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CORROSION PREVENTION OF CARBON STEEL AND ALUMINIUM 

METALS BY PANI/CeO2 NANOCOMPOSITE COATINGS 

SUMMARY 

Carbon steel and aluminium are the most common metals for industrial applications. 

Corrosion is one of the biggest drawbacks of using these metals in equipments.  

Corrosion may be defined as a destructive phenomenon, chemical or 

electrochemical, which affects the appearance of an object, and in extreme cases may 

cause structural failure. Economic losses resulting from metallic corrosion costs 

billions of dollars per year worldwide. In addition to the economic costs, there are 

times when corrosion is responsible for the even greater costs of human life and 

safety. 

Polymers have already replaced most of the materials we use in our daily life. 

Innovations on polymeric materials allow them to be used in corrosion inhibition. 

The use of organic coatings is one of the most common method for minimizing 

corrosion losses. Conducting polymers have been increasingly investigated for their 

use in organic coatings. Many studies showed that conducting polymers improve the 

corrosion inhibition properties of coatings. Polyaniline (PANI) is one of  the most 

widely used conducting polymer because of its superior properties. 

Inorganic nanoparticles are a class of new materials having wide variety of 

applications in many fields. To obtain the materials with synergetic or 

complementary behavior between polymer and inorganic nanoparticles, various 

composites of polymer with inorganic nanoparticles have been synthesized in recent 

years. Among those inorganic nanoparticles, cerium oxide (CeO2) nanoparticles have 

been intensively studied due to their unique catalytic, electrical, and optic properties, 

as well as their extensive applications in diverse areas.  

The main objective of this study is to investigate the corrosion behaviour of 

PANI/CeO2 nanocomposite and pure PANI coatings on carbon steel and aluminium 

metals in corrosive environments such as 0.1 M H2SO4 and 3.5 % sea water. 

In the first part of the study, synthesis of PANI and PANI/CeO2 nanocomposite were  

carried out and they were characterised by Fourier Transform Infrared Spectroscopy, 

UV-Visible Spectroscopy, conductivity measurements and SEM analysis. It is 

confirmed by the analysis results that the polymer and nanocomposite were 

sucsessfully synhesized.  

Coatings including pure PANI and PANI/CeO2 nanocomposite were prepared at 

different concentrations and coated on carbon steel and aluminium electrodes and 

they were investigated for their corrosion protection properties. In addition to 

emeraldine salt forms of the polymers, emeraldine base forms of both species were 

used in order to have more concentrated polymer solutions due to better solubility 

which increased PANI content of coatings. It is evident from the SEM images of the 

coatings that PANI/CeO2 nanocomposite formed a more uniform coating which can 
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lead to a better corrosion protection efficiency; whereas pure PANI polymer formed 

a rough and curved coating.  

Since corrosion occurs via electrochemical reactions, electrochemical techniques are 

ideal for the study of the corrosion processes. The electrochemical impedance 

spectroscopy (EIS) is one of the most effective and reliable method to extract 

information about electrochemical characteristics of the electrochemical system. 

Electrochemical measurements, including potentiodynamic polarization curves and 

EIS were performed in a three-electrode cell. EIS data is also analyzed by fitting it to 

an equivalent electrical circuit model and experimental results were confirmed.  

Steady-state current-voltage curves and electrochemical impedance spectroscopy 

measurements of the coatings in 0.1 M H2SO4 for carbon steel and aluminium and in 

3.5 % seawater for carbon steel were conducted.  

The initial measurements were conducted in 0.1 M H2SO4 both for carbon steel and 

aluminium electrodes after 1 hour immersion to corrosive media. It is evident that 

both coatings inhibit corrosion of bare electrodes. The increase in polymer 

concentration effects the corrosion protection efficiency of the coating positively. 

PANI/CeO2 polymer coatings showed slightly better corrosion protection efficiency 

over pure PANI coatings both for carbon steel and aluminium electrodes, which 

shows the advantage of CeO2 nanoparticle contrubition in the coating.  It is evident 

from the polarization curves that the coatings retard both anodic and cathodic 

reactions. In other words, they reduce the anodic dissolution and also retard the 

hydrogen evolution reaction. PANI/CeO2 nanocomposite coating with 1,62 % 

showed the best corrosion protection performance on carbon steel and aluminium 

electrodes in 0.1 M H2SO4. 

The corrosion protection efficiencies of the coatings including emeraldine base form 

of polymers were also measured with increasing exposure time. It was observed that 

the coating degradetion increased and consequently corrosion currents and corrosion 

rates increased as the exposure time to corrosive media increased. The differnace in 

corrosion protection property of the coatings became close to each other by 

increasing exposure time, which may be due to the effect of corrosion product 

formation on the electrode surface.  

EIS measurements were also supported by equivalent circuit models and it is 

observed that a reasonable accuracy of the fitting was obtained. Chi-square is in the 

order of 10
-3

 and 10
-4

 for all the experimental data. Rp values obtained by equivalent 

circuits and experiments are in agreement with each other. 

In order to see the protection performance of coatings in different corrosion media, 

measurements in 3.5 % seawater for carbon steel electrodes were also carried out.  

Results suggest that the same concentration of PANI/CeO2 nanocomposites have 

better corrosion protection efficiency compared to pure PANI coatings even in 

emeraldine salt form which has lower concentration owing to the contrubition of 

CeO2 nanoparticles in the coating. 
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PANI/CeO2  NANOKOMPOZİT KAPLAMALAR İLE KARBON ÇELİK VE 

ALUMİNYUM METALLERİNİN KOROZYONUNUN ÖNLENMESİ 

ÖZET 

Karbon çelik ve alüminyum, endüstiyel uygulamalarda en sık kullanılan metallerdir. 

Korozyon, bu metallerin ekipmanlarda kullanımında ortaya çıkan en önemli 

problemlerden biridir.  

En kısa ve genel tanımıyla korozyon, metallerin çevreleriyle etkileşimi sonucu 

paslanmasıdır. Metaller doğada genellikle oksit ve sülfür bileşikleri olarak kararlı 

halde bulunur ve serbest enerjileri en düşük durumdadır. Bu bileşikler çeşitli 

metalurjik proseslerle elementel hallerine dönüştürülür ve amaca uygun bir malzeme 

haline getirilir. Metaller üretilirken almış oldukları bu enerjiyi geri vererek 

kendiliğinden doğada bulundukları hale dönme eğilimindedir ve bu eğilim 

“korozyon” olarak isimlendirilir. 

Bir metal, malzeme olarak kullanıldığında onun elementel halde kalması, oksitlenip 

iyonlarına dönüşmemesi istenir. Ancak metaller hava ve nem ile temasa geldikleri 

anda kimyasal reaksiyon sonucu kendiliğinden potansiyel üreten galvanik pil oluşur 

ve metal korozyona uğrar. 

Korozyon hem ekonomik hem de sosyal bazı kayıplara sebep olduğu için yaşamı 

önemli ölçüde etkiler.  Korozyon nedeniyle işletmelerdeki sistemlerin tamamen 

durması, değiştirilmesi ya da yeniden tasarlanması gerekebilir; boyama, metal 

kaplama veya inhibitör kullanımı gibi ilave masraflar gerekir, ürün kirlenebilir, 

etkinlik, ısı transfer, ya da değerli ürün kayıpları olur. Bunun yanısıra, ani çatlaklar 

nedeniyle patlama, yangın, zehirli ürün sızıntısı, sistemin çökerek çevredeki her şeye 

zarar vermesi, sızıntı dolayısıyla, ya da korozyon ürünleri nedeniyle havanın, doğal 

kaynakların kirlenmesi gibi güvenlik ve sağlık tehlikesi de olmaktadır. 

Polimer malzemeler, günlük hayatta kullandığımız eşyaların birçoğunun yerini 

almıştır. Polimer teknolojisindeki gelişmeler, bu malzemelerin korozyon önlemede  

kullanımını da mümkün kılmaktadır.  

Organik kaplamalar korozyon önlemede kullanılan en önemli yöntemlerden biridir. 

Kaplamalar, metal malzemeyi çevresinden ayıran bir bariyer görevi görür. Metal 

yüzeyi korozif ortamdan koruyabilmesi için kaplamaların pürüzsüz, gözeneksiz ve 

yüzeye tutunmasının yüksek olması gerekmektedir. İletken polimerlerin organik 

kaplamalarda kullanımı üzerine yapılan araştırmalar artarak devam etmektedir. 

İletken polimerlerin, kaplamaların korozyon inhibisyon özelliğini arttırdığı birçok 

çalışmada ortaya konmuştur. 

Polianilin (PANI), ucuz maliyeti, üstün ısı direnci ve kolay eldesi gibi özelliklerinden 

dolayı en çok kullanılan iletken polimerlerden biridir.  
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Inorganik nanopartiküller, birçok uygulamada kullanılm alanı bulmuş olan yeni bir 

malzeme sınıfıdır. Son dönemde polimer ve inorganik nanopartiküllerin avantajlarına 

sahip olması amacıyla, bu iki maddenin sentezini inceleyen birçok çalışma 

yapılmaktadır. Bu inorganik nanopartikül çeşitlerinden biri de, benzersiz katalitik, 

elektriksel ve optik özelliklerinden dolayı bilimsel çalışmalara sıklıkla konu olan 

seryum oksit (CeO2) nanopratikülleridir.  

Bu çalışmadaki amaç, karbon çelik ve alüminyum metallerine uygulanan PANI/CeO2 

nanokompozit ve PANI içeren kaplamaların korozif ortamlarındaki korozyon 

davranışlarının incelenmesidir.  

Çalışmanın ilk kısmında, PANI ve PANI/CeO2 nanokompozit kimyasal olarak 

sentezlenmiştir. Eşzamanlı olarak gerçekleştirilen iki sentez setinden birinde anilin 

monomeri ile birlikte bir miktar CeO2 nanopartikül bulunmaktayken, diğer set içinde 

yalnızca anilin monomeri bulunmaktadır. Kimyasal sentezde anilin monomeri, 

amonyum peroksidisülfat başlatıcısının etkisi ile HCl ortamında polimerleştirilmiştir.  

Elde edilen sentez ürünleri  Fourier Transform Infrared Spektroskopi, UV-Visible 

Spektroskopi, iletkenlik ölçümleri ve SEM analizi ile karakterize edilmiştir. 

Karakterizasyon sonuçları ile, hedeflendiği şekilde PANI polimeri ve PANI/CeO2 

nanokompoziti elde edildiği tespit edilmiştir. Her iki sentez ürünü de emeraldin tuz 

formdadır. 

Farklı konsantrasyonlarda PANI/CeO2 nanokompozit ve PANI içeren kaplama 

çözeltileri hazırlanarak karbon çelik ve alüminyum elektrotlar üzerinde kaplamalar 

hazırlanmıştır. Kaplamalarda yalnızca sentez ürünleri olan PANI emeraldine tuz 

formları değil, daha yüksek çözünürlük özelliği sayesinde daha konsantre boya 

çözeltilerinin eldesine imkan sunan emeraldine baz formları da kullanılmıştır.  

Kaplamaların yüzeye tutunmaları için kaplama hazırlanmadan önce metal yüzeyler 

zımpara kağıdı ve alüminyum pasta ile mekanik olarak temizlenmiştir. Her bir 

kaplama, belirli miktarda polimer ve reçine içerecek şekilde hazırlanmıştır. Polimer 

çözücüsü olarak dimetil formamit, reçine çözücüsü olarak ise asteon kullanılmıştır. 

Boya çözeltisinin elektrot yüzeyine uygulanması sonucu elde edilen kaplamalar 

kurutulduktan sonra korozyon etkinliği ölçülmüştür.  

Metal yüzeyler üzerine uygulanan kaplamaların SEM analiz sonuçlarına göre, 

PANI/CeO2 nanokompozit içeren kaplamaların, sadece PANI polimeri içeren 

kaplamalara kıyasla daha pürüzsüz ve homojen bir yüzeye sahip iken, sadece PANI 

polimeri içeren kaplama yüzeylerinin daha pürüzlü ve kıvrık bir morfolojide olduğu  

tespit edilmiştir. 

Karbon çelik ve alüminyum üzerinde hazırlanan kaplamaların 0.1 M H2SO4 çözeltisi 

içindeki ve % 3.5 tuzluluk oranına sahip deniz suyu içindeki kararlı durum akım-

gerilim eğrileri ve elektrokimyasal impedans ölçümleri yapılarak kaplamaların 

korozyona karşı etkinlikleri incelenmiştir.  

Korozyon olgusu, elektrokimyasal reaksiyonlar ile gerçekleştiği için, korozyon 

üzerinde yapılan çalışmalarda elektrokiyasal yöntemler kullanılmaktadır. 

Elektokimyasal empedans spektroskopisi (EIS) elektrokimyasal sistemlere ait 

süreçleri analiz etmede kullanılan en efektif ve güvenilir ölçüm yöntemidir. 

Potansiyodinamik polarizasyon eğrilerini de içeren elektrokimyasal ölçümler, 3 

elektrotlu hücrelerde gerçekleştirilmiştir. Yardımcı elektrot olarak Pt tel, referans 

elektrot olarak Ag/AgCl kullanılmıştır.  



xxiv 

İlk ölçümler, karbon çelik ve alüminyum metalleri ile, elektrotlar 0.1 M H2SO4 

çözeltisi içinde 1 saat bekletildikten sonra alınmıştır. Her iki tip kaplamanın da çıplak 

alüminyum ve karbon çelik elektrotlara kıyasla korozyonu engellediği tespit 

edilmiştir. Polimer konsantrasyonundaki artış, kaplamanın korozyon inhibisyon 

etkinliğini pozitif yönde arttırdığı görülmüştür. PANI/CeO2 nanokompozit polimer 

içeren kaplamalar, hem alüminyum hem karbon çelik metallerinde PANI içeren 

kaplamalara kıyasla bir miktar daha yüksek korozyon direnci sağlamaktadır, ki bu 

durum, nanokompozit kaplamaların içerdiği CeO2 nanopartiküllerin etkisini 

göstermektedir.  

