

 PARALLEL PROGRAMMING TECHNIQUES BY USING

CO-ARRAY FORTRAN

AŞKIN ODABAŞI

KADIR HAS UNIVERSITY

2011

A
Ş

K
IN

 O
D

A
B

A
Ş

I

M

.S
. T

h
esis

2
0

1
1

i

PARALLEL PROGRAMMING TECHNIQUES BY USING CO-

ARRAY FORTRAN

AŞKIN ODABAŞI

M.S., Computer Engineering, Kadir Has University, 2011

B.S., Computer Engineering, Sakarya University, 2003

Submitted to the Graduate School of Kadir Has University

In partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

KADIR HAS UNIVERSITY

2011

ii

KADIR HAS UNIVERSITY

COMPUTER ENGINEERING

PARALLEL PROGRAMMING TECHNIQUES BY USING CO-ARRAY

FORTRAN

AŞKIN ODABAŞI

APPROVED BY:

_____________________ _____________________

_____________________ _____________________

_____________________ _____________________

_____________________ _____________________

_____________________ _____________________

APPROVAL DATE:

APPENDIX B

APPENDIX B

iii

PARALLEL PROGRAMMING TECHNIQUES BY USING CO-ARRAY

FORTRAN

Abstract

Co-array Fortran (CAF) is a small set of extensions to Fortran 90. And also CAF is

an emerging model for scalable, global address space paralel programming. CAF’s

global address space programming model simplifies the development of SPMD

paralel programs by shifting the burden for managing the details of communication

from developers to compilers.

In this study I introduce CAF’s Programming Model, provide it’s technical

specifications, explain CAF’s memory model and PGAS (Partitioned Global Address

Space) , make comparsion between two SPMD language CAF and OpenMP.

In case, I select Matrix Multiplication as a problem and wrote Co Array Fortran code

fort his problem. I ran it on Amazon EC2 Cluster with 16 CPU and CentOS

operating system. Finally I showed the performance numbers fort his work.

Key words : Co-Array, Fortran, PGAS, SPDM, OpenMP

iv

CO-ARRAY FORTRAN İLE PARALEL PROGRAMLAMA TEKNİKLERİ

Özet

Co-array Fortran (CAF) Fortran 90 uzantılarının küçük bir kümesidir. Ve aynı

zamanda CAF, ölçeklenebilir, global adres alanlı paralel programlama için ortaya

çıkan bir modeldir. CAF’ın global adres alanlı proramlama modeli compilerlarla

geliştiricilerin iletişim detaylarını yönetmek için yükü kaydırarak SPDM paralel

programların geliştirilmesini basitleştirir.

Bu çalışmada CAF’ın programlama modeli tanıtılmış, teknik spesifikasyonları

sunulmuş, CAF’ın hafıza modeli ve PGAS (Partitioned Global Address Space)

açıklanarak, iki farklı SPMD dili olan CAF ve OpenMP arasında karşılatırma

yapılmıştır.

Örnek çalışmada, Co Array Fortran’da matrix çarpımı ele alındı ve yazılan program,

Amzaon EC2 Cluster 16 CPU platfornunda CentOS işletim sistemi üzerinde

çalıtırılarak performans değerleri elde edildi.

Anahtar Kelimeler: Co-Array, Fortran, PGAS, SPDM, OpenMP

v

Acknowledgements

This thesis was completed at the Faculty Engineering of the Kadir Has University in

Istanbul, Turkey. In this project I received support from some special people.

I am greatly appreciative to my advisor Assistant Prof. Dr. Zeki Bozkuş for his

guidance and support throughout my study.

Especially, I am grateful to my wife for all her support and impulsion in tihs project.

Also I would like to thank my daughter Mihrişah Odabaşı giving me the happiness.

vi

This thesis is dedicated to:

My Patient Wife

My Sweet Daughter

To giving meaning to my life…

vii

Table of contents

Abstract .. iii

Özet .. iv

Acknowledgements .. v

Table of contents .. vii

List of Figures .. ix

List of Abbreviations.. x

Chapter 1 Introduction ... 1

Chapter 2 A Brief Overview of Co-Array Fortran ... 4

Chapter 3 Co-Array Fortran Programming Model ... 8

3.1 PGAS .. 9

3.1.1 Why PGAS?... 11

3.2 Memory Models ... 12

3.2.1 Shared Memory Model ... 12

3.2.2 Distributed Memory Model .. 12

3.3 CAF Memory Model .. 13

Chapter 4 Technical Specification .. 16

4.1 Program Images .. 16

4.2 Specifying Data Objects .. 16

4.3 Accessing Data Objects ... 19

4.4 Procedures... 20

4.5 Sequence Association .. 21

4.6 Allocatable Arrays ... 21

4.7 Array Pointers ... 22

4.8 Execution Control .. 23

4.9 Input / Output ... 26

4.10 Intrinsic Procedures.. 28

Chapter 5 A Comparsion of Co-Array Fortran and OpenMP Fortran 31

5.1 OpenMP Fortran ... 31

viii

5.2 A simple example ... 35

5.3 A comparison.. 40

5.4 Translation .. 46

5.4.1 Subset Co-Array Fortran ... 46

5.4.2 Subset Co-Array Fortran into OpenMP Fortran .. 48

Chapter 6 Related Work... 52

6.1 MPI .. 52

6.2 UPC ... 52

6.3 Matrix Multiplication in MPI and UPC .. 53

6.3.1 MPI code for matrix multiplication; .. 53

6.3.2 UPC code for matrix multiplication; .. 55

Chapter 7 Case Study ... 57

7.1 Matrix multiplication in Co Array Fortran ... 57

7.2 Co Array Fortran Code .. 57

7.3 Performance Analysis .. 58

7.4. Conclusion ... 61

Curriculum Vitae .. 62

References ... 63

ix

List of Figures

Figure 3.1: Graphical representation of co-array ... 8

Figure 3.2: The PGAS paradigm and the Distributed Memory paradigm 10

Figure 3.3: One to one memory model ... 14

Figure 3.4: Many to one memory model .. 14

Figure 3.5: One to many memory model .. 15

Figure 3.6: Many to many memory model ... 15

Figure 5.1: Features of SPMD OpenMP Fortran and Co-Array Fortran 41

Figure 7.1: Performance table of Co Array Fortran Code ... 60

Figure 7.2: Performance chart of CAF code for NxN matrix 61

Figure 7.3: Performance chart for 120x120 matrix .. 61

Figure 7.4: Performance chart for 520x520 matrix .. 62

Figure 7.5: Performance chart for 1000x1000 matrix.. 62

x

List of Abbreviations

CAF Co-array Fortran

ISO International Organization for Standardization

PGAS Partitioned Global Address Space

SPMD Single Program Multiple Data

MPI Message Passing Interface

I/O Input / Output

RMA Remote Memory Access

UPC Unified Paralel C

HPF High Performance Fortran

SMP Symmetric Multiprocessor

MPP Massively Parallel Processor

DSM Distributed Shared Memory

NUMA Non-Uniform Memory Access

API Application Programming Interface

NLOM NRL Layered Ocean Model

SHMEM Shared memory

1

Chapter 1 Introduction

Co-array Fortran (CAF), formerly known as F--, is an extension of Fortran 95/2003

for parallel processing created by Robert Numrich and John Reid in 1990s. The

Fortran 2008 standard (ISO/IEC 1539-1:2010) now includes coarrays (spelt without

hyphen), as decided at the May 2005 meeting of the ISO Fortran Committee; the

syntax in the Fortran 2008 standard is slightly different from the original CAF

proposal.

A Co-array Fortran program is interpreted as if it were replicated a number of times

and all copies were executed asynchronously. Each copy has its own set of data

objects and is termed an image. The array syntax of Fortran is extended with

additional trailing subscripts in square brackets to provide a concise representation of

references to data that is spread across images.

The Co-array Fortran extension has been available for a long time and was

implemented in some Fortran compilers such as those from Cray (since release 3.1).

Since the inclusion of coarrays in the Fortran 2008 standard, the number of

implementation is growing. The first open-source compiler which implemented

coarrays as specified in the Fortran 2008 standard for Linux architectures is G95.

A group at Rice University is pursuing an alternate vision of coarray extensions for

the Fortran language. Their perspective is that the Fortran 2008 standards

committee's design choices were shaped more by the desire to introduce as few

modifications to the language as possible than to assemble the best set of extensions

to support parallel programming. They don't believe that the set of extensions agreed

upon by the committee are the right ones. In their view, both Numrich and Reid's

original design and the coarray extensions proposed for Fortran 2008, suffer from the

following shortcomings:

2

 There is no support for processor subsets; for instance, coarrays must be

allocated over all images.

 Coarrays must be declared as global variables; one cannot dynamically

allocate a coarray into a locally scoped variable.

 The co-array extensions lack any notion of global pointers, which are

essential for creating and manipulating any kind of linked data structure.

 Reliance on named critical sections for mutual exclusion hinders scalable

parallelism by associating mutual exclusion with code regions rather than

data objects.

 Fortran 2008's sync images statement doesn't provide a safe synchronization

space. As a result, synchronization operations in user's code that are pending

when a library call is made can interfere with synchronization in the library

call.

 There are no mechanisms to avoid or tolerate latency when manipulating data

on remote images.

 There is no support for collective communication.

To address these shortcomings, Rice University is developing a clean-slate redesign

of the Co-array Fortran programming model. Rice's new design for Co-array Fortran,

which they call Co-array Fortran 2.0, is an expressive set of coarray-based extensions

to Fortran designed to provide a productive parallel programming model. Compared

to the emerging Fortran 2008, Rice's new coarray-based language extensions include

some additional features:

 Process subsets known as teams, which support coarrays, collective

communication, and relative indexing of process images for pair-wise

operations,

 Topologies, which augment teams with a logical communication structure,

 Dynamic allocation/deallocation of coarrays and other shared data,

 Local variables within subroutines: declaration and allocation of coarrays

within the scope of a procedure is critical for library based-code,

 Team-based coarray allocation and deallocation,

 Global pointers in support of dynamic data structures, and

3

 Enhanced support for synchronization for fine control over program

execution,

 Safe and scalable support for mutual exclusion, including locks and lock sets;

and

 Events, which provide a safe space for point-to-point synchronization.

This study is efort on paralel programming with Co-Array Fortran (CAF). In next

chapter, I give a brief overview of Co-Array Fortran, It’s syntax and semantic. In

chapter 3, I explain Co-Array Fortran Programming Model and CAF’s Memory

Model. Also chapter 3 includes Partitioned Global Address Space (PGAS). Chapter

4 contains a complete technical specifications. Chapter 5 includes comparison of two

PGAS languages CAF and OpenMP. And last chapter is all about case study.

4

Chapter 2 A Brief Overview of Co-Array Fortran

Co-Array Fortran, formally called F
--
, is a small set of extensions to Fortran 95 for

Single Program Multiple Data, SPMD, parallel processing.

Co-Array Fortran is a simple syntactic extension to Fortran 95 that converts it into a

robust, efficient parallel language. It looks and feels like Fortran and requires Fortran

programmers to learn only a few new rules. The few new rules are related to two

fundamental issues that any parallel programming model must resolve, work

distribution and data distribution.

First, consider work distribution. A single program is replicated a fixed number of

times, each replication having its own set of data objects. Each replication of the

program is called an image. Each image executes asynchronously and the normal

rules of Fortran apply, so the execution path may differ from image to image. The

programmer determines the actual path for the image with the help of a unique image

index, by using normal Fortran control constructs and by explicit synchronizations.

For code between synchronizations, the compiler is free to use all its normal

optimation techniques, as if only one image is present.

Second, consider data distribution. The co-array extension to the language allows the

programmer to express data distribution by specifying the relationship among

memory images in a syntax very much like normal Fortran array syntax. One new

object, the co-array, is added to the language. For example,

 REAL, DIMENSION (N) [*] :: X,Y

 X(:) = Y(:) [Q]

declares that each image has two real arrays of size N. If Q has the same value on

each image, the effect of the assignment statement is that each image copies the array

Y from image Q and makes a local copy in array X.

5

Array indices in parentheses follow the normal Fortran rules within one memory

image. Array indices in square brackets provide an equally convenient notation for

accessing objects across images and follow similar rules. Bounds in square brackets

in co-array declarations follow the rules of assumed-size arrays since co-arrays are

always spread over all the images. The programmer uses co-array syntax only where

it is needed. A reference to a co-array with no square brackets attached to it is a

reference to the object in the local memory of the executing image. Since most

references to data objects in a parallel code should be to the local part, co-array

syntax should appear only in isolated parts of the code. If not, the syntax acts as a

visual flag to the programmer that too much communication among images may be

taking place. It also acts as a flag to the compiler to generate code that avoids latency

whenever possible.

Fortran 90 array syntax, extended to co-arrays, provides a very powerful and concise

way of expressing remote memory operations. Here are some simple examples:

 X = Y[PE] ! get from Y[PE]

 Y[PE] = X ! put into Y[PE]

 Y[:] = X ! broadcast X

 Y[LIST] = X ! broadcast X over subset of PE's in array LIST

 Z(:) = Y[:] ! collect all Y

 S=MINVAL(Y[:]) ! min (reduce) all Y

 B(1:M)[1:N]=S ! S scalar,promoted to array of shape (1:M,1:N)

Input/output has been a problem with previous SPMD programming models, such as

MPI, because standard Fortran I/O assumes dedicated single-process access to an

open file and this constraint is often violated when it is assumed that I/O from each

image is completely independent. Co-Array Fortran includes only minor extensions

to Fortran 95 I/O, but all the inconsistencies of earlier programming models have

been avoided and there is explicit support for parallel I/O. In addition I/O is

compatible with both process-based and thread-based implementations.

