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ABSTRACT 

 

SEMI ANALYTICAL FINITE ELEMENT MODELING FOR 

DISPERSION ANALYSIS OF MULTILAYERED STRUCTURES  

 

Ultrasonic guided waves are frequently employed for Non-destructive tests 

(NDT), and Structural Health Monitoring (SHM) applications in the industry. Several 

analytical and numerical approaches have been developed in order to investigate guided 

wave behavior on multilayered structures. 

In this thesis, guided waves were investigated using the Semi-Analytical Finite 

Element (SAFE) approach on planar (plate like) structures. The guided wave theory and 

dispersive behavior in bounded structure were presented for Lamb waves for isotropic 

elastic plate model first. The numerical method to solve the SAFE problem was 

developed using the Matlab 2014b in order to obtain dispersion curves. The curves were 

compared with the Disperse Software, which utilizes global matrix approach for 

analytical solution of the same problem.  Good agreement was achieved on obtained 

dispersion curves.  

As a second part of this study, dispersion analysis was carried out in a multi-

layer plate model consisting of elastic and viscoelastic materials. The semi-analytical 

finite element method was solved by adapting the hysteretic damping model so that it 

can also be applied in a damped plate model. Phase velocity and attenuation dispersion 

curves were illustrated and the effect of the viscoelastic layer thickness is also 

discussed. The obtained attenuation dispersion curves in this damped plate 

configuration are examined for wave modes with low-attenuation. The dispersion curve 

results obtained using the SAFE method was also compared with the results of studies 

available in literature. 
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ÖZET 

 

ÇOK KATMANLI YAPILARIN BOZUNMA ANALİZİ İÇİN YARI-

ANALİTİK SONLU ELEMAN MODELLEMESİ 

 

Ultrasonik yönlendirilmiş dalgalar, endüstrideki Tahribatsız Muayene (NDT) ve 

Yapısal Sağlık İzleme (SHM) uygulamaları için sıklıkla kullanılır.Çok katmanlı 

yapılarda yönlendirilmiş dalga davranışını araştırmak için çeşitli analitik ve sayısal 

yaklaşımlar geliştirilmiştir. 

Bu tez çalışmasında, plaka benzeri yapılar üzerinde Yarı-Analitik Sonlu 

Elemanlar yaklaşımıyla yönlendirilmiş dalgalar araştırılmıştır.Öncelikle, sınırlı 

yapılarda ki yönlendirilmiş dalga teorisi ve dispersiyon (bozunma) davranışı, izotropik 

elastik plaka modeli üzerinde Lamb dalgaları göz önüne alınarak sunulmuştur. 

Dispersiyon eğrileri elde etmek için, SAFE probleminin sayısal çözümleri Matlab 

2014b programı kullanılarak geliştirilmiştir.Dispersiyon eğrileri, aynı sorunun analitik 

çözümü için global matris yaklaşımını kullanan Disperse programı ile 

karşılaştırılmıştır.Bu karşılaştırma sonucunda, dispersiyon eğrileri üzerinde elde edilen 

değerlerde iyi bir mutabakat sağlandığı görülmüştür. 

Bu çalışmanın ikinci bir parçası olarak, elastik ve viskoelastik malzemelerden 

oluşan çok katmanlı plaka modelinde dispersiyon analizi yapılmıştır.Yarı-Analitik 

Sonlu elemanlar metodu, sönümlü plaka modelinde uygulanabilmesi için Histeretik 

sönümleme modeli adapte edilerek çözülmüştür.Faz hızı ve zayıflama dispersiyon 

eğrileri olarak gösterilmiş ve viskoelastik yapının etkileri tartışılmıştır.Bu sönümlü 

plaka konfigürasyonundan elde edilen zayıflama dispersiyon eğrileri düşük zayıflamaya 

sahip dalga modu seçimi için incelenmiştir. SAFE yöntemi kullanılarak elde edilen 

dispersiyon eğrisi sonuçları, literatürde mevcut olan çalışmaların sonuçları ile de 

karşılaştırılmıştır 
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CHAPTER 1  

 INTRODUCTION 

 Nowadays, the demand of high quality materials for safer structures in the 

industry is getting higher. Majority of the structural failures are caused by cracks, 

corrosion or discontinuities inside material. These problems may be attributed to  

fatigue, material, poor design, manufacturing process of material or environmental 

effects. Preventive maintenance is a very crucial for safety practices and enhanced 

operation of the engineering structures.  

 There are also some techniques, which may be used to determine hidden 

defects inside the materials.Two of the most commonly used methods within these 

techniques are ultrasonic inspection techniques: Non-destructive testing (NDT) and 

structural health monitoring (SHM). These methods are based on the interference of 

high-frequency sound waves, which are trasducted into the material with the help of the 

ultrasonic transducer and the discontinuities inside or at surface of the material.  

 In traditional ultrasonic inspections shear and longitudinal bulk waves are 

used, in which only a small portion of the structure can be inspected at a single 

measurement. This technique requires ultrasonic signal source position to be swept on 

structure in order to cover the whole structure. This process is a very time consuming 

for inspecting such large structures like pipelines, rails, storage tanks, plates etc. For 

effective inspection, guided waves offer a very efficient and rapid solution by reducing 

the inspection efforts and time. The main differences between using traditional bulk 

waves and guided waves for inspection are illustrated in Figure (1.1) (Rose 2014)The 

basic difference of guided waves is that inspected structure boundaries is used for as a 

‘guide’ for wave propagation by interacting with the wave signal at given proper angle 

by using the ultrasonic transducers. These transmitted waves are reflected back and 

forth from the boundaries of the structure, providing inspection of the whole structure. 

For those reason, this types of waves is referred as ‘guided waves’ in acoustic area.  

 



   2
 

 

Figure 1.1. Comparison of Bulk wave and Guided wave inspection techniques 

(Source: Rose 2014, page-3) 

 

 Ultrasonic wave generation usually leads to generation of many wave modes 

within the structure thickness. This multi-mode wave propagating depends on not only 

geometric boundaries but also on frequency. The number of wave modes increases with 

frequency in the inspected area and this relation provides for making available modes 

selection while detecting the discontinuties or cracks with setting the proper frequency 

ranges. 

  The wave propagation problem in multilayered solids are rather complex and the 

relations can be shown by phase velocity, group velocity, mode shapes and attenuation 

dispersion curve in the frequency range of interest. These dispersion properties for any 

SHM or NDT problem need to be extensively analyzed first for proper selection of 

ultrasonic waves.Then, proper waves can be used to determine the cracks and/or 

discontinuities, their locations using proper methods and electrical periphery. Usually, 

reflections are utilized. Understanding of wave attenuation through dispersion curves  

also help for wave selection and the frequency range.Additionally mode shapes may 

constitute a strong influence on wave propagation for specific modes, by means of 

stress, displacement and energy. 
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 Dispersion characteristics can be obtainined using several methods such as 

analytical modeling, finite element method or experimentally. Analytical modeling is 

the most frequently used method, considering geometric boundaries and mechanical 

properties of material.These governing wave equations can be described and solved by 

using combined analytical and numerical approaches. Semi-analytical finite element 

(SAFE) approach is a recent development for wave propagation modeling combining 

analytical and finite element modeling. The traditional analytical based matrix method 

solutions for guided waves problems are based on to derive displacement ans stress 

relations by using 3D elasticity theory which means only the specific shaped 

waveguides like planar, cylindrical or hollow structures can be solved, however, SAFE 

method is straightforward to handle with complex shaped structure with complex 

materials by capable of modelling the structure with FEM.  

 This method is based on analytical solutions of the propagating waves while the 

finite element discretization domain of the structure is perpendicular to this propagating 

wave direction is employed.The application of SAFE method for a planar structure is 

illustrated in Figure (1.2). Because of these, it is called as semi-analytical. 

 

 
Figure 1.2. Application of SAFE method for planar structures 

(Source:Ahmad et al.,2011) 

  In general, using discretization of 2-D cross sections only render the method as 

an efficient tool for solving guided wave problems with complex shapes, since more 

time-consuming 3D discretization is used in traditional FEM approaches.Besides this, 

analytical matrix based solutions are more prone to missing roots of guided wave 

problem solution as in reported by (Lowe 1995) in contrast to the SAFE approach.  

 The aim of this study is to develop a SAFE model and routine to investigate 

guided wave dispersion in multi-layer planar structures. Phase and group velocity 

dispersion curves of multilayered plate structures are obtained through a code 
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implemented in Matlab R-2014b.Matrix based purely analytical method based on the 

global matrix is used for validation of the results by using the commercial Disperse 

software.  

 The thesis consists of six chapters. In the first chapter the practical usage of the 

guided waves in non-destructive tests and structural health monitoring has been 

discussed. The differences between guided waves and bulk waves have been presented. 

Besides, the aim and outline of the thesis are included in this chapter.  

 The historical backgrounds of the guided waves have been presented from the 

earlier developments in Chapter 2. Matrix based solution methods with different types 

of waveguides were presented under the analytical methods section and related studies 

about approximate methods numerical are also covered in finite element method 

section. Additionally, hybrid analytical and finite element solution methods are 

summarized in the last section, which is the main topic of the thesis. 

 The theoretical derivation of wave equations for unbounded medium has been 

summarized following Chapter 3. Rayleigh-Lamb wave dispersion is analayzed 

extensively along with fundamental concepts about guided wave propagation. 

 The theoretical derivation of the SAFE modelling for guided waves is presented 

in Chapter 4. The adaptation of the solution method for guided wave problem on a 

planar structure using 1D line elements in FEM part is summarized with the eigen-value 

problem from the SAFE formulation.Only Lamb wave modes on a plate model was 

considered. 

 Results of the numerical studies with SAFE method were presented in Chapter 5. 

Generated dispersion curves from the SAFE results are compared with the Disperse 

software for elastic isotropic plate model first to validate the model considering low 

order Lamb wave modes. Furthermore, elastic and viscoelastic multi-layered plate 

configuration was modelled with SAFE method in order to obtain phase velocity 

dispersion curves and attenuation dispersion curve. Obtained dispersion curves are also 

compared with the experimentally validated result and modelling issues with loss 

medium and effects of the viscoelastic layer thickness is also discussed. 

 In the final Chapter 6, the results of the study are discussed and possible future 

work is also presented. 
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CHAPTER 2 

LITERATURE SURVEY 

              For over a century, guided waves problems were investigated by many 

researchers and engineers in different kinds of areas. In this chapter, the history of 

ultrasonic guided waves is given under three subtitles. In section 2.1, guided acoustic 

waves in solid structures will be given based on the studies of guided wave theory in 

different types of waveguides. In section 2.2, modelling guided acoustic waves in terms 

of analytical, matrix based methods and finite element modelling are discussed and 

lastly in 2.3, studies about Semi-Analytical finite element modelling are presented. 

2.1 Guided Acoustic Waves in Solids 

 The earlier studies on surface wave of the structure were introduced by 

(Rayleigh) in 1885, which was the first theoretical approach of the guided wave 

phenomena. Then, acoustic waves studied by (Lamb 1917) for isotropic plate in vacuum 

space. He made derivation of the guided waves characteristic equation and found the 

dispersion relation between the wave velocity and frequency of the propagating waves 

in single layer structure. The roots of these characteristic equations show that two 

different mode which are called symmetric and antisymmetric modes can propagate in 

this waveguide. After that, guided waves investigated theoretically by adding another 

solid medium to the system and occurring waves at these interface between solid-solid 

medium studied by (Stoneley 1924) All these types of waves can propagate both 

thickness and directional parallel to plane surface of the structure. The other wave type , 

which is known as shear horizontal (SH) wave was investigated by (Love 1944). In 

contrast to the plate surface waves, polarization of this type of wave displacement is 

perpendicular to propagation direction. These types of waves still carry their names 

(Rayleigh-Lamb, Stoleney and Love waves) today. After these theoretical derivations 

was made for simple plate structure, the elastic waves propagation in hallow cylinder 

structure fully studied by (Gazis 1959a) (Gazis 1959b) in these papers. The theory was 
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set by introducing the 3D elasticity theorem and by applying the Helmholtz 

decomposition method for decoupling the wave modes. Instead of using longitudinal 

(L), shear horizontal (SH) and shear vertical (SV) wave modes which are used in planar 

wave propagation, in cylindrical waves the partial waves are denoted as axial, torsional 

and flexural wave modes. All modes are investigated under the names of axially 

symmetric, non-axially symmetric and torsional wave motion. After that, (Viktorov 

1967) has presented an extensive research on cylindrical and plate structures. He, firstly, 

formed characteristic equations and brief explanation on differences between the plate 

wave and cylindrical wave motion by introducing the angular wavenumber term which 

is valid for these types of guided waves. 

   

2.2 Modeling Guided Acoustic Waves 

        The solution of the guided wave equations and analysis of its dispersion relies on 

modelling acoustic waves by considering boundary conditions and material 

characteristics. The word “dispersive” means that propagating wave velocity or any 

other paramater depends on or changes with changinb frequency.Most of the studies are 

related with illustrating these frequency and velocity dependence use dispersion curves, 

which containing formation about travelling wave behavior in those types of structures. 

         Considering all these aspects, analytical and numerical models for different type 

of wave problem has been developed to simulate problems with various boundary and  

interface condition, composed of layers with different mechanical and acoustic 

properties. 

2.2.1 Analytical Modeling 

          In the literature, guided wave propagation has been extensively analyzed 

analytically by using bulk partial waves and Helmholtz decomposition method for 

isotropic medium.The details about these two methods can be found in (Rose 2014) 

However, for the multilayered system analytical solution can be studied by 

superposition of bulk waves, considering individual layers. In this method, interaction 
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of longitudinal and shear bulk waves at the interfaces, boundaries of the structure and 

superposition of these waves has to be considered. 

