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ABSTRACT

KALEIDOSCOPE OF QUANTUM COHERENT STATES AND UNITS
OF QUANTUM INFORMATION

In the present thesis, we study superposition of coherent states as the kaleido-
scope of quantum coherent states, associated with regular n-polygon symmetry and the
roots of unity ¢g* = 1. These states are generalizations of the Schrédinger cat states,
corresponding to the roots of unity g*> = —1. To describe physical characteristics of kalei-
doscope states, we introduce new type of mod n exponential functions as a superposition
of exponential functions in the form of discrete Fourier transform. These functions are
also known as generalized hyperbolic functions, satisfying ordinary differential equations
with proper initial conditions.

Kaleidoscope states are eigenstates of n-th order eigenvalue problem for annihila-
tion operator and are not minimal uncertainty states. These states are described as quan-
tum Fourier transform of Glauber coherent states. Normalization factors, uncertainty
relations, average number of photons and coordinate representation for these states are
found in a compact form by mod n exponential functions. The set of kaleidoscope states,
as orthonormal computatitonal basis of quantum states, describes generic qudit unit of
quantum information. Relations of kaleidoscope states with quantum group symmetry
are discussed. The special cases of trinity and quartet states, corresponding to qutrit and

ququat units of quantum information are treated in details.
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OZET

ES UYUMLU KUANTUM DURUMLARININ KALEYDOSKOBU VE KUAN-
TUM BILGISININ BIRIMLERI

Bu tezde, es uyumlu durumlarin kuantum birlestirimi olarak n kenarli diizgiin
cokgen ve ¢g** = 1 birimin kokleriyle iligkili es uyumlu kuantum durumlarmmn kaley-
doskobu caligilmistir. Bu durumlar g*> = —1 birim kokiine karsilik gelen Schrédinger’in
kedisi durumlarinin genellestirilmesidir. Kaleydoskop durumlarinin fiziksel 6zelliklerini
olusturmak i¢in, ayrik Fourier doniisiimii ile iistel fonksiyonlarin kombinasyonu olan
yeni tipteki mod n iistel fonksiyonlar1 tamimladik. Ayrica, bu tipteki fonksiyonlar uy-
gun baslangic kosullariyla adi diferansiyel denklemlerin ¢coziimleri olan genellestirilmis
hiperbolik fonksiyonlar olarak da bilinir.

Kaleydoskop durumlar1 yok etme operatoriiniin n-inci dereceden 6zdeger prob-
leminin 6zdurumudur ve minimum belirsiz kuantum durumlar1 degildir. Bu durumlar
Glauber es uyumlu durumlarin kuantum Fourier doniisiimii olarak tanimlanir. Mod n
fonksiyonlart ile bu durumlarin normallestirme faktorleri, belirsizlik iligkileri, fotonlarin
ortalama degerleri ve koordinat temsilleri kompakt bir formda bulunmusgtur. Ortonormal
hesaplama bazi olarak kaleydoskop durumlarin kiimesi, kuantum bilgisinin kiidit(qudit)
birimini tammlar. Kaleydoskop durumlarin kuantum grup simetrisi ile iligkisi ¢caligilmustir.
Ozel olarak, kutirit(qutrit) ve kukuat(ququqat) kuantum bilgi birimlerine karsilik gelen
tclii(trinity) ve dortlii(quartet) durumlar detayl bir sekilde inceledik.
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CHAPTER 1

INTRODUCTION

The symmetry as a harmony of propotions, like the mirror symmetry, symmetry
of crystals, symmetry of elementary particles and their interactions, has a long history.
Starting from ancient times, it appears in art works, decorations, paintings and architecture
design (Weyl, 1952). Then, it was formalized mathematically as the concept of group
and its representation. This mathematical formulation leads to symmetry classification of
elementary particles in modern physics, crystal structures and fundamental interactions.
The concept of beauty is directly related with symmetry, as the golden ratio propotion
and Albrecht Diirer followed this to establish standards of human body propotions (Wey],
1952). Vitruvius gave definition of symmetry, appearing as a harmony, composed by parts
of unity with unity itself. More detalized relation between symmetry and mathematics are
described in Birkhoft’s Aesthetic Measure. Pythagoras considered circle as a most perfect
geometrical object, due to complete rotational symmetry. As Hermann Weyl expressed,
the symmetry is an idea by which the human during centuries is trying to understand and
create order, beauty and perfection (Weyl, 1952).

From variety of different kind of symmetries, the symmetry related with rotation in
plane for angle Zn—” corresponds to discrete group of rotations. In this case, the elementary
rotation around the fixed axes to angle 2,—1”, O = e can generate by iterations, all terms in
the group Q, 0%, ...,Q"', 0" = Q° = 1. This group is completely characterised by order
n. It was explored in architecture for decoration of columns, cells and buildings (Weyl,
1952). This type of symmetry also appears in nature as symmetry of leaves of flowers and
snowflakes. The group, consisting of application of one rotation e’ ', where n is an integer
number, is called the cyclic group C,. For example, architecture dominates the hexagon
symmetry C, in buildings. Threefold symmetry with group Cj is frequently associated
with magic symbols of Celts and trinity symbols of Christian religion.

Geometrically, C,, symmetry is related with regular polygon, and this polygon can
be generated by reflections in two mirrors, representing the wedge with angle Z.

This become origin of a kaleidoscope (Fig 1.1), which is an optical instrument
with two mirrors as a wedge domain. Then, one or more objects in this wedge domain are
seen as a regular symmetrical pattern (Fig 1.2) due to repeated reflections. The name is

invented by David Brewster in 1817 from the ancient greek ka16¢ (kalos), eidog (eidos),



" form, shape" and okorew (skopeo), "to look to, to examine". This means "observation

of beautiful forms"(Online Etymology Dictionary).

Figure 1.1. Kaleidoscope Figure 1.2. Symmetrical pattern

In electrostatics and hydrodynamics, the kaleidoscope principle relates with so
called method of images. The method of images is a mathematical tool for solving prob-
lems, in which the domain of a function can be extended to its mirror image. As a result,
specific boundary conditions allows one to solve original problem easily for hydrody-
namics of incompressible and irrotational fluid flow in the wedge domain. This method,
formulated for an arbitrary flow is known as the wedge theorem (Pashaev, 2015). In par-
ticular, this wedge theorem allows to construct from the given vortex in plane, the vortex
kaleidoscope, corresponding to the wedge domain.

Analytic description of hydrodynamics flow by complex analytic function can
be related with description of quantum states. This representation is called the Fock-
Bargmann representation (Peremolov, 1997). In this representation, an arbitrary state in
Fock space, projected to the coherent states can be described by complex analytic func-
tion. This implies that the idea of method of images and the kaleidoscope of images can
be applied also to quantum states. The main tool for this construction is based on coher-
ent states. The coherent states were introduced by Schrondinger in 1926 (Schrodinger,
1926) to describe non-spreading wave packet of quantum oscillator. These states, as su-
perposition of Gaussian wave functions, minimize Heinsenberg uncertainity relations and
represent most classical quantum states. The states are related with Heinsenberg-Weyl
group, constructed from coordinate and momentum operators. In 1963, Glauber has ap-
plied coherent states for description of photons and the states are called "Glauber coherent

states" (Glauber, 1963). The Glauber coherent states have wide applications in quantum



optics (Klauder and Skagerstain, 1985), (Wolfgang, 2001). Especially, in recent research
related with construction of entangled photon states for quantum information and com-
putation processing (Sanders, 1992), (Munro, Milburn and Sanders, 1974), (Cochrane,
Milburn and Munro, 1999). Therefore, fundamental question is how to create units of
quantum information from quantum states of photons.

The coherent states of photons become important tool to study quantum informa-
tion, but the problem is that the set of coherent states is not orthogonal. The inner product

of coherent states

<a|ﬁ> — e—%mﬁ—%w%aﬁ (1'1)

is never zero. Therefore, the coherent states can not be directly used to describe quantum
information units. These states are orthogonal approximately; for @ > 2, (a| — a)| <
1.1x1077 (Ralph, Gilchrist, Milburn, Munro and Glancy , 2003). However, it is still im-
portant from theoratical point of view to have exactly orthogonal states from coherent
states of photons. The simplest idea is to use superposition of coherent states and impose
some orthogonality conditions on it. There is well known Gram-Schmidtt orthogonal-
ization procedure to create orthogonal state to the given one. But it is not constructive
and symmetric way for an arbitrary number of coherent states. The first example of two
orthogonal states, as superposition of two coherent states was derived in 1974 (Dodonov,

Malkin and Manko, 1974) in the form

lcat,) = lay) = N (o) + | —«@)) , |cat,) =la_) = N_(la) — |- a)) . (1.2)

These states are called the Schrodinger cat states. They are orthogonal and normalized.
Several researchers use them for description of a single qubit, as a unit of quantum in-
formation for photons (Sanders, 1992). The tensor product of these states describe two
qubit entangled photon state (Munro, Milburn and Sanders, 1974), (Cochrane, Milburn
and Munro, 1999).

It is known that qubit, as a unit of quantum information represents quantum ver-
sion of a bit, as a unit of classical information. It is characterized by two orthogonal states
|0) and |1). A bit and qubit are based on binary representation of numbers with base 2.
However, for quantum information processing, ternary and quaternary number systems

could be more efficient with base 3 and 4 as basis for position notation. Such quantum



states for n = 3 are called the qutrit. Then, the problem appears how to construct these
states from coherent states since qutrit requires three orthogonal basis states.

In present thesis, we propose a unique approach to construct superposition of co-
herent states, based on kaleidoscope symmetry of regular n—polygon and the roots of
unity. This superposition gives kaleidoscope of quantum coherent states. The construc-
tion has form of the quantum Fourier transform. For description of kaleidoscope of quan-
tum states, we introduce superposition of exponential functions with mod n symmetry.
This type of functions has been discussed as generalized hyperbolic functions in math-
ematical research (Ungar, 1982). Our study shows that they can be applied to represent
physical characteristics of kaleidoscope states and units of quantum information.

The thesis is organized as follows.

In Chapter 2, we give short introduction to consepts of qubit, Bloch sphere, one
qubit gates and generic unit of quantum information as qudit.

Definition and main properties of Glauber coherent states are subject of Chapter
3. In Section 3.1, the Heinsenberg-Weyl algebra is introduced. In Section 3.2, relations
between coherent states and complex plane are given. Also, matrix representation, in-
ner product, completeness relation and Heinsenberg uncertainty relation are discussed.
Average number of photons in coherent states is calculated in Section 3.3. We identify
coordinate representation of coherent states in terms of Hermite polynomials in Section
3.4.

Chapter 4 is devoted to mod n exponential functions, which are associated with
primitive roots of unity. In Section 4.1, we start with definition of scale and phase invari-
ance. Section 4.2. introduces even and odd exponential functions as mod 2 exponentials.
Factorization of mod 2 exponential functions, with operator argument is constructed in
Section 4.3. Then, we derive mod 3 functions and mod 3 exponential functions in Section
4.4. Generalizations to mod 4 functions (Section 4.6) and mod n functions, associated to
arbitrary roots of unity (Section 4.8) are studied. In Section 4.9, the ordinary differential
equation for mod n exponential functions is derived. Applications to the Fock-Bargmann
representation and kaleidoscope of quantum coherent states are discussed in Section 4.10.
Mod n displacement operator and mod n Hermite polynomials are studied in Sections 4.11
and 4.12, respectively.

In Chapter 5, we introduce the Schrodinger cat states by mod 2 exponential func-
tion with operator argument (Section 5.1). Then, eigenvalue problem for cat states are
obtained in Section 5.2. Number of photons in these states are derived in Section 5.3 in

terms of mod 2 exponential functions. Then, fermionic representation of cat states is sub-



ject of Section 5.4. The Heinsenberg uncertainty relations for these states are constructed
in Section 5.5. Coordinate representation of cat states is described in Section 5.6.

In Chapter 6, trinity states are introduced and main properties of these states are
studied (Section 6.1,6.2). In Section 6.3, mod 3 form of trinity states is defined. In Section
6.4, the eigenvalue problem for cubic power of annihilation operator is derived. Then,
number of photons in trinity states is calculated in Section 6.5. Matrix representation of
operators in trinity basis and Heinsenberg uncertainty relation for trinity states are derived
in Section 6.6 and 6.7.

In Chapter 7, we give definition of quartet states, and relate them with cat states
(Section 7.1). We represent quartet states in mod 4 form in Section 7.2. Eigenvalue
problem (Section 7.3) for quartet states is constructed. Then, number of photons in these
states are derived in terms of mod 4 exponential function in Section 7.4.

In Chapter 8, we generalize the procedure to the n orthonormal states as kaleido-
scope of quantum coherent states (Section 8.1). The form of these states, related with mod
n exponential functions is given in Section 8.2. Then, we construct eigenvalue problem of
kaleidoscope states and derive qudit coherent states in Section 8.3. Matrix representation
of operators in this basis is found in Section 8.5. We identify Heinsenberg uncertainty re-
lation for kaleidoscope states by mod n exponential functions in Section 8.6. Coordinate
representation of kaleidoscope quantum states is derived in Section 8.7 by using mod n
generating function for Hermite polynomials.

Chapter 9 is devoted to quantum group symmetry, which is related with our con-
struction of kaleidoscope of quantum coherent states.

In Conclusion, we summarize our results. Some calculations are given in appen-

dices A,B,C and D.



CHAPTER 2

INTRODUCTION TO QUANTUM INFORMATION

This chapter introduces the basic notions and principles of quantum information

based on (Benenti, Casati and Strini, 2004).

2.1. Qubit as a Unit of Quantum Information

A classical bit is a system, which can exist in two different states that are repre-
sented by 0 and 1. An arbitrary integer a in binary representation, positional notation with

base 2, is

a = a2"+a, 2"+ +a2' + ap2°, (2.1)

AnQpy ** - 100 (2.2)

where a; = 0,1 and k = 0, 1,...,n. In quantum theory , this number is represented by

vector
Ay -+ - A100) = |ay) ®la,-1) @ - ®la;) ® |ag) (2.3)

inC’®C?*®---®C?®C? = C*"*D dimensional Hilbert space. Every vector |a;) € C? in
this tensor product represent state |0) or |1). Superposition of these states determines the
qubit state. A quantum bit or qubit is a two-level quantum system, described by vector in
a two-dimensional complex Hilbert space C2. In this space, one can introduce a pair of

normalized and orthogonal quantum states,

1 0
10) = [ ] 1) = [ ] 24)
0 1



corresponding to values 0 and 1 of classical bit. These two states form a computational

basis. From superposition principle, any state of the qubit can be written as

@p
) = aol0) + a4|1) = [ } ; (2.5)

ay

where the amplitudes @ and 8 are complex numbers with normalization condition
o+l * = 1. (2.6)

In two level system, |0) is called as the ground state and |1) as the excited state. Another
realization of qubit is by using particles with two spin states: the "down" state | |) and
the "up" state | T) corresponding to |1) and |0) states respectively. Due to that, any such

system can be mapped onto an effective spin% system.

2.1.1. The Bloch Sphere

By parametrizing qubit state (2.5) with @ = cos§ and B = € sin 5, satisfying
(2.6) up to the global phase factor, we get the Bloch sphere representation with latitude
and longitude (6, ¢), where 0 < 6 < mand 0 < ¢ < 2.

0 . 0 cos ¢
) = cos <|0) + e sin =|1) = ‘ 2 2.7)
2 2 ¢ sin §

It provides a geometric picture of the qubit states as points on the unit sphere S>. This
representation helps also in visualizing of unitary transformations acting on qubits as

rotations and reflections of Bloch sphere.

2.1.2. Measuring States of Qubit

The qubit state can be measured in the computational basis. When the qubit state

/) is measured , there are two possible outcomes:



e |0) state with probability p, = [{Ol)I* ,
e |1) state with probability p; = [{1])[*.
This follows from the completeness of states |0) and |1) according to proposition.

Proposition 2.1 Computational basis is complete:

1= 1001 + [1(1]. (2.8)

From completeness relation (2.8), we can write the qubit state as

) = 1ly) = (I0><0l + |1><1|)Il//> (COl))I0) + ((L))IT) (2.9)

al0) + B|1) (2.10)

where @ = (Oly), B = (1|y). This gives probabilities for these states as py = [(Oy)|* =
lal> = cos® £ and p; = [(1|y)]* = |B]*> = sin” £. Then, normalization condition means that

in the measurement of qubit , the total probability should be one , py + p; = 1.

2.2. One Qubit Gates

The linear transformations on a qubit, preserving normalization condition (2.6)

are described by 2x2 unitary matrices, satisfying

vut=U'U=1. (2.11)

These unitary transformations move a qubit from one point to the another point on Bloch

sphere, which corresponds to rotation or reflection of the Bloch sphere.

2.2.1. Hadamard Gate and Phase-Shift Gate

In the following, we introduce basic unitary transformations acting on one qubit,

as the Hadamard gate and the phase-shift gate.



Definition 2.1 The Hadamard gate is defined as

PI—I b (2.12)
V2l a1 | '

This gate transforms the computational basis {|0), |1)} to the new basis {|+), |—)}, which is

called the Hadamard basis, as superposition of computational states:

n 1 1 1

H|0) = —(|0 1)) = = — , 2.13
0) = (0 +1D) = 1) \5[1] (2.13)

Ay = oy =y =y = | ! (2.14)
V2 2 A '

From this, completeness relation is valid also for the Hadamard basis:
I =)+ + =) (2.15)

The Hadamard gate (2.12) is both Hermitian and unitary. It satisfies following properties

A

i) Hermitian: H = A,
ii) Unitarity: H = A~ = A*>=1.

Definition 2.2 The phase-shift gate is defined as

Rz(e):[l 0 } (2.16)

0 eiH
This gate IAQZ(H) acts on the computational basis |0), |1) in the following way,

R.(6)(0)
R.(6)I1)

10}, (2.17)
e”[1). (2.18)



and for a single-qubit state i), it gives

ROW) = 1 0 cos%’ B cosg 2.19)
) 0 ¢ || e“sing 9 sin § ' .

