02)                                                (4.36) 

 

The side lengths s0 and a0 are calculated using the law of sines which gives eqs. 

(4.37) and (4.38), respectively: 

 

𝑠0 =
sin 𝛼02∙𝑠1

sin 𝛼01
                                                    (4.37) 

𝑎0 =
sin 𝛽0∙𝑠1

sin 𝛼01
                                                     (4.38) 

 

The last parameter added is the bending angle µ0 which can be calculated by eq. 

(4.28) because the V0 becomes a degree-4 vertex. It should not be forgotten that when 

this addition has been done to the pattern, the vertex V1 becomes a 6-edge vertex thus 

calculated by eq. (4.26).  

 

Relation between number of segments n and the first segment angle θ1: The 

evaluation sheet created in Microsoft Excel 2013® shows the relation between the 

folding angle 𝜶𝟐𝟏  and the interior angle 𝜷𝟏 , it also shows that there is a relation 

between the number of segments n the cross-section is divided and the first segment 

angle θ1; both parameters being decided by the designer.  

An analysis of these parameters is conducted to determine the geometrical 

relations. The arithmetic sequence can be described as follows: 

 

90° = 𝜃 + 𝜃 + 𝐶𝐷 + 𝜃 + 2𝐶𝐷 + ⋯ + 𝑛𝜃 + (𝑛 − 1)𝐶𝐷 

90° = 𝑛𝜃 +
𝑛(𝑛−1)

2
𝐶𝐷                                        (4.39) 

 

where CD is the common difference, n is the number of segment and θ is the first angle. 

It has been defined that a pattern can be created if  𝛼21 + 𝛽1 = 180° , this 

equation also means that sin 𝛼21 = sin 𝛽1: when this equality is substituted to the sine 

law presented in eq. (4.9) for the interior angle β2 the equation becomes: 

 
sin 𝛽2

𝑎2
=

sin 𝛼21

𝑠3
 →  

sin 𝛽2

𝑎2
=

sin 𝛽1

𝑠3
                       (4.40) 
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All the parameters can be described in terms of the segment angle θ and 

common difference CD in the following equations: 

 

𝛽1 = 𝐴1 + 𝐴2 =
𝜋−𝜃

2
+

𝜋−(𝜃+𝐶𝐷)

2
= 𝜋 − 𝜃 −

𝐶𝐷

2
= sin (𝜃 +

𝐶𝐷

2
)         (4.41) 

𝛽2 = 𝐴2 + 𝐴3 =
𝜋−(𝜃+𝐶𝐷)

2
+

𝜋−(𝜃+2𝐶𝐷)

2
  

= 𝜋 − 𝜃 −
3𝐶𝐷

2
= sin (𝜃 +

3𝐶𝐷

2
)                              (4.42) 

𝑎2 = 2𝑟 cos (
𝜋−2𝜃−3𝐶𝐷

2
) = 2𝑟 sin (𝜃 +

3𝐶𝐷

2
)                           (4.43) 

𝑠3 = 2𝑟 sin (
𝜃

2
+ 𝐶𝐷)                                    (4.44) 

 

Eq. (4.45) is obtained when all these equalities (eqs. (4.41), (4.42), (4.43), and 

(4.44)) are substituted in eq. (4.40): 

 

sin (𝜃 +
3𝐶𝐷

2
) ∙ 2𝑟 sin (

𝜃

2
+ 𝐶𝐷) = sin (𝜃 +

𝐶𝐷

2
) ∙ 2𝑟 sin (𝜃 +

3𝐶𝐷

2
) 

𝜃

2
+ 𝐶𝐷 = 𝜃 +

𝐶𝐷

2
 

𝜃 = 𝐶𝐷                                                     (4.45) 

 

A new condition is created where if the first segment angle θ is equal to the 

common difference CD a pattern can be created without a complementary triangle. Also, 

when this equality is substituted in eq. (4.39) the relation between the number of 

segments n and the first segment angle θ can be found (eq. (4.46)). 

 

90° = 𝑛𝜃 +
𝑛(𝑛−1)

2
𝜃   →    𝜃 =

180°

𝑛(𝑛+1)
                         (4.46) 

 

This relation between the segment number n and the first segment’s angle θ1 

prove that a close correlation exists between these parameters to design a pattern. So to 

be able to design a pattern without having to create a complementary triangle, the first 

angle’s value should be calculated using eq. (4.46). In this case the only parameters the 

designer need to decide are the radius r, and the number of segments n. The initial 

calculation sheet has been modified to accommodate this correlation between the first 

segment’s angle and segment number (Appendix E). 



141 
 

But in cases where the designer has a need to design a pattern with a 

complementary angle then, based on eq. (4.45) the rules for the central angle can be 

rewritten as: 

 If  𝜃 = 𝐶𝐷  a pattern can be created with the central angles 𝛼11  

 If 𝜃 > 𝐶𝐷 because of the overlap no pattern can be created 

 If  𝜃 < 𝐶𝐷  a complementary triangle is needed to create the pattern. 

In case a complementary angle is required to design a pattern the calculation 

sheet presented in Appendix F should be used for the new parameters.  

 

A pattern with five segments (Figure 4.9) has been tested in RigidOrigami 

software created by Tachi (Tachi, 2009c), to see if the created pattern is a rigid folding 

pattern. The simulation demonstrated that during the folding process the central point 

sinks which is an unwanted motion (Figure 4.9). The degree-4 vertexes near the central 

point causes this unwanted motion as the cardboard model also showed by tearing from 

the mountain folds during the folding process (Figure 4.10, circles). Thus these 

mountain folds were transformed to cut lines separating the folds (Figure 4.11), and the 

new pattern has been tested again in the RigidOrigami Software (Tachi, 2009c) (Figure 

4.12). By introducing cut lines the unwanted motion have been avoided. Another 

solution may be to remove the triangles that creates the degree-4 vertexes and create an 

oculus at the center. 

To be able to achieve the initial creation of a dome (a 360 degree rotation along 

the z-axis) the pattern has been cut along one of the radial lines showed as a dark line in 

Figure 4.11.   
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Figure 4.9.  r: 5m, n: 5, θ1: 6° Pattern’s simulation in RigidOrigami software (Tachi, 
2009c). 

 

 
Figure 4.10. Model of n: 4 pseudo-dome created with shift-axis method. 
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Figure 4.11. r: 5m, n: 5, θ1: 6° Pattern. Red line: generator-line, Blue line: cut line, 
Green lines: cut lines. 

 

 
 
Figure 4.12. r: 5m, n: 5, θ1: 6° Pattern with cut lines’ simulation in RigidOrigami 

software (Tachi, 2009c). 
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4.3. Workspace Analysis 

 
In this section the parameters will be analyzed during their deployment process. 

The first parameters required to do a workspace analysis are presented by a geometrical 

analysis. Then using these parameters the analyses of span, height, coverage area and 

volume is conducted.  

The changes occurring during the folding process of the following parameters 

help understand the movement of the pattern (Figure 4.13). The parameters required are 

the radius rd, the segments’ angles θid, the complementary angle A’i and the angle ρi 

which is the projected angle of the folding angles.  

 

 
 

Figure 4.13. Pattern-generator’s motion during folding process of a pseudo-dome cross-
section. 
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When the final folded state of the pattern is analyzed (Figure 4.14) an interesting 

relation between the angles Ai and the segment’s angle θi along with the folding angles 

αi can be observed (eq. (4.47)). The triangle created by the two segment’s angles θi and 

θ(i+1) with the interior angle’s segment length ai gives the following equation:  

  

𝐴𝑖 − 𝛼𝑖1 + 𝐴𝑖+1 − 𝛼𝑖2 + 𝜃𝑖 + 𝜃𝑖+1 = 180°                        (4.47) 

 

The angles Ai in eq. (4.47) can be substituted using eq. (4.6) which gives an 

equality between the folding angles and the segment’s angles (eq. (4.48)). 

 

90 −
𝜃𝑖

2
− 𝛼𝑖1 + 90 −

𝜃𝑖+1

2
− 𝛼𝑖2 + 𝜃𝑖 + 𝜃𝑖+1 = 180°    

𝜃𝑖+𝜃𝑖+1

2
= 𝛼𝑖1 + 𝛼𝑖2                                           (4.48) 

 

This equality can also be described where these parameters are substituted by 

their deployment states (eq. (4.49)). 

 
𝜃𝑖𝑑+𝜃(𝑖+1)𝑑

2
= 𝛿𝑖1 + 𝛿𝑖2                                             (4.49) 

 

The relation presented in eq. (4.49) helps to define the changes occurring during 

the folding process to the radius rd (eq. (4.50)). It should be stated that, because of the 

geometry of the cross-section and the segmentation method, there are multiple 

equalities that can be reached to calculate the radius rd during the development process: 

 

𝑟𝑑 =
𝑎𝑖

2 sin(
𝜃𝑖𝑑+𝜃(𝑖+1)𝑑

2
)

=  
𝑎𝑖

2 sin(𝛿𝑖1+𝛿𝑖2)
                          (4.50) 

 

The radius relation with the segment angles can also be described as: 

 

𝑟𝑑 =
𝑠𝑖

2 sin(
𝜃𝑖𝑑

2
)
                                               (4.51) 
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When both eqs. (4.50) and (4.51) are equated, the segment angles can be 

calculated independently using eq. (4.52). 

 
𝑎𝑖

2 sin(𝛿𝑖1+𝛿𝑖2)
=

𝑠𝑖

2 sin(
𝜃𝑖𝑑

2
)
  

𝜃𝑖𝑑 = 2 sin−1 (
𝑠𝑖∙sin(𝛿𝑖1+𝛿𝑖2)

𝑎𝑖
)                                       (4.52) 

 

 
 

Figure 4.14. Parameters for pseudo-dome pattern-generator with r: 5m, n: 5, θ1: 6° 
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Only the last segments’ angle θld is calculated differently using the following 

equation:  

 

𝜃𝑙𝑑 = 2 sin−1 (
𝑠(𝑖+1)∙sin(𝛿𝑖1+𝛿𝑖2)

𝑎𝑖
)                                 (4.43) 

 

The reason for this difference lies in the following equality (eq. (4.54)) which is 

reached by equating the radius equation. 

 
𝑎𝑖

2 sin(𝛿𝑖1+𝛿𝑖2)
=

𝑠(𝑖+1)

2 sin(
𝜃𝑙
2

)
                                            (4.54) 

 

The next parameter is the complementary angle A’i which is required to calculate 

the span and height of the mechanism during its folding process. When the geometry of 

the angles Ai with their complementary angles A’i is analyzed a relation between the 

complementary angles and the segment angles θi can be reached. 

 

𝐴′𝑖 =
𝜃𝑖𝑑

2
+ ∑ 𝜃(𝑖−𝑘)𝑑

𝑖−1
𝑘=1                                            (4.55) 

 

Each complementary angle is calculated separately because of the geometrical 

properties of the pattern. The growth of the complementary angles can be defined by the 

addition of all the previous segment’s angles added to their respective half segment’s 

angles. 

The last parameter required to be able to calculate the span, height and coverage 

area is the angle ρi. This angle is the projected angle of the folding angles α on the xy-

plane, unlike the projected angle δ of the folding angle which is on the xz-plane (Figure 

4.15). 

First a general method to calculate the angle ρ is presented. Then, because the 

pattern-generator does not lay on a plane when deployed, a method to calculate the 

projected segment length s’i is presented based on the angle ρ. 
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Figure 4.15. Parameters for a pseudo-dome. 
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Eqs. (4.56), (4.57) and (4.58) present the relation between the folding angle α, 

the projected angle ρ and the inclination angle σ, which can be observed in Figure 4.15.  

 

𝑎𝑑1 =
𝑑1𝑏1

sin 𝛼
                                                     (4.56) 

𝑐𝑑1 = 𝑑1𝑏1 ∙ cos 𝜎                                              (4.57) 

sin 𝜌 =
𝑐𝑑1

𝑎𝑑1
                                                     (4.58) 

 

When eqs. (4.56) and (4.57) are substituted in eq. (4.58) the sine of the angle ρ 

can be calculated using eq. (4.59). Eq. (4.59) is simplified in eq. (4.60) which gives a 

general calculation method for the projected angles ρi. 

 

sin 𝜌 =
𝑑1𝑏1∙cos 𝜎

𝑑1𝑏1
sin 𝛼

= cos 𝜎 ∙ sin 𝛼                                   (4.59) 

𝜌 = sin−1(cos 𝜎 ∙ sin 𝛼)                                       (4.60) 

 

The limits of this angle are defined by the inclination angle σ;  

 Final folded state       σ = π/2      then   ρ = 0 

 Initial state                 σ = 0        then    ρ = α11 

 

As it has been demonstrated, all folding angles are different for a pattern 

denoted based on the interior angle’s number and their location to the central point. For 

the eq. (4.60) to be specified based on the folding angles the equation can be presented 

as eq. (4.61) for folding angles αi1 and eq. (4.62) for folding angles αi2.  

 

𝜌𝑖1 = sin−1(cos 𝜎 ∙ sin 𝛼𝑖1)                                     (4.61) 

𝜌𝑖2 = sin−1(cos 𝜎 ∙ sin 𝛼𝑖2)                                     (4.62) 

 

The folding angle α creating the central point of the pattern is used to calculate 

the central angle ρT. In case it is a pattern where the condition θ1=CD is achieved the 

folding angle α11 is used. But if the pattern has been created as a complementary pattern 

where θ1>CD then the calculations for the central angle are done with the folding angle 

α01. 
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As it can be observed in Figure 4.15, the pattern-generator does not lay on a 

plane, thus calculations for height and span cannot be performed accurately unless the 

segment lengths are projected on a plane. The xz-plane, that the segment lengths si have 

been projected, passes through the interior angle length a1 and a3 as it can be observed 

in Figure 4.15. The xz-plane, which is assumed as the plane of calculations, passes 

through the odd numbered interior segment length ai. The folding angles required for 

the calculation of the projected segment length are defined by the number of the interior 

angle length numbers. 

The projected segment length is denoted as s’i and it coincides to line ac on 

Figure 4.15. The projected folding angle ρi1 and ρi2 are used to calculate s’i1 for odd 

numbered segment lengths si (eq. (4.63)) and s’i2 for even numbered segment lengths 

(eq. (4.64)) respectively. The relation between these angles can be seen in Figure 4.14. 

 

𝑠′𝑖1 = cos 𝜌𝑖1 ∙ 𝑠𝑖                                             (4.63) 

𝑠′𝑖2 = cos 𝜌𝑖2 ∙ 𝑠𝑖                                             (4.64) 

 

If the number of segments is odd, the last segment of the sequence is calculated 

using the last folding angle’s projected angle ρl1 (eq. (4.65)). 

 

𝑠′𝑛 = cos 𝜌𝑙1 ∙ 𝑠𝑛                                            (4.65) 

 

The following section presents the calculations of the height, span and coverage 

area using the parameters presented in this section.  

 

4.3.1. Height, Span and Coverage Area 

 
The calculations for the height, span, and coverage area of the pseudo-dome 

structure are carried out based on the geometrical properties of the pattern-generator 

(Figure 4.16). To calculate the height and span each segment length is projected to z-

axis (sd1i) and x-axis (sd2i), respectively (Figure 4.14).  
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Figure 4.16.  Height, Span and Coverage Area illustration for a n: 5 and σ: 40° pseudo-

dome  
 

Height: the height is calculated by adding all the projected lengths sd1i for each 

segment. A single segment is calculated as follows: 

 

𝑠𝑑1𝑖 = 𝑠′𝑖 ∙ sin 𝐴′𝑖                                              (4.66) 

 

The parameter A’i needs to be calculated separately for each segment using eq. 