The only other additions to Fortran 95 are several intrinsics. For example: the integer

function NUM_IMAGES() returns the number of images, the integer function

THIS_IMAGE() returns this image's index between 1 and NUM_IMAGES(), and the

subroutine SYNC_ALL() is a global barrier which requires all operations before the

6

call on all images to be completed before any image advances beyond the call. In

practice it is often sufficient, and faster, to only wait for the relevant images to

arrive. SYNC_ALL(WAIT=LIST) provides this functionality.

There is also SYNC_TEAM(TEAM=TEAM) and SYNC_TEAM(TEAM=TEAM,

WAIT=LIST) for cases where only a subset, TEAM, of all images are involved in

the synchronization. The intrinsics START_CRITICAL and END_CRITICAL

provide a basic critical region capability. It is also possible to write your own

synchronization routines, using the basic intrinsic SYNC_MEMORY. This routine

forces the local image to both complete any outstanding co-array writes into ``global''

memory and refresh from global memory any local copies of co-array data it might

be holding (in registers for example). A call to SYNC_MEMORY is rarely required

in Co-Array Fortran, because there is an implicit call to this routine before and after

virtually all procedure calls including Co-Array's built in image synchronization

intrinsics. This allows the programmer to assume that image synchronization implies

co-array synchronization.

Image and co-array synchronization is at the heart of the typical Co-Array Fortran

program. For example, here is how to exchange an array with your north and south

neighbors:

 COMMON/XCTILB4/ B(N,4)[*]

 SAVE /XCTILB4/

C

 CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

 B(:,3) = B(:,1)[IMG_S]

 B(:,4) = B(:,2)[IMG_N]

 CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

The first SYNC_ALL waits until the remote B(:,1:2) is ready to be copied, and the

second waits until it is safe to overwrite the local B(:,1:2). Only nearest neighbors are

involved in the sync. It is always safe to replace SYNC_ALL(WAIT=LIST) calls

with global SYNC_ALL() calls, but this will often be significantly slower. In some

cases, either the preceeding or succeeding synchronization can be avoided.

Communication load balancing can sometimes be important, but the majority of

remote co-array access optimization consists of minimizing the frequency of

synchronization and having synchronization cover the minimum number of images.

If the program is likely to run on machines without global memory hardware, then

7

array syntax (rather than DO loops) should always be used to express remote

memory operations and copying co-array's into local temporary buffers well before

they are required might be appropriate (although the compiler may do this for you).

In data parallel programs, each image is either performing the same operation or is

idle. For example here is a data parallel fixed order cumulative sum:

 REAL SUM[*]

 CALL SYNC_ALL(WAIT=1)

 DO IMG= 2,NUM_IMAGES()

 IF (IMG==THIS_IMAGE()) THEN

 SUM = SUM + SUM[IMG-1]

 ENDIF

 CALL SYNC_ALL(WAIT=IMG)

 ENDDO

Having each SYNC_ALL wait on just the active image improves performance, but

there are still NUM_IMAGES() global sync's. In this case a better alternative is

probably to minimize synchronization by avoiding the data parallel overhead

entirely:

 REAL SUM[*]
 ME = THIS_IMAGE()

 IF (ME.GT.1) THEN

 CALL SYNC_TEAM(TEAM=(/ME-1,ME/))

 SUM = SUM + SUM[ME-1]

 ENDIF

 IF (ME.LT.NUM_IMAGES()) THEN

 CALL SYNC_TEAM(TEAM=(/ME,ME+1/))

 ENDIF

Now each image is involved in at most two sync's, and only with the images just

before and just after it in image order. Note that the first SYNC_TEAM call on one

image is matched by the second SYNC_TEAM call on the previous image. This

illustrates the power of the Co-Array Fortran synchronization intrinsics. They can

improve the performance of data parallel algorithms, or provide implicit program

execution control as an alternative to the data parallel approach.

Several non-trivial Co-Array Fortran programs are included as examples with the

caf2omp translator, and with the Cray T3E intrinsics.

8

Chapter 3 Co-Array Fortran Programming Model

Co-array Fortran supports SPMD parallel programming through a small set of

language extensions to Fortran 95. An executing CAF program consists of a static

collection of asynchronous process images. Similar to MPI, CAF programs explicitly

distribute data and computation. However, CAF belongs to the family of Global

Address Space Programming languages and provides the abstraction of globally

accessible memory for both distributed and shared memory architectures [4].

CAF supports distributed data using a natural extension to Fortran 95 syntax. For

example, the declaration presented and graphically represented in Figure 3.1 creates

a shared co-array a with 10 × 20 integers local to each process image [5].

Figure 3.1: Graphical representation of co-array

Dimensions inside square brackets are called co-dimensions. Co-arrays may be

declared for user-defined types as well as primitive types. A local section of a co-

array may be a singleton instance of a type rather than an array of type instances. Co-

arrays can be static objects, such as COMMON or SAVE variables, or can be

declared as ALLOCATABLE variables and allocated and deallocated dynamically

during program execution, using collective calls. Co-arrays of user-defined types

may contain allocatable components, which can be allocated at runtime

9

independently by each process image. Finally, co-array objects can be passed as

procedure arguments [4].

Instead of explicitly coding message exchanges to access data belonging to other

processes, a CAF program can directly reference non-local values using an extension

to the Fortran 95 syntax for subscripted references. For instance, process p can read

the first column of co-array a from process p+1 referencing a(:,1)[p+1].

CAF has several synchronization primitives. sync all implements a synchronous

barrier across all images; sync team is used for barrier-style synchronization among

dynamically-formed teams of two or more processes; and sync memory implements

a local memory fence and ensures the consistency of a process image’s memory by

completing all of the outstanding communication requests issued by this image.

Since both remote data access and synchronization are language primitives in CAF,

communication and synchronization are amenable to compiler-based optimization. In

contrast, communication in MPI programs is expressed in a more detailed form,

which makes effective compiler transformations much more difficult [7].

3.1 PGAS

As has been discussed, it is currently popular for computers to have a ’hybrid’

architecture where processing nodes are connected in a distributed memory

architecture, but contain multiple cores which share memory. This trend is reflected

in software through the increasing popularity of Partitioned Global Address Space

(PGAS) languages.

These languages combine features of both message passing languages, as used with

distributed memory architectures, and shared memory languages.

As the name suggests, PGAS languages feature a global address space that is

partitioned logically between processors. As a result each processor has its own local

portion of the memory space, similar to a Distributed Memory paradigm as

implemented in MPI programs.

10

However unlike MPI programs processes need not communicate via messages; they

can directly access each other’s data via the global address space. A schematic

illustration of the difference between the PGAS paradigm and a Distributed Memory

paradigm is shown in Figure 3.2.

Figure 3.2: The PGAS paradigm and the Distributed Memory paradigm

A key difference between the distributed memory paradigm and the PGAS paradigm

is in the communication between processors. The global address space of the PGAS

paradigm allows single-sided communications. This means that the target processor,

from which data is being read or to which data is being written, does not need to be

interrupted during the communication.

The PGAS and shared memory paradigms both share the feature of simple data

referencing between processors as they both use a global address space. The

partitioning of the global address space is what distinguishes the PGAS paradigm

from the shared memory paradigm and allows for better scaling on distributed

memory machines [6].

Thus it can be seen that the global address space of the PGAS paradigm allows for

positive features of both the shared memory paradigm and the distributed memory

paradigm. Data accesses remain simple as in the shared memory paradigm, but

11

scaling on distributed memory machines is possible by making a distinction between

accesses local and remote data.

However, one of the challenges of programming in any of the languages that

implement the PGAS paradigm is that because the Remote Memory Access (RMA)

calls are single sided there is no synchronisation implied by communications. This

means that synchronisation must be explicitly declared by the programmer. Care

must be taken with synchronisation to ensure that difficult to debug errors such as

race conditions are avoided.

Another constraint imposed by the PGAS paradigm is that data structures that are

shared between threads must have the same size on each thread. This ensures that the

location of data on a thread is known by another thread when it tries to access that

data remotely.

PGAS programming languages can get around this using pointers or derived data

types.

In a derived data type data size can be changed internally, hiding differently sized

data from the compiler [6].

3.1.1 Why PGAS?

The PGAS is the best of both worlds. This parallel programming model combined

the performance and data locality (partitioning) features of distributed memory with

the programmability and data referencing simplicity of a shared-memory (global

address space) model. The PGAS programming model aims to achieve these

characteristics by providing:

1. A local-view programming style (which differentiates between local and

remote data partitions).

2. A global address space (which is directly accessible by any process).

3. Compiler-introduced communication to resolve remote references.

4. One-sided communication for improved inter-process performance.

5. Support for distributed data structures.

12

In this model variables and arrays can be either shared or local. Each process has

private memory for local data items and shared memory for globally shared data

values. While the shared-memory is partitioned among the cooperating processes

(each process will contribute memory to the shared global memory), a process can

directly access any data item within the global address space with a single address.

Languages of PGAS Currently there are three PGAS programming languages that are

becoming commonplace on modern computing systems:

1. Unified Parallel C (UPC)

2. Co-Array Fortran (CAF)

3. Titanium

3.2 Memory Models

There are 2 models for memory usage:

 Shared Memory Model.

 Distributed Memory Model

3.2.1 Shared Memory Model

The shared-memory programming model typically exploits a shared memory system,

where any memory location is directly accessible by any of the computing processes

(i.e. there is a single global address space). This programming model is similar in

some respects to the sequential single-processor programming model with the

addition of new constructs for synchronizing multiple access to shared variables and

memory locations[8].

3.2.2 Distributed Memory Model

The distributed-memory programming model exploits a distributed-memory system

where each processor maintains its own local memory and has no direct knowledge

about another processor’s memory (a “share nothing” approach). For data to be

shared, it must be passed from one processor to another as a message.

13

3.3 CAF Memory Model

The CAF is a simple extension to Fortran 90 that allows programmers to write

efficient parallel applications using a Fortran-like syntax. It also assumes the SPMD

programming model with replicated data objects called co-arrays. Co-array objects

are visible to all processors and each processor can read and write data belonging to

any other processor by setting the index of the co-dimension to the appropriate value.

The CAF creates multiple images of the same program where text and data are

replicated in each image. it marks some variables with co-dimensions that behave

like normal dimensions and express a logical problem decomposition. It also allows

one sided data exchange between co-arrays using a Fortran like syntax [9].

On the other hand, CAF requires the underlying run-time system to map the logical

problem decomposition onto specific hardware.

CAF Syntax: The CAF syntax is a simple parallel extension to normal Fortran

syntax, where it uses normal rounded brackets () to point data in local memory, and

square brackets [] to point data in remote memory [10].

CAF Execution Model: The number of images is fixed and each image has its own

index, retrievable at run-time. Each image executes the same program independently

of the others and works on its own local data. An image moves remote data to local

data through explicit CAF syntax while an “object” has the same name in each

image. The programmer inserts explicit synchronization and branching as needed

[10].

CAF Memory Model: There are 4 memory models: [11, 12, 13]

1. One to one model

2. Many to one model

3. One to many model

4. Many to many model

14

Figure 3.3: One to one memory model

Figure 3.4: Many to one memory model

15

Figure 3.5: One to many memory model

Figure 3.6: Many to many memory model

16

Chapter 4 Technical Specification

4.1 Program Images

A Co-Array Fortran program executes as if it were replicated a number of times, the

number of replications remaining fixed during execution of the program. Each copy

is called an image and each image executes asynchronously. A particular

implementation of Co-Array Fortran may permit the number of images to be chosen

at compile time, at link time, or at execute time. The number of images may be the

same as the number of physical processors, or it may be more, or it may be less. The

programmer may retrieve the number of images at run time by invoking the intrinsic

function num_images(). Images are indexed starting from one and the programmer

may retrieve the index of the invoking image through the intrinsic function

this_image(). The programmer controls the execution sequence in each image

through explicit use of Fortran 95 control constructs and through explicit use of

intrinsic synchronization procedures.

4.2 Specifying Data Objects

Each image has its own set of data objects, all of which may be accessed in the

normal Fortran way. Some objects are declared with co-dimensions in square

brackets immediately following dimensions in parentheses or in place of them, for

example:

REAL, DIMENSION(20)[20,*] :: A

REAL :: C[*], D[*]

CHARACTER :: B(20)[20,0:*]

INTEGER :: IB(10)[*]

TYPE(INTERVAL) :: S

DIMENSION :: S[20,*]

Unless the array is allocatable (Chapter 4.6), the form for the dimensions in square

brackets is the same as that for the dimensions in parentheses for an assumed-size

17

array. The set of objects on all the images is itself an array, called a co-array, which

can be addressed with array syntax using subscripts in square brackets following any

subscripts in parentheses (round brackets), for example:

A(5)[3,7] = IB(5)[3]

 D[3] = C

 A(:)[2,3] = C[1]

We call any object whose designator includes square brackets a co-array subobject; it

may be a co-array element, a co-array section, or a co-array structure component.

The subscripts in square brackets are mapped to images in the same way as Fortran

array subscripts in parentheses are mapped to memory locations in a Fortran 95

program. The subscripts within an array that correspond to data for the current image

are available from the intrinsic this_image with the co-array name as its argument.

The rank, extents, size, and shape of a co-array or co-array subobject are given as for

Fortran 95 except that we include both the data in parentheses and the data in square

brackets. The local rank, local extents, local size, and local shape are given by

ignoring the data in square brackets. The co-rank, co-extents, co-size, and co-shape

are given from the data in square brackets. For example, given the co-array declared

thus

 REAL, DIMENSION(10,20)[20,5,*] :: A

a(:,:)[:,:,1:15] has rank 5, local rank 2, co-rank 3, shape (/10,20,20,5,15/), local shape

(/10,20/), and co-shape (/20,5,15/).