  There are two different matrix based approaches in the literature. One of them is 

named as “transfer matrix” method which is proposed by (Thomson 1950) after treated 

by (Haskell 1953) . In this method, a single layer matrix is employed for representing 

stress and displacement fields of a single layer, which are created by the wave 

propagation at both top and bottom surface of single layers. The matrix is multiplied by 

additional matrices representing all other layers, yielding the transfer matrix.It is 

reported that these layer-by-layer multiplication yields numerical instabilities for this 

method when layer thicknesses increase (Lowe 1995) and (Kamal, et. al 2013).   

 The other method is called as “global matrix method”, (GMM) which is 

proposed by (Knopoff 1964).This method is based on the assembly of individual layer 

matrices in a single global matrix, representing the system with considering the traction 

free condition on surface of the structures and continuity condition at the interfaces 

between individual layers. Both of these matrix solutions result in an eigenvalue 

problem, whose roots are gives relation between wavenumber and frequency of 

propagating waves, from which the dispersion curves can be formed. A good review on 

both global matrix method and transfer matrix method is given by (Lowe 1995). In this 

paper, both methods are summarized and root searching algorithm and sweeping 

techniques for solution in terms of frequency and wavenumber domain is given in 

detail. In addition to that, implementation of Kelvin-Voigt viscoelastic modelling in 

matrix based solution formulation is formulated for the waveguides with attenuation. 

 These matrix methods have been employed in several studies. (Nayfeh and 

Chimenti 1989) investigated guided wave propagation and generated dispersion curve 

of multilayered anisotropic structures with giving brief and robust solution by modelling 

the structure based on using elasticity theory for defining the displacement ans stress 

fields, partial wave methods and matrix based solution methods. In these studies, the 

solutions are also validated with the experimental results. Their extensive studies on 

multilayered structure can be found as a reference book for reader published by (Nayfeh 

1995). Another good study based on the transfer matrix method is investigated by 

(Castaings and Hosten 1994). In this paper, delta operator technique is implemented in 

transfer matrix approach in order to solve numerical instability of this method where the 

large frequency and thickness product is needed to be effectively handled, while 

modelling multilayered plates.  
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 Another issue on guided waves inspection is not only modelling wave reflection 

and refraction from medium interfaces and boundaries but also dealing with viscoelastic 

waveguides. In a damped medium, travelling waves are attenuated with distance and 

after a while wave energy might completely vanish because of the energy dissipation. 

For this reason, modelling mediums with attenuation is crucial, for selecting less 

attenuated wave modes especially on long range inspection problems, where severe 

attenuation might cause issues. With considering this issue (Bernard Lowe, & 

Deschamps, 2001) made good studies on effect of viscoelasticity on dispersion relations 

of waves. In this studies fluid loaded layer structure model is used and investigated with 

introducing energy velocity concepts for absorbing and non-absorbing region instead of 

using group velocity concept. Their results have shown that modelling with complex 

frequency terms for attenuation is more reasonable for the medium they have 

investigated. In the case of the medium with losses, experimental results show that 

energy velocity concept give exactly the same results as group velocity solutions. 

 Another study with considering attenuation effect due to the viscoelastic coating 

is made by (Simonetti, 2003). In this study, matrix based methods is used for obtaining 

dispersion features on multilayered plate system. However the aim of the proposed 

study is investigated the effect of the viscoelastic coated in hollow cylinders. This plate 

model is used due to the difficulties of investigating viscoelastic coated by using matrix 

methods in hollow cylindrical structure. As a result of this study, it is observed that 

obtained dispersion features on plate like structure can be safely used with thickness to 

radius ratio up to 0.10. Effects of viscoelastic coating in terms of attenuation due to the 

material damping on dispersion characteristics are also reported by increase the 

thickness of the coat in that study.  

 After that, (Barshinger and Rose 2004) made an analysis on wave dispersion for 

pipes with viscoelastic coating, which is frequently used against corrosion in pipelines. 

In this paper, Kelvin-Voigt material damping model is used, where the frequency-

dependent Lame parameters are defined.The solution also yields complex wavenumber 

values, whose imaginary part corresponds to attenuation values. The multilayered 

hollow cylindrical structure is modelled with matrix based on GMM. The solution is 

obtained considering the axisymmetric wave modes only. The dispersion curves are 

derived with considering attenuation, which are verified with the experimental results 

and effect of the viscoelastic coated is discussed. 
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 There is commercial software named “Disperse”, which should also be 

mentioned. It is developed by Imperial Collage of London NDT groups (Pavlakovic et 

al. 1997), and currently used as reference in guided wave propagation applications .This 

software is used for generate dispersion features like phase velocity, group velocity and 

mode shape of guided waves based on GMM method. It is also capable of working with 

different waveguides types like cylindrical hollow and plate and their multilayered 

configurations. 

The global matrix method formulation with considering different types of 

waveguides for guided wave anlaysis and investigation of wave propagation with cracks 

are also discussed by (Rose 2014) in detailed. In this reference book, other important 

guided wave featured like wave scattering and reflection from defects, mode 

conversions are discussed and attenuation analysis for long range NDT is also covered.    

2.2.2 Finite Element Modeling 

 Guided waves and dispersion analysis of propagating waves have been studied 

based on analytical and matrix based solution methods for over years. However, when 

dealing with complex shaped structures like train rail, T shaped beams (C. M. Lee et. 

al., 2006),(Hayashi et al., 2003) or inhomogeneous complex materials (Bartoli, et al., 

2006),(Gao 2007), these solution methods are inadequate in order to generate dispersion 

features or investigate the behavior of the propagating waves with defects.Many 

researchers and engineers have been resort to finite element methods (FEM) in order to 

overcome the difficulties assosciated with complex or irregulary shaped waveguides.   

 In this approach, the main idea is dividing the structure or cross-section into 

small finite elements (discretization), which are linked to each other through nodal 

points. Then, set of simpler algebraic equations at each element is used for solving 

whole domain with using the special interpolation functions, which are set in between 

each node with considering their boundaries. When dealing with guided wave problems, 

these algebraic equations are defined by partial differential equations and solved from 

one element to another element by using numerical approximation. 

 From the beginning of the 1990s, guided wave simulation and dispersion 

analysis of wave from defects and selection of wave mode for defect detection have 

been studied based on traditional FEM approach in different waveguides. Convergence 
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of the solution and accuracy relations in time domain analysis are studied by (Alleyne 

and Cawley 1992) and (Moser, Jacobs, and Qu 1999) with using traditional finite 

element method. Their studies showed that, at least 10 nodes per wavelength should be 

considered for dispersion analysis and interference of guided waves with defects. 

Another study about wave scattering from defects is presented by (Demma 2003). In 

this study, wave reflection from the different types of defects is investigated by shear 

horizontal (SH) wave modes for plates where propagation direction is perpendicular to 

wave direction and lying in the horizontal axis and torsional (T) wave modes for 

circular waveguides. Also, in this study the potential use of such wave modes in non-

destructive examinations has been discussed. The wave propagation information 

revealed by the numerical solutions of the derived wave equations based on analytical 

expressions is compared with the finite elements. 

 Another good aspect of using the FE approach is the availability of commercial 

products such as Comsol, Abaqus etc. These softwares allow modeling complex shaped 

waveguides with a wide variety of materials easily. Taking into account for its 

advantages, many studies have been carried out by using these commercial packages. 

Guided wave propagation in steel plate with discontinuities is discussed by (Juluri 

2008) with modelling the structure. In this study, weld quality of storage tanks is 

investigated by experimentally using longitudinal (L) guided waves. It is also suggested 

that about the fundamental symmetric wave modes (S0) is more sensitive for long range 

inspection on welds between two plates. Another good study is done by (Drozdz, 2008), 

where wave scattering from defects is investigated in elastic media with considering the 

accuracy of the solution by increased local mesh size. 

 Although finite element method has many advantages for modelling and 

solving guided wave problems, these methods can be time consuming when dealing 

with larger geometries for accurate modal analysis. Another issue with FEM approach is 

adaptation of the solution with using edge effects for modeling, since in these types of 

geometric restrictions, wave reflection and refraction might cause problems if not 

handled properly.In order to overcome these issues, researchers are resorted to improve 

hybrid finite element models with the aims of reducing computational time and 

handling the reflection from the edges boundary. 

 The basic idea of these studies is reducing the dimension of the analysis 

model. The traditional FEM is analyzed by using three dimensional modelling however, 

most of the application and guided wave problems can be studied by two dimensional 
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cases because of constant cross-section shape of waveguide structure. With considering 

this nature, studies about decreasing computational cost issue are numerous in the 

literature under the names of Boundary Element Method (BEM)  (Cho and Rose 1996) 

and (Yang and Zhou 1999),  Finite Difference Method (FDM) (Balasubramanyam et 

al.,1996) , Wave Finite Element (WFE)  (Manconi and Mace 2007) and etc. All these 

numerical approaches are done by adopting suitable mathematical manipulations with 

considering easier way of solving generated differential equations related with 

modelling guided waves. These approaches have some advantages and disadvantages on 

modeling different types of guided wave problem. The comparison of these approaches 

and discussion about capability of analyzing wave propagation can be found in (B. C. 

Lee and Staszewski 2003) and (Kamal, Gresil, and Giurgiutiu 2013).Another good 

review of improved methods including analytical matrix based approaches can be found 

in (Willberg et. al., 2015) with considering time and frequency domain analysis. In 

those studies, each improved method for making guided wave analysis is discussed with 

their capability to obtain accurate solutions.  

2.3 Semi Analytical Finite Element Modeling 

 In recent years, the semi-analytical finite element method (SAFE) has been 

widely used by many researchers in order to solve guided wave problems in many types 

of structures with different material properties because of the flexibility of the using 

both FEM and analytical solution of guided waves at the same time. This method is 

based on analytical solutions of the propagating waves while the finite element 

discretization domain of the structure is perpendicular to this propagating wave 

direction is employed. Because of these, it is called as semi-analytical. In general, the 

solution of the characteristic equation is obtained from the resulting eigenvalue 

problem. Also, using discretization of 2-D cross sections only render the method as an 

efficient tool for solving guided wave problems with complex shapes, since more time-

consuming 3D discretization is used in traditional FEM approaches. In addition to this, 

finite element approach uses the material stiffness matrix and virtual work principle 

makes this approach for the multilayered system,where the material properties is 

changing at individual layers or combining different materials like composite structures 

needs to be handled.  
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2.3.1 SAFE for Modeling of Guided Waves 

 With considering advantages of this method, studies in the literature are 

numerous. (Gavrić 1995) as a pioneering study, used two dimensional triangular and 

quadrilateral shape functions, while discretizating the cross-sectional domain in finite 

element modelling for noise reduction in rails. In the paper, the solution of resulting 

eigen-value problem consisting only of evanescent and propagating modes of wave in 

rails is assumed. Following, this model is adopted and extended for arbitrary cross 

section structures and studied for all wave modes by (Hayashi, Song, and Rose 2003); 

theoretical derivation of guided waves is done and it’s dispersive characteristic are 

investigated and compared with experimental results. Then,  (Bartoli, Marzani, Lanza di 

Scalea, et al. 2006)  extended this method for viscoelastic materials by adopting 

complex stiffness matrix. As there are different ways of the introducing these damping 

effect, instead of using Kelvin-Voigt method which is traditionally used in matrix based 

methods, hysteretic model is used for defining material damping. 

 Following all these theoretical improvements was, the generalized SAFE 

approach is employed by many researchers in various waveguides like pipes, rod, 

plates, and especially complex shaped structures and composites. For the case of the 

complex shaped waveguides, guided wave analysis proposed by (C. M. Lee 2006). In 

this study, the SAFE approach was applied to investigate shell defects on rails. Then, 

according to the experimentally verified results in terms of dispersion, the appropriate 

wave modes are determined by considering long-range inspection and defect locations. 

These wave modes and corresponding frequency ranges were then used in the design of 

special transducers for the purpose of non-destructive evaluations of such defects. 

 Another important issue with the SAFE theory comes from the resulting wave 

modes and their distinction from each other, since the eigen solutions includes all 

modes like propagating, evanescent and non-propagating wave modes. This distinction 

is very crucial for obtaining dispersion curves and selection of desired wave modes or 

mode control issue. This problem was studied by (Mu and Rose 2008) on hollow 

cylinder structure with viscoelastic coatings and solved for guided wave dispersion 

curves and attenuation characteristics with considering both axisymmetric and flexural 

wave modes. On the other hand, mode distinction was made by developing an 

algorithm using the orthogonality relation of each modes result in that study. 
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 Another study is made by (Van Velsor 2009), applied this method for 

circumferential order multi layered structure with de-coupled circumferential Lamb and 

shear wave modes with SAFE in multilayered system. In this study, dispersion curves 

for each decoupled modes are solved with using both GMM and SAFE method for 

elastic medium. A brief comparison is also made between these two methods and 

convergence of the solution by SAFE approach is discussed by considering discretized 

domain mesh size.  

 Another study is made by (Fan 2010).  In this study SAFE approach is used 

for measurements of the fluid density with using the torsional (Shear) wave modes. The 

measurements are based on the fact that, shear types waves cannot propagate in inviscid 

fluids.Measurements with preset dipping distances in dipstick tests yields as inverse 

guided wave problems, which can be post-processed for the desired material properties 

of that fluid medium. In addition to that in that study, SAFE approach is also used for 

analyzing the weldment quality of the plate like structures with considering both 

longitudinal (L) and shear wave modes (S).The comparison on sensitivity for crack 

evaluation between these wave modes is also discussed according to the experimental 

results. 

 Another issue related with the SAFE method is modelling the whole structure 

with energy leakage influid-embedded systems, which is a particularly important issue 

for pipeline industries. This phenomenon is studied by (Mazzotti et al. 2013) for 

cylindrical shaped waveguides. In this study, SAFE formulation is combined with the 

Boundary Element Method (BEM), by which the surface of the structure is modeled, in 

order to simulate energy leakage to the system. This new developed SAFE method is 

used for generating dispersion features of the whole embedded structure and attenuation 

effect of the load from the fluid are also discussed.    