(4.55). The parameter s’i is the general denotation for the projected segment length 

which is calculated separately as explained in the previous section. 

The height of the pseudo-dome is calculated by adding all sd1i using the 

following equation (eq. (4.67)):  

 

𝐻 = ∑ 𝑠′𝑖
𝑛
𝑖=1 ∙ ∑ sin 𝐴′𝑖

𝑛
𝑖=1                                           (4.67) 

 

As it can be observed in Figure 4.17, as the inclination increases the height 

increases reaching its full height in the final flat-folded state.  
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Figure 4.17.  The relation between the inclination angle σ and the height H during the 

folding process of a pseudo-dome r: 5m, n: 4, and θ1: 9°.  
 

Span: the span is calculated by adding projected lengths sdi2 calculated for each 

segment. A single segment is calculated using the following equation: 

 

𝑠𝑑2𝑖 = 𝑠′𝑖 ∙ cos 𝐴′𝑖                                              (4.68) 

 

As it was for the height calculation each A’i and s’i need to be calculated for 

each segment. The span of the pseudo-dome is calculated by adding all sd2i using the eq. 

(4.69). 

 

𝑆 = ∑ 𝑠′𝑖
𝑛
𝑖=1 ∙ ∑ cos 𝐴′𝑖

𝑛
𝑖=1                                          (4.69) 

 

As it can be observed in Figure 4.18 as the inclination increases the height 

decreases reaching its minimum span in the final flat-folded state. The span is 

maximum in its initial state. 
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Figure 4.18.  The relation between the inclination angle σ and the span S during the 

folding process of a pseudo-dome r: 5m, n: 4, and θ1: 9°. 
 

Coverage Area: to be able to calculate the coverage area Ac the central angle ρT 

needs to be calculated based on the number of rows in the pattern. The calculations of 

the central angle is carried out by first defining the central angle of a single row based 

on the condition between the first segment’s angle θ1 and the common difference CD, 

then this angle is multiplied by the total number of rows RT.  

There are conditions to be able to calculate the total number of rows because the 

crease pattern is a central pattern and thus the number of row cannot be selected 

randomly. Table 4.3 presents these conditions, where depending on the relation between 

the first angle and common difference the central folding angle is selected, then this 

angle divide 360° which is the condition for developability, to calculate the total 

number of rows.  

The quotient of the division presented in Table 4.3 is the number of rows RT. 

There are cases where the divisor is not a multiplier of 360° or 2π, in these cases the 

pattern is considered a non-developable one, because there will be a gap in the central 

angle. As explained on the geometrical analysis section’s conclusion, even though the 

created pattern’s central angle ρT is equal to 2π the pattern needs to be cut so that it 

reaches a flat-folded final folded state that is a quarter of a circle.   
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Table 4.3. Conditions for selecting and calculating the total number of rows RT. 
 

condition Folding 
angle αi1 

Projected 
angle ρi1 RT condition 

θ1=CD α11 ρ11 360°/ α11 The quotient of the 
division need to be a 

natural number θ1>CD α01 ρ01 360°/ α01 
 

The central angle ρT is calculated using eq. (4.70) where the projected angle ρi1 

is selected based on whether the pattern is a pattern or a complimentary pattern.  

 

𝜌𝑇 = 𝜌𝑖1 ∙ 𝑅𝑇                                                 (4.70) 

 

Since all the parameters to calculate the coverage area Ac have been presented, it 

can be calculated using eq. (4.71) where S is the span calculated using eq. (4.69). 

 

𝐴𝑐 =
1

2
𝜌𝑇𝑆2                                                 (4.71) 

 

As it can be observed in figure 4.19 as the inclination increases the coverage 

area decreases reaching its minimum area in the final flat-folded state.  

 

 
 

Figure 4.19. The relation between the inclination angle σ and the coverage area Ac 
during the folding process of a pseudo-dome r: 5m, n: 4, and θ1: 9°. 
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4.3.2. Volume 

 
The volume is calculated using the Pappus’s Centroid Theorem where the volume 

of a revolved solid is calculated by the product of the cross-section area A and the 

distance dc the geometric centroid of the cross-section area travels (Weisstein) (eq. (4.72)).  

 

𝑉 = 𝐴 ∙ 𝑑𝑐                                                   (4.72) 

 

The cross-section area A of the pseudo-dome changes during the folding process 

reaching the quarter of a circle only on its final folded state. Until the final folded state 

the cross-section area is considered as a semi-parabola as it can be observed in Figure 

4.20.  

 

 
 

Figure 4.20.  Pattern-generator’s motion during folding process of a pseudo-dome cross-
section. Inclination angle values 90°, 60°, 30°, 10° and 0° from the initial 
state to final folded state.  

 

The area of a semi parabola is calculated using eq. (4.73), where S is the span 

(eq. (4.69)) and H is the height (eq. (4.67)) of the pseudo-dome structure. 

 

𝐴 =
2𝑆𝐻

3
                                                     (4.73) 
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Figure 4.21. Parameters for the volume calculations of a pseudo-dome. 
 

The parameters dc is the distance the geometric centroid of a cross-section area 

travels and for a revolved solid this distance is equal to 2πr, because the area is 

revolving around the z-axis (Figure 4.21). But in this case, because the revolution 

depends on the inclination angle σ and the central angle ρT, the calculation of dc is done 

using the arc length equation. The radius r of the revolution in Pappus’s theorem is 

equal to 𝑥̅ distance of the centroid and because of the geometry the radius depends on 

the span S of the pseudo-dome. The 𝑥̅ distance of the centroid is calculated in eq. (4.74) 

for the semi parabola geometries. And based on these parameters the equation to 

calculate the volume of a pseudo-dome rigid foldable structure is eq. (4.75), where eq. 

(4.73) and eq. (4.74) have been substituted in eq. (4.72). 

 

𝑑𝑐 =
3𝑆

8
∙ 𝜌𝑇                                                 (4.74) 

𝑉 =
2𝑆𝐻

3
∙

3𝑆

8
∙ 𝜌𝑇 =

𝑆2𝐻𝜌𝑇

4
                                    (4.75) 

 

For all the calculations in this section the central angle’s ρT should be in radian.  
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Figure 4.22.  The relation between the inclination angle σ and the volume V during the 

folding process of a pseudo-dome r: 5m, n: 4, and θ1: 9°. 
 

Figure 4.22 represents the volume of a pseudo-dome structure with n: 4, r: 5 m 

and an first segment angle θ1:9° created with the volume equation (eq. (4.75)). As it can 

be observed, the volume has a rapid increase till it reaches its peak around the 30° of 

inclination angle then it slowly decreases to its final folded state, as it was in both barrel 

vaults’ volume calculations. 

 

4.4. Mobility Analysis 

 
This section analyses the mobility of patterns created to form a pseudo-dome 

with the same method used in the mobility analysis of rigid origami barrel vaults. First 

the number of loops will be calculated (eq. (4.76)), then the mobility will be calculated 

using Freudenstein and Alizade’s mobility equation (eq. (4.77)). The complementary 

patterns’ mobility analysis has not been presented. The analysis will be conducted with 

different number of segments. After calculating the pattern’s mobility, the modified 

version where cut lines are introduced to the pattern will be calculated. All calculations 

will be verified with the structural group properties.  

 

𝐿 = 𝑗 − 𝑙 + 1                                                  (4.76) 
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𝑀𝑛𝑟 = ∑ 𝑓𝑖
𝑗
𝑖=1 − ∑ 𝜆𝑘

𝐿
𝑘=1 + 𝑞 − 𝑗𝑝 = ∑ 𝑓𝑖

𝑗
𝑖=1 − ∑ 𝜆𝑘

𝐿
𝑘=1               (4.77) 

 

where M is the mobility, nr is the number of segment and rows in a pattern, fi is the 

DOF for ith-kinematic pair, λk is the degree of space or subspace of kth loop, q is the 

number of excessive links and 𝒋𝒑  is the number of passive joints. But because the 

analysis revealed that pseudo-dome origami mechanisms have no excessive links or 

passive joints the equation have been defined as such (eq. (4.77)). 

 

4.4.1. Double Row Patterns 

 
In this section double row patterns with 3, 4 and 5 segments and a modified 

pattern (created by removing the joints located on the cut lines that has been presented 

in the conclusion of the geometrical analysis section of this chapter) will be analyzed.  

 

3-segment pattern: Double row for three segments and first segment angle θ1: 

15° has 6 links and 6 joints creating a single loop 𝜆 = 3 (Figure 4.23). The calculation 

of the number of loop, L = 6 – 6 + 1 = 1, coincides with the kinematic diagram. 

The mobility is equal to 3 when calculated with eq. (4.77): M32 = 6 – (1 ∙ 3) = 3. 

 

 
 

Figure 4.23. r: 5m, n: 3, θ1: 15° double row (a) crease pattern and (b) kinematic diagram. 
 

4-segment pattern: Double row pattern with four segments and first segment 

angle θ1: 9° has 8 links and 9 joints creating two 𝜆 = 3 loops (Figure 4.24). The loop 

calculations coincide with the kinematic diagram. 
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The mobility is equal to 3: M42 = 9 – (2 ∙ 3) = 3.When structural group properties 

are analyzed the mobility is the same value as the calculated one. The 1st loop is a 

spherical 6-bar loop which has a mobility of 3, to preserve this mobility 2 links need to 

be added to the system because it is a λ = 3 mechanism. The links [4 and 8] are added 

preserving the mobility equal to 3 (Figure 4.24).  

 

 
 

Figure 4.24. r: 5m, n: 4, θ1: 9° double row (a) crease pattern and (b) kinematic diagram. 

 

5-segment pattern: Double row for a five segments and first angle θ1: 6° has 10 

links and 11 joints creating two 𝜆 = 3 loops (Figure 4.25). Again, the loop calculations 

coincide with the kinematic diagram. 

The mobility is equal to 5 when calculated with eq. (4.77): M52 = 11 – (2 ∙ 3) = 5; 

when the structural group properties are analyzed the mobility calculations are correct. 

The 1st loop is a 6-bar mechanism with mobility equals to 3 and it needs only 2 new 

links to preserve the mobility, but the 2nd loop adds 4 new links [4, 5, 9, and 10] which 

increases the mobility, as calculated, to 5. 

 

 
 

Figure 4.25. r: 5m, n: 5, θ1: 6° double row (a) crease pattern and (b) kinematic diagram. 
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4.4.2. 3-Row Patterns 

 
In this section as it was in double row patterns, 3-row patterns with 3, 4 and 5 

segments and their modified patterns will be analyzed.  

 

3-segment pattern: A new row has been added to the double row to be able to 

analyze the mobility. A new row in three segmented pattern adds 3 new links and 4 new 

joints giving a total of 9 links and 10 joints (Figure 4.26). The new pattern has 2 loops 

which can also be calculated by eq. (4.76). 

The mobility is equal to 4 when calculated with eq. (4.77): M33 = 10 – (2 ∙ 3) = 4. 

When the structural group properties are analyzed the mobility becomes also equal to 4. 

The 2nd loop, a 4-bar loop, is added to a 6-bar loop with mobility 3, and as stated before 

to preserve the mobility, the new loop should bring 2 new links [8 and 9] as it is the 

case. But there is 1 more link [7] which increases the mobility to 4.   

 

 
 
Figure 4.26. r: 5m, n: 3, θ1: 15° three rows (a) crease pattern, (b) kinematic diagram, 

and the (c) modified kinematic diagram. 
 

When the cutline is introduced, the joint number 8 is removed from the system, so 

the total number of links stays 9 but the number of joints decreases to 9. Removing this 

joint decreases the number of loops and increases the mobility: M33M = 9 – (1 ∙ 3) = 6. 

The mobility is equal to 6 when the structural group properties are analyzed 

where a 6-bar loop with mobility 3, is attached with 3 additional links, which justifies 

the mobility calculation of the modified pattern. 
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4-segment pattern: The three rowed four segmented pattern adds 4 new links and 

5 new joints and a new 𝜆 = 3 loop is added to the mechanism. The loop calculations 

confirm the number of loops using the eq. (4.76). 

The mobility is calculated as 5 using the eq. (4.77): M43 = 14 – (3 ∙ 3) = 5. The 

3rd loop adds 3 new links [10, 11 and 12]; the necessary number of links to preserve the 

mobility is equal to 2, thus the mobility increases by one becoming equal to 4. The link 

9 is an additional link which adds 1 to the mobility. The mobility for this four 

segmented three row pattern is equal to 5 according to the structural group properties 

which is equal to the calculated mobility. 

 

 
 
Figure 4.27. r: 5m, n: 4, θ1: 9° three rows (a) crease pattern, (b) kinematic diagram, and 

the (c) modified kinematic diagram. 
 

When the cut line is introduced to this mechanism, joint 6 is removed leaving 

the mechanism with a total of 13 joints and 12 links. Removing this joint breaks the 

loop number 2, changing the mechanism into a 2 looped mechanism. The calculated 

mobility is equal to 7: M43M = 13 – (2 ∙ 3) = 7. 

The mobility is also equal to 7 when the structural group properties are analyzed. 

The 6-bar loop has an addition of 4 links increasing the mobility to 5 and when the 

additional links [4 and 9] are added the mobility again increases by 2 to a total of 7, 

which justifies the calculations. 
 

5-segment pattern: For the 3-row 5-segment pattern, 5 new links and 7 new 

joints are introduced making the total of 15 links and 18 joints. 2 new loops are added to 

the mechanism which is confirmed by the calculations.  

The calculated mobility is equal to 6: M53 = 18 – (4 ∙ 3) = 6. When the structural 

group properties are analyzed the mechanism’s mobility is also equal to 6. The 3rd loop 
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is a 4-bar loop which adds 2 new links [14 and 15] preserving the mobility equal to 5, 

the 4th loop is a 6-bar loop which adds 2 new links [12 and 13] preserving the mobility 

equal to 5. The additional link [11] increases the mobility by 1 to 6 as calculated. 

 

 
 

Figure 4.28. r: 5m, n: 5, θ1: 6° three rows (a) crease pattern, (b) kinematic diagram, and 
the (c) modified kinematic diagram. 

 

When the cutline is introduced, the connection between the links 10 and 15 is 

lost by removing the joint number 14 (Figure 4.28). The total number of joints 

decreases to 17 but the number of links stays the same. Removing the joint also 

decreased the number of loops to 3. Both the mobility calculated with eq. (4.77) and 

that of the structural group properties is equal to 8: M53M = 17 – (3 ∙ 3) = 8.  

Based on the structural group properties, the 3rd loop adds 3 new links increasing 

the mobility from 5 to 6. The 2 additional links [11 and 15] increase the mobility to 8, 

verifying the calculation. 
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4.4.3. 4-Row Patterns 

 
In this section 4-row patterns with 3, 4 and 5 segments and their modified 

patterns will be analyzed.  

 

3-segment pattern: A new row is added with 3 new links and 4 new joints 

making a total of 12 links and 14 joints. The new row also adds a 3rd loop (Figure 4.29).  

The mobility is equal to 5: M34 = 14 – (3 ∙ 3) = 5. When the structural group 

properties are analyzed the mobility is also equal to 5. 3 new links [10, 11, and 12] are 

introduced to the mechanism increasing its mobility to 5. 