The co-size of a co-array is always equal to the number of images. If the co-rank is

one, the co-array has a co-extent equal to the number of images and it has co-shape

(/num_images()/). If the co-rank is greater than one, the co-array has no final extent,

no final upper bound, and no co-shape (and hence no shape).

The local rank and the co-rank are each limited to seven. The syntax automatically

ensures that these are the same on all images. The rank of a co-array subobject (sum

of local rank and co-rank) must not exceed seven.

For a co-array subobject, square brackets may never precede parentheses.

18

A co-array must have the same bounds (and hence the same extents) on all images.

For example, the subroutine

 SUBROUTINE SOLVE(N,A,B)

 INTEGER :: N

 REAL :: A(N)[*], B(N)

must not be called on one image with n having the value 1000 and on another with n

having the value 1001.

A co-array may be allocatable:

 SUBROUTINE SOLVE(N,A,B)

 INTEGER :: N

 REAL :: A(N)[*], B(N)

 REAL,ALLOCATABLE :: WORK(:)[:]

Allocatable arrays are discussed in Chapter 4.6.

There is no mechanism for assumed-co-shape arrays. A co-array is not permitted to

be a pointer. Automatic co-arrays are not permitted; for example, the co-array work

in the above code fragment is not permitted to be declared thus

 SUBROUTINE SOLVE(N,A,B)

 INTEGER :: N

 REAL :: A(N)[*], B(N)

 REAL :: WORK(N)[*] ! NOT PERMITTED

A co-array is not permitted to be a constant.

A DATA statement initializes only local data. Therefore, co-array subobjects are not

permitted in DATA statements. For example:

REAL :: A(10)[*]

DATA A(1) /0.0/ ! PERMITTED

DATA A(1)[2] /0.0/ ! NOT PERMITTED

Unless it is allocatable or a dummy argument, a co-array always has the SAVE

attribute.

The image indices of a co-array always form a sequence, without any gaps,

commencing at one. This is true for any lower bounds. For example, for the array

declared as

19

 REAL :: A(10,20)[20,0:5,*]

A(:,:)[1,0,1] refers to the rank-two array a(:,:) in image one.

Co-arrays may be of derived type but components of derived types are not permitted

to be co-arrays.

4.3 Accessing Data Objects

Each object exists on every image, whether or not it is a co-array. In an expression, a

reference without square brackets is always a reference to the object on the invoking

image. For example, size(b) for co-array b declared as

 CHARACTER :: B(20)[20,0:*]

returns its local size, which is 20.

The subscript order value of the co-subscript list must never exceed the number of

images. For example, if there are 16 images and the the co-array a is declared thus

 REAL :: A(10)[5,*]

a(:)[1,4] is valid since it has co-subscript order value 16, but a(:)[2,4] is invalid.

Two arrays conform if they have the same shape. Co-array subobjects may be used in

intrinsic operations and assignments in the usual way, for example,

B(:,1:M) = A[:,1:M]*C(:)[1:M] ! ALL HAVE RANK TWO.

B(J,:) = A[:,K] ! BOTH HAVE RANK ONE.

C[1:P:3] = D(1:P:3)[2] ! BOTH HAVE RANK ONE.

Square brackets attached to objects in an expression or an assignment alert the reader

to communication between images. Unless square brackets appear explicitly, all

expressions and assignments refer to the invoking image. Communication may take

place, however, within a procedure that is referenced, which might be a defined

operation or assignment.

The rank of the result of an intrinsic operation is derived from the ranks of its

operands by the usual rules, disregarding the distinction between local rank and co-

20

rank. The local rank of the result is equal to the rank. The co-rank is zero. Similarly,

a parenthesized co-array subobject has co-rank zero.

For example 2.0*d(1:p:3)[2] and (d(1:p:3)[2]) each have rank 1, local rank 1, and co-

rank 0.

4.4 Procedures

A co-array subobject is permitted only in intrinsic operations, intrinsic assignments,

and input/output lists.

If a dummy argument has co-rank zero, the value of a co-array subobject may be

passed by using parentheses to make an expression, for example,

 C(1:P:2) = SIN((D[1:P:2]))

If a dummy argument has nonzero co-rank, the co-array properties are defined afresh

and are completely independent of those of the actual argument. The interface must

be explicit. The actual argument must be the name of a co-array or a subobject of a

co-array without any square brackets, vector-valued subscripts, or pointer component

selection; any subscript expressions must have the same value on all images. If the

dummy argument has nonzero local rank and its local shape is not assumed, the

actual argument shall not be an array section, involve component selection, be an

assumed-shape array, or be a subobject of an assumed-shape array.

A function result is not permitted to be a co-array.

A pure or elemental procedure is not permitted to contain any Co-Array Fortran

extensions.

The rules for resolving generic procedure references remain unchanged.

21

4.5 Sequence Association

COMMON and EQUIVALENCE statements are permitted for co-arrays and specify

how the storage is arranged on each image (the same for every one). Therefore, co-

array subobjects are not permitted in an EQUIVALENCE statement. For example

EQUIVALENCE (A[10],B[7]) ! NOT ALLOWED(COMPILE-TIME CONSTRAINT)

is not permitted. Appearing in a COMMON and EQUIVALENCE statement has no

effect on whether an object is a co-array; it is a co-array only if declared with square

brackets. An EQUIVALENCE statement is not permitted to associate a co-array with

an object that is not a co-array. For example

 INTEGER :: A,B[*]

 EQUIVALENCE (A,B) ! NOT ALLOWED (COMPILE-TIME CONSTRAINT)

is not permitted. A COMMON block that contains a co-array always has the SAVE

attribute. Which objects in the COMMON block are co-arrays may vary between

scoping units. Since blank COMMON may vary in size between scoping units, co-

arrays are not permitted in blank COMMON.

4.6 Allocatable Arrays

A co-array may be allocatable. The ALLOCATE statement is extended so that the

co-extents can be specified, for example,

 REAL, ALLOCATABLE :: A(:)[:], S[:,:]

 :

 ALLOCATE (ARRAY(10)[*], S[34,*])

The upper bound for the final co-dimension must always be given as an asterisk and

values of all the other bounds are required to be the same on all images. For example,

the following are not permitted

ALLOCATE(A(NUM_IMAGES())) ! NOT ALLOWED (COMPILE-TIME CONSTRAINT)

ALLOCATE(A(THIS_IMAGE())[*]) ! NOT ALLOWED (RUN-TIME CONSTRAINT)

There is implicit synchronization of all images in association with each ALLOCATE

statement that involves one or more co-arrays. Images do not commence executing

subsequent statements until all images finish execution of an ALLOCATE statement

for the same set of co-arrays. Similarly, for DEALLOCATE, all images delay

22

making the deallocations until they are all about to execute a DEALLOCATE

statement for the same set of co-arrays.

An allocatable co-array without the SAVE attribute must not have the status of

currently allocated if it goes out of scope when a procedure is exited by execution of

a RETURN or END statement.

When an image executes an allocate statement, no communication is involved apart

from any required for synchronization. The image allocates the local part and records

how the corresponding parts on other images are to be addressed. The compiler,

except perhaps in debug mode, is not required to enforce the rule that the bounds are

the same on all images. Nor is the compiler responsible for detecting or resolving

deadlock problems. For allocation of a co-array that is local to a recursive procedure,

each image must descend to the same level of recursion or deadlock may occur.

4.7 Array Pointers

A co-array is not permitted to be a pointer.

A co-array may be of a derived type with pointer components. For example, if p is a

pointer component, z[i]%p is a reference to the target of component p of z on image

i. To avoid references with co-array syntax to data that is not in a co-array, we limit

each pointer component of a co-array to the behaviour of an allocatable component

of a co-array:

1. A pointer component of a co-array is not permitted on the left of a pointer

assignment statement (compile-time constraint),

2. A pointer component of a co-array is not permitted as an actual argument that

corresponds to a pointer dummy argument (compile-time constraint),

3. If an actual argument of a type with a pointer component is part of a co-array

and is associated with a dummy argument that is not a co-array, the pointer

association status of the pointer component must not be altered during

execution of the procedure (this is not a compile-time constraint).

23

To avoid hidden references to co-arrays, the target in a pointer assignment statement

is not permitted to be any part of a co-array. For example,

 Q => Z[I]%P ! NOT ALLOWED (COMPILE-TIME CONSTRAINT)

is not permitted. Intrinsic assignments are not permitted for co-array subobjects of a

derived type that has a pointer component, since they would involve a disallowed

pointer assignment for the component:

 Z[I] = Z ! NOT ALLOWED IF Z HAS A POINTER

 Z = Z[I] ! COMPONENT (COMPILE-TIME CONSTRAINT)

Similarly, it is legal to allocate a co-array of a derived type that has pointer

components, but it is illegal to allocate one of those pointer components on another

image:

TYPE(SOMETHING), ALLOCATABLE :: T[:]

...

ALLOCATE(T[*]) ! ALLOWED

ALLOCATE(T%PTR(N)) ! ALLOWED

ALLOCATE(T[Q]%PTR(N)) ! NOT ALLOWED (COMPILE-TIME CONSTRAINT)

4.8 Execution Control

Most of the time, each image executes on its own as a Fortran 95 program without

regard to the execution of other images. It is the programmer's responsibility to

ensure that whenever an image alters co-array data, no other image might still need

the old value. Also, that whenever an image accesses co-array data, it is not an old

value that needs to be updated by another image. The programmer uses invocations

of the intrinsic synchronization procedures to do this, and the programmer should

make no assumptions about the execution timing on different images. This obligation

on the programmer provides the compiler with scope for optimization. When

constructing code for execution on an image, it may assume that the image is the

only image in execution until the next invocation of one of the intrinsic

synchronization procedures and thus it may use all the optimization techniques

available to a standard Fortran 95 compiler.

In particular, if the compiler employs temporary memory such as cache or registers

(or even packets in transit between images) to hold co-array data, it must copy any

such data it has defined to memory that can be accessed by another image to make it

24

visible to it. Also, if another image changes the co-array data, the executing image

must recover the data from global memory to the temporary memory it is using. The

intrinsic procedure sync_memory is provided for both purposes. It is concerned only

with data held in temporary memory on the executing image for co-arrays in the

local scope. Given this fundamental intrinsic procedure, the other synchronization

procedures can be programmed in Co-Array Fortran, but the intrinsic versions, which

we describe next, are likely to be more efficient. In addition, the programmer may

use it to express customized synchronization operations in Co-Array Fortran.

If data calculated on one image are to be accessed on another, the first image must

call sync_memory after the calculation is complete and the second must call

sync_memory before accessing the data. Synchronization is needed to ensure that

sync_memory is called on the first before sync_memory is called on the second.

The subroutine sync_team provides synchronization for a team of images. The

subroutine sync_all (see Chapter 4.10) provides a shortened call for the important

case where the team contains all the images. Each invocation of sync_team or

sync_all has the effect of sync_memory. The subroutine sync_all is not discussed

further in this section.

For each invocation of sync_team on one image of a team, there shall be a

corresponding invocation of sync_team on every other image of the team. The n-th

invocation for the team on one image corresponds to the n-th invocation for the team

on each other image of the team, n=1,2,... . The team is specified in an obligatory

argument team.

The subroutine also has an optional argument wait. If this argument is absent from a

call on one image it must be absent from all the corresponding calls on other images

of the team. If wait is absent, each image of the team waits for all the other images of

the team to make corresponding calls. If wait is present, the image is required to wait

only for the images specified in wait to make corresponding calls.

Teams are permitted to overlap, but the following rule is needed to avoid any

possibility of deadlock. If a call for one team is made ahead of a call for another team

25

on a single image, the corresponding calls shall be in the same order on all images in

common to the two teams.

The intrinsic sync_file plays a similar role for file data to that of sync_memory for

co-array data. Because of the high overheads associated with file operations,

sync_team does not have the effect ofsync_file. If data written by one image to a file

is to be read by another image without closing the connection and re-opening it on

the other image, calls of sync_file on both images are needed (details in Chapter 4.9).

To avoid the need for the programmer to place invocations of sync_memory around

many procedure invocations, these are implicitly placed around any procedure

invocation that might involve any reference to sync_memory. Formally, we define a

caf procedure as

1. An external procedure;

2. A dummy procedure;

3. A module procedure that is not in the same module;

4. Sync_all, sync_team, sync_file, start_critical, end_critical; or

5. A procedure whose scoping unit contains an invocation of sync_memory or a

caf procedure reference.

Invocations of sync_memory are implicitly placed around every caf procedure

reference.

Exceptionally, it may be necessary to limit execution of a piece of code to one image

at a time. Such code is called a critical section. We provide the subroutine

start_critical to mark the commencement of a critical region and the subroutine

end_critical to mark its completion. Both have the effect of sync_memory. Each

image maintains an integer called its critical count. Initially, all these counts are zero.

On entry to start_critical, the image waits for the system to give it permission to

continue, which will only happen when all other images have zero critical counts.

The image then increments its critical count by one and returns. Having these counts

permits nesting of critical regions. On entry to end_critical, the image decrements its

critical count by one and returns.

26

The effect of a STOP statement is to cause all images to cease execution. If a delay is

required until other images have completed execution, a synchronization statement

should be employed.