 In general case, SAFE method is applied to solve various guided wave 

problems and another are composites, which are complex multi layered structures. The 

challenge of doing guided wave analysis on those types of structure comes from the 

inclusion of viscoelastic layers and anisotropic behavior.  SAFE approach was used by 

(Gao 2007) on composite structure in PhD thesis. In this study, complex stiffness matrix 

for defining each viscoelastic layers was adopted in SAFE approach and resulting 

dispersion relations are presented as group and phase velocity curves. On the other 

hand, the wave structure information of the composite structure illustrated with using 

GMM.It is reported that, SAFE method is provided faster and accurate results for 
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dispersion curve generation however, wavestructure information was achived more 

accurately by using GMM. 

 Another study for the case of the composite structure is proposed by (Ahmed, 

2011), In this study, dispesion analysis and reflected wave from the edge of the 

structure and transmittion coefficients are analyzed using the SAFE approach, since the 

addition of such restrictions require additional boundary relations for the solution. 

Besides these, a new numerical solution procedure for only considering Lamb wave 

modes from the SAFE approach is proposed.  
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CHAPTER 3  

FUNDAMENTALS OF GUIDED WAVES 

3.1 Bulk Waves in Isotropic Media 

     In order to investigate the propagating wave characteristics it is important to 

understand the generalized wave equations in unbounded isotropic medium first. In 

isotropic medium, there are two types of bulk waves that can propagate. One of them is 

longitudinal waves, in which particle motion is parallel to propagating wave direction. 

The other type is shear wave, where particle motion is perpendicular to the direction of 

the propagation.  In this section Rayleigh-Lamb wave equations and propagating wave 

velocities for dispersion relations which are well documented by many books are 

summarized following (Rose 2014).  

3.1.1 Equation of Motion 

 This approach starts with applying the Newton’s second law for an element,is 

adopted in Cartesian coordinates system (𝑥1, 𝑥2, 𝑥3). The equation of motion by 

omitting force terms for three-dimensional body is given as in Eqn (3.1)  

 

𝜕𝜎11

𝜕𝑥1
+

𝜕𝜎12

𝜕𝑥2
+

𝜕𝜎13

𝜕𝑥3
= 𝜌

𝜕2𝑢1

𝜕𝑡2
 

𝜕𝜎21

𝜕𝑥1
+

𝜕𝜎22

𝜕𝑥2
+

𝜕𝜎23

𝜕𝑥3
= 𝜌

𝜕2𝑢2

𝜕𝑡2
 

𝜕𝜎31

𝜕𝑥1
+

𝜕𝜎32

𝜕𝑥2
+

𝜕𝜎33

𝜕𝑥3
= 𝜌

𝜕2𝑢3

𝜕𝑡2
 

(3.1) 

 

,where 𝑢1, 𝑢2 and 𝑢3 are the displacements, 𝜌 is the density of three dimensional 

element, 𝑡 is the time and 𝜎11, 𝜎22, 𝜎33 etc. representing the stress field on the faces of 

this element. These fundamental stress terms in equation (3.1), can be expressed in 

terms of strain-stress and strain-displacement relations. 
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 The stress-strain relation can be written in tensor notation with considering 

isotropic medium can be written as;  

 𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗             (3.2) 

 

where 𝜇 and 𝜆  are the Lame parameters for isotropic material. 𝛿𝑖𝑗   represents the 

Kronecker delta operator with subscript 𝑖 and 𝑗 numbering with (1, 2 and 3) 

corresponding to unitdirections. 𝜀𝑘𝑘  represents total change in volume (dilatation) of 

this element, where can be written as; 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)     (3.3) 

 

 𝛿𝑖𝑗 =  {
1     𝑖 = 𝑗 
0     𝑖 ≠ 𝑗 

}     ,        𝜀𝑘𝑘 = 𝜀11 + 𝜀22 + 𝜀33      (3.4) 

 

Substituting Eqn (3.3) and Eqn (3.4) into Eqn (3.2) Stress fields yields;  

 

 𝜎11 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀11  ,    𝜎22 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 ,  
 𝜎33 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀33 

 
𝜎12 = 2𝜇𝜀12,         𝜎23 = 2𝜇𝜀23 ,         𝜎13 = 2𝜇𝜀13 

 

(3.5) 

The strain-displacement relation can be written as;  

 
𝜀𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) ,            𝑖, 𝑗 = 1,2,3 

 
(3.6) 

In explicit formula with introducing the 𝑖, 𝑗 to the strain displacement relation yields;  

 

𝜀11 =
𝜕𝑢1

𝜕𝑥1
,                 𝜀22 =

𝜕𝑢2

𝜕𝑥2
 ,                𝜀33 =

𝜕𝑢3

𝜕𝑥3
 

𝜀12 =
𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1
,        𝜀23 =

𝜕𝑢2

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥2
 ,     𝜀13 =

𝜕𝑢1

𝜕𝑥3
+

𝜕𝑢3

𝜕𝑥1
 

 

(3.7) 

     Substituting the strain- displacement relation in Eqn (3.6) and stress-displacement 

relation in Eqn (3.5) into the equation of motion Eqn (3.1) and rearranging terms, 
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generalized displacement equation of motion is also known as ‘Navier’s equation of 

motion’ can be obtained as; 

 

(𝜆 + 𝜇)
𝜕

𝜕𝑥1
(
𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
+

𝜕𝑢3

𝜕𝑥3
) + 𝜇∇2𝜕𝑢1 = 𝜌

𝜕2𝑢1

𝜕𝑡2
 

(𝜆 + 𝜇)
𝜕

𝜕𝑥2
(
𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
+

𝜕𝑢3

𝜕𝑥3
) + 𝜇∇2𝜕𝑢2 = 𝜌

𝜕2𝑢2

𝜕𝑡2
 

(𝜆 + 𝜇)
𝜕

𝜕𝑥3
(
𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢2

𝜕𝑥2
+

𝜕𝑢3

𝜕𝑥3
) + 𝜇∇2𝜕𝑢3 = 𝜌

𝜕2𝑢3

𝜕𝑡2
 

 

(3.8) 

This displacement equation of motion in Eqn (3.8) can also be expressed in vector form 

in Eqn (3.9); 

 
(𝜆 + 𝜇)∇∇. 𝐮 + 𝜇∇2𝐮 = 𝜌

𝜕2𝐮

𝜕𝑡2
 

 
(3.9) 

In this expression,  ∇ represents the vector operator (𝑥1̂
𝜕

𝜕𝑥1
, 𝑥2̂

𝜕

𝜕𝑥2
, 𝑥3̂

𝜕

𝜕𝑥3
) and ∇2 

represents the Laplace operator ( 𝜕2

𝜕𝑥1
2
+

𝜕2

𝜕𝑥2
2
+

𝜕2

𝜕𝑥3
2
). 

 The equation of motion and the relationship between stress and strain in an 

isotropic elastic medium are used to derive the elastic wave equation. The total system 

of equation just obtained in equation (3.9). This equation has three displacement fields 

which are introduced with 𝐮. These displacement fields are uniform and constant in all 

directions due to isotropy of medium however, it is difficult to solve directly. For this 

reason the equation can be uncoupled by introducing the Helmholtz Decomposition 

method. 

 3.1.2 Helmholtz Decomposition method 

 In order to apply this method, displacement vector u in Eqn (3.9) can be 

expressed in terms of derivatives of scalar and vector potentials by using Eqn (3.10) to 

define dilatational and rotational displacements in medium respectively. (See also 

(Achenbach 1975) section-6).  
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 𝐮 =  ∇φ + ∇ × ѱ ,    ∇.ѱ = 0 (3.10) 

 In this representation, displacement fields consist of the sum of the gradient of 

the scalar potential φ and curl of the vector potential ѱ  which should satisfy the general 

expression. By applying the method of potential Eqn (3.10) in vector form of equation 

of motion in Eqn (3.9) yields as follow in Eqn (3.11);  

 

 

(𝜆 + 𝜇)∇(∇. (∇φ + ∇ × ѱ)) + 𝜇∇2(∇φ + ∇ × ѱ)

= 𝜌
𝜕2

𝜕𝑡2
(∇φ + ∇ × ѱ) 

 

(3.11) 

where; (∇. (∇ × ѱ)= 0) and (∇. ∇φ = 0)   (3.12) 

 Applying vector identities and  rearrangement by using (3.12), this equation can 

be separated two different wave fields;  

 

 

∇ [(𝜆 + 𝜇)∇2φ −  𝜌
𝜕2φ

𝜕𝑡2
] + ∇ × [𝜇∇2 − 𝜌

𝜕2ѱ

𝜕𝑡2
] = 0 

 

(3.13) 

 This expression can only be solved if these uncoupled terms within the square 

brackets in Eqn (3.13) are both equal to zero. So, these equations can be shown 

following uncoupled wave equations;  

 𝛻2𝜑 =  
1

𝐶𝑙
2

𝜕2𝜑

𝜕𝑡2
 (3.14) 

 
𝛻2ѱ =

1

𝐶𝑠
2

𝜕2ѱ

𝜕𝑡2
 (3.15) 

 As a consequence, equation of motion (3.9) is decomposed in terms of two 

uncoupled wave equations (3.14) and (3.15) with respect to particle motion types. In the 

first expression, 𝐶𝑙 represents the longitudinal (pressure) P-wave. This wave motion 

leads to change of volume of the medium. 𝐶𝑠 represents the shear (transverse) S-wavein 

which, wave motion leads to rotation motion without causing any changes in volume.  
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3.1.3 Bulk Longitudinal and Shear wave velocities 

 This generalized uncoupled wave equation is solved by substituting harmonic 

wave assumption for both expressions as in equation (3.16) 

 
𝜑 = 𝐴(𝐿)𝑒𝑖(𝑘.𝑥−𝜔𝑡) , 

ѱ = 𝐴(𝑆)𝑒𝑖(𝑘.𝑥−𝜔𝑡) 
(3.16) 

 

 These general exponential terms is used for describing harmonic wave behavior 

in medium with changing time. In these expression, 𝑥 denotes as three displacement 

directions (as a vector), 𝐴(𝐿), A(S) are representing the longitudinal and shear wave 

amplitudes, 𝑘 is the wavenumber vector and 𝑤 = 2𝜋𝑓 is the angular frequency of the 

propagating waves. The wavenumber vector is used for describing propagating wave 

velocity and wavelength with the use of these relations;  

𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ =
2𝜋

𝑘
   and   𝑃ℎ𝑎𝑠𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑐) =

𝑤

𝑘
 

 Substituting these harmonic wave expressions in equation (3.16) into the 

uncoupled wave equations (3.14 and 3.15) is giving form of bulk longitudinal 𝐶𝑙 and 

shear wave 𝐶𝑠 velocities in terms of mechanical properties (Lame) of material; 

 𝐶𝑙
2 =

𝜆+2𝜇

𝜌
 ,          𝐶𝑠

2 =
𝜇

𝜌
 (3.17) 

 These solutions show that there are two different types of waves can propagate 

in isotropic unbounded medium with the constant velocity which is determined by 

directly using mechanical properties of medium. These Lame parameters 𝜇 and  𝜆 can 

be given as in equation (3.18);  

 𝜇 =
𝐸

2(1 + 𝑣)
   and   𝜆 =

𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
 (3.18) 

where, 𝐸 and 𝑣 are representing Young modulus and Poisson’s ratio of the material 

respectively.     
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3.2 Guided Wave in Isotropic Media 

 Previous section we considered bulk wave propagation in unbounded isotropic 

medium. On the other hand, in the bounded medium wave propagation highly depends 

on structure boundaries, from which continuos reflection and refraction in between 

parallel surfaces occur. Wave propagation in bounded layers can be modelled by using 

bulk shear and longitudinal waves considering the boundary conditions at the plate 

surface are also considered.  

 

Figure 3.1.  Guided wave plate model for isotropic elastic bounded medium with the  

         directions (x1, x2, x3) 

 Let’s consider the wave propagation is invariant in direction 𝑥2 by assuming 

plain strain condition for simplicity (2D case). The geometry of problem can be 

illustrated in Figure (3.1). This problem consists of plane wave motion which means 

that wave propagation only occurs in infinite medium within parallel surfaces. This 

means that there is no displacement in 𝑥2 direction and at the surface of plate 𝑥3 =

−𝑑 and 𝑥3 = +𝑑 are assumed as a free to traction. By using equation in (3.14) and 

(3.15) as demonstrated previously decoupled wave equation which satisfying these two 

dimensional wave equations can be written as ;  

 
𝜕2𝜑

𝜕𝑥1
2
+ 

𝜕2𝜑

𝜕𝑥3
2
   =  

1

𝐶𝑙
2

𝜕2𝜑

𝜕𝑡2
  (3.19) 

 
𝜕2ѱ

𝜕𝑥1
2
+ 

𝜕2ѱ

𝜕𝑥3
2
  =

1

𝐶𝑠
2

𝜕2ѱ

𝜕𝑡2
 (3.20) 

 As a result of the plain strain assumption, stress and displacement fields from 

Hooke’s Law can be expressed by using potentials as in equation (3.21). 
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u1 = [
∂φ

∂x1
+

∂ѱ

∂x3
] 

u2 = 0 

u3 = [
∂ѱ

∂x1
+

∂φ

∂x3
] 

σ31 = μ(
∂u3

∂x1
+

∂u1

∂x3
) = μ(

2 ∗ ∂2φ

∂x3 ∂x1
−

∂2ѱ

∂x1
2 +

∂2ѱ

∂x3
2) 

σ33 = λ(
∂2φ

∂x3
2 +

∂2φ

∂x3
2) + 2μ (

∂2φ

∂x3
2 −

∂2ѱ

∂x1 ∂x3
) 

 

(3.21) 

 The exact solution of these equations can be found by assuming the harmonic 

wave 𝑒𝑖(𝑘𝑥1−𝜔𝑡)  for each potential. Where 𝑘 and 𝜔 are terms that represent wave 

number and angular frequency respectively,  𝑖 = √−1 and 𝑥1 is representing direction 

of wave propagation.These harmonic wave assumptions can be given as in equation 

(3.22) and (3.23)  

 𝜑 = 𝜑(𝑥3) 𝑒
𝑖(𝑘𝑥1−𝜔𝑡) (3.22) 