In this pattern no new cutline is introduced, but the cutline introduced in 3-row 

and 3-segment pattern is applied. The mobility is equal to 7. In the structural group 

properties the 6-bar mechanism with mobility 3 is attached to another 6-bar mechanism 

again with mobility 3 through the joint number 7, making this pattern a mechanism with 

mobility 7: M34M = 13 – (2 ∙ 3) = 7.  

 

 
 

Figure 4.29. r: 5m, n: 3, θ1: 15° four rows (a) crease pattern, (b) kinematic diagram, and 
the (c) modified kinematic diagram. 

 

4-segment pattern: The 4-row and 4-segment pattern adds 4 new links and 6 new 

joints and 2 new 𝜆 = 3 loops to the mechanism. The loops calculations confirm the 

number of loops using eq. (4.76): L = 20 – 16 + 1 = 5. 

The mobility is equal to 5: M44 = 20 – (5 ∙ 3) = 5. When the structural group 

properties are analyzed the 1st loop is a 6-bar loop with a mobility equal to 3. The 2nd 

loops adds 2 new links [4 and 8] preserving the mobility. The 3rd loop adds 3 new links 
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increasing the mobility by 1. The 4th loop adds 4 new links including the additional joint 

[9] increasing the mobility by 2, making it equal to 6. The 5th loop adds only one link 

[16] decreasing the mobility by one. The 4-segment and 4-row pattern’s mobility is 

equal to 5 based on its structural group properties.  

When the new cutline is introduced to this mechanism joints 6 and 17 are 

removed (Figure 4.30) the mechanism is left with a total of 18 joints and 16 links. The 

removed joints belong to the new row; the modifications done on the 4-segment and 3-

row pattern are the same. The new mechanism has 3 loops and the calculated mobility is 

equal to 9: M44M = 18 – (3 ∙ 3) = 9. 

 

 
 
Figure 4.30. r: 5m, n: 4, θ1: 9° four rows (a) crease pattern, (b) kinematic diagram, and 

the (c) modified kinematic diagram. 
 

The 1st loop is a 6-bar loop with a mobility of 3; the 2nd loops adds 4 new links 

[8, 10, 11, and 12] increasing the mobility by 2. The 3rd loops also adds 4 new links [9, 

13, 14, and 15] again increasing the mobility by 2, the total mobility till this step is 

equal to 7. Finally the two additional links [4 and 16] increases the mobility by 2 

making it equal to 9 as calculated.  

 

5-segment pattern: the 4th row introduces 5 new links and 7 new joints making 

the total of links equal to 20 and joints to 25. 2 new loops are added to the mechanism 

which is confirmed by the calculations (Figure 4.31): L = 25 – 20 + 1 = 6. 

The calculated mobility is equal to 7: M54= 25 – (6 ∙ 3) = 7. When the structural 

group properties are analyzed, the same result is achieved. The 1st loop is a 6-bar loop 

with mobility 3. The 2nd loop adds 4 new links [4, 5, 9, and 10] increasing the mobility 

by 2. The 3rd loops adds 2 new links [14 and 15] preserving the mobility equal to 5. The 
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4th loop adds 2 new links [12 and 13] again preserving the mobility. The 5th loop adds 4 

new links [11, 16, 17, and 18] increasing the mobility to 7. The 6th loops adds 2 new 

links [19 and 20] preserving the mobility. 

No new cutline is added, the one created in the previous row is preserved. The 

total number of joints is equal to 24 and the number of links is 20. The calculated 

mobility is equal to 9: M54M = 24 – (5 ∙ 3) = 9. 

The same result is achieved when the structural group analysis is conducted. The 

1st loop has a mobility equal to 3. The 2nd loop adds 4 new links increasing the mobility 

to 5. The 3rd loop adds 3 new links which increases the mobility by 1. The 4th loop adds 

4 new links increasing the mobility to 8 and the last loop (5th loop) adds 3 new links 

increasing the mobility to 9. 

 

 
 

Figure 4.31. r: 5m, n: 5, θ1: 6° four rows (a) crease pattern, (b) kinematic diagram, and 
the (c) modified kinematic diagram. 
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4.4.4. 5-Row Patterns 

 
In this section 5-row patterns with 3, 4 and 5 segments and their modified 

pattern are analyzed.  

3-segment pattern: A new row is added with 3 new links and 4 new joints 

making a total of 15 links and 18 joints. The new row also adds a 4th loop (Figure 4.32).  

The mobility calculations are equal to 6: M35 = 18 – (4 ∙ 3) = 6. When the 

structural group properties are analyzed the mobility is also equal to 6. The 3rd loops 

adds 4 new links [7, 10, 11, and 12] increasing the mobility to 5. The 4th loop adds 2 

new links [14 and 15] which preserve the mobility. Finally the additional link [13] 

increases the mobility to 6, as calculated. 

 

 
 
Figure 4.32.  r: 5m, n: 3, θ1: 15° five rows (a) crease pattern, (b) kinematic diagram, and 

the (c) modified kinematic diagram. 
 

A new cutline is added, joints 8 and 16 are removed from the pattern decreasing 

the number of joints to 16. The calculated mobility of the modified pattern is equal to 

10: M44M = 16 – (2 ∙ 3) = 10.When the structural properties were analyzed in the 

previous part, the mobility of the modified 4-row and 3-segment pattern was equal to 7, 

with this modification 3 additional links are added to the mechanism increasing the 

mobility to 10. 
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4-segment pattern: The fifth row adds 4 new links and 5 new joints and one new 

𝜆 = 3 loop is added to the mechanism.  

The mobility is equal to 7: M45 = 25 – (6 ∙ 3) = 7. When the structural group 

properties are analyzed the 1st loop is a 6-bar loop with a mobility equal to 3. The 2nd 

loops adds 2 new links [4 and 8] preserving the mobility. The 3rd loop adds 3 new links 

[10, 11, and 12] increasing the mobility by 1. The 4th loop adds 4 new links [9, 13, 14, 

and 15] increasing the mobility by 2, making it equal to 6. The 5th loop adds only one 

link [16] decreasing the mobility to 5. The 6th loop adds 3 new links [18, 19, and 20] 

increasing the mobility to 6 and finally the mobility increases to 7 again by the addition 

of link 17 same as the calculation:  

 

 
 

Figure 4.33. r: 5m, n: 4, θ1: 9° five rows (a) crease pattern, (b) kinematic diagram, and 
the (c) modified kinematic diagram. 

 

No new cutline is introduced, but the previously removed joints are removed 

again in this 5-row pattern. The joints removed were joints 6 and 17. The modified 

pattern has 20 links and 23 joints (Figure 4.33). The calculated mobility for the 

modified pattern is equal to 11: M45M = 23 – (4 ∙ 3) = 11.  

When the structural group properties are analyzed, the 1st loop has a mobility 

equal to 3, because it is a 6-bar loop. The 2nd loop adds 4 new links [8, 10, 11, and 12] 

increasing the mobility to 5. The 3rd loop adds again 4 new links [9, 13, 14, and 15] 

increasing the mobility to 7. The last loop (4th loop) adds also 4 new links [16, 18, 19, 

and 20] increasing the mobility to 9. And finally the 2 additional links [4 and 17] are 

added increasing the mobility to 11 same as the calculated value.   
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5-segment pattern: The 5th row increases the number of links to 25 and the 

number of joints to 32 (Figure 4.34).  

The calculated mobility is equal to 8: M55 = 32 – (8 ∙ 3) = 8. When the structural 

group properties are analyzed the same result is achieved. The 1st loop is a 6-bar loop 

with mobility 3. The 2nd loop adds 4 new links [4, 5, 9, and 10] increasing the mobility 

by 2. The 3rd loops adds 2 new links [14 and 15] preserving the mobility equal to 5. The 

4th loop adds 2 new links [12 and 13] again preserving the mobility. The 5th loop adds 4 

new links [11, 16, 17, and 18] increasing the mobility to 7. The 6th loops adds 2 new 

links [19 and 20] preserving the mobility. The 7th loop adds 2 new links [24 and 25] 

preserving the mobility. The 8th loop also adds 2 new links [22 and 23] preserving the 

mobility. Finally the additional link [21] is added increasing the mobility to 8. 

 

 
 

Figure 4.34. r: 5m, n: 5, θ1: 6° five rows (a) crease pattern, (b) kinematic diagram, and 
the (c) modified kinematic diagram. 
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A new cutline is added, joints 14 and 28 are removed to create the modified 

pattern which decreases number of joints to 25 and the number of links 25 is preserved. 

The calculated mobility of the modified pattern is equal to 12: M55M = 30 – (6 ∙ 3) = 12. 

The same result is achieved when the structural group analysis is conducted. The 

1st loop has a mobility equal to 3. The 2nd loop adds 4 new links increasing the mobility 

to 5. The 3rd loop adds 3 new links which increases the mobility by 1 to 6. The 4th loop 

adds 4 new links increasing the mobility to 8. The 5th loop adds 3 new links increasing 

the mobility to 9. The last loop (6th loop) adds 3 new links increasing the mobility to 10. 

And finally, when the 2 additional links are added, the mobility becomes 12, same as 

the calculations. 

Tables 4.4 and 4.5 present the mobility calculations for patterns with different 

number of segments and rows.  

 

Table 4.4.  Pseudo-dome pattern mobility analysis with different number of segments 
and rows. 

 
Pseudo-Dome Pattern 

# of 
segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:3  

# links 6 9 12 15 18 (+3) 
# joints 6 10 14 18 22 (+4)  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+1)  
1 1 0 2 2 0 3 3 0 4 4 0 5 5 0 

M 3 4 5 6 7 (+1) 

n:4  

# links 8 12 16 20 24 (+4) 

# joints 9 14 20 25 31 (+5) to odd  
(+6) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+1) to odd  

(+2) to even  2 2 0 3 3 0 5 5 0 6 6 0 8 8 0 
M 3 5 5 7 7   

n:5 

# links 10 15 20 25 30 (+5) 
# joints 11 18 25 32 39 (+7)  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+2) 
2 2 0 4 4 0 6 6 0 8 8 0 10 10 0 

M 5 6 7 8 9 (+1)  

n:6  

# links 12 18 24 30 36 (+6) 

# joints 14 22 31 39 48 (+8) to odd  
(+9) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+2) to odd  

(+3) to even  3 3 0 5 5 0 8 8 0 10 10 0 13 13 0 
M 5 7 7 9 9   
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Table 4.5.  Pseudo-dome modified pattern mobility analysis with different number of 
segments and rows. 

 
Pseudo-Dome Modified Pattern 

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by 

n:3  

# links 6 9 12 15 18 (+3) 

# joints 6 9 13 16 20 (+3) to odd  
(+4) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+1) 
1 1 0 1 1 0 2 2 0 2 2 0 3 3 0 

M 3 6 7 10 11 (+3) to odd  
(+1) to even   

n:4  

# links 8 12 16 20 24 (+4) 

# joints 9 13 18 23 28 (+5) to odd  
(+6) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+1) 
2 2 0 2 2 0 3 3 0 4 4 0 5 5 0 

M 3 7 9 11 13 (+2)  

n:5 

# links 10 15 20 25 30 (+5) 

# joints 11 17 24 30 37 (+6) to odd  
(+7) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 (+1) to odd  

(+2) to even  2 2 0 3 3 0 5 5 0 6 6 0 8 8 0 

M 5 8 9 12 13 (+3) to odd  
(+1) to even   

n:6 

# links 12 18 24 30 36 (+6) 

# joints 14 21 29 37 45 (+8) to odd  
(+9) to even  

# loops 
T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 T λ=3 λ=5 

(+2) 
3 3 0 4 4 0 6 6 0 8 8 0 10 10 0 

M 5 9 11 13 15 (+2)  

 

When Table 4.4 is analyzed, even numbered segments presents a different 

growth than odd numbered segments when their number of joints and number of loops 

for each additional row is analyzed. Odd segment numbered patterns’ mobility increases 

by 1 with each additional row. Even segment numbered patterns’ mobility increases 

with each double row as it can be observed. 

When Table 4.5 is analyzed, it can be observed that in even segment numbered 

patterns, when the joint related to the tearing crease is removed, have a linear growth of 

mobility value when compared to the original pattern mobility. 

As a conclusion both original and modified patterns for a pseudo-dome 

mechanism has been analyzed and each calculation have been compared to a structural 

group analysis reveling the same values. It has been observed that each new row 

increased the mobility of the mechanism. Removing the joints, creating degree-4 

vertexes near the central point of the pattern, also proved to increase the mobility of the 

mechanism. These particular crease joints can be modified to avoid tearing and also to 

limit the increase of the mobility of the overall pattern.  
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4.5. Conclusion 

 
In this chapter a method of designing a MV-Pattern for a pseudo-dome structure 

using a pattern-generator has been presented. The design starts by defining three 

parameters the radius r, the number of segments n and the first segment angle θ1. These 

parameters generate all the required parameters to design a pattern. The relations 

between parameters have been demonstrated in the geometrical analysis. A calculation 

sheet prepared in Microsoft Excel 2013® has been provided to facilitate the calculations 

of the parameters (Appendix E). In the workspace analysis, changes of the span, height, 

coverage area and volume during the deployment process were analyzed and put in 

relation with the inclination angle σ. In the last section mobility analysis were 

conducted to understand the mechanism.  
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CHAPTER 5 

 

CASE STUDIES 

 
In this chapter possible architectural applications of the presented rigid origami 

structures will be explored with two case studies. The objective is to present the 

proposed design method with these case studies. The first case study is the creation of a 

deployable double centered barrel vault that will provide cover to an archeological site 

when needed. The second case study is the creation of a semi-pseudo-dome deployable 

structure that will provide cover to a concert stage. 

Both case studies will present the step by step design method. First step is the 

decisions of the main parameters based on the requirements of the sites and the 

calculations of the parameters required to draw a pattern. Second step is the creation of 

the MV-Pattern based on the calculated parameters. Third step is the calculations of 

depth, span, height, and volume for the created and placed pattern. The last step is the 

conclusion of the designed pattern.  

 

5.1. Case Study 1 

 
The first case study is the creation of a canopy for an archeological dig site 

located in İzmir which should be deployable in need. The created structure need to 

cover a small dig site located in the Smyrna archeological dig site in İzmir, Turkey. The 

site dimensions are 8,5 m by 12 m and the site has a 3 m depth. A deployable structure 

is needed to create a cover over this site that can be folded/unfolded when needed. The 

structure will provide protection, to the antiquities being dig and to archeologist, from 

extreme weather conditions. The structure will be on site, so the deployability of it and 

its dimensions during the deployment states are necessary parameters for the designer.  

A step by step approach of the design of a barrel vault deployable structure will 

be presented, where choices of the main parameters will be explained. Then parameters 

will be calculated and the pattern will be created.  
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5.1.1. Step 1 – Parameters Calculations 

 
The first step is to decide the cross-section of the deployable rigid origami 

structure. Double centered barrel vault has been selected because the double centered 

arches are more complex to design then the single centered ones. As presented in 

chapter 3 there are three types of double centered arches: Pointed equilateral, Lancet 

and Obtuse. Each presents different span and height properties, in this case because the 

site has a considerable depth, a high height is not required, and so the obtuse arch cross-

section becomes more adequate for this site.  

Obtuse cross-section arch has more span then height where the radius r is greater 

than the distance between its two centers a. There are three main parameters that need 

to be decided radius r, distance between two centers a, and the number of segments for 

one arc n. The parameters r and a are in relation with the site’s span, equal to 8,5 m, but 

the parameter n is more a question of aesthetic.  