This shows the counter-clockwise rotation on the Bloch sphere with angle 8 about z-axis.

2.2.2. Pauli Gates

Definition 2.3 Pauli matrices 6,6y and 6,

define the Pauli gates or X,Y and 7 gates: X = & ,¥Y = 6> and Z = 6.
These matrices have the following properties:

i) l=06=02=1

ii) 0o+ 00 = 204, k,1=1,2,3

iii) @']é’zzié'g, 6'26'3:i6'], é'g@']zié'g

From this, the commutation relations hold:
[01,62] = 2i63, [0, 63] = 2i6, [03,601] = 2i6 (2.20)

On computational basis, these Pauli gates act as
i) &1100=11),  &l1)=10)  (The flipping gate)
ii) 6,|0) = +i|1), 0|1y = —i|0) (The phase-flipping gate)

iii) 75/0) =10), asl|l)y = —-1]1) (The phase-shift gate with 6 = )

10



Pauli matrices can be written as follows:

G = 10)(1] + [1)}0] (2.21)
> = —1|0)(1]| + 7]1){0] (2.22)
G35 = [0)0] = [1)1 (2.23)

Especially, Pauli matrices 61 and &3 represent an example of so called the clock and shift

matrices in two dimensions. These matrices are connected by the Hadamard gate H :
61 = HoH' . (2.24)

Generalization of this relation for qutrit, ququad and qudit, we will discuss in Chapter 9.

2.3. Universality of One Qubit Computations

For quantum computation, important is principle of universality, allowing to rewrite
arbitrary quantum gate as implementation of finite number of fundamental gates. The fol-

lowing theorem establishes universality for one qubit gates;

Theorem 2.1 Any unitary operation acting on a single qubit can be constructed using
only Hadamard H and phase-shift R.(0) gates. This is why, these gates are called univer-

sal one-qubit gates.
The proof of this statement consists from two steps;

i)First, we show that V|y) can be generated from |0) by H and IAQZ(G) gates as

= o (cos ? o sin 21y) = k(T ) 4
W) = e (cos J10) + ¢ sin 2|1>)_RZ( 2+¢)HRZ(0)H|O) (2.25)
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Indeed, by using matrix form of gates, we have

R. (g + ¢) HR.(0)A0)

10 |1
0 ¢(3+0) | V2
Calr oo [t ot froolfe
200 i || 1 -1 ][0 & ]| 1
Calr oo [ ]
210 e || 1 -1 || €
1o || 1+e?
210 i || 1-e
_ . 0 0
1| 1+ gl == (2.26)
= 5| N | T €7 i g4 |- :
2 i iel¢(1 _ 61(9) el’¢e 22—e2
It gives us one qubit on the Bloch sphere
s < 4 o| cosé o( 6 v . 0
R, (— + ¢) HR.(O)H|0) = e'2| =e"2 (cos —|0) + ¢ sin —|1)) =) (2.27)
2 ¢ sin 2 2

ii) Then, V state [i/;) parametrized by (6;, ¢;) can be transformed to V state [i),) parametrized

by (65, ¢,). It is evident from the following revertable chain

Wy = 10 = ). (2.28)

For first part of this chain,we have
-~ AL T
0) = HR(-0)HR. (<5 = 91 ) 101) (2.29)

Then, the state |/,) can be obtained by

) 2 R(S + 02) AR(OFI0) (2.30)

= R(5+ ) AR@AIR(-0)HR(-S =01 )p). 23D
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Dueto Hi = H! =] , this unitary operator transforms the state i) to the state [i);)

W2y = R (5 + 62 AR0: - 00 AR (=5 = 6 ) o) (2.32)

2.4. Qutrits, Ququads and Qudits

In previous section, we have introduced qubit as a superposition of two orthogonal
states, corresponding to binary representation of numbers. If instead of binary system, one
considers ternary, quaternary, decimal or other number systems, then for corresponding
units of quantum information we need to extend the Hilbert space. These extended units
of quantum information are known as qutrit, ququad and in general qudit, and they could

provide more storage for quantum information and quantum computation.

24.1. Qutrit

The qutrit is analog of the classical trit, which corresponds to ternary position

system. Ternary representation of number b with base 3 is

b = b3 +b, 3"+ + b3 +by3° (2.33)
= bnbn—l te b]b() . (234)

where by is trit which takes values 0,1,2 and k = 0,1, ...,n. In quantum theory, this

number corresponds to vector
buby-r - - - b1bo) = 1by) @ 1by-1) ® - - - @ |b1) ® |bo) (2.35)

inC*eC*®---®C*®C? = C*" dimensional Hilbert space. Every vector |b;) € C* in

this tensor product represents states |0), |1)|2). The qutrit is a unit of quantum information

13



that exists as a superposition of three orthogonal quantum states |0), |1) or |2);

) = @l0) + aill) + asf2)
1 0 0
= a| 0 |+a| 1 |+a2| O],
0 0 1

where the coeflicients are probability amplitudes, satisfying

2 2 2
laol™ + |a|” + |ap|” = 1.

Measurement of one qutrit gives one of the states |k) with probability

i = KkOP = leal’,

(2.36)

(2.37)

(2.38)

(2.39)

where k = 0, 1,2. Comparing with qubits, qutrits require a Hilbert space of higher di-

mension, namely C>. Physically, they can be realized by 3—level quantum system. In

particular case, spin s = 1 particle has 3 orthogonal projections | — 1),|0) and |1) and can

be considered as a qutrit.

2.4.2. Ququat

Quaternary is the base—4 numeral system. It uses four digits O, 1, 2 and 3 for

cr,k=0,1,....,n— 1, to represent any real number ¢

ol + o4 4+ 04,

o
Il

CpCp—1-°C1Cp .

In quantum theory, this number corresponds to vector

CpCp—1 " CICO> = |Cn> ® |Cn—1> - ® |Cl> ® ICO>

(2.40)
(2.41)

(2.42)
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inC*®@C*®---®C*®C* = C*"D dimensional Hilbert space. Every vector |¢;) € C*in
this tensor product, represents states |0),|1),|2) and |3) . The ququat is a unit of quantum

information as superposition of four orthogonal quantum states |0), [1),]2) and |3) ;

) = @0l0) + ail) + a22) + a3(3) (2.43)

where | + o) + |aal? + a3 = 1. Physically, it can be realized by 4—level quantum

system.

2.4.3. Qudit

If one uses representation of positive integer number by finite set of numbers
0,1,2,...,n— 1, the quantum analogue of this number is given by tensor product of quan-
tum states [0),]1),]2),...,|n — 1) from C". Superposition of these states give qudit unit

of quantum information. Qudit, as a generic state is the higher-dimensional analogue of

qubit.
n—1
W) = > aulk), (2.44)
k=0
n—1
where Z lax|* = 1. It corresponds to states of n—level quantum system and all previous
k=0

cases can be considered as particular case of this general qubit state. In the next chapters,
we are going to introduce quantum coherent states in quantum optics and superposition

of these states as units of quantum information.
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CHAPTER 3

COHERENT STATES

In this chapter,we review definition and main properties of coherent states. More

detalized expositions can be found in (Peremolov, 1997) and (Wolfgang, 2001).

3.1. The Heinsenberg Weyl Algebra

In classical mechanics, the coordinate operator x and momentum operator p are
just real numbers but these simplest operators are used in describing a quantum system by

Hermitian operators . They act in the Hilbert space H and satisfy Heinsenberg following
commutation relations:

(3.1)
Here I is the identity operator and % is Planck’s constant , and the bracket means
the commutator [A, B] = AB — BA.

Instead of operators X and p, another pair of operators as the annihilation operator
a and creation operator &' is defined

N X —ip . X+ip
a' = , a= . 3.2)
V2n \2n

(3.3)

The vectors belonging to the Hilbert space are denoted by Dirac’s symbol |\V).
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There is a vacuum vector |0) € H defined as

al0) =0, where (0[0) =1. (3.4)

Application of creation operator n-times to the vacuum state, gives us n-particle state

@

Vn!

In) = 0) , n=0,1,2,.. (3.5)

The vectors |n) form a basis in H. The action of the operators are given by

any = Vnn-1y & a'lny= Vn+1jn+1). (3.6)

There is a number operator N which is Hermitian and defined by multiplication of opera-

tors &, &', with eigenvalues N :

—_—

N=a&'a = Nw=nn ,n>0. (3.7)

3.2. Coherent States and Complex Plane

In this section, we introduce main properties of coherent states (Peremolov, 1997).
A coherent state is the specific quantum state introdued by Schrodinger for the quantum
harmonic oscillator, which has dynamics most close to the behaviour of classical har-

monic oscillator.

Definition 3.1 A Glauber coherent state @) is defined as eigenstate of the annihilation

operator a , with eigenvalue @ € C

ala) = ala). (3.8)
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Now, we want to define displacement operator which generates the coherent states

from vacuum state.

Definition 3.2 The displacement operator D(«), where « € C, is defined by

D(a) = ¢4, (3.9)

Properties of Displacement operator:

e D'(a) =D Ya)=D(-a)  "unitarity” (3.10)
e D(@)aD(a) =a+a (3.11)
e D'(@)a'D()=a"+a (3.12)
e D(a +p) = D(a)D(B)e ") (3.13)

Proposition 3.1 Coherent states are obtained by applying displacement operator D(«)

to the vacuum state:

loy = D(a)|0) (3.14)

Proposition 3.2 The equation |a) = D(«)|0) satisfies the eigenvalue problem for coherent

State.

Proof Starting with

D(a)|0) = |y = aD()|0) = ala), (3.15)

where

aD(a) = faD(a) = D(a)D (@)aD(a) “2" D(a) @ + a) = D(@)a + D(a)a, (3.16)
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then, we have

ala)y = aD(a)|0) = D(a)al0) + D(@)a|0) = aD(a)|0) = ala) (3.17)

Proposition 3.3 The displacement operator D(«), where @ € C, can be written in the

form
D(a) = "' = alof i g (3.18)
Proof We will prove this equation by using Baker—Campbell-Hausdorff formula, which
says that operators A and B with ommutator [A, B] = ¢, where [¢,A] = [¢, B] = 0, give us
A B _ A+Be[A,I§]/2 ) (319)

ee =¢e€

The commutator of A = aa™ and B = —a@a can be calculated as

[A,B] = [ad,-aa] = [a,-aala’ +ala’,—aa] (3.20)
- a (—eﬁaa + aaaf)) (3.21)
= a'a - = —|a)’[a", a] = |ef*. (3.22)
|
By substituting this result into (3.19) , we get
PP L2 aat —aa
"M = gl gl (3.23)
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The coherent state |@) can be written in terms of |0) in a compact form,

aa’

lar) = [0) . (3.24)

€|‘1’|2

Definition 3.3 Representation of coherent states in the Fock basis is
@y = e72lF Z —| ), (3.25)

where |n) is eigenstate of number operator (3.7).

Proof To prove equation (3.25) , we use above results

lo) = D(a)|o>:eaa*-@a|o>—e-%'a'2 e’ ¢~ 0) (3.26)
- it SCT aroy a2
L2 o (1’2
= 2% 10y — @ al0) +— a%|0) +... (3.28)
S~ 2 ——
0 0
_ —§|a/| aaTO _ —%|a|2 (a')n 0 399
e 0) = e ;n.()m (3.29)

s o (a) (aT)”
— 5lal
= e HOW WlO) (3.30)

|n>

“n‘|n> (3.31)
n!

3.2.1. Matrix Representation of Coherent States

Using matrix representation for n-particle states |n), we can find matrix represen-

tation of coherent states. In the Fock basis, |#) has an infinite column matrix form with
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unit element at (n + 1)” place,

10)"
1b
2)"

Iny"

= (1,0,0,..),
= (07 1’05"')7
= (0,0, 1,..),
= (07 O, H 17)

The coherent state |@) has also infinite matrix form with powers of « ;

2
112 o
la) = e 2 [110) + 1) + —[2) + ... +
V2!
0
= il Ll +a_2
0 V2!

an

Vn!

3.2.2. Inner Product of Coherent States

|n) + )

Proposition 3.4 Inner product of two coherent states is given by

(ap) = ¢~ HiP-Husas

Proof For any two coherent states |@) and |8) , we have

(alB)

I
=
iy
g
8

o~ zlol=31BP+ap

(3.32)
(3.33)
(3.34)
(3.35)

(3.36)
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This result implies following corollary;

Corollary 3.1 Coherent states are not orthogonal.

KalB)P = (alB)(Bla) = e (el +BP-aB=o) — o-la=BP 4 ()

Since exponential of complex number is never zero, coherent states are not orthogonal.

3.2.3. Completeness of Coherent States

Proposition 3.5 The collection of coherent states |a), where a € C, forms an overcom-

plete set:
1 .
— | laXa| Pa=1. (3.37)
T Jc
Proof
f laXa| d*a = f ot Z (“)' '|m)(n| da (3.38)
C C nm=o Vnim!
- 'm>f”" f e @y da, (3.39)
nim! C

where the measure d*a = idada, means integrating over the whole complex plane. The
integral in the right hand side of equation (3.39) , say /¢ , can be evaluated by choosing a

in polar form, such that a = re’ and d*a = rdedr

00 271 0o
Ic = f drre_’zr"”"f deg ™ = 271f a’rr(rz)”e_’2 . (3.40)
0 0 0
R ——
2700,

Substitution ¢ = r? to rewrite the integral, by using definition of gamma function

“ dt
27rf > e’ =aT(n+1)=nn! (3.41)
0
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gives the completeness relation

f Xl o= Y Sy
C o n!

O

It is clear that coherent states are not orthogonal, but we say that the set |@) is overcom-

plete, since there is the completeness relation.

3.2.4. Heinsenberg Uncertainty Relation

Coherent states are satisfying minimum uncertainty relation, thus we say that they

are “most classical states”.

h
(A%), (Ap)y = 5 (3.42)

In the proof of Heinsenberg uncertainty relation for the coherent state |a), we will use

definitions of £ and p operators in terms of & and a':
N AL At . R
X = —(a+a) , p=-i —(a—a) (3.43)

Since Heinsenberg uncertainty relation includes expectation value and variance of X and p
operators, these will be calculated respectively. First, we will calculate expectation value

of X and p operators in the coherent state |a),

(Ra = (@lfla) = (alq/5(@+aD)la)
= 4/5{al@+a"e)

2
\/é((awlla) + (al?ﬂla)) = \/g(a/ +a),
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(P)a = (alpla)

(ol - iﬁ(a —a")er)
\[ (l@— a"ery
—z\ﬁ (¢clalery - ¢ela’lery) = \[ (@-a).

Then, variance for coordinate and momentum operators can be calculated as,

<al(\/7(a +&T)] |ar)

(#)a = (l®|)

(o (@ +2a'a+1+ @) le)
h
= 5 (¢ld’la) + 2Aala"ale) + (al) + (@l(@' Vi)

= g(a2+2a5+1+52)=g((a+5)2+1), (3.44)

(P")a = (alp’la)

Il
N
8
|
N St
~~
D
€ |
Q_.
p—
———
(3]
R
~~

h
- _E(WI @lery - Aala’alay - (elary + (al@' )

= —Z(a/ —2aa—1+a2):—§((a—5)2—1). (3.45)

Finally, there are relations between expectation value and variance of coordinate

and momentum operators:

h h
<fc2>a:<fc>i+5 : <ﬁ2>a=<ﬁ>§+§ (3.46)
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Then, by using (A.2), we can calculate uncertainty in coherent states

JO =0, = @, - @2 = @ , (3.47)
h
JOP2E =8P, = PP — (P2 = \g (3.48)

From this, coherent state |@) minimize the uncertainty relations in (3.42). When we calcu-

late deviation of coordinate and momentum operators in state |«@), we observe that it does
not depend on « and results for arbitrary @ correspond to the case @ = 0 or to vacuum

state:

h
, (AP = (AP = <. (3.49)

(AR)? = (AR)} = 7

N Sk

3.3. Average Number of Photons in Coherent States

Proposition 3.6 Matrix representation of number operator N in coherent state basis is

Jaf +]ai* —@B)

(@|N|B) = aB e‘( 2 . (3.50)

Proof We introduce expansion (3.25) for coherent states

—~ e @ ~ 1 B
(@IN|B) = [e-z'“' <n|]N(e-zW' |m)] (3.51)
—  pleP —3182 N2t B
= ¢ 2%e2 (n|N|m) . (3.52)
Since N is the number operator, we have relation N |m) = m|m), so that
—Llaf? _éwzii a" B" (njm) —(’ngwz)i a”"p"
e e minm) = e m
n=0 m=0 \/m \/’W 5 m=0 m!
([l X = (m-1)p (m-1)
o )aﬂz—“ F 333

(m—-1)!

m=1
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Introducing new summation index n = m — 1 gives

MFHMQ_&ﬂ)

(@|N|B) = aB e‘( 2 (3.54)

O

By choosing S = a in (3.50) , average number of photons in coherent state can be calcu-

lated as following;

ool _—

(olfla) = e "3 = joff ¢ (o) = o2 (3.55)

From the eigenvalue equation (3.8), we can also calculate average number of photons in

coherent state :
(alNla) = (ald’ala) = @alala) = |al*, (3.56)

where we have used the formulas ala) = ala) and {(a|a’ = {(ala. According to this result,
modulus square || of complex number « has simple physical meaning as average number

of photons in coherent state |@).

3.4. Coordinate Representation of Coherent States

Coherent state in coordinate representation give non-stationary wave function of
Gaussian form, which is the generating function of Hermite Polynomials. It was shown by
Schrodinger (Schrodinger, 1926) that it provides solution of quantum harmonic oscillator,
where position of Gaussian function oscillates according to equation of classical harmonic

oscillator. In order to find this representation, we consider the wave function

Vo) = () = &8 3" ——(xin) (3.57)
n=0 n

Vn!
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where

2

1 -7
/4 gn/2 A\

(xlny = H,(x).