Polarizasyon eğrilerinden elde edilen sonuçlara göre, kaplamalar hem anodik hem 

katodik reaksiyonları yavaşlatmaktadır. Diğer bir ifade ile, kaplamalar hem anodik 

çözünmeyi azaltır hem de hidrojen oluşumunu yavaşlatır. % 1,62 konsantrasyondaki 

PANI/CeO2 nanokompozit kaplamalar karbon çelik ve alüminyum elektrotlar 

üzerinde en iyi performansı göstermiştir.  

Korozif ortama maruz kalma süresinin kaplama etkinlikleri üzerindeki etkisini 

incelemek amacıyla, emeraldin baz formdaki polimer ve nanokompozit içeren 

kaplamaların gösterdikleri korozyon dirençleri çözelti içindeki bekleme süreleri 

arttırılarak ölçülmüştür. Hem alüminyum hem karbon çelik metalleri için yapılan bu 

deneylerde, her iki tip metal için de, korozif ortama maruz kalma süresi arttıkça, 

kaplama degredasyonunun arttığı, buna bağlı olarak korozyon akımının ve korozyon 

hızının arttığı tespit edilmiştir. Kaplamaların korozyon önleme özellikleri arasındaki 

fark, korozif ortamda bekleme süresi arttıkça azalmaktadır. Bu durumun elektrot 

yüzeyinde oluşan korozyon ürünlerinin etkisinden kaynaklandığı düşünülmektedir.  

EIS dataları eşlenik elektrik devre modelleri oluşturularak da analiz edilmiştir. Tüm 

eşlenik devre modellerinde chi-square değeri 10
-3

 ve 10
-4

 olarak elde edilmiştir. Tüm 

eşlenik devrelerden elde edilen Rp değerleri, deney sonuçları ile uyumludur.  

Kaplamaların farklı korozif ortamlardaki performanslarının incelenmesi amacıyla, 

karbon çelik elektrotların % 3.5 tuzluluktaki deniz suyu içinde ölçümleri yapılmıştır. 

Sonuçlar göstermektedir ki, PANI/CeO2 nanokompozit kaplamalar, aynı 

konsantrasyondaki PANI kaplamalara göre, daha düşük konsantrasyona sahip 

emeraldine tuz formlarında bile, daha yüksek korozyon direnci sağlamaktadır. Bu 

durum, nanokompozit kaplamaların içerdiği CeO2 nanopartiküllerin kaplama 

üzerindeki olumlu etkisini göstermektedir. 

 

 

 

 

 

 

 

 

 



 
1 

1.  INTRODUCTION 

Corrosion is the destructive result of chemical reactions between a metal or metal 

alloy and its environment. Corrosion impacts many aspects of our lives. Essentially 

anything made of metal is subject to corrosion and when corrosion is evident, 

significant economic consequences may follow. This is true for structural items that 

comprise the infrastructure of society such as pipelines, storage tanks, bridges and 

airplanes and for the personal items we own such as automobiles, water heaters and 

metal lawn furniture [1]. 

Among various materials for anti-corrosion of metals, conductive polymer coatings 

are one of the most effective, cheapest and also the most environmentally friendly 

materials. Even though pinholes and/or cracks are formed in the coatings, the anti-

corrosion ability is barely lowered because of the features of the anti-corrosion 

coatings. The coatings are said to serve simply as an in-situ oxidant or anodic 

protectant. When the coating oxidizes the metal surface to which it is in contact, the 

coating is reduced. Since the reduced coating is re-oxidized by ambient air, it 

continues to oxidize the metal surface and the passive state is maintained. Among 

conductive polymers, it is widely recognized that polyaniline (PANI) has been one of 

the best candidate of conductive polymers for an anti-corrosion coating since the 

anti-corrosion ability was found [2]. 

Inorganic nanoparticles stand for a class of new materials having enormous 

applications in broad fields. To obtain the materials with synergetic or 

complementary behavior between polymer and inorganic nanoparticles, various 

composites of polymer with inorganic nanoparticles have been synthesized in recent 

years. Among those inorganic nanoparticles, cerium oxide (CeO2) nanoparticles have 

been intensively studied due to their unique catalytic, electrical, and optic properties, 

as well as their extensive applications in diverse areas [3]. 
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Cerium oxide possesses some interesting characteristics which make it suitable for 

applications in various fields. The antioxidant and thermal barrier properties of nano 

ceria have been previously reported by Ivanov et al. and Cao et al.. The barrier 

properties are due to the lower thermal diffusivity and higher thermal expansion 

coefficient of CeO2 than those of other oxides (e.g. ZrO2). Other common 

applications of ceria are in construction of fuel cells, manufacture of sensors, in 

catalysis, etc. On the other hand, cerium compounds, used either as coatings or as 

inhibitors are known to hinder the cathodic reactions, thereby inhibiting corrosion. 

Therefore, cerium oxide particles have been used to obtain composite coatings with 

various metals such as zinc and nickel. Incorporation of CeO2 nanoparticles in the 

metallic matrix can significantly improve material properties, such as wear, corrosion 

and temperature oxidation resistance, and microhardness [4]. 

This work was designed to gain further understanding on the effect of polyaniline 

and polyaniline/cerium oxide (CeO2) nanocomposite on corrosion prevention of 

carbon steel and aluminium metals. 

Two types of synthesis were conducted by in situ polymerization of aniline:  

1. Polyaniline (PANI) polymer 

2. PANI/CeO2 nanocomoposite 

The synthesized PANI and PANI/CeO2 nanocomposite have been characterised by 

UV, IR and SEM analysis. Paint solutions of different concentrations including 

PANI polymer and PANI/CeO2 nanocomposite were prepared. Aluminium and 

carbon steel electrodes were coated with paint solutions and corrosion resistance of 

electrodes were analysed in 0.1 M H2SO4 and sea water by electrochemical 

empedance and polarization measurements.  
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2.  CORROSION PROCESSES AND TYPES 

2.1 Corrosion Definition 

Corrosion is a naturally occuring process, which is defined as the degradation or 

deterioration of a substance and/or its properties, usually a metal, over a period of 

time due to environmental exposure. This is an exergonic process as the metal tends 

toward the lowest possible energy state. Therefore, metals such as aluminum and 

steel have a natural tendency to return to their lowest energy state when combined 

with oxygen and water to form hydrated aluminum and iron oxides (corrosion 

products). These corrosion products are the eventual final state of processed metals 

which degrade over time when exposed to the elements. Thus the life cycle from 

mined and processed ores to industrial products and eventually back to their natural 

state [5].  

Corrosion may be defined as a destructive phenomenon, chemical or 

electrochemical, which affects the aesthetic appeal of an object, and in extreme cases 

may cause structural failure [6]. 

Economic losses resulting from metallic corrosion amount to billions of dollars per 

year worldwide. In addition to the economic costs, there are times when corrosion is 

responsible for the even greater costs of human life and safety. Several airplane 

accidents have occurred in which part of the fuselage tore away during flight, killing 

passengers. Sections of bridges have collapsed, resulting in injury and loss of life. 

There is a high probability that these mechanical failures occurred as a result of  

stress corrosion cracking  due to atmospheric corrosion. Hence, considerable expense 

has gone and will continue to go into the development of corrosion prevention 

techniques and products [1,7]. 

Since corrosion is an electrochemical process, it is necessary to have an 

understanding of the electrochemical techniques used to characterize corrosion 

processes [1]. 
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2.2 Corrosion Types 

There are eight forms of wet corrosion: uniform or general; pitting; crevice; galvanic; 

erosion (including cavitation and fretting corrosion); intergranular (including 

sensitization and exfoliation); dealloying (including dezincification and graphite); 

and environmentally assisted cracking (including stress-corrosion cracking (SCC), 

fatigue and hydrogen damage). Figure 2.1 schematically shows the types of corrosion 

listed above. In theory, these forms are distinct but in reality, most metals undergo a 

variety of corrosion processes. 

 

Figure 2.1 : General scheme for various forms of corrosion on metals/alloys [5]. 

2.3 Corrosion Processes 

Water is used for a wide variety of purposes, from supporting life as potable water to 

performing a multitude of industrial tasks such as heat exchange and waste transport. 

The impact of water on the integrity of materials is thus an important aspect of 

system management. Since steels and other iron-based alloys are the metallic 

materials most commonly exposed to water, aqueous corrosion has been discussed 

with a special focus on the reactions of iron (Fe) with water.  

Metal ions go into solution at anodic areas in an amount chemically equivalent to the 

reaction at cathodic areas (Figure 2.2). In the cases of iron-based alloys, the 

following reaction usually takes place at anodic areas: 

 

                                           Fe
0
 → Fe

2+
 + 2e

-
                                                  (2.1) 
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Figure 2.2 : Simple model describing the electrochemical nature of corrosion  

                    process [8]. 

This reaction is rapid in most media, as shown by the lack of pronounced 

polarization when iron is made an anode employing an external current. When iron 

corrodes, the rate is usually controlled by the cathodic reaction, which in general is 

much slower (cathodic control). In deaerated solutions, the cathodic reaction is as 

follows (Equation 2.2): 

                                              2H
+ 

+ 2e
-
 → H2                                                         (2.2) 

This reaction proceeds rapidly in acids, but only slowly in alkaline or neutral 

aqueous media. The corrosion rate of iron in deaerated neutral water at room 

temperature, for example, is less than 5 µm/year. The rate of hydrogen evolution at a 

specific pH depends on the presence or absence of low-hydrogen overvoltage 

impurities in the metal. For pure iron, the metal surface itself provides sites for H2 

evolution; hence, high-purity iron continues to corrode in acids, but at a measurably 

lower rate than does commercial iron.  

The cathodic reaction can be accelerated by the reduction of dissolved oxygen in 

accordance with the following reaction, a process called depolarization (Equation 

2.3). 

                                       4H
+
 + O2 + 4e

-
 → 2H2O                       (2.3) 
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Dissolved oxygen reacts with hydrogen atoms adsorbed at random on the iron 

surface, independent of the presence or absence of impurities in the metal. The 

oxidation reaction proceeds as rapidly as oxygen reaches the metal surface [8]. 

The aqueous or, as commonly referred to, the wet corrosion process consists of three 

important elements which are necessary for the corrosion process to occur: anodic 

reaction, cathodic reaction and electrolyte solution or conducting liquid. The anodic 

reaction or oxidation of the metal results in dissolution of the metal, which is 

transferred to the solution as M
n+

 ions (Equation 2.4). The cathodic reaction or 

reduction involves oxygen (Equation 2.5). Reduction of oxygen is the dominant 

cathodic reaction in natural environments (seawater, soil and atmosphere). 

                                  2Fe → 2Fe
+2

 + 4e
- 
  (Anode Reaction)

                  
(2.4) 

                          O2 + 2H2O + 4e
-
 → 4OH

-
   (Cathode Reaction)                         (2.5) 

This process forms an electrical circuit without any accumulation of charges. The 

electrons are released by the anodic process and they are conducted through the 

metal to the cathode. The electrons released by the anodic process are consumed by 

the cathodic reaction. This electrochemical process requires an ionically conducting 

liquid, the ‘electrolyte’, which must be in contact with the metal. The 

electrochemical circuit is closed by ion conduction through the electrolyte and all 

three elements must be present in order for wet corrosion to occur. Typically the 

metal ions M
n+

 are conducted towards OH
−
 ions and together they normally produce 

a metal hydroxide, which is deposited on the surface of the metal. If, for example, the 

oxidizing metal is zinc and the liquid is water containing oxygen the Zn
+2

 ions and 

OH
−
 ions combine to form Zn(OH)2. Iron and copper metals also follow similar 

corrosion proccesses when the electrolyte is water in the presence of dissolved 

oxygen (Figure 2.3) [5]. 

 

Figure 2.3 : Corrosion process of divalent metal (M) during the electrochemical 

corrosion cell [5]. 
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For corrosion to occur, the cell potential, Ecell, of the overall corrosion reaction must 

be positive, which corresponds to a decrease in Gibb’s Free energy. Ecell is the 

difference in the equilibrium potential of the cathodic half-cell reaction and the 

anodic half-cell reaction. For example, for the corrosion of a metal in an acidic 

solution with hydrogen evolution as the cathodic reaction (Equation 2.6), Ecell would 

be calculated as follows:  

                                 02
2 // FeFeHHcell EEE                       (2.6) 

The value of Ecell only indicates if the reaction is thermodynamically possible or 

impossible, and therefore, the study of kinetics is required to obtain the rates of the 

corrosion reaction [9]. 

2.4 Corrosion Measurement Techniques 

For evaluation of the corrosion behavior, three main kind of techniques can be found 

in the literature. The first two tecniques can be classified as non-electrochemical and 

the last one as electrochemical technique: 

 Exposure of samples to a corrosive medium (e.g. in a salt spray test) and 

detection of the development of defects or corrosion products by visible 

inspection.  

 Quantitative dissolution measurements: the weight loss of material into the 

corrosive solution is determined. However this method is not suitable for 

localized corrosion and should be only applied to uniform corrosion attack. 