The span of an obtuse cross-section barrel vault, when in its final folded state, is 

calculated: 

 

𝑆 = 2𝑟 − 𝑎                                                   (5.1) 

 

Even though this equation has not been presented it can be deduced by the 

geometrical properties presented on chapter 3.  

So based on eq. (5.1) to have a span S of 9 m when the structure is on its final 

folded state the parameters are: r: 6 m and a:3 m. The last parameter to decide is the 

number of segment n which will be equal to 4 – n: 4 and nt: 8. Based on these 

parameters all the parameters can be calculated to draw a crease pattern.  

Angle 𝐴̂ is calculated using eq. (3.52): 

 

𝐴̂ =  cos−1 (
𝑎

2𝑟
) = cos−1 (

3

2∙6
) = 75,522°                         (5.2) 

 

Based on this angle the segment’s angle θ is calculated using eq. (3.53): 

 

𝜃 =
𝐴

𝑛
=

75,522

4
= 18,88°                                          (5.3) 
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The length of the segment s (eq. (5.4)) and the pattern generator’s length st 

(eq. 5.5)) are calculated using eqs. (3.2) and (3.3): 

 

s = 2𝑟𝑠𝑖𝑛 (
𝜃

2
) = 2 ∙ 6 ∙ sin (

18,88

2
) = 1,968 𝑚                   (5.4) 

𝑠𝑡 = 𝑛𝑡 ∙ 𝑠 = 8 ∙ 1,968 = 15,745 𝑚                            (5.5) 

 

Then the angles 𝐵̂, 𝐶̂, and 𝐷̂ are calculated using eqs. (3.54), (3.55), and (3.56): 

 

𝐵̂ =  𝜋 − 2𝐴̂ = 180 − (2 ∙ 75,522) = 28,955°                       (5.6) 

𝐶̂ = (
𝜋−𝜃

2
) = (

180−18,88

2
) = 80,559°                                 (5.7) 

𝐷̂ = 𝐶̂ − 𝐵̂ = 80,56 − 28,955 = 51,604°                            (5.8) 

 

Based on these angles the interior angles β1 and β2 are calculated, where β2 is the 

apex’s interior angle. Also based on these angles the edge angle λ is calculated. 

 

𝛽1 = 2𝐶̂ = 2 ∙ 80,559 = 161,119°                                   (5.9) 

𝛽2 = 𝐵̂ + 2𝐷̂ = 28,955 + (2 ∙ 51,604) = 132,164°                    (5.10) 

𝜆 = 𝐶̂ = 80,559°                                              (5.11) 

 

The folding angle α1 and the apex’s folding angle α2 are calculated with the 

following equations: 

 

𝛼1 =
𝜋−𝛽1

2
=

180−161,119

2
= 9,44°                                  (5.12) 

𝛼2 =
𝜋−𝛽2

2
=

180−132,164

2
= 23,91°                                (5.13) 

 

Finally the half-row’s heights h1 calculated with the folding angle α1 and h2 

calculated with the folding angle α2 can be calculated leading to the total height of the 

row 2h.  

 

ℎ1 = 𝑡𝑎𝑛𝛼1 (
𝑠

2
) = tan(9,44) ∙ (

1,968

2
) = 0,1636 𝑚 = 16,36 𝑐𝑚          (5.14) 

ℎ2 = 𝑡𝑎𝑛𝛼2 (
𝑠

2
) = tan(23,91) ∙ (

1,968

2
) = 0,4364𝑚 = 43,64𝑐𝑚         (5.15) 
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2ℎ = 2 ∙ ℎ1 = 2 ∙ 0,1636 = 0,3272𝑚 = 32,72 𝑐𝑚                     (5.16) 

 

The importance of calculating the row’s height with the smallest value of the 

half-row’s height calculated is important, because if the higher value is used in this case 

h2 then the diagonals would have crisscrossed within the height of the row.  

All these parameter calculations have been presented to understand the steps and 

the geometrical relations between the parameters. To facilitate the calculations a 

calculation sheet has been prepared in Microsoft Excel 2013® which is presented in 

Appendix C. 

Table 5.1 presents all the parameters calculated in this step of the design of a 

double centered cross-sectioned arch barrel vault. Not all these parameters are used to 

create a crease pattern, but as it can be observed from the calculation process, all are in 

relation with each other. 

 

Table 5.1. Design Parameters for Obtuse arch cross-sectioned rigid origami barrel vault. 
 

 

5.1.2. Step 2 – MV-Pattern Creation  

 
In this section a step by step explanation is provided for the creation of a crease 

pattern. Parameters required to draw a crease pattern are the length of segment s, the 

pattern generator length st, the folding angle α1, the apex’s folding angle α2, the edge 

angle λ and the height of a half-row h1. The location of these parameters is represented 

in Figure 5.1 which is a representation of these parameters and not the pattern designed 

in this case study.  

 

 r (m) a (m) n θ° s (m) st (m) 𝐴̂° 

Obtuse 6 3 4 18,880 1,96824 15,74592 75,52249 

 𝐵̂° 𝐶̂° 𝐷̂° β1° β2° α1° α2° 

Obtuse 28,955 80,559 51,604 161,1194 132,164 9,440311 23,91782 

 λ° b (m) h1 (m) h2 (m) 2h (m) nT  

Obtuse 80,55969 3 0,163631 0,436468 0,327263 8  
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Figure 5.1. Design Parameters for double centered barrel vaults. 
 

Firstly the pattern-generator is drawn using the value of st (pattern-generator 

length). It is important to mark segments intersection points (Figure 5.2.(1) dots). Then 

parallel lines are placed on both side of the pattern-generator using the smallest value 

of half-row height, in this case h1 (Figure 5.2.(2)). Since the row height 2h has been 

draw the diagonals need to be drawn based on the folding angles. It is recommended to 

place the diagonal starting from one of the ends, so that the direction of the folding lines 

are correct. Using the folding angle α1 the first diagonal is placed (Figure 5.2.(3)) then 

by changing the direction of the diagonals, the rest of them are placed (Figure 5.2.(4)) 

till the apex intersection. As explained the double centered arch is created using two 

arcs creating an apex which have a different interior angle thus a different folding angle 

α2 than the rest of the pattern. The apex’s diagonal is placed using the value of the 

folding angle α2, again on the opposite direction of the last placed diagonals (Figure 

5.2.(5)). The rest of the diagonals are placed on opposing directions (Figure 5.2.(6)). 

Last parameter is the edge angle λ placed on the same direction as the last diagonals 

(Figure 5.2.(7)). The final folded state value of this parameter has been used for this 

particular design.   

Figure 5.2 presents the steps of drawing a single row of a crease pattern. Starting 

from the third step two different rows are drawn to show the difference between rows if 

the rotation of the first diagonal is different. 

The creation of the second row is done by a simple congruence transformation: 

reflection (Figure 5.3(1)). As it can be observed the mirror image of the first row is 

actually the row created with a diagonal with a different direction in Figure 5.2 (7). The 

whole of the pattern is created by translating the double rows in a single direction 

(Figure 5.3(2)). 
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Figure 5.2. Pattern’s drawing steps 
 

 

 
 

Figure 5.3. Increasing single row. 
 

The pattern created in figure 5.3 is a 4 row crease pattern, where the red line 

represent the pattern-generator. Before deciding on the number of rows the CP need to 

be transformed to a MV-Pattern. The assignment of the mountain and valley folds is 

done based on Maekawa theorem where the difference of mountain folds and valley 

folds need to be equal to 2 (eq. (2.1)). Based on that theorem the MV-Pattern is created 

(Figure 5.4). No difference occurs if the MV-Assignment is inversed, because mountain 

and valley folds are considered dual to each other. Figure 5.4 presents two different 

MV-Pattern created with different MV-Assignment and their final folded state, so that 

the duality of mountain and valley folds can be understood. For both MV-Patterns in 

Figure 5.4 the dashed lines are valley folds and solid lines are mountain folds. 
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Figure 5.4. MV-Patterns and their final folded states. 
 

5.1.3. Step 3 – Dimensions of the Created Pattern  

 
In this step the dimensions (depth, span, height and volume) of the designed 

pattern will be discussed. The designed pattern is a flat-foldable and developable pattern 

which means that, for the deployable structure to be able to create a volume, the 

inclination angle’s σ value should be between π/2 and 0, where 0 is the initial state and 

π/2 is the final folded state. Based on the dimension of the site that need to be covered 

the dimensions the number of rows Rn has been decided to be 50 rows. As the 

parameters r, a, and n; number of rows Rn is also a parameter decided by the designer.  

The structure is assembled on the ground in its initial state, then erected to its 

place. Instead of fixing the joints as it was the case in oricrete (Chudoba, van der Woerd, 

Schmerl, & Hegger, 2014), the structure is folded to its final folded state which is flat 

and placed to its location so that when needed the structure is deployed to cover the area.  
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A limit should be imposed to the maximum value of the inclination angle σ, so 

that the structure do not open totally to its flat-folded initial state. To be able to impose 

the limits of the deployment all changes occurring to the dimensions, in relation to the 

inclination angle σ need to be analyzed. Site dimensions are a criteria to decide these 

limits. Also the dimension (depth, span, height and volume) calculations are done 

assuming the surface of the deployable structure has no thickness. 

The span of the structure is calculated using eq. (3.75) with different inclination 

angle values to understand the deployment process. Figure 5.5 is the representation of 

the changes occurring to the designed structure during the deployment process. The 

mean value for this particular deployable structure is 12,37331 m which coincide to an 

inclination angle of 42,5°, to simplify the calculations the value for the inclination angle 

has been selected as 40°. As the inclination angle reach 90° the final flat-folded state, 

the span decreases. 

The site dimension that coincides to the span is 8,5 m, the radius r and distance 

between the centers a have been decided considering this dimension, which represent 

the final folded state’s dimensions because the design process starts by this state. If the 

minimum limit for the inclination angle is set as 40°, the span will not surpass 12,65 m 

as it can be observed in Figure 5.5.  

 

 
 

Figure 5.5. Span changes for an obtuse barrel vault with n:4, r:6m, and a:3m. 
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The height of the structure has been calculated using eq. (3.77) with different 

values of inclination angles as it is in the span calculations. When the decided minimum 

value of the inclination (40°) is analyzed in Figure 5.6, it can be observed that after this 

angle there is a rapid height increase till its final folded state. The value of height is 

4,3 m for this inclination angle. 

 

 
 

Figure 5.6. Height changes for an obtuse barrel vault with n:4, r:6m, and a:3m. 
 

The relation between the depth and the inclination angle is analyzed by 

calculating the depth with different values of inclination angle using eq. (3.67) (Figure 

5.7). The changes occurring to the depth during the deployment process will help 

imposing limits for the structure. The limit has already being imposed as 40° for the 

inclination angle which coincide to a value of 12,53 m, which is very close to the span 

value with the same inclination angle. 

The total area of the site can be covered when the inclination angle is set as 40°, 

which is the minimum value that the inclination angle can have after the erection of the 

deployable structure. To able to achieve this, some constrains can be included to the 

joints or the structure can be limited by secondary small structures so that once erected 

the value of the inclination angle do not drop under 40°. 
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Figure 5.7. Depth changes for an obtuse barrel vault with n:4, r:6m, and a:3m. 
 

Even though the inclination angle has been set, the volume should be calculated 

for different inclination values to be able to observe the changes. Figure 5.8 presents the 

changes occurring to the designed structure, calculated using eq. (3.83) with different 

inclination angle values. As it can be observed, the angle value selected for the 

maximum space coverage of the structure is close to the maximum value of the volume 

which is equal to 387 m3. 

 

 
 

Figure 5.8. Volume changes for an obtuse barrel vault with n:4, r:6m, and a:3m. 
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Figure 5.9 presents the deployable structure with the defined inclination angle 

equal to 40° which is the minimum value it can reach after the erection of the structure. 

Figure 5.10 presents the deployment process for different inclination angles equal to 40°, 

55°, and 70°going from lighter to darker folded state respectively. As it can be observed 

as the inclination increases the height increases but the volume, depth, and span decreases. 

 

 
 

Figure 5.9. Deployable Obtuse Barrel Vault structure with n:4, r:6m, a:3m and σ:40°. 
 

 
 
Figure 5.10.  Deployable Obtuse Barrel Vault structure with n:4, r:6m, a:3m and σ:40°, 

σ:55°, and σ:70°. 
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5.1.4. Conclusion 

 
The steps of creating a deployable flat-foldable obtuse barrel vault structure has 

been presented. The choice of the type of barrel vault has been decided based on the 

requirement of the site, which demands more span than height. The properties of the 

barrel vault types are analyzed: pointed equilateral cross-sectioned barrel vault have an 

equal height and span, the lancet cross-sectioned one have more height then span, and 

finally the obtuse cross-sectioned one have more span then height. So the choice of 

cross-section type for this particular site have been decided as an obtuse arch. 

In step 1 all equations, needed in the creation of the pattern, have been 

demonstrated to emphasize the relation between the parameters. In step 2 a successive 

pattern creation have been demonstrated using the calculated parameters in the first step. 

The last step demonstrated the calculations of the dimensions of the structure with 

different inclination angle values to be able to decide a maximum opening limit once 

the structure is in its partially folded state. This limit has been created because to fold 

the structure from its initial state, each time there is a need to cover the area, demands 

too much effort/ too much mechanical effort.  

When the mobility is calculated using the Freudenstein and Alizade’s equation 

the mobility is equal to -91, which is an over-constrained mechanism. This designed 

deployable barrel vault mechanism has 400 links, 644 joints and 245 λ=3 loops. 

Structural loads are not being calculated but for the structure to be more stable it 

is recommended to use lighter materials or materials with less thickness towards the 

apex. Also considering the structural behavior of the barrel vaults a secondary structure 

should be placed to compensate the outward forces at the lower parts of the structure 

created by the geometry of the barrel vault. The outward forces in this type of structure 

would be even more severe because the structure is a deployable one and not a static 

one where the forces are stable and fixed.   

The designed pattern is a triangular pattern. If there was a need to design a 

trapezoidal pattern decreasing the height h1 would have been sufficient. There are no 

differences in the design steps between two crease patterns. 
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5.2. Case Study 2 

 
The second case study is the creation of a temporary canopy for a concert. The 

created structure need to cover a small concert stage. The stage dimensions are 5 m by 

10 m. The structure will provide protection against extreme weather conditions and 

provide good acoustics for the performers, due to these needs a semi-pseudo-dome has 

been decided to be created. The structure need to be transportable and deployable with a 

fixed maximum opening angle to be able to be used as a stage cover.  

A step by step approach of the design of the structure will be presented. Where 

choices of the main parameters will be explained. Then parameters will be calculated 

and the pattern will be created.  

 

5.2.1. Step 1 – Parameters Calculations 

 
The design of a semi-pseudo- dome starts with deciding the parameters: radius r, 

and the number of segments n. Eq. (4.39) allow the calculation of the first segment’s 

angle θ1 based on the number of segments. Thus the first segment’s angle is no longer a 

decided parameter. 

The stage is a 5 m by 10 m so the radius r is decided as 5 m knowing that the 

radius value defined is the final folded state of the pattern. The number of segments n is 

both an aesthetic choice and a functional choice. For this particular stage the number of 

segment n has been decided as 6 to provide enough space under the structure.  