(3.58)

After substituting and by using equation generating function for Hermite polynomials

H,(x);

X

t )
Z _'Hn(x) =e€ e ’
n

n=0 "~

we get the wave function in Gaussian form

The probability density

1 -
el = —ze V) e

1s the Gaussian distribution with centered at "‘—‘2, where @ = a; + ia».

(3.59)

(3.60)

(3.61)
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CHAPTER 4

MOD N EXPONENTIAL FUNCTIONS

For description of kaleidoscope of coherent states, it is convenient to use new set
of functions. In this Chapter, we introduce the set of functions with mod n symmetry,
related with discrete symmetry of regular polygon and the root of unity g* = 1. These
type of functions have origin from the wedge theorem, describing hydrodynamic flow in
wedge domain with angle Z, (Pashaev, 2015). Exponential form of these functions was
derived as generalized hyperbolic functions in (Ungar, 1982), and some applications to
superposition of coherent states in (Spiridonov V V., 1995). Here we describe properties
of these functions, their relations with discrete Fourier transformation and applications to

non-commutative operator argument.

4.1. Scale and Phase Invariance

Definition 4.1 A function is said to be scale-invariant if it satisfies following property;

f2) = 2£(2), 4.1
for some choice of exponent d € R and fixed scale factor A > 0, which can be taken as a

length or size of re-scaling.

If A = ¢ and as follows || = 1, then this formula gives

f(e¥2) = ' f(2) (4.2)

In this case, rotation of argument z to angle ¢ implies rotation of function f to angle
@d, and scale invariance becomes rotational or phase(gauge) invariance. If 1 = ¢ is the

primitive root of unity

g =1 (4.3)
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so that ¢* = e/, then

f(@72) = 7). (4.4)

This means that rotation of argument z to angle Zn—” of n—sided polygon, leads to rotation of
f on d—times of this angle. We call this as discrete phase gauge invariant function, with
order d. Simplest example of phase invariant functions is given by even and odd functions

with ¢* = 1;

Foen(@®X) = frven(%) s Foaa(@X) = G faa(X) (4.5)

where A = ¢> = —1 and d = 0, d = 1 respectively.

4.2. Even and Odd Exponential Functions

Proposition 4.1 Arbitrary function f(x) is a superposition of even and odd functions.

JX) = feven(X) + foaa(x) , (4.6)
where feyen(—X) = feven(X) = ]w s Joad(—=X) = = foaa(x) = w
Proof It is evident from following identity
foo = TOTED TOZTED _ 0+ fraa). (.7
]
In particular case of standard exponential function we have
o= +2e_x & _2€_x = cosh x + sinh x = ZOO (;Zk)! + ; (;fll)! (4.8)
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It is instructive to rewrite this expression in terms of primitive roots of unity ¢* = 1. If

g*=1,sothat g> =q% = —1 = ¢” , then

e+ el* e+ glet™ I (2 (@0 12" L (g x)"
t = + = = — + + = —+q
¢ 2 2 2 2 PTITI ) 2 m T

n=0 m=0
I v X" I v x"
= AP A5 Y 1+
2 nl——"2 m! — —
n=0 m=0
26}1,0("10112) 25m,1(mr7112)

2k+1

i 2k i X
+ = coshx +sinhx  (4.9)
(2k)! & (2k+ D!

Definition 4.2 mod 2 exponential functions ye* and 1e* are even and odd combinations of

exponential function e*, which are known as with hyperbolic functions:

. Nl x2k e+ eqzx

(mod?2) oe* = kZ; ol 2 2 cosh x, (4.10)
g © x2k+1 e’ + 5Zeq2x )

(mod?2) e = K+ Dl = > = sinh x 4.11)

Here indices 0 and 1 correspond to values of remainder in (mod?2) for even and odd
numbers 2k = 0(mod?2) and 2k + 1 = 1(mod?2). We combine these functions to the

matrix form

ex
[ R ] 4.12)
e?™

where H is the Hadamard gate (2.12). Due to ge™ = ¢e* and 17" = —e”, the standard

exponential can be written as superposition of mod 2 exponential functions:

ot + 1¢* (mod?2), (4.13)

Q
|

o= et = 1" (mod?2). 4.14)

Q
|

30



For arbitrary function f(x) from proposition 4.1 , we have

[kM@F[MﬂFlr 1Hfm]. wis)
faa) || A | 21 g || flgPn)

It implies the inverse transformation

S
f(q*x)

Jo(x) + fi(x), (4.16)
o) + ¢ fi(x) = folx) = fi(x) 4.17)

We call functions fy(x) and fi(x) as mod 2 functions. These functions exist for an arbitrary
analytic function. If f(z) is an analytic function in disk D around the origin, it can be

represented by power series
— |
f@ =), =z (4.18)
£ n!

Then, mod 2 functions fy(x) and f;(x) would include even or odd powers of z correspond-

ingly

= N ok ) 2 - N 1 2Ue+1 )y, 2k+1
ﬁ@—;%j«m , ﬁ@—;ghﬂﬁ O (419)

4.3. Factorization of Mod 2 Exponential Functions with Operator

Argument

It is well known that exponential function with operator argument can be factor-

ized in the form

T
B = etefemal A8l (4.20)
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where A and B are c-commutative: [A,[A, B]] = [B,[A, B]] = 0. Here we are going to

derive similar factorization formulas for mod 2 exponential functions.

Proposition 4.2 Let A and B are two c-commutative operators. Then

S
T
S

0€ = (Oe oe” + 1€ leé)e 4.21)
1eA+B = (OeAleE+ 1ereB)e_é[AB], (4.22)
where [A,[A, B]] = [B, [A, B]] = 0.
Proof We will use definition 4.2 to prove equations (4.21) and (4.22). Then,
i AB 4 o BB) o0y eAeBemalABl 4 o-ApBpIAB)
e = =
4 2 )
L AV B B i A j gy € 2P
= [(06 +1€)(o€ +1€)+<0€ + € )(oe + € )] >
~31A.B]
A~ ~ A ~ A A e 2
= [(0€A+ 1€ )(06 + 1€B)+(0€ = (& )(06 — 163)] >
= [oeoe® + 1t 1P| e AP (4.23)
and
- B _ g AeB) o A gBHAB) _ oA By iAB)
e = =
: 2 2
i, AV( B, B i i B gy €2
= [(06 + € )(06 + e )—(06 + e )(06 + e )] >
-114.8]
N N A N N ~ e 2
= [(06 + e )(0€B+ 163)—(06 4 )(06 — 1€ )] 2
= [oeA leB + 1eA0eB] ¢ 21AB] (4.24)
O
Factorization formula (4.20) gives g—commutative relation between operators e and €,
eheB = A BleBeh = queA (4.25)
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We have analogue of this formula for mod 2 exponential functions due to following propo-

sition.

Proposition 4.3 For operators A and B such that [A,[A, B]] = [B,[A,B]] = 0 following
identities hold

oeA oeB = oeB oeA oe[A’B] + leB leA 1e[A’B] (4.26)
1eA 1€B = 1€B 1eA oe[A’B] + OeB oeA le[A’B] 4.27)
OeA leB = leB oeA 0e Bl 4 oeB 1eA 1e[A’E] (4.28)
1eA OeB = OeB 1eA oe[A’B] + 163 oeA le[’m] (4.29)

Proof By explicit calculation,

i B A e A\(ef +eB
e’ e =
0€ 0 > >
Vras, A b, A-B  -ib
= Z[ee+ee +e'e " +e e]
425 1 5 A s i
“2 1 [(eBeA +eBe ) [A.B] | (e BeA + ePe A)e [A’B]]
T T O T
+ ((OeB - 1eB)(OeA + leA) + (OeB + 1eB)(OeA - 1eA) )e_[A’B]]
! A A5 B A_ B A\ -lAB
= 1 oeoe+1eee’+20eoe—1elee’
1 AB] B A AR
= 5[206 Oe 06 +21e” 1e" 1€ ] (4.30)
we find
0e e = oef pet v B 4+ e8| B, 4.31)
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Similar calculations give

i B A —e A\ (B —eB
e’ e =
1€ 1 5 5
Vv ib, i B _ i B _ is
= Z[ee+ee —e'e " —e e]
(4.25) Lo s a [A.B] -B A B _-A\ -[A.B]
= 4[(ee +ee) (ee+ee)e ]
1 AL A b B iB
= ZI:( 06 +1€ 06 +1€)+(0€—1€)(0€—1€))[ ]
B A A B B A A\ ) -[A.B
~ (06" = 1e) (06" + 1) + (e + 1eF) (o€ = 1) e 45
= 2 [2( oeB OeA + 1eB 1eA)e[A’B] - 2( oe? oet — 1eP 1eA)e_[A’B]]
- [20¢% 0 1471+ 2 1€P 1o el (4.32)
so that
1€A 1€B = 1€B 1eA Oe[A’B] ar 0€B OeA 1e[A7B]. (433)
In a similar way, mixed product of mod 2 exponentials can be calculated. O

The mod 2 identities from proposition 4.3 can be rewritten as commutativity relations for

hyperbolic functions of operator argument.

Corollary 4.1 Let A and B are two c—commutative operators , then hyperbolic functions

with operator argument satisfy following identities

coshAcoshB = cosh BcoshA cosh[A, B] + sinh Bsinh A sinh[A, B], (4.34)
sinhAsinh B = sinh Bsinh A cosh[A, B] + cosh B cosh A sinh[A, B], (4.35)
coshAsinhB = sinh Bcosh A cosh[A, B] + cosh Bsinh A sinh[A, B], (4.36)
sinhAcosh B = cosh Bsinh A cosh[A, B] + sinh Bcosh A sinh[A, B], (4.37)

where [A,[A, B]] = [B,[A, B]] =
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Formulas (4.21) — (4.22), implies also addition formulas for hyperbolic functions of op-

erator argument:

cosh( A + E) = (coshA cosh B + sinh A sinh B) —3[A.B] (4.38)
cosh(A - B) = (coshAcosh B - sinh A sinh B) e2AB] (4.39)
sinh ( A + f?) = (sinhA cosh B + sinh B cosh A) ¢ 21AB] (4.40)
sinh ( A — 13’) = (smhA cosh B — sinh B cosh A) e2AB] 4.41)

~

For special case, when [A, B] = 0, these addition formulas reduce to usual formulas for

hyperbolic functions.

4.4. Mod 3 Functions

Here we are going to generalize previous results to the case of mod 3 functions.

Definition 4.3 For arbitrary function f(x), mod 3 functions are defined by formulas

2 4
folr) = f(x) +f(q3X) + fg X)’ 442)
=20 2 — 400 4
A = J)+4q f(q3x)+q f(g x)’ (4.43)
—4 002 =20 4
A = J()+4q f(q3X)+q f(q X)’ (4.44)
where ¢ is primitive root of unity, ¢° = 1.
Proposition 4.4 An arbitrary function f(x) is a superposition of mod 3 functions
Fx) = fo(x) + fi(x) + fo(x). (4.45)

Proof By adding these functions

f) + f(g*x) + f(g*x) L@+ (@) +q"f(q*x)
3 3
F) +q*f(g*x) + g2 f(g*x)
3

= %(3f(x)+(1 +52+c_14)f(q2x)+(1 +64+C_]2)f(q4x))

Jo(x) + fi(x) + fr(x)

35



and using equation (A.8) with ¢ = (¢/3)’ = 1,

q6n — 1 = (q2n _ 1)(1 + q2n + q4n) — O (446)
= 1+¢" +¢" = 361003 (4.47)
= 1+g"+q" = 36,0 (mod3) (4.48)
we have
Jo(x) + fi(x) + f2(x) = f(x). (4.49)
O

As we can notice, structure of functions fy(x), fi(x) and f;(x) in definition (4.3) is de-
termined by superposition of function f(x) at three points x, g*>x and g*x, so that sum
of coefficients for f(¢>x) and f(g*x) are zero due to 1 + ¢* + ¢* = 0. Combining mod 3

functions as the column matrix, we can rewrite definition 4.3 in matrix form;

Jo(x) | 1 1 f(x)
Ao |=311 @ 3 || figo | (4.50)
fa(x) Lg% g* || flg"

This transformation can be considered as a discrete Fourier transformation(see Appendix

C). Moreover, this matrix represents 3 X 3 analogue of the Hadamard gate matrix

1 11 1
H=—|1 32 3|, 4.51
v 0
1 g* g°
which is unitary HH" = I. Then,
Jo(x) f(x)
fi(x) =@PI (@ |- (4.52)
fo(x) f(g*x)
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Mod 3 functions fy(x), f1(x) and f>(x) are phase(gauge) invariant functions with following

transformation rules;

fol@*x) = folx), (4.53)
fil@x) = fi(x), (4.54)
H@x) =q" fH). (4.55)

where ¢° = '3 . If we have complex argument z and f(z) is an analytic in disk D, so that

o 1
f@)= ) —f"Oa". (4.56)
n=0 "

then mod 3 functions are fy(z), fi(z) and f>(z) are

Lf3k(0)z3k :

fo@) = 3%

1M

1
fl (Z) — kZ mf3k+l(0)z3k+l ,

1
f2(Z) — kZ mf3k+2(0)z3k+2 )

4.4.1. Mod 3 Exponential Functions

Here, we apply mod 3 splitting to the standard exponential function

2 4 _ 2 _ 4 _ 2 _ 4

ef+el  +el* e +glel +qle?t e +qgtelt +qlet
+

3 3

1 [Se]
= 3 Z%(Hq +q4f>+2 X1 g 4 )

W

Z (1 +q2(r 2) +q4(r 2))

3k+1 3k+2

= Z 3k! Z Bk +1)! Z Bk+2)!
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Definition 4.4 mod 3 exponential functions (e*, e* and ,e* are defined by power series

expansions

5+ eTF 4l Sy 3k
s —— = — 4.57
0 3 ; 3k (4.57)
x+—2 qx+—2 q*x > 3k+1
& = e q-e q-e _ %’ (4.58)
3 e Bk + 1)!
x+—4 qx+—2 q*x > 3k+2
ot = £T4¢ T4 N Y (4.59)
3 e Bk +2)!

The standard exponential function can be written as superposition of these three functions:
X

e* = ge' + 1e" + ¢* (mod?3). (4.60)

Matrix form of these functions in (4.57) — (4.59) gives discrete fourier transformation

oe” 1 1 1 e’

1
et =3l gt gt e | (4.61)
2ex 1 64 62 eq4x

Mod 3 exponential functions can be considered as generalized Hyperbolic functions(see
Appendix B) and these functions can be represented in terms of exponential ¢* and trigono-

metric functions,

1 .

(mod3) oe' = 3|+ 267 cos ?ﬂ) (4.62)
1 )

(mod3) &8 = =|e*+2¢3 cos REI , (4.63)
3 2 '3
1 . 3 2

(mod3) ,e° = 3 e’ +2e72 cos §x+?ﬂ]) (4.64)
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Due to equations in (4.53) — (4.55), these funtions admit mod 3 symmetry but in complex

domain:

0t = et (mod3), (4.65)
e = et (mod3), (4.66)
geqz" = g*r¢" (mod3). (4.67)

In (Fig 4.1), we plot these functions and they are not showing even or odd symmetry.

;— (exp( )+ 2 exp(- —) cos(

e
. ;_(exp( )+2exp(-%) COS(TJ— - ZT"])
e

1
> = . : e — 3 (exp( )+2exp(-3) cos(

Figure 4.1. Mod 3 Exponential functions

4.5. Euler Type Formula for Mod 3 Exponential Functions

Replacing x — ix in equations (4.62) — (4.64) we get analogue of Euler formula

for mod 3 exponential functions

Proposition 4.5 Analogue of Euler formula for mod 3 exponential functions is defined as

(mod3)oe” = %:cos(x)+2cosh(§x)cos(g) +§ sin(x)—2cosh(\fx] sm( 2)]
(mod3),¢" = %:Cos(x)—cos(g)cosh(§x)+ 3sin(2 smh(73 H

n §:51n(x)+sm(2)cosh(—x)+ 3cos g (? )l
(mod3),¢" = %:cos(x)—cos(g)cosh(§x] V3sin g smh(g ]]

N %:Sin(x)+sin(§)cosh(§x) 3cos g smh ? )l
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4.6. Mod 4 Functions

Here, we study the case of mod 4 functions, associated with qS = 1.

Definition 4.5 Mod 4 functions are defined as

f) + f(g*x) + f(g*x) + f(g°x)

Sox) = 2
O+ (@) +q (g ) +G°f(¢°x)
filx) = 1 ,
O+ (@) + g (g )+ g f(g°x)
Hx) = 1 ,
) +G () + 3 f(g* %) + G f(g°x)
Hx) = 4 :

(4.68)
(4.69)
(4.70)

4.71)

Proposition 4.6 Arbitrary function f(x) can be written as superposition of mod 4 func-

tions,

J(x) = fox) + fi(x) + fa(x) + f5(x).
Proof By addition

F) + f(@* %) + f(g*x) + f(g°x)
4
S+ 33 (@0 +q*f(g*x) +°f(g°x)

Jo(x) + fi(x) + fo(x) + f3(x)

4

+f (x)+ g f (@) + g4 f(g*x) + q* f(¢°x)
4
S+ q°f(@*0) +q*f(g*x) + g2 f(q°x)

4
= 40+ (1477 +7* 479 1w
+(1+7*+7°+3%) flg'x)

+(1+3°47" +3°) £0°)
Since ¢* = (¢'7)* = 1, then we have

—2 , =4n | =6
1+q n+q n+q n:45n’0(m0d4).