 ѱ = ѱ(𝑥3)𝑒
𝑖(𝑘𝑥1−𝜔𝑡) (3.23) 

 

 In these solution,  𝜑(𝑥3) and ѱ(𝑥3) represent standing waves in 𝑥3 direction 

while propagating wave direction is defined by 𝑥1. This means that wave propagation 

direction has constant displacement distribution on transverse direction 𝑥3. Substituting 

these assuming harmonic wave solution into the decoupled wave potentials in equations 

(3.19) and (3.20) gives the general solution of wave propagation for that bounded layer 

as in equation (3.24) and (3.25); 

 
𝜕2𝜑(𝑥3)

𝜕𝑥3
2

+ (
𝜔2

𝐶𝑙
2 − 𝑘2)𝜑(𝑥3) = 0 (3.24) 

 
𝜕2ѱ(𝑥3)

𝜕𝑥3
2

+ (
𝜔2

𝐶𝑠
2 − 𝑘2)ѱ(𝑥3) = 0 (3.25) 

 Then, solutions of these obtained ordinary differential equations come up with 

these resulting equations;  
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 𝜑 = 𝜑(𝑥3) = 𝐴1 sin(𝑝𝑥3) + 𝐴2𝑐𝑜𝑠 (𝑝𝑥3) (3.26) 

 ѱ = ѱ(𝑥3) = 𝐵1 sin(𝑞𝑥3) + 𝐵2 𝑐𝑜𝑠 (𝑞𝑥3) (3.27) 

where;                                  

 𝑝2 =
𝑤2

𝐶𝑙
2 − 𝑘2   and  𝑞2 =

𝑤2

𝐶𝑠
2 − 𝑘2 (3.28) 

   

𝐴1 , 𝐵1 , 𝐴2 and 𝐵2 are the scalar quantitiesrepresenting wave amplitudes. The indices 1 

and 2 in amplitudes also represent propagating wave modes in and out of plane 

directions with respect to mid plane of the structure. Introducing these harmonic 

solutions in equations (3.26) and (3.27) into the displacements and stress fields by using 

equations (3.21) which is derivated under the plain strain assumption yields;  

 

𝑢1 = [𝑖𝑘𝜑 +
𝜕ѱ

𝜕𝑥3
] 

𝑢3 = [𝑖𝑘ѱ +
𝜕𝜑

𝜕𝑥3
] 

𝜎31 = 𝜇 (𝑘2ѱ +
𝜕2ѱ

𝜕𝑥3
2 + 2𝑖𝑘

𝜕𝜑

𝜕𝑥3
) 

𝜎33 = 𝜆 (−𝑘2𝜑 +
𝜕2𝜑

𝜕𝑥3
2) + 2𝜇 (𝑘2ѱ +

𝜕2𝜑

𝜕𝑥3
2 − 𝑖𝑘

𝜕ѱ

𝜕𝑥3
) 

 

(3.29) 

 In order to understand the wave propagation we should go one step further by 

using the fact that, equations in Eqn (3.26) and Eqn (3.27) consists of cosine and sine 

functions with the dependence on 𝑥3 direction. These functions are odd and even 

respectively. As a result, displacement and stress fields can be separated into two wave 

modes: symmetric and antisymmetric wave modes with respect to mid plane of 

medium.  They can be presented in term of displacement and stress fields by 

introducing the generalized harmonic potential solutions in equation (3.26) and (3.27) 

into the equation (3.29). Then the resulting equations can be given as a two set of 

solutions in terms of displacement and stress field as in equation (3.30) and (3.31);  

 

 

 



   23 
 

 Symmetric modes;  

 

𝜑 = 𝐴2𝑐𝑜𝑠(𝑝𝑥3) 

ѱ = 𝐵1𝑠𝑖𝑛(𝑞𝑥3) 

𝑢1 = −𝑖𝑘𝐴2 cos(𝑝𝑥3) + 𝑞𝐵1 cos(𝑞𝑥3) 

𝑢3 = −𝑖𝑘𝐵1 sin(𝑞𝑥3) − 𝑝𝐴2 sin(𝑝𝑥3) 

𝜎31 = 𝜇(−2𝑖𝑘𝑝𝐴2sin (𝑝𝑥3) + (𝑘2 − 𝑞2)𝐵1sin (𝑞𝑥3)) 

𝜎33 = 𝜆(𝑘2 + 𝑝2)𝐴2cos (𝑝𝑥3) − 2𝜇(𝑝2𝐴2 cos(𝑝𝑥3)

+ 𝑖𝑘𝑞𝐵1 cos(𝑞𝑥3)) 

 

(3.30) 

Antisymmetric modes;  

 

𝜑 = 𝐴1𝑠𝑖𝑛(𝑝𝑥3) 

ѱ = 𝐵2𝑐𝑜𝑠(𝑞𝑥3) 

𝑢1 = +𝑖𝑘𝐴1 sin(𝑝𝑥3) − 𝑞𝐵2 sin(𝑞𝑥3) 

𝑢3 = −𝑖𝑘𝐵2 cos(𝑞𝑥3) + 𝑝𝐴1 cos(𝑝𝑥3) 

𝜎31 = 𝜇(2𝑖𝑘𝑝𝐴1cos (𝑝𝑥3) − (𝑘2 − 𝑞2)𝐵2cos (𝑞𝑥3)) 

𝜎33 = −𝜆(𝑘2 + 𝑝2)𝐴1sin (𝑝𝑥3) − 2𝜇(𝑝2𝐴1 sin(𝑝𝑥3)

− 𝑖𝑘𝑞𝐵2 sin(𝑞𝑥3)) 

 

(3.31) 

 It is also worth to noting that, this generalized symmetric and antisymmetric 

wave motion is an essential case for isotropic structure with respect to mid plane of 

plate. These wave motions are illustrated in Figure (3.2).  

 

Figure 3.2. Symmetric and Antisymmetric wave modes representation on plate 

 However, there are also unknown variables which are used for defining the wave 

amplitudes, 𝐴1 , 𝐵1 , 𝐴2 and 𝐵2. These quantities can be evaluated by applying boundary 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒 𝑆𝑜 

𝐴𝑛𝑡𝑖 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑀𝑜𝑑𝑒 𝐴𝑜 
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conditions as proposed at the beginning of the modelling. These boundary conditions 

state that stresses at the lower and upper surface of the structure is zero;   

 𝜎31 = 𝜎33 = 0    at  𝑥3 = ±𝑑 (3.32) 

   

 Considering of two wave modes solutions, displacements and stresses given in 

equation (3.30) and (3.31), then applying these boundary conditions into the generalized 

wave motions yields the homogenous equations which have constant wave amplitudes  

𝐴1, 𝐴2, 𝐵1 and 𝐵2. After applying the boundary conditions, generated homogenous 

equations in order to non-trivial solution coefficient of equations can be omitted since 

they turn out as constant variables. Then, these homogenous equations can be rewritten 

as in equations (3.33) and (3.34), leading to dispersion characteristics of the Lamb 

waves;   

 
(𝑘2 − 𝑞2)sin (𝑞𝑑)

2𝑖𝑘𝑝(sin(𝑝𝑑))
= −

2𝜇𝑖𝑘𝑞(cos (𝑞𝑑)

(𝜆𝑘2 + 𝜆𝑝2 + 2𝜇𝑝2)cos (𝑝𝑑)
 

 
(3.33) 

 −
(𝑘2 − 𝑞2)cos (𝑞𝑑)

2𝑖𝑘𝑝(sin(𝑝𝑑))
=

2𝜇𝑖𝑘𝑞(sin (𝑞𝑑)

(𝜆𝑘2 + 𝜆𝑝2 + 2𝜇𝑝2)sinn (𝑝𝑑)
 (3.34) 

 These obtained equations can be simplified by using the bulk wave velocity 

definitions in equation (3.17). Substitution of these definitions into the equation (3.33) 

and (3.34) gives more compact form of the equations for symmetric and antisymmetric 

wave modes.  

 
tan (𝑞𝑑)

tan (𝑝𝑑)
= −

4𝑘2𝑝𝑞

(𝑞2 − 𝑘2)2
         𝑓𝑜𝑟 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑠  (3.35) 

 
tan (𝑞𝑑)

tan (𝑝𝑑)
= −

(𝑞2 − 𝑘2)2

4𝑘2𝑝𝑞
         𝑓𝑜𝑟 𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑠  (3.36) 

   

Where, 𝑝 and 𝑞  are given in the form of ;  

 𝑝2 =
𝑤2

𝐶𝑙
2 − 𝑘2  (3.37) 

 𝑞2 =
𝑤2

𝐶𝑠
2 − 𝑘2 (3.38) 
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 As a result, these derived equations are known as ‘’Rayleigh-Lamb wave 

dispersion equations’’ in the form of symmetric and antisymmetric wave modes. These 

equations can be solved numerically for the relation between frequency (w) and 

wavenumber (k) of propagating wave modes, which satisfy the boundary conditions of 

plate structure. 

 There are also some different types of waves that can exist on given structure 

configurations which are consisted of different material and interfaces with vary 

boundaries. For the simplest case of the wave that propagates on the surface of the solid 

medium with semi-infinite free surface, wave propagation and theoretical derivation is 

first made by (Rayleigh 1885). The observation from this study is that, the particular 

motion by the wave propagation are coupled two types of waves which are longitudinal 

and shear waves in that solid medium.While this coupled wave propagates in the 

medium, the amplitude of wave are decaying with distance in perpendicular direction 

from the surface of the structure by assuming the infinite medium.The physical meaning 

of this behavior is that, the energy of wave are concentrated on the surface of the 

structure since being in a vacuum space there is no energy leakage from the solid 

medium.Besides this, this surface wave moves with constant wave speed with frequency 

on the surface. This is the main differences between guided waves and surface waves; in 

general, for the case of the surface waves the velocity remains constant with frequency 

which means non-dispersive. These types of waves are the special case of the wave 

propagates in between solid-vacuum interface and it is referred as Rayleigh surface 

wave.  

 This comprehensive study also leads to investigate the other types of the 

interface waves with adding the new medium to the system such as; solid-solid medium 

as (Stoneley 1924) wave and solid-fluid medium as Scholte waves (1942) which are 

named after by their founder. For instance, the case for the solid-fluid interface, the 

wave propagation can be existed in fluid medium in contrast to the vacuum space which 

means that some of the propagating wave energy leakage is occurred between the solid 

medium and fluid medium when compared with the vacuum space as in the Rayleigh 

surface wave. As a resulting of this, the surface of the solid medium are not considered 

as stress free and the boundary conditions at the interfaces between solid and fluid 

medium are changed.Then, the behavior of these interface waves can be investigated 

with considering boundary conditions and the acoustic properties of these two medium. 
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 Another wave types for the isotropic elastic solid medium by adding an another 

vacuum space is studied by  (Lamb 1917). These types of waves are refered as special 

case of guided wave since the wave propagation is guided by the surface of the 

structures which means there is no energy leakage due to the being in a vacuum space. 

In this case, in contrast to the assuming infinite solid medium, the thickness of the plate 

was assumed very small when compare with the wavelength of the propagating waves. 

As a resulting of this, the multiple reflections of the propagating longitudinal and shear 

wave between these two paralel surfaces of the plate was occurs. These types of waves 

in plates are refered as a Lamb waves.In true sense, these waves are very dispersive 

which means that the propagating wave velocity are changing with frequency and 

thickness of the plate and multiple reflection of the wave resulted in the many wave 

modes propagation within the plate.For those reason, wave propagation on plate like 

structures are also refered as a guided Lamb waves in the acoustic area.Then, this 

dispersive behavior of the guided Lamb wave in plate like structures can be illustrated 

by obtaining the dispersion features like phase velocity, group velocity dispersion 

curves and modes shapes.   

 Rayleigh-Lamb wave equations are derived theoretically by using isotropic 

elastic plate structure in vacuum space. Propagating symmetric (S) and antisymmetric 

(A) wave modes are also derived for understanding of propagating wave behavior. On 

the other hand, these obtained equations are transcendental which means that solution of 

these equations can be done by numerically. As can be seen from the generalized 

equation (3.35) and equation (3.36) the coefficients p and q depends on the angular 

frequency (𝑤 = 2𝜋𝑓), wavenumber (𝑘), shear and longitudinal bulk wave velocities 

which are determined directly from mechanical properties of materials and thickness (d) 

of the medium. This dependence is evidence of the dispersive nature of guided Lamb 

waves since; at each frequency only the specific combination of them is satisfying those 

equations. 

 The basic concept of illustrating these relations is plotting wavenumber-

frequency solution of generalized wave equations as dispersion curve in Figure (3.3). 

As an example, 1-mm thickness Aluminum plate which having longitudinal (Cl =

6200 m/s ) and shear (𝐶𝑠 = 3200 𝑚/𝑠 ) wave velocities and density of medium as 

( 𝜌 = 2770 𝑘𝑔/𝑚3) is used.  



   27 
 

 

Figure 3.3.Frequency-Wavenumber dispersion curve of 1-mm thickness Aluminum     
      plate 

 As you can see from the Figure (3.3), for a given frequency there exist a many 

propagating wave modes which are being reflected from the bounded surface. At each 

frequency, there are at least two different wavenumber solutions corresponding to 

fundamental symmetric (𝑆0) and antisymmetric (𝐴0) wave modes and increasing 

frequency thickness product also leads to higher order symmetric (𝑆1 , 𝑆2 , 𝑆3 …𝑆𝑛 ) and 

antisymmetric (𝐴1 , 𝐴2 , 𝐴3 …𝐴𝑛 )  Lamb wave modes.   

3.2.1 Phase and Group Velocity 

 Another concept of guided wave propagation is coming from that these waves 

are travelling as a group in bounded structures, which lead to two velocity concepts. 

These are group velocity and phase velocity concepts, which are discussed in this 

section.  