4.9 Input / Output

Most of the time, each image executes its own read and write statements without

regard for the execution of other images. However, Fortran 95 input and output

processing cannot be used from more than one image without restrictions unless the

images reference distinct file systems. Co-Array Fortran assumes that all images

reference the same file system, but it avoids the problems that this can cause by

specifying a single set of I/O units shared by all images and by extending the file

connection statements to identify which images have access to the unit.

It is possible for several images to be connected on the same unit for direct-access

input/output. The intrinsic sync_file may be used to ensure that any changed records

in buffers that the image is using are copied to the file itself or to a replication of the

file that other images access. This intrinsic plays the same role for I/O buffers as the

intrinsic sync_memory does for temporary copies of co-array data. Execution of

sync_file also has the effect of requiring the reloading of I/O buffers in case the file

has been altered by another image. Because of the overheads of I/O, sync_file applies

to a single file.

It is possible for several images to to be connected on the same unit for sequential

output. The processor shall ensure that while one image is transfering the data of a

record to the file, no other image transfers data to the file. Thus, each record in an

external file arises from a single image. The processor is permitted to hold the data in

a buffer and transfer several whole records on execution of sync_file.

The I/O keyword TEAM is used to specify an integer rank-one array, connect_team,

for the images that are associated with the given unit. All elements of connect_team

shall have values between 1 andnum_images() and there shall be no repeated values.

One element shall have the value this_image(). The default connect_team is

(/this_image()/).

27

The keyword TEAM is a connection specifier for the OPEN statement. All images

in connect_team, and no others, shall invoke OPEN with an identical connection-

spec-list. There is an implied call tosync_team with the single argument

connect_team before and after the OPEN statement. The OPEN statement connects

the file on the invoking images only, and the unit becomes unavailable on all other

images. If the OPEN statement is associated with a processor dependent file, the file

is the same for all images in connect_team. If connect_team contains more than one

image, the OPEN shall haveACCESS=DIRECT or ACTION=WRITE.

An OPEN on a unit already connected to a file must have the same connect_team as

currently in effect.

A file shall not be connected to more than one unit, even if the connect_teams for the

units have no images in common.

Pre-connected units that allow sequential read shall be accessible on the first image

only. All other pre-connected units have a connect_team containing all the images.

CLOSE has a TEAM= specifier. If the unit exists and is connected on more than one

image, the CLOSE statement must have the same connect_team as currently in

effect. There is an implied call tosync_file for the unit before CLOSE. There are

implied calls to sync_team with single argument connect_team before and after the

implied sync_file and before and after the CLOSE.

BACKSPACE, REWIND, and ENDFILE have a TEAM= specifier. If the unit exists

and is connected on at least one image, the file positioning statement must have the

same connect_team as currently in effect. There is an implied call to sync_file for the

unit before the file positioning statement. There are implied calls to sync_team with

single argument connect_team before and after the impliedsync_file and before and

after the file positioning statement.

28

4.10 Intrinsic Procedures

Co-Array Fortran adds the following intrinsic procedures. Only num_images,

log2_images, and rem_images are permitted in specification expressions. None are

permitted in initialization expressions. We use italic square brackets, [], to indicate

optional arguments.

end_critical() is a subroutine for limiting parallel execution. Each image holds an

integer called its critical count. On entry, the count for the image shall be positive.

The subroutine decrements this count by one. end_critical has the effect of

sync_memory.

log2_images() returns the base-2 logarithm of the number of images, truncated to an

integer. It is an inquiry function whose result is a scalar of type default integer.

num_images() returns the number of images. It is an inquiry function whose result is

a scalar of type default integer.

rem_images() returns mod(num_images(),2**log2_images()). It is an inquiry

function whose result is a scalar of type default integer.

start_critical() is a subroutine for limiting parallel execution. Each image holds an

integer called its critical count. Initially all these counts are zero. The image waits for

the system to give it permission to continue, which will only happen when all other

images have zero critical counts. The image then increments its critical count by one

and returns. start_critical has the effect ofsync_memory.

sync_all([wait]) is a subroutine that synchronizes all images. sync_all() is treated as

sync_team(all) and sync_all(wait) is treated as sync_team(all,wait), where all has the

value(/ (I,I=1,num_images()) /).

sync_all([wait]) has the effect of sync_memory.

29

sync_file(unit) is a subroutine for marking the progress of input-output on a unit. unit

is an INTENT(IN) scalar argument of type integer and specifies the unit.

The subroutine affects only the data for the file connected to the unit. If the unit is

not connected on this image or does not exist, the subroutine has no effect. Before

return from the subroutine, any file records that are held by the image in temporary

storage and for which WRITE statements have been executed since the previous call

of sync_file on the image (or since execution of OPEN in the case of the first

sync_file call) shall be placed in the file itself or a replication of the file that other

images access. The first subsequent access by the image to file data in temporary

storage shall be preceded by data recovery from the file itself or its replication. If the

unit is connected for sequential access, the previous WRITE statement shall have

been for advancing input/output.

sync_team(team [,wait]) is a subroutine that synchronizes images. team is an

INTENT(IN) argument that is of type integer and is scalar or of rank one. The scalar

case is treated as if the argument were the array (/this_image(),team/); in this case,

team must not have the value this_image(). All elements of team shall have values in

the range 1<=team(i)<=num_images() and there shall be no repeated values. One

element of team shall have the value this_image(). wait is an optional INTENT(IN)

argument that is of type integer and is scalar or of rank one. Each element, if any, of

wait shall have a value equal to that of an element of team. The scalar case is treated

as if the argument were the array (/wait/).

The argument team specifies a team of images that includes the invoking image. For

each invocation of sync_team on one image, there shall be a corresponding

invocation of sync_team for the same team on every other image of the team. The n-

th invocation for the team on one image corresponds to the n-th invocation for the

team on each other image of the team, n=1, 2, If a call for one team is made

ahead of a call for another team on a single image, the corresponding calls shall be in

the same order on all images in common to the two teams.

If wait is absent on one image it must be absent in all the corresponding calls on the

other images of the team. In this case, wait is treated as if it were equal to team and

30

all images of the team wait until all other images of the team are executing

corresponding calls. If wait is present, the image waits for all the images specifed by

wait to execute corresponding calls.

sync_team(team[,wait]) has the effect of sync_memory.

sync_memory() is a subroutine for marking the progress of the execution sequence.

Before return from the subroutine, any co-array data that is accessible in the scoping

unit of the invocation and is held by the image in temporary storage and has been

defined there shall be placed in the storage that other images access. The first

subsequent access by the image to co-array data in this temporary storage shall be

preceded by data recovery from the storage that other images access.

this_image([array[,dim]]) returns the index of the invoking image, or the set of co-

subscripts of array that denotes data on the invoking image. The type of the result is

always default integer. There are four cases:

 Case (i). If array is absent, the result is a scalar with value equal to the index of

the invoking image. It is in the range 1, 2, ..., num_images().

 Case (ii). If array is present with co-rank 1 and dim is absent, the result is a

scalar with value equal to co-subscript of the element of array that resides on

the invoking image.

 Case (iii). If array is present with co-rank greater than 1 and dim is absent, the

result is an array of size equal to the co-rank of array. Element k of the result

has value equal to co-subscript k of the element of array that resides on the

invoking image.

 Case (iv). If array and dim are present, the result is a scalar with value equal to

co-subscript dim of the element of array that resides on the invoking image.

31

Chapter 5 A Comparsion of Co-Array Fortran and OpenMP

Fortran

5.1 OpenMP Fortran

OpenMP Fortran is a set of compiler directives that provide a high level interface to

threads in Fortran, with both thread-local and thread-shared memory. Most compilers

are now complient with version 1.1 of the specification [28], which will be discussed

here unless otherwise noted. Version 2.0 [29] was released in November 2000 but is

not yet widely available. OpenMP can also be used for loop-level directive based

parallelization, but in SPMD-mode N threads are spawned as soon as the program

starts and exist for the duration of the run. The threads act like Co-Array images (or

MPI processes), with some memory private to a single thread and other memory

shared by all threads. Variables in shared memory play the role of co-arrays in Co-

Array Fortran, i.e. if two threads need to “communicate” they do so via variables in

shared memory. Local non-saved variables are thread private, and all other variables

are shared by default. The directive !$OMP THREADPRIVATE can make a named

common private to each thread.

Threaded I/O is well understood in C [21], and many of the same issues arise with

OpenMP Fortran I/O. A single process necessarily has one set of I/O files and

pointers. This means that Fortran’s single process model of I/O is appropriate. I/O is

“thread safe” if multiple threads can be doing I/O (i.e., making calls to I/O library

routines) at the same time. OpenMP Fortran requires thread safety for I/O to distinct

unit numbers (and therefore to distinct files), but not to the same I/O unit number. A

SPMD program that writes to the same file from several threads will have to put all

such I/O operations in critical regions. It is therefore not possible in OpenMP to

perform parallel I/O to a single file.

The integer function OMP_GET_NUM_THREADS() returns the number of threads,

the integer function OMP_GET_THREAD_NUM() returns this thread’s index

32

etween 0 and OMP_GET_NUM_THREADS()-1. The compiler directive !$OMP

BARRIER is a global barrier which requires all operations before the barrier on all

threads to be completed before any thread advances beyond the call. The directives

!$OMP CRITICAL and !$OMP END CRITICAL provide a critical region capability,

with more flexiblity than that in Co-Array Fortran, and in addition there are intrinsic

routines for shared locks that can be used for the fine grain synchronization typical of

threaded programs [21]. The directives !$OMP MASTER and !$OMP END

MASTER provide a region that is executed by the master thread only, !$OMP

SINGLE and !$OMP END SINGLE identify a region executed by a single thread.

Note that all directive defined regions must start and end in the same lexical scope. It

is possible to write your own synchronization routines, using the basic directive

!$OMP FLUSH. This routine forces the thread to both complete any outstanding

writes into memory and refresh from memory any local copies of data it might be

holding (in registers for example). It only applies to “thread visible” variables in the

local scope, and can optionally include a list of exactly which variables it should be

applied to. BARRIER, CRITICAL, and END CRITICAL all imply FLUSH, but

unlike Co-Array Fortran it is not automatically applied around subroutine calls. This

means that the programmer has to be very careful about making assumptions that

thread visible variables are current. Any user-written synchronization routine should

be preceeded by a FLUSH directive every time it is called.

A subset of OpenMP’s loop-level directives, that automate the allocation of loop

iterations between threads, are also available to SPMD programs but are not typically

used.

Unlike High Performance Fortran (HPF) [22], which has compiler directives that are

carefully designed to not alter the meaning of the underlying program, the OpenMP

directives used in SPMD-threaded programming are declaration attributes or

executable statements. They are still properly expressible as structured comments,

starting with the string “!$OMP”, because they have no effect when the program has

exactly one thread. But they are not “directives” in the conventional sense. For

example “!$OMP BARRIER” does not allow any thread to continue until all have

reached the statement. When there is more than one thread, SPMD OpenMP defines

33

a new language that is different from uni-processor Fortran in ways that are not

obvious by inspection of the source code. For example:

1. Saved local variables are always shared and non-saved local variables are

always threadprivate. It is all too easy to inadvertently create a saved

variable. For example, in Fortran 90/95 initializing a local variable, e.g.,

INTEGER :: I=0, creates a saved variable. A DATA statement has a similar

effect in both Fortran 77 and Fortran 90/95. In OpenMP such variables are

always shared, but often the programmer’s intent was to initialize a

threadprivate variable (which is not possible with local variables in version

1.1).

2. In version 1.1, only common can be either private or shared under programmer

control. Module variables, often used to replace common variables in Fortran

90/95, are always shared. Version 2.0 allows individual saved and module

variables to be declared private.

3. ALLOCATE is required to be thread safe, but because only common variables

can be both private and non-local, it is difficult to use ALLOCATABLE for

private variables. A pointer in THREADPRIVATE common may work, but is

not a safe alternative to an allocatable array.

4. It is up to the programmer to avoid race conditions caused by the compiler

using copy-in/copy-out of thread-shared array section subroutine arguments.

5. There is no way to document the default case using compiler directives. There

is a !$OMP THREADPRIVATE directive but no matching optional !$OMP

THREADSHARED directive. Directives that imply a barrier have an option,

NOWAIT, to skip the barrier but no option, WAIT, to document the default

barrier.

6. Sequential reads from multiple threads must be in a critical region for thread

safety and provide a different record to each thread. In all process-based

SPMD models sequential reads from multiple processes provide the same

record to each process.

SPMD OpenMP is not a large extension to Fortran but OpenMP programs cannot be

maintained by Fortran programmers unfamiliar with OpenMP. For example, a

programmer has to be aware that adding a DATA statement to a subroutine could

34

change the multi-thread behavior of that subroutine. In contrast, adding a DATA

statement, or making any other modifications, to a Co-Array Fortran program is

identical in effect to making the same change to a Fortran 90/95 program providing

no co-arrays are involved (i.e., providing no square brackets are associated with the

variable in the local scope).

Version 2.0 of the specification adds relatively few capabilities for SPMD programs,

but the extension of THREADPRIVATE from named common blocks to saved and

module variables will provide a significantly improved environment particularly for

Fortran 90 programmers. It is unfortunate that there is still no way to document the

default via a similar THREADSHARED directive. If this existed, the default status

of variables would cease to be an issue because it could be confirmed or overridden

with compiler directives. The lack of fully thread safe I/O places an unnecessary

burden on the SPMD programmer. The standard should at least require that thread

safe I/O be available as a compile time option. This is much easier for the compiler

writer to provide, either as a thread-safe I/O library or by automatically inserting a

critical region around every I/O statement, than the application programmer. The

sequential read limitation is a basic property of threads, and is primarily an issue

because many Fortran programmers are familiar with process-based SPMD APIs.