(4.72)

(4.73)
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As a result,

F() = fo(x) + fi(x) + fo(x) + f5(x). (4.74)

O

We notice that structure of functions fy(x), fi(x), f2(x) and f3(x) is given by su-
perposition of function f(x) at four points of argument x, g°x, g*x and ¢°x so that sum of

coefficients for f(g*x), f(g*x) and f(g%x) is zero due to equation (4.73).

4.6.1. Mod 4 Exponential Functions

For the standard exponential function, we have expansion

4k+ 1 © x4k+2 o 4k+3

Z Zz_kv Z4k+1)v Z(;m*’;m (4.75)

m=0 k=0

5..|>‘§

Definition 4.6 mod 4 exponential functions oe*, e*, re* and se* are defined by power

series

er+elr+el*+el* = xt
o= -y 4.76
0 4 ;4/& (4.76)
x+—2 qx 4 4 qx+—6 qOx & Ak+1
ez £T9C Ta9e r9e N Y 4.77)
4 @k + 1)!
k=0
+ qx 4 8 ,q°x qx 4 qOx i Ak+2
& = e*+q-e q°el e q e’ _ X ’ 4.78)
4 £4 (4 +2)!
x+—6 q2x+—4 q4x+—2 qOx & 4k+3
WARE i A TSR AL O — (4.79)
4 £4 (4 +3)!

The indices 0, 1,2 and 3 are related with remainer in mod 4. From this definition, the

standard exponential function can be written as superposition of four functions:

e* = ge' + €'+ et + 3¢ (mod4). (4.80)

41



We can combine them in matrix form

[ e (101 1 1] e et
e | 1|1 gt gt gt || et | A | e il
x| Z 1 -4 =8 =4 q*x B ﬁ q*x ( ) )
2€ 9" 9 49 € €
3ex 1 q 6 6_] 4 g 2 eqﬁx eqﬁx
as mod 4 discrete Fourier transformation, with unitary Hadamard gate matrix
I 1 1
=2 =4 =6
A= 1 1 (4.82)

3l-

~

—_— = = =
Y|
~

R QI

B oo

[ICSY

) ~

Mod 4 exponential functions in definition (4.6) are superpositions of hyperbolic and

trigonometric functions,

(mod4) o' = % (coshx + cos x), (4.83)
(mod4) e° = % (sinh x + sin x), (4.84)
(mod4) ,e' = % (cosh x — cos x), (4.85)
(mod4) ;e* = % (sinh x — sin x) . (4.86)

It is easy to see that ge*, e are even functions and e, 3;e* are odd functions such that

o€ " = e , et = e, (4.87)

16 - = —€ , 3¢ T = —3€ . (488)

We plot these exponential functions in Figure (4.2) according to variable x in real domain.
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;— (cosh(x) + cos(x))

— ;—(sinh(x) +sin(x))

) ) = 1 2 7 — ;—(cosh(x)—cos(x))

2l — ;—(sinh(x) - sin(x))

Figure 4.2. Mod 4 Exponential functions

4.7. Euler Type Formula for Mod 4 Exponential Functions

Replacing x — ix in equations (4.83) — (4.86) we get analogue of Euler formula

for mod 4 exponential functions

Proposition 4.7 Analogue of Euler formula for mod 3 exponential functions is defined as

(mod4) e = % (coshx + cos x) = je*, (4.89)
(mod4) (e~ = i% (sinhx +sinx) = ie" = g2 €%, (4.90)
(mod4) ,e* = —% (coshx — cosx) = —re* = g*,¢", 4.91)
(mod4) e = —i% (sinh x — sin x) == —ize* = ¢°ze". (4.92)

4.8. Mod n Functions

Previous considerations can be generalized to arbitrary mod n functions. These
functions would appear in the study of normalization constants and calculations of average
number of photons in kaleidoscope of quantum Coherent States. For ¢** = 1 root of

unity, we consider n values of argument x, qzx, q4x, e qz("_l)

x. Every mod n function
is superposition of functions with these arguments such that addition of coefficients for

F(G@*x), £(g*x), ..., f(¢*"Vx) are equal to zero, due to

1+62k+64k+---+62(n_1)k:0’1Sksn_l' (4.93)
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Definition 4.7 Mod n functions are defined by relation

IO S T | £
fl(x) 1 1 212 54 aZ(n—l) f(CIZX)
A [=—11 gt gt g f@'y | (494
| fo-1(X) ] | 1 gXh greeh e | (D)

where transformation matrix is discrete Fourier transformation, related with unitary Hadamard

gate matrix H,

1 1 1 1
1 6_12 64 62(11—1)
I 1
H=—|1 g* g8 g b | 4.95
Nr q‘ q‘ q | (4.95)
1 Zzz(n—l) 214(;1—1) 52('1_1)2
[ folo) | W
JS1(x) . f(g*x)
such that Hx) |=—H| f¢*x |. (4.96)
) Vn )
| fae1(X) | | (" V) |

Proposition 4.8 Arbitrary function f(x) can be written as a superposition of n functions.

n—1
f = filx) 4.97)
k=0

1 n—1
where fu(x) = = > ¥ f(¢*), k=0,1,2,..n~1.
n s=0

Proof The proof follows easily if we add these functions

—_

n—

Sk(x) = fox) + fi(x) + fo(x) + -+ + froi(X) . (4.98)

T
o
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Combining terms with the same arguments

(1+7°+g*+...+7°" ") f(@n) =0
(1+g*+g%+...+3*" ") f(g*x) = 0
(1 +q°+q"+. .. +Z]6("‘]))f(q6x) =0

(1430 + %D 4L+ ) (@ Dx) = 0 (4.99)

shows that all terms vanish except one with argument x and the term with this argument

gives Inf(x) = f(x). o

4.8.1. Mod n Exponential Functions

Instead of arbitray function, we can expand the standard exponential in the fol-

lowing form;

& nk+1 i xnk+2 nk+(n 1)

RS LR e x
¢ _Z%‘Z%Jrz(nku)v O(nk+2)! Z(nk+(n—1))'

Each function in this addition represents mod n exponential function with following defi-

nition;

Definition 4.8 mod n exponential functions je*(mod n), where 0 < s < n—1 as a remain-

der in mod n, are defined by

s xnk+s
se'(modn) = fi(x) = —_—, (4.100)
e (nk + s)!
and they can be expressed as superposition of standard exponentials;
1 n—1
=g 2k
€ (modn) = —Zqzskeq * ,0<s<n-1. (4.101)
n
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These functions can be combined as discrete Fourier transformation,

0e* (1 1 1 1 e
e 1 Z] 2 c_]4 5 2(n—1) eqzx
— — — 4
2ex 1 q4 qS q4(n—l) el
x| n —6 —12 — 6(n—1) POx (4.102)
3e 1 g q e q e
et 1 6—]2(n—1) 54("_1) aZ(n—l)z eq2(n—1)x

4.9. Differential Equation and Initial Value Problem for Mod n

Exponential Functions
The standard exponential e* is a solution of first order differential equation
d
T =), (4.103)
x

with inital value f(0) = 1. Applying derivative operator n—times shows that e* is also a

solution of n—th order equation

7 = f(x) = f(x), (4.104)
X
with initial value £(0) = 1 and f(0) = f”(0) = ... = f"~'(0) = 0. In order to find other

n — 1 solutions of the last equation, we write f(x) = ¢'* and get " — 1 = 0, which implies
that every root of unity A" = 1 determines particular solution of equation (4.104). If we

parametrize non-trivial roots as

=1 4=¢b=q", . 41=¢"", (4.105)

where ¢*" = 1. Then we get the set of solutions

2 4 2(n=1)
er,eT et et (4.106)
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and the general solution of (4.104) is linear combination

2 4 2(n—1)
f(x)=coe* +cre?* +cre?* + ... +cp,e? T

(4.107)

The set of mod n exponential functions appears by choosing constants ¢y, c1, ¢3, ..., C,—1 In

a proper way.
4.9.1. Mod 2 Exponential Functions

Proposition 4.9 mod 2 exponential functions ge*,; e* (mod 2) are solutions of second or-

der differential equation
d2
ﬁf(x) = f(x), where f(x)=¢e", e (mod?2) (4.108)

with initial values: f(0) =1, f'(0) =0 for ge* and f(0) =0, f'(0) =1 for e.

These two functions are related by derivative

d d (e + e?*

a ()ex = E ( = lex (4109)
d d (e +qleT™

et = E(—g ]: e (4.110)

4.9.2. Mod 3 Exponential Functions

Proposition 4.10 mod 3 exponential functions ge*, e* and ,e* are solutions of third

order differential equation

d3

X _

s (mod3), 4.111)

with initial values,

47



d“ f, 1, s=k;
]Z(O) = 4.112)
dx 0, s+k,

where fy(x) = s¢* (mod3),0< s,k<2.

Proposition 4.11 Derivative relation between mod 3 exponential functions is following

[ . x’ — ¥ = x’ — e = X 4.113
TL 08 = 2€ T 2€ = e T 1€ = e ( )

Proof We will prove by using definitions in (4.4) and ¢° = 1,

d d (e +eT + et 1 ., .
T f)zg(“q“eq +g%e) = 2",

d . d (e"+g*e™ +q%"*) 1, N N .
¥ T I 3 :g(e +q%e’ " + gt )— T
d d (e +G2eT +gted' 1

d—le" = d_ e 6]63 aye :g(ex+€qx+€qx)_()e

X x

4.9.3. Mod 4 Exponential Functions

Proposition 4.12 mod 4 exponential functions oe* , e*, e’ and sze* are solution of

Sfourth order differential equation

d4

I € = e (mod4), (4.114)
with initial values,
d* f, 1, s=k;
Loy=1 " ° @.115)
dx 0, sk,

where fy(x) = j¢* (mod4),0 < s,k<3.
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Proposition 4.13 Derivative relation of mod 4 exponential functions is following

d d d d
x 0e" = 3e’, e 3¢t = e, Ir et = e, p e = ge’. 4.116)

Proof We prove it by using definition (4.6) and ¢°® = 1,

2 4 6
d d(er+elT +el*+ 1" 1 2 4 6
-6 —4 =2

Eoex = o 1 =Z(X+q et +q e+ e‘”):3ex,

- 2 —_ 4 —_ 6
d d (e + 6€qx+ 4e‘”+ Zeqx 1 _ 2 _ 4 _ 6
_3€x - q q q - _ ex+q4eqx+q86qx+q4eqx :zex’
dx dx 4 4

— 2 — 4 —_ 6
d d (e +g*eT + gt +gte?™ 1 o 2 4 A g 6
4 e = 2 q 4 4 = (e +g%  + G e +q%") = e,
dx dx 4 4

—_ 2 — 4 j— 6
d d (e*+q2eT~ +q*ed* + gt 1 2 4 6
s - Yl . Z : :Z(ex+€“+eqx+€qx):o€x,

X X

4.9.4. Mod n Exponential Functions

Proposition 4.14 mod n exponential functions se* satisfy nth order differential equation

LAPIS @.117)
dx"

where f; = je*, 0<s<n-—1,with initial values: fs(s)(o) = land f,(0) = f{(0) = ... =
ftg(s—l)(()) — f;S+l)(0) = .. = f;(n_l)(o) = 0.

Proposition 4.15 mod n exponential functions have following derivative relations

d d
— = e, —opet= e, 1<s<n-1. (4.118)

dx dx
Proof In order to prove the first relation, we use expansion (4.100),

> k+s had nk+s
L= Ly 20| oy A (4.119)
dx dx k=0 (nk + s5)! “ dx \(nk + s)!
> (I’lk-l- S)xnk+s—1
k=0
& xnk+(s—l)
= — = . 4.121)

£ (nk + (s — 1))!
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For the second relation, setting s=0 in (4.100)

(o9

d . d< o d o (nk)xt xkt
dx ¢ __[Z(nk)!] Za(mk)v) ; (nk)! & (k= 1)1 (4.122)

k=0

and changing index gives us

n(k +n—1 & xnm+n—1

nk 1
Z(nk—l)' Z DD D mrami s e G

4.10. Application of Mod n Exponential Functions
Mod n exponential functions have several applications in quantum theory.
4.10.1. Fock-Bargmann Representation

In Fock-Bargmann representation, every quantum state corresponds to entire ana-

lytic function and vice versa. If

)= Cin, Wl =1, (4.124)
n=0

, Where Z |C,]> = 1. is an arbitrary vector in Fock space, then the wave function in co-
n=0 . .
herent state basis |a@) is

<a|w>-2cn<a|n>—e—zlal ZO( °) i) = e _'“'ZZ;C (f/% (4.125)
n,m= 67!771 n= .

or

(aly) = ey (@), (4.126)
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where

n

Z

Vn!

V@)=Y CUE , U = (4.127)
n=0

is entire function of argument z. In this representation, the annihilation operator a is rep-
resented as a complex derivative and the creation operator &' is defined as a multiplication

operator
oz (4.128)
so that

la.d|=1 o [i,z]:l (4.129)

and state |a) is represented by ¢®. From this, we have following relation for coherent

states

da) = ala) < ie‘” = @e™. (4.130)

dz

Then, the eigenvalue problem a"|a) = "'|a) for operator @" in Fock—Bargmann represen-

tation becomes

e" = a'e™. (4.131)

This n-th order ordinary differential equation admits n independent solutions

2 4 2(n-1)
e, el el L e (4.132)
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corresponding to rotated coherent states, respectively

), lg%a), |g*a), ... 17" Va). (4.133)

Then, mod n exponential functions

0™, e, (4.134)

are related to the superposition of rotated coherent states in the form of kaleidoscope,

associated with roots of unity g** = 1(see Chapter 8).

4.10.2. Kaleidoscope of Quantum Coherent States

In Chapter 8, we derive kaleidoscope of coherent states |k), by using mod n expo-

nential functions of operator argument

aat
Ky = <510y (modn), k=0,1,2,...n—1. (4.135)

A /ke|a/|2

Furthermore, calculation of average number of photons in these states is given by ratio of

two consecutive mod n exponential functions,

. laf?
KINIK), = laf [Hf 2
e

_ L_elr
a| l ’ a<0|N|O>a = |a|2l 1\a|2 } :
k 0€

4.11. Mod n Form of Displacement Operator

The coherent states in (3.14) are generated by the displacement operator D(«)
as exponential function of operator argument. For kaleidoscope of coherent states, the

displacement operator can be represented as mod n operator valued exponential functions.
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For coherent states | F a);

| ¥ @) = D(Fa)|0), (4.136)

the displacement operators D(Fa) are

D(Fa) = @00 = gm3lf gFad g2t (4.137)

Then, superpositions of these states

10y, = @) +2|_“> :(D(“) +2D(_“))|o>: oD(@)|0), (4.138)
. |- D(a) — D(—
i, = 1@ 2' @) :( @ . ( “))|0>: D(@)0) . (4.139)

which are the Schrodinger cat states, is generated by mod 2 displacement operators oD(«@)

and ; D(«@). These operators can be written as

oD(@) ¢ 21" (cosh e’ cosh @@ — sinh e’ sinh ad) (4.140)

1D(a) 21t (sinh @@' cosh ad + cosh @a’ sinh ad). (4.141)

Then, the Schrodinger cat states become

0)e = oD(@)|0) = ¢ 2" coshaa'|0), (4.142)

D

\D(@)|0) = e~ 2" sinh a0} . (4.143)

For trinity states, we define displacement operators as mod 3 operator valued functions;

D(e) + D(¢*a) + D(¢*@)

oD(@) = 3 , (4.144)
=2 2 —4 4

D(a) = D(a) +¢q D(q3a) +q D(q @) ’ (4.145)
—4 2 -2 4

(@) = 2@*aDPy 3“) tg D) (4.146)
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and corresponding trinity states are

10)e = oD(a)I0), (4.147)
e = 1D(a)0), (4.148)
2), = »D()|0). (4.149)

Generalization to the kaleidoscope states |k), for g** = 1, is generated by mod n displace-

ment operator

n—1

1
D@) == > G D@0y ,0<k<n-1. (4.150)
n

=0
Acting to vacuum states, it produces k), state as

K)o = kD(@)|0) . (4.151)
We note that the above states are not normalized this why notation is k.

4.12. Generating Function for Mod » Hermite Polynomials

For standard hermite polynomials, we have generating function (3.59). In coordi-

nate representation of Kaleidoscope states, we have mod n Hermite polynomials.

4.12.1. Mod 2 Hermite Polynomials

Coordinate representation of Cat states requires generating function for H,;(x) and

H>i1(x) as following;

Z o ) = e cosh(2zx), (4.152)

2k+1

Z 2k + 1)! Ho1(x) = ¢ sinh(2zx) . (4.153)
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4.12.2. Mod 3 Hermite Polynomials

Coordinate representation of trinity states related with mod 3 exponential func-

tions which are generating function for Hzi(x), H3;11(x) and H3io(x). Generating func-

tions for mod 3 Hermite polynomials defined as

Hy(x) = ge™* 7,
£ (3k)!
i Z3k+1 H (X) _ e—zz+21x
= (3k+ 1)‘ 3k+1 =1

3k+2

o 2
————H32(x) = e
kZ:(; Bk +2)!

—22+2zx

(4.154)

(4.155)

(4.156)
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CHAPTER 5

SCHRODINGER'’S CAT STATES

As we have seen, the coherent states are not orthogonal, but we can take superposi-
tion of these states to get orthogonal ones. In the description of Schrédinger cat states two
orthogonal states are introduced, which are called even and odd cat states in (Dodonov,

Malkin and Manko, 1974). These are even and odd superposition of |@) and | — @) states:
lcate) = |ay) = Ny (lo) + | — @) cat,) = la-) = N_(lo) = | — @) . (5.1)

The states can be considered as a superposition of two coherent states related by rotation
to angle &, which corresponds to primitive root of unity ¢> = g2 = —1, so that ¢* = 1.
It is convenient to use notations |a,) = |0), and |a_) = |1),. The normalized states are

calculated as following:

() +Ifa) . )= ——

2 +/cosh |a/? 2 +/sinh |a/?