These two parameters allows the designer to create a deployable semi-dome 

structure. The first parameter to calculate is the first segment’s number: 

 

𝜃1 =
180°

𝑛(𝑛+1)
=

180

6∙(6+1)
= 4,2857°                                (5.17) 

 

Because the segmentation of a pseudo-dome deployable structure is created 

using an arithmetic sequence the last segment’s angle θl and the common difference CD 

need to be calculated to be able to calculate the rest of the segment’s angles. As proven 

with eq. (4.38) for a pattern to be created without a complementary triangle the common 

difference need to be equal to the first segment’s angle. Each segment’s angle can be 
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calculated using the following equation (eq. (4.4)). Where n is the number of segment’s 

angle needed.  

 

 𝜃2 = 𝜃1 + ((𝑛 − 1)𝐶𝐷) = 4,2857 + ((2 − 1)4,2857) = 8,5714°  (5.18) 

 𝜃3 = 4,2857 + ((3 − 1)4,2857) = 12,8571°  (5.19) 

 𝜃4 = 4,2857 + ((4 − 1)4,2857) = 17,1429°  (5.20) 

 𝜃5 = 4,2857 + ((5 − 1)4,2857) = 21,4286°  (5.21) 

 𝜃𝑙 = 𝜃6 = 4,2857 + ((6 − 1)4,2857) = 25,7143°  (5.22) 

 

Segment length sn for each segment’s angle is calculated using eq. (4.5): 

 

 𝑠1 = 2𝑟 sin (
𝜃1

2
) = 2 ∙ 6 ∙ sin (

4,2857

2
) = 0,374 𝑚  (5.23) 

 𝑠2 = 2 ∙ 6 ∙ sin (
8,5714

2
) = 0,747 𝑚  (5.24) 

 𝑠3 = 2 ∙ 6 ∙ sin (
12,8571

2
) = 1,120 𝑚  (5.25) 

 𝑠4 = 2 ∙ 6 ∙ sin (
17,1429

2
) = 1,490 𝑚  (5.26) 

 𝑠5 = 2 ∙ 6 ∙ sin (
21,4286

2
) = 1,859 𝑚  (5.27) 

 𝑠6 = 2 ∙ 6 ∙ sin (
25,7143

2
) = 2,225 𝑚  (5.28) 

 

The angles 𝑨̂𝒏 are calculated for each segment using the eq. (4.6). 

 

 𝐴̂1 =
180−𝜃1

2
=

180−4,2857

2
= 87,8571°  (5.29) 

 𝐴̂2 =
180−8,5714

2
= 85,7143°   (5.30) 

 𝐴̂3 =
180−12,8571

2
= 83,5714°  (5.31) 

 𝐴̂4 =
180−17,1429

2
= 81,4286°  (5.32) 

 𝐴̂5 =
180−21,4286

2
= 79,2857°  (5.33) 

 𝐴̂6 =
180−25,7143

2
= 77,1429°  (5.34) 
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With these angles the interior angles can be calculated using eq. (4.7). The 

annotation on interior angles is different because there are n-1 number of parameters. 

 

𝛽𝑖 = 𝛽1 = 𝐴̂𝑖+1 + 𝐴̂𝑖 = 𝐴̂2 + 𝐴̂1 = 87,8571 + 85,7143 = 173,57°       (5.35) 

𝛽2 = 𝐴̂3 + 𝐴̂2 = 83,5714 + 87,8571 = 169,29°                      (5.36) 

𝛽3 = 𝐴̂4 + 𝐴̂3 = 81,4286 + 83,5714 = 165°                          (5.37) 

𝛽4 = 𝐴̂5 + 𝐴̂4 = 79,2857 + 81,4286 = 160,71°                       (5.38) 

𝛽5 = 𝐴̂6 + 𝐴̂5 = 77,1429 + 79,2857 = 156,43°                       (5.39) 

 

Since the interior angles have been calculated their segment length ai can be 

calculated using the following equation (eq. (4.8)). 

 

𝑎𝑖 = 𝑎1 = 2𝑟 cos (
𝜋−(𝜃𝑖+𝜃𝑖+1)

2
) = 2𝑟 cos (

𝜋−(𝜃1+𝜃2)

2
)  

= 2 ∙ 6 ∙ cos (
180−(4,2857+8,5714)

2
) = 1,120 𝑚                  (5.40) 

𝑎2 = 2 ∙ 6 ∙ cos (
180−(8,5714+12,8571)

2
) = 1,859 𝑚                     (5.41) 

𝑎3 = 2 ∙ 6 ∙ cos (
180−(12,8571+17,1429)

2
) = 2,588 𝑚                    (5.42) 

𝑎4 = 2 ∙ 6 ∙ cos (
180−(17,1429+21,4286)

2
) = 3,303 𝑚                    (5.43) 

𝑎5 = 2 ∙ 6 ∙ cos (
180−(21,4286+25,7143)

2
) = 3,999 𝑚                    (5.44) 

 

The last segment length al is calculated as follow: 

 

𝑎𝑙 = 𝑎6 = 𝑠(𝑖+1) sin 𝛼𝑙2 = 𝑠6 sin 𝛼62 = 2,149 𝑚                      (5.45) 

 

Using these calculated parameters are enough to design the pattern, but to be 

absolutely certain of the design the folding angles also need to be calculated. In this 

design each folding angle is different and in relation to the interior angles βi, interior 

angles’ segment length ai, and the segment length sn. The folding angles’ annotation is 

based on the interior angles number and their position in respect to the center point of 

the pattern.   
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For the first triangle with the interior angle β1 both folding angles are calculated 

as follow: 

𝛼11 = sin−1 (
sin(𝛽1)∙𝑠2

𝑎1
) = sin−1 (

sin(173,57)∙0,747

1,120
) = 4,29°               (5.46) 

𝛼12 = sin−1 (
sin(𝛽1)∙𝑠1

𝑎1
) = sin−1 (

sin(173,57)∙0,374

1,120
) = 2,14°                (5.47) 

 

All the folding angles are calculated with the same equations: 

 

𝛼21 = sin−1 (
sin(𝛽2)∙𝑠3

𝑎2
) = sin−1 (

sin(169,29)∙1,120

1,859
) = 6,43°              (5.48) 

𝛼22 = sin−1 (
sin(𝛽2)∙𝑠2

𝑎2
) = sin−1 (

sin(169,29)∙0,747

1,859
) = 4,29°              (5.49) 

 

𝛼31 = sin−1 (
sin(165)∙1,490

2,588
) = 8,57°                                 (5.50) 

𝛼32 = sin−1 (
sin(165)∙1,120

2,588
) = 6,43°                                 (5.51) 

 

𝛼41 = sin−1 (
sin(160,71)∙1,859

3,303
) = 10,71°                             (5.52) 

𝛼42 = sin−1 (
sin(160,71)∙1,490

3,303
) = 8,57°                               (5.53) 

 

𝛼51 = sin−1 (
sin(156,43)∙2,225

3,999
) = 12,86°                             (5.54) 

𝛼52 = sin−1 (
sin(156,43)∙1,859

3,999
) = 10,71°                             (5.55) 

 

The last folding angles are calculated independent from interior angles: 

 

𝛼𝑙1 = 𝛼61 = 180 − (𝛽𝑖 + 𝛼(𝑖−1)2) = 180 − (𝛽5 + 𝛼42) = 15°        (5.56) 

𝛼𝑙2 = 𝛼62 =
180

2
− 𝛼61 = 75°                                 (5.57) 

 

As it can be observed all parameters are in correlation with each other 

geometrically. All the calculations have been presented to make the denotation clear and 

to point out the relations between the angles creating the pattern. Table 5.2 presents all 

the parameters calculated in this step. To facilitate the calculations a calculation sheet 

has been prepared in Microsoft Excel 2013® which is presented in Appendix E. 
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Table 5.2. Design Parameters for semi-pseudo-dome deployable structure. 
 

Semi-pseudo- dome 
r (m) n θ1 (°) θl (°) CD  

5 6 4,2857 25,7143 4,2857  

Segment's angle θn (°) 
θ1 θ2 θ3 θ4 θ5 θ6 

4,2857 8,5714 12,8571 17,1429 21,4286 25,7143 

Segment length sn (m9 
s1 s2 s3 s4 s5 s6 

0,374 0,747 1,120 1,490 1,859 2,225 

Angle An (°) 
A1 A2 A3 A4 A5 A6 

87,8571 85,7143 83,5714 81,4286 79,2857 77,1429 

Angle βi (°) 
β1 β2 β3 β4 β5  

173,57 169,29 165,00 160,71 156,43  

Side length ai (m) 
a1 a2 a3 a4 a5 al 

1,120 1,859 2,588 3,303 3,999 2,149 

Folding angle αi1 & αi2 (°) 

α11 α21 α31 α41 α51 αl1 
4,29 6,43 8,57 10,71 12,86 15,00 
α12 α22 α32 α42 α52 αl2 

2,14 4,29 6,43 8,57 10,71 75,00 

 

5.2.2. Step 2 – MV-Pattern Creation  

 
In this section a step by step explanation is provided for the creation of a crease 

pattern. Parameters required to draw a crease pattern are the length of segments sn, the 

interior angles βi, and the interior angles’ segment lengths ai. The folding angles αi1 and 

αi1 are required to control the drawing parameters. The location of these parameters is 

represented in figure 5.11.   

 

 
 

Figure 5.11. Design Parameters for semi-pseudo-dome. 
 

In contrast to the barrel vault deployable structures the pattern-generator is not a 

straight line, but an angular line defined by both the segment length sn and interior 

angles βi. The first step in drawing the pattern is to place the first segment length s1 

horizontally, then the second segment length s2 is placed with an angle of β1, this 

process is repeated for all the calculated segments’ length. 
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Figure 5.12. Pattern’s drawing steps. 
 

Then the calculated interior angle segments ai are placed. The important point is 

that the central angle need to be equal to the calculated value of α11. Some patterns 

depending on their number of segment, have parameters that are decimal numbers with 

too much number after the decimal point. It is recommended to select a segment number 

that create smaller decimal numbers to be able to draw a more accurate pattern.  

Since the first row has been drawn using the calculated parameters, it can be 

multiplied by simple congruence transformation: reflection (Figure 5.13(1)). Then the 

double row is rotated and translated via the center point of the pattern (Figure 5.13(2)). 

After four rows has been created an MV-Assignment is done to create an MV-

Pattern. Figure 5.13 (3) shows the MV-Pattern created by the crease pattern using the 

Maekawa theorem. As explained previously the mountain and valley folds are dual to 

each other thus even if the MV-Assignment is inversed there is no difference in the 

patterns deployment motion. In Figure 5.13(3) the dashed lines are valley folds and 

lines are mountain folds assigned based on the Maekawa theorem. 
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Figure 5.13. Pattern’s row multiplication and MV-Pattern. 
 

5.2.3. Step 3 – Dimensions of the Created Pattern  

 
In this step the dimensions (span, height, coverage area, and volume) of the 

designed pattern will be discussed. The designed pattern is flat-foldable pattern, but the 

developability depends on the number of row. The multiplication of the number of row 

RT and the folding angle α11 should be equal to 2π or 360°, only then the pattern is 

developable, but in this case study because the folding angle value is not a divisor of 

360° the pattern will have a gap which will make the pattern a non-developable one  

(Figure 5.14).   

The number of maximum row is calculated: 

 

𝑅𝑇 =
360

𝛼11
=

360

4,286
= 83,9944                                      (5.58) 
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As it can be observed in this calculation the total number of rows RT is not a 

natural number, so this particular designed pattern is a non-developable pattern. 

According to this calculation the maximum number of row for this pattern is 83. For 

this case study the number of row has been decided as 82 (Figure 5.14). 

 

 
 

Figure 5.14. Semi-pseudo-dome pattern with r: 5m, n: 6, and RT: 82. 
 

In this case the structure have a temporary use, so it needs to be transportable 

and deployable. And also there is a need to specify a maximum opening angle for the 

central angle ρT that will create the stage cover. The maximum opening angle for a stage 

can be 180° which creates a semi-pseudo-dome. The dimension (height, span, coverage 

area, and volume) calculations are done assuming the surface of the deployable 

structure has no thickness. 
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When the relation between the central angle ρT and the inclination angle σ is 

analyzed, it can be observed that the closest value of the central angle to 180° is when 

the inclination angle is 60° (Figure 5.15). Thus the maximum value of the inclination 

angle σ, when the structure is deployed from final folded state to initial folded state, is 

60°. 

 

 
 
Figure 5.15. Inclination angle σ and Central angle ρT relation for a semi-pseudo-dome 

with r: 5m, n: 6, and RT: 82. 
 

The height H is calculated using the eq. (4.57) with different inclination angle 

values (Figure 5.16). The value of the height that coincide to a 60° inclination angle is 

4,56 m, which provides a sufficient height for the stage. For all the following dimension 

calculations the 60° value of the inclination angle σ have been highlighted as a red dot.  

The eq. (4.59) is used to calculate the span S of the structure. Again the changes 

occurring to the span in relation with the inclination angle have been demonstrated 

(Figure 5.17). The value of span is equal to 5.60 m for a 60° inclination angle. 
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Figure 5.16. Height changes for a semi-pseudo-dome with r: 5m, n: 6, and RT: 82. 

 

 
 

Figure 5.17. Span changes for a semi-pseudo-dome with r: 5m, n: 6, and RT: 82. 

 

The structure is assembled, then folded to its final flat-folded state so that it can 

be transported. When the stage is set the structure is placed vertically to the ground then 

deployed till the inclination angle reaches 60°. 

The area that this deployable semi-pseudo-dome cover, is calculated using 

eq. (4.61). When calculated based on the structures maximum opening (σ=60°) the 

structure covers 48,07m2, as it can be observed in Figure 5.18. 
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Figure 5.18. Coverage area changes for a semi-pseudo-dome with r: 5m, n: 6, and RT: 82. 
 

The final dimension to calculate is the volume V for the desired maximum 

opening. The volume is calculated using eq. (4.65) (Figure 5.19), and the volume 

corresponding to an inclination angle value of 60°, is 109,51 m3. 

 

 
 

Figure 5.19. Volume changes for a semi-pseudo-dome with r: 5m, n: 6, and RT: 82. 
 

Figure 5.20 represent the deployable semi-pseudo-dome structure with the 

defined inclination angle equal to 60°.  

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

In
cl

in
at

io
n 

A
ng

le
 σ

(°
)

Coverage Are (m2)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

In
cl

in
at

io
n 

A
ng

le
 σ

(°
)

Volume (m3)



195 
 

 
 
Figure 5.20. Deployable Semi-pseudo-dome structure with r: 5m, n: 6, RT: 82, and σ: 60°. 
 

5.2.4. Conclusion 

 
In case study 2 the steps of creating a semi-pseudo-dome deployable structure 

has been presented. The choice of the structure type have been decided based on the 

requirements of the function.  
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The first step demonstrated all the calculations necessary to create the pattern. 

The second step described the creation of the crease pattern and its transformation into a 

MV-Pattern. The third step demonstrated the calculations of the dimensions of the 

structure and how the inclination angle values affect the choice and the form of the 

structure. A limit to the inclination angle have been created based on the function. The 

structure is assumed to be transported in its final folded state, then deployed till the 

inclination angle σ reaches the value of 60°, so that the central angle ρT is equal to or 

close to 180°. 

The designed pattern has 492 links, 694 joints, and 203 loops, when the mobility 

is calculated using the Freudenstein and Alizade’s equation it is equal to 85. 

