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PARALLEL PROGRAMMING TECHNIQUES BY USING CO-ARRAY 

FORTRAN 

 

Abstract 

 

Co-array Fortran (CAF)  is a small set of extensions to Fortran 90. And also CAF is 

an emerging model for scalable, global address space paralel programming. CAF’s 

global address space programming model simplifies the development of SPMD 

paralel programs by shifting the burden for managing the details of communication 

from developers to compilers. 

 

In this study  I introduce CAF’s  Programming Model, provide it’s technical 

specifications, explain CAF’s memory model and PGAS (Partitioned Global Address 

Space) , make comparsion between two SPMD language CAF and OpenMP.  

 

In case, I select Matrix Multiplication as a problem and wrote Co Array Fortran code 

fort his problem. I ran it on Amazon EC2 Cluster with 16 CPU and CentOS 

operating system. Finally I showed the performance numbers fort his work.   

 

Key words : Co-Array, Fortran, PGAS, SPDM, OpenMP 
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CO-ARRAY FORTRAN İLE PARALEL PROGRAMLAMA TEKNİKLERİ 

 

Özet 

 

Co-array Fortran (CAF) Fortran 90 uzantılarının küçük bir kümesidir. Ve aynı 

zamanda CAF, ölçeklenebilir, global adres alanlı paralel programlama için ortaya 

çıkan bir modeldir. CAF’ın global adres alanlı proramlama modeli compilerlarla 

geliştiricilerin iletişim detaylarını yönetmek için yükü kaydırarak SPDM paralel 

programların geliştirilmesini basitleştirir. 

 

Bu çalışmada CAF’ın programlama modeli tanıtılmış, teknik spesifikasyonları 

sunulmuş, CAF’ın hafıza modeli ve PGAS (Partitioned Global Address Space) 

açıklanarak, iki farklı SPMD dili olan CAF ve OpenMP arasında karşılatırma 

yapılmıştır. 

 

Örnek çalışmada, Co Array Fortran’da matrix çarpımı ele alındı ve yazılan program, 

Amzaon EC2 Cluster 16 CPU platfornunda CentOS işletim sistemi üzerinde 

çalıtırılarak performans değerleri elde edildi. 

 

Anahtar Kelimeler: Co-Array, Fortran, PGAS, SPDM, OpenMP 
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Chapter 1 Introduction 

 

Co-array Fortran (CAF), formerly known as F--, is an extension of Fortran 95/2003 

for parallel processing created by Robert Numrich and John Reid in 1990s. The 

Fortran 2008 standard (ISO/IEC 1539-1:2010) now includes coarrays (spelt without 

hyphen), as decided at the May 2005 meeting of the ISO Fortran Committee; the 

syntax in the Fortran 2008 standard is slightly different from the original CAF 

proposal. 

 

A Co-array Fortran program is interpreted as if it were replicated a number of times 

and all copies were executed asynchronously. Each copy has its own set of data 

objects and is termed an image. The array syntax of Fortran is extended with 

additional trailing subscripts in square brackets to provide a concise representation of 

references to data that is spread across images. 

 

The Co-array Fortran extension has been available for a long time and was 

implemented in some Fortran compilers such as those from Cray (since release 3.1). 

Since the inclusion of coarrays in the Fortran 2008 standard, the number of 

implementation is growing. The first open-source compiler which implemented 

coarrays as specified in the Fortran 2008 standard for Linux architectures is G95. 

 

A group at Rice University is pursuing an alternate vision of coarray extensions for 

the Fortran language. Their perspective is that the Fortran 2008 standards 

committee's design choices were shaped more by the desire to introduce as few 

modifications to the language as possible than to assemble the best set of extensions 

to support parallel programming. They don't believe that the set of extensions agreed 

upon by the committee are the right ones. In their view, both Numrich and Reid's 

original design and the coarray extensions proposed for Fortran 2008, suffer from the 

following shortcomings: 
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 There is no support for processor subsets; for instance, coarrays must be 

allocated over all images. 

 Coarrays must be declared as global variables; one cannot dynamically 

allocate a coarray into a locally scoped variable. 

 The co-array extensions lack any notion of global pointers, which are 

essential for creating and manipulating any kind of linked data structure. 

 Reliance on named critical sections for mutual exclusion hinders scalable 

parallelism by associating mutual exclusion with code regions rather than 

data objects. 

 Fortran 2008's sync images statement doesn't provide a safe synchronization 

space. As a result, synchronization operations in user's code that are pending 

when a library call is made can interfere with synchronization in the library 

call. 

 There are no mechanisms to avoid or tolerate latency when manipulating data 

on remote images. 

 There is no support for collective communication. 

 

To address these shortcomings, Rice University is developing a clean-slate redesign 

of the Co-array Fortran programming model. Rice's new design for Co-array Fortran, 

which they call Co-array Fortran 2.0, is an expressive set of coarray-based extensions 

to Fortran designed to provide a productive parallel programming model. Compared 

to the emerging Fortran 2008, Rice's new coarray-based language extensions include 

some additional features: 

 Process subsets known as teams, which support coarrays, collective 

communication, and relative indexing of process images for pair-wise 

operations, 

 Topologies, which augment teams with a logical communication structure, 

 Dynamic allocation/deallocation of coarrays and other shared data, 

 Local variables within subroutines: declaration and allocation of coarrays 

within the scope of a procedure is critical for library based-code, 

 Team-based coarray allocation and deallocation, 

 Global pointers in support of dynamic data structures, and 
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 Enhanced support for synchronization for fine control over program 

execution, 

 Safe and scalable support for mutual exclusion, including locks and lock sets; 

and 

 Events, which provide a safe space for point-to-point synchronization. 