0)e = (lo) +g°lg°@)) . (5.2)

By acting with Hadamard gate, these states can be represent in the matrix form:

R (B
1) V2|1 32 || Iy | '

Hadamard gate

where

e
(5.4)
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is Hadamard gate. The normalization matrix

-1/2

No 0| &% [oe® 0
0 }:ez {Oe (mod 2)

N =
0 N1 \/§ 0 16'“'2

is defined by even (0 mod 2) and odd (1 mod 2) exponential functions (4.2);

0o | 22k 2 20012
| elal’ 4 pd’lel

(mod2) o = Z o " 5 = cosh [af?,
k=0 :
0 2 2k+1 2 -2 2lal?
of (|a| ) ~ et 4 g2edlol . )
(mod?2) " = Z(zm o - 5 = sinh |af*.

5.1. Mod 2 Cat States

(5.5)

(5.6)

(5.7)

In terms of these exponential functions, we can rewrite the Schrodinger cat states

in a compact form(see Appendix D.2):

(ltl1

0e cosh aa’

0)y = 0y (mod2) = —222 oy,
Voel? vcosh |a/?
¥ .
ad h AT
e = 2 (0) (mod2) = ——22 oy,

v iel? v/sinh |a|?

This form can be written in the following form ;

= 2 2
0% «/WZ |k> (mod 2),
1 s a,2k+1
D = > 2k +1) (mod?2).

Viee® &= V2k+)!

This representation will be useful for our generalization and some calculations.

(5.8)

(5.9

(5.10)

(5.11)

(5.12)
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5.2. Eigenvalue Relation for Cat States

Since |a) is an eigenstate of annihilation operator a, such that ala) = ala), it is

also the eigenstate of operator a*:

a*la) = o?la). (5.13)

However, the last equation admits one more eigenstate | — ) with the same eigenvalue a?,

so that
& F @) = | F a). (5.14)

Hence, any superposition of states {| + @), | — @)} is also an eigenstate of operator &>, with

the same eigenvalue.

Proposition 5.1 Schrodinger cat states are eigenstates of operator &>
@0y, = @*0)e  &|1)a = @1, (5.15)

constituting orthonormal basis {|0),, |1)}.

Proof In order to prove (5.15), first, we check application of annihilation operator to

the cat states, respectively:

No
V2

= Mo+

V2

(ede) + gelg’e) )

10y, = % (ala) + alg?) )

V2 NV
N,

= a2|),,
N
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and

_ 1

all)e =
V2

(alo) +Falg’ar) )

1

V2

Ny
—a

V2

(el + G’ galg’e) )

(I + lg%a) )

Thus, annihilation operator a gives flipping between cat states |0), and |1),

No N,
a|0y, = a—|1),, a|l), = a—10), .
alo) aNll ) all) aNOI )

(5.16)

Now, we will annihilation operator a to (5.16):

N
AD 0 A
Ow_ v 10 _
a|> _aN1a|> -

and

N

A2 14

1 = 0
a | >a/ aN0a| >a

(0%

[0

(0%

2N0(
a__
V2 \ Mo

a

[0

[0

Ny N,

Ni \2
Ny

V2
N

(ala) + Falq’ar) )
(alo) + @ Falg’a) )
) + lg*a) )

2
\/_|O>ar)] = @?|0)q ,

Nl NO A ALL2
——lala) + alg”a)
N2 (o + i)

N,
n

ala) + ¢’alg’e) )
2;é@w+?m%w

N

Mﬁ%iamﬂzfmm

V2
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These results imply that the states |0), and |1), can be used to define the qubit coherent

state:

[¥)e = col0)o + cil1)q, (5.17)

where |co|> +|ci|* = 1, representing a unit of quantum information in quantum optics. This

qubit state is an eigenstate of operator a* as well:

W = Y- (5.18)

5.2.1. Representation of Annihilation Operator in Cat States

Here, we find matrix representation of annihilation operator & in cat states basis

by using (5.16);

a=

[ doo Ao } _ { 01210, o(0lal1), ]

ayo o(1al0)e  of1all)q

[ 0lh2 Iy o(Ola i (0), }
ajp dp

N N
(LR Dy o(Td(0),
a[%‘;(xom %a<0|0>a}
N (1e (110,

From ,(n|m), = 6,,, where n,m = 0, 1, we get

N
&:a[o Fé] (5.19)
o0
N

Since we have normalization matrix in diagonal form, its inverse will be reciprocal of
diagonal elements

N, O L0
N=|"" = Nl=| M . (5.20)
0 N 0 NLI
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Representation of annihilation operator(5.19) can be written with Pauli spin matrix o, as

below;

| _
— 0 0 1 Ny O
fl:aN_IO'xN = No q ][ 0 ]
0 &1t oflo N
N 1 - N,
0 &+ [N 0 Moo

5.3. Number of Photons in Cat States

(5.21)

(5.22)

Proposition 5.2 Average number of photons in cat states is calculated as ratio of nor-

malization constants multiple |a|?;

5 2N§ 21“/’|a|2 2 2
AONIOY, = laf 5 =laP = = laf tanh faf’,
1
. N? el
21 20 2 2
1IN, = |af vl |a] e || coth |a]”.
1

Proof Annihilation operator a gives flipping between cat states |0),, and |1), ,

No Ny
Aoa: _la’ Ala: _Oa/’
al0) aNll ) ally aNOI )

where

1 1 1 1
= = , Nl = =
V2?2 cosh|af? V2ieeP {2 sinh o

Ny

By using these equations, we calculate

v N, N, N; N2
_ PN _ 0— 0 = 0 _ 2770
o{OINI0)o = o{0la’al0)s = (a<1|ﬁla) (aﬁlllm) = aa N—lza<1|1>a = lal N

(mod?2).

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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Substituting (5.26) gives explicitly

5 1e|w|2

—~ N?
«{0IN10), = Ialzﬁg = |a] i jo? tanh o (5.28)
1 0

Then,

= N N N? N?
_ AT A _ 1— 1 = 1 _ 24"
o 1INID)o = o(1la'all)e = (a<1I—NOa) (a—N0|1>a) = ozaN—ga<0|0>a = o N (5.29)

and in explicit form, we have

- N? laf?
o{1INI1)e = |le|2#2 = [P = |of coth |af? (5.30)
0 e

e

O

The average number of photons in cat states are is shown in Fig 5.1. As easy to evaluate,

asymptotically these numbers are approaching the usual coherent states number |a/|” :

|1|im +(OIN|0), = |1|im HA1UNID, ~ o) = (xa|N| + ). (5.31)

— (<OIN|0>

<N1>,

Figure 5.1. Photon numbers in Schrodinger’s cat states



5.3.1. Schrodinger’s Kitten States

Coherent state with small number of photons corresponds to the limit |a] — O.

For the Schrodinger’s cat states, we get number of photons 0 and 1, in the so called

Schrodinger’s kitten states:

lim ((OINIO)a =0, lim oC1INT1), = 1.

By using (5.23), we calculate the limit as |o| — 0

|W%Amﬁm%:ﬂpym%mhmﬁ:owmozo.

By using (5.24), we calculate the limits as o] — 0

lim ,(1|N|1), =
|Qllrﬁlr})<||>

lim | coth |a?
|a|—0

~
[

|a|? cosh |af?
ll-0  sinh |a|?
2
) ) a
lim cosh |e* lim _l |
lal—0 lel-0 sinh |a/|?

|

im —
lel-0 sinh |a/|?
y 1 1
im =
lel-0 cosh |a|?

5.4. Fermionic Representation of Cat States

=1
cosh O

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

Cat states are intrinsically related with fermion oscillator representation. These

states are expansions to even and odd powers of @, which are distinguished by parity

operator. This parity operator is the projection operator to even and odd numbers.

5.4.1. Fermionic Oscillator

Here, we give definition and main properties of fermionic oscillator based on

(Louisell, 1964). In Chapter 2, we have worked with the annihilation operator a and
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A AT

creation operator &', which satisfy bosonic commutation relation [a, a ] = 1. Therefore,
particles that obey this relation are bosons and they may occupy the same quantum state.
Light quanta(photons) and phonons are examples of bosons. There is another class of
physical particles in nature, called fermions, which have property that no two of them can
occupy the same quantum state. This is called the Pauli exclusion principle. Electrons,
protons and neutrons are examples of fermions.

For description of fermions there are two operators b and b, which are interpreted

as fermion annihilation operator and creation operator, respectively. Operators b and b

obey the anticommutation relation
{b,b"y, =bb" +b'h =1, b* =0, b’y =0, (5.38)
where the anticommutator of A and B is defined by
{A,B}, = AB+ BA . (5.39)
The fermion number operator N F= bth = ﬁ; is diagonal in states |0) and |1), defined by
bloy=0 , b0y =11). (5.40)

Then, matrix representation of this operator is

5 :[<0|11F|0> <0|JXF|1>]:(0 0]’ 5.41)
(1INF0) (1N | (0 1
where
Ne0) = 0, (5.42)
Nelly = 1), (5.43)
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and the matrix elements of b and b' in the N representation are
o 00
b' = . (5.44)

Now, we are going to show that dilatation operator q21V determines g’—number operator,

which in cat state basis is fermionic number operator.

Proposition 5.3 The dilatation operator c[”v = ¢V = (—1)1V is the parity operator for cat

states, so that |0), and |1), states are eigenstates of this operator.
aN0Ye =10)e, ¢™M1)e = ¢*11)0-

The first state is the g-periodic state and the second one is g*-self-similar state,

Proof The proof will be done by using equation(5.8);

~F = oo T
N v o€ aa
0 a = =
O =g 20 = Z
N ® a2k (aT)2k

|2k>

YRk (mod?2).

WZW

The number operator N gives qzﬁ |2k) = qu)le) = q4k|2k) = |2k) so that

7*"10)4

b 2k (5T\2k
= =2
k= .

velP =4 V2k! \2k!
2k
0 ot at
1 ada eaa
= ZZ(ZM) 0) = ==—10) =[0),  (mod2),
o€l o : oel!
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For the state |1),, we follow the same steps

oF 2k+ 1

a’

ZNIQ: 2N 1 0 —
7100 = ¢ ==10) ela kz kH,

qz 2k+1 (a )2k+1
10)
Vie? = N2k + 10 2k + 1!
——
[2k+1)
& 2k+1 .
2N
= 2k + 1) (mod?2),
1€|" Z(;
and
¢V 12k + 1) = g7PVRkY = g 2k = ¢P|2k) . (5.45)
It gives that
i 1 o a,Zk
2N 1 . = 2 0
q 1) \/1e'_“'2 2. mql )

2k+1

1 i a (&T)2k+l
= ¢ Z 0)
Vie? S N2k + 11 2k + 11

)2k+1

Oemf
,/—lemzz TR N

= ¢’y (mod2).

O
The |0), and |1), states can be rewritten in terms of parity operator
No No N
0)e = —[2]wla) =—U+qg)la), (5.46)
v TN
_ N _ M 2 2N
e = % [2]q2ﬁ+z|a/> = $(1+ q°q )y, (5.47)
or
N —~
0)e = 7%(1 + (=DM, (5.48)
N1 1’\7
Do = $(1 - (=Dl . (5.49)
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It is noticed that the cat states are eigenstates also of g>- non-symmetric number operator

ON
— q" - 1
[N = e
where ¢ = -1,
[N1,210)s = [01,210)s, [N12010 = (112010, (5.50)

with eigenvalues [0],» = 0 and [1],> = 1. In the Fock basis |n), n = 0, 1, 2..., these number
operator is diagonal, with eigenvalues O for even numbers n = 2k, and 1 for odd numbers
n = 2k + 1. This number operator in the cat state basis is 2 X 2 matrix of the fermion

number operator

= Ny

[N], = «SOl[N1210)0  oCOl[N],2[1)e ] _ [ 00 J -
q o1INT210Y o (1IN 210 0 1

factorized by fermionic creation and annihilation operators Ny = b'b.

5.5. Heinsenberg Uncertainity Relation for Cat States

As we have seen in Section 3.2, the coherent states are satisfying minimum uncer-
tainty relation. Here, we calculate uncertainty relation for the cat states as superposition

of coherent states. First, expectation value of g and p operators for state |0), are

h N h
(Do, = 2(01310), = 40 \gw +a")/0), = \g (+(0110) + o¢01a"10),) = 0.

and

h h
(Bor, = oCOpI0Y = o0l - i\gm —ahI0), = —i \g (01210}, + 4€01a"10),) = 0.
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It happens due to that the application of a to the cat state produce the orthogonal state as

in (5.16). Similar calculations for state |1), gives

B, = UZe =0,
Py, = of1lpl1)e=0.

Then, for state |0), the variance in coordinate operator is

R R h 2
(o, = (0100 = a0l +2")" [0

h )
& 5001 (@* +2a%a+1+ @) 00),

(5.51)
(5.52)

h :
= 3 (a<0|€l2|0>a +24(01a"al0), + o(0l0), + a<0l(&’)2|0>a) :

and variance in momentum operator is

. A h 2
D, = of0P10) = —5a¢0l(a—a") (0],

h A
L 2w01(a2 - 2a%a - T+ @) oy

h ~ A
= =5 (€0*10) — 240l
By substituting ,(0/a2/0), = o and ,(0|(@")2/0), = @7, it gives

(), o{012°10), =

NSNS

M0y, 01p*(0), =

2,(0IN|0Y, + 1 + a* + @),
( )

(2(,<0|1’v‘|0>(, +1-a®- 52) .

al0)q = o(0]0)¢ + a<0l(&"')2l0>a) :

(5.53)

(5.54)

By following the same steps for state |1), ,we have variance in coordinate and momentum

operator as

iy, o(1E (1), =

NSk S

<ﬁ2>|1)(, = (y<1|ﬁ2|1>w:

(2(1INIT)e + 1+ @ +27)

(2Q<1|1V|1>w +1-a®- 52) .

(5.55)

(5.56)
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These relations give uncertainty relation for cat states (see appendix (A.2))

i —

(AQ)y), (AP)g,, = 5\/ (14 2,0IN0)) - (22 + @) (5.57)
i —

Ay, APYy, = 5\/(1 +2,(1NID,) - (22 + @), (5.58)

where ,(0[N|0}, = |a|? tanh |a|> and ,(1|N|1}, = |a/* coth |a|*. These formulas show that
in contrast to coherent states, the cat states are not minimal uncertainty states. Only in the

case @ = 0, uncertainty for the cat states coincide with coherent states minimal case.

5.6. Coordinate Representation of Cat States

Here, we construct coordinate representation of cat states as

laf2

(40)y = ——— () + (i) . (5.59)

2 4/cosh |a/?

By substituting (3.60) it gives

ez _lf 2 a2 N
(x]0), = e Te T (e eV (5.60)
2rl/4 y/cosh |a/? ( )
g_%_é
= —————cosh( V2xa). (5.61)

rl/4 y/cosh |af?

Following the same steps, we get

(tz

SES

e 2°

)y = ———— sinh( \/Exa). (5.62)

/4 y/sinh |a|?

Also,we obtain coordinate representation of cat states in terms of Hermite polynomials;
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o
W0)y = —— ((xl) + (xlgP)) (5.63)
2 +y/cosh |a|?

[

B e _laf 1+(-1)"
B 1/4 5¢ Z n!
2nl/% y/cosh |a| =0

) H,(x)e” 5 . (5.64)

Sz

Terms with n = 2k terms survive in summation, then

* Hu(x) (a \*
() = — mz o0 ( ) . (5.65)

And similar calculations give us for state |1),;

N‘*,\)

T Hoppp (%)

2%k+1
1), = 5.66
g 74 \fsinh |a? = 2k + 1)! ( \/_) (60

Probability density in coordinate representation of cat states |(x|0),|* and |(x|1),|* for a =

1 + i is shown in the Fig.(5.2) and Fig.(5.3) correspondingly.

Figure 5.2. Coordinate representation of |0),,

Figure 5.3. Coordinate representation of |1),
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CHAPTER 6

TRINITY STATES

As a first generalization of Schrodinger cat states, we introduce the trinity states.
If the cat states are associated with g* = 1, the trinity states are related with ¢® = 1 so that
q = '3 . We start this generalization from the set of coherent states, rotated by angle %”
The states |a), |g°a) and |g*a) correspond to vertices of equilateral triangle in Fig.(6.1)

such that

(ala) = (g*alg’a) = (g"alg’a) = 1. (6.1)

Then, the inner product of these states can be calculated as following

o (alga) = (qPalg’a) = (g'ala) = @D,

4_1)

e (alg*a) = (¢*algPa) = (FPala) = '@

Figure 6.1. Trinity States
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First,we define |0), state with normalization constant N, in matrix representation

\I
00 = No(la) +1q°a) +lq*a)) = Noe™* Z |y + "))
n=0
0
. 0
a2 n
= Npe g Z + +
n=0 1 q2n q4n

The summation of terms 1+¢*'+¢*" is not zero, when n is divisible by 3, or n = 0 (mod 3),

due to ¢g® = 1 such that

1+ ¢ + g™ = 36,00m0a3) » (6.2)

1, n=0(mod3),

where 0,0 (mod3) =
0, n#0(mod3).