Version 2.0 has a COPYPRIVATE directive qualifier that handles this situation

cleanly. For example:

!$OMP SINGLE

READ(11) A,B,C

!$OMP END SINGLE, COPYPRIVATE(A,B,C)

Here “A,B,C” are threadprivate variables that are read on one thread and then copied

to all other threads by the COPYPRIVATE clause at the end of the single section.

Co-Array Fortran I/O is designed to work with threads or processes, and a proposed

extension can handle this case:

READ(11,TEAM=ALL) A,B,C

All images in the team perform the identical read and there is implied

synchronization before and after the read. If images are implemented as threads, the

I/O library could establish a separate file pointer for each thread and have each

thread read the file independently or the read could be performed on one thread and

the result copied to all others.

35

The limitations of OpenMP are more apparent for SPMD programs than for those

using loop-level directives, which are probably the primary target of the language.

SPMD programs are using orphan directives, outside the lexical scope of the parallel

construct that created the threads [28]. OpenMP provides a richer set of directives

within a single lexical scope, which allow a more complete documentation of the

exact state of all variables. However, it is common to call a subroutine from within a

do loop that has been parallelized and the variables in that subroutine have the same

status as those in a SPMD subroutine. Also, almost all OpenMP compilers support

Fortran 90 or 95, rather than Fortran 77, but version 1.1 directives largely ignore

Fortran 95 constructs. Version 2.0 has more complete Fortran 95 support, which

provides an incentive for compilers to be updated to version 2.0.

5.2 A simple example

The calculation of  was used as an example in the original OpenMP proposal [25],

which presented three versions using OpenMP’s loop level parallelization constructs,

using MPI, and using pthreads. SPMD versions using Co-Array Fortran and OpenMP

Fortran are presented here. First Co-Array Fortran:

program compute_pi

double precision :: mypi[*],pi,psum,x,w

integer :: n[*],me,nimg,i

nimg = num_images()

me = this_image()

if (me==1) then

 write(6,*) ’Enter number of intervals’; read(5,*) n

 write(6,*) ’number of intervals = ’,n

 n[:] = n

endif

call sync_all(1)

w = 1.d0/n; psum = 0.d0

do i= me,n,nimg

 x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x)

enddo

mypi = w * psum

call sync_all()

if (me==1) then

 pi = sum(mypi[:]); write(6,*) ’computed pi = ’,pi

endif

call sync_all(1)

end

36

The number of intervals and the partial sums of  are declared as co-arrays, because

these must be communicated between images. All other variables are local to each

image. The number of intervals is input on image 1 and broadcast to all images. Note

that n without square brackets refers to the local part, n[me]. All images wait at the

first sync_all for image 1 to arrive, signaling that n is safe to use. Each image then

waits at the second sync_all for all images to complete the calculation. Finally, the

first image adds the co-array of partial sums and writes out the result. The final

sync_all prevents the other images from terminating the program before image 1

completes the write.

In OpenMP Fortran this becomes:

program main

call omp_set_dynamic(.false.)

call omp_set_nested(.false.)

!$omp parallel

call compute_pi

!$omp end parallel

stop

end

subroutine compute_pi

double precision :: psum,x,w ! threadprivate

integer :: me,nimg,i ! threadprivate

double precision :: pi

integer :: n

common /pin/ pi,n

!*omp threadshared(/pin/)

integer omp_get_num_threads,omp_get_thread_num

nimg = omp_get_num_threads()

me = omp_get_thread_num() + 1

!$omp master

write(6,*) ’Enter number of intervals’; read(5,*) n

write(6,*) ’number of intervals = ’,n

pi = 0.d0

!$omp end master

!$omp barrier

w = 1.d0/n; psum = 0.d0

do i= me,n,nimg

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x)

enddo

!$omp critical

pi = pi + (w * psum)

!$omp end critical

!$omp barrier

!$omp master

write(6,*) ’computed pi = ’,pi

37

!$omp end master

!$omp barrier

End

All SPMD OpenMP programs start with the same main program. It spawns the

number of threads specified by the environment variable OMP_NUM_THREADS,

then immediately calls the top level subroutine that represents the actual program to

replicate. On exit from this subroutine all threads except the master thread are freed

and the program then exits. The number of intervals and _ are declared in named

common and are therefore global (thread-shared) variables by default. There is no

compiler directive available to confirm the default, so a pseudo-directive, !*omp

threadshared, is used to document that the common is shared. All other variables are

local to the subroutine and therefore private to each thread (no saved variables). The

number of intervals is input on the master thread, and since n is a global variable it is

automatically available on all threads. All threads wait at the first !$omp barrier for

the master thread to arrive, signaling that n is safe to use. Each thread then

independently calculates its part of  and adds it to the total . Updating  is in a

critical region, so that only one thread at a time can access . Each thread then waits

at the second !$omp barrier for all threads to complete the calculation. Finally, the

master thread writes out the result. The final !$omp barrier prevents the other threads

from terminating the program before the master completes the write. This is probably

unnecessary, since it is the master that will execute stop in the main program.

A relatively minor difference between the two versions is that Co-Array Fortran has

a richer set of synchronization operations. In many cases, sync_all(1) is significantly

faster than sync_all() because the former allows the image to continue as soon as

image 1 arrives and the latter requires the image to wait for all images to arrive.

OpenMP’s !$omp barrier is the only synchronization of its kind provided by

OpenMP and is equivalent to sync_all(). A synchronization routine like

sync_all(wait) can be written in OpenMP, provided it is always called in conjunction

with a !$omp flush directive. The primary difference between the two versions is that

global variables are co-arrays spread across all images in Co-Array Fortran, but are

standard variables in global memory (not assigned to any particular thread) in

OpenMP Fortran. However, the difference is more one of style than substance. The

38

OpenMP version can be rewritten in Co-Array Fortran, by only using the part of each

co-array on image 1:

program compute_pi

double precision :: psum,x,w

integer :: me,nimg,i

double precision :: pi[*] ! only use pi[1]

integer :: n[*] ! only use n[1]

nimg = num_images()

me = this_image()

if (me==1) then

write(6,*) ’Enter number of intervals’; read(5,*) n

write(6,*) ’number of intervals = ’,n

pi = 0.d0

endif

call sync_all()

w = 1.d0/n[1]; psum = 0.d0

do i= me,(n[1]),nimg

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x)

enddo

call start_critical()

pi[1] = pi[1] + (w * psum)

call end_critical()

call sync_all()

if (me==1) then

write(6,*) ’computed pi = ’,pi

endif

call sync_all()

end

In order to emulate shared variables, the Co-Array Fortran code replicates them on

all images but only uses the part on image 1. All references to such variables must

end in[16]. In the case of large shared arrays, it would be possible to avoid the space

this wastes by defining a co-array of a derived type with a pointer component and

then only allocating an array to the pointer on image 1. This sounds complicated, but

is in fact the standard way for Fortran 90/95 to handle an array of arrays (or in this

case a co-array of arrays). The master directive in OpenMP is replaced by a test for

the first image. Co-Array Fortran does not treat the first image any differently than

the others (i.e., it has no master image). However, standard input is available on the

first image only, so if the master’s tasks include reading standard input Co-Array

Fortran must use the first image as the master.

39

Similarly, the Co-Array version can be expressed in OpenMP by adding a perthread

dimension to each shared variable:

program main

call omp_set_dynamic(.false.)

call omp_set_nested(.false.)

!$omp parallel

call compute_pi

!$omp end parallel

stop

end

subroutine compute_pi

integer, parameter :: max_threads=128

double precision :: pi,psum,x,w

integer :: me,nimg,i

double precision :: mypi

integer :: n

common /pin/ mypi(max_threads),n(max_threads)

!*omp threadshared(/pin/)

integer omp_get_num_threads,omp_get_thread_num

me = omp_get_thread_num() + 1

nimg = omp_get_num_threads()

if (me==1) then

if (nimg>max_threads) then

write(6,*) ’error - too many threads ’,nimg

stop

endif

write(6,*) ’Enter number of intervals’;

read(5,*) n(me)

write(6,*) ’number of intervals = ’,n(me)

n(1:nimg) = n(me)

endif

!$omp flush

call caf_sync_all(1)

w = 1.d0/n(me); psum = 0.d0

do i= me,n(me),nimg

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x)

enddo

mypi(me) = w * psum

!$omp barrier

if (me==1) then

pi=sum(mypi(1:nimg)); write(6,*) ’computed pi=’,pi

endif

!$omp flush

call caf_sync_all(1)

end

40

In order to emulate co-arrays, the OpenMP code puts them in named common (i.e.

makes them shared variables) and converts co-array dimensions into additional

regular array dimensions. Since array size has to be known at compile time, the

parameter max_threads is introduced which has to be no smaller than the actual

number of threads at run time. If this is set to a safe value, e.g., the number of

processors on the machine, it is probably an over estimate and hence wastes memory.

Co-Array Fortran allows the local part of a co-array to be referenced without square

brackets, but all references to emulated co-arrays must include the co-dimensions,

e.g. n(me). It also “knows” that the co-size is num_images(), so mypi[:] is legal Co-

Array Fortran but must become mypi(1:nimg) in OpenMP Fortran. The routine

caf_sync_all is assumed to be an OpenMP implementation of sync_all but it can only

synchronize threads, the !$omp flush is also required to synchronize shared objects.

5.3 A comparison

The features of SPMD OpenMP Fortran and Co-Array Fortran are summarized in

Figure 5.1. OpenMP Fortran is only applicable to systems with a single global

memory space, and perhaps only to those with flat single level addressing and cache

coherence across the entire memory space (i.e., systems such as the Cray T3E are not

candidates for OpenMP). However, this includes a wide range of SMP and DSM

systems with from 2 to 256 processors. OpenMP is a relatively new “standard,” but it

has wide vendor and third party support is available on almost all machines with a

suitable global shared memory, from PC’s to MPP’s. Compilers with partial support

for OpenMP typically do not support it in SPMD-mode, but most compilers now

claim full version 1.1 complience. Version 2.0 complient compilers are not yet

typically available, but for SPMD programmers only the extension of

THREADPRIVATE to saved and module variables and the new COPYPRIVATE

clause are significant, so even partial support for version 2.0 may be sufficient.

Co-Array Fortran can take full advantage of a hardware global memory, but it can

also be used on shared nothing systems with physically distinct memories connected

by a network. However, performance is expected to only be about as good as MPI on

such systems. Co-Array Fortran can be implemented using threads or processes, or

on a cluster of SMP systems it could even use threads within a SMP system and

41

processes between systems. It is therefore more widely applicable than OpenMP

Fortran. However, the Cray T3E is the only machine with a Co-Array Fortran

compiler today and it implements only a subset of the language. There is

Figure 5.1:7 Features of SPMD OpenMP Fortran and Co-Array Fortran

a definite need for a source to source compiler that will allow Co-Array Fortran to

run on the same systems as OpenMP Fortran. This is discussed in more detail in

Chapter 5.4.

Any Co-Array Fortran program is translatable into OpenMP Fortran and vice versa.

However, the differences between co-arrays and shared arrays tend to steer

programmers to alternative solutions to the same problem. For example, suppose

there are P images or threads and we need to perform operations both on an array,

A(1:M,1:N), and its transpose, AT(1:N,1:M). For simplicity further assume that both

M and N are multiples of P. In Co-Array Fortran we would probably store both as

co-arrays, A(1:M,1:N/P)[*] and AT(1:N,1:M/P)[*], and write a routine to copy

between them. Since A and AT are co-arrays, the routine can do a direct copy

without using intermediate buffers. In OpenMP, for efficiency of memory layout we

might similarly store both as private arrays on each thread, A(1:M,1:N/P) and

AT(1:N,1:M/P), but now we have to provide a shared buffer to copy between them.

42

The simplest shared buffer to use is the entire array, B(1:M,1:N). Then the copy

routine is just copy each private A into the shared B, barrier, copy the shared B into

each private AT. An alternative in OpenMP is to always store the array as a whole

shared array, A(1:M,1:N). It may then be unnecessary to store the transpose at all,

although cache effects may make it advisable to also have a shared transpose,

AT(1:N,1:M). The shared array approach is also available in Co-Array Fortran by

placing arrays on one image, but to avoid wasting memory a co-array of arrays,

CA[1]%A(1:M,1:N), would probably be used rather than a simple co-array,

A(1:M,1:N)[1]. In either case, the co-array syntax makes clear that accessing the

“shared” array is a potentially expensive remote memory operation. The shared array

approach is sometimes the easiest to use, and is more cleanly expressible in OpenMP

Fortran, but it comes at the cost of less programmer control over performance.

OpenMP Fortran contains no directives to control the layout of shared arrays in

memory. This is not an issue on SMP systems with uniform memory access, but

where in memory shared arrays are placed may have a large effect on performance

on non-uniform memory access (NUMA) systems. This limits OpenMP’s scalability

to large numbers of nodes, since large node-count systems tend to be NUMA.

OpenMP Fortran is primarily designed for fine grained loop parallelization, which is

typically appropriate for small node counts. Therefore the lack of layout control is

less of an issue for OpenMP in its primary domain of interest, but it is a concern for

SPMD programs. All memory in Co-Array Fortran is associated with a local image,

so memory placement on NUMA systems is simple to arrange and does not effect

scalability. Since Co-Array Fortran always knows when remote communication is

involved, the global memory does not need to be cache coherent and in fact each

image’s memory can be physically and logically distinct with only a fast network

connecting them. Overall, Co-Array Fortran has clear advantages on systems with

large node counts (above about 32 processors).