 

This study is efort on paralel programming  with Co-Array Fortran (CAF). In next 

chapter, I give a brief overview of  Co-Array Fortran, It’s syntax and semantic. In 

chapter 3, I explain Co-Array Fortran Programming Model and  CAF’s Memory 

Model. Also chapter 3 includes Partitioned Global Address Space (PGAS).  Chapter 

4 contains a complete technical specifications. Chapter 5 includes comparison of two 

PGAS languages CAF and OpenMP. And last chapter is all about case study.   
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Chapter 2 A Brief Overview of Co-Array Fortran 

 

Co-Array Fortran, formally called F
--
, is a small set of extensions to Fortran 95 for 

Single Program Multiple Data, SPMD, parallel processing. 

 

Co-Array Fortran is a simple syntactic extension to Fortran 95 that converts it into a 

robust, efficient parallel language. It looks and feels like Fortran and requires Fortran 

programmers to learn only a few new rules. The few new rules are related to two 

fundamental issues that any parallel programming model must resolve, work 

distribution and data distribution. 

 

First, consider work distribution. A single program is replicated a fixed number of 

times, each replication having its own set of data objects. Each replication of the 

program is called an image. Each image executes asynchronously and the normal 

rules of Fortran apply, so the execution path may differ from image to image. The 

programmer determines the actual path for the image with the help of a unique image 

index, by using normal Fortran control constructs and by explicit synchronizations. 

For code between synchronizations, the compiler is free to use all its normal 

optimation techniques, as if only one image is present. 

 

Second, consider data distribution. The co-array extension to the language allows the 

programmer to express data distribution by specifying the relationship among 

memory images in a syntax very much like normal Fortran array syntax. One new 

object, the co-array, is added to the language. For example, 

  

 REAL, DIMENSION (N) [*] :: X,Y 

 X(:) = Y(:) [Q] 

  

declares that each image has two real arrays of size N. If Q has the same value on 

each image, the effect of the assignment statement is that each image copies the array 

Y from image Q and makes a local copy in array X. 
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Array indices in parentheses follow the normal Fortran rules within one memory 

image. Array indices in square brackets provide an equally convenient notation for 

accessing objects across images and follow similar rules. Bounds in square brackets 

in co-array declarations follow the rules of assumed-size arrays since co-arrays are 

always spread over all the images. The programmer uses co-array syntax only where 

it is needed. A reference to a co-array with no square brackets attached to it is a 

reference to the object in the local memory of the executing image. Since most 

references to data objects in a parallel code should be to the local part, co-array 

syntax should appear only in isolated parts of the code. If not, the syntax acts as a 

visual flag to the programmer that too much communication among images may be 

taking place. It also acts as a flag to the compiler to generate code that avoids latency 

whenever possible. 

 

Fortran 90 array syntax, extended to co-arrays, provides a very powerful and concise 

way of expressing remote memory operations. Here are some simple examples: 

  

 X       = Y[PE] ! get from Y[PE] 

 Y[PE]   = X     ! put into Y[PE] 

 Y[:]    = X     ! broadcast X 

 Y[LIST] = X     ! broadcast X over subset of PE's in array LIST 

 Z(:)    = Y[:]  ! collect all Y 

 S=MINVAL(Y[:])  ! min (reduce) all Y 

 B(1:M)[1:N]=S   ! S scalar,promoted to array of shape (1:M,1:N) 

  

Input/output has been a problem with previous SPMD programming models, such as 

MPI, because standard Fortran I/O assumes dedicated single-process access to an 

open file and this constraint is often violated when it is assumed that I/O from each 

image is completely independent. Co-Array Fortran includes only minor extensions 

to Fortran 95 I/O, but all the inconsistencies of earlier programming models have 

been avoided and there is explicit support for parallel I/O. In addition I/O is 

compatible with both process-based and thread-based implementations. 

 

The only other additions to Fortran 95 are several intrinsics. For example: the integer 

function NUM_IMAGES() returns the number of images, the integer function 

THIS_IMAGE() returns this image's index between 1 and NUM_IMAGES(), and the 

subroutine SYNC_ALL() is a global barrier which requires all operations before the 
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call on all images to be completed before any image advances beyond the call. In 

practice it is often sufficient, and faster, to only wait for the relevant images to 

arrive. SYNC_ALL(WAIT=LIST) provides this functionality. 

 

There is also SYNC_TEAM(TEAM=TEAM) and SYNC_TEAM(TEAM=TEAM, 

WAIT=LIST) for cases where only a subset, TEAM, of all images are involved in 

the synchronization. The intrinsics  START_CRITICAL  and END_CRITICAL  

provide a basic critical region capability. It is also possible to write your own 

synchronization routines, using the basic intrinsic SYNC_MEMORY. This routine 

forces the local image to both complete any outstanding co-array writes into ``global'' 

memory and refresh from global memory any local copies of co-array data it might 

be holding (in registers for example). A call to SYNC_MEMORY is rarely required 

in Co-Array Fortran, because there is an implicit call to this routine before and after 

virtually all procedure calls including Co-Array's built in image synchronization 

intrinsics. This allows the programmer to assume that image synchronization implies 

co-array synchronization. 

 

Image and co-array synchronization is at the heart of the typical Co-Array Fortran 

program. For example, here is how to exchange an array with your north and south 

neighbors: 

  

 COMMON/XCTILB4/ B(N,4)[*] 

 SAVE  /XCTILB4/ 

C 

 CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 

 B(:,3) = B(:,1)[IMG_S] 

 B(:,4) = B(:,2)[IMG_N] 

 CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 

  

The first SYNC_ALL waits until the remote B(:,1:2) is ready to be copied, and the 

second waits until it is safe to overwrite the local B(:,1:2). Only nearest neighbors are 

involved in the sync. It is always safe to replace SYNC_ALL(WAIT=LIST) calls 

with global SYNC_ALL() calls, but this will often be significantly slower. In some 

cases, either the preceeding or succeeding synchronization can be avoided. 

Communication load balancing can sometimes be important, but the majority of 

remote co-array access optimization consists of minimizing the frequency of 

synchronization and having synchronization cover the minimum number of images. 