This is why only n = 3k terms will survive, corresponding to |3k) state with unit ele-

ment at position (3k + 1)th row as

-
0
I!Y| —I!Y\
0)y = 3Npe 2 | = 3Nge 6.3
0 = 3No Z = e Z =" (63)
1
Normalization of state |0),
©0)y, =1 = 9N, |2e—“'2ii @™ o (3m3k) (6.4)
o v—<3m>' GOl ——
= 9|Nolze“"'zz 3k, 42D 9N Pe o ve?t (mod3)  (6.5)
k=0 )
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gives

2 4 2 4
0, JE_ o+l tigia)  wEle)+lgTe) +lg ) 6.6)

V3 VeloP 4 ed’lof 4 dloP 3voeo’ (mod 3)

As a next step, to find states |1),, and |2), orthogonal to state |0),, we define
Do = aile) +bilg’e) + cilg*a) (6.7)
2)e = al@)+blg’a) + clg'a). (6.8)

Due to orthogonality condition,

A0 =0 = ((el +(g’al +(g*al) (arla) + bilg’e) + cilg'e))

= ai{ala) + bi{alg*a) + ci{alg* @) + ai(g*ala) + bi(g*alg*a) + c1{qalg*a)
+ a{q*ale) + bi(¢*adlg*a) + c{g*alg @)
= (a1 +by +c) (1 + (alg’a) + (alg'a))

20,2 204
= (a1+b1+c1)(1+e"’|(q Dy el 1)) = a+b+c=0

#0

Similar calculation for ,(0[2), = 0 gives a, + b, +c, = 0. Orthogonality of states ,(2|1), =

0 is described by system of equations in matrix form;

aq bl C1 61_2 O
b] Cc1 a b_2 =10 (69)
1 a bl C_2 O

From orthogonality relations, due to (6.2) coefficients can be choosen up to constant as

(alablacl) = (1752354)’ (610)
(a2, br,c2) = (1,3%.9%). (6.11)
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Thus, we can construct orthonormal states |1), and |2), with normalization constants

Nl,Nzi

1o = Ni (l) + Zlg’e) + 'lg*e)) (6.12)
2o = N (l2) + G'lg’) + Tlg*)) . (6.13)

The matrix form of state |1),, is

_ W o @ 2 o .
Do =Ny (o) + Tlg’) + @llg' ) = Nie? ) T+ T+ g
n.

n=0
0 0
—lo? - a” . —5) . —4 .
= Nje: |l +q | +g : ,
; V! 2 4
1 q}’l qﬂ

where addition of the terms is not zero if n = 3k + 1(n = 1 (mod 3)), This means

1+ 2"V +¢""™ = 36, 1moa3) » (6.14)

and the state |3k + 1) has element 1 at position of (3k + 2)—th row

- 3k op o3k
1), = 3Nje 2 =3Nije 2 . 6.15
Do = 3N, Z — | Z ST D 619
1
Then, we normalize state |1),
© —\3m+1

e =1 = 9N e 3 @™ o Bm|3k) (6.16)

4G NBm+ D! VBE+ D ——

m,k

o (|a/|2)3k+1

_ _la (458) 2 —lal* laf?

= N Pet N L L N, P e (mod3)  (6.17)
;(3k+1).
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so that

~ @) +Tlg%a) + q'lgta)y w2 la) + @ lg2a) + 7 lgta)
1), = e? =e?

. (6.18)
3 Jele? + gRedtlal 4+ Gt ed'laP 3 /1€l (mod 3)
q q

Following the same steps, we find normalized state |2), with mod 3 exponential function:

@ |m+qlg’ ) +qlg'e)  _ wle) +qlq’e) + lg )

(6.19)
\/§ \/elal2 + Teqzlalz + azeq“\alz 3 4/elo’ (mod 3)

12)0 =€

Finally , we have derived the set of three orthonormal states |0),,|1), and |2), and call

them as the trinity states

0, = Ml rigte) o +laie) +igte)
V3 Velal* 4 e@?laf 4 ed'la? 3 voel?? (mod 3)

D, = A _WrTWOITg') ) +7le’) + G lg )
V3 [l + Gedlal 4 Gted'laP 3 1€’ (mod 3)

o), = A0 FTNe’D+qlg ) _ )+ qlg ) + G lg*a)
V3 \/elalz + g edlo? 4 GPed'lo? 3 v2el’ (mod 3)

6.1. Matrix Form of Trinity States

The trinity states appear by action of the trinity gate , which is three dimensional

analogue of the Hadamard gate

|0),, 1 1 1 |a)

D, [=N % 17 (@) || e

290 1 g (@) ] g
Trinity gate
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In this representation, first diagonal matrix determines normalization factor

=

No 0 0 | od™ 00
e 2
N=|lo0o N 0 |= NG 0 e 0 (mod 3), (6.20)
0 0 N, 0 0 el
where
6% 2 2012 4012 -1 6% 2 -1
No = \/g(elal e o) = (o) (mod3). (6.21)
lof? o2
e 2 202 4 2\—% e? 2\ —%
N, = (e + el + et ) = (1) " (mod3),  (6.22)
\3 3
o2 o lof? N
N, = %(6""2 +qe " + e ) = ¢ 32 (2¢")*  (mod3).  (6.23)

and the second matrix produces orthogonal states from |a), |g?«’) and |¢*«). For normal-

ization , we have identity

—2(n—-k) , =4(n—k)

l+¢g +q = 36ukmoa3y -0<k<2, (6.24)

1, n=k(mod?3),

where 6;1,]( (mod3) =
0, n# k(mod?3).

6.2. Phase Structure of Trinity States

Trinity states as superposition of coherent states with explicit phase shift are fol-

lowing

|0>a = N()(la’> + |ei27na/> + |e_i2~THa’>) ’
e = (i) +eFetay s o)),

I <200 2201 il
2)e = N> ( ) + e’T|e’Ta) + e_’7|e_’7a/)) .
2 iz -2 -z
where g =¢'3 andg” = e '3.
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6.3. Mod 3 Form of Trinity States

As we have seen, the coherent state can be derived by application of exponential
function of creation operator to the vacuum state (3.24). Then, the cat states are written
by application of hyperbolic functions of creation operator to the vacuum state. Here, we

use definition of mod 3 exponential functions to obtain trinity states from |0).

Proposition 6.1 Trinity states are written in a compact form

adl ad aat
00, 1a=5—0), 120=2=(0) (mod 3.

Oe|a|2 1e|a’| 2e|a’|

o€

0)e =

Proof The proof will be done by using definition of coherent state(3.24) and mod 3

exponential functions. First, for |0), state we have

pilaP @) + |q%a) + |q*a@)
3 \/OeW'z
)
efla/l

12 oA 122 2 _1p 42 A s
= (e 2lalgadt 4 pmalqral’ pqradt | p=aldal pq ad )IO) (mod 3)

3 \/Oemz

0)a (mod 3)

slaf? 1 ~F o .
- £ = gzl (e"“ 4 et il )lO) (mod 3)
3 e
@27 3,¢%0'10y = 2510 (mod 3). (6.25)
3 Oe|(l|2 Oe|(l|2

Then, similar calculations give

ek + Tlgay + 3lg )

D, =
11 o

(mod 3)

12
5l
e? 12 AT 2 _L20R2 L2aat —4 _LAal Aaat
_ 2(e Slaf? yoa +qezlqwleqcm +qezlqaleqaa)|0>
3\’16'“'
e%lalz L2 A 2 Lladt 4 Aaat
= —ze_il‘II (e““ +q el +q et ™ )lO)
3 16'“'

aat
3160&TIO> - |0) (mod 3), (6.26)

1
3 \Ile|a’|2 1e|a|2
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and

ek + 7lg ) + 3lg )

2y, = - (mod 3)
3 2elal
e%laIZ “liaP adt | =4 —LiaP Padt | =2 —LigtaP et
- 2(62 e +q e el g et )|0>
3\/26'“'
e%l‘llz “LaP ( adt | =4 Qadt | =2 gtaat
W (e +G'e™™ +ge" ") 0)
20
ot
459 at 2e™
“59) W 3,e740) = — 0y (mod 3). (6.27)
20 2€
O

6.4. Eigenvalue Problem for Trinity States

Coherent states {|@), |g?a), |g*a)} are eigenstates of operator & with different eigen-

values «, ¢, ¢*a

aay = ala), (6.28)
dg’ey = ¢alg’ay, (6.29)
dg'ay = q'alg’ay, (6.30)

and the eigenstates of operator &* with the same eigenvalue o ,

&lg*ay = lg*ay k=0,1,2. 6.31)

Due to the equation (6.31), any superposition of these states is also eigenstate of a°> with

eigenvalue o®. We have following theorem

Proposition 6.2 Trinity states {|0)q, |1)q, |2)o} are eigenstates of operator &*

k), = k), k=0,1,2. (6.32)
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From trinity states, we can construct the qutrit coherent state

Il//>w = C0|0>a + Cl|1>a + 62|2>a s (633)

where |co|* + |ci|* + |c2)? = 1, as a unit of quantum information with base 3 (2.35). It turns

out that this state is an eigenstate of operator &° as well

Wy = W) - (6.34)

6.5. Number of Photons in Trinity States

For calculating number of photons in trinity states, it is convenient to apply anni-

hilation operator a to the states [0),, |1), and |2),.

Proposition 6.3 The annihilation operator a acts on |0),,|1), and |2), states as cyclic

permutation

al0)e = a |2>a’ all)e = a |0>a, al2), = a |1>a (6.35)

Proof We apply a to the trinity states, respectively;

~ No ¢, A2 Al 4
al0), = —(—=\ale)+alg°a) + alqg"a)
= )

NO 2 2 4 4

— (ala) + g alg a) + g alq @)

\/§( )
No —4, 2 2, 4

= —«alle)+qlga)+qlq"a)
V3 ( )

_ oM %ma, 6.36)
2

VBN
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Then,

i, = L (alo) + Pl + Talg'a))

\/_
el
V3

N
= —a(lo) +lg%a) +lq'a))

V3

N
= “F|0>a:a “10)a

B No

ala) +7'q’elg’a) + g alg* @)

and

. = —= (a|a> +q'dlg’ ) + Galg'a))

\/_
=
V3

N _
= —a(lo) +7l’a) + Tlg*))

V3

N, V3
= D =3 1), .
\/_N1|> CY1|>

ala) +g'alg’e) + ¢ alg'e))

(6.37)

(6.38)

Proposition 6.4 Number of photons in trinity states is defined by ratio of two consecutive

mod 3 exponential functions, multiplied by |a|*

2 2

- N, o]
AONIDY, = laP |32] = ol | =]

2 0

2 2

- N ]
AN = P[] =P,

NO 1e|a‘

2 2

- N ||

AN =l 22 = el |

Nl zekﬂ

Proof To show this, first we use equation (6.35) so that

F0h. = (0la"a Mo\ (Moo N e (M) 1y, = 1o (Me)
«{OIN|0), = o(0l@"al0), = ( <2| )(a N2|2>a) = aa( N ) o 11 = a ( Nz) :

2 2

(6.39)

(6.40)

(6.41)



Then, in a similar way we get

SN, = e [— . o2INPRY, = e [—]
(1IN|1) IaI(N) (2IN|2) IaI(N)

0 1
where normalization constants are related with mod 3 exponential functions

laf2

Ny = 632 (oelalz)_

=
=
|
Q
&
—
L
2
)
N—
N\I'—‘
&
|
Q
&
—
3%
L
2
N—
N\I'—‘

(mod 3). (6.42)

O

If we use explicit form of mod 3 exponential functions from equations (4.62) — (4.64),

then number of photons can be written in terms of standard trigonometric functions ;

i 32 V3| 12 2r) |
- 1+2e 2 cos (7|a’| + ?)
«(OINI0Y, = laf

1+2¢7%" cos (Llap)
—3laf?

_ | 1+2e75 cos(Llap)

o1INIDe = ol

_3‘(,'2
1 +2e2 cos (glozl2 -~ 23—”)

i —3jaf? 7
1 +2e 2 cos (%Ial2 - 23—”)

«(2IN2)q laf?

—3laf2 *
1 +2e~2 cos (\/7§|cz|2 + 23—”)

For small number of photons, We can find these number of photons corresponding to the

limit as |a|> — 0. For simplicity of calculations, we denote ||> = x and have

[
x3k+2

Z Bk +2)!

lim x [ﬁ] (mod3) = limx =2 —

lim ,(0IN10),

X—00 Oex x—0 Z x3k
e (3k)!
1 X x°
21 51 - 8! ' 31
i 3 ! ! s e
= }C1_r)réx 1 R = }CI_I)I(}X > 0. (6.43)
it
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By the same steps, we obtain following equations

® 3k
;ka
llm[,(llNll)a—hmx[ ](mod?)) = limx —
X—00 o x3k+1
= 3k + 1)!
3046
I+ —=+—=+
! !
= limx i4 0L _1, (644
X+4—!+$+
3k+1
B e Z(3k+1)'
lim ,(2|N|2), = hmx[ ](modS)_hmx
x—0 —oo | 5et x—0 k2
= Bk +2)!
“ ) 3 6
X+E+ﬁ+' 1+E+ﬁ+
= }Cl_r)%xxz 5 3 :il_rgl R =2.(645)
258 TR T

As aresult, we get

lim LON|0), =0, lim (1N|1), =1, lim L2INRY, =2, (6.46)

|@2—0—0 |@2—=0—0 al2—0—0
shown in Fig.(6.2) :

5

4

s 2<OIN|0>
— <N,

2 — <225

N

1 2 ?‘: 4 5

Figure 6.2. Photon numbers in trinity states



6.6. Matrix Representation of Operators in Trinity Basis

Main operators in our construction act in the Fock space, which becomes direct
product of 3—dimensional subspaces. Operators acting in these subspaces are described

by 3 X 3 matrices in trinity basis. Firstly, we find matrix representation of annihilation

operator a as following;

01210Ye  2(0lal1Ye  2(01aI2)q 0 # 0
a=| (a0, Ul J(1a2), || 0 0 &
L2000% o200 o(20012)0 Moo

As a result, a can be written in terms of normalization matrix and the 3 X 3 shift matrix

2 as

= 0 0 oll™m o0 o
a=al 0 L 0[O0 1|l 0 N 0 |=aN'EN (6.47)
0 0 #fltooflo 0o N

— N o \N .o .
Since N|n) = n|n),n > 0, the operator ¢g*V = (e’%) acts on the trinity states as following

e V1200 = ¢'12) - (6.48)

7"10)a = 10)ar ¢ 1)a

Thus, operator 612’V in trinity basis is represented by the clock matrix (Appendix C.3)

2012100 o012 1 o(0lg?V12)s 1 0 0
7" =| 10 o1g VD (1200 [=]0 ¢ 0
20700 2N D0 o206V 200 00 4
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Equation (6.48) gives the eigenvalue problem for the g> number operator [ﬁ 1p

V-1 1-1 —

FI(DQ = qz—_ll())a = [N]L]2|O>(l = [O]qzl())(x s (649)
2N -1 2 1 .

qq2 —-11), = Zz—_lma = [Nzl = [0, (6.50)
2N -1 4 1 -

qqz — 12, = ;’2—_1|2>a = [NlR)e = [21312), - (6.51)

and for the diagonal matrix elements

AOIIN1210), = [012, o LIN] 210 = [, o(2IIN]22)0 = [2], - (6.52)

Therefore, matrix representation of [ﬁ ]2 operator in trinity basis is

0, 0 0
INl.=| 0 [l. 0 [,
0 0 [2,

where the eigenvalues are ¢g*> numbers [0]2 =0, [1],. = 1 and [2],2 = ”;‘@.

6.7. Heinsenberg Uncertainty Relation for Trinity States

Here, we construct uncertainty relations for trinity states. By using direct calcula-

tions, we get

i —

(A, (AP, = 5 (1+24(0INIO)) . (6.53)
f -

Ay, APy, = 5 (1+2.(UNID.) . (6.54)
i —

(A, (ApYyy, = 5 (1+2.Q2NR)) . (6.55)
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where a(klﬁlk>a,0 < k < 2 are given by (6.39)-(6.41). In the limiting case, |@| — 0
follows from AS (6.46)

h
li Ag Ap = =, 6.56
lallszo( Doy, (AP, 5 (6.56)
3h
li AG Ap = —, 6.57
|a|12r30( Q)|1>a (AP, 5 ( )
. R R 5h

This shows that uncertainty is growing with states number.
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CHAPTER 7

QUARTET STATES

In this Chapter, the quartet states associated with ¢g® = 1 roots of unity are treated
in details. We define four states, rotated by angle 5 and related with vertices of the square
shown in Fig.(7.1). Superposition of these states, with choosen by proper coefficients,

give us quartet of orthonormal basis states

Figure 7.1. Quartet states

0, = oL_l0tlaia) +gie) +lg°) 1)
¢ VAVl 1 olaf 1 o'laP } gdflal '

e lay +|g2%a) + |lg*a) + |g°a)
4 4/pele’ (mod 4)
il +g’a) + 3l "a) + 'lg )
V4 \/e|a|2 + Gledlal 4 gted ol 4 gledllal
21+ @19’ +3'lg ') + 3l o)

4+/ 1" (mod 4)

Do

(7.2)
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S ) +7'lg%a) +lg*a) + §'lqg )

12)a
V4 \/emz + G el 4 ed'leP 4 Gt edlaP
_ gl +7lg%a) +1g'e) + 3l e)
4+/,el’ (mod 4)
3, = L0t TN0 +Tlg') + )

V4 \/e\aP + gledlal 4 gted ol 4 Gt edllal?
20+ 719 + 3l ') + 7'l o)

4 +/3e1? (mod 4)

‘We combine them in matrix form

[ 10, | (11 1 | e
e |_y |17 @ @ | e
2)a Vil 1 g (@) @) ||l |

[ 13 | 17 (@) @) |l |

Quartet gate

with normalization matrix, defined as

_ _ _ S—1/2
No 0 0 0 o 0 0 0
No| O Moo Ml 0 0 0 (mod 4)
= = mo .
0 0 N, O VAl 0 0 L 0
0 0 0 Ns 0 0 0 et |
obtained by using identity
1+ + 7+ = 46, 4m0an) L0 <k <3
with
1, n=k(mod4),
6n,k(mod4) =
0, n# k(mod4).

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)
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7.1. Quartet States in Terms of Cat States

The quartet states are superpositions of cat states with explicit form of phase shift

as

0 = %%mm+rwm+qmww—mm,
e = %%mew—a»—mmrw—m»L
2. = %%waw—a»—wm+|—m»L
B = %%umww—a»+mmrw—m»L

with ¢* = €2 = jand ¢* = " = —1.