 Group velocity can be defined as the velocity of the whole traveling wave 

packets, as they affect each others propagation characteristics. On the other hand, phase 

velocity is defined as speed of an individual wave crest at that frequency in this wave 

packet. This relation is illustrated in Figure (3.4)  



   28 
 

 

Figure 3.4. Group velocity and Phase velocity representation 

 Both velocities can be calculated for any propagating wave and also for Lamb 

waves in plates. These velocities are highly dispersive and changeable for each wave 

modes in nature. These features are usually expressed in phase velocity and group 

velocity dispersion curves.  

 The dispersion curves gives information about each travelling wave velocity (or 

number) with respect to frequency. These relations can be determined from calculating 

wave velocity at each frequency by using this expression;  

 

 𝐶𝑝ℎ =
𝑤

𝑘
 (3.39) 

   

 Recall from the previous section, by adopting this expression into the Rayleigh-

Lamb wave solution gives the phase velocities of each mode against the frequency 

range. In order to show this, 1-mm thickness Aluminum plate is used for generate phase 

velocity dispersion curve again. Result is given in Figure (3.5)  
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Figure 3.5. Phase velocity dispersion curve of 1-mm Aluminum Plate model 

 As you can see from the Figure (3.5), symmetric and antisymmetric wave modes 

and their velocities changes with changing frequency.Four lowest Lamb wave modes 

are shown and assigned with (𝐴0, 𝑆0, 𝐴1, 𝑆1 ) two of them fundamental modes 𝐴0, 𝑆0 two 

of them first order modes 𝐴1, 𝑆1. The fundamental wave modes (0) can be present in the 

whole frequency range. However, higher order modes beginning from the first order can 

propagate only after a specific frequency value. This frequency is known as cut-off 

frequency. For instance, below the cut-off frequency only two fundamental modes can 

travel in plate. On the other hand, when frequency is increased about 4-MHz four 

different modes can be travel in that medium.  

 Another important aspect of Lamb waves is that, when frequency is increased all 

the modes converge to Rayleigh wave velocity because of the superposition of 

travelling waves in plate. The physical meaning of this is that a displacement field 

created by wave motion is concentrate at the surface of the plate. For this reason, 

Rayleigh waves are also referred as a surface waves.  

 Group velocity concept is another dispersive feature of guided waves. As 

mentioned before, travelling waves can be propagate as a group wave packets which 

can consist of waves with different frequencies and varying travelling wave speeds. As 

a result, the speed of the whole wave packets become as group wave speed. Group 

Cut-off 
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𝑆0 
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𝑆1 

𝐴1 
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Order 
Modes 

Rayleigh Wave 
Velocity 



   30 
 

velocity is also referred as a signal velocity of travelling waves. This relation can be 

defined by differentiation of frequency with respect to wavenumber.  

 

 𝐶𝑔 =
𝜕𝑤

𝜕𝑘
 (3.40) 

   

 This relation can also be derived by using phase velocity expression by using 

equation in (3.38); 

 𝑘 =
𝑤

𝐶𝑝ℎ
 (3.41) 

Substituting generated wavenumber expression in equation (3.40) into the group 

velocity relation (3.39) yields; 

 

𝐶𝑔 = 𝑑𝑤 [𝑑 (
𝑤

𝐶𝑝ℎ
)]

−1

= 𝑑𝑤 [
𝑑𝑤

𝐶𝑝
− 𝑤 (

𝑑𝐶𝑝ℎ

𝐶𝑝ℎ
2)]

−1

= 𝐶𝑝ℎ
2 [𝐶𝑝ℎ − 𝑤 (

𝑑𝐶𝑝ℎ

𝑑𝑤
)]

−1

 

 

(3.42) 

Then, substitution of frequency expression (𝑤 = 2𝜋𝑓) into the differentiation in 

equation (3.41) yields the resulting expression;  

 𝐶𝑔 = 𝐶𝑝ℎ
2 [𝐶𝑝ℎ − (𝑓𝑑) (

𝑑𝐶𝑝ℎ

𝑑(𝑓𝑑)
)]

−1

 (3.43) 

 These generalized group velocity equations states that when wave travelling in 

the non-dispersive region, which means phase velocity is not changing with frequency; 

group velocity is equal to phase velocity. On the other hand, when propagating wave 

velocity incresase with frequency, group velocity gets larger than the phase velocity. 

These features are used for structural health monitoring applications extensively.   

 Another good knowledge is that wave signals are carrying energy in true sense. 

The group velocity dispersion curve gives knowledges about the propagating wave 

modes energy in different frequency range in the same manner. For those reasons, group 

velocity dispersion curve are also referred as energy curve. The resulting group velocity 

dispersion curve is given in Figure (3.6).The material properties of plate is given as 

longitudinal (𝐶𝑙 = 6200 𝑚/𝑠 ) and shear (𝐶𝑠 = 3200 𝑚/𝑠 ) wave velocities and density 

( 𝜌 = 2770 𝑘𝑔/𝑚3) respectively. 
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Figure 3.6. Group velocity dispersion curve of 1-mm Aluminum plate  

 As you can see from Figure (3.6), 5 lowest Lamb wave modes and 

corresponding group velocity dispersion curve are shown. Up to about 1.6 Mhz 

frequency-thickness product there are only two fundamental modes which can 

propagate and easy to distinct each other from group velocity values. These are 

fundamental symmetric S0 and antisymmetric A0 modes.  

 While making an analysis on a structure selecting the application signals up to 

1.6 MHz yields two modes propagation in the medium. Among them, 𝑆0 mode is faster 

than 𝐴0 modes up to that range. As a result, as mentioned beforeresponse signal from 

any crack or discontinuities in that structure can be determined by using 𝑆0 modes 

(Juluri 2008) because of earlier wave signals are corresponded to that. In general case, 

these identification and 𝑆0 is very crucial and extensively used in application area and 

finding the discontinuities location.  

3.2.2 Modes and Mode Shapes 

 The mode shapes of the propagating waves are also essential tools to understand 

the nature of these waves. They are also known as wave structures.They show 

𝑆2 

𝐴0 

𝑆0 

𝐴1 

𝑆1 
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information about the displacement, stress, and energy magnitudes created by 

propagating wave along the thickness for different wave modes and frequencies. As a 

result, this information is used for choosing variety range of modes for analyzing 

different kinds of discontinuities and hidden defects locations inside the medium. In 

order to better explain on this issue, desired wave structures on symmetric S0 and 

asymmetric A0 wave modes at different frequency are illustrated in Figure (3.7) with 

considering various (𝑓𝑑) products on aluminum plates.This frequency-thickness 

products (𝑓𝑑)  representation for wave structures is coming from the fact, the obtained 

Rayleigh-Lamb wave equation in Eqn (3.35) and (3.36) is a function of this 

multiplication.These dependence can be used on representing dispersion relations. 

 

 

Figure 3.7.Wave structure for different points on 𝑆0 and 𝐴0 wave mode of Aluminum               
       plates with in plane displacement (u, solid line) and out-of plane     
       displacement ( w, dashed line) (cont. on next page) 

(Source: Rose 2014 / page 92-93) 
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Figure 3.8. (cont.) 

 As can be seen from the Figure (3.7), at each frequency thickness products (fd), 

different wave structure information can be obtained along the plate thickness on 

different modes.These wave structures give the information about which modes to 

choose and which have higher sensitivity on specific defect locations. For instance, the 

in plane displacement (u) with increasing (fd) products on  𝐴0  modes keeps the 

displacement influence on along the thickness direction especially mid plane of the 

plates, however, in the 𝑆0  modes, increasing (fd) yields more in plane displacement 

distrubution. These exeminations demonstrate the ability of usage wave structures on 

focusing specific defects with considering more sensitive modes evaluations. 
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CHAPTER 4  

SEMI-ANALYTICAL FINITE ELEMENT METHOD 

 In the previous chapter, guided wave propagation in isotropic plate structure is 

presented with considering only specific combinations of the frequency, wavenumber 

and material properties of that medium. The solution of the generalized equations is also 

given in a form of dispersion features such as phase and group velocity dispersion 

curves and mode shapes. Each of these features is discussed with emphasis on their 

usage in wave mode selection issues and importance for application area.  

 In this chapter, the basic theory of the Semi-Analytical Finite element method 

for solving guided wave problem in multilayered plate like structure will be introduced. 

Modeling issues and solution of this method for obtaining dispersion features are also 

discussed under the “Post-processing” section. The solution of resulting eigen-value 

problem, consisting of all modes (propagating, evanescent and non-propagating) and 

their dispersion relation will be given in detail for considering perfectly elastic and 

damped medium types.  

4.1 Definition of SAFE Method for Guided Waves 

 As mentioned before, (Bartoli  et al., 2006) ,(Rose 2014), (Van Velsor 2009), 

and (M.Mazzotti  2013), this method is based on an analytical solution of the 

propagating wave direction while the finite element discretization domain is 

perpendicular to this propagating wave direction. In order to define guided wave 

propagation on the waveguide, exponential time harmonic wave assumption (𝑒𝑖(𝑘𝑥−𝜔𝑡)) 

can be employed with the propagation direction (𝑥), wavenumber (𝑘), angular 

frequency (𝑤 = 2𝜋𝑓) and time (𝑡).  

 Considering a multilayered plate model in xy- plane on Cartesian coordinate 

system, stress, strain and displacement relations with corresponding indices can be 

given at individual points on a plate by; 
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𝑢 =  [𝑢𝑥 𝑢𝑦 𝑢𝑧] 𝑇 

𝜀 = [𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑦𝑧 𝜀𝑥𝑧 𝜀𝑥𝑦 ]
𝑇
 

𝜎 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑦𝑧 𝜎𝑥𝑧 𝜎𝑥𝑦 ]
𝑇
 

(4.1) 

   

 where, ‘𝑇‘ represents transpose of these matrices.  For applying finite element 

procedure on perpendicular domain which lies yz-plane of the waveguide is divided in 

small finite elements. Each of these elements can be represented with 1-dimensional 

quadratic shape functions for the thickness direction (𝑧) since we assume multilayered 

plate model to be infinite in y-direction. The detailed explanation of this type of shape 

functions and usage in finite element discretization methods can be found in (Cook 

2001) book.  

 

Figure 4.1. Representation of infinitely long plate model in (y) direction with              

           discretization on the plate thickness with 2 quadratic line elements      

            (a),Degrees of freedom for each displacement and direction (b), At each   

            elements indivudial location of isoparametric element (c). 

(Source: ‘’ (Ahmad 2011)’’ ) 

 This multilayered plate model is shown in the Figure (4.1). Each element 

mapped with isoparametric elements (ξ), whose individual locations are ξ = (−1,0,1) 

used for each line element respectively. The nodes and their corresponding shape 

functions are also designed with indices 1, 2 and 3. 

 For a given point, the global coordinate (z) can be found by using shape 

functions in local coordinates and corresponding global coordinates (z1 , z2, z3) of these 

three nodes. This relation can be shown in matrix form as in equation (4.2) 
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 z = [N1N2 N3] [

z1 

z2

z3

]                                (4.2) 

where, shape functions of each node are given in equation (4.3)  

 

N1 =
1

2
(ξ2 − ξ) 

N2 = (1 − ξ2)                   

N3 =
1

2
(ξ2 + ξ) 

(4.3) 

 As can be seen from the figure (4.1) each node has three degrees of freedom 

which are defined in three principal displacement directions. Using the same procedure 

in equation (4.2), three particle displacement componentsof each element considering 

harmonic wave propagation in x-direction can be shown in terms of each nodal 

displacements and shape functions as in equation (4.4);  

 u(e) = [

ux
(e)

uy
(e)

uz
(e)

] =

[
 
 
 
 
 
 
 
 
∑Nl(ξ)Uxl

3

l=1

∑Nl(ξ)Uyl

3

l=1

∑Nl(ξ)Uzl

3

l=1 ]
 
 
 
 
 
 
 
 
(e)

ei(kx−ωt) = N(ξ)q(e)ei(kx−ωt) (4.4) 

where, shape function matrix is given in equation (4.5) like;  

 N(ξ) = [
N1 0 0
0 N1 0
0 0 N1

   
N2 0 0
0 N2 0
0 0 N2

   

N3 0 0
0 N3 0
0 0 N3

] (4.5) 

And, nodal displacements matrix is given by; 

 q(e) = [Ux1 Uy1 Uz1   Ux2 Uy2 Uz2   Ux3 Uy3 Uz3]T (4.6) 

   

 In equation (4.6), x, y and z represent direction; and 1, 2 and 3 are the node numbers on 

each element. After finding the nodal displacements at each directions  x, y 

and z, substituting equations (3.2) and (3.3) from previous chapter, the strain and the 

stress relations for each elements can be represented in matrix form as; 
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 ε(e) =

[
 
 
 
 
 
εxx 
εyy

εzz

εyz

εxz

εxy ]
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 

∂

∂x
  0  0 

0  
∂

∂y
 0

 0    0  
∂

∂z

0  
∂

∂z
  

∂

∂y

∂

∂z
 0  

∂

∂x
∂

∂y
 

∂

∂x
 0 ]

 
 
 
 
 
 
 
 
 

x [

ux
(e)

uy
(e)

uz
(e)

] (4.6) 

 𝜎(𝑒) = 𝐶(𝑒)ε(e) (4.7) 

where, C(e)is the material stiffness matrix which is obtained for isotropic medium by 

inserting equation (3.2) relations. This matrix then can be reduced to employ only two 

material constants which are Lame parameters (𝜆) and (𝜇) , in a compact matrix form 

stress-strain relations, which can be written as; 

 

[
 
 
 
 
 
σxx 
σyy

σzz

σyz

σxz

σxy ]
 
 
 
 
 

=

[
 
 
 
 
 
𝜆 + 2𝜇 𝜆 𝜆

𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

2𝜇

2𝜇

2𝜇]
 
 
 
 
 

𝑥

[
 
 
 
 
 
εxx 
εyy

εzz

εyz

εxz

εxy ]
 
 
 
 
 

 (4.8) 

 After, obtaining stress and strain relation for each nodal element by using 

Hooke’s Law, strain-displacement relation for the case of three displacement directions 

can be written in more simplified form in equation (4.9) byrearranging on 

differentiation components.  