If the program is likely to run on machines without global memory hardware, then 
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array syntax (rather than DO loops) should always be used to express remote 

memory operations and copying co-array's into local temporary buffers well before 

they are required might be appropriate (although the compiler may do this for you). 

 

In data parallel programs, each image is either performing the same operation or is 

idle. For example here is a data parallel fixed order cumulative sum: 

 

 REAL SUM[*] 

     CALL SYNC_ALL( WAIT=1 ) 

     DO IMG= 2,NUM_IMAGES() 

        IF (IMG==THIS_IMAGE()) THEN 

           SUM = SUM + SUM[IMG-1] 

        ENDIF 

        CALL SYNC_ALL( WAIT=IMG ) 

     ENDDO 

 

Having each SYNC_ALL wait on just the active image improves performance, but 

there are still NUM_IMAGES() global sync's. In this case a better alternative is 

probably to minimize synchronization by avoiding the data parallel overhead 

entirely: 

 

 REAL SUM[*] 
        ME = THIS_IMAGE() 

        IF (ME.GT.1) THEN 

          CALL SYNC_TEAM( TEAM=(/ME-1,ME/) ) 

          SUM = SUM + SUM[ME-1] 

        ENDIF 

        IF (ME.LT.NUM_IMAGES()) THEN 

         CALL SYNC_TEAM( TEAM=(/ME,ME+1/) )  

        ENDIF 

 

Now each image is involved in at most two sync's, and only with the images just 

before and just after it in image order. Note that the first SYNC_TEAM call on one 

image is matched by the second SYNC_TEAM call on the previous image. This 

illustrates the power of the Co-Array Fortran synchronization intrinsics. They can 

improve the performance of data parallel algorithms, or provide implicit program 

execution control as an alternative to the data parallel approach. 

 

Several non-trivial Co-Array Fortran programs are included as examples with the 

caf2omp translator, and with the Cray T3E intrinsics. 
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Chapter 3 Co-Array Fortran Programming Model 

 

Co-array Fortran supports SPMD parallel programming through a small set of 

language extensions to Fortran 95. An executing CAF program consists of a static 

collection of asynchronous process images. Similar to MPI, CAF programs explicitly 

distribute data and computation. However, CAF belongs to the family of Global 

Address Space Programming languages and provides the abstraction of globally 

accessible memory for both distributed and shared memory architectures [4]. 

 

CAF supports distributed data using a natural extension to Fortran 95 syntax. For 

example, the declaration presented and graphically represented in Figure 3.1 creates 

a shared co-array a with 10 × 20 integers local to each process image [5]. 

 

Figure 3.1: Graphical representation of co-array 

 

 

Dimensions inside square brackets are called co-dimensions. Co-arrays may be 

declared for user-defined types as well as primitive types. A local section of a co-

array may be a singleton instance of a type rather than an array of type instances. Co-

arrays can be static objects, such as COMMON or SAVE variables, or can be 

declared as ALLOCATABLE variables and allocated and deallocated dynamically 

during program execution, using collective calls. Co-arrays of user-defined types 

may contain allocatable components, which can be allocated at runtime 
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independently by each process image. Finally, co-array objects can be passed as 

procedure arguments [4]. 

 

Instead of explicitly coding message exchanges to access data belonging to other 

processes, a CAF program can directly reference non-local values using an extension 

to the Fortran 95 syntax for subscripted references. For instance, process p can read 

the first column of co-array a from process p+1 referencing a(:,1)[p+1]. 

 

CAF has several synchronization primitives. sync all implements a synchronous 

barrier across all images; sync team is used for barrier-style synchronization among 

dynamically-formed teams of two or more processes; and sync memory implements 

a local memory fence and ensures the consistency of a process image’s memory by 

completing all of the outstanding communication requests issued by this image. 

 

Since both remote data access and synchronization are language primitives in CAF, 

communication and synchronization are amenable to compiler-based optimization. In 

contrast, communication in MPI programs is expressed in a more detailed form, 

which makes effective compiler transformations much more difficult [7]. 

 

3.1 PGAS    

 

As has been discussed, it is currently popular for computers to have a ’hybrid’  

architecture where processing nodes are connected in a distributed memory 

architecture, but contain multiple cores which share memory. This trend is reflected 

in software through the increasing popularity of Partitioned Global Address Space 

(PGAS) languages. 

 

These languages combine features of both message passing languages, as used with 

distributed memory architectures, and shared memory languages. 

 

As the name suggests, PGAS languages feature a global address space that is 

partitioned logically between processors. As a result each processor has its own local 

portion of the memory space, similar to a Distributed Memory paradigm as 

implemented in MPI programs. 
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However unlike MPI programs processes need not communicate via messages; they 

can directly access each other’s data via the global address space. A schematic  

illustration of the difference between the PGAS paradigm and a Distributed Memory 

paradigm is shown in Figure 3.2. 

 

Figure 3.2: The PGAS paradigm and the Distributed Memory paradigm 

 

 

A key difference between the distributed memory paradigm and the PGAS paradigm 

is in the communication between processors. The global address space of the PGAS 

paradigm allows single-sided communications. This means that the target processor,  

from which data is being read or to which data is being written, does not need to be 

interrupted during the communication. 

 

The PGAS and shared memory paradigms both share the feature of simple data 

referencing between processors as they both use a global address space. The 

partitioning of the global address space is what distinguishes the PGAS paradigm 

from the shared memory paradigm and allows for better scaling on distributed 

memory machines [6]. 

 

Thus it can be seen that the global address space of the PGAS paradigm allows for 

positive features of both the shared memory paradigm and the distributed memory 

paradigm. Data accesses remain simple as in the shared memory paradigm, but 
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scaling on distributed memory machines is possible by making a distinction between 

accesses local and remote data. 

 

However, one of the challenges of programming in any of the languages that 

implement the PGAS paradigm is that because the Remote Memory Access (RMA) 

calls are single sided there is no synchronisation implied by communications. This 

means that synchronisation must be explicitly declared by the programmer. Care 

must be taken with synchronisation to ensure that difficult to debug errors such as 

race conditions are avoided. 