7.2. Mod 4 Form of Quartet States

By using (mod 4) exponential functions we get representation of these states in a

compact form:

ad’ ad’ aa’ aa’

00 = 2=10), 1)y = —=—=[0)., )y = 2=—=[0). [3)e=—"—I[0). (7.8)

\ /Oemz \ /lela/lz 7 /ze|a|2 N

7.3. Eigenvalue Problem for Quartet States

As easy to see, the quartet states are eigenstates of operator a* with eigenvalue o*

a'lg ey = Ml ey = @k, =aYk), k=0,1,2,3. (7.9)
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In terms of these states the ququat state is defined as
W)e = col0)o + cill)a + €212)0 + €313)a, (7.10)

where |co?> + |ci|* + |2l + |c3> = 1. It describes a unit of quantum information with base

4, and it is an eigenstate of operator a*:

Ay = @ l)a- (7.11)

7.4. Number of Photons in Quartet States

The annihilation operator a implements cyclic permutation of quartet states as

following
N N N N
al0), = aﬁjm, all), = aﬁ;m, a2y, = aﬁjma, a3y, = aﬁzma . (7.12)

These equations are allowing us to calculate number of photons easily.

Proposition 7.1 Number of photons in quartet states are defined as

. |a‘2— . 2 : 2
. se , [ sinh|a|* — sina]|
OINIOYe = laf*| ==l
«{O|N|0), »()ela\z_ | cosh || + cos |a? | ,
N [ ol [ 2 *]
LN, = | L | = o | S2RIE £ coslal )
| elo? | sinh |@|? + sin |e|? |
_ |(I‘2 B . 2 : 2]
. e , | sinhal* + sin|e/|
2INI12 = |o*|—| =l
o 2IN12)q | _ze|"‘2_ _coshlalz—COS |0/|2_ ’
e - 2 2]
. Je , [cosh|al* — cos|e/|
BINBYe = o |—=|=lof’|= i '
«(3IN|3)q o] »3ela\2_ ] »smh|a|2—Sln|CY|2<

As one can see, if we use definition of mod 4 exponential function, we get number of

photons in terms of trigonometric and hyperbolic functions.
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T

2<OIN|0>,

w

— <>,

— (<2254

~

— o<BIN|3>,

Figure 7.2. Photon numbers in quartet states

From the Fig.(7.2), it is clear that for small number of photons we have following limits

as |a* — 0,

lim ,(OIN|0), = 0, lim L(1|N|1), =1, (7.13)
|]2—0 la2—0
lim 2IN2), =2, lim +BINI3), = 3. (7.14)
|a]*—0 a|2—0

7.5. Matrix Representation of Operators in Quartet Basis

Here, operators in the quartet basis as 4 X4 matrices are constructed. We start with

annihilation operator by using equation in (7.12);

'0%00"

0 0 X 9
a=u«a N1N3

0 0 &

N

% 0 0

Then, this form can be written in terms of normalization matrix and 4 dimensional shift
matrix;

’NLO 0 0 oll[lo1oo0][N O 0O 0]
R 0 &£ 0 of{loo1 0|0 N O O e
a=a ! =aNZlN.
0 0 4 0[/00O0TL|[O0O 0O N 0
[ 000 0 £ f[100O0[][ 0 0 0 N|
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The matrix representation of g>-number operator in quartet basis is derived from the fol-

lowing relations,

V6o = g1k, . (7.15)

where k = 0, 1, 2, 3. It is the four dimensional clock matrix

(1 0 0 o] [1 0
qzﬁ:oq20020i

00 ¢* 0 00 -1 0

(000 0 ¢| |0 0 —i

Due to (7.15) , we have eigenvalue problem for operator [N ] in quartet basis

—

[N1210)e = [0],210)a,
[N = [11211)a,
N2 = [21212),

—

[N123)e = [31213)-

with the eigenvalues as g>—numbers 0], =0,[1], =1,[2],2 =i+ 1 and [3],2 = i. Thus,

representation of [N], operator in quartet basis is the diagonal matrix.

[0, 0 0 0
_ 0 [l 0 0
M = [1],
0 0 [2Ip O
o 0 0 3]
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CHAPTER 8

KALEIDOSCOPE OF QUANTUM COHERENT STATES

As a generalization of previous results, here we consider superposition of n coher-
ent states, which are belonging to vertices of regular n-polygon and are rotated by angle

% Fig.(8.1). It is related with primitive roots of unity g =en = 1.

|q2(n—1)a) )

Figure 8.1. The regular n-polygon states

First, we start to define |0), with normalization constant N, as a superposition of

rotated states in Fig.(8.1);

10Ya

No(j) + lg*a) +1g*@) + ... + 147" Va))

8

o a”
= Npe (In) + g*"|n) + ¢*"|n) + ... + g% Vln))
L e
= Npe 2 1+ qz” + q4” + ...+ qz(”_l) |n)). (8.1)
el )

By using identity, which is proven in Appendix A.3.1, for ¢** = 1,

L+q" + 4" + .+ """ = N6 00moan (82)
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where

s 1, m = 0(@modn); (8.3)
m,0 (modn) = .
“ N0, m# 0 (modn),

it gives

10),, = nNoe "z" | = aNe S Z (8.4)

\/(nk \/(nk

where the state |[nk) has the unit element at (nk + 1)—th row. Then, normalized state |0),

becomes

ﬁ n—1 laf= n—1
e 2 e 2
0)g = —— > |¢%a) = lg*a) (8.5)

_ [ 2 Z
g 2% 2 k=0 n Oe‘al (mod n) i=o
n§ el

k=0

The other n — 1 states, which are orthogonal to |0), and to each other, are denoted by
Da s 2Ya s woes [ = 1)a, s0 that o(kll}e = 0,0 < k,I < n — 1. We can build these states by

using orthogonality relations and following inner products of ¢* rotated coherent states;

(Pad®ay=1 , (aldta) =TT D o<k l<n—1. (8.6)

Our construction shows that this set of orthogonal states can be described by the n X n
matrix

0)a R L
|T>a 1 C_] q ql(n—l) |q2a>
2)e | _ 1 |1 7 g® g4 g ) .
13)a \/ﬁ 1 q6 qu q6(n—l) |q6a> >

| I’jL‘?i >(y ] | 1 qZ(n—l) q4(”_1) qZ(n—l)z 11 |q2(n—1)a,> |




where §° = e~ is the n-th root of unity, so that corresponding transformation is

1

n

&l

n—=1 n—1
— 1 o ,
Kye = — Y #Mg¥ay = — " Qulg¥ay 0<ksn-1,,
Vn =0 =0
This is the Quantum Fourier transformation Q, which represents the unitary gate.

8.1. Construction of Kaleidoscope States

Here, from the states IBQ in (8.7), we obtain normalized states |k),,

0. | [ (0% | )
1), D g’ )
2| N |§>a _ il g ) |
: 13 :
n =2, : ")
=1 | [ In=1), | 1" Ve |

(8.8)

which we called as "Kaleidoscope of Quantum coherent states." Here, N is normalization

matrix and Q is the Quantum Fourier transformation.

Explicitly it gives

D=

10y, | [ e 0 o .. o || [0,
e o2 0 1€|a|2 0 0 |T>a
2y, |=° = 0 0 selef 0 2),
1) | 0 0 0 . et | | m=T), |
or
ﬁ n—1
e? —2jk, 2j
k), = - 9" lg7ay 0<k<n-1,.
n ke|ﬂ| =0

(8.9)

(8.10)
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In terms of (mod n) exponential functions(see Section 4.6)

o (la,|2)ns+k

, 0<k<n-1, (8.11)
= (ns+k)!

fillal) = kelalz(modn) =

These functions have been introduced in Chapter 4 and they represent superposition of

standard exponentials
1 n—1
2 — 2k 12
@ (modn) = - Z ke 0<k<n-1, (8.12)
n s=0

related to each other by derivatives

0 0
el e Gl L (8.13)

This reflects the cyclic permutation of states by annihilation operator in Fock-Bargmann

representation.

8.2. Mod n Form of Kaleidoscope States

By using mod n functions introduced in Chapter 4, we derive compact expression

for the kaleidoscope states.

Proposition 8.1 Kaleidoscope of Quantum coherent states has the form

at
ad

134

kYo = \/_2|0> (modn), 0 <k<n-1. (8.14)
ke|ﬂ/|
Proof Since
@) = e 2|0y = |Pay = e HTel e |y (8.15)

et ey 0<j<n—1,  (8.16)
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then kaleidoscope states can be derived from |0) state as

lof? -1

e 2]k 2J @. 16) —2jk quoza
K)o = Z @) kemz Z 0) (8.17)

k€“ =0

The summation coincides with definiton of mod n function in equation (8.12), so that

aa’

K€

A /ke|(l|2

K)o =

0) (modn), 0 <k<n-1. (8.18)

8.3. Eigenvalue Problem for Kaleidoscope States

The kaleidoscope quantum coherent states are eigenstates of operator a”, with

eigenvalue " and
Any 2k _ ny 2k AN . n _
adlg7ay =a"lg"ay = d'lk),=a"lk)e k=0,..,n-1. (8.19)

Taking superposition of kaleidoscope states

n—1
W = > Cilk)a, (8.20)
k=0

with normalization Z ICi* =1, the qudit state is defined. The qudit describes a unit of

*=0
quantum information with base n, and it is an eigenstate of operator a":

a"W)o = "W). (8.21)
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8.4. Number of Photons in Kaleidoscope States

Due to the compact form of kaleidoscope states in equation (8.14), we can use
application of annihilation operator to calculate number of photons easily. For calculation

we need following lemma.

Lemma 8.1 If f(2) is an analytic function, then for the operator argument &'
f@ah =) @y, (8.22)
n=0

the following commutation relation valid

d

/@ (8.23)

|a, f@h)] =

Proof The commutator of & and £(a") is

~ ~ A AT AT\ A C A AT\ N AT\t d ~
[a,f<a*>]=af(a)—f(aha:;cn [a,<a*>]=;cnn<a*> L= f@h. (8.24)
O
Thus it follows that
seenty = 4 oot ~TVA
af@') = d&%f(a)+f(a )a. (8.25)

Proposition 8.2 The kaleidoscope of quantum states is generated by annihilation opera-

tor a as cyclic permutation of states;

N,

A0y = a—tln—1),, (8.26)
n—1
N,

ke = a—k=1),1<k<n-1, (8.27)
Ni_1
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Proof The proof is splitted into two parts for states |0), and |k),,1 <k <n—1. Firstly,

application of annihilation operator a to |0), state by using equation (8.14)

o ge® . 1 d . A
al0y, = =X _joy 2 (— i 4 oew*a) 0)

~r 0
VoeloP elaP \da'

1 At A A
= a——(1€""10) + o¢"" al0))
lo|
0€

gives

d
dar

keaiﬁ

IS}
~
Q
Q
S
—
o
I
wn
)
—
—_———

+ ke“a*a) 0)

0
ke|(1/|2 \/ke|a/|2
1

1€ (0) + e a|0))

Il
OS]
—_

Vi-1€l?
PV L b

Ny
- k—1), = mlk— 1), (modn).

(8.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

O

Now, we are ready to calculate number of photons in Kaleidoscope of quantum coherent

states.
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Proposition 8.3 Average number of photons in kaleidoscope of coherent states is given

as

— le?
«OIN|0), = Iozlz("_le2 ) , (8.38)
Oe|ﬂ’|
— laf?
KNI, = |a|2(k_1|e|2 ) Jd<k<n—1. (8.39)
ke

Proof To derive number of photons in kaleidoscope states, first we use equation (8.26)

so that

o{OIN10Y, = 1(0a"al0),

|
—
5
-~
S
—

Ny _ No
alla n—1),
Nn— Nn—l

1
2
_ No
= —1n-1 4
W(Nn—l) on—1n—1), (8.40)
0 ? 16’| i
4 2 21 n—
= | l(N,,—l | |(0|d|2) (8.41)
Similar calculations give (see (8.27))
= Ny _ Ny
kINK)y = o(klaTalk), = (a<k - ll—a) (a—lk - 1>a)
N Ni-1
_( NV
= — | Sk-=1k-1), 8.42
aa(Nk_l) k= 1= 1) (8.42)
2 2
N el
_ 2 k _ 21 k-1 _
= |af (Nk_ 1) = || ( T ) 1 <k<n-1.(843)
O
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In the limiting case |a/?

x — 0, we have following results. Number of photons in

kaleidoscope state have the limit for state |0),, :

hnga<0|ﬁ|0>a =

lim x["_le ] (mod n)
X—00 Oex

ns+(n-1)

Z"’: x
e (ns + (n—1))!

= limx
x—0 i A1
|
— (ns)!
1 X x2n
+ + + ...
_ . 1| (=1 (2n-1)! Bn-1)!
B }vl—l;r(% xxn [ 1+ X + xz_” +
! T2y T

lim
x—0 (n — 1)'

and for states [k),,1 <k<n-1;

lim ,(KINIk)

Asymptotically, for small occupation numbers they approach the integers k values

(o)

xns+(k—1)

s=0

Z (ns + (k—1))!

ling x[k_le ] (mod n) = lim x

X—00 kex x—0 & xns+k
(ns +k)!

i1 1 + X" + xX°n +

) X *=—1)! T (h)—D)! © Quth)—1)1

111’13 * k 1 X x2n
X ES JEEL _Xn

- k! + (n+k)! + (2n+k)! RIRR

. k!

lim =k

x—0 (k — 1)'

llilmoa(klﬁ|k>(, —k,0<k<n-1.

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)
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8.5. Matrix Representation of Operators in Kaleidoscope Basis

The operators in kaleidoscope basis are described by n X n matrix. We start with

construction of annihilation operator @ with matrix elements

oAKlall)o = ary,0 <k, I <n-—1. (8.52)

In the kaleidoscope basis, since annihilation operator & applied to a state produces the

orthogonal one, only [ =0,k =n—1

N, N N,
o = 11210}, =" otn = 1 (a - 1>a) = oy aln = =D, = a3 (8.53)
and/=k+1,0<k<n-1
(8.27) Nist Nis Nis1
LKlalk + 1), =" Jklla——lk)o | = a——(klk)o = 8.54
(klalk + 1) <|(6¥Nk|>) aNk<|> N (8.54)
terms survive. Then, the matrix representation of annihilation operator a is
N
v 00
N
v 0
N;
. 0 M e 0 R
a=a«a . _ =aN " XN, (8.55)
Ny—
0 N)‘l—;
N,
x> 0 0 0 .. 0

where N is normalization matrix and X, is the n X n shift matrix. To construct matrix

N 2 \N . ..
representation of the operator ¢*V = (e’%) , we have following proposition

Proposition 8.4 Let ¢** = 1, the operator g*" acts on the kaleidoscope states as

ke = ¢ k)e,0<k<n—1. (8.56)
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Proof We prove the statement by using compact form of kaleidoscope states in mod n

representation

"lkye =

N0y (modn) =

\/ke|”|2

it " T)ns+k

a
N

+k)! R

(@
N ; (n

(a)nﬁk (&T)nﬁk

qzﬁ ©0
N Z:(; Vs + k1) Vs + &)

From (3.5) , we have

N ®

(a/)ns+k

|ns + k)

q
Vel Z V(ns + k)!

s=0

(o9

1 ns+k il
Z (@) qZNIns + k)
Vieo? 5= Vns +k)!
(a)ns+k 2k|

1 [o9)
P Z Jos t 01

s=0

+ k),

due to N|n) = nln) = qzﬁlns + k) = ¢*"*Plns + k) = g*|ns + k), then

7V lkyy =

CIZk (Q&T)H‘Hk e
— 2% K€ gy = 2k
N ; (ns + k)! 0) = \//<€'_“'2|0> = 4" K)o (8.57)
O

Therefore, operator qzﬁ has diagonal form in the kaleidoscope basis, which is represented

by the clock matrix X3;

N _

1 0

¢ 0

0 4 , (8.58)
(00 0 .. g
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with diagonal matrix elements ,(klg*V k), = ¢*, 0 < k < n— 1. Equation (8.56) becomes

the eigenvalue problem for the g> number operator [N] P as

[N2lkYe = [Klplk)e, 0 <k <n—1. (8.59)

Therefore, matrix representation of [1’\7 1,2 operator in kaleidoscope basis is

[0, 0 0 .. 0
0 [llp O 0
[Nl,=| 0 0 [2z .. O : (8.60)
0 0 0 [n— 1]q2 ]

where the diagonal elements are g* numbers [kl = sz—__; ,0<k<n-1.