Co-Array Fortran is a simple set of extensions to Fortran 90/95. The features that are

compatible with Fortran 77 do not produce a viable subset language. OpenMP

compilers typically support Fortran 90 or 95, but the version 1.1 compiler directives

really only apply well to Fortran 77 programs. The lack of support for thread private

module variables and for ALLOCATABLE are two examples of this. Fortran 77 is

43

probably still the dominant variant for SPMD programs, but large projects, in

particular, are increasingly migrating to Fortran 95 and will need version 2.0

OpenMP compilers.

One example of Co-Array Fortran’s reliance on Fortran 90/95 features is that any

subroutine with a co-array dummy argument must have an explicit interface. Hence a

Fortran 77 subset would either have to ban co-array dummy arguments or provide an

extension to the existing language that distinguishes between co-array actual

arguments and local part actual arguments without an explicit interface. Explicit

interfaces make Co-Array Fortran significantly safer to use. The compiler always has

complete knowledge of co-arrays except in the special case when the local part of a

co-array is passed to a dummy argument of co-rank zero. The programmer is

responsible for co-array safety in this special case, and must make sure that no other

image references the passed piece of the co-array between the subroutine call and

return. A synchronization call in Co-Array Fortran always implies that all co-arrays

are up to date (except those passed to co-rank zero dummies, and these must not be

referenced from other images anyway). All the co-array “machinery” works behind

the scenes to allow the programmer to do the obvious thing and in fact get the

expected result.

OpenMP Fortran provides a significantly lower level programmer interface. Once an

object has been passed to a procedure through its argument list there is no way to tell

if it is a shared object or a private object. Pointers can be shared or private and both

can reference either shared or private variables, so it is possible (although unsafe) for

one thread to access the private memory of another thread. Also, synchronization

primitives only apply to shared objects in the local scope. All subroutine arguments

are potentially “thread visible” (i.e. shared), so all have to be flushed even though

some may actually be private. Local scope synchronization has several pitfalls to trap

the unwary programmer. One of the most obvious is

copy-in/copy-out:

common/shared/ i(100)

!$omp master

i(1:100) = 0

!$omp end master

!$omp barrier

call sub1(i(2:100:2))

44

!$omp master

write(6,*) i(4)

!$omp end master

end

subroutine sub1(i2)

integer :: i2(0:49),omp_get_thread_num

i2(omp_get_thread_num()) = omp_get_thread_num()

!$omp barrier

end

The barrier in sub1 synchronizes i2, but, since it is not an assumed shape array, i2 is

probably only a local contiguous copy of i(2:100:2) and a different local copy on

every thread (the only practical alternative a compiler has is to in-line sub1). If a

local copy is used, the barrier has no effect on i and when each thread returns from

sub1 they will independently copy back their entire local version of i(2:100:2) into

the shared original and perhaps also update a register holding i(4) from the local

version. This means that there is no way to tell if the write prints the value 1, as

expected, or 0. This is not just a local scope issue, since the problem remains even if

the second barrier is moved from inside sub1 to just after the call to sub1. The value

of i(4) then depends on which thread exits sub1 last. The only safe approach is for

the programmer to manually implement steps similar to those that Co-Array Fortran

takes. Issue a !$omp flush before and after every subroutine call that might contain

synchronization, and if a shared array section that is not contiguous in array element

order is passed to a subroutine the associated dummy array argument must be

assumed shape (and the subroutine interface therefore explicit). The OpenMP

specification makes the above example illegal, i.e. it places the responsibility onto

the programmer to avoid such copyin/ copy-out race conditions. Co-Array Fortran

guarantees that copy-in/copy-out is never required for co-array dummy arguments,

e.g., if i2 were a co-array an array section actual argument would be illegal (and

detectable as an error at compile time) unless i2 is declared assumed shape. All

library-based SPMD APIs have similar consistency problems. The MPI-2 standard

[23] has a good discussion of these issues, which can cause optimization problems in

Fortran 77 but are much more serious for Fortran 90/95. Co-Array Fortran may be

unique among SPMD APIs in having no known conflicts with Fortran 90/95. High

Performance Fortran is also consistent with Fortran 95, but is not formally a SPMD

API although it is often implemented using SPMD.

45

The previously listed limitations make OpenMP Fortran a less than optimal choice

for very large SPMD programs, but it has the important advantage of being widely

available. There is a preliminary port of the NRL Layered Ocean Model (NLOM) to

OpenMP Fortran [32]. NLOM already ran in SPMD-mode using MPI or SHMEM.

The original code is 69,000 lines of Fortran 77 including 22,000 comment lines of

which 500 are compiler directives (many are repeats in different dialects). Ignoring

communication routines, adding support for OpenMP required 900 OpenMP

compiler directives, 500 to characterize all COMMON’s (could be reduced using

INCLUDE) and 400 primarily to handle I/O. This illustrates a general property of

compiler directive based APIs, they are very verbose. Other, extensive, changes were

required to allow sequential I/O to be compatible with either SPMD processes or

SPMD threads. Programs that do all sequential I/O from a single image would not

require these modifications. If the COPYPRIVATE directive qualifier had been

available the sequential I/O modifications would have been greatly simplified.

Shared variables were added to handle sequential I/O, but in general variables

outside communication routines are THREADPRIVATE. Fortunately, NLOM does

not use modules and most saved local variables had already been placed in common.

However, DATA statement initialization had to be modified to make sure there were

no implied saved local variables. Since this was a prototype port, the required

communication routines were generated by replicating the existing 4,000 line

SHMEM version and making as few changes as possible to support OpenMP.

The native OpenMP port of NLOM has been made obsolete by adding support to

NLOM for a dialect of Co-Array Fortran that can be automatically translated into

OpenMP Fortran using a nawk [18] script (described in more detail below). Outside

communication routines, this involved adding macros (that are null except when

using Co-Array Fortran) to 230 I/O statements and adding Co-Array syntax to a

single subroutine that defines arrays (co-arrays) used by communication routines.

Inside communication routines, this involved replicating and modifying SHMEM-

specific code fragments for Co-Array Fortran (with each SHMEM library call

mapping to a single co-array assignment statement), and adding a macro identifying

the local part of a co-array to 375 assignment statements. The latter are only required

due to limitations in the nawk script and are null when using a true Co-Array Fortran

compiler. The total effort involved in writing the nawk script and adding Co-Array

46

Fortran support to NLOM was significantly less than required to add native OpenMP

support. The nawk script adds all required OpenMP compiler directives and emulates

Co-Array Fortran I/O, thus removing the two most time consuming aspects of the

port.

NLOM is typical of many SPMD codes in using a program-specific interface to

handle all communication. This greatly simplifies porting to a new SPMD API, but

reduces the opportunity for optimization with a low latency API (such as either Co-

Array and OpenMP Fortran). Porting an existing SPMD program, e.g. one using

MPI, that did not separate out communication to OpenMP Fortran would be difficult,

because MPI allows communication between what are in OpenMP terms

THREADPRIVATE objects and in fact has no concept of THREADSHARED

objects. Porting any existing SPMD program to Co-Array Fortran would be much

easier, because all objects including co-arrays can be treated as local to an image and

co-arrays need only be introduced at all for objects that are involved in

communication.

5.4 Translation

5.4.1 Subset Co-Array Fortran

The full Co-Array Fortran language [24] provides support for legacy SPMD

programs based on Cray’s SHMEM put and get library [16]. It requires that all

variables in named COMMON be treatable either as standard variables or as co-

arrays, and which objects in the COMMON block are co-arrays is allowed to vary

between scoping units. This makes it difficult to implement co-arrays as if they were

Fortran arrays of higher rank. The following relatively minor restrictions on the full

language define a formal Subset that significantly widens the implementation

choices, and in particular allows a simple mapping from Co-Array Fortran to

OpenMP Fortran.

1. If a named COMMON includes a co-array, every object in that COMMON

must be a co-array. The objects in the COMMON must agree in size, type,

shape, co-rank and co-extents in all scoping units that contain the COMMON.

2. The EQUIVALENCE statement is not permitted for co-arrays.

47

3. The sum of the local rank plus the co-rank of a co-array is limited to seven.

4. A dummy co-array argument cannot have assumed size local dimensions.

5. A dummy co-array argument cannot have assumed shape local dimensions,

unless the co-rank is one. The actual argument shall then also have co-rank

one.

6. If a dummy argument has both nonzero local rank and nonzero co-rank and

does not have assumed shape local dimensions, the actual argument must

agree in size and type with the dummy argument.

The restrictions on COMMON are similar to nonsequence COMMON in HPF [22].

The restrictions on EQUIVALENCE are more severe than in HPF, for simplicity, but

in Subset Co-Array Fortran the restrictions only apply to co-arrays. COMMON can

be largely replaced by MODULE for new programs, so the restrictions are easily met

except when migrating legacy Fortran 77 programs that make heavy use of

COMMON and either EQUIVALENCE or different layouts for the same named

common in different scopes. If the objects in a legacy COMMON already agree in

size, type, and shape in all scoping units (which is good programming practice), then

every object in that COMMON can be converted to a co-array without changing the

meaning of the program. This is because a reference to a co-array without square

brackets is always a reference to the local part of the co-array. Migration to the

Subset is therefore easy in this case.

In Co-Array Fortran both the local rank and the co-rank of a co-array can be seven,

but the local rank plus co-rank of any co-array subobject that is actually used in an

executable statement must be no more than seven (because the rank and co-rank are

merged and the object treated as a standard array subobject). Thus the Subset’s

restriction on local rank plus co-rank to seven is not typically a severe additional

constraint. It would be helpful if Fortran 2000 increased the limit on the rank from

seven to, say, ten, since this would give more room for rank plus co-rank.

The restrictions on dummy co-array arguments may require the programmer to

explicitly pass additional array dimension information through the argument list. The

restriction on assumed shape is probably the most severe of all for new programs,

since assumed shape arrays are a significant simplifying factor in Fortran 90/95

programs and Co-Array Fortran requires some kinds of co-array actual arguments to

48

only be associated with assumed shape dummy arguments. It is a consequence of the

fact that co-size is always NUM_IMAGES() and therefore that, when the co-rank is

greater than one, the co-array has no final extent, no final upper bound, and no co-

shape.

The Subset does not allow any kind of array element sequence association for co-

arrays. It therefore prohibits an element of a co-array being passed to a subroutine

and treated there as a co-array of non-zero rank. Only entire co-arrays can be passed

to explicit-shape co-array dummy arguments and the size of the actual and dummy

argument must be identical.

5.4.2 Subset Co-Array Fortran into OpenMP Fortran

Subset Co-Array Fortran has been designed to be implementable by mapping co-

arrays onto arrays of higher rank. In particular, they are implementable as shared

OpenMP Fortran arrays. The translation of the Co-Array Fortran  program into

OpenMP Fortran presented in Chapter 5.3 illustrates what a compiler is required to

do. Any saved or module local variables must be placed in THREADPRIVATE

named common (or just declared THREADPRIVATE in version 2.0). Any named

common that does not contain co-arrays must be made THREADPRIVATE. All co-

arrays must be shared objects. Square brackets are merged to create arrays of higher

rank. The convention that references to a co-array without square brackets is a

reference to the local part of the co-array requires first expanding the reference to

include both round brackets and square brackets, and then merging square brackets to

create an array subobject. References to co-arrays in procedure calls do not typically

include square brackets, but the intent is always unambiguous because the interface

must be explicit when the dummy argument is a co-array. If the dummy argument is

not a co-array, the reference must be expanded to explicitly pass the local part of the

co-array to the procedure. If the dummy argument is an assumed shape co-array

(with co-rank one), the dummy is translated to an assumed shape array with one

higher rank and special handling may also be required on the calling side. Co-Array

intrinsic procedures can be implemented as an OpenMP module. All caf-procedure

calls [24], i.e., calls to procedures that could contain synchronization, must be

bracketed by FLUSH directives that explicitly name all actual co-arrays in the local

49

scope. A generic FLUSH without arguments would also be sufficient, but is less

efficient because OpenMP would then flush objects that the original Co-Array source

has identified as not being thread visible. All of Co-Array I/O maps directly onto

threadsafe OpenMP I/O, so the translator may have to explicitly make I/O thread

safe, using critical directives, but the mapping is otherwise straight forward. The

translation process has been presented as if performed by a Subset Co-Array Fortran

source to OpenMP Fortran source compiler. Many of the steps are trivial if actually

performed by retargeting an existing native OpenMP Fortran compiler to support

Subset Co-Array Fortran. So on machines with a cache-coherent shared memory and

an OpenMP compiler it would take very little effort on the vendors part to support

Subset Co-Array Fortran. A single compiler is typically already used for standard

Fortran and OpenMP Fortran, with the target language specified at compile and link

time. With minor upgrades the same compiler can also support Subset Co-Array

Fortran. There would be a single compiler but three distinct languages, so linking

standard Fortran and Subset Co-Array Fortran objects together would not be

supported (just as linking standard Fortran and OpenMP Fortran objects is not

supported now).