 

Another constraint imposed by the PGAS paradigm is that data structures that are 

shared between threads must have the same size on each thread. This ensures that the 

location of data on a thread is known by another thread when it tries to access that 

data remotely. 

 

PGAS programming languages can get around this using pointers or derived data 

types. 

 

In a derived data type data size can be changed internally, hiding differently sized 

data from the compiler [6]. 

 

3.1.1 Why PGAS? 

 

The PGAS is the best of both worlds. This parallel programming model combined 

the performance and data locality (partitioning) features of distributed memory with 

the programmability and data referencing simplicity of a shared-memory (global 

address space) model. The PGAS programming model aims to achieve these 

characteristics by providing: 

1. A local-view programming style (which differentiates between local and 

remote data partitions). 

2. A global address space (which is directly accessible by any process). 

3. Compiler-introduced communication to resolve remote references. 

4. One-sided communication for improved inter-process performance. 

5. Support for distributed data structures. 
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In this model variables and arrays can be either shared or local. Each process has 

private memory for local data items and shared memory for globally shared data 

values. While the shared-memory is partitioned among the cooperating processes 

(each process will contribute memory to the shared global memory), a process can 

directly access any data item within the global address space with a single address. 

Languages of PGAS Currently there are three PGAS programming languages that are 

becoming commonplace on modern computing systems: 

1. Unified Parallel C (UPC) 

2. Co-Array Fortran (CAF) 

3. Titanium  

 

3.2 Memory Models 

 

There are 2 models for memory usage: 

 Shared Memory Model. 

 Distributed Memory Model 

 

3.2.1 Shared Memory Model 

 

The shared-memory programming model typically exploits a shared memory system, 

where any memory location is directly accessible by any of the computing processes 

(i.e. there is a single global address space). This programming model is similar in 

some respects to the sequential single-processor programming model with the 

addition of new constructs for synchronizing multiple access to shared variables and 

memory locations[8]. 

 

3.2.2 Distributed Memory Model 

 

The distributed-memory programming model exploits a distributed-memory system 

where each processor maintains its own local memory and has no direct knowledge 

about another processor’s memory (a “share nothing” approach). For data to be 

shared, it must be passed from one processor to another as a message. 
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3.3 CAF Memory Model 

 

The CAF is a simple extension to Fortran 90 that allows programmers to write 

efficient parallel applications using a Fortran-like syntax. It also assumes the SPMD 

programming model with replicated data objects called co-arrays. Co-array objects 

are visible to all processors and each processor can read and write data belonging to 

any other processor by setting the index of the co-dimension to the appropriate value. 

The CAF creates multiple images of the same program where text and data are 

replicated in each image. it marks some variables with co-dimensions that behave 

like normal dimensions and express a logical problem decomposition. It also allows 

one sided data exchange between co-arrays using a Fortran like syntax [9].  

 

On the other hand, CAF requires the underlying run-time system to map the logical 

problem decomposition onto specific hardware.  

 

CAF Syntax: The CAF syntax is a simple parallel extension to normal Fortran 

syntax, where it uses normal rounded brackets () to point data in local memory, and 

square brackets [] to point data in remote memory [10]. 

 

CAF Execution Model: The number of images is fixed and each image has its own 

index, retrievable at run-time. Each image executes the same program independently 

of the others and works on its own local data. An image moves remote data to local 

data through explicit CAF syntax while an “object” has the same name in each 

image. The programmer inserts explicit synchronization and branching as needed 

[10]. 

 

CAF Memory Model: There are 4 memory models: [11, 12, 13] 

1.  One to one model 

2.  Many to one model 

3.  One to many model 

4.  Many to many model 
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Figure 3.3: One to one memory model 

 
 

 

 

Figure 3.4: Many to one memory model 
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Figure 3.5: One to many memory model 

 

 

 

 

Figure 3.6: Many to many memory model 
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Chapter 4 Technical Specification  

 

4.1 Program Images  

 

A Co-Array Fortran program executes as if it were replicated a number of times, the 

number of replications remaining fixed during execution of the program. Each copy 

is called an image and each image executes asynchronously. A particular 

implementation of Co-Array Fortran may permit the number of images to be chosen 

at compile time, at link time, or at execute time. The number of images may be the 

same as the number of physical processors, or it may be more, or it may be less. The 

programmer may retrieve the number of images at run time by invoking the intrinsic 

function num_images(). Images are indexed starting from one and the programmer 

may retrieve the index of the invoking image through the intrinsic function 

this_image(). The programmer controls the execution sequence in each image 

through explicit use of Fortran 95 control constructs and through explicit use of 

intrinsic synchronization procedures.  

 

4.2 Specifying Data Objects 

 

Each image has its own set of data objects, all of which may be accessed in the 

normal Fortran way. Some objects are declared with co-dimensions in square 

brackets immediately following dimensions in parentheses or in place of them, for 

example: 

 

REAL, DIMENSION(20)[20,*]  :: A 

REAL  :: C[*], D[*] 

CHARACTER :: B(20)[20,0:*] 

INTEGER :: IB(10)[*] 

TYPE(INTERVAL) :: S 

DIMENSION :: S[20,*] 

 

Unless the array is allocatable (Chapter 4.6), the form for the dimensions in square 

brackets is the same as that for the dimensions in parentheses for an assumed-size 
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array. The set of objects on all the images is itself an array, called a co-array, which 

can be addressed with array syntax using subscripts in square brackets following any 

subscripts in parentheses (round brackets), for example: 

A(5)[3,7] = IB(5)[3] 

 D[3] = C 

 A(:)[2,3] = C[1] 

 

We call any object whose designator includes square brackets a co-array subobject; it 

may be a co-array element, a co-array section, or a co-array structure component. 

The subscripts in square brackets are mapped to images in the same way as Fortran 

array subscripts in parentheses are mapped to memory locations in a Fortran 95 

program. The subscripts within an array that correspond to data for the current image 

are available from the intrinsic this_image with the co-array name as its argument. 