8.6. Heinsenberg Uncertainty Relation for Kaleidoscope States

Here, we calculate uncertainty relation for Kaleidoscope states. For this, we need

to find expectation value of ¢ and p operators for state |k),,0 < k <n —1, as following

oKl \/g(& + ")k

h
\g (oK), + oK' k),) = 0, (8.61)

Dy, = o(klElk)a

and

(P, = alklPlk)a

okl = i\/é(fl — &Nk

h
i \g (a(klalkye + o(Ka"k)e) = 0. (8.62)
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It happens due to that application of a to state |k),, creating the orthogonal states to |k),

according to (8.26) — (8.27). Then, for state |k), the variance in coordinate operator is

. . h Y
(o, = alklPh)a = Satkl(a+a") W

I )
e Solk (@ +2a7a +1+ @)k

h +
= 3 (a<k|a2|k>a + 20(kla" alk)o + ofklk)o + a<kl(5f)2|k>a)

2

_n — N T , N}
= 3 (1 + 2a(k|N|k>a) =3 (1 + 2| E) , (8.63)

and variance in momentum operator is

h 2
Do, = olklpPk)e = —5atkl (@ =a") Ik

h A
33 _5”<kl (&2 —2a'a -1+ (&T)z) |kYe

—g (a$klE?le)a = 24 (Kl alkYy — o(klkYy + o(KI(@" K)o )

- 2(1 + 2, (kINIkY) = Z (1 + 2|a/|2%]i) : (8.64)

where we have used
KAy =0 & LK@ k)e=00<k<n-1. (8.65)

As aresult, we have
(P, = g (1 + 2|a|2%) , (8.66)
(P, = g (1 + 2|a|2%i) . (8.67)

The form of variance is different from the cat states n = 2, due to that the cat states are
eigenstates of operator a2, so that the expression (8.65) is not zero. We have derived
uncertainty relation for cat states in Chapter 4. The following uncertainty relations are for

n>3;
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. . h , NI n et
(Aq)|k)w (AP)U% = 5 (1 + 2|a'| E = 5 1+ 2|a| ke|(¥|2 s (868)
where
. . n N2
(Adyy, = APy, = 4[5 (1 +2lelP——]. (8.69)
2 N

This uncertainty relation for kaleidoscope states |k), have the following limit;

s h
lim (A, (Ap)y, 2" 3Ck+1) 0<k<n-1. (8.70)
|@]*—0

It is noted that uncertainty relation (8.68) includes mod n exponential funtions, and in
the limit > — 0 coincides with spectrum of harmonic oscillator with finite number of

energy levels

Ek:h(k+—) ,0<k<n-—-1. (8.71)

8.7. Coordinate Representation of Kaleidoscope States

The wave function for kaleidoscope of quantum coherent states |k),,0 < k <

n — 1 ,in coordinate representation is given by

a2
2

_ e S Hns+k(x) @ ek
ke = /4 \/W ; (ns + k)! (%) ’ ®.72)

By using (mod n) generating function for mod n Hermite polynomials

ns+k

- Z 2
———— Hy(x) = e, (8.73)
SZ:(; (ns+k)!
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where

2 1 2 (22 2 _(2(n=1)_\2 2(n—1)
ot = L (e e S U 7 zx), (8.74)
n

this wave function appears as superposition of Gaussian wave functions:

S

22
(ke = —— e TV (8.75)

l/4 A / ke|a|2
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CHAPTER 9

QUANTUM GROUP SYMMETRY

In the Fock space the operator ¢?" is an infinite matrix of the form

0 0 0 1
0 ¢ 0

L=¢"=10l0 0 ¢ .. 0 |, Z=19l010 .. 0. D
00 0 g2 000 0

Here the n X n matrices are called the Sylvester clock and shift matrices correspondingly.

They are g-commutative

%5 = ¢° 5%, 9.2)

satisfy relations

st=q, =1 (9.3)

and are connected by the unitary transformation:

T = 0¢" e Q). (9.4)

Hermann Weyl in book (Weyl, 1931) proposed them for description of quantum me-
chanics of finite dimensional systems. By dilatation operator qm we define g>-number

operator

[Nz =
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for non-symmetrical g-calculus, and

gN — g2

[N = 9.5)

q2 _ (]_2

for the symmetrical one. In our kaleidoscope basis, these number operators are diagonal

with eigenvalues given by g-numbers:

[Nz = diag([0],2, [112, ... [n = 11,2, (9.6)

an_l
g°-1

with [n],2 = for non-symmetric case, and

A

[Nz = diag([02, [1]32, ooor [ = 112), 9.7)

21 —2n
with [n]z; = qqz_Z—z for the symmetrical one. For symmetric case the g-number operator

is Hermitian and can be factorized as

[N]=B*B, [N +1]= BB, (9.8)
where
. N1,
Boadt ]\1‘72. (9.9)

Explicitly in matrix form it is

0 0
0 V11 ©
B=1®| . | B=18] 0 V21 O , (9.10)
0 0 0 0 '
0 0 0 ..0

and B" = 0, (B*)" = 0. In non-symmetric case the number operator is not Hermitian.
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9.1. Symmetric Case

For symmetric case we have the quantum algebra

A A

BB —¢’B'B = ¢, (9.11)
BB —¢?B*'B = 4%, 9.12)

and quantum g*-oscillator with Hamiltonian
~ hw N
A = 7([N],;z +[N+11). (9.13)

On the kaleidoscope states as the eigenstates, the spectrum of this Hamiltonian is

fiw SIn 2—rf(k + %)

©~ 4 sin %
The same spectrum was obtained in (Floratos and Tomaras, 1990) for description of phys-

ical system of two anyons. Appearance of quantum algebraic structure in two different

physical systems, as optical coherent states and the anyons problem is instructive.

9.2. Non-symmetric Case

In this case the quantum algebra of operators is g*>-deformed

A A A

BB —¢4*B'B = 1, (9.14)

A

BB -B'B = ¢,

with periodic (mod n) ([k + n],2 = [k],2) g*-numbers

T
[k] , = ei%(k—l) S nk
1 sin
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CHAPTER 10

CONCLUSION

In the present thesis the Glauber coherent states, as most classical quantum states,
were used for description of units of quantum information in terms of quantum kaleido-
scope of states, associated with regular polygon symmetry and roots of unity.

For description of this kaleidoscope, a new type of functions with mod n symmetry
was introduced by discrete Fourier transform. These functions include generalized hyper-
bolic functions, satisfying ordinary differential equations with proper initial conditions.
For mod 2 functions with operator argument, non-commutative addition formulas were
derived. Mod n representation of displacement operator for quantum states was obtained.
Mod n Hermite polynomials and corresponding generating functions were constructed
by mod n exponential functions. In terms of these functions, normalization constants,
average number of photons, uncertainty relations, and coordinate representation of kalei-
doscope states were derived.

The Schrodinger Cat States generated by Hadamard gate as superposition of co-
herent states with opposite phases, were related to primitive roots of unity g* = 1. These
states have been used for description of qubit unit of quantum information. The trinity and
the quartet states, related with ¢ = 1 and ¢® = 1 primitive roots of unity, were described
in details. These states provide computational basis for quantum units of information as
the qutrit and the ququat, correspondingly.

Generalization of this construction to the kaleidoscope of quantum coherent states,
related with regular n-polygon and the roots of unity ¢g* = 1 was derived. This construc-
tion was generated by quantum Fourier transform of Glauber coherent states. Calculation
of uncertainty relations, show that kaleidoscope states are not minimal uncertainty states.
In coordinate representation these states were described by superposition of Gaussian
states with mod n symmetry. A Superposition of these states represents the qudit unit
of quantum information, corresponding to arbitrary base in position notation of numbers.
The kaleidoscope states, as well as the qudit state are eigenstates of the n-th power of an-
nihilation operator. Relations of these states with g-number operators and quantum group
symmetry, in terms of the clock and shift matrices were established. The kaleidoscope
coherent states, derived in this thesis can be used for creating two and multiple qubit

entangled states of photons.
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APPENDIX A

PRELIMINARIES

A.1. Expectation Value

In quantum mechanics , the expectation value is the probabilistic expected value

of the result of an measurement.

Definition A.1 Let A be an operator on a Hilbert space and |@) is a normalized state,

then the expectation value of A in the state ) is defined as

(Ay = (&), = (plAlp) (A.1)

A.2. Uncertainty(Deviation)

Definition A.2 The uncertainty of the observable A is a measure of the spread of results
around the mean (A). It is defined in the usual way, that is the difference between each

measured result and the mean is calculated.

(AAY. = (A7), — (A)? (A2)

A.3. Root of Unity

Definition A.3 Given a positive number n, a complex number w is called an nth root of

unity if

w'=1.
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Define w, as following;
W, =w= el = cos (z—ﬂ) + isin (2_7r) (A.3)
From w" = 1, the complex numbers
L,w,w?, ., (A4)

considered as points in the complex plane which are vertices of n—sided regular polygon,
inscribed to unit circle. For example, when n=6, they are corresponding to vertices of

hexagon.
A.3.1. Main Properties of Roots of Unity
Any integer power of an nth root of unity is also n—th root of unity:
W =w = =1 =1. (A.5)

Here k may be negative. In particular, the reciprocal of an n-th root of unity is its complex

conjugate, and is also an nth root of unity:
— =Wy = w”_] =Ww. (A.6)

Definition A.4 A primitive n-th root of unity is a n-th root of unity that is not a k-th root

of unity for any positive integer k < n. That is, w is a primitive root of unity if and only if

wi=1,wk£1. (A.7)

Proposition A.1 For primitive roots of unity w" = 1,0 < s,k < n—1 following identities
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hold;

D T+wE+ w7 = 065 0mdn) (A.8)

2) 1+ w0 w9 e W 0D = S moan (A.9)

where

1, k=0@modn); 1, k= s(modn);
6k,0(modn) = & 5k,s(modn) = (AlO)
0, k # 0(modn). 0, k +# s(modn).

Proof For the first statement, due to w* = 1 ,Yk=nl,l€ 7 ;

=" = (1=wHa +wf +w* + .+ 4D (A.11)

A=A +w" +w* + .+ 4" D) =0 (A.12)

Since 1 — (w")! = 0, then
L+w" +w™ + w14 + W) + .+ W) =n (A.13)
When k # nl,l € Z, it gives us w* # 1 and
L+wf+w* + L+ D=0, (A.14)

Therefore, the following result holds

1, k= 0(@modn);
1+ Wk + WZk + ...+ Wk(n_l) = nék,o(m(,d,,) =n ( ) (A15)
0, k# 0(modn).
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For the second statement,it is enough to choose k = k — s and substitute to equation (A.8);

L+wh+ w4 kD = 19 4269 4 k=900 16)
= n(Sk,S (modn) (A 17)
O

A.4. The Baker—Campbell-Hausdorff formula

Definition A.5 The Baker—Campbell-Hausdorff formula for the product of the exponen-
tials of two operators A and B is

Aeﬁ _ eA+B+[A,B]/2+... (A.18)

e

which involves nested commutators of A and B.
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APPENDIX B

GENERALIZED HYPERBOLIC FUNCTIONS

This chapter introduces the basic notions and properties of Generalized hyperbolic

functions based on (Ungar, 1982).

Definition B.1 For any pair of integers (n,r), n > 2,0 < r <n—1, let the entire function

in the complex plane C,

nk+r

Fur@d =) — (B.1)
k=0

—4 (nk +r)!

be referred to as the hyperbolic function of order n and rth kind.

The two hyperbolic functions of order n = 2 are thus F;y(z) = coshz and F,(z) = sinhz.

Since
d
d_Fn,r(Z) = Fn,r—l(Z) s (B.2)
Z
where we define
Fn,—l(z) = Fn,r—l(Z) s (BS)
the hyperbolic functions of order n,
F,.(2), r=0,1,2,...,n—1, (B.4)

form a set of n linearly independent solutions of differential equation

n

dz"

D(z) = D(2) (B.5)
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Furthermore, we can extend the definition of F,,(z) to any integer r,

Fn,r(Z) = Fn,r(modn)(z) s (B6)

The hyperbolic functions of order n > 2, satisfy two basic properties. The first property is
that they form a set of n linearly independent solutions of an ordinary differential equation
that are obtained from one another by differentiations. The second property is that they
form a continuous commutative group, represented by an nxn matrix of a single complex
variable, the determinant of which is unity.

As an application to the theory of ordinary differential equations, let us consider the par-
ticular case of n = 3. The three hyperbolic functions of order 3, F;o(x), F3,(x), and

F3,(x),—0c0 < x < co may be written in terms of the exponential function,

1
Fio(x) = §(6x+eq1x + ), (B.7)
1
F31(x) = (€ +qet"+qe®), (B.8)
1
Fiy(x) = §(€X+Q1€qlx+(h€q2x)- (B.9)
where ¢ = L +i¥ and ¢, = =L — i -real cub f unity that i
Q= 5 +15-and gy = N are two non-real cube roots of unity that 1s

(¢1)° = (¢2)° = 1. Equivalently, the hyperbolic functions of order 3 can be written as

1 P 3

Fio() = 3| +2¢ cos %x]) (B.10)
1 . V3 2n

F3,1(X) = g e +2e7 2 cos TX—?)), (B.11)
| . 3 2

F3,(x) = =|e"'+2e2cos £x+—ﬂ . (B.12)

’ 3 2 3
thus indicating that the ordinary differential equation

d3
—®(x) = O(x) (B.13)

dx3
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has three linearly independent solutions, F3,.(x),r = 0, 1,2. The functions are approach-

ing % for x — oo, and rapidly oscillating near x — —oo.

Figure B.1. Hyperbolic functions with order 3
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APPENDIX C

QUANTUM FOURIER TRANSFORMATION

C.1. Discrete Fourier Transformation

Definition C.1 The discrete fourier transform of a vector with complex components f(0),

f(l),..., f(N — 1) is a new complex vector F(0), F(1), ..., F(N — 1), defined as

1 N-1 '
F(K) = — > w*f()) (C.D)
T ;w I

C.2. Quantum Fourier Transformation

In quantum computing, the quantum Fourier transform (for short: QFT) is a lin-
ear transformation on quantum bits, and is the quantum analogue of the discrete Fourier
transform.Using a simple decomposition, the discrete Fourier transform on 2" amplitudes
can be implemented as a quantum circuit consisting of only O(n*)Hadamard gates and
controlled phase shift gates, where n is the number of qubits. This can be compared with
the classical discrete Fourier transform, which takes O(n2") gates, where n is the number
of bits, which is exponentially more than O(n?). However, the quantum Fourier transform
acts on a quantum state, whereas the classical Fourier transform acts on a vector. The
quantum Fourier transform can be performed efficiently on a quantum computer, with a

particular decomposition into a product of simpler unitary matrices.

1

n

n—1
W) — Zazﬂw 0<k<n-1 (C.2)
j=0

&
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C.3. The Clock and Shift Matrices

Let g = e+’ be a primitive root of unity. Since ¢** = 1 and g # 1, the sum of all

roots satisfies

1+ +q¢'+... .+ P =0. (C.3)

We define the clock and shift matrices, correspondingly;

000 .. 1

# 0 .. 0 100 .. 0
=00 ¢ .. 0 |, ==l010 .0
00 0 .. gD 000 .. 0

The clock and shift matrices are generalizations of Pauli matrices o3 and oy, re-
spectively. Since we are in higher dimension than 2, these matrices are unitary and trace-
less, but not Hermitian. The group generated by the clock and shift matrices is sometimes

called Weyl-Heinsenberg group.

=7, =7 (C4)

Furthermore, they satisfy

DI ISE) 3 JNPSIPR L) Y (C.5)

which is quantum canonical commutation relation for finite dimensional spaces.
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APPENDIX D

SCHRODINGER'’S CAT STATES

D.1. Normalization of Schrodinger’s Cat States

In this part, we will use this identification where ¢*> = g% = -1 = ™.

0y =la) = No (lo) + lg°@) . D = la-) = N_(lo) + 3 °lg%a)) (D.1)

We will show orthogonality of cat states and normalization constants N,, N_ of these in
(D.1) will be calculated by using inner product of coherent states:

o (adla) =(¢’alg’a) =1
—2|o?

o (alg’a) = {(g*ala) = e

First, we will show that these states are orthogonal :

A110), = N,N-(el +g*q al(a) + g a)) (D.2)
N.N_({la) +{alg*a) + §Xq ala) + g alq a))

= N.N_(1+e 2l _ g2 _1y_

Then, normalization factors will be calculates respectively:

2{010), =1=1

N (¢al + (g aD(l) + Ig ) (D.3)
NI (¢eler) + (alg*a) + (ala) + (g alq a))
L (2 + 2672F) = 2N, e (el + e7oF)
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Thus,we have normalized state |0), :

0y, o __l0) +lg’0) D4
‘ V2 Vel ¢ olaP '
Normalization factor can be rewritten as:
((1aP)  (q1eP) ) & jap
o | pd’la _ ( _ @ 2n
¢ T B Z[ n! " n! _Z n! (lifq—/)
n=0 n=0 20p=0(mod2)
2%
= 25] (|a|2) =2,e"" = 2cosh(laf’)
- T4 (k)
Similarly, we can apply same process to |1),
oy =121 = NP ((al +7Xg al(e) +7lg a)) (D.5)
= IN_P (¢ele) + (g @) + g (ele) + (g alg )
= [N} (2 - 2e_2|“|2) = 2IN_[PeloF (e'“'2 +g°e '“'2)
Thus,we have normalized state |1), :
1y = E g 6
¢ V2 el + g eIl '

Normalization factor can be rewritten as:

n=0

o0 2\" 2 o0
e'“'2+gzeqz'“'2 _ Z[(k:!) + G ( |a/| ] Z '(1+q2(n D)

20p=1(mod2)
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So that,we have normalized cat states |0), and |1),:

0)e = €2

W la) + g la)

V2 Velol 4 el

=e

wf? )
2

+lg’a) _ w la) +lg’e)

=e
el 2 +/cosh |a/?

lof2

1), = e

) + g %)

2

o) +4'lg%a) w2 le) +qlg’)

V2 \Jele? + P el

=e

2

=e
Lelar? 2 +/sinh |a/?

D.2. Mod 2 Cat States

Since |a) = e‘Te““ |0) and |¢%a) = e~

Cat states can be written as follows

0y, = o4 10 la’0)
©Tey \eosh(jaP)

and
1y, = LI+ TIg)

2 /sinh(|a|?)

oy
%e e te 2 e
e

2

lof?

2
_le” qZQaT

~F
e(m +

2 y/cosh(|a?)

cosh aa’ 0e

2 y/cosh(|a?)

e qrad’

10)

(l(l}

0) = 0)  (mod?2)

y/cosh |a/? Voela

lo|
o €~ ze““ +qe ze"““

= e?
2 y/sinh(|a]?)
B ea&+ _ eqza&* |0>
2 /sinh(|a|?)
inh AT ad’
_sinhea 0) = 1€ 0y (mod2)

v/sinh |a/? viel?

(D.7)

(D.8)

0y =e" 2 7' |0) where ¢* = 1,

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)
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