 ε(e) = [Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z
] u(e) (4.9) 

where 𝐿𝑥 𝐿𝑦 and 𝐿𝑧  given in matrix form;  

 Lx =

[
 
 
 
 
 
1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0]

 
 
 
 
 

  Ly =

[
 
 
 
 
 
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0]

 
 
 
 
 

 Lz =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0]

 
 
 
 
 

 (4.10) 

 Using nodal displacement and harmonic wave assumption in equation (4.4) and 

substituting this equation into the generalized strain vector  𝜀(𝑒) in equation (4.8), it can 

be shown that;  
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 ε(e) = (B1 + ikB2)q
(e)ei(kx−ωt) (4.11) 

where, Strain-Displacement matrices B1 and B2 obtained from equation (4.9) are given 

as follows; 

 B1 = LyN,y + LzN,z 

B2 = LxN 
(4.12) 

 In these expressions, L is given in matrix form in equation (4.10) and N,z and N,y 

are the derivatives of the shape function matrix N(ξ) given in equation (4.5) with 

respect to z and y directions respectively. It is also worth noting that since we assumed 

multilayered plate model to be infinite in (y) direction under this assumption, our 

problem turns as y invariant and it can be eliminated from the derivation. After making 

this simplification, B1 matrix can be calculated from only using  Lz and  N,z matrices. 

The derivatives of the shape function N(ξ) with respect to z direction cannot be 

calculated directly since these shape functions are function of isoparametric 

elements (ξ). In order to do that, Jacobian matrix should be introduced with respect to z 

direction. These expressions can be written by applying chain rule as follows;  

 𝑑𝑁(𝜉)

𝑑𝑧
=

𝑑𝑁(𝜉)

𝑑𝜉

𝑑𝜉

𝑑𝑧
=

1

𝚥

𝑑𝑁(𝜉)

𝑑𝜉
 (4.13) 

Where Jacobian matrix is given as;  

 𝐽 =
𝑑𝑧

𝑑𝜉
= [𝜉 −

1

2
−2𝜉 𝜉 +

1

2
 ] [

𝑧1

𝑧2

𝑧3

] (4.14) 

4.2 Hamilton’s Principle 

 In order to derive the equation of motion for discretization domain in SAFE 

method, these generalized strain and displacement fields from the previous section are 

implemented in Hamilton’s principle with using kinetic and potential energy 

equilibrium relations, since our system is dynamic and there is no external body force. 

This assumption is made for conservative systems in here, where there is no energy 

dissipation out of the system. With considering all these aspects, variation form of 

Hamiltonian is given as;  
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 𝛿𝐻 = ∫ 𝛿(𝑊 − 𝐾𝑒)𝑑𝑡

𝑡2

𝑡1

= 0 

 

(4.15) 

 This expression is stated that in a time interval between 𝑡1 and 𝑡2 total change of 

potential or strain energy and kinetic energy variations remains constant. By using this, 

kinetic energy term can be given as;  

 𝐾𝑒 = 1
2⁄ ∫ �̇�𝑇𝜌 𝑢 ̇ 𝑑𝑉

𝑉

 (4.16) 

   

 In eqn (4.16) 𝜌 is density, u is the displacements, dot “.” representing the time 

derivative and 𝑉 is volume. Potential energy or strain energy term 𝑊, can also be given 

as;  

 𝑊 = 1
2⁄ ∫ 𝜀𝑇𝐶 𝜀 𝑑𝑉

𝑉

 

 

(4.17) 

where 𝑇 denotes as transpose of strain matrix 𝜀 and 𝐶 is representing material stiffness 

matrix. In true sense, using conservative form of Hamilton’s principle is extended by 

(Bartoli, et al. 2006) with introducing the complex number in material stiffness matric 𝐶 

in order to investigate the mediums with loss. As a result, the solution of this equation 

gives complex values, which consists of both real and imaginary parts. The real parts 

represent the conserved elastic energy, and the imaginary part of the results stands for 

the dissipated energy in the system. 

 Substitution of Eqn (4.16) and Eqn (4.17) into the conservative form of the 

Hamilton’s principle in Eqn (4.15) and making integration by parts in kinetic energy 

term results in;  

 

 𝛿𝐻 = ∫ [∫ 𝛿(𝑢𝑇)𝜌 �̈�𝑑𝑉
𝑉

+ ∫ 𝛿(𝜀𝑇)𝐶 𝜀 𝑑𝑉
𝑉

]

𝑡2

𝑡1

𝑑𝑡 = 0 

 

(4.18) 

 Recall from the previous section that, strain and displacement relations are 

obtained for each element along the thickness direction. As a result, the generalized 
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Hamilton’s equation in (4.18) can be rewritten with considering each element in order 

to define whole system. The discrete form can be written as;  

 ∫ (⋃[∫ 𝛿(𝑢(𝑒)𝑇)𝜌(𝑒)�̈�
(𝑒)𝑑𝑉

𝑉

+ ∫ 𝛿(𝜀(𝑒)𝑇)𝐶(𝑒) 𝜀
(𝑒) 𝑑𝑉

𝑉

]

𝑛𝑒𝑙

𝑒=1

)

𝑡2

𝑡1

𝑑𝑡 = 0 

 

(4.19) 

 Where, 𝑛𝑒𝑙 is representing total number of cross-sectional elements, symbol 

⋃  represents the assembly of the all elements in discretization direction, 𝐶(𝑒) is the 

material stiffness matrix of corresponding medium and 𝜌(𝑒) is density of each elements. 

 The substitution of strain-displacement expression for each element in Eqn 

(4.11) into the strain energy part of the conservative form of the Hamiltonian equation 

and making some simplifications yields; 

 

∫ δ (ε(e)T) C(e) ε
(e) dVe

V

= 

∫ ∫ δ((B1
T − ikB2

T)q(e)T(ei(kx−ωt))T) C(e)(B1
xΩe

+ ikB2)q
(e)ei(kx−ωt)dxdΩe  

 

(4.20) 

where the transpose of the imaginary unit in exponential term 𝑖𝑇 = −𝑖, and with using 

this equality material stiffness matrix 𝐶(𝑒) can be found by integrating over the cross-

sectional domain and then, taking the integration with respect to 𝑥 and taking the all 

terms in the equation in virtual displacement δq(e)Tparenthesis yields;  

 

∫ δ((B1
T − ikB2

T)q(e)T) C(e)(B1 + ikB2)q
(e)ei(kx−ωt)dxdΩe

Ωe 

 

=  δq(e)T ∫ [B1
TC(e)𝐵2 − ikB2

TC(e)B1 + ikB1
TC(e)𝐵2

Ωe

+ 𝑘2B2
TC(e)B1] dΩe 

 

(4.21) 

 This generalized equation satisfies any virtual displacements so this part can be 

omitted from the equations. The second part of the conservation form of the Hamilton 

principle is the kinetic energy term. Using the displacement equation (4.4), which is 

obtained in previous section and substituting this displacement expressions in kinetic 
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energy terms in equation (4.19) by omitting the exponential terms ei(kx−ωt) from the 

both sides of the equation yields;  

 

∫ 𝛿(𝑢(𝑒)𝑇)𝜌(𝑒)�̈�
(𝑒)𝑑𝑉

𝑉

= ∫ ∫ 𝛿(𝑢(𝑒)𝑇)𝜌(𝑒)�̈�
(𝑒)𝑑𝑥𝑑Ωe

𝑥Ωe

= −𝑤2 δq(e)T ∫ 𝑁𝑇

Ωe

𝜌(𝑒)𝑁𝑑Ωe𝑞
(𝑒) 

 

(4.22) 

After that, substituting Eqn (4.21) and (4.22) into the Hamilton’s equation for each 

element can be given as; 

 ∫ (⋃ δq(e)T[𝑘1
(𝑒) + 𝑖𝑘𝑘2

(𝑒) + 𝑘2𝑘3
(𝑒) − 𝑤2𝑚(𝑒)]𝑞(𝑒)

𝑛𝑒𝑙

𝑒=1

)

𝑡2

𝑡1

𝑑𝑡 = 0 

 

(4.23) 

 It is also worth to noting that, at the beginning of the chapter while modelling 

multilayered structure 1 dimensional shape function with 3 nodes is used for each 

element. Discretization of the thickness direction is made by using these line elements, 

which are functions of isoparametric elements (𝜉) only. As a result, instead of taking 

the integration over cross-sectional domain (Ωe), we can take integration with respect to 

these isoparametric elements in a similarmanner. With considering these aspects in Eqn 

(4.23) all terms can be simplified as;  

 

𝑘1
(𝑒) = ∫ B1

TC(e)𝐵2𝑑𝜉
1

−1

 

𝑘2
(𝑒) = ∫ (B1

TC(e)𝐵2 − B2
TC(e)𝐵1)𝑑𝜉

1

−1

 

𝑘3
(𝑒) = ∫ B2

TC(e)𝐵1 𝑑𝜉
1

−1

 

𝑚(𝑒) = ∫ 𝑁𝑇
1

−1

𝜌(𝑒)𝑁 𝑑𝜉 

 

(4.24) 

 After that, applying standard finite element assembling procedure for all 

elements with considering traction free boundaries at bottom and top surface of the plate 

structure. Wave equation for the total system can be obtained as follow;  
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 ∫ (⋃ δQ𝑇(K1 + 𝑖𝑘𝐾2 + 𝑘2𝐾3 − 𝑤2𝑀) 𝑄

𝑛𝑒𝑙

𝑒=1

)

𝑡2

𝑡1

𝑑𝑡 = 0 (4.25) 

Where, 𝑄 is unknown nodal displacement in a vector form and  

 K1 = ⋃𝑘1
(𝑒)

𝑛𝑒𝑙

𝑒=1

, K2 = ⋃𝑘2
(𝑒)

𝑛𝑒𝑙

𝑒=1

, K3 = ⋃𝑘3
(𝑒)

𝑛𝑒𝑙

𝑒=1

, M = ⋃𝑚(𝑒)

𝑛𝑒𝑙

𝑒=1

 (4.26) 

 

As can be seen from the Eqn (4.25) virtual displacement term δQ𝑇 is used for every 

element in general case so, it can be eliminated from the generalized wave equation. As 

a result, the general wave equation in a form of Eigen-value problem is obtained as;  

 [𝐾1 + 𝑖𝑘𝐾2 + 𝑘2𝐾3 − 𝑤2𝑀]𝑁 𝑄 = 0 

 
(4.27) 

 In this general wave equation (4.27), subscript 𝑁 is representing the total number 

of nodes. 𝐾1 , 𝐾2 and 𝐾3 are global stiffness matrices and 𝑀 is the global mass matrix. 

The size of these matrices is 3𝑁x3𝑁 since at each node we have three degrees of 

freedom corresponding to each axis direction. 𝑄 is also vector representation of the 

nodal displacements with the size of 3𝑁x1 matrix.  

 As can be depicted from the equation (4.27) in order to solve this generalized 

wave equation, the imaginary unit i can be omitted with introducing NxN size diagonal 

transformation matrix T. See also for more information [Bartoli et al. 2006] page 48-49. 

This matrix can be constructed as follows;  

 𝑇 =

[
 
 
 
 
 
 
𝑖

1
1

⋱
𝑖

1
1 ]

 
 
 
 
 
 

3𝑁𝑥3𝑁

 

 

(4.28) 

 In this transformation matrix, all the diagonal elements are constructed as one 

except for the corresponding wave propagation direction. These corresponding matrix 

elements are introduced with imaginary unit 𝑖 since we assumed the harmonic wave 

propagation is in 𝑢𝑥 direction. With considering all these aspects, all the matrices in 

generalized wave equation are multiplied with transformation matrix T as fallows;  
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𝑇𝑇𝐾1𝑇 = 𝐾1,      𝑇𝑇𝐾3𝑇 = 𝐾3 ,       𝑇𝑇𝐾2𝑇 = −𝑖 𝐾2 ,  𝑇𝑇𝑀𝑇 = 𝑀 

 

(4.29) 

 Substituting all these matrices into the generalized wave equation in equation 

(4.27) gives the final form of the quadratic eigen value problem; 

 [𝐾1 + 𝑘𝐾2 + 𝑘2𝐾3 − 𝑤2𝑀]3𝑁𝑥3𝑁 �̂� = 0 (4.30) 

   

where, the nodal displacement vector is �̂� = 𝑇𝑄. This generalized equation can be 

reduced in first order Eigen-value system.  

 [𝐴 − 𝑘𝐵] [
�̂�

𝑘�̂�
]=0 

 

(4.31) 

where,  𝐴 and 𝐵 matrices are;  

 

𝐴 = [
0 𝐾1 − 𝑤2𝑀

𝐾1 − 𝑤2𝑀 𝐾2

] 

𝐵 = [
𝐾1 − 𝑤2𝑀 0

0 −𝐾3
] 

 

(4.32) 

 In general case, the numerical solution of this linearized eigenvalue problem 

gives 6𝑁𝑥6𝑁  size diagonal matrix for eigenvalues and corresponding same size full 

eigenvector matrix since the reduction in first order system yields doubling the size of 

matrices. The resulting of eigenvalues gives relations about angular frequency 𝑤 and 

wavenumber 𝑘 pairs, which are the only unknown variables and corresponding 

eigenvectors �̂� gives the knowledges about the mode shapes or other terms wave 

structures of propagating waves. 

4.3 Post Processing of Eigenvalue Problem 

 In order to solve this problem, there are two different ways: frequency (𝑤) 

domain solution and wavenumber (𝑘) domain solution. As mentioned below, post 
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processing of the eigen value problem is performed by using Eqn (4.32) with giving the 

frequency as an input.   