 The most widely used techniques for corrosion measurements of coatings are 

electrochemical techniques. Different kinds of potential, current or 

polarization measurements are carried out [10]. 

2.4.1 Non- electrochemical corrosion testing and analysis techniques 

Non-electrochemical teqniques can be summarized as follows: 

 Weight loss 

 Piting and cracking formation rate 

 Surface measurements 
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 Analitical methods 

 Mechanical tests (elongation, breaking and fatigue time) 

Weight- loss coupon tests are the simplest and most widely used corrosion and 

inhibitor testing tools employed to determine ‘cumulative’ metal thinning and 

localized forms of corrosion such as pitting, crevice corrosion, weld and heat 

affected zone corrosion, and erosion corrosion as a function of inhibitor 

concentration. In corrosion coupon tests, metal coupons of known metallurgy, size, 

shape and weight are exposed to a corrosive environment with and without the 

addition of corrosion inhibitors, and are inspected for corrosion after a period of time 

(e.g. every 14 days). Corroded coupons are subjected to visual and optical or 

microscopic examination, weight loss measurement, and surface analysis by various 

surface analytical techniques. Corrosion coupons are an excellent source of corrosion 

information if monitoring is carried out correctly and maintained continuously. 

However, coupon tests have limitations: they are considered to be time consuming 

and labor intensive. They may require periodic removal of the test specimen from the 

corrosive environment, which is troublesome and may alter the progress of localized 

corrosion. They only detect the cumulative corrosion damage at the end of the 

exposure period and provide little information on specific events that may have 

induced this damage. Although the corrosion coupon test appears to be an easy task, 

there are problems that often lead to unsuccessful and misleading results. An 

example is the testing for underdeposit corrosion. If a corrosion coupon is fully 

covered by sand, it would not simulate important galvanic corrosion effects and thus 

underdeposit corrosion problems would not be detected [11]. 

2.4.2 Electrochemical techniques for corrosion inhibitor testing and analysis 

Since corrosion is a process involving electrochemical oxidation and reduction 

reactions, it makes sense that electrochemical methods can be used to study and 

measure corroding systems [12]. 

Electrochemical techniques for corrosion  testing can be classified as follows: 

 Ptentiodynamic Polarization Measurements (Linear polarization, Tafel 

extrapolation) 

 Electrochemical empedance measurements 

 Electrochemical noise  
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 Scanning Kelvin Probe  

 Scanning-Vibrating Electrode Technique (SVET) [13]. 

2.4.2.1 Potentiodynamic polarization measurements 

When a metal specimen is immersed in a corrosive medium, both reduction and 

oxidation processes occur on its surface. Typically, the specimen oxidizes (corrodes) 

and the medium (solvent) is reduced. In acidic media, hydrogen ions are reduced. 

The specimen must function as both anode and cathode and both anodic and cathodic 

currents occur on the specimen surface. Any corrosion processes that occur are 

usually a result of anodic currents [14]. 

2.4.2.2 Polarization resistance 

An electrode is polarized when its potential is forced away from its value at open 

circuit or corrosion potential. Polarization of an electrode causes current to flow due 

to electrochemical reactions it induces at the electrode surface. The polarization 

resistance (Rp) is defined by the following equation:  

0
)(






EP
I

E
R                          (2.7) 

Where,  

 ∆E is the variation of the applied potential around the corrosion potential  

 ∆I is the resulting polarization current [15]. 

The following formula shows the relationship between the Rp value, the Tafel 

constants and the corrosion current: 

       
))((3.2

.

caI

ca

I

E

CORR 









               (2.8) 

I            is the measured cell current in amps 

Icorr        is the corrosion current in amps 

E     is the electrode potential 

Ecorr    is the corrosion potential in volts 

βa  is the anodic Beta Tafel Constant in volts/decade 

βc  is the cathodic Beta Tafel Constant in volts/decade 
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2.4.2.3 Tafel extrapolation methods 

Corrosion on metals occurs at a reaction rate determined by opposing 

electrochemical reaction equilibria established between the metal and an electrolyte 

solution. One reaction is the anodic reaction, in which the metal is oxidized releasing 

electrons from its surface. The other is the cathodic reaction, in which solution 

species like O2 or H
+
 or even the protective coatings and oxide films that cover the 

metal, are reduced, attracting electrons from the metal.  

In a corrosion system, the Tafel equations for both cathodic and anodic reactions can 

be combined into the Stern-Geary equation: 

          ))3.2exp()3.2.(exp(
c

EE

a

EE
IIII corrcorr

corrca






              (2.9) 

Where; 

I             is the measured cell current in amps 

Icorr         is the corrosion current in amps 

E       is the applied electrode potential 

Ecorr       is the corrosion potential in volts 

βa    is the anodic beta Tafel constant in volts/decade 

βc    is the cathodic beta Tafel constant in volts/decade [1]. 

Figure 2.7 diagrams this process. The vertical axis is potential and the horizontal axis 

is the logarithm of absolute current. The theoretical current for the anodic and 

cathodic reactions are shown as straight lines. The curved line is the total current - 

the sum of the anodic and cathodic currents. This is the current that you measure 

when you sweep the potential of the metal with potentiostat. The sharp point in the 

curve is the point where the current changes signs as the reaction changes from 

anodic to cathodic, or vice versa. The sharp point is due to the use of a logarithmic 

axis. The use of a log axis is necessary because of the wide range of current values 

that must be displayed during a corrosion experiment. Because of the phenomenon of 

passivity, it is not uncommon for the current to change by six orders of magnitude 

during a corrosion experiment [16]. 
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Figure 2.4 : Corrosion Process Showing Anodic and Cathodic Current Components 

[16]. 

The equilibrium potential assumed by the metal in the absence of electrical 

connections to the metal is called the Open Circuit Potential, Eoc. In most 

electrochemical corrosion experiments, the first step is the measurement of Eoc. The 

terms Eoc (Open Circuit Potential) and Ecorr (Corrosion Potential) are usually 

interchangeable, but Eoc is preferred [16]. 

2.4.2.4 Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) measurements play a vital role in 

corrosion research. EIS is informative and non-destructive method that is particularly 

helpful in explanation of mechanisms of electrochemical reactions in corroding 

systems and in revealing important properties of passivation layers or protective 

films. The main pillars of the impedance analysis are (i) the physical modelling of 

the electrochemical interface and (ii) subsequent fitting of experimental spectra to the 

models in order to extract relevant physico-chemical parameters determining the 

properties of the electrode/electrolyte boundary [17].  

EIS is used to characterize the interface between a metal and an electrolyte. The 

potentiostat applies both a dc potential and a small superimposed ac excitation to a 

specimen immersed in an electrolyte. In the experiments, alternating current and ac 

potential are measured as the excitation frequency varies over several orders of 

magnitude. The cell voltage and cell current are then converted into a complex 

impedance by a signal processing instrument such as lock-in amplifier or a frequency 
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response analyzer. The plot of complex impedance versus frequency can generate 

information that is difficult to obtain by other types of electrochemical techniques. 

Electrochemical impedance spectroscopy is useful in the evaluation of coatings, the 

elucidation of transport phenomena in electrochemical systems and the determination 

of corrosion mechanisms and rates. Bode and Nyquist plots are the most common 

data output formats and an example of each for a simple parallel-connected  

resistance-capacitance circuit are shown in Figure 2.5 and 2.6 respectively. 

 

Figure 2.5 : A typical Bode plot of an electrochemical system [1]. 

The Bode plot format shows the absolute impedance, |Z|, and the phase shift, θ of the 

impedance, each as a function of frequency f in cycles per second. The log |Z| versus 

log ω (where ω = 2πf) curve can provide values of Rp (polarization resistance) and 

RΩ (solution resistance) from the horizontal plateau at low and high frequencies, 

respectively. At intermediate frequencies, the curve is a straight line with a slope of -

1, and extrapolation of this line to the log |Z| axis yields the value of Cdl (double layer 

capacitance) from the following relationship (Equation 2.10): 

              
dlC

1
 |Z|                          (2.10) 

 The Bode plot format also shows the variations of phase angle θ with log ω. At the 

high and low frequency limits, where the behaviour is resistor-like, the phase angle is 

nearly zero. At intermediate frequency ranges, the phase angle increases as the 

imaginary component of the impedance increases. The expression for Z is composed 

of a real and an imaginary part (Equation 2.11): 
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Z= Z'+ jZ"                                 (2.11) 

In the Nyquist plot shown in Figure 2.6, the real part is plotted on the X axis and the 

imaginary part on the Y axis. This plot has been annotated to show that low 

frequency data are on the right side of the plot and higher frequencies are on the left. 

On the Nyquist plot, the overall impedance can be represented as a vector (arrow) of 

length |Z|, and the angle between this vector and the X axis is θ, where θ= arg(Z). At 

this very high frequency, the imaginary component, Z", disappears, leaving a sum of 

RΩ and the Faradaic reaction resistance or polarization resistance, Pp. Both the 

Nyquist and Bode plots should give analogous results of RΩ and Rp [1]. 

 

Figure 2.6 : Nyquist plot for a simple electrochemical system with impedance vector 

[1]. 

Practically speaking EIS provides a measure of the resistance of the organic coating 

to aqueous and ionic transport. The technique is based on the measurement of the 

current response on small sinusoidal perturbations of the electrode potential as a 

function of the frequency of the perturbation.  

Different models have been proposed to analyse EIS measurements obtained for 

model systems and technical coatings. These models have been applied for industrial 

screening of organic coatings on bare and phosphated steel in 0.5 M NaCl solution. 

Figure 2.7 shows a typical impedance spectrum of a quasi-ideal coating which does 

not exhibit any indication of corrosion attack even after exposure time of up to half a 

year. 
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Figure 2.7 : Impedance of a quasi-perfect coating on steel. Experimental data ( ●) 

and optimum fit (–) [18]. 

The Bode plot shows a pure capacitative behaviour over a wide frequency range and 

the polarisation resistance at low frequencies is in the order of 10
11

 ohm.cm
2
. This is 

the simple case of a homogeneous 3-D film which is well illustrated in Figure 2.8. 

The impedance of the coated electrode is described by a parallel combination of the 

capacitance, CL; and the resistance, RL, of the layer which can be given as Equation 

2.12. 

     
CL

L
L

RRj

R
jZ







1
)(             (2.12) 

The coating capacitance is given in Equation 2.3. 

         
d

A
CC 0              (2.13) 

where ε is relative dielectric constant, ε0 is dielectric constant in vacuum, A is 

coating area, and d is coating thickness. 
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Thus the capacitance measurement by EIS can provide information on the water 

uptake, since this incorporation of polar molecules leads to an increase in the  

dielectric constant of the coating.  

Three cases might now be distinguished: 

 Corrosion underneath the coating without any defect in the coating itself,   

 Partially damaged coating with cracks reaching the metal surface, and 

 Partially damaged coating which thereby caused corrosive undermining of the 

coating [18]. 

 

Figure 2.8 : Impedance model of a defect free organic coating on a metal surface in 

contact with an electrolyte [18]. 

2.5 Corrosion Control and Protection 

Corrosion control is an ongoing, dynamic process in the prevention of metal 

deterioration in three general ways:  

• changing the environment 

• changing the material 

• placing a barrier between the material and its environment. 

The material does not have to be metal – but it is in most cases. Again, the 

environment is, in most cases, the atmosphere, water, or the earth, and is an 

important contributor to corrosion chemistry [19]. 

Two approaches have been used for protecting the metal surface by either metal 

alloying or by using suitable organic/inorganic coatings. In the presence of corrosive 

media, a suitable corrosion inhibitor can be applied to decrease the rate of anodic 
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and/or cathodic reactions. Electrochemical control can be achieved by passing 

cathodic or anodic current into the metal or by using sacrificial anodes such as zinc, 

aluminum or magnesium. 

2.5.1 Corrosion protection methods 

Corrosion prevention methods can be classified into 4 groups:  

- Anode, anode-electrode interface or change in anodic reaction  

- Cathode, cathode-electrode interface or change in cathodic reaction, 

- Change in electrolyte (inhibitor addition or removing oxidizing agent) 

- Usage of electric connection 

These methods can be divided into 2 groups as methods with materials and methods 

with media and interface.  

2.5.1.1 Protection methods with material  

Basic way of corrosion protection is the appropriate material usage and right design 

of the material to prevent the corrosive effect of the media. Metal additivies are used 

to form alloys in case of high corrosion rates of materials. To choose the right metal 

or alloy, some general rules can be followed. For instance, for acidic or reductive 

media nickel, copper and their alloys, for oxidative media alloys including chromium 

or titan and their alloys can be used. On the other hand, noble metals have higher 

resistance compared to the less noble metals, so noble materials can be preferred in 

order to reduce corrosion rates. Additionally, natural and synthetic engineering 

polymers, ceramics, carbon materials and composites are preferred to be used instead 

of metals to reduce material corrosion. 

2.5.1.2 Protection methods with media and interface 

During operation, loss due to corrosion can be reduced by preventive methods. These 

methods can be listed as:  

i) Inhibitors 

 Anodic 

 Cathodic 

 Mixed 
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ii) Protective Coatings  

 Metal  

 Non-metal inorganic 

 Organic 

iii) Cathodic protection 

 With external current  

 Galvanic anodic 

iv) Anodic protection 

 Passivization 

- Protective film formation via chemical reaction (oxide layer formation, 

phosphatization,  chromatization) 

- With external current [13]. 