 

The rank, extents, size, and shape of a co-array or co-array subobject are given as for 

Fortran 95 except that we include both the data in parentheses and the data in square 

brackets. The local rank, local extents, local size, and local shape are given by 

ignoring the data in square brackets. The co-rank, co-extents, co-size, and co-shape 

are given from the data in square brackets. For example, given the co-array declared 

thus 

  

 REAL, DIMENSION(10,20)[20,5,*]  :: A 

  

a(:,:)[:,:,1:15] has rank 5, local rank 2, co-rank 3, shape (/10,20,20,5,15/), local shape 

(/10,20/), and co-shape (/20,5,15/). 

 

The co-size of a co-array is always equal to the number of images. If the co-rank is 

one, the co-array has a co-extent equal to the number of images and it has co-shape 

(/num_images()/). If the co-rank is greater than one, the co-array has no final extent, 

no final upper bound, and no co-shape (and hence no shape). 

 

The local rank and the co-rank are each limited to seven. The syntax automatically 

ensures that these are the same on all images. The rank of a co-array subobject (sum 

of local rank and co-rank) must not exceed seven. 

 

For a co-array subobject, square brackets may never precede parentheses. 
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A co-array must have the same bounds (and hence the same extents) on all images.  

 

For example, the subroutine 

 SUBROUTINE SOLVE(N,A,B) 

 INTEGER :: N 

 REAL :: A(N)[*], B(N) 

 

must not be called on one image with n having the value 1000 and on another with n 

having the value 1001. 

 

A co-array may be allocatable: 

  

 SUBROUTINE SOLVE(N,A,B) 

 INTEGER :: N 

 REAL :: A(N)[*], B(N) 

 REAL,ALLOCATABLE :: WORK(:)[:]  

 

Allocatable arrays are discussed in Chapter 4.6. 

 

There is no mechanism for assumed-co-shape arrays. A co-array is not permitted to 

be a pointer. Automatic co-arrays are not permitted; for example, the co-array work 

in the above code fragment is not permitted to be declared thus 

  

 SUBROUTINE SOLVE(N,A,B) 

 INTEGER :: N 

 REAL :: A(N)[*], B(N) 

 REAL :: WORK(N)[*]  ! NOT PERMITTED 

  

A co-array is not permitted to be a constant. 

 

A DATA statement initializes only local data. Therefore, co-array subobjects are not 

permitted in DATA statements. For example: 

 

REAL :: A(10)[*]   

DATA A(1)    /0.0/ ! PERMITTED 

DATA A(1)[2] /0.0/ ! NOT PERMITTED 

 

Unless it is allocatable or a dummy argument, a co-array always has the SAVE 

attribute. 

 

The image indices of a co-array always form a sequence, without any gaps, 

commencing at one. This is true for any lower bounds. For example, for the array 

declared as 
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 REAL :: A(10,20)[20,0:5,*]   

  

A(:,:)[1,0,1] refers to the rank-two array a(:,:) in image one. 

 

Co-arrays may be of derived type but components of derived types are not permitted 

to be co-arrays. 

 

4.3 Accessing Data Objects 

 

Each object exists on every image, whether or not it is a co-array. In an expression, a 

reference without square brackets is always a reference to the object on the invoking 

image. For example, size(b) for co-array b declared as 

  

 CHARACTER :: B(20)[20,0:*] 

  

returns its local size, which is 20. 

 

The subscript order value of the co-subscript list must never exceed the number of 

images. For example, if there are 16 images and the the co-array a is declared thus 

  

 REAL :: A(10)[5,*] 

  

a(:)[1,4] is valid since it has co-subscript order value 16, but a(:)[2,4] is invalid. 

 

Two arrays conform if they have the same shape. Co-array subobjects may be used in 

intrinsic operations and assignments in the usual way, for example, 

 

B(:,1:M) = A[:,1:M]*C(:)[1:M] ! ALL HAVE RANK TWO. 

B(J,:) = A[:,K]               ! BOTH HAVE RANK ONE. 

C[1:P:3] = D(1:P:3)[2]        ! BOTH HAVE RANK ONE. 

  

Square brackets attached to objects in an expression or an assignment alert the reader 

to communication between images. Unless square brackets appear explicitly, all 

expressions and assignments refer to the invoking image. Communication may take 

place, however, within a procedure that is referenced, which might be a defined 

operation or assignment. 

 

The rank of the result of an intrinsic operation is derived from the ranks of its 

operands by the usual rules, disregarding the distinction between local rank and co-
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rank. The local rank of the result is equal to the rank. The co-rank is zero. Similarly, 

a parenthesized co-array subobject has co-rank zero.  

 

For example 2.0*d(1:p:3)[2] and (d(1:p:3)[2]) each have rank 1, local rank 1, and co-

rank 0. 

 

4.4 Procedures 

 

A co-array subobject is permitted only in intrinsic operations, intrinsic assignments, 

and input/output lists. 

 

If a dummy argument has co-rank zero, the value of a co-array subobject may be 

passed by using parentheses to make an expression, for example, 

  

 C(1:P:2) = SIN( (D[1:P:2]) ) 

  

If a dummy argument has nonzero co-rank, the co-array properties are defined afresh 

and are completely independent of those of the actual argument. The interface must 

be explicit. The actual argument must be the name of a co-array or a subobject of a 

co-array without any square brackets, vector-valued subscripts, or pointer component 

selection; any subscript expressions must have the same value on all images. If the 

dummy argument has nonzero local rank and its local shape is not assumed, the 

actual argument shall not be an array section, involve component selection, be an 

assumed-shape array, or be a subobject of an assumed-shape array. 

 

A function result is not permitted to be a co-array. 

 

A pure or elemental procedure is not permitted to contain any Co-Array Fortran 

extensions. 

 

The rules for resolving generic procedure references remain unchanged. 