As a “proof of concept” a nawk script has been developed to translate Subset Co-

Array Fortran directly into OpenMP Fortran. Since this is a pattern matching script,

rather than a compiler, it treats some keywords as reserved and requires some

statements be expressed in one of the several alternatives that Fortran provides. In

order to implement TEAM read, I/O unit numbers are restricted to be less than

100,000. The only other significant variances from the Subset Co-Array Fortran

language are those made necessary by a lack of a symbol table identifying modules

and co-arrays by name. The most serious of these is that the local part of a co-array

cannot be referenced without square brackets. To simplify local parts, the script will

automatically translate a copy of the co-array’s declaration square brackets, with "*"

replaced by "@" into square brackets identifying the local part. For example:

COMMON/XCTILB4/ B(N,4)[0:MP-1,0:*]

 SAVE /XCTILB4/

 CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

B(:,3)[0:MP-1,0:@] = B(:,1)[I_IMG_S,J_IMG_S]

B(:,4)[0:MP-1,0:@] = B(:,2)[I_IMG_S,J_IMG_N]

CALL SYNC_ALL(WAIT=(/IMG_S,IMG_N/))

50

Only the local part of B(:,3) and B(:,4) is used, but square brackets are still required

and have been provided by replicating the square bracket declaration of B with "*"

replaced by "@". The advantage of this extension to the language is that these square

brackets can be removed by a batch stream editor to produce a legal Subset program.

Absent a symbol table tracking explicit interfaces, passing co-arrays to subroutines

also requires extensions to the Subset language. A whole co-array can be passed to a

co-array dummy just as in the Subset, but all other cases rely on an extension to the

Subset to allow co-array sections to be passed as arguments. A co-array section

passed to a co-array dummy must include square brackets that cover the entire co-

extent. A local part passed to a dummy of co-rank zero must use square brackets to

form the corresponding co-array section.

The nawk script obviously provides a way of running Co-Array Fortran programs

(after some manual tweaking) via an OpenMP compiler. But it can also be simply

viewed as a pre-processor that provides an improved SPMD interface for OpenMP. It

has several major advantages over native OpenMP Fortran for SPMD programs. For

example, I/O is consistent with process-based SPMD APIs and the mapping of

variables onto shared and private memory is greatly enhanced (because the script

automatically places variables in COMMON as necessary). Co-Array Fortran

intrinsic procedures provide a much richer set of synchronization options than

OpenMP, and the special handling of caf-procedures ensures that synchronization of

threads implies synchronization of co-arrays. A disadvantage of the nawk script is

that it provides no error checking. Legal Co-Array Fortran programs are translated to

legal OpenMP Fortran programs, but illegal programs will also be translated and it is

up to the OpenMP compiler to detect the error. Error messages are likely to be

obscure, but relatively few lines are modified in the translation so inspection of the

OpenMP source should provide an indications of the error. A true Subset Co-Array

compiler, either provided as an addition to an OpenMP compiler or as a stand-alone

source to source compiler, would not have any of the restrictions of the nawk script

and would be able to provide clear and relevant error diagnostics for non-conforming

syntax.

51

One advantage that OpenMP has over Co-Array Fortran is that if an OpenMP

program is designed to work when there is exactly one thread, it is then also a legal

Fortran 90/95 program. The compiler directives have no effect on one thread, and are

ignored by the Fortran 90/95 compiler. A library of a few standard procedures is

required, but is trivial to implement for a single thread. This is not the case for Co-

Array Fortran. Obviously, a Subset Co-Array Fortran source to OpenMP Fortran

source compiler would also be a Subset Co-Array Fortran source to Fortran 90/95

source compiler in the special case of one image. A much simpler source to source

compiler is sufficient in this special case, and a public domain implementation would

provide a useful service to the Co-Array Fortran programming community. This is

not quite just a matter of deleting all references to square brackets, because the

effective rank of a co-array subobject is the sum of its local rank and co-rank. If the

square brackets are deleted the effective rank may change, giving rise to illegal ranks

for intrinsic procedure arguments and non-conforming ranks in some array

assignment statements involving co-arrays.

52

Chapter 6 Related Work

This chapter starts with an overview of existing parallel programming languages;

MPI and UPC, Next it gives example of theese two languages programming code

with the same problem in the case study. And shows how the parallel matrix

multiplication code looks like in MPI and UPC.

6.1 MPI

MPI is a language-independent communications protocol used to program parallel

computers. Both point-to-point and collective communication are supported. MPI "is

a message-passing application programmer interface, together with protocol and

semantic specifications for how its features must behave in any

implementation." MPI's goals are high performance, scalability, and portability. MPI

remains the dominant model used in high-performance computing today.

6.2 UPC

Unified Parallel C (UPC) is an extension of the C programming language designed

for high-performance computing on large-scale parallel machines, including those

with a common global address space (SMP and NUMA) and those with distributed

memory (e.g. clusters). Theprogrammer is presented with a single shared, partitioned

address space, where variables may be directly read and written by any processor,

but each variable is physically associated with a single execution per processor.

In order to express parallelism, UPC extends ISO C 99 with the following constructs:

 An explicitly parallel execution model

 A shared address space

 Synchronization primitives and a memory consistency model

 Memory management primitives

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Parallel_computers
http://en.wikipedia.org/wiki/Parallel_computers
http://en.wikipedia.org/wiki/Message-passing
http://en.wikipedia.org/wiki/High-performance_computing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/High-performance_computing
http://en.wikipedia.org/wiki/Parallel_machine
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/C_(programming_language)#C99
http://en.wikipedia.org/wiki/Memory_management

53

processor. UPC uses a Single Program Multiple Data (SPMD) model of computation

in which the amount of parallelism is fixed at program startup time, typically with a

single thread of.

The UPC language evolved from experiences with three other earlier languages that

proposed parallel extensions to ISO C 99: AC, Split-C, and Parallel C Preprocessor

(PCP). UPC is not a superset of these three languages, but rather an attempt to distill

the best characteristics of each. UPC combines the programmability advantages of

the shared memory programming paradigm and the control over data layout and

performance of the message passing programming paradigm.

6.3 Matrix Multiplication in MPI and UPC

6.3.1 MPI code for matrix multiplication;

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#define ms 2

int main(int argc,char* argv[])

{

 int i,j,k;

 int x,c;

 int matrix_a[ms][ms];

 int matrix_b[ms][ms];

 int matrix_c[ms][ms];

 int myrank, p;

 int NRPE;

 double starttime, endtime;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 MPI_Comm_size(MPI_COMM_WORLD, &p);

 MPI_Status status;

 NRPE = ms / p;

 if(myrank == 0)

 {

 printf("\nTCE 3411 Parellel Processing : Matrix

Multiplication\n");

 printf("\nDate : %s",__DATE__);

 printf("\nTime : %s",__TIME__);

printf("\n==\

n");

 printf("\n matrix a \n");

 printf("--------------\n");

http://en.wikipedia.org/wiki/SPMD
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Split-C
http://en.wikipedia.org/wiki/Superset
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Programming_paradigm

54

 for(i=0; i<ms; ++i)

 for(j=0; j<ms; ++j)

 matrix_a[i][j] = rand() % 10;

 for(i=0; i<ms; ++i)

 {

 for(j=0; j<ms; ++j)

 printf("%3d", matrix_a[i][j]);

 printf("\n");

 }

 printf("\n matrix b \n");

 printf("--------------\n");

 for(x=0; x<ms; ++x)

 for(c=0; c<ms; ++c)

 matrix_b[x][c] = rand() % 10;

 for(x=0; x<ms; ++x)

 {

 for(c=0; c<ms; ++c)

 printf("%3d", matrix_b[x][c]);

 printf("\n");

 }

 }

 for(i=0; i < ms; i++)

 {

 MPI_Bcast(matrix_b[i], ms*ms, MPI_INT, 0,

MPI_COMM_WORLD);

 }

 printf("\n MATRIX B by Process: %d\n", myrank);

 for(x=0; x<ms; ++x)

 {

 for(c=0; c<ms; ++c)

 printf("%3d", matrix_b[x][c]);

 printf("\n");

 }

 for(i=0; i<p; i++)

 {

 for(j=0; j<ms; j++)

 {

 MPI_Send(&matrix_a[j], ms*NRPE, MPI_INT, i, 0,

MPI_COMM_WORLD);

 NRPE++;

 }

 }

 starttime = MPI_Wtime();

 for (k=0; k<ms; k++)

 for (i=0; i<ms; i++) {

 matrix_c[i][k] = 0;

 for (j=0; j<ms; j++)

 matrix_c[i][k] = matrix_c[i][k] + matrix_a[i][j] *

matrix_b[j][k];

 }

 endtime = MPI_Wtime();

 MPI_Send(&matrix_c[i][k], ms*ms, MPI_INT, 0, 0,

MPI_COMM_WORLD);

55

 if(myrank == 0)

 printf("\n\nParellel Time %f seconds\n",endtime-

starttime);

 }

 printf ("\n");

 return 0;

 MPI_Finalize();

}

6.3.2 UPC code for matrix multiplication;

#define M 200

#define N 250

#define P 50

shared double A[M][P];

shared double B[P][N];

shared double C[M][N];

static double timer(){

 struct timeval tv;

 gettimeofday(&tv,NULL);

 return (double)tv.tv_sec + 1e-6*(double)tv.tv_usec;

}

void verify(int niter){

 int i,j;

 if (MYTHREAD == 0) {

 for (i=2; i<M; i++)

 for (j=0; j<N; j++)

 {

 double i1 = 1.0/((double)i+1);

 double shb = niter * (pow (i1, (double)(j+1))-1) /

(i1-

1);

 double diff = (C[i][j]-shb)/shb; if (diff < 0) diff =

-

diff;

 if (diff > 1e-8) {

 printf("Verification FAILED\n");

 return;

 }

 }

 }

}

void init_matrix(){

 int i, j, k;

 if (MYTHREAD == 0) {

 for (i=0; i<M; i++) for (k=0; k<P; k++) A[i][k] = pow (1.0/

(double)(i+1), (double)k);

 for (k=0; k<P; k++) for (j=0; j<N; j++) B[k][j] = k<=j;

 for (i=0; i<M; i++) for (j=0; j<N; j++) C[i][j] = 0;

 }

 upc_barrier;

void matmult_naive(){

 int i,j,k;

 upc_forall (i=0; i<M; i++; continue)

 upc_forall (j=0; j<N; j++; &C[i][j])

 {

 double s = C[i][j];

 for (k=0; k<P; k++) s += A[i][k] * B[k][j];

56

 C[i][j] = s;

 }

}

int main(){

 int niter = 20;

 double flops1;

 int i, j, k, iter;

 init_matrix();

 upc_barrier;

 double t1 = timer();

 for (iter = 0; iter < niter; iter++)

 matmult_naive();

 double t2 = timer();

 upc_barrier;

 verify(niter);

 upc_barrier;

 double t = t2 - t1;

 flops1 = (double)M * N * P * 2 * niter / t;

 upc_barrier;

 if (MYTHREAD==0)

 printf ("Naive matmult UPC: %g GFlops\n", flops1*1e-9);

 upc_barrier;

 return 0;

57

Chapter 7 Case Study

7.1 Matrix multiplication in Co Array Fortran

For this study our platform is Amazon EC2 Cluster system with 16 CPU and CentOS

operating system.

For this study our problem is nxn matrix multiplication.

myQ

 = x

myP myP

7.2 Co Array Fortran Code

program matmul

implicit none

real, allocatable,dimension(:,:), codimension[:,:] :: a,b,c

integer :: i

integer :: j

integer :: k

integer :: l

integer,parameter :: n = 10

integer :: p

integer :: q

integer :: iAm

integer :: myP

integer :: myQ

p = num_images()

q = int(sqrt(float(p)))

iAm = this_image()

if (q*q /= p) then

if(iAm == 1) write (*,"('num_images must be square: p=',i5)") p

stop

end if

allocate(a(n,n)[q,*])

allocate(b(n,n)[q,*])

58

allocate(c(n,n)[q,*])

myP = this_image(c,1)

myQ = this_image(c,2)

a = 1.0

b = 1.0

c = 0.0

sync all

do i=1,n

do j=1,n

do k=1,n

do l=1,q

c(i,j) = c(i,j) + a(i,k)[myP, l]*b(k,j)[l,myQ]

end do

end do

end do

end do

if (any(c /= n*q)) write(*,"('error on image: ',2i5,e20.10)")

myP, myQ, c(1,1)

write(*,"('check sum[',i5',',i5,']',e20.10)") myP, myQ, sum(c)

- q*n**3

deallocate(a,b,c)

end program matmul

7.3 Performance Analysis

As I defined in Chapter 7.1 my platform for this case study is Amazon EC2 Cluster

system with 16 x Intel Xeon X5570, quad core”Nehalem” architecture CPU and

CentOS operating system.

I ran the matrix multiplication program code for 120x120, 200x200, 320x320,

400x400, 520x520, 600x600, 720x720, 800x800, 920x920 and 1000x1000 matrices

each on 1CPU, 2 CPU, 4 CPU, 8 CPU, 16 CPU.

Performance figures are shown below. Figure 7.1 shows performance table of CAF

code. Figure 7.2 shows, performance chart of CAF code. Figure 7.3 shows

performance chart of 120x120 matrix on 1CPU, 2 CPU, 4 CPU, 8 CPU and 16 CPU.

Figure 7.4 shows performance chart of 520x520 matrix on 1 CPU, 2 CPU, 4 CPU, 8

CPU, 16 CPU. An the last figüre, Figure 7.5 shows performance chart of 1000x1000

matrix on 1 CPU, 2 CPU, 4 CPU, 8 CPU, 16 CPU.