2.6 Organic Coatings 

The use of organic coatings is one of the most important approaches for minimizing 

these enormous corrosion losses. The use of renewable resources in the preparation 

of various corrosion protective coatings has been revitalized because of 

environmental concerns [7]. 

Organic coatings consist of (1) a binder or vehicle, (2) pigments, and (3) additives 

such as dryers, hardening agents, stabilizing agents, surface activating compounds, 

and dispersion agents. Coatings can act as a barrier layer to separate the substrate 

metal from its environment. In some cases, the presence of corrosion inhibiting 

chemicals in the coatings can further significantly improve their protection 

performance. In a multi-layer coating system, organic coating is usually used on the 

top. Organic coating can be applied or formed by a variety of approaches, including 

painting, powder coating, e-coating, sol–gel coating, and plasma polymerization. The 

main composition of a coating is resin, which has a variety of types, such as 

polyvinyl butyral, acrylic polyurethane, vinyl, epoxy and baked phenolic containing 

zinc chromate or strontium chromate. In order to protect the metal substrate from 

corrosive environment, the coatings must be uniform, pore free, well-adhered to the 

substrate and self-healing. These can be accomplished by the presence of corrosion 
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inhibiting pigments or additives in the coating or by the use of a sacrificial anodic 

compound in the film [20].  

While more and more functionality is introduced into coatings, still the aspect of 

corrosion protection especially for steel and aluminium are of great interest in 

research and development. This is due to the fact that  hazardous compounds such as 

Cr(VI) which nowadays guarantee excellent corrosion protection properties have to 

be replaced with alternative environmentally friendly compounds;  the introduction 

of new light metals such as magnesium with specific corrosion behaviour require 

specially adopted coatings; use of water based or 100% solvent free coatings will 

replace solvent based coatings; application of new curing technologies such as UV or 

electron beam (EB) curing might lead to new specific reactions at the metal/polymer 

interface; and  the trend to sell pre-coated steel sheet to the automotive industry to 

omit secondary corrosion protection procedures and to reduce the costs caused by 

expensive paint shops raises new demands for thin organic coatings.  

The corrosion protection properties of an organic coating most often result less from 

the barrier properties but more from the maintenance of adhesion to the substrate 

under chemical and electrochemical conditions imposed by the environment. It could 

be shown that for typical organic coatings used for corrosion protection the diffusion 

rate of H2O and O2 far exceeds the diffusion limited value for oxygen reduction. 

However, ion solubility within the coating is typically very small due to the low 

dielectric constant of common coatings. The following roles of organic coatings 

provide corrosion protection:  

 Barrier for ions leading to an extended diffusive double layer.  

 Adhesion of the coating. 

 Blocking of ionic paths between local anodes and cathodes along the 

metal/polymer interface. 

 Vehicle of corrosion active pigments and inhibitors which are released in the 

case of coating damage [18]. 

2.6.1 Role of conducting polymers in corrosion protection 

Intrinsically conducting polymers (ICPs) were discovered in 1976 by Heeger, 

MacDiarmid and Shirakawa, for which they were awarded the Nobel Prize in 

Chemistry in 2000. ICPs belong to those classes of polymers which have π 
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conjugation along the polymer backbone such as polyaniline (PANI), polypyrrole 

(PPy) and polythiophene (PTh), as shown in Figure 2.9.  

 

Figure 2.9 : Chemical structure of some heterocyclic ICPs [21]. 

CPs represent a new class of ‘synthetic metals’ which have attracted the attention of 

many researchers in areas such as separation membranes, gas sensors, 

electrocatalysis, actuators, rechargeable batteries and biosensors. One of the unique 

characteristics of CPs is their ability to undergo oxidation–reduction reactions, by 

gaining or losing electrons from the surrounding environment. Because of this 

interesting feature, CPs have been proposed as novel anti-corrosion coatings for 

different metals and alloys [21]. 

There is an increasing interest on the use of CP to protect reactive metals against 

corrosion. At least four different configurations to apply CP coatings have been 

reported:  

(i) as a coatings alone;  

(ii) as a primer coating with a conventional topcoat;  

(iii) blended with a conventional polymer coating;  

(iv) as an additive to modify a conventional organic coating.  

The first studies devoted to examine the protection imparted by CP coating on active 

metals were published at the beginning of eighties [6]. 

2.6.2 PANI 

PANI is a quite established material having been prepared over 150 years ago by H. 

Letheby. Clearly, at that time the polymeric nature of PANI was not understood; the 

material was called ‘aniline black’ and was used in textiles as dyes and in printing. 

Currently, the preparation of PANI is accomplished via oxidation under mild 

conditions [5]. 



 
20 

PANI can be represented in three different convertible structures, leucoemeraldine, 

pernigraniline and the emeraldine base (EB) as shown in Figure 2.10. The most 

useful structure is the non-conducting EB which can be converted into the 

conducting emeraldine salt (ES) by acid treatment through a process known as 

‘doping’. The associated ionic materials/electrolytes are called ‘dopants’. The 

conductivity increases as the doping level increases. PANI in its conductive ES and 

non-conductive EB was utilized as anti-corrosion coating for ferrous and non-ferrous 

metals and alloys; including iron, steel, stainless steel, aluminum, aluminum alloys, 

copper, zinc, titanium and magnesium [21]. 

 

 

y= 0,5 Emeraldine (EB) 

y= 0 Pernigraniline (PB) 

y= 1 Leucoemeraldine (LEB) 

Figure 2.10 : Different convertible structures of PANI. 

Electrochemical and chemical synthesis of conducting PANI by oxidative 

polymerization is usually described by the scheme in Figure 2.11 (Wei at al., 1989). 

It involves:  

1) Oxidation of nitrogen atom of monomer followed by oxidation of end nitrogen 

atom of oligomer and polymer;  

2) Addition of monomer in the “nitrogen-carbon” fashion as a result of chain reaction 

(electrophilic substitution of proton in aromatic ring of monomer by oxidized 

polymer fragment). 
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Figure 2.11 : Aniline oxidative polymerization [22]. 

In the induction period, aniline radical cations are formed; this process is followed by 

their recombination (according to the electrophilic substitution mechanism) to afford 

a dimer, namely, N-phenylphenylene-1,4-diamine (p-semidine). The following 

propagation step is assumed to be similar to the electrophilic substitution process 

where the oxidized terminal amino group of oligomer (polymer) attacks para-

position in monomer. It is assumed that the reaction involves monomer in its most 

reactive deprotonated form. The oxidation rate-limiting step is considered to be 

either the formation of aniline radical cations or their dimerization [22]. 

As an intrinsically conducting polymer, PANI has received considerable attention 

over the past two decades because of its relatively easy preparation, excellent 

environmental and thermal stabilities, low cost, as well as interesting electronic 

properties. One of the applications of PANI is corrosion protection. Numerous 

studies have revealed that PANI can improve the corrosion resistance of stainless 

steel, iron, mild steel, copper, aluminum, and zinc [23]. 

An interesting alternative to avoid multilayer coatings is the mixing of CP with 

conventional resins to prepare blend materials for corrosion protection. In this 

context, blended coatings formed by PANI or poly-o-ethoxyaniline mixed with an 

equal amount of epoxy, polymethylmetacrylate or water soluble epoxy showed better 

corrosion protection of iron than single component coatings. Furthermore, excellent 

anticorrosion effects were also found in coatings constituted by PANI blended with 

polyimide or poly(esteramide urethane), even although in these cases the CP only 

Induction period 

Chain Propagation Step 
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reached 8–15 wt%. Unfortunately, no information about the anticorrosive properties 

of blends containing PPy or PTh derivatives is available to our knowledge. 

On the other hand, paint formulations modified by the addition of low concentration 

of CP, i.e. typically 0.2–0.3% w/w, have been shown to impart in some cases better 

corrosion resistance than unmodified paints. Thus, paints prevent steel from 

corrosion by isolating the substrate from the environment, i.e. limiting the access of 

oxygen, water or other pollutants to the steel surface. In order to make the paint more 

effective, some corrosion inhibitors are often added: zinc powders, iron oxide, 

chromium compounds, calcium ion exchanged amorphous silica, organic amines, etc. 

However, some of these anticorrosive additives reduce the performance of the paint 

and even can result in environmental and health problems. Accordingly, at present 

time CP are considered an alternative to replace conventional anticorrosive pigments 

[6]. 

Various corrosion protection mechanisms using PANI ICP have been proposed as 

summarized in Figure 2.12. These include cathodic protection, passivation (anodic 

protection), barrier protection (coatings) and corrosion inhibitor [21]. 

 

Figure 2.12 : Schematic illustration of various possible corrosion protection 

mechanisms by ICPs [21]. 

2.6.3 Cerium oxide 

Based on present literature, several different strategies and materials were exploited 

for storage and prolonged release of corrosion inhibitors. Among the novel materials 

developed as corrosion inhibitors, the interest for the use of lanthanide compounds is 

growing over the last years. The success of these compounds is attributed to the 
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corrosion potential efficiency of cerium salts, in particular chlorides and nitrites. It 

has been demonstrated that they promoted protection to a significant number of 

metals and alloys, for example steel, hot dip galvanized steel, tin, aluminum and their 

alloys, etc. In fact, because of the local pH increase at the cathodic sites due to the 

generation of OH
−
 ions via Equation 2.14. 

      2H2O + O2 + 2e
−
 → 4OH

−  
             (2.14) 

OH
−
  ions occur when a corrosion process takes place, insoluble cerium compounds 

such as Ce(OH)4 and CeO2·xH2O are formed. These compounds are believed to 

precipitate on the surface of the metal, reducing the cathodic reaction rate and, thus, 

the overall corrosion extent. Following the success of soluble cerium salts as 

corrosion inhibitors, cerium oxides particles have been likewise studied as pigments 

inside protective coatings for corrosion mitigation purposes. Cerium oxides are 

widely used as a reducible oxide support material in the field of emission control 

catalysis for the purification of exhaust gases for different combustion systems, 

mainly due to their oxygen storage capacity (OSC). Owing to the ease of the 

Ce
4+

↔Ce
3+

 redox shuttle, the exchange process in Equation 2.15 is   is favored.  

2CeO2 ↔ Ce2O3 +1/2O2                        (2.15) 

Thus, the material is suitable for storing and releasing oxygen under conditions 

fluctuating between oxidizing and reducing state of cerium ions. In fact, the Ce
3+

 ↔ 

Ce
4+

 shift leads to a high oxygen mobility in the ceria lattice that is responsible for its 

high catalytic activity. The particular behavior of the cerium oxides was attributed to 

the unstable fluorite structure of the lattice where some Ce
4+

 have a tendency to be 

reduced to Ce
3+

, which has a larger ionic size than Ce
4+

, followed by oxygen 

molecules release with subsequent formation of oxygen vacancies [24]. 
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3.  EXPERIMENTAL STUDY 

3.1 Chemicals 

Aniline monomer, cerium (IV) oxide and ammonium peroxidisulfate and acetone 

was supplied from Sigma-Aldrich, aniline monomer and hydrochloric acid  was 

supplied from Carlo Erba. Dimethyl formamide was supplied from Alfa Easer. 

Sulfuric acid was supplied from Riedel.  

3.2 Metal Electrodes 

For corrosion prevention detection, phenol-formaldehyde resin based paint including 

PANI and PANI/CeO2 nanocomposite was coated over 2 types of cylindrical 

electrodes of aluminium and carbon steel, 8 mm in diameter both. Electrodes were 

placed in glass tubes which prohibit connection of uncoated surface with the solution 

and the other electrodes used in the cell during electrochemical measurements. Glass 

tube was attached at the metal surface by using two component epoxy resin system, 

which is durable inside the acidic medium and prevents the solution in the cell to 

leak inside the glass tube. Aliminum electrodes contain (%w/w) 0.40 Fe, 0.30 Si, 

0.05 Cu, 0.20-0.60 Mn, 2.70-3.70 Mg, 0.20 Zn, 0.20 Ti, 0.30 Cr and carbon steel 

electrodes contain 0.35 C, 0,65 Mn, 0.25 Si, 0.035 P, 0.035 S and Fe to 100. 

3.3 Polyaniline and Polyaniline/CeO2 Nanocomposite Synthesis 

Polyaniline and polyaniline/CeO2 nanocomposite were synthesized as proposed by  

E. Kumar and co-workers. The following synthesis method was applied: 

For synthesis of PANI/CeO2 4.5 ml aniline was injected into 70 ml of 2 M HCl 

containing 2 g of CeO2 nanoparticles under ultrasonic action to reduce the 

aggregation of nanoparticles. After 12h, 4.5 g of APS was dissolved in 20 ml 

deionized water and it was dropped into solution with constant stirring for about 10 

min. Polymerization was allowed to proceed for 3 h at 30 C. Reaction mixture was 
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filtered under gravity and washed with 2 M HCl and deionized water, afterwards 

dried at 90 C for 12 h in vacuum to obtain a fine tint green powder.  

For synthesis of PANI without CeO2, the same procedure was applied without adding 

CeO2 nanoparticles. 

PANI and PANI/CeO2 nanocomposite were used both in protonated emeraldine salt 

(green color) forms as recived from the reaction and deprotonated emeraldine base 

(EB) forms by reacting with NH4OH (blue color).  

In order to obtain EB forms PANI and PANI/CeO2 were dissolved in DMF and 

NH4OH was added to solution. The color of solution changed from green to dark 

blue as the emeraldine base form occurred (Figure 3.1) [7]. 

 Transition from emeraldine salt form to base form was also determined by UV-

Visible spectrophotometric measurements. 