 

 



21 

 

4.5 Sequence Association 

 

COMMON and EQUIVALENCE statements are permitted for co-arrays and specify 

how the storage is arranged on each image (the same for every one). Therefore, co-

array subobjects are not permitted in an EQUIVALENCE statement. For example 

  

EQUIVALENCE (A[10],B[7]) ! NOT ALLOWED(COMPILE-TIME CONSTRAINT) 

 

is not permitted. Appearing in a COMMON and EQUIVALENCE statement has no 

effect on whether an object is a co-array; it is a co-array only if declared with square 

brackets. An EQUIVALENCE statement is not permitted to associate a co-array with 

an object that is not a co-array. For example 

  

 INTEGER :: A,B[*] 

 EQUIVALENCE (A,B) ! NOT ALLOWED (COMPILE-TIME CONSTRAINT) 

  

is not permitted. A COMMON block that contains a co-array always has the SAVE 

attribute. Which objects in the COMMON block are co-arrays may vary between 

scoping units. Since blank COMMON may vary in size between scoping units, co-

arrays are not permitted in blank COMMON. 

 

4.6 Allocatable Arrays 

 

A co-array may be allocatable. The ALLOCATE statement is extended so that the 

co-extents can be specified, for example, 

  

 REAL, ALLOCATABLE :: A(:)[:], S[:,:] 

 : 

 ALLOCATE ( ARRAY(10)[*], S[34,*] ) 

  

The upper bound for the final co-dimension must always be given as an asterisk and 

values of all the other bounds are required to be the same on all images. For example, 

the following are not permitted 

 

ALLOCATE(A(NUM_IMAGES()))    ! NOT ALLOWED (COMPILE-TIME CONSTRAINT) 

ALLOCATE(A(THIS_IMAGE())[*]) ! NOT ALLOWED (RUN-TIME CONSTRAINT) 

 

There is implicit synchronization of all images in association with each ALLOCATE 

statement that involves one or more co-arrays. Images do not commence executing 

subsequent statements until all images finish execution of an ALLOCATE statement 

for the same set of co-arrays. Similarly, for DEALLOCATE, all images delay 
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making the deallocations until they are all about to execute a DEALLOCATE 

statement for the same set of co-arrays. 

 

An allocatable co-array without the SAVE attribute must not have the status of 

currently allocated if it goes out of scope when a procedure is exited by execution of 

a RETURN or END statement. 

 

When an image executes an allocate statement, no communication is involved apart 

from any required for synchronization. The image allocates the local part and records 

how the corresponding parts on other images are to be addressed. The compiler, 

except perhaps in debug mode, is not required to enforce the rule that the bounds are 

the same on all images. Nor is the compiler responsible for detecting or resolving 

deadlock problems. For allocation of a co-array that is local to a recursive procedure, 

each image must descend to the same level of recursion or deadlock may occur. 

 

4.7 Array Pointers 

 

A co-array is not permitted to be a pointer. 

 

A co-array may be of a derived type with pointer components. For example, if p is a 

pointer component, z[i]%p is a reference to the target of component p of z on image 

i. To avoid references with co-array syntax to data that is not in a co-array, we limit 

each pointer component of a co-array to the behaviour of an allocatable component 

of a co-array: 

1. A pointer component of a co-array is not permitted on the left of a pointer 

assignment statement (compile-time constraint), 

2. A pointer component of a co-array is not permitted as an actual argument that 

corresponds to a pointer dummy argument (compile-time constraint),  

3. If an actual argument of a type with a pointer component is part of a co-array 

and is associated with a dummy argument that is not a co-array, the pointer 

association status of the pointer component must not be altered during 

execution of the procedure (this is not a compile-time constraint). 
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To avoid hidden references to co-arrays, the target in a pointer assignment statement 

is not permitted to be any part of a co-array. For example, 

  

 Q => Z[I]%P ! NOT ALLOWED (COMPILE-TIME CONSTRAINT) 

is not permitted. Intrinsic assignments are not permitted for co-array subobjects of a 

derived type that has a pointer component, since they would involve a disallowed 

pointer assignment for the component: 

  

 Z[I] = Z ! NOT ALLOWED IF Z HAS A POINTER 

 Z = Z[I] ! COMPONENT (COMPILE-TIME CONSTRAINT) 

  

Similarly, it is legal to allocate a co-array of a derived type that has pointer 

components, but it is illegal to allocate one of those pointer components on another 

image: 

 

TYPE(SOMETHING), ALLOCATABLE ::  T[:] 

... 

ALLOCATE(T[*])          !  ALLOWED 

ALLOCATE(T%PTR(N))      !  ALLOWED 

ALLOCATE(T[Q]%PTR(N))   !  NOT ALLOWED (COMPILE-TIME CONSTRAINT) 

 

4.8 Execution Control 

 

Most of the time, each image executes on its own as a Fortran 95 program without 

regard to the execution of other images. It is the programmer's responsibility to 

ensure that whenever an image alters co-array data, no other image might still need 

the old value. Also, that whenever an image accesses co-array data, it is not an old 

value that needs to be updated by another image. The programmer uses invocations 

of the intrinsic synchronization procedures to do this, and the programmer should 

make no assumptions about the execution timing on different images. This obligation 

on the programmer provides the compiler with scope for optimization. When 

constructing code for execution on an image, it may assume that the image is the 

only image in execution until the next invocation of one of the intrinsic 

synchronization procedures and thus it may use all the optimization techniques 

available to a standard Fortran 95 compiler. 

 

In particular, if the compiler employs temporary memory such as cache or registers 

(or even packets in transit between images) to hold co-array data, it must copy any 

such data it has defined to memory that can be accessed by another image to make it 
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visible to it. Also, if another image changes the co-array data, the executing image 

must recover the data from global memory to the temporary memory it is using. The 

intrinsic procedure sync_memory is provided for both purposes. It is concerned only 

with data held in temporary memory on the executing image for co-arrays in the 

local scope. Given this fundamental intrinsic procedure, the other synchronization 

procedures can be programmed in Co-Array Fortran, but the intrinsic versions, which 

we describe next, are likely to be more efficient. In addition, the programmer may 

use it to express customized synchronization operations in Co-Array Fortran. 