59

Figure 7.1: Performance table of Co Array Fortran Code

NxN 1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

120x120 0,0592 0,0312 0,0198 0,0162 0,0098

200x200 0,1245 0,0834 0,0600 0,0424 0,0211

320x320 0,3039 0,1821 0,1498 0,1268 0,0763

400x400 0,5983 0,3876 0,2581 0,2136 0,1632

520x520 3,1265 1,7426 1,2646 0,9828 0,6139

600x600 4,0256 2,1674 1,5658 1,2318 0,0892

720x720 5,4328 2,8710 2,0234 1,8341 1,3487

800x800 6,1390 3,1438 2,2717 1,9732 1,6034

920x920 7,1845 3,9048 3,1249 2,8645 2,2431

1000x1000 8,8240 4,8296 3,5477 3,1241 2,4987

Figure 7.2: Performance chart of CAF code for NxN matrix

0,0000
0,5000
1,0000
1,5000
2,0000
2,5000
3,0000
3,5000
4,0000
4,5000
5,0000
5,5000
6,0000
6,5000
7,0000
7,5000
8,0000
8,5000
9,0000
9,5000

120x
12

0

200x
20

0

320x
32

0

400x
40

0

520x
52

0

600x
60

0

720x
72

0

800x
80

0

920x
92

0

1000
x1

000

Matrix Size

Ti
m

e
 (

se
co

nd
) 1 CPU

2 CPU

4 CPU

8 CPU

16 CPU

60

Figure 7.3: Performance chart for 120x120 matrix

120x120 Matrix

0,0592

0,0312

0,0098

0,01620,0198

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

Number o f CPU

Ti
m

e
 (

se
c

o
n

d
)

Figure 7.4: Performance chart for 520x520 matrix

520x520 Matrix

3,1265

0,6139

1,7426 1,2646

0,9828

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

3,5000

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

Number o f CPU

Ti
m

e
 (

se
c

o
n

d
)

61

Figure 7.5: Performance chart for 1000x1000 matrix

1000x1000 Matrix

8,8240

2,4987

4,8296 3,5477
3,1241

0,0000

2,0000

4,0000

6,0000

8,0000

10,0000

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

Number o f CPU

Ti
m

e
 (

se
c

o
n

d
)

7.4. Conclusion

Co-array Fortran looks and feels like Fortran and requires Fortran programmers to

learn only a few new rules. The CAF syntax gives the programmer more control and

flexibility. In Co-array fortran easy to write programs this increase the productivity.

Co-array Fortran is a PGAS language and able to take adventages of PGAS. There is

no subroutine calls in Co-array Fortran compiler can optimize across assignment.

The Co-array Fortran performance is better than the library based models.

62

Curriculum Vitae

Aşkın ODABAŞI was born on 02 August 1977, in Köln. He received B.S. degree in

2003 in Computer Engineering from Sakarya University. Since 2008, He has been an

IT specialist at a private company.

Education&Training

MS, Computer Engineering, Kadir Has University, Istanbul (Ongoing)

BS, Computer Engineering, Sakarya University, Sakarya (2003-2000)

Vocational High School, Computer Programming, Çanakkale 18 Mart University

(1999-1997)

Atatürk Lisesi, Ordu (1996-1993)

63

References

__

[1] Co Array Fortran.

http://neptune.ce.ncsu.edu/~sarat/sc07/PGAS-SC2007/CAF/caf_intro.htm

[2] Co Array Fortran 2.0.

http://caf.rice.edu

[3] Co Array.

http://www.coarray.org

[4] C. Coarfa. Portable High Performance and Scalability of Partitioned Global

Address Space Language. Doctor’s Degree thesis, Rice University, Houston, Texas,

Jan. 2007

[5] R.W. Numrich and J. Reid. Co-Arrays in the next fortran standard. ACM Fortran

Forum, 24(2):4-17, Aug. 2005.

[6] The PGAS Programming Model and Coarray Fortran – a lacture in the EPCC

course: Parallel Decomposition, Dr. Michele Weiland.

[7] R.W. Numrich and J. Reid. Co-Arrays in the next fortran standard. ACM Fortran

Forum, 17(2):1-31, Aug. 1998.

[8] Partitioned Global Address Space

http://mohamedfahmed.wordpress.com/2010/05/06/partitioned-global-address-space-

pgas/

[9] J. Reid and R.W. Numrich. Co-Arrays in the next Fortran Standard, Scientific

Programming 15(1), 9-26 (2007).

[10] R.W. Numrich, A Parallel Numerical Library for Co-Array Fortran, Springer

Lecture Notes in Computer Science 3911, 960-969 (2005).

[11] R.W. Numrich, Parallel numerical algorithms based on tensor notation and Co-

Array Fortran syntax, Parallel Computing 31, 588-607 (2005).

[12] R.W. Numrich and J.K. Reid, Co-Array Fortran for Parallel Programming, ACM

Fortran Forum 17(2):1-31 (1998).

http://neptune.ce.ncsu.edu/~sarat/sc07/PGAS-SC2007/CAF/caf_intro.htm
http://caf.rice.edu/
http://mohamedfahmed.wordpress.com/2010/05/06/partitioned-global-address-space-pgas/
http://mohamedfahmed.wordpress.com/2010/05/06/partitioned-global-address-space-pgas/

64

[13] R.W. Numrich, J. Reid and K. Kim, Writing a Multigrid Solver Using Co-Array

Fortran, Springer Lecture Notes in Computer Science 1541, 390-399 (1998).

[14] R.W. Numrich, F--: A Parallel Extension to Cray Fortran, Scientific

Programming 6(3), 275-284 (1997).

[15] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, second edition, 1986.

[16] Cray Research Inc. Application Programmer’s Library Reference Manual. Cray

Research SR-2165, 1996.

[17] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A

Dependence-Based Approach. Morgan Kaufmann Publishers, San Francisco, CA,

2001.

[18] D. Dougherty. Sed & Awk. O’Reilly and Assoc., Sebastopol, CA, 1990.

[19] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters

with flow and context sensitive profiling. In SIGPLAN Conference on Programming

Language Design and Implementation, pages 85–96, New York, NY, USA, 1997.

ACM Press.

[20] T. E. Anderson and E. D. Lazowska. Quartz: a tool for tuning parallel program

performance. In SIGMETRICS ’90: Proceedings of the 1990 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pages 115–125,

New York, NY, USA, 1990. ACM Press.

[21] S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads. SunSoft

Press, Prentice Hall, Upper Saddle River, NJ, 1996.

[22] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E.

Zosel. The High Performance Fortran Handbook. MIT Press, Cambridge, MA,

1994.

[23] The Message Passing Interface Forum. MPI-2: Extensions to the Message

Passing Interface, http://www.mpi-forum.org/docs/docs.html, 1997.

[24] R. W. Numrich and J. Reid. Co-array Fortran for parallel programming. Fortran

Forum, 17(2):1–31, 1998.

[25] The OpenMP Organization. OpenMP: A Proposed Industry Standard API for

Shared Memory Programming, http://www.openmp.org, 1997.

[26] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth limited

problems using one-sided communication and overlap. In Proceedings of the 20th

International Parallel and Distributed Processing Symposium, 2006.

65

[27] C. Bell, W.-Y. Chen, D. Bonachea, and K. Yelick. Evaluating support for global

address space languages on the Cray X1. In Proceedings of the 18th

ACMInternational Conference on Supercomputing, Saint Malo, France, June 2004.

[28] The OpenMP Organization. OpenMP Fortran Application Programming

Interface version 1.1,

http://www.openmp.org, 1999.

[29] The OpenMP Organization. OpenMP Fortran Application Programming

Interface version 2.0,

http://www.openmp.org, 2000.

[30] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha.

Implementation of a portable nested data-parallel language. Journal of Parallel and

Distributed Computing, 21(1):4–14, Apr. 1994.

[31] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI:

The Comple te Reference. MIT Press, Cambridge, MA, 1996.

[32] A. J. Wallcraft. SPMD OpenMP vs MPI for ocean models. Concurrency:

Practice and Experience, 12:1155–1164, 2000.

[33] D. Bonachea. GASNet specification v 1.1. Technical Report UCB/CSD-02-

1207, University of California at Berkeley, 2002.

[34] D. Bonachea. Proposal for extending the UPC memory copy library functions

and supporting extensions to GASNet, v1.0. Technical Report LBNL-56495,

Lawrence Berkeley National, October 2004.

[35] Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. PGHPF –

an optimizing High Performance Fortran compiler for distributed memory machines.

Scientific Programming, 6(1):29–40, 1997.

[36] S. J. D. Bradford L. Chamberlain, Sung-Eun Choi and L. Snyder.

[37] T. Brandes. Compiling data parallel programs to message passing programs for

massively parallel MIMD systems. In Working Conference on Massively Parallel

Programming Models, Berlin, 1993.

[38] T. Brandes. Adaptor: A compilation system for data parallel Fortran programs.

In C. W. Kessler, editor, Automatic Parallelization— New Approaches to Code

Generation, Data Distribution, and Performance Prediction. Vieweg,Wiesbaden,

1994.

[39] P. G. Bridges and A. B. Maccabe. Mpulse: Integrated monitoring and profiling

for large-scale environments. In Proceedings of the Seventh Workshop on

Languages, Compilers, and Run-time Support for Scalable Systems, Houston,TX,

October 2004.

http://www.openmp.org/
http://www.openmp.org/

66

[40] D. Cann and J. Feo. SISAL versus FORTRAN: A comparison using the

Livermore loops. In Proceedings of Supercomputing 1990, pages 626–636, NY,

November 1990.

[41] D. C. Cann. The optimizing SISAL compiler. Technical Report UCRL-MA-

110080, Lawrence Livermore National Laboratory, April 1992.

[42] F. Cantonnet and T. El-Ghazawi. UPC performance and potential: A NPB

experimental study. In Proceedings of Supercomputing 2002, Baltimore, MD, 2002.

[43] F. Cantonnet, T. El-Ghazawi, P. Lorenz, and J. Gaber. Fast address translation

techniques for distributed shared memory compilers. In Proceedings of the 19th

International Parallel and Distributed Processing Symposium, Denver, CO, 2005.

[44] F. Cantonnet, Y. Yao, S. Annareddy, A. S. Mohamed, T. El-Ghazawi, P.

Lorenz, and J. Gaber. Performance monitoring and evaluation of a UPC

implementation on a NUMA architecture. In Proceedings of the 17th International

Parallel and Distributed Processing Symposium, Fort Lauderdale, FL, 2003.

[45] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K.

Warren. Introduction to UPC and language specification. Technical Report CCS-TR-

99-157, IDA Center for Computing Sciences, May 1999.

[46] J. Caubet, J. Gimenez, J. Labarta, L. D. Rose, and J. S. Vetter. A dynamic

tracing mechanism for performance analysis of OpenMP applications. In WOMPAT

’01: Proceedings of the InternationalWorkshop on OpenMP Applications and Tools,

pages 53–67, London, UK, 2001. Springer-Verlag.

[47] C. Coarfa. Portable High Performance and Scalability of Partitioned Global

Address Space Language. Doctor’s Degree thesis, Rice University, Houston, Texas,

Jan. 2007

[48] B. L. Chamberlain, S. J. Deitz, and L. Snyder. A comparative study of the NAS

MG benchmark across parallel languages and architectures. In Proceedings of

Supercomputing 2000, Dallas, November 2000.

[49] D. Chavarr´ıa-Miranda and J. Mellor-Crummey. An evaluation of data-parallel

compiler support for line-sweep applications. In Proceedings of the Eleventh

International Conference on Parallel Architectures and Compilation Techniques,

Charlottesville, VA, Sept. 2002.

[50] D. Chavarr´ıa-Miranda and J. Mellor-Crummey. An evaluation of data-parallel

compiler support for line-sweep applications. Journal of Instruction Level

Parallelism, 5, feb 2003.

[51] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell broadband engine architecture

and its first implementation.

http://www-128.ibm.com/developerworks/power/library/pa-cellperf/, nov 2005.

[52] W. Chen, C. Iancu, and K. Yelick. Communication optimizations for fine-grain

67

UPC applications. In Proceedings of the 14th International Conference of Parallel

Architectures and Compilation Techniques, Saint-Louis,MO, 2005.

[53] W. Chen, A. Krishnamurthy, and K. Yelick. Polynomial-time algorithms for

enforcing sequential consistency in SPMD programs with arrays. In Proceedings of

the 16th International Workshop on Languages and Compilers for Parallel

Computing, number 2958 in LNCS. Springer-Verlag, October 2-4, 2003.

[54] W.-Y. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and K. Yelick. A

performance analysis of the Berkeley UPC compiler. In Proceedings of the 17th

ACM International Conference on Supercomputing, San Francisco, California, June

2003.

[55] I.-H. Chung and J. K. Hollingsworth. Using information from prior runs to

improve automated tuning systems. In Proceedings of Supercomputing 2004,

Pittsburgh, PA, 2004.

[56] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-Array Fortran

Performance and Potential: An NPB Experimental Study. In Proceedings of the 16th

International Workshop on Languages and Compilers for Parallel Computing,

number 2958 in LNCS. Springer-Verlag, October 2-4, 2003.

[57] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. Experiences with Sweep3D

implementations in Co-Array Fortran. In Proceedings of the Los Alamos Computer

Science Institute Fifth Annual Symposium, Santa Fe, NM, Oct. 2004. Distributed on

CD-ROM.

[58] Cray Research, Inc. Application programmer’s library reference manual.

Technical Report SR-2165, Cray Research, Inc., 1994.

[59] A. Darte, D. Chavarr´ıa-Miranda, R. Fowler, and J. Mellor-Crummey.

Generalized multipartitioning for multi-dimensional arrays. In Proceedings of the

International Parallel and Distributed Processing Symposium, Fort Lauderdale, FL,

Apr. 2002.

[60] A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarr´ıa-Miranda.

Generalized multipartitioning of multi-dimensional arrays for parallelizing line-

sweep computations. In Proceedings of the International Parallel and Distributed

Processing Symposium, Fort Lauderdale, FL, Apr. 2002.

[61] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index array flattening through

program transformation. In Proceedings of Supercomputing 1995, San Diego, CA,

December 1995.