Structural loads are not being calculated but for the structure to be more stable it 

is recommended to use lighter materials or materials with less thickness towards the 

center point of the semi-pseudo-dome.  
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CHAPTER 6 

 

CONCLUSION 

 
The aim of this dissertation was to develop a design method to be able to create 

flat-foldable deployable structures using origami patterns. In order to achieve this first, 

a general research to understand origami as an art and a science have been conducted, 

where a new classification have been created to classify the types of patterns created in 

this dissertation. Within this new classification both barrel vault and pseudo-dome 

deployable structures’ patterns are classified as origami corrugation type origami. Both 

barrel vault and pseudo-dome patterns are created by a single sheet and they are kinetic 

where the movement has a linear deployment for barrel vaults and rotational 

deployment for pseudo-dome patterns. Their crease patterns’ properties are different; 

barrel vaults are tessellated grid patterns and pseudo-dome are geometric patterns due to 

their central radial patterns.  

A review of previous studies on the applications of origami patterns to folded 

plate structures provided a method of creating flat-foldable deployable rigid origami 

structures using a generator line, referred as pattern-generator in this dissertation. This 

method has been advanced by applying it to create flat-foldable deployable barrel vault 

structures with different arches used as cross-sections. Five different arches have been 

selected to be used as cross-sections: semicircle, horseshoe, pointed equilateral, lancet, 

and obtuse arches. These arches have been grouped under two different types based on 

their geometrical properties: single centered barrel vaults created with semicircle and 

horseshoe arches, and double centered barrel vaults created with pointed equilateral, 

lancet, and obtuse arches.   

The geometrical properties of both types of deployable barrel vault structures 

have been analyzed, to understand the parameters and their relation, and to create a 

simple design method. First the single centered barrel vaults have been analyzed 

revealing a close relations between parameters. To be able to design a pattern the main 

parameters have been defined as the radius, the number of segments and the central 

angle. The central angle parameter defines whether the type of arch for the cross-section 

will be a semicircle or a horseshoe. Simple parameters have been selected as the design 
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parameters allowing a designer to create a pattern that can be transformed to a 

deployable structure. The design parameters could have been the structural properties 

like span and height of the structure. But these parameters proved to be difficult to use 

because the created structures are spread on the floor in their initial state and flat folded 

on their final folded state which created different span and height values during the 

whole folding process. This is why the radius, number of segments and central angle 

parameters have been selected as the design parameters instead of the structural 

properties. Once the design parameters are inputted, parameters to create the pattern can 

be computed using Microsoft Excel 2013® medium. Within this medium the design 

parameters can be changed by the designer using a spin button that changes 

simultaneously the values of the parameters according to the inputs. The pattern is 

created using the calculated folding angle and half-row height. The folding angle allows 

the calculation of the maximum value of the half-row height for a triangular pattern. If 

the calculated maximum value is exceeded the lines created using the folding angle 

crisscrosses and the pattern cannot be created. If less than the maximum value of the 

half-row height is used a trapezoidal pattern can be created. Both created pattern are CP 

(crease pattern) which then are transformed to MV-Patterns using Maekawa’s theorem. 

Both types of patterns have different architectural values in both form and aesthetics.  

The structural properties like span, height, depth and volume are important in an 

architectural application for that they have been put in relation with the inclination angle. 

The inclination angle allows the calculation of all structural properties at each step of 

the folding process starting from the initial state and ending at the final folded state. The 

analysis of the values showed that the structure reaches its maximum value quickly and 

then decreases slowly, as it has been shown. Even though the demonstrated calculations 

for the structural properties belong to triangular patterns they are also valid for 

trapezoidal patterns because they are calculated using the same pattern-generator. The 

created structures are deployable but with the use of the inclination angle a static folded 

plate structure can be created. For this purpose the inclination angle can be considered 

fixed once the required structural properties values are reached and then parameters like 

dimensions, angles etc. can be calculated to create the folded plate structure.  

The mobility analysis have been conducted to understand the mechanism of the 

created patterns. All mobility calculations have been verified using the structural group 

properties. Physical models with both paper and thick materials have been created to 

observe the folding process of the single centered rigid origami barrel vault structures. 
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The model with thick material have been created using the axis-shift method of creating 

joints for a rigid origami. Paper and thick material models created using the triangular 

pattern folded without a problem, but model created with thick material using 

trapezoidal pattern revealed tearing in some joints that did not occur in the paper models. 

These joints were degree-4 vertexes where when flat folded one side’s thickness was 

more than the other side’s which forced the joint to tear, so two different trapezoidal 

patterns’ mobility calculations have been conducted. Starting with the paper folded 

trapezoidal pattern and then the thick material trapezoidal pattern, where the tearing 

joints have been removed from the mobility calculation. Removing the joints did not 

changed the mobility but changed the types of linkage of the mechanism. Removed 

joints changed the loops from 6-bar spherical linkages to 6-bar double spherical 

linkages.  

The second type of deployable barrel vault structures is the double centered one, 

where the cross-section is an arch created by two segments of arc. The geometrical 

analysis of double centered barrel vaults showed both similarities and differences with 

single centered barrel vaults. As it was with single centered barrel vaults two of the 

design parameters are radius and number of segments, the third one is not a central 

angle but the distance between the two centers which defines the type of the cross-

section’s arch. This parameters are in close relation with the defined radius because if 

the radius is equal to the distance between the two centers it creates an equilateral arch, 

if the radius is greater than the distance it creates an obtuse arch and finally if the radius 

is smaller than the distance it creates a lancet arch as the cross-section. All parameters 

can be computed using the provided Microsoft Excel 2013® medium to create the 

pattern for this type of barrel vault. The double centered cross-section creates an apex 

point with a folding angle different than the one calculated on a single arc. Two 

different folding angles create two different half-row heights. To be able to create a 

foldable CP the smallest value of the two half-row height should be used so that no 

crisscrossing occurs within the height of the row. Similar to the single centered barrel 

vaults using less than the calculated maximum value of the half-row height will create a 

trapezoidal pattern. In the same way as the single centered barrel vaults using the 

Maekawa’s theorem, the CP of the double centered barrel vault is transformed to a MV-

Pattern. 

The structural properties of the double centered barrel vaults have also been put 

in relation to the inclination for the same reason as the single centered barrel vaults. The 
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use of a fixed inclination angle value will provide the necessary properties to create a 

folded plate double centered structure. Again as it was in single centered barrel vaults 

the structural properties (span, height, depth, and volume) are calculated using the 

pattern-generator.  

The mobility calculations for double centered barrel vaults have been conducted 

using the same calculation and verification methods. Paper and thick material models 

also have been created. Both triangular and trapezoidal patterns’ models created using 

thick material showed tears when flat folded. The triangular pattern showed tears 

because of the two different folding angles, the degree-4 vertexes around the apex 

where the joints teared when the pattern was flat folded. Similarly to the single centered 

barrel vaults when the tears were removed the loops became double spherical 6-bar 

linkages and the mobility did not changed.  

The design method created for both types of barrel vault foldable plate structures 

uses three design parameters to compute all other parameters using Microsoft Excel 

2013® medium including those used to create a CP. This method allow the designer to 

design either a deployable structure or a folded plate structure. By also using the 

geometrical properties of both type of barrel vaults, a designer can create a linearly 

deployed flat foldable freeform rigid origami structures composed of multiple arcs.  

Another aim of this research was to propose a novel method of designing 

pseudo-dome flat-foldable rigid origami structures. In order to achieve this aim, the 

principle of the pattern-generator method that has been proposed in barrel vault rigid 

origami structures, has been transformed to create a new method of designing pseudo-

dome rigid origami structures. The cross-section for the structure has been defined as a 

quarter of a circle because the created pattern was developable. First a segmentation 

method had to be found so that the length of the segments could decrease toward the 

center. Arithmetic sequence has been selected as the segmentation method because it 

presented simple mathematical method which connected the geometrical properties of 

the cross-section to the design parameters. This segmentation method allowed the 

design of a rigid origami pseudo-dome structure which is flat-foldable and deploy using 

a polar rotation. The geometrical analysis first started with three design parameters 

radius, number of segments and first angle which is used as the first term of the 

sequence. With these three design parameters there was three possible outcomes for a 

pattern creation: no-pattern, pattern, or pattern with complementary angle. To simplify 

the design process further geometrical analysis have been conducted revealing that the 
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number of segments defines the first term of the sequence which removed the use of the 

first angle as the design parameter. The same analysis revealed that if the first term is 

equal to the common difference of the sequence a pattern is created without the need for 

a complementary angle. So only two design parameters are required to design a pseudo-

dome deployable structure. As it was with all types of rigid origami barrel vault 

structures all other parameters required to draw the CP are computed using Microsoft 

Excel 2013® medium. The pattern-generator in this method is not a line passing from 

the middle of a row as it is in the barrel vault structures but the segments themselves. 

The segments lengths are calculated from the flat folded state of the pattern using the 

segment angles. The CP is created using each segments’ length and their interior angles, 

then transformed to a MV-Pattern using the Maekawa’s theorem as it is in the barrel 

vault rigid origami structures. This method only creates triangular patterns, because to 

create a trapezoidal pattern the height of row should be decreased which will change the 

calculated central angle and increase the number of segments which will create 

additional interior angles creating an undesired cross-section. Further studies on the 

cross-section of the pseudo-dome structure may lead to the creation of a trapezoidal 

pattern.  

The structural properties (span, height, coverage area, and volume) have been 

put in relation with the inclination angle as it was with the barrel vault rigid origami 

structures. Similarly in this method the inclination angle can be fixed to a specific value 

to calculate the necessary parameters to create a folded plate structure.  

Physical models have been created from both paper and thick material to see if 

tears appeared like in the barrel vaults and also to understand the mobility of the 

mechanism. No tears appeared on the paper model but the some appeared on the model 

created with thick material. Similarly to barrel vaults the tears appeared on degree-4 

vertexes around the central point. Mobility analysis revealed that with each additional 

row the mobility increased and when the mobility was calculated with the tearing joints 

removed it increased even more. These particular tearing joints can be modified to 

avoid further increase in mobility.  

This novel design method propose the creation of a pseudo-dome deployable 

structure using an origami pattern by defining only two parameters. The parameters to 

create a CP are computed using Microsoft Excel 2013® medium. This method can be 

used to create more complex geometrical forms that deploy radially or it can be merged 



202 
 

with the barrel vault design method to create forms that deploy both radially and 

linearly. 

This research contributes to the fields of kinetic structures by creating a new 

method of designing a radially deployed spatial rigid origami structure. In view of the 

changes occurring in the functional and spatial needs in architecture, this dissertation 

provides a different type of adaptive/kinetic structures.   

The created design methods are preliminary studies and in view of future studies 

a more profound and detailed analysis is needed. The study on the rigid origami 

structures was conducted assuming zero-thickness, a more detailed research with 

different thickness options can further advance the methods presented in this 

dissertation. A structural analysis conducted with different thickness and different 

materials will increase the possibility of a large scale architectural realizations of these 

structures. A mobility analysis has been conducted but no detailed studies have been 

done on the joints which are a major part of the designed structure. A study can also be 

conducted on effects of how the mechanism might be affected if some plates are 

removed. Thus structural design and analysis of the joints and the mechanism should be 

conducted for further studies, which would enhance the feasibility of these structures.  

For further studies the author of this dissertation plans to visualize the design 

method process on an open source CAD medium, which will eliminate the drawing 

process of the designed structure and allow an instantaneous visual outcome of the 

modifications.  

 

  



203 
 

BIBLIOGRAPHY 
 

Abdul-Sater, K. (2013). Two-Configuration Synthesis of Origami-Guided Planar, 
Spherical and Spatial Revolute-Revolute Chains. Journal of Mechanisms and 
Robotics, 10 pages. 
 

Abdul-Sater, K., Lueth, T., & Irlinger, F. (2014). Kinematic Design of Miura-Ori-Based 
Folding. In J. Lenarˇciˇc, & O. Khatib, Advences in Robot Kinematics (pp. 233-
241). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-
06698-1_25 

 
Abranera (2012, May 10). Noshi [Online image]. Retrieved March, 2015 from 

http://nipponario.abranera.com/?p=1042#sthash.AOd9jkeq.8J3q9TsY.dpbs 
 
Alizade, R., Kiper, G., Bağdadioğlu, B., & Dede, M. (2014, November). Function 

Synthesis of Bennett 6R Mechanisms Using Chebyshev Approximation. 
Mechanism and Machine Theory, Vol. 81, 62-78. 
doi:10.1016/j.mechmachtheory.2014.06.010 
 

Alizade, R., Kiper, G., Dede, M., & Uzunoğlu, E. (2014). Derivation of Input/Output 
Relationships for the Bennett 6R Linkages Based on the Method of 
Decomposition. In V. Petuya, C. Pinto, & E.-C. Lovasz (Ed.), New Advances in 
Mechanisms, Transmissions and Applications: Proceedings of the Second 
Conference MeTrApp 2013. Vol. 17, pp. 225-231. Springer. doi:10.1007/978-94-
007-7485-8_28 
 

Alperin, R., & Lang, R. (2009). One-, Two-, and Multi-Fold Origami Axioms. In R. 
Lang (Ed.), Origami4: Fourth International Meeting of Origami Science, 
Mathematics, and Education (pp. 371-393). Wellesley, MA: A K Peters. 
 

Anonymous. (2012). Origami & Math. Retrieved May 09, 2015, from 
http://www.paperfolding.com/math/ 
 

Baerlecken, D., Swarts, M., Gentry, R., & Wonoto, N. (2012). Bio-Origami: Form 
finding and evaluation of origami structures. In digital Physicality: Proceedings 
of the 30th eCAADe. 1, s. 497-504. Prague: Czech Technical University in 
Prague, Faculty of Architecture. 
 

Bateman, A. (n.d.). Tess: origami tessellation software. Retrieved 03 19, 2015, from 
http://www.papermosaics.co.uk/software.html 
 

Bennett, G. (1905). The Parallel Motion of Sarrus and some Allied Mechanisms. 
Philosophy Magazine, 6th series(9), 803-810. 
 

Bern, M., & Hayes, B. (1996). The Complexity of Flat Origami. Proceedings of the 
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 175-183). 
Atlanta: SIAM. 
 



204 
 

Bowen, L., Grames, C., Magleby, S., & Lang, R. (2013, November). A Classification of 
Action Origami as Systems of Spherical Mechanisms. Journal of Mechanical 
Design, Vol. 135, 111008 (7 pages). doi:10.1115/1.4025379 
 

Buri, H. (2010). Origami - Folded Plate Structures (PhD Thesis). Ecole Polytechnique 
Federale de Lausanne, Switzerland. 

 
Buri, H., & Weinand, Y. (2008). Origami - Folded Plate Strcutures, Architecture. 10th 

World Conference on Timber Engineering. Miyazaki, Japan. Retrieved February 
5, 2015, from Infoscience - EPFL: https://infoscience.epfl.ch/record/118687 

 
Cai, J. (2016c, June). Kinematic Analysis of Foldable Plate Structures With Rolling 

Joints. Journal of Mechanisms and Robotics, Vol. 8, 034502 (6 pages). 
doi:10.1115/1.4032269 
 

Cai, J., Deng, X., Xu, Y., & Feng, J. (2015, October). Geometry and Motion Analysis of 
Origami-Based Deployable Shelter Structures. Journal of Structural 
Engineering, Vol. 141(10). doi:10.1061/(ASCE)ST.1943-541X.0001238 
 

Cai, J., Deng, X., Xu, Y., & Feng, J. (2016b, April). Motion Analysis of a Foldable 
Berrel Vault Based on Regular and Irregular Yoshimura Origami. Journal of 
Mechanisms and Robotics, Vol. 8, 021017 (9 pages). doi:10.1115/1.4031658 
 

Cai, J., Zhang, Y., Xu, Y., Zhou, Y., & Feng, J. (2016a, March). The Foldability of 
Cylindrical Foldable Structures Based on Rigid Origami. Journal of Mechanical 
Design, Vol. 138, 031401 (8 pages). doi:10.1115/1.4032194 
 

Chen, Y., & Feng, J. (2012). Folding of a Type of Deployable Origami Structure. 
International Journal of Structural Stability and Dynamics, Vol. 12(No. 6), 
1250054 (17 pages). 
 