 

Figure 3.1 : Oxidative polymerization of PANI [7]. 
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3.4 Corrosion Medium 

Measurements were carried out with 2 different type of solutions:  

• 0.1 M H2SO4  

• Seawater 

3.4.1 Seawater preparation 

Through the experiments, artificial seawater was prepared as indicated at Table 3.1. 

The ion content for the 3,5% w/w artificial seawater is seen at Table 3.2 and the 

approximate pH value of this formulation is 8 and conductivity is 60.000 µs/cm. 

Table 3.1: Formula of 1 kg of 3.5% w/w artificial seawater [25]. 

Gravimetric salts   Molecular wt       g/kg of solution 

NaCl 58.44 23.926 

Na2SO4 142.04 4.008 

KCl 74.56 0.677 

NaHCO3 84.00 0.196 

KBr 119.01 0.098 

H3BO3 61.83 0.026 

NaF 41.99 0.003 

Volumetric Salts   Molecular wt  moles/kg of solution 

MgCl2.6H2O 203.33 0.053 

CaCl2.2H2O 147.03 0.010 

SrCl2.6H2O 266.64 0.00009 

Distilled water to 1,000 g  

Table 3.2: The ion content for 3.5% w/w artificial seawater [25]. 

Ion Artificial Seawater (g/kg) 

Cl
-
 19.353 

Na
+
 10.765 

SO4
2-

 2.711 

Mg
2+

 1.295 

Ca
2+

 0.414 

K
+
 0.387 

HCO3
-
 0.142 

Br
-
 0.066 

Sr
2+

 0.008 

H3BO3 0.026 

F
-
 0.001 
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3.5 Paint Solution Preparation  

1 gram phenol-formaldehyde resin was dissolved in 2 ml acetone and 0.05g PANI or 

0.05 g PANI/CeO2 nanocomposite were dissolved in 5 ml dimethyl formamide 

(DMF) ultrasonically. PANI and PANI/CeO2 nanocomposites were not completely 

soluble and insoluble part were separated by filtration. Emeraldine base (EB) forms 

of PANI polymers were prepared by dissolving 0.005g polymer in DMF solution and 

by reacting these solutions with NH4OH. Insoluble part was eliminated by filtration. 

The final saturated concentration of all solutions were given in Table 3.3 Coating 

were prepared by mixing these solutions in different ratios and the volume of resin 

and PANI polymers used for coatings and the abbreviation of coating names were 

summarized in Table 3.4. 

Table 3.3 : Polymer solution concentrations  

Polymer     Concentration (g/ml) 

PANI 1.6 x 10
-3

 

PANI/CeO2 9.29 x 10
-4

 

PANI-EB 8.10 x 10
-3

 

PANI/CeO2-EB 5.88 x 10
-3

 

Table 3.4 : PANI and resin contents and abbreviation of coatings 

Abr.of Coating Polymer 

PANI or 

PANI/CeO2 

(µl)  Resin (µl) 

Concentration % 

(g/g)* 

P50R50-032 PANI 50 50 0.32 

PC85R50-032 PANI/CeO2 85 50 0.32 

PC50-R50-019 PANI/CeO2 50 50 0.19 

P50R50EB-162 PANI-EB 50 50 1.62 

PC68R50EB-162 PANI/CeO2-EB 68 50 1.62 

PC50R50EB-118 PANI/CeO2-EB 50 50 1.18 

*Concentration % of PANI or  PANI/CeO2 to resin  

3.6 Coating Preparation Procedure  

Electrodes were mechanically polished with emery papers of 400, 600 and 1200 

grids and then with aluminium paste. Then the electrodes were washed with 

isopropyl alcohol in an ultrasonic bath and dried before use. Deposition were carried 
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out by dropping 3 µl coating solution on metal electrodes. After deposition of each 

layer, the substrate was allowed to dry completely. Film thickness was calculated 

based on the concentration of the polymer solution, polymer density (d= 1.36 g/ml), 

weight and surface area of the electrode as suggested in literature [26, 27]. The 

average thickness of all coatings are summarized in the Table 3.5. 

Table 3.5: Thickness of coatings 

Coating Thickness (m) 

P50R50-032 14.90.2 

PC85R50-032 11.10.2 

PC50-R50-019 14.90.2 

P50R50EB-162 14.90.2 

PC68R50EB-162 12.60.2 

PC50R50EB-118 14.90.2 

3.7 Methods 

Electrochemical measurements including potentiodynamic polarization curves and 

electrochemical impedance spectroscopy (EIS) were performed in a three-electrode 

cell (Figure 3.2). A glass cell of 100 ml capacity which contains three electrodes; 

steel/aluminium as working, platinum as counter and silver/silver chloride 

(Ag/AgCl) as reference electrodes was used.  

Gamry Reference 600 Model Potentiostat with a software version 5.67 was used. The 

potentiodynamic current−potential curves were measured at a scan rate of 1 mV/s. 

Impedance measurements were carried out using AC signals of amplitude of ±10 mV 

(peak to peak) at open circuit potential in the frequency range from 10 mHz to 1 

MHz. Prior to the potential sweep. the electrode was left under open-circuit in the 

respective solution for ~1 h until a steady free corrosion potential was recorded.  
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Figure 3.2 : Potentiostat operation 
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4.  RESULTS AND DISCUSSION 

Before application as coating material synthesized PANI and PANI/CeO2 were 

characterized by Fourier Transform Infrared (FTIR) and UV-Visible absorption 

measurements. Then anticorrosion effects of coatings constituted by PANI polymers 

blended with cyclohexane formaldehyde resin were tested both in acidic (H2SO4) and 

neutral corrosive (sea water) media for carbon steel and aluminum by polarization 

and EIS measurements. EIS measurements were also supported by equivalent circuit 

models.  

4.1 FTIR Spectral Analysis 

The infrared spectroscopy is used to identify the functional groups of the synthesized 

compounds. The FTIR spectrum of the nanoparticles of CeO2 is shown in Figure 4.1. 

From the results. it is observed that FTIR spectra of PANI/CeO2 nanocomposites 

contain contributions from both the CeO2 nanoparticles and PANI. 
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Figure 4.1 : FTIR pattern of PANI, CeO2 and PANI/CeO2 nanoparticles  
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The bands due to scretching frequency of Ce-O can be seen in 850-1750 cm
-1

. The 

characteristic scretching mode of N-N. C-C of PANI were observed at the 1556, 

1462, 1298 cm
-1

. In addition to the characteristic peak of PANI. Ce-O scretching 

frequency in 850-1750 cm
-1

 and the characteristic peak at 2321 were also observed 

for PANI/CeO2 nanocomposite indicating the contrubition of CeO2 to the PANI 

structure.  

4.2 UV–Visible Spectrofotometric Analysis 

UV–Visible absorption spectra of emeraldine salt and emeraldine base (EB) forms of 

PANI and PANI/CeO2 nanocomposite in DMF solution were compared (Figure 4.2). 

For the emeraldine salt forms three characteristic absorbance peaks at  = 275 nm, 

= 375 nm, =550 nm arises from the π-π* transition, polaron-π* transition, polaron- 

π respectively. When NH4OH is added to PANI and PANI/CeO2 solutions the color 

is changed from green to blue due to transition of emeraldindine salt forms to 

emeraldine base forms. In this form absorbance peaks at  = 275 nm, = 375 nm, 

become a single peak at = 325 nm and peak at =550 nm shifts to =600 nm and its 

intensity increases. In the case of EB form the ratio of peak intensities at 325/ 600  

shows the benzonoid/quinoid ratio. For PANI and PANI/CeO2 nanocomposites the 

ratios were obtained as 0.47 and 0.43 respectively, which is very close to each other.  

UV–Visible absorption spectra of pure CeO2 in DMF solution were also recorded 

and compared with PANI/CeO2 nanocomposite (Figure 4.2.D).  As it can be seen  

well-defined absorption peak located at =270 nm and  the sharp and strong 

absorption spectrum is in good accordance with the narrow size distribution of ceria 

nanocrystal. The optical absorption  value  around 270 nm  has higher intensity in the 

case PANI/CeO2 nanocomposite  with the conribution of CeO2. 
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Figure 4.2 : Comparison of  UV-visible spectra of  emeraldine salt and emeraldine 

base (EB) forms of PANI (A), PANI/CeO2 nanocomposite (B), EB 

form of PANI and  PANI/CeO2 (C), PANI, PANI/CeO2 and CeO2 (D) 

in DMF solution. 

4.3 Measurements in 0.1 M H2SO4 Solution 

In this part of the study, corrosion phenomena of carbon steel and aluminum was 

examined by polarization curves and EIS in 0.1 M H2SO4. Electrodes were kept in 

electrolyte solutions for 1 hour before each run.  

4.3.1 Measurements of bare electrodes in 0.1 M H2SO4 

Figure 4.3 shows the Nyquist diagrams plotted at the corrosion potential of bare 

aluminum and carbon steel electrodes in 0.1 M H2SO4 in the absence of coating.  

The high frequency intercept of the semi-circle on the real axis yields the solution 

resistance (Rs) while low frequency region yields the sum of Rs and polarization 

resistance (Rp) of the electrode/electrolyte interface. The semicircles are generally 
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associated with the relaxation of the capacitors of electrical double layers with their 

diameters representing the charge transfer resistance [27]. 

Polarization resistance of bare aluminum electrode and bare carbon steel electrode 

were obtained as 2.490 ohms 293 ohms respectively. Since the oxide formation 

energy of aluminium (Al) is much higher than steel, higher value of Rp for Al was 

observed. 
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Figure 4.3 : Nyquist plots of bare aluminium and carbon steel electrodes in 0.1 M  

H2SO4 solution 

Tafel-extrapolation measurements were done in the potentials region  250 mV from 

corrosion potential, Ecorr. All the measurements were conducted after 1 hour of 

exposure to the electrolyte solution, in order to ensure steady-state conditions. Figure 

4.4 shows the current voltage curves obtained with bare electrodes after 1 h exposure 

to 0.1 M H2SO4.  
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Figure 4.4 : Tafel plots of bare aluminum and carbon steel electrodes in 0.1 M  

H2SO4 solution 
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As expected, due to the oxide film formation of aluminium which has a greater 

cathodic potential resulted in lower corrosion currents. 

EIS data is also analyzed graphically by fitting it to an equivalent electrical circuit 

model using ZSimp-Win software. Figure 4.5 depicts the equivalent circuits to model 

electrochemical behavior of bare carbon steel electrode after 1 hour immersion in 0.1 

M  H2SO4 solution. The simplified Randles circuit with a CPE is used to represent 

the corroding system where Rs represents solution resistance. Rp charge transfer 

resistance. CPEdl a constant phase element, non-ideal double layer capacitive element 

to give a more accurate fit [28].  

It is observed that a reasonable accuracy of the fitting was obtained. As evidence, 

chi-square is in the order of 10
-3

 and 10
-4

 for the experimental data. Rp values 

obtained by equivalent curcuits and experiments are in agreement with each other. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 : Values of equivalent circuit elements required for fitting the EIS values 

          of bare carbon steel in 0.1 M H2SO4 solution. 

4.3.2 Measurements with carbon Steel in 0.1 M H2SO4 

In order to analyze the effect of PANI and PANI/CeO2 nanocomposite to corrosion 

resistance of carbon steel, paint solutions with different concentrations including 

different ratios of PANI polymer and PANI/CeO2 nanocomposite which had been 

synthesized previously were applied on electrode surfaces to obtain coatings. 

Polarization and EIS measurements were conducted after having the coatings dried. 

Figure 4.6 shows the Nyquist plots for the impedance of the bare, P50R50-032 and 

PC85R50-032 coatings on carbon steel after 1 hour of exposure to 0.1 M H2SO4. Loop 
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sizes of both of the coatings are approximately 3 times larger than the bare electrode 

which clearly shows the inhibition efficiency of the polymer coatings on carbon steel 

substrate. Rp values obtained from Nyquist diagrams were summarized in Table 4.1.  
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Figure 4.6 : Nyquist plot of bare, P50R50-032 and PC85R50-032 coatings on carbon 

steel in 0.1 M H2SO4 

Figure 4.7 depicts the equivalent circuits to model electrochemical behavior of 

P50R50-032 and PC85R50-032 coatings on carbon steel coatings after 1 hour 

immersion in 0.1 M H2SO4 solution. The electrochemical circuit model is 

represented by the conventional equivalent circuit consists of a series of a resistor 

and capacitor. Rs(Q(RpW)) where Rs is the uncompensated ohmic resistance 

between the working electrode and the reference electrode, Rp is the polarization 

resistance and Q is the constant phase element which represents the total capacitance 

at the metal/electrolyte interface and Zw is the Warburg impedance which represents 

the diffusion processes within the pores in case of coated metal/solution interface [1, 

27]. 
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Figure 4.7 : Values of the elements of equivalent circuit required for fitting the EIS 

of P50R50-032 and PC85R50-032 coatings on carbon steel electrode in 0.1 

M H2SO4 

The polarization curves of uncoated, P50R50-032 and PC85R50-032 coated carbon steel 

in 0.1 M H2SO4 are shown in Figure 4.8.  
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Figure 4.8: Polarization curves of bare, P50R50-032 and PC85R50-032 coated carbon 

steel in 0.1 M H2SO4 

Ecorr, icorr and Tafel slopes were determined from the Tafel plots of 

potentiodynamic measurements by extrapolation. The values of Rp and CR were 

calculated using Equation 4.1 and 4.2 [29]. Ecorr, icorr, a, c, Rp and CR values for 

uncoated and PANI coated carbon steel electrodes are summarized in Table 4.1. 
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Table 4.1 : Polarization parameters for BARE, P50R50-032and PC85R50-032  coated 

carbon steel in 0.1 M H2SO4  

Coating 

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

BARE -484 59.48 27.29 86 68 147 

  P50R50-032 -473 24.27 11.09 70 88 709 59 79 

PC85R50-032 -477 25.06 11.47 62 63 744 58 80 

As it can be seen from Table 4.1 although corrosion potentials stayed almost 

constant, corrosion currents decrease and Rp values increase in case of P50R50-032 

and PC85R50-032 coatings compared to bare and CF-R coated electrodes. Both 

coatings have similar corrosion inhibition efficiencies. 