 

If data calculated on one image are to be accessed on another, the first image must 

call sync_memory after the calculation is complete and the second must call 

sync_memory before accessing the data. Synchronization is needed to ensure that 

sync_memory is called on the first before sync_memory is called on the second. 

 

The subroutine sync_team provides synchronization for a team of images. The 

subroutine sync_all (see Chapter 4.10) provides a shortened call for the important 

case where the team contains all the images. Each invocation of sync_team or 

sync_all has the effect of sync_memory. The subroutine sync_all is not discussed 

further in this section. 

 

For each invocation of sync_team on one image of a team, there shall be a 

corresponding invocation of sync_team on every other image of the team. The n-th 

invocation for the team on one image corresponds to the n-th invocation for the team 

on each other image of the team, n=1,2,... . The team is specified in an obligatory 

argument team. 

 

The subroutine also has an optional argument wait. If this argument is absent from a 

call on one image it must be absent from all the corresponding calls on other images 

of the team. If wait is absent, each image of the team waits for all the other images of 

the team to make corresponding calls. If wait is present, the image is required to wait 

only for the images specified in wait to make corresponding calls. 

 

Teams are permitted to overlap, but the following rule is needed to avoid any 

possibility of deadlock. If a call for one team is made ahead of a call for another team 



25 

 

on a single image, the corresponding calls shall be in the same order on all images in 

common to the two teams. 

 

The intrinsic sync_file plays a similar role for file data to that of sync_memory for 

co-array data. Because of the high overheads associated with file operations,  

sync_team does not have the effect ofsync_file. If data written by one image to a file 

is to be read by another image without closing the connection and re-opening it on 

the other image, calls of sync_file on both images are needed (details in Chapter 4.9). 

 

To avoid the need for the programmer to place invocations of sync_memory around 

many procedure invocations, these are implicitly placed around any procedure 

invocation that might involve any reference to sync_memory. Formally, we define a 

caf procedure as 

1. An external procedure; 

2. A dummy procedure; 

3. A module procedure that is not in the same module; 

4. Sync_all, sync_team, sync_file, start_critical, end_critical; or 

5. A procedure whose scoping unit contains an invocation of sync_memory or a 

caf procedure reference. 

 

Invocations of sync_memory are implicitly placed around every caf procedure 

reference. 

 

Exceptionally, it may be necessary to limit execution of a piece of code to one image 

at a time. Such code is called a critical section. We provide the subroutine 

start_critical to mark the commencement of a critical region and the subroutine 

end_critical to mark its completion. Both have the effect of sync_memory. Each 

image maintains an integer called its critical count. Initially, all these counts are zero. 

On entry to start_critical, the image waits for the system to give it permission to 

continue, which will only happen when all other images have zero critical counts. 

The image then increments its critical count by one and returns. Having these counts 

permits nesting of critical regions. On entry to end_critical, the image decrements its 

critical count by one and returns. 
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The effect of a STOP statement is to cause all images to cease execution. If a delay is 

required until other images have completed execution, a synchronization statement 

should be employed. 

 

4.9 Input / Output 

 

Most of the time, each image executes its own read and write statements without 

regard for the execution of other images. However, Fortran 95 input and output 

processing cannot be used from more than one image without restrictions unless the 

images reference distinct file systems. Co-Array Fortran assumes that all images 

reference the same file system, but it avoids the problems that this can cause by 

specifying a single set of I/O units shared by all images and by extending the file 

connection statements to identify which images have access to the unit. 

 

It is possible for several images to be connected on the same unit for direct-access 

input/output. The intrinsic sync_file may be used to ensure that any changed records 

in buffers that the image is using are copied to the file itself or to a replication of the 

file that other images access. This intrinsic plays the same role for I/O buffers as the 

intrinsic sync_memory does for temporary copies of co-array data. Execution of 

sync_file also has the effect of requiring the reloading of I/O buffers in case the file 

has been altered by another image. Because of the overheads of I/O, sync_file applies 

to a single file. 

 

It is possible for several images to to be connected on the same unit for sequential 

output. The processor shall ensure that while one image is transfering the data of a 

record to the file, no other image transfers data to the file. Thus, each record in an 

external file arises from a single image. The processor is permitted to hold the data in 

a buffer and transfer several whole records on execution of sync_file. 

 

The I/O keyword TEAM is used to specify an integer rank-one array, connect_team, 

for the images that are associated with the given unit. All elements of connect_team 

shall have values between 1 andnum_images() and there shall be no repeated values. 

One element shall have the value this_image(). The default connect_team is 

(/this_image()/). 
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The keyword TEAM is a connection specifier for the OPEN statement. All images 

in connect_team, and no others, shall invoke OPEN with an identical connection-

spec-list. There is an implied call tosync_team with the single argument 

connect_team before and after the OPEN statement. The OPEN statement connects 

the file on the invoking images only, and the unit becomes unavailable on all other 

images. If the OPEN statement is associated with a processor dependent file, the file 

is the same for all images in connect_team. If connect_team contains more than one 

image, the OPEN shall haveACCESS=DIRECT or ACTION=WRITE. 

 

An OPEN on a unit already connected to a file must have the same connect_team as 

currently in effect. 

 

A file shall not be connected to more than one unit, even if the connect_teams for the 

units have no images in common. 

 

Pre-connected units that allow sequential read shall be accessible on the first image 

only. All other pre-connected units have a connect_team containing all the images. 

 

CLOSE has a TEAM= specifier. If the unit exists and is connected on more than one 

image, the CLOSE statement must have the same connect_team as currently in 

effect. There is an implied call tosync_file for the unit before CLOSE. There are 

implied calls to sync_team with single argument connect_team before and after the 

implied sync_file and before and after the CLOSE. 