Cheung, K., Tachi, T., Calisch, S., & Miura, K. (2014). Origami Interleaved Tube 
Cellular Materials. Smart Materials and Strcutures, Vol. 23, 094012 (10 pages). 
doi:10.1088/0964-1726/23/9/094012 
 

Chorna, O. (2012, 11 30). Origami as a modern art phenomenon: systematization 
attempt. Retrieved 4 4, 2015, from 
https://oksanachorna.wordpress.com/2012/11/30/origami-as-a-modern-art-
phenomenon-systematization-attempt/ 
 

Chudoba, R., van der Woerd, J., & Hegger, J. (2014). Oricreate: Modelling Framework 
for Design and Manufacturing of Folded Plate Structures. In K. Miura, T. 
Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), Origami6: 
Proceedings of the Sixth International Meeting on Origami Science, 
Mathematics, and Education (pp. 523-536). USA: AMS. 

 
Chudoba, R., van der Woerd, J., Schmerl, M., & Hegger, J. (2014, June). ORICRETE: 

Modeling support for design and manufacturing of folded concrete structures. 
Advances in Engineering Software, Vol. 72, 119-127. 
doi:10.1016/j.advengsoft.2013.05.004 



205 
 

Cromvik, C., & Eriksson, K. (2009). Airbag Folding Based on Origami Mathematics. In 
R. Lang (Ed.), Origami4: Fourth Internatonal Meeting of Origami Science, 
Mathematics, and Education (pp. 129-139). Wellesley, MA: A K Paters. 
 

Curletto, G., & Gambarotta, L. (2015). Rigid foldable origami structures: integrated 
parametric design and structural analysis. Proceedings of the International 
Association for Shell and Spatial Structures (IASS): Future Visions. Amsterdam. 
 

Davis, E., Demaine, E., Demaine, M., & Ramseyer, J. (2013, November). 
Reconstructing David Huffman's Origami Tessellations. Journal of Mechanical 
Design, Vol. 135, 111010 (7 pages). doi:10.1115/1.4025428 
 

De Ruysser, T. (2014). Wearable Metal Origami. In K. Miura, T. Kawasaki, T. Tachi, R. 
Uehara, R. Lang, & P. Wang-Iverson (Ed.), Origami6: Proceedings of the Sixth 
International Meeting on Origami Science, Mathematics, and Education (pp. 
613-624). USA: AMS. 
 

De Temmerman, N. (2007a, June). Design and Analysis of Deployable Bar Structures 
for Mobile Architectural Applications (PhD Thesis). Vrije Universiteit, Brussel, 
Belgium. 
 

De Temmerman, N., Mollaert, M., Van Mele, T., & De Laet, L. (2007b, September). 
Design and Analysis of a Foldable Mobile Shelter System. International Journal 
of Space Structures, 22(3), pp. 161-168. 
 

Demaine, E. D., & O'Rourke, J. (2007). Geometric Folding Algorithms: Linkage, 
Origami, Polyhedra. New York: Cambridge University Press. 

 
Dinh, G. (n.d.). Dreamer [Online Image]. Retrieved January, 2015 from 

http://www.express.co.uk/pictures/pics/2122/Origami-work-The-pinnacles-of-
paper-folding/41992 

 
Dureisseix, D. (2012, March). An Overview of Mechanisms and Patterns with Origami. 

International Journal of Space Structures, 27(1), pp. 1-14. 
 

Edmondson, B., Lang, R., Morgan, M., Magleby, S., & Howell, L. (2014). Thick 
Rigidly Foldable Structures Realized by an Offset Panel Technique. In K. Miura, 
T. Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), 
Origami6: Proceedings of the Sixth International Meeting on Origami Science, 
Mathematics, and Education (pp. 149-161). USA: AMS. 
 

Evans, T., Lang, R., Magleby, S., & Howell, L. (2014). Rigidly Foldable Origami 
Twists. In K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-
Iverson (Ed.), Origami6: Proceedings of the Sixth International Meeting on 
Origami Science, Mathematics, and Education (pp. 119-130). USA: AMS. 
 

Falk, A., Von Buelow, P., & Khodadadi, A. (2015). Form Exploration of Timber-based 
Folded Plate Domes. Proceedings of the International Association for Shell and 
Spatial Structures (IASS):Future Visions. Amsterdam. 



206 
 

Fei, L., & Sujan, D. (2013). Origami Theory and its Applications: A Literature Review. 
World Academy of Science, Engineering and Technology, International Science 
Index 98, International Journal of Social, Education, Economics and 
Management Engineering, 7(1), s. 113-117. 
 

Flexidome (n.d.). Research Project, Queen’s University, Belfast.  
 

Flexidome. (2012). Origami dome [Online image] Retrieved April, 2015 from 
https://flexidome.wordpress.com/2012/04/18/applications-for-origami-dome-
skin/ 
 

Foster, C., & Krishnakumar, S. (1986/87). A Class of Transportable Demountable 
Strcutures. Space Structures, 129-137. 
 

Gardiner, M. (2009). A Brief History of Oribotics. In R. Lang (Ed.), Origami4: Fourth 
International Meeting of Origami Science, Mathematics, and Education (pp. 51-
60). Wellesy, MA: A K Peters. 
 

Gattas, J. (2014). Rigid Origami Toolbox. Retrieved 03 20, 2015, from 
http://joegattas.com/rigid-origami-toolbox/ 
 

Gattas, J., & You, Z. (2013). Rigid-foldable Piecewise Geometries. Proceedings of the 
First Conference Transformables, (pp. 319-324). Seville. 
 

Gattas, J., & You, Z. (2014). Structural Engineering Applications of Morphing 
Sandwich Structures. In K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, 
& P. Wang-Iverson (Ed.), Origami6: Proceedings of the Sixth International 
Meeting on Origami Science, Mathematics, and Education (pp. 421-430). USA: 
AMS. 
 

Gattas, J., & You, Z. (2015). Geometric Assembly of Rigid-Foldable Morphing 
Sandwich Structures. Enineering Structures, Vol. 94, 149-159. 
doi:10.1016/j.engstruct.2015.03.019 
 

Gattas, J., Wu, W., & You, Z. (2013a, November). Miura-Base Rigid Origami: 
Parametrizations of First-Level Derivative and Piecewise Geometries. Journal of 
Mechanical Design, Vol. 135, 111011 (11 pages). doi:10.1115/1.4025380 
 

Gioia, F., Dureisseix, D., Motro, R., & Maurin, B. (2012, March). Design and Analysis 
of a Foldable/Unfoldable Corrugated Architectural Curved Envelop. Journal of 
Mechanical Design, Vol. 134, 031003 (11 pages). doi:10.1115/1.4005601 
 

Gjerde, E. (2009). Orgami Tessellations: Awe-inspiring Geometric Designs. 
Massachusetts: A K Peters. 
 

Gogu, G. (2005). Chebychev-Grübler-Kutzbach's Criterion for Mobility Calculation of 
Multi-Loop Mechanisms Revisited via Theory of Linear Transformations. 
European Journal of Mechanics A/Solids, Vol. 24, 427-441. 
 

Gould, V. (Director). (2008). Between the Folds [Motion Picture]. 



207 
 

Gönenç Sorguç, A., Hagiwara, I., & Arslan Selçuk, S. (2009). Origamics in 
Architecture: a Medium of Inquiry for Design in Architecture. METU JFA, 
26(2), pp. 23-247. 
 

Gray, S., Zeichner, N., Yim, M., & Kumar, V. (2011). A Simulator fır Origami-Inspired 
Self-Reconfigurable Robots. In P. Wang-Iverson, R. Lang, & M. Yim (Ed.), 
Origami5: Fifth International Meeting of Origami Science, Mathematics, and 
Education (pp. 323-333). Boca Raton, FL: A K Peters / CRC Press. 
 

Greenberg, H., Gong, M., Magleby, S., & Howell, L. (2011). Identifying Links Between 
Origami and Compliant Mechanisms. Mechanical Sciences, Vol. 2, 217-225. 
doi:10.5194/ms-2-217-2011 
 

Gruber, P., Häuplik, S., Imhof, B., Özdemir, K., Waclavicek, R., & Perino, M. (2007). 
Deployable structures for a human lunar base. Acta Astronautica, Vol. 61, 484-
495. doi:10.1016/j.actaastro.2007.01.055 
 

Guarnieri, F. (2010). Christmas Tree [Online image]. Retrieved January, 2015 from 
http://www.grupoetor.org/outstanding-origami-fir-tree/origami-maniacs-
origami-christmas-tree-fir-tree-by-francesco-origami-fir-tree-instructions-
origami-fir-tree-diagram/ 

 
Hatori, K. (2011). History of Origami in the East and West before Interfusion. In P. 

Wang-Iverson, R. Lang, & M. Yim (Ed.), Origami5: the Fifth International 
Meeting of Origami Science, Mathematics, and Education (pp. 3-11). Boca 
Raton: A K Peters/CRC Press. 
 

Highsmith, C. (2007). Air Force Academy Chapel, Colorado Springs, CO [Online 
image]. ID: highsm.04090. Retrieved April, 2015 from 
https://en.wikipedia.org/wiki/ United 
_States_Air_Force_Academy_Cadet_Chapel 
 

Hoffmann, S., Barej, M., Günther, B., Trautz, M., Corves, B., & Feldhusen, J. (2014). 
Demands on an Adapted Design Process for Foldable Structures. In K. Miura, T. 
Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), Origami6: 
Proceedings of the Sixth International Meeting on Origami Science, 
Mathematics, and Education (pp. 489-499). USA: AMS. 
 

Hull, T. (2002). The Combinatorics of Flat Folds: A Survey. Origami3: Third 
International Meeting of Origami Science, Mathematics, and Education (pp. 29-
38). Natick: A K Peters. 
 

Hull, T. (2003). Counting Mountain-Valley Assignments for Flat Folds. Ars 
Combinatoria, Vol. 67, 175-188. 
 

Hull, T. (2014). Coloring Connections with Counting Mountain-Valley Assignments. In 
K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), 
Origami6: Proceedings of the Sixth International Meetings on Origami Science, 
Mathematics, and Education (pp. 3-10). USA: AMS. 

 



208 
 

IFToMM, (n.d.). Retrieved from IFToMM online dictionary: http://www.iftomm-
terminology.antonkb.nl/2057/01.html#1.3.12 

 
Ishida, S., Morimura, H., & Hagiwara, I. (2014). Sound-Insulating Performance of 

Origami-Based Sandwich Trusscore Panels. In K. Miura, T. Kawasaki, T. Tachi, 
R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), Origami6: Proceedings of the 
Sixth International Meeting on Origami Science, Mathematics, and Education 
(pp. 431-438). USA: AMS. 
 

Jackson, P. (2011). Folding Techniques for Designers: From Sheet to Form. London: 
Laurence King Publishing. 
 

Keller, M. (2008). Temporary chapel for Deaconesses of St-Loup [Online image]. 
Retrieved April, 2015 from http://www.archdaily.com/9201/temporary-chapel-
for-the-deaconesses-of-st-loup-localarchitecture 

 
Kenneway, E. (1987). Complete Origami. London: Ebury Press. 

 
Klett, Y., & Drechsler, K. (2011). Designing Technical Tessellations. In P. Wang-

Iverson, R. Lang, & M. Yim (Ed.), Origami5: Fifth International Meeting of 
Origami Science, Mathematics, and Education (pp. 304-322). Boca Raton, Fl: A 
K Peters/CRC Press. 
 

Kobayashi, H., Kresling, B., & Vincent, S. (1998, January). The geometry of unfolding 
tree leaves. Proceedings: Biological Sciences, Vol. 265(1391), 147-154. 
doi:10.1098/rspb.1998.0276 
 

Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., & Sasaki, M. 
(2006). Self-deployable origami stent grafts as a biomedical application. 
Materials Science and Engineering A, Vol. 419, 131-137. 
doi:10.1016/j.msea.2005.12.016 

 
Lang, R. (2003). Origami Design Secrets: Mathematical Methods for an Ancient Art. 

Natick: A K Peters Ltd. 
 

Lang, R. (2003b). Origami and Geometric Constructions. Retrieved 10 2014, from 
http://www.langorigami.com/science/math/hja/hja.php 
 

Lang, R. (2004). Crease Patterns for Folders. Retrieved 04 18, 2015, from Robert J. 
Lang Origami: 
http://www.langorigami.com/art/creasepatterns/creasepatterns_folders.php 
 

Lang, R. (2004). TreeMaker. Retrieved 03 20, 2015, from 
http://www.langorigami.com/science/computational/treemaker/treemaker.php 
 

Lang, R. (2008, Feburary). The math and Magic of Origami. Retrieved May 2015, from 
http://www.ted.com/talks/robert_lang_folds_way_new_origami?language=en 
 



209 
 

Laylin, T. (2014). Al Bahr Tower Façade Detail [Online image]. Retrieved April, 2015 
from http://inhabitat.com/exclusive-photos-worlds-largest-computerized-facade-
cools-aedas-al-bahr-towers/  
 

Lebée, A. (2015). From Folds to Structures, a Review. International Journal of Space 
Structures , Vol. 30(2), 55-74. doi:10.1260/0266-3511.30.2.55 
 

Lee, D., & Leounis, B. (2011). Digital Origami: Modelling planar folding structures. 
ACADIA Regional: Parametricisim (SPC) (pp. 25-29). Clemson: ACADIA. 
 

Lee, T.-U., & Gattas, J. (2016, June). Geometric Design and Construction of 
Structurally Stabilized Accordion Shelters. Journal of Mechanisms and Robotics, 
031009 (8 pages). doi:10.1115/1.4032441 
 

Li, S., & Dai, J. S. (2012, August). Structure Synthesis of Single-Driven Metamorphic 
Mechanisms Based on the Augmented Assur Groups. Journal of Mechanisms 
and Robotics, Vol. 4, 031001 (8 pages). doi:10.1115/1.4006741 
 

Li, S., Wang, H., & Dai, J. (2015, November). Assur-Group Interred Structural 
Synthesis for Planar Mechanisms. Journal of Mechanisms and Robotics, Vol. 7, 
041001 (9 pages). doi:10.1115/1.4029116 
 

Limburg, K. B. (2012). St. Paulus [Online image]. Retrieved April, 2015 from 
https://de.wikipedia.org/wiki/Weckhoven 
 

Lister, D. (1998, September 7). A Miscellaneous Collection on the History of Origami. 
Retrieved Februrary 2, 2015, from 
http://www.britishorigami.info/academic/lister/history.php 
 

Lister, D. (2005a, June). An Ancient Egyptian Map. Retrieved Februray 02, 2015, from 
http://www.britishorigami.info/academic/lister/egypt.php  
 

Lister, D. (2005b, March 20). History of Origami: outline suggestions for a basic, 
essential history. Retrieved Feburary 02, 2015, from 
http://www.britishorigami.info/academic/lister/basichistory.php 
 

Lister, D. (2005c, March 5). The Exhibition of Paper Folding by Akira Yoshizawa in 
Amsterdam 1955 and its place in the origins of modern origami. Retrieved 
Feburary 02, 2015, from 
http://www.britishorigami.info/academic/lister/yoshizawa_exhib1955.php 

 
Lister, D. (n.d.). The history of paperfolding : a German perspective. Retrieved 

Feburary 02, 2015, from 
http://www.britishorigami.info/academic/lister/german.php 
 

Liu, S., Chen, Y., & Lu, G. (2013). The Rigid Origami Patterns for Flat Surface. ASME 
2013 International Design Engineering Technical Conferences and Computers 
and Information in Engineering Conference. Vol. 6B, p. V06BT07A039 (7 
pages). Oregon, USA: ASME. doi:10.1115/DETC2013-12947 
 



210 
 

Liu, S., Lv, W., Chen, Y., & Lu, G. (2016, June). Deployable Prismatic Structures With 
Rigid Origami Patterns. Journal of Mechanisms and Robotics, Vol. 8, 031002 
(11 pages). doi:10.1115/1.4031953 
 

Maleczek, R. (2014). Deployable Linear Folded Stripe Strcutures. In K. Miura, T. 
Kawasaki, T. Tachi, R. Uehara, R. Lang, & P. Wang-Iverson (Ed.), Origami6: 
Proceedings of the Sixth International Meeting on Origami Science, 
Mathematics, and Education (pp. 447-457). USA: AMS. 
 