4.3.2.1 Measurements with PANI-EB form coatings on carbon steel 

Depending on the oxidation state and degree of protonation by acids, PANI may 

exist in various forms related by reversible transitions (Figure 4.9) [22]. This 

transition causes some change in properties of PANI. For example, in protonated 

emeraldine salt form, the conductivity increases, however solubility decreases. 

Emeraldine base form of PANI was obtained by adding NH4OH and both form were 

used in paint formulation in order to observe their effect on the coating properties.  

 

Figure 4.9 Different forms of polyaniline [22]. 
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Coating solutions containing similar PANI polymer-resin content (Table 3.4) were 

prepared and their corrosion behavior was investigated in order to observe the effect 

of polymer solubility and the conductivity on the paint formulation. Conductivities of 

polymers are listed in Table 4.2. 

Table 4.2 : Solid state conductivities of polymers 

Polymer Conductivity (S/cm) 

PANI        2.2 x 10
-5

 

PANI/CeO2        8.3x 10
-6

 

PANI-EB       1.42 x 10
-7

 

PANI/CeO2-EB       7.05 x 10
-8

 

Figure 4.10 shows the Nyquist plots of bare, CF resin (CF-R) coated, P50R50-032, 

PC85R50-032, P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 coatings on carbon 

steel. The better inhibition efficiency of the coating PC68R50EB-162 can be seen by 

an almost double semi-circle in comparison with P50R50EB-162 coating. This result 

suggests that inclusion of CeO2 into PANI structure provided additional protection 

efficiency. Furthermore, it can be observed that increase in concentration from 

1.18% to 1.62% for PANI/CeO2 nanocomposite results increase in the inhibition 

efficiency of the coating. 
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Figure 4.10 : Nyquist plot of bare, CF-R, P50R50-032, PC85R50-032, P50R50EB-162, 

PC68R50EB-162 and PC50R50EB-118 coated carbon steel electrode in 

0.1 M H2SO4 
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Figure 4.11 depicts the equivalent circuits to model electrochemical behavior 

belonging to P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 coatings on carbon 

steel after 1 hour immersion in 0.1 M H2SO4 solution. The electrochemical circuit 

model which was also used also for P50R50-032 and PC85R50-032 coatings [Rs(Q (Rp 

W))] fits with the minimum chi square value.  

 It is observed that a reasonable accuracy of the fitting was obtained. As evidence, 

chi-square is in the order of 10
-3

 and 10
-4

 for the experimental data. Rp values 

obtained by equivalent curcuits and experiments are in agreement with each other. 

Figure 4.11 : Values of the elements of equivalent circuit required for fitting the EIS 

of P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 coatings on 

carbon steel electrode in 0.1 M H2SO4 

 

From Table 4.3, it is clear that the addition of CeO2 and switching to emeraldine base 

form of PANI results in increase in Rp which gives highest inhibition effect. 

Diffusion can create an impedance known as the Warburg impedance. This 

impedance depends on the frequency of the potential perturbation. At high 

frequencies the Warburg impedance is small since diffusing reactants don't have to 

move very far. At low frequencies the reactants have to diffuse farther thereby 

increasing the Warburg impedance [16]. 

The percent of the inhibition effect (IE %) values were calculated from polarization 

and impedance measurements according to the following equations [27]. 
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Table 4.3 : Values of equivalent circuit elements required for fitting EIS results of 

carbon steel in 0.1 M H2SO4 solution for bare electrode and various 

coating types.  

Circuit 

Model 

Carbon Steel Electrode - 

0.1 M H2SO4 

Rs 

(Ω.cm
2
) 

Rp 

(Ω.cm
2
) 

CPEdl. 

Yo.10
5
 (Ω

-

1
.s

n
.cm

-2
) 

ndl 
W.Yo 10

-6
 

(Ω
-1

.s
5
) 

IE% 

R(QR) BARE 5.00 144 20.55 0.91     

R(Q(RW)) P50R50-032 10.02 699 5.26 0.81 6722 79 

R(Q(RW)) PC85R50-032 11.15 790 7.86 0.62 24130 82 

R(Q(RW)) P50R50EB-162 16.42 1472 6.05 0.62 1.53 90 

R(Q(RW)) PC68R50EB-162 22.42 3096 2.15 0.67 21 95 

R(Q(RW)) PC50R50EB-118 14.61 1090 6.17 0.73 5754 87 

Bode magnitude plots of CF-Resin coated with P50R50-032, PC85R50-032, P50R50EB-

162, PC68R50EB-162 and PC50R50EB-118 carbon steel electrode after 1 hour 

immersion in 0.1 M H2SO4 are given in Figure 4.12. It is obvious that Z  magnitude 

values of coatings are increasing in the same tendency as Rp values, indicating the 

efficiency of the coatings. The coating PC68R50EB-162 whose Rp is the highest also 

has the highest Z value.  
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Figure 4.12 : Bode plot of bare, CF-Resin coated P50R50-032, PC85R50-032, 

P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 carbon steel 

electrode in 0.1 M H2SO4 
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Tafel curves of the coatings exposed to 0.1 M H2SO4 were obtained after one hour 

immersion in corrosion media are shown in Figure 4.13. Corrosion parameters 

obtained from these polarization measurements are listed in Table 4.4. Corrosion 

current and corrosion rate decreased with increasing PANI and PANI/CeO2 

concentration. There are slight decreases in Icorr values of PANI/CeO2 coatings over 

pure PANI coatings. The minimum Icorr value and best efficiency (95%) is obtained 

with the PC68R50EB-162 coating which is the coating obtained with the highest 

polymer concentration used in this study. All results in agreement with EIS results. 

The decrease in corrosion rates and increase in Rp indicates the formation of 

protective films on metal surfaces [27]. 

Although Rp values of PANI and PANI/CeO2 nanocomposite coatings increase and 

corrosion currents decrease, the change in Ecorr values are small in comparison with 

the bare electrode. This result indicates that the coatings retard both anodic and 

cathodic reactions. In other words, they reduce the anodic dissolution and also 

retards the hydrogen evolution reaction.  
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Figure 4.13 : Polarization curves of bare, P50R50-032, PC85R50-032, P50R50EB-162, 

PC68R50EB-162 and PC50R50EB-118 coatings on carbon steel. 
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Table 4.4 : Polarization parameters of CF-R, P50R50-032, PC85R50-032,  P50R50EB-

162, PC68R50EB-162 and PC50R50EB-118 coatings and bare carbon steel 

electrode  in 0.1 M H2SO4.  

Coating 

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

BARE -484 59.48 27.29 86 68 147 

  CF-R -491 43.56 19.97 116 95 528 27 72 

P50R50-032 -473 24.27 11.09 70 88 709 59 79 

PC85R50-032 -477 25.06 11.47 62 63 744 58 80 

P50R50EB-162 -483 20.49 9.352 93 81 1327 66 89 

PC68R50EB-162 -496 11.96 5.475 118 95 2926 80 95 

PC50R50EB-118 -480 24.07 11.01 86 84 1020 60 86 

4.3.2.2 Measurements of carbon steel in H2SO4 with increasing exposure time 

In order to analyses the change in corrosion resistance of coatings with increasing 

exposure time to corrosive environment, measurements at different exposure time 

was conducted in 0.1 M H2SO4.  The coatings were almost completely degraded after 

24 hours when they left in corrosion media. In order to eliminate the measurement 

differences that might come from preparation of coating the same coating was used 

for all measurements. Coating degradation accelerated during measurements and the 

coatings were durable for approximately 6 hours of measurement. All the coatings  

were exposed to electrolyte solution for 1 hour before starting the measurements.  

Figure 4.14-4.16 show the Nyquist plots of the coatings P50R50EB-162, P68R50EB-

162 and P50R50EB-118 respectively on carbon steel substrate for an exposure time of 

6 hours. Rp values for the measurements with time are summarized in Table 4.6-4.8.  

It is again obvious that corrosion resistances of the substrate decreases with time due 

to electrolyte penetration. There is a slight increase in the Rp values of the coatings 

P50R50EB-162 after 6th hours, which can be attributed to the passivation effect of 

corrosion products.  
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Figure 4.14 : Nyquist plot of carbon steel electrode coated with P50R50EB-162 

coating  in 6 hours of exposure to 0.1 M H2SO4 
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Figure 4.15 : Nyquist plot of carbon steel electrode in 0.1 M H2SO4 coated with 

P68R50EB-162 in 6 hours of exposure to 0.1 M H2SO4 
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Figure 4.16 : Nyquist plot of carbon steel electrode in H2SO4 coated with P50R50EB-

118 in 6 hours of exposure to 0.1 M H2SO4 

Figure 4.17 shows the change in Rp values of bare, P50R50EB-162, PC68R50EB-162 

and PC50R50EB-118 comperatively with increasing exposure time. When two 

different PANI/CeO2 nanocomposite coatings (P50R50EB-162 and PC50R50EB-118) 

are compared it can be seen that at the begining, coating with higher concentration 

(PC68R50EB-162) has better protection and their effect become almost similar after 6 

hours.  

On the other hand Rp values of CeO2 containing coating (PC68R50EB-162)  is higher 

than the P50R50EB-162 coating. These results shows the advantage of CeO2 

nanoparticle contrubition in the coating. All coatings have higher polarization 

resistance values in comparison to bare electrode at the begining and after 6 hour 

indicating barier effect of coatings. 
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Figure 4.17 : Rp values of P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 

coatings in 0.1 M H2SO4 with increasing exposure time 

Figure 4.18-4.20 show the Tafel plots of P50R50EB-162, PC50R50EB-118 and 

PC68R50EB-118 coated elerectrodes in 0.1 M H2SO4 with time, respectively. Ecorr, 

Icorr, a, c and CR values obtained from these graphs are listed in Table 4.5-4.8. 

These results were also compared with bare electrode. Icorr values increases with 

time for all types of coatings.  
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Figure 4.18 : Polarization curves of P50R50EB-162 coating on carbon steel electrode 

in 0.1 M H2SO4 with increasing exposure time 
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Figure 4.19 : Polarization curves of PC50R50EB-118 coating on carbon steel 

electrode in 0.1 M H2SO4 with increasing exposure time 
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Figure 4.20 : Polarization curves of PC68R50EB-162 coating on carbon steel 

electrode in 0.1 M H2SO4 with increasing exposure time 

For bare electrode, Icorr values in 0.1 M H2SO4 increases and Rp values decreases 

with time as expected (Table 4.5). 

Although there is a difference in the Icorr and Rp values of PC68R50EB-162 and the 

other two coatings (P50R50EB-162 and PC50R50EB-118) at the beginning of 

measurements, they become very close to each other for the three coatings after 6 
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hour of exposure to 0.1 M H2SO4. This might be due to formation of corrosion 

products on the surface. Since all the coatings produce the same type of corrosion 

products by oxidation, the passive film behaves in the same way and measured 

values become closer to each other.  

Table 4.5 : Polarization parameters for bare carbon steel electrode in 0.1 M H2SO4 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
) 

BARE / h1 -484 59.5 27.3 86 68 147 

BARE / h2 -480 84.3 38.7 108 83 126 

BARE / h3 -479 93.1 42.7 113 81 118 

BARE / h4 -478 95.3 43.7 107 74 113 

BARE / h5 -479 116.2 53.2 117 77 108 

BARE / h6 -479 126.1 57.8 115 76 92 

Table 4.6 : Polarization parameters for P50R50EB-162 coating on carbon steel with 

increasing exposure time in 0.1 M H2SO4 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
)   

P50R50EB-162 / h1 -483 20.5 9.4 94 81 1327   

P50R50EB-162 / h2 -474 24.7 11.3 104 94 910   

P50R50EB-162 / h3 -464 20.3 9.3 91 83 819   

P50R50EB-162 / h4 -459 20.5 9.4 103 84 749   

P50R50EB-162 / h5 -462 21.9 10.1 98 78 603   

P50R50EB-162 / h6 -463 26.7 12.2 107 85 643   

Table 4.7 : Polarization parameters for PC68R50EB-162 coating on carbon steel with 

increasing exposure time in 0.1 M H2SO4 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
)   

PC68R50EB-162 / h1 -496 12.0 5.5 118 95 2926   

PC68R50EB-162 / h2 -512 26.5 12.1 203 103 1609   

PC68R50EB-162 / h3 -507 38.4 17.6 188 105 955   

PC68R50EB-162 / h4 -501 42.6 19.5 200 96 694   

PC68R50EB-162 / h5 -492 34.4 15.8 162 83 664   

PC68R50EB-162 / h6 -487 35.6 16.3 185 87 608   
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Table 4.8 : Polarization parameters for PC50R50EB-118 coating on carbon steel with 

increasing exposure time to 0.1 M H2SO4 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
)   

PC50R50EB-118 / h1 -480 24.1 11.0 86 84 1020   

PC50R50EB-118 / h2 -479 23.7 10.8 11 85 809   

PC50R50EB-118 / h3 -472 20.9 9.5 110 80 603   

PC50R50EB-118 / h4 -471 21.7 9.9 115 76 553   

PC50R50EB-118 / h5 -469 25.9 11.8 112 78 543   

PC50R50EB-118 / h6 -466 27.8 12.8 113 80 563   

 

Figure 4.21-4.23 show the Bode plots of the coatings P50R50EB-162, P68R50EB-162 

and P50R50EB-118 respectively on carbon steel substrate for an exposure time of 6 

hours. Z values are decreasing with increasing exposure time as expected.   
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Figure 4.21 : Bode plot of carbon steel electrode in H2SO4 coated with P50R50EB-

162 in 6 hours of exposure to 0.1 M H2SO4 
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Figure 4.22 : Bode plot of carbon steel electrode in H2SO4 coated with PC50R50EB-

118 in 6 hours of exposure to 0.1 M H2SO4 

0,01 0,1 1 10 100 1000 10000 100000 1000000

100

1000

10000

Z
m

o
d

 (
o

h
m

)

Freq (Hz)

 PC
68

R
50

EBh1

 PC
68

R
50

EBh2

 PC
68

R
50

EBh3

 PC
68

R
50

EBh4

 PC
68

R
50

EBh5

 PC
68

R
50

EBh6

 

Figure 4.23 : Bode plot of carbon steel electrode in H2SO4 coated with PC68R50EB-

162 in 6 hours of exposure to 0.1 M H2SO4 
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Table 4.9 lists the data obtained from equivalent curcit model. All Rp data is in 

agreement with experimental values. Rp values decreases with increasing exposure 

time. When coating type is compared, addition of CeO2 in the structure and using 

emeraldine base form increases protection efficiency.  