 Considering an isotropic elastic plate model, which is defined by real-valued 

Lame parameters λ  and μ as material properties in stiffness matrix 𝐶 and 1-D line 

elements for discretization on thickness direction consists of 𝑁 nodes. Eigen solution of 

each real frequency (𝑤) gives 6𝑁 real eigenvalues for wavenumber (𝑘) which are 

included both forward (+𝑥) and backward (−𝑥) wave motion. Positive wavenumber 

solution “+𝑘” represents the forward wave motion and negative wavenumber “−𝑘” is 

representing backward wave motion. These resulting wavenumber solutions are used 

describing calculate the velocity of the propagating waves in a form of phase velocity 

dispersion curve as done in previous chapter. On the other hand, when dealing with 

attenuative media (damped medium), complex values solution should be considered. As 

a result, eigen solution of the system results in complex eigenvalues and corresponding 

complex eigenvectors. These resulting wavenumber and their conjugate complex pairs 

can be given in the form of 𝑘 = ±𝑘𝑟𝑒𝑎𝑙 ± 𝑖𝑘𝑖𝑚, which includes all possible wave modes 

in both forward and backward directions. The wavenumber solution should be 

processed to make a distinction on propagating, non-propagating and evanescent wave 

modes. A good review of distinction on wave modes can be found in ( Mazzotti 2013) 

section 2.6. In these general forms of the solutions, real part of the wavenumber solution 

±𝑘𝑟𝑒𝑎𝑙 represents propagating waves in both directions (±𝑥) . The complex 

wavenumber solution represents the evanescent wave modes. Separation of wave modes 

from each other can be made by following considerations. When, both real and 

imaginary parts of the complex wavenumber 𝑘𝑟𝑒𝑎𝑙 and 𝑘𝑖𝑚 are greater than zero, the 

wave mode can be said to propagate in (+𝑥) direction with attenuation. In contrast, if 

the imaginary part of the wavenumber is smaller then zero this corresponds to a wave 

mode propagating in (−𝑥) direction with attenuation. In addition to that, if obtained 

wavenumber solutions consist of only imaginary ±𝑖𝑘𝑖𝑚 values, these wave modes can 

be said to be non-propagating waves. 

 After distinction of all this modes, with selecting wave propagation direction, the 

total system of wave motion solution can be yield. These obtained and selected 

propagating wave modes and their solution as the wavenumber (𝑘) at each frequency 

are used to generate the phase velocity dispersion curves.  
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4.3.1 Group Velocity Concept  

 As stated previously, the group velocity can be derived after obtaining phase 

velocity of each wave modes, and by taking the differentiation.This numerical 

differentiation can cause some large errors if the frequency step is selected large. 

However, in SAFE method the group velocity of the propagating waves can be derived 

directly from the eigen solution results as proposed by (Finnveden  2004) and following 

with the (Bartoli, 2006). This method is started with taking the derivative of Eqn (4.30) 

with respect to wavenumber (𝑘) as fallows;  

 

 𝜕

𝜕𝑘
[𝐾(𝑘) − 𝑤2𝑀] �̂�𝑅 = 0 (4.33) 

 

 Here, 𝐾(𝑘) = 𝐾1 + 𝑘𝐾2 + 𝑘2𝐾3 and �̂�𝑅 is representing the right eigen vector 

which can be solved from the Eqn (4.31) directly. Then, pre-multiplying the obtained 

equation (4.33) with the transpose of the left eigen vector  �̂�𝐿
𝑇, which can be found 

from solving the generated wave equations with introducing transpose of the matrix A 

and B in Eqn(4.32) as fallows.  

 [𝐴𝑇 − 𝑘𝐵𝑇]�̂�𝐿=0 (4.34) 

   

After substituting Eigen vector solutions, derived equation in can be rewritten as;  

 

 

�̂�𝐿
𝑇
[
𝜕

𝜕𝑘
(𝐾1 + 𝑘𝐾2 + 𝑘2𝐾3) − 2𝑤

𝜕𝑤

𝜕𝑘
𝑀] �̂�𝑅 = 0 

 

(4.35) 

Then, taking the derivatives of stiffness matrices with respect to𝑘 and keeping in mind 

that differentiation of the frequency (𝑤) with respect to wavenumber (𝑘) results in 

scalar quantities, the group velocity dispersion relation yields;  

 𝐶𝑔 =
𝜕𝑤

𝜕𝑘
=

�̂�𝐿
𝑇
(𝐾2 + 2𝑘𝐾3)�̂�𝑅

2𝑤�̂�𝐿
𝑇
𝑀�̂�𝑅

 

 

(4.36) 
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 This derived equation shows that group velocity of propagating wave mode can 

be calculated by using each wavenumber 𝑘 and frequency 𝑤 = 2𝜋𝑓 solutions since it is 

only a function of (k , w) pairs. There is no need to take derivative by using the phase 

velocity computation for each frequency. As a result, this method provides more robust 

and reliable way of the illustrating the group velocity dispersion relations. 

 Another dispersion feature is mode shapes of propagating waves along the 

thickness directions as stated before. In analytical solution which is summarized in 

previous chapter, computation of mode shapes of the propagating waves requires the 

more computations. However, in SAFE method, the mode shape information can also 

directly be obtained from eigen vector results.  

 Recall from the formulation in equation (4.31), numerically calculation of these 

wave equations at each frequency in the range of interest gives the all propagating wave 

modes solution as wavenumber (𝑘). This solution can be used for illustrating the mode 

shapes of desired wave modes at specified frequency points as well. The corresponding 

eigen-vector results consist of the mode shapes information of the desired wave after 

selecting the wave mode solution. Based on this mode shape solution, stress and strain 

distribution can be calculated using equation (4.6) and (4.7), since the resulting eigen-

vectors are formulated as nodal displacement vectors.   
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CHAPTER 5  

SAFE METHOD NUMERICAL EXAMPLES 

 In this section, the SAFE method described in the previous section will be 

solved numerically for considering single layer plate and multilayered structures. The 

resulting dispersion relations in terms of phase velocity, group velocity dispersion 

curves of propagating waves will be present. Parameters for modelling the selected 

examples will also be covered. The validity of the results will be evaluated taking into 

account the results of previous studies and analytical matrix-based solution methods. To 

do this, the results of the DISPERSE software program will be used first. In order to 

perform the numerical solution, all SAFE formulation is implemented in MATLAB 

2014b program and generalized eigen value problem in equation (4.31) are solved with 

using ‘eig’ function, which is capable of calculating eigen solutions in both real and 

complex number domains. It is also worth to noting that while using the FEM approach, 

the convergence of the solution is crucial situation in order to get more accurate results. 

This issue arises from the numerical approximation on interpolation (shape) functions 

used in discretization. As in SAFE solution this convergence situation will be handled 

with increasing the number of elements. In order to do that smallest wave length 

assumption was considered for whole medium as first. The total number of nodes which 

is getting the more accurate results can be calculated (Van Velsor 2009) as fallows;  

 𝑁𝑜𝑁 =
𝑁𝑜𝐸𝑥𝑓𝑚𝑎𝑥𝑥𝑇ℎ

𝑐𝑠𝑙
 

 

(5.1) 

 In this equation, 𝑁𝑜𝑁 is representing the number of total nodes, 𝑁𝑜𝐸 is 

representing the number of nodes in each element while using the discretization of 

domain, 𝑇ℎ is representing the total thickness of the multi layered configuration. 𝑐𝑠𝑙  is 

representing the lowest shear bulk wave velocities among all different medium, since 

the propagating lowest phase velocity of whole system can be estimated from that 

medium which  has lower shear bulk wave velocity. In addition to that, all the analyses 

are performed by giving the desired frequency range withsmall frequency increments 
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about 0.05. All the studies which are presented in here are applied to SAFE 

formulations with considering those relations. 

 5.1 Case Study-1 

 In this case studies, SAFE method solutions are compared with the Disperse 

program results. A single layer isotropic structure configuration is used for generate the 

dispersion features first. The material properties are also taken from Disperse program 

for comparison. In the first example, isotropic single layer system was consisdered and 

analysis was made on a 2 mm thickness titanium plate model whose material properties 

and acoustic properties were given in Table (5.1). While making the discretization 

along the thickness direction of the model, 1-Dimensional 3 nodes line elements was 

used. The resulting dispersion features were presented only considering Lamb wave 

modes where the total solution of system are decoupled from the 𝑢𝑦 direction as 

mentioned previous section. This means that, only 𝑢𝑥 and 𝑢𝑧 displacements should be 

used in that solution. In analysis, 62 elements which is consist of 186 nodes were used 

with taking into account of smallest wave assumption in equation (5.1), only 124 of 

them was considered which are corresponding to desired Lamb wave modes in this 

solution.  

5.1.1 Results 

    The resulting Lamb wave modes up to 5-Mhz for both methods in a form of phase 

velocity dispersion curve and group velocity dispersion curves results are also given in 

Figure (5.1) and Figure (5.2) respectively. 

Table 5.1. Material and acoustic properties of Titanium plate 

Material 𝐶𝑙 
(𝑚/𝑠) 

𝐶𝑠 
(𝑚/𝑠) 

𝜌 
𝑘𝑔/𝑚3 

ℎ 
𝑚𝑚 

Titanium 6060 3230 4460 2 
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Figure 5.1. Phase velocity Dispersion curve of 2-mm thickness titanium plate structure 

        results for SAFE (a) and for GMM (b).Red line for symmetric modes, blue 

        line for asymmetric wave modes. 

(a) 

(b) 
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Figure 5.2.Group velocity Dispersion curve of 2-mm thickness Titanium plate structure  

        results for SAFE (a) and for GMM (b).Red line for symmetric wave modes,               

        blue line for asymmetric wave modes. 

      The comparison of these two methods on isotropic model was made by selecting 4 

sample points on obtained phase velocity dispersion curves. In order to do that, instead 

of investigate whole obtained frequency spectrum only up to 1.4 MHz were analyzed 

which are consisted of only zero order symmetric (𝑆0) and asymmetric (𝐴0) Lamb wave 

modes. These selected points were illustrated on Fiqure (5.3) which was obtained phase 

velocity dispersion curve from SAFE approach. 

(b) 

(a) 
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Figure 5.3. Schematic representation of the phase velocity values corresponding to the 

        four selected frequency values on symmetric and antisymmetric wave       

        modes obtained using the SAFE method 

 The results obtained from both methods atselected frequency points are listed in 

Table (5.2), for zero order Symmetric and Asymmetric wave modes in Table (5.3), 

GMM results are obtained from using the Disperse software directly. The reason of 

selecting these lower order wave modes comes from the fact that, in lower frequency 

spectrum and corresponding lower order wave modes carry more energy compared with 

other modes and of most importance. In a practical application, to inspected the desired 

structure for long range those wave modes are widenly used (Juluri 2008), (Fan 2010) 

and etc. Another reason of using lower order wave modes in real application is that, 

studying on the low frequency range leads to include only a few wave modes to 

propagate in the inspected structure. As a result, the separation of reflected wave modes 

from discontinuties and cracks in the inspected medium can be done easily during 

measurements. 

 

 

𝑺𝟎  

𝑨𝟎  

𝑺𝟏  

𝑨𝟏  
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Table 5.2. Comparison of the phase velocities of GMM and SAFE methods at four 

        different frequency values for symmetrical zero order (𝑆0) wave mode on a 

       2 mm thickness Titanium Plate 

Phase Velocity for 

S0 modes 
0.25 MHz 0.60 MHz 1.0MHz 1.4MHz 

SAFE (m/ms) 5.451 5.401 5.000 3.727 

Disperse 

GMM (m/ms) 
5.450 5.402 4.988 3.704 

Error  0.018 % 0.018 % 0.24 % 0.62 % 

 

Table5.3. Comparison of the phase velocities of GMM and SAFE methods at four 

      different frequency values for symmetrical zero order (𝐴0) wave mode on a 2   

      mm thickness Titanium Plate 

Phase Velocity 

for A0 modes 
0.25 MHz 0.60 MHz 1.0MHz 1.4MHz 

SAFE (m/ms) 1.897 2.464 2.727 2.841 

Disperse 

GMM (m/ms) 
1.902 2.473 2.734 2.857 

Error  0.262 % 0.363 % 0.256 % 0.56 % 

 5.2 Case Study-2 

  As second example, the analysis is performed for three layered system,which 

consists of an epoxy layer embedded in-between aluminum plates. These types of 

structure are highly encountered in aerospace industry in order to reduce the vibrational 

effectsas they have good damping characteristics and also light weights. Geometric 

modelling and material properties of the structure are listed in Table (5.4) and taken 

from the (Birgani et al. 2015). In this paper this configuration is studied based on the 

GMM and effects of the viscoelastic medium is adopted for the solution with using 

Kelvin-Voigt model. This multilayered configuration consists of two elastic layers and 

one viscoelastic layer. In order to investigate wave propagation in losses media with 

SAFE, it is necessary to first determine the complex material stiffness matrix for the 
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solution. This model is referred as a hysteretic model where the complex Lame 

parameters are consisted of both storage and loss modulus of related material in order to 

defining the damped. This model is proposed by (Bartoli et al. 2006). Following this 

reference, the complex elastic parameters of the material can be found as follows to 

introduce damping to the system;   

 𝑐𝑙,𝑠 = 𝑐𝑙,𝑠 (1 + 𝑖
𝑘𝑙,𝑠

2𝜋
)
−1

 

 

(5.2) 

 where, 𝑐𝑙,𝑠 are representing the complex longitudinal and shear bulk wave velocities 

and 𝑘𝑙,𝑠 are the corresponding wavenumbers. Then, using these velocities the complex 

Young’s modulus (𝐸) and Poisson’s ratio (𝑣) are obtained as fallows;  

 𝐸 = 𝜌𝐶𝑠
2 (

3𝐶𝑙
2−4𝐶𝑠

2

𝐶𝑙
2−𝐶𝑠

2 )  and  𝑣 = 1
2⁄ (

𝐶𝑙
2−2𝐶𝑠

2

𝐶𝑙
2−𝐶𝑠

2 ) 

 

(5.3) 

 These expressions, in the form of complex Young's modulus and Poison’s ratio, 

are used to obtain complex Lame parameters for viscoelastic medium from using 

Equation (3.18) and then the complex stiffness matrix 𝐶 is formed by using these 

parameters. By using this model, the complex stiffness matrix is formed for desired 

attenuative medium only once for analysis of the multilayered structures. The difference 

between Kelvin-Voigt model and hysteretic model is that, Kelvin-Voigt model has a 

frequency dependent loss modulus and it should be updated for each frequency during 

the analysis. This makes the analysis more complicated. For that reason, in the case 

studies, presented damping model is adopted for the SAFE solution.  