Mitani, J. (2011). A Method for Designing Crease Patterns for Flat-Foldable Origami 
with Numerical Optimization. Journal for Geometry and Graphics, Vol. 15(No. 
2), 195-201. 
 

Mitani, J. (n.d.). Origami Applications by Jun Mitani. Retrieved April 02, 2015, from 
http://mitani.cs.tsukuba.ac.jp/origami_application/ 
 

Mitchell, D. (n.d.). A Family Tree of Origami. Retrieved November 24, 2014, from 
Origami Heaven: http://www.origamiheaven.com/familytree.htm 
 

Miura , K., & Tachi, T. (2010). Synthesis of Rigid-Foldable Cylindrical Polyhedra. 
Symmetry: Art and Science 8th congress and exhibition of ISIS. Gmuend. 
 

Miura, K. (2009). The Science of Miura-Ori: A Review. In R. Lang (Ed.), Origami4: 
Fourth International Meeting of Origami Science, Mathematics, and Education 
(pp. 87-99). Wellesley, MA: A K Peters. 
 

Nikolic, D., Stulic, R., & Sidjanin, P. (2012). On the Flexibility of Deployable Dome 
Structures and their Application in Architecture. 1st International Conference on 
Architecture & Urban Design (pp. 1053-1062). Albania: EPOKAUniversity. 
 

Nishiyama, Y. (2012). Miura Folding: Applying Origami to Space Exploration. 
International Journal of Pure and Applied Mathematics, Vol. 79(No. 2), 269-
279. 
 

Nojima, T. (2002). Modelling of Folding Patterns in Flat Membranes and Cylinders y 
Origami. JSME International Journal, 364-370. 
 

Origami Resource Center (n.d.). Mecho and Ocho [Online image]. Retrieved March, 
2015 from http://www.origami-resource-center.com/mecho-and-ocho.html 
 

Osorio, F., Paio, A., & Oliveira, S. (2014). KOS - Kinetic Origami Surface. Rethinking 
Comprehensive Design: Speculative Counterculture Proceedings of the 19th 
International Conference of the Association of Computer-Aided Architectural 
Design Research in Asia CAADRIA (pp. 1-10). Hong Kong: The Association for 
Computer-Aided Architectural Design Research in Asia (CAADRIA). 
 

Ott, P. (2007). Die vielen Gesichter der Fassade, Showroom von Kiefer Technic  
[Online image]. Retrieved April, 2015 from 
http://www.gat.st/en/news/energieeffizienz-mit-understatement 
 



211 
 

Peraza-Hernandez, E., Hartl, D., Malak Jr, R., & Lagoudas, D. (2014). Oriami-inspired 
Active Structures: A Synthesis and Review. Smart Materials and Structures, Vol. 
23, 094001 (28 pages). doi:10.1088/0964-1726/23/9/094001 
 

Schenk, M. (2012). Origami in Engineering and Architecture: An art spanning 
Mathematics, Engineering and Architecture. Retrieved 01 15, 2015, from 
http://www.markschenk.com/research/teaching/archeng2012/handouts_ArchEng
2012_Origami.pdf 
 

Schenk, M., & Guest, S. (2011). Origami Folding: A Structural Engineering Approach. 
Origami5: Fifth International Meeting of Origami Science, Mathematics and 
Education (pp. 291-303). Boca Raton: CRC Pres. 
 

Schneider, J. (2004, 12 10). Flat-Foldability of Origami Crease Patterns. Retrieved 03 
02, 2015, from 
http://www.sccs.swarthmore.edu/users/05/jschnei3/origamiwithfigures.pdf 
 

Schramme, K., Boegle, A., & Ortolano Gonzalez, J. M. (2015). The Challenge of Rigid-
Foldable Structures. Preceedings of the International Association for Shell and 
Spatial Structures (IASS). Amsterdam. 
 

Schulze, B., Guest, S., & Fowler, P. (2014). When is a Symmetric Body-Hinge 
Structure Isostatic. International Journal of Solids and Structures, Vol. 51, 
2157-2166. doi:10.1016/j.ijsolstr.2014.02.018 
 

Sekularac, N., Ivanovic Sekularac, J., & Ciric Tovarovic, J. (2012). Folded Structures in 
Modern Architecture. Architecture and Civil Engineering, 10(1), 1-16. 
 

Selvi, Ö. (2012, January). Structural and Kinematic Synthesis of Overcontrained 
Mechanisms. İzmir. 
 

Sembazuru Orikata [Online image]. (1797). Retrieved March, 2015 from 
http://web.archive.org/web/20080501175749/origami.gr.jp/Model/Senbazuru/in
dex-e.html 
 

Sierra, F. (2006). Hexagonal Dome [Online image]. Retrieved April, 2015 from 
https://www.flickr.com/photos/elelvis/311453631/  
 

Simon, L., Arnstein, B., & Gurkewitz, R. (1999). Modular Origami Polyhedra. New 
York: Dover Publications. 
 

Smith, J. (2005, January). Notes on the History of Origami: Paper & Paper Folding. 
Retrieved Feburary 02, 2015, from 
http://homepage.ntlworld.com/peterjohn.rootham-smith/history.htm 
 

Stavric, M., & Wiltsche, A. (2013). Investigations on Quadrilaterral Patterns for Rigid 
Folding Structure. In R. Stouffs, P. Janseen, S. Roudavski, & B. Tuncer (Ed.), 
Proceedings of the 18th International Conference on Computer-Aided 
Architectural Design Research in Asia (CAADRIA) (pp. 893-902). Hong Kong: 
CAADRIA. 



212 
 

Tachi, T. (2009a). FreeformOrigami. Retrived March 15, 2015, from 
http://www.tsg.ne.jp/TT/software/index.html#rigid_origami 
 

Tachi, T. (2009b). Generalization of Rigid Foldable Quadrilateral Mesh Origami. In A. 
Domingo, & C. Lazaro (Ed.), Proceedings of the International Association for 
Shell and Spatial Structures (IASS) (pp. 2287-2294). Valencia: Editorial 
Universitat Politècnica de València. 
 

Tachi, T. (2009c). Rigid Origami Simulator. Retrieved March 15, 2015, from 
http://www.tsg.ne.jp/TT/software/  
 

Tachi, T. (2009d). Simulation of Rigid Origami. In R. Lang (Ed.), Origami4: Fourth 
International Meeting of Origami Science, Mathematics, and Education (pp. 
175-187). Wellesley, MA: A K Peters. 
 

Tachi, T. (2009e). One-DOF Cylindrical Deployable Structures with Rigid 
Quadrilateral Panels. In A. Domingo, & C. Lazaro (Ed.), Proceedingsof the 
International Association for Shell and Spatial Structures (IASS) (pp. 2295-
2305). Valencia: Editorial Universitat Politècnica de València. 
 

Tachi, T. (2010a). Freeform Rigid-Foldable Structure using Bidirectionally Flat-
Foldable Planar Quadrilateral Mesh. Advances in Architectural Geometry, 87-
102. 
 

Tachi, T. (2010b). Geometric Considerations for Design of Rigid Origami Structures. 
Proceedings of the International Association for Shell and Spatial Structures 
(IASS): Spatial Structures - Temporary and Permanent. Shanghai. 
 

Tachi, T. (2011). Rigid-Foldable Thick Origami. In P. Wang-Iverson, R. Lang, & M. 
Yim (Ed.), Origami5: Fifth International Meeting of Origami Science, 
Mathematics, and Education (pp. 253-264). Boca Raton, FL: A K Peters/CRC 
Press. 
 

Tachi, T. (2013, November). Designing Freeform Origami Tesseellations by 
Generalizing Resch's Patterns. Journal of Mechanical Design, Vol. 135, 111006 
(10 pages). doi:10.1115/1.4025389 
 

Thrall, A., & Quaglia, C. (2014). Accordion shelters: A Historical Review of Origami-
like Deployable Shelters developed by the US Military. Engineering Structures, 
686-692. 
 

Tonon, O. (1991). Geometry of Spatial Folded Forms. International Journal of Space 
Structures, Vol. 6(No. 3), 227-240. 
 

Trautz, M., & Künstler, A. (2009). Deployable folded plate structures - folding patterns 
based on 4-fold-mechanism using stiff plates. Proceedings of IASS Symposium , 
(pp. 2306-2317). Valencia. 
 
  



213 
 

Wang, K., & Chen, Y. (2011). Folding a Patterned Cylinder by Rigid Origami. In P. 
Wang-Iverson, R. Lang, & M. Yim (Ed.), Origami5: Fifth International Meeting 
of Origami Science, Mathematics, and Education (pp. 265-276). Boca Raton, 
FL: A K Paters/CRC Press. 
 

Watanabe, N., & Kawaguchi, K.-i. (2009). The Method for Judging Rigid Foldability. 
In R. Lang (Ed.), Origami4: Fourth International Meeting of Origami Science, 
Mathematics, and Education (pp. 165-174). Wellesly, MA: A K Peters. 
 

Wei, G., & Dai, J. (2014, May). Origami-Inspired Integrated Planar-Spherical 
Overconstrained Mechanisms. Journal of Mechanical Design, Vol. 136, 051003 
(13 pages). doi:10.1115/1.4025821 
 

Weisstein, E. (n.d.). Pappus's Centroid Theorem. Retrieved from From MathWorld--A 
Wolfram Web Resource: 
http://mathworld.wolfram.com/PappussCentroidTheorem.html 
 

Zeng, Q., & Fang, Y. (2012). Structural Synthesis and Analysis of Serial-Parallel 
Hybrid Mechanisms with Spatial Multi-Loop Kinematic Chains. Mechanism and 
Machine Theory, Vol. 49, 198-215. doi:10.1016/j.mechmachtheory.2011.10.008 
 

Zhang, K., Fang, Y., Fang, H., & Dai, J. (2010, August). Geometry and Constraint 
Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism. 
Journal of Mechanisms and Robotics, Vol. 2, 031014 (7 pages). 
doi:10.1115/1.4001783 
 

 
 
 

 
 

  



214 
 

APPENDIX A 
 

SINGLE CENTERED RIGID ORIGAMI BARREL VAULT 

CALCULATION SHEET 

 
Following image is a screen shots from the excel sheet prepared to calculate all 

the parameters to create a MV-Pattern by modifying three parameters: radius r, segment 

number n, and central angle Ω. The file have been provided within a DVD with the 

dissertation.  

File name: “BarrelVault-SingleCentered.xlsx” 
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APPENDIX B 
 

SINGLE CENTERED RIGID ORIGAMI BARREL VAULT 

PATTERN AND KINEMATIC DIAGRAMS 

 
Following tables are a series of patterns and kinematic diagrams of a single 

centered rigid origami barrel vault. Patterns and kinematic diagrams are representatives 

of the following data tables: 

 Table 3.5: Single centered triangular pattern mobility analysis with different 

number of segments and rows. 

 Table 3.10: Single centered trapezoidal pattern mobility analysis with 

different number of segments and rows. 

 Table 3.11: Single centered modified trapezoidal pattern mobility analysis 

with different number of segments and rows. 

Both triangular patterns and trapezoidal patterns with different numbers of 

segments and different numbers of rows are presented in the following tables. For each 

cell a CP with a red line, as the pattern-generator, and a black dot to represent the joint 

that have been removed if a modification has been done to the mechanism. Again for 

each cell under the CP a kinematic diagram of the original pattern and if modified the 

modified kinematic diagram is drawn with an * next to it.   
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APPENDIX C 
 

DOUBLE CENTERED RIGID ORIGAMI BARREL VAULT 

CALCULATION SHEET 

 
Following image is a screen shots from the excel sheet prepared to calculate all 

the parameters to create a MV-Pattern by modifying three parameters: radius r, segment 

number n, and the distance between centers of the arcs a. The file have been provided 

within a DVD with the dissertation.  

File name: “BarrelVault-DoubleCentered.xlsx” 
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APPENDIX D 
 

DOUBLE CENTERED RIGID ORIGAMI BARREL VAULT 

PATTERN AND KINEMATIC DIAGRAMS 

 
Following tables are a series of patterns and kinematic diagrams of a double 

centered rigid origami barrel vault. Patterns and kinematic diagrams are representatives 

of the following data tables: 

 Table 3.20: Double centered triangular pattern mobility analysis with 

different number of segments and rows. 

 Table 3.21: Double centered modified triangular pattern mobility 

analysis with different number of segments and rows. 

 Table 3.22: Double centered trapezoidal pattern mobility analysis with 

different number of segments and rows. 

 Table 3.23: Double centered modified triangular pattern mobility 

analysis with different number of segments and rows. 

Both triangular patterns and trapezoidal patterns with different numbers of 

segments and different numbers of rows are presented in the following tables. For each 

cell a CP with a red line, as the pattern-generator, and a black dot to represent the joint 

that have been removed if a modification has been done to the mechanism. Again for 

each cell under the CP a kinematic diagram of the original pattern and if modified the 

modified kinematic diagram is drawn with an * next to it.   
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APPENDIX E 
 

PSEUDO-DOME RIGID ORIGAMI CALCULATION SHEET 

(PATTERN) 

 
Following image is a screen shots from the excel sheet prepared to calculate all 

the parameters to create a MV-Pattern by modifying two parameters: radius r and 

segment number n. The file have been provided within a DVD with the dissertation.  

This calculation sheet allows a designer to create a pattern with any number of 

segment without a need to create a complementary triangle. 

File name: “Dome-calculations-V1-Pattern.xlsx” 
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APPENDIX F 
 

PSEUDO-DOME RIGID ORIGAMI CALCULATION SHEET 

(COMPLEMENTARY) 

 
Following image is a screen shots from the excel sheet prepared to calculate all 

the parameters to create a MV-Pattern by modifying three parameters: radius r, segment 

number n, and first segment angle θ1. The file have been provided within a DVD with 

the dissertation.  

This calculation sheet allows a designer to create a pattern with a 

complementary triangle. This sheet includes the calculations for the complementary 

triangle’s parameters (column in blue). 

File name: “Dome-calculations-V2-Complementary.xlsx” 
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