Table 4.9 : Values of equivalent circuit elements required for fitting the EIS results 

of carbon steel in 0.1 M H2SO4 solution in bare electrode and varying 

coating types with increasing exposure time.  

Circuit 

Model 

Carbon Steel 

Electrode - 0.1 M 

H2SO4 

Rs 

(Ω.cm
2
) 

Rp 

(Ω.cm
2
) 

CPEdl. 

Yo.10
5
 

(Ω
-

1
.s

n
.cm

-2
) 

ndl 
W.Yo.10

6
 

(Ω
-1

.s
5
) 

IE% 

R(QR)       BARE-h 1  5.00 144 20.55 0.91     

R(QR)       BARE-h 6  6.09 87 81.76 0.92 0.84   

R(Q(RW))  P50R50EB-162 /h1   16.42 1472 6.05 0.62 1.53 90 

R(Q(RW))  P50R50EB-162 /h6  9.66 646 24.65 0.90 7.65 87 

R(Q(RW))  PC68R50EB-162/h1   22.42 3096 2.15 0.67 21 95 

R(Q(RW))  PC68R50EB-162/h6   14.01 623 15.50 0.85 0.03 86 

R(Q(RW))  PC50R50EB-118/ h1     14.61 1090 6.17 0.73 5754 87 

R(Q(RW))  PC50R50EB-118/ h1   10.06 576 27.33 0.90 194.3 85 

4.3.2.3 Measurements of aluminium in 0.1 M H2SO4 

Similar to the study with carbon steel, in order to analyze the effect of PANI and 

PANI/CeO2 nanocomposite to corrosion resistance of aluminium, paint solutions 

with different concentrations including different ratios of PANI polymer and 

PANI/CeO2 nanocomposite were applied on electrode surfaces. Polarization and EIS 

measurements were conducted after 1 hour  immersion time. 

Figure 4.24 shows the empedance plot of bare and CF resin coated aluminium 

electrodes. Bare aluminium electrode has a Rp value of 2300 ohm and its value 

increased up to 22622 ohm by applying pure  CF-R coating. 
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Figure 4.24 : Nyquist plot of bare and CF-R coated aluminium electrode in H2SO4  

Figure 4.25 shows the Nyquist plot of P50R50EB-162, PC68R50EB-162, PC50R50EB-

118 and CF resin coatings. The coating PC68R50EB-162 has the biggest Rp value 

which shows that the coating with 1.62 % concentration PANI/CeO2 coating is the 

most efficient coating as in the case of carbon steel.  
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Figure 4.25 : Nyquist plot of P50R50EB-162, PC68R50EB-162, PC50R50EB-118 and 

CF resin coated aluminium electrode in 0.1 M H2SO4  
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Figure 4.26 shows the Bode plot of P50R50EB-162, PC68R50EB-162, PC50R50EB-118 

and CFR coatings on aluminium after 1 h of immersion in H2SO4. The coating 

PC68R50EB-162 has the biggest Z value which shows that the coating with 1.62 % 

concentration PANI/CeO2 coating is the most efficient coating as in the case of 

carbon steel.  
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Figure 4.26 : Bode plot of P50R50EB-162, PC68R50EB-162, PC50R50EB-118 and CF 

resin coated and bare aluminium electrode in 0.1 M H2SO4  

Figure 4.27 shows Tafel plots of P50R50EB-162, PC68R50EB-162, PC50R50EB-118 

and CF resin coated and bare aluminium electrodes after 1 hour exposure to 0.1 M 

H2SO4. Ecorr, Icorr, a, c and CR values obtained from these graphs are listed in 

Table 4.10. Icorr values effectively decrease in comparison with the bare electrode 

showing that corrosion protection is provided. There is a slight shift in Ecorr values 

to anodic region for PC68R50EB-162 coating which indicates the barrier effect and 

retarding anodic reaction. The lowest Icorr value belongs to the coating PC68R50EB-

162, P50R50EB-162 has a lower corrosion current than PC50R50EB-118 so the 

corrosion protection efficiency of P50R50EB-162 is higher than PC50R50EB-118 for 

aluminium in 0.1 M H2SO4 (Table 4.A). 
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Figure 4.27 : Polarization curves of P50R50EB-162, PC68R50EB-162, PC50R50EB- 

118 and CF resin coated and bare aluminium electrodes in 0.1 M 

H2SO4  

Table 4.10 : Polarization parameters for P50R50EB-162, PC68R50EB-162, PC50R50EB- 

118 CF resin coated and bare aluminium electrodes in 0.1 M H2SO4 

solution 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

BARE -663 34.8 15.0 512 111 1206 

  CF-R -702 22.3 19.1 513 109 22622 36 95 

P50R50EB-162 -668 9.1 3.9 714 120 36697 74 97 

PC68R50EB-162 -645 4.1 1.8 217 83 92497 88 99 

PC50R50EB-118 -660 21.5 9.3 753 134 34184 38 96 

Figure 4.28 depicts the equivalent circuit to model electrochemical behavior 

belonging to P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 coatings on 

aluminium after 1 hour immersion in 0.1 M H2SO4 solution. Equivalent circuit model 

represented by R(Q(R(C(R(C(RW))))))(CR) fits better and the first part of the circuit 

represents the solution resistanceof the polymer and electrolyte, Rs, the second part 

is the parallel combination of the double layer capacitance, C1 and, third part is the 

pore resistance of the polymer film R1 deposited on aluminium. A series connection 

to R1 constructed using a constant phase element Q (Yo, CPE), in parallel to the 

redox process taking place at the polymer/solution interface is described by the 
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charge transfer resistance R2. The CPE represented as Q takes into account the 

interfacial irregularities such as porosity, roughness, and geometry. A series 

connection to R2 was constituted using C2, having a paralel connection to R3 and W. 

The low frequency behavior was determined by the adsorption of cations and could 

be described by adsorption resistance R3 parallel to an adsorption capacitance C2. 

Diffusion processes arising in systems explained by W is the Warburg diffusion 

impedance element. The last component corresponds to the polymer coated 

aluminium capacitance and resistance. Circuit elements are listed in Table 4.14 [30]. 

 

Figure 4.28 : Values of the elements of equivalent circuit required for fitting the EIS 

of P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 coatings on 

aluminium electrode in 0.1 M H2SO4 

 

4.3.2.4 Measurements of aluminium in H2SO4 with increasing exposure time 

In order to analyze the change in corrosion resistance of coatings with increasing 

exposure time to corrosive environment measurement sets of 5 hour were conducted. 

All the coatings were exposed to electrolyte solution for 1 hour before starting 

measurements.  

Figure 4.29-4.31 show the Nyquist plots of the coatings P50R50EB-162, P68R50EB-

162 and P50R50EB-118 respectively on aluminium substrate for an exposure time of 5 

hours. Rp values for the measurements with time are summarized in Table 4.11-4.13.  
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Figure 4.29 : Nyquist plot of coating P50R50EB-162 on aluminium electrode in 0.1 M 

H2SO4 with  increasing exposure time 
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Figure 4.30 : Nyquist plot of coating PC68R50EB-162 on aluminium electrode in 0.1 

M H2SO4 with  increasing exposure time 
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Figure 4.31 : Nyquist plot of coating PC50R50EB-118 on aluminium electrode in 0.1 

M H2SO4 with  increasing exposure time 

Figure 4.32 shows the change in Rp values of P50R50EB-162, PC68R50EB-162 and 

PC50R50EB-118 comperatively with increasing exposure time starting from 2
nd

 hour 

of exposure time until 5
th

 hour.  

 

Figure 4.32 : Comparison of Rp values of P50R50EB-162, PC68R50EB-162 and     

PC50R50EB-118 on aluminium substrate  
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Bode plots of P50R50EB-162, PC68R50EB-162 and PC50R50EB-118 on aluminium 

substrate are shown in Figures 4.33-4.35. Although there is a significant differanace 

in Rp and Z values of the coating until 2 hours of exposure time, changes become 

smaller after 2
nd

 hour and the coatings become stable and all the curves obtained by 

electrochemical measurements show similar behavior.  
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Figure 4.33 : Bode plot of coating P50R50EB-162 on aluminium electrode in 0.1 M 

H2SO4 with  increasing exposure time 
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Figure 4.34 : Bode plot of coating PC68R50EB-162 on aluminium electrode in 0.1 M 

H2SO4 with  increasing exposure time 
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Figure 4.35 : Bode plot of coating PC68R50EB-162 on aluminium electrode in 0.1 M 

H2SO4 with  increasing exposure time 

Figure 4.36-4.38 show Tafel plots of P50R50EB-162, PC68R50EB-162, PC50R50EB-

118 and CF resin coated aluminium electrodes in 0.1 M H2SO4 at varying exposure 

time.  Ecorr, Icorr, a, c and CR values obtained from these graphs are listed in 

Table 4.11-4.13. 
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Figure 4.36 : Polarization curve of coating P50R50EB-162 on aluminium electrode in 

0.1 M H2SO4 with  increasing exposure time 
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Figure 4.37 : Polarization curve of coating PC68R50EB-162 on aluminium electrode 

in 0.1 M H2SO4 with  increasing exposure time 
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Figure 4.38 : Polarization curve of coating PC50R50EB-118 on aluminium electrode 

in 0.1 M H2SO4 with  increasing exposure time 
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Table 4.11 : Polarization parameters for the coating P50R50EB-162 on aluminium in 

0.1 M H2SO4 with increasing exposure time 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa      

(mV) 

βc      

(mV) 

Rp 

(Ω.cm
2
) 

BARE / h1 -663 34.8 15.0 512 111 1206 

P50R50EB-162 / h1 -668 9.1 3.9 714 120 36697 

P50R50EB-162 / h2 -689 17.9 7.7 433 109 3921 

P50R50EB-162 / h3 -692 18.0 7.7 203 82 1910 

P50R50EB-162 / h4 -678 35.6 15.3 404 116 1136 

P50R50EB-162 / h5 -642 37.4 16.1 393 110 1106 

Table 4.12 : Polarization parameters for the coating PC68R50EB-162 on aluminium 

in 0.1 M H2SO4 with increasing exposure time 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa      

(mV) 

βc      

(mV) 

Rp 

(Ω.cm
2
) 

BARE -663 34.8 15.0 512 111 1206 

PC68R50EB-162 / h1 -645 4.1 1.8 217 83 92497 

PC68R50EB-162 / h2 -690 31.4 13.5 657 119 4273 

PC68R50EB-162 / h3 -687 46.3 19.9 556 116 1247 

PC68R50EB-162 / h4 -656 17.0 14.5 245 93 890 

PC68R50EB-162 / h5 -627 57.5 57.5 625 130 880 

Table 4.13 : Polarization parameters for the coating PC50R50EB-118 on aluminium 

in 0.1 M H2SO4 with increasing exposure time 

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-2

) 

CR 

(mpy) 

βa      

(mV) 

βc      

(mV) 

Rp 

(Ω.cm
2
) 

BARE -663 34.8 15.0 512 111 1206 

PC50R50EB-118 / h1 -660 21.5 9.3 753 134 34184 

PC50R50EB-118 / h2 -643 46.3 19.9 560 120 1709 

PC50R50EB-118 / h3 -618 45.0 19.3 314 104 955 

PC50R50EB-118 / h4 -614 49.7 49.7 437 117 855 

PC50R50EB-118 / h5 -597 49.3 21.1 535 122 804 
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Table 4.14  : Values of the elements of equivalent circuit required for fitting the EIS of aluminium in 0.1 M H2SO4 solution in absence and 

presence of varying coating types with increasing exposure time 

 

Aluminium 

Electrode - 0.1 M 

H2SO4 

Rs 

(Ω.cm2) 

CPEdl. Yo.105 

(Ω-1.sn.cm-2) 
ndl 

     R1    

(Ω.cm2) 

C1     

(µF.cm-2) 

R2 

(Ω.cm2) 

C2      

(µF.cm-2) 

R3 

(Ω.cm2) 

W.Yo 105 

(Ω-1.s5) 

Cel     

(µF.cm-2) 

CPEel. Yo.105        

(Ω-1.sn.cm-2) 
nel 

Rel 

(Ω.cm2) 

BARE 4.88 2.89 0.950 1222 
         

CF-R 11.32 19.67 0.540 36.03 3.40 0.05 0.00 0.01 5.113 13.65 
  

20576 

P50R50EB-162 / h1 15.45 28.41 0.690 916.42 1.77 3906 1.03 34877 38.6 0.01 
  

29.76 

PC68R50EB-162 / 

h1 
0.00 7.08 0.350 0.00 0.001 290 0.02 1.62 0.078 

 
0.36 0.94 84956 

PC50R50EB-118 / 

h1 
1.61 0.42 0.530 0.001 0.002 52.08 8.73 34249 0.065 

 
3.00 0.40 0.87 

P50R50EB-162 / h5 14.79 114.38 0.420 32.35 7.16 194 2647.70 0.34 2596E+4 0.24 
  

898.32 

PC68R50EB-162 / 

h5 
12.83 19.75 0.660 15.06 6.72 37.10 15.72 94.11 5.44E+14 29.64 

  
703.28 

PC50R50EB-118 / 

h5 
13.84 45.16 0.580 20.81 6.92 143.8 0.00003 0.00 216E+8 28.63 

  
617.32 
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4.4 Measurements in Sea Water 

In this part of the study corrosion phenomena of carbon steel was examined by 

polarization and EIS measurements in %3.5 (w/w) seawater.  