Table 5.4. Geometric and Acoustic properties of Elastic–Viscoelastic-Elastic     

      Multilayered structure 

Layer Material 𝐶𝑙 
(𝑘𝑚/𝑠) 

𝛼𝑙 
(𝑠/𝑘𝑚) 

𝐶𝑠 
(𝑘𝑚/𝑠) 

𝛼𝑠 
(𝑠/𝑘𝑚) 

𝜌 
𝑔/𝑐𝑚3 

ℎ 
𝑚𝑚 

1 Aluminum 6.35 - 3.13 - 2.7 1.6 

2 Epoxy 303 2.39 0.0070 0.99 0.0201 1.08 0.66 

3 Aluminum 6.35 - 3.13 - 2.7 3.175 
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 As mentioned earlier, attenuation magnitude on wave propagation is a crucial 

issue for inspecting the structure through long distances. Selection of the less attenuated 

wave modes leads to more inspecting distance. This quantity can be explained by 

decreasing the wave amplitude with distance for both bulk wave velocities, 𝛼𝑙  is the 

longitudinal wave attenuation and 𝛼𝑠  is the shear wave attenuation. With taking into 

account of this relation, the desired wave mode attenuation magnitude was calculated by 

obtaining the imaginary part of the eigen solutions. In order to do that, the resulting 

imaginary part of the wavenumber solution (𝑘𝑖𝑚) was converted to decibel unit using 

the equation as follows. 

 𝛼𝑎𝑡𝑡 = 20𝑙𝑜𝑔10
𝑒(−1000∗𝑘𝑖𝑚)

 

 
(5.4) 

 By using this equation (5.4) attenuation level (𝛼𝑎𝑡𝑡) was considered as decibel 

per unit length (𝑑𝐵 𝑚𝑒𝑡𝑒𝑟−1) for propagating wave in the medium. With considering 

all these aspects, the dispersion results obtained from the SAFE method of desired 

multilayered model are shown in Figure (5.4) 
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5.2.1 Results 

 

Figure 5.4. Phase velocity dispersion curve of 3-layered elastic-viscoelastic-elastic 

       obtained from SAFE 

 

Figure 5.5. Phase velocity dispersion curve results of 3-layered system from GMM 

(Source: Birgani et al., 2015) 

𝑀2 

 

𝑀1 
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    Figure (5.4) and Figure (5.5) shows the phase velocity dispersion curve of 

multilayered elastic-viscoelastic model at desired range of frequency. These dispersion 

results are made based on SAFE and GMM, respectively. The resulting dispersion 

curves are illustrated the Lamb wave modes similar to the previous example. As can be 

seen from the Figure (5.4) and (5.5), the phase velocity dispersion curves obtained from 

the multilayer modeling with SAFE are match well with the GMM results which is 

taken from the reference paper. When these curves were examined, it appears that only 

3 wave modes with a frequency range below 340 kHz propagate through multilayered 

system. This frequency is cut off frequency of M4 wave mode. Likewise, if the 

frequency range is below 630 kHz, 4 different wave modes can propagate. This 

frequency is the value of cut-off frequency for mode 5. For the case of the attenuation 

level, investigation was made only below the -30 dB/m range with using the expression 

in equation (5.4) and up to 1-MHz frequency range which is the cut-off frequency of 

M7 mode are illustrated in Figure (5.6), since that attenuation level is acceptable to 

present the less attanuated wave mode selections. As can be seen from the Figure (5.4) 

up to 340 kHz only 3 wave modes can propagate in that medium. These are M1, M2 and 

M3 wave modes as shown in Figure (5.4).  

 

Figure 5.6. Attenuation dispersion curve obtained from SAFE method  

 The M1 wave mode in the frequency range up to 0.5 kHz has a suitable 

attenuation level for inspection, as can be seen from the Figure (5.6). For frequencies 

higher than 0.5 MHz, a sudden increase in the attenuation level is observed. As a result, 

this wave mode at the higher frequencies above 0.5 MHz is not a suitable choice for 

𝑀1 

𝑀3 

𝑀4 

𝑀5 

𝑀6 
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inspection. Another wave mode that propogate through the multilayered medium up to 

0.5 MHz is M2 mode. This wave mode can be seen in the phase velocity dispersion 

curve in Figure (5.4) clearly. At 0.340 MHz, this attenuated wave mode in the 

viscoelastic structure appears to have a sharp decrease in phase velocity. The sharp 

decrease in the wave mode shows that very high attenuation occurs on that mode. Since 

the obtained attenuation curve is shown up to -30 dB/m. These wave modes can not be 

shown on attenuation curve in Figure (5.6).The measured attenuation at 0.275 MHz for 

this wave mode is approximately -225 dB/m. For this reason, M2 wave mode is not a 

suitable mode for inspection. In M3 mode, the frequency range in between 0.280 MHz 

to 0.660 MHz has an acceptable attenuation level; maximum obtained attenuation is 

about -5.16 dB per meter in that range. As a result, M3 mode is suitable wave modes for 

making inspection. 

5.3 Case Studies-3 

 In the previous case studies, SAFE method results are compared with the 

analytical matrix based solution method. In the first study, single layer isotropic elastic 

structure is used and obtained results are compared with Disperse program as mentioned 

before. The modelling issues on the Lamb wave propogation with SAFE method are 

discussed and analysis results are shown with considering number of usage elements in 

model. In this study, the analysis is performed on multilayered system in order to 

investigate the effect of the viscoelastic layer on phase velocity dispersion curve. This 

conceptual study is designed on three layered symmetric system where viscoelastic 

layer is embedded in between two aluminum plates which are having the same 

thicknesses.The material and acoustic properties of the designed system are taken from 

previous case study and given in below Table (5.5).  

Table 5.5. Acoustic and material properties of multilayered system 

Layer Material 𝐶𝑙 
(𝑘𝑚/𝑠) 

𝛼𝑙 
(𝑠/𝑘𝑚) 

𝐶𝑠 
(𝑘𝑚/𝑠) 

𝛼𝑠 
(𝑠/𝑘𝑚) 

𝜌 
𝑔/𝑐𝑚3 

1 Aluminum 6.35 - 3.13 - 2.7 

2 Epoxy 303 2.39 0.0070 0.99 0.0201 1.08 

3 Aluminum 6.35 - 3.13 - 2.7 
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 In order to perform this analysis and investigated the effects of this loss medium 

on propagating guided wave modes, the thickness of the viscoelastic layer are increased 

and given as a thickness ratio (𝑇𝑟𝑎𝑡𝑖𝑜) which is calculated by dividing the viscoelastic 

layer thickness (𝑇𝑣𝑙) to the total thickness of the system which is selected as 3-mm. All 

the analyses are performed up to 5-MHz. Besides this, the number of elements used in 

each case is kept same for making more reasonable comparison after desired 

convergence reached. At each case obtained phase velocity results from the SAFE 

method are also shown below in Figure (5.7) 

Table 5.6. Thickness ratios for viscoelastic layer embeded with two elastic plates 

(𝑇𝑟𝑎𝑡𝑖𝑜)  =
(𝑇𝑣𝑙) 

(𝑇𝑡𝑜𝑡𝑎𝑙) 
⁄  (a) (b) (c) (d) 

0.66 0.53 0.4 0.25 

 

 
Figure 5.7. Phase velocity dispersion curve of the 3-layered symmetric system with      

          vary thickness ratio of viscoelastic layer embedded between two aluminum  

         plates. Thickness ratio for (a)=0.66 ,(b)=0.53 , (c)=0.4 ,(d)=0.25 (cont. on 

         next page) 

 

(a) 
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(c) 

(d) 
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 As can be seen from the Figure (5.7) the effects of the viscoelastic layer 

thickness on phase velocity dispersion curve are shown in four different thicknesses 

ratio.It was clearly seen that, although the total thickness of the system remains 

constant, the number of propagating wave modes are increased in the same frequency 

range.On the other hand, the number of propagating modes is an only function of 

frequency on the same thickness plates. The differences between these two situations 

comes from the dissipation of the wave energy in viscoelastic medium.This energy 

dissipation is caused more wave modes to propagate in the system. In practical 

application, determining of the reflected wave modes from the cracks or discontinuities 

is getting complex issue due to the increasing number of the propogating wave modes.  

 Other effects of the viscoelastic layer thickness increases can be estimated by 

examining the phase velocity values of the same frequency points. In order to have a 

better explanation of this, obtaining phase velocity dispersion curves for the each case 

are imposed on the same Figure (5.8), and shown up to 0.75-MHz frequency.   

 
Figure 5.8. Different viscoelastic layer thickness results on same Phase velocity     

        dispersion curve of three layered system 

 As can be seen from the Figure (5.8), the viscoelastic layer thickness increases 

are more influential on M2 and other wave modes compared to M1. This influence is 

clearly seen between the frequencies 0.220 to 0.375 MHz. For the thickness ratio 0.25 

which is represented in curve (d), due to lower viscoelastic medium thickness, phase 

velocity of the M2 wave modes almost remains constant up to 0.375 MHz, and then 

sharp decrease is observeddue to wave propagation with attenuation. When the 

M1 

M2 

M3 

(a) 
(b) (c) (d) 
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thickness ratio is 0.66, it was clearly seen from the curve (a) phase velocity of M2 mode 

was starts to decrease in smaller frequency values. As a result, the instability behaviour 

of the propagating M2 modes in terms of phase velocities showed that, in the practical 

applications, large error could be induced on that frequency bandwindth, where the 

phase velocity values changes sharply. For this reason, more stable frequency regions in 

terms of the phase velocity changes could be selected for inspection of these types of 

the structures. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

 In this thesis, the general concept of the guided wave theory was studied for 

planar structures, wave equations was derived by using the Helmholtz decomposition 

method and given in the form of two bulk wave velocities in unbounded solid medium. 

Then using these acoustic properties and applying the boundary conditions on free 

isotropic elastic plate structure, the Rayleigh Lamb wave equations were derived. The 

dispersive nature of guided waves were demonstrated, their dispersive characteristics 

were also analyzed by performing numerical solution of these analytically derivated 

equations. 

 Following analytical studies, guided waves were investigated with SAFE 

method for the case of single layer and multilayered system as the aim of this research. 

The accuracy and capabilities of the SAFE method were studied in planar structures. In 

the first case study, elastic isotropic plate structure was modelled and analyzed with 

SAFE method and resulting phase and group velocity dispersion curves were obtained 

on 2mm titanium plate. The obtained results were then compared with the DISPERSE 

software programme which solves the wave equations analytically based on GMM. The 

obtained generelized dispersion curves were in very well agreement with each other on 

Lamb wave modes. The small errors about (0.62%) on 𝑆0wave mode and (0.52%) on 

𝐴0wave mode up to 1.4 MHz were observed after applying smallest wavelength 

assumption. Another observation from this study is that, in order to get more accurate 

results, higher order polynomial functions could be used or number of elements could 

be increased up to desired error was achieved for desired applications, while making 

discretization in SAFE.  

 Another SAFE analysis was performed to investigate the guided wave 

propogation in a damped medium. Multi-layered plate configuration consisting of 

viscoelastic (epoxy) medium sandwiched in between two elastic layers (aluminum) was 

used. In this case study, the effects of attenuation due to the material damping on 

dispersion curves were investigated. The solution was employed by adopting hysteretic 

damping on viscoelastic medium. In this model, material damping was introduced to the 
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SAFE solution by complex stiffness material matrix. The obtained dipersion curves 

were compared with the studies available in literature and good agreement on dispersion 

curves was observed. Mode selection priorities were also discussed by through the 

attenuation dispersion curve. The obtained attenuation curves for low order modes up to 

1 MHz were examined for the purpose of selecting less attenuated wave modes for 

inspection since the increasing frequency as an example. It was observed from the 

generalized attenuation curves that, M1 and M3 modes constituted acceptable 

attenuation levels for inspection, up to 0.66 MHz. Above this frequency, attenuation 

level of M1 modes increased sharply. In addition to that, the attenuation effects of the 

viscoelastic layer (damped medium) on dispersion curves were also investigated by 

increasing the thickness of viscoelastic layer in multilayered system. 

  To sum up, SAFE method is flexible and powerful tool for obtaining the 

dispersion features of guided waves when compared with the analytical matrix-based 

methods. It has a great potential to be used on different types of the waveguides by 

having the advantages of the using both analytical and FEM methods. It requires far less 

computational power, compared with the 2D and 3D FEM approaches. On the other 

hand, the drawbacks of the using SAFE method are that, it should be applied by 

preparation of special routines and using specialized solvers. Altough commercial FEM 

packages are far less efficient, they have user friendly graphical user interfaces and 

built-in solvers.  Another observation over the SAFE method is that, the obtained rigen 

value problem solution consists of all computationally possible wave modes. The 

selection of the propagating wave modes among them is having particular importance 

and it requires the more computations.   

6.1 Future Work 

 Although this thesis was aimed at to investigate the guided wave problem by 

making the dispersion analysis on planar waveguides using SAFE method, the proposed 

method can be used and extended for other types of waveguides like pipes, rods, 

cylindricals or complex shaped waveguides like rails. The proposed method is flexible 

enabling easy adoption to the solutions of those types structure.The dispersion analysis 

could be made by adopting the solution with using 2D discritization on cross-sectional 

domain of the complex shaped waveguides. 
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 Another future work could be done for anisotropic materials like composites or 

piezoelectric materials, since the characteristics of these structures was very complex in 

terms of guided wave analysis.The challenge of making guided wave analysis on 

composites arise from their nature with multiple layers, possibly with viscoelastic layers 

and anisotropic behavior. These challenges could be handled with SAFE method by 

making necessary adjustments. In addition to that, the validation of the obtained results 

with experiments would be essential for newly developed models. 
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