 

BACKSPACE, REWIND, and ENDFILE have a TEAM= specifier. If the unit exists 

and is connected on at least one image, the file positioning statement must have the 

same connect_team as currently in effect. There is an implied call to sync_file for the 

unit before the file positioning statement. There are implied calls to sync_team with 

single argument connect_team before and after the impliedsync_file and before and 

after the file positioning statement. 
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4.10 Intrinsic Procedures 

 

Co-Array Fortran adds the following intrinsic procedures. Only num_images, 

log2_images, and rem_images are permitted in specification expressions. None are 

permitted in initialization expressions. We use italic square brackets, [ ], to indicate 

optional arguments. 

 

end_critical() is a subroutine for limiting parallel execution. Each image holds an 

integer called its critical count. On entry, the count for the image shall be positive. 

The subroutine decrements this count by one. end_critical has the effect of 

sync_memory. 

 

log2_images() returns the base-2 logarithm of the number of images, truncated to an 

integer. It is an inquiry function whose result is a scalar of type default integer. 

 

num_images() returns the number of images. It is an inquiry function whose result is 

a scalar of type default integer. 

 

rem_images() returns mod(num_images(),2**log2_images()). It is an inquiry 

function whose result is a scalar of type default integer. 

 

start_critical() is a subroutine for limiting parallel execution. Each image holds an 

integer called its critical count. Initially all these counts are zero. The image waits for 

the system to give it permission to continue, which will only happen when all other 

images have zero critical counts. The image then increments its critical count by one 

and returns. start_critical has the effect ofsync_memory. 

 

sync_all([wait]) is a subroutine that synchronizes all images. sync_all() is treated as 

sync_team(all) and sync_all(wait) is treated as sync_team(all,wait), where all has the 

value(/ (I,I=1,num_images()) /). 

 

sync_all([wait]) has the effect of sync_memory. 
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sync_file(unit) is a subroutine for marking the progress of input-output on a unit. unit 

is an INTENT(IN) scalar argument of type integer and specifies the unit.  

 

The subroutine affects only the data for the file connected to the unit. If the unit is 

not connected on this image or does not exist, the subroutine has no effect. Before 

return from the subroutine, any file records that are held by the image in temporary 

storage and for which WRITE statements have been executed since the previous call 

of sync_file on the image (or since execution of OPEN in the case of the first 

sync_file call) shall be placed in the file itself or a replication of the file that other 

images access. The first subsequent access by the image to file data in temporary 

storage shall be preceded by data recovery from the file itself or its replication. If the 

unit is connected for sequential access, the previous WRITE statement shall have 

been for advancing input/output. 

 

sync_team(team [,wait]) is a subroutine that synchronizes images. team is an 

INTENT(IN) argument that is of type integer and is scalar or of rank one. The scalar 

case is treated as if the argument were the array (/this_image(),team/); in this case, 

team must not have the value this_image(). All elements of team shall have values in 

the range 1<=team(i)<=num_images() and there shall be no repeated values. One 

element of team shall have the value this_image(). wait is an optional INTENT(IN) 

argument that is of type integer and is scalar or of rank one. Each element, if any, of  

wait shall have a value equal to that of an element of team. The scalar case is treated 

as if the argument were the array (/wait/). 

 

The argument team specifies a team of images that includes the invoking image. For 

each invocation of sync_team on one image, there shall be a corresponding 

invocation of sync_team for the same team on every other image of the team. The n-

th invocation for the team on one image corresponds to the n-th invocation for the 

team on each other image of the team, n=1, 2, ... . If a call for one team is made 

ahead of a call for another team on a single image, the corresponding calls shall be in 

the same order on all images in common to the two teams. 

 

If wait is absent on one image it must be absent in all the corresponding calls on the 

other images of the team. In this case, wait is treated as if it were equal to team and 
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all images of the team wait until all other images of the team are executing 

corresponding calls. If wait is present, the image waits for all the images specifed by 

wait to execute corresponding calls. 

 

sync_team(team[,wait]) has the effect of sync_memory. 

 

sync_memory() is a subroutine for marking the progress of the execution sequence. 

Before return from the subroutine, any co-array data that is accessible in the scoping 

unit of the invocation and is held by the image in temporary storage and has been 

defined there shall be placed in the storage that other images access. The first 

subsequent access by the image to co-array data in this temporary storage shall be 

preceded by data recovery from the storage that other images access. 

 

this_image([array[,dim]]) returns the index of the invoking image, or the set of co-

subscripts of array that denotes data on the invoking image. The type of the result is 

always default integer. There are four cases: 

 

 Case (i). If array is absent, the result is a scalar with value equal to the index of 

the invoking image. It is in the range 1, 2, ..., num_images(). 

 Case (ii). If array is present with co-rank 1 and dim is absent, the result is a 

scalar with value equal to co-subscript of the element of array that resides on 

the invoking image. 

 Case (iii). If array is present with co-rank greater than 1 and dim is absent, the 

result is an array of size equal to the co-rank of array. Element k of the result 

has value equal to co-subscript k of the element of array that resides on the 

invoking image. 

 Case (iv). If array and dim are present, the result is a scalar with value equal to 

co-subscript dim of the element of array that resides on the invoking image. 
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Chapter 5 A Comparsion of Co-Array Fortran and OpenMP 

Fortran  

5.1 OpenMP Fortran 

OpenMP Fortran is a set of compiler directives that provide a high level interface to 

threads in Fortran, with both thread-local and thread-shared memory. Most compilers 

are now complient with version 1.1 of the specification [28], which will be discussed 

here unless otherwise noted. Version 2.0 [29] was released in November 2000 but is 

not yet widely available. OpenMP can also be used for loop-level directive based 

parallelization, but in SPMD-mode N threads are spawned as soon as the program 

starts and exist for the duration of the run. The threads act like Co-Array images (or 

MPI processes), with some memory private to a single thread and other memory 

shared by all threads. Variables in shared memory play the role of co-arrays in Co-

Array Fortran, i.e. if two threads need to “communicate” they do so via