Figure 4.39 shows the Rp values of bare and coated electrodes (P50R50-032, 

PC68R50EB-162 and PC50R50EB-118). All of the coatings have much larger loop than 

the bare electrode which means the coating is effective for corrosion protection.  
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Figure 4.39 : Nyquist plot of bare carbon steel and 0.32 % concentration coatings of 

PANI and PANI/CeO2 in seawater 

Figure 4.40 shows the Tafel plot of bare, P50R50-032 and PC85R50-032 coated 

electrodes after 1 hour of exposure to sea water. There is a shift to a more positive 

corrosion potential which shows that the coatings inhibit the anodic reaction by 

acting as a barrier layer between electrode surface and corrosion environment [27]. 
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Figure 4.40 : Polarization curves of bare and 0.32 % concentration coatings of PANI 

and PANI/CeO2 in 3.5 % seawater 
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Figure 4.41 shows the impedance measurement results of bare, P50R50-032, PC85R50-

032, P50R50EB-162 and PC50R50EB-118 coatings on carbon steel in 3.5 % seawater. 

Results indicate that the coatings including emeraldine base form of PANI and 

PANI/CeO2 (PC68R50EB-162 and PC50R50EB-118) have much better corrosion 

protection efficiency. Although polymer concentration used for PC50R50EB-118 

coating is lower than P50R50EB-162 coating, it has a bigger loop than P50R50EB-162. 

This result shows that inclusion of CeO2 nanocomposite to the PANI structure 

provides a more protective coating.  This might be due to better durability of CeO2 

nanocomposite.  
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Figure 4.41 : Nyquist plot of bare, P50R50-032, PC85R50-032, P50R50EB-162, 

PC68R50EB-162 and PC50R50EB-118 coatings on carbon steel in 3.5 

% seawater. 

Figure 4.42 depicts the equivalent circuits to model electrochemical behavior 

belonging to P50R50-032, PC85R50-032, P50R50EB-162 and PC50R50EB-118 coated 

carbon steel in 3.5 % seawater. The electrochemical circuit model is represented by 

the conventional equivalent circuit consists of a series of a resistor and capacitor. 

Rs(Q (Rp W)) where Rs is the uncompensated ohmic resistance between the working 

electrode and the reference electrode, Rp is the polarization resistance and Cdl is the 

differential double layer capacitance which represents the total capacitance at the 

metal/electrolyte interface and Zw is the Warburg impedance which represents the 

diffusion processes within the pores in case of coated metal/solution interface [1, 27]. 
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This is also complying with the circuit models belonging to previously studied 

coatings in H2SO4. 

It is observed that a reasonable accuracy of the fitting was obtained. Chi-square is in 

the order of 10
-3

 and 10
-4

 for all the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42: Values of the elements of equivalent circuit required for fitting the EIS 

of P50R50-032, PC85R50-032, P50R50EB-162 and PC50R50EB-118 

coatings on carbon steel electrode in sea water 

 

From Table 4.15, it is clear that emeraldine base form of PANI provides a better 

corrosion resistance in sea water. Addition of CeO2 causes a slight increase in Rp 

value.  

Table 4.15 : Values of the elements of equivalent circuit required for fitting the EIS 

of carbon steel in 3.5 % seawater in bare electrode and varying coating 

types  

Circuit 

Model 

Carbon Steel 

Electrode - 

3.5% sea water 

Rs 

(Ω.cm
2
) 

Rp 

(Ω.cm
2
) 

CPEdl. 

Yo.10
5
 (Ω

-

1
.s

n
.cm

-2
) 

ndl 
W.Yo 

(Ω
-1

.s
5
) 

IE% 

R(QR) BARE 5.12 1187.88 30.44 0.793 0.005115   

R(Q(RW)) P50R50-032 18.29 7118.23 10.99 0.658 58650000 83 

R(Q(RW)) PC85R50-032 16.67 9425.63 7.67 0.642 2771000 24 

R(Q(RW)) P50R50EB-162 36.27 20982.70 2.81 0.650 0.004462 55 

R(Q(RW)) PC50R50EB-118 30.30 23325.28 3.15 0.699 349.1 10 

Figure 4.43 shows the bode plots of bare, P50R50-032, PC85R50-032, P50R50EB-162 

and PC50R50EB-118 coatings on carbon steel in 3.5 % seawater. Results indicate that 
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the coatings including emeraldine base form of PANI and PANI/CeO2 (PC68R50EB-

162 and PC50R50EB-118) have much better corrosion protection efficiency. 
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Figure 4.43 : Bode plot of bare, P50R50-032, PC85R50-032, P50R50EB-162 and 

PC50R50EB-118 coatings on carbon steel in 3.5 % seawater. 

Figure 4.44 shows the polarization curves of bare, P50R50-032, PC85R50-032, 

P50R50EB-162 and PC50R50EB-118 coated carbon steel in 3.5 % seawater. The 

corrosion current of the 1.18% emeraldine base form coating of PANI/CeO2 

(PC50R50EB-118) has almost the same curves as 1.62% emeraldine base form of pure 

PANI coating (P50R50EB-162). Ecorr, Icorr, βa, βc, CR, IEIcorr and IERp values 

obtained from these graphs are listed in Table 4.16. 
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Figure 4.44 : Polarization curves of bare, P50R50-032, PC85R50-032, P50R50EB-162 

and PC50R50EB-118 coated carbon steel in 3.5 % seawater 
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Table 4.16 : Polarization parameters of coatings on carbon steel in 3.5 % seawater  

  

Ecorr   

(mV) 

Icorr 

(µA.cm
-

2
) 

CR 

(mpy) 

βa 

(mV) 

βc 

(mV) 

Rp 

(Ω.cm
2
) 

IEIcorr 

(%) 

IERp 

(%) 

BARE -666 2,65 1,22 34 70 1217 
  

P50R50-032 -644 2,51 1,15 75 383 5831 5 79 

PC85R50-032 -617 2,21 1,01 70 293 8144 17 85 

P50R50EB-162 -574 2,01 0,92 89 1693 19505 24 94 

PC50R50EB-118 -571 1,72 0,79 89 1xe15 22823 35 95 

Aluminium metal could not be measured in seawater since the coated aluminium 

electrodes give a very high corrosion resistance in seawater and the obtained value 

were out of the range of instrument each trial. As a result, the measurements of 

aluminium electrodes in seawater could not be conducted. This can be further 

investigated by reducing the film thicknesses of the coatings.  

4.5 SEM (Scanning Electron Microscopy) Measurements 

Morphology of commercially purchased CeO2 nanoparticles, synthesized PANI, 

PANI/CeO2 nanocomposite samples were investigated by SEM measurements.  

CeO2 nanoparticle contrubition in the synthesized PANI/CeO2 nanocomposite 

structure can clearly be seen in the Figure 4.45-4.47.  

 

 

 

 

 

 

 

Figure 4.45 : SEM images of CeO2 nanoparticles with a magnification of a) x6000 

b) x10000 

 

 

 

a b 
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Figure 4.46 : SEM images of PANI/CeO2 nanocomposite with a magnification of  a) 

x6000 b) x10000 

 

 

 

 

 

Figure 4.47 : SEM images of pure PANI with a magnification of a) x6000 b) x10000 

Morphology of pure PANI and PANI/CeO2 coatings on carbon steel electrodes can 

be seen in Figure 4.48 and Figure 4.49. Pure PANI coatings have a rough and curved 

structure whereas PANI/CeO2 nanocomposite coating has a uniform, smooth 

structure. This morphology improvement can be attributed to one of the reasons of 

better corrosion protection property of PANI/CeO2 nanocomposite coating compared 

to pure PANI coatings. 

 

 

 

 

Figure 4.48 : SEM images of pure PANI coating with a magnification of a) x300 b) 

x1000 c) x10000 
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Figure 4.49 : SEM images of the coating including PANI/CeO2 nanocomposite with 

a magnification of a) x300 b) x1000 c) x10000 

After exposure to 0.1 M H2SO4 solution for 1 hour, both of the coatings defects 

started due  to corrosive effect of the electrolyte. 

The dots in the figures (Figure 4.50-4.51) may be indicating the presence of SO4
-2

 

anions that act as a dopant ions and cause surface cracking.  

 

 

 

 

 

Figure 4.50 : SEM images of the coating including PANI/CeO2 nanocomposite after 

1 hour exposure to 0.1 M H2SO4 with a magnification of a) x300 b) 

x1000 c) x10000  

 

 

Figure 4.51 : SEM images of the coating including pure PANI coating after 1 hour 

exposure to 0.1 M H2SO4 with a magnification of a) x300 b) x1000 c) 

x10000  
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5.  CONCLUSIONS  

In this study,  the corrosion behaviour of pure PANI and PANI/CeO2 nanocomposite 

coatings on carbon steel and aluminium metals in corrosive environment was 

investigated by steady-state current-voltage curves and  impedance spectroscopy 

measurements.  

Synthesized PANI and PANI/CeO2 nanocomposite polymers were characterised by 

FTIR, solid state conductivity, UV-Visible Spectroscopy and SEM analysis and it is 

confirmed by the analysis results that the polymer and nanocomposite were 

sucsessfully synhesized. It is also evident from the SEM images that the coatings of 

PANI/CeO2 nanocomposite has a more uniform coating whereas pure PANI coatings 

have a rough and curved structure, which can effect the corrosion protection 

efficiency of  PANI/CeO2 nanocomposite in a positive way.  

Coatings including different ratios of both PANI and PANI/CeO2 polymers were 

investigated for their corrosion protection properties. In addition to emeraldine salt 

forms of the polymers, emeraldine base forms of both species were used in order to 

have  more concentrated polymer solutions due to better solubility which increased 

PANI content of coatings.  

The initial measurements were conducted in 0.1 M H2SO4 both for carbon steel and 

aluminium electrodes after 1 hour immersion to corrosive media. It is evident that 

both coatings inhibit corrosion of bare electrodes. The increase in polymer 

concentration effects the corrosion protection efficiency of the coating positively. 

PANI/CeO2 polymers coatings showed slightly better corrosion protection efficiency 

over pure PANI coatings both for carbon steel and aluminium electrodes, which 

shows the advantage of CeO2 nanoparticle contrubition in the coating.  It is evident 

from the polarization curves that the coatings retard both anodic and cathodic 

reactions. In other words, they reduce the anodic dissolution and also retard the 

hydrogen evolution reaction. The PANI/CeO2 nanocomposite coating with 1,62 % 



 
72 

showed best corrosion protection performance on carbon steel and aluminium 

electrodes in 0.1 M H2SO4.  

The corrosion protection efficiencies of the coatings including emeraldine base form 

of polymers were also measured with increasing exposure time. It was observed that 

the coating degradetion increased and consequently corrosion currents and corrosion 

rates increased as the exposure time to corrosive media increased. The differnace in 

corrosion protection property of the coatings became close to each other by 

increasing exposure time, which may be due to the effect of corrosion product 

formation on the electrode sureface.  

EIS measurements were also supported by equivalent circuit models and it is 

observed that a reasonable accuracy of the fitting was obtained. Chi-square is the 

order of 10
-3

 and 10
-4

 for all the experimental data. Rp values obtained by equivalent 

circuits and experiments are in agreement with each other.  

In order to see the protection performance of coatings in different corroion media, 

measurements in 3.5 % seawater for carbon steel electrodes were also carried out.  

Results suggest that the same concentration of PANI / CeO2 nanocomposites have 

better corrosion protection efficiency compared to pure PANI coatings even in 

emeraldine salt form which has lower concentration. The best performance was 

obtained by the coating PC50R50EB-118 in 3.5 % seawater. 

It can be concluded that corrosion protection properties of coatings on carbon steel 

and  aluminium metals can be improved by PANI/CeO2 nanocomposite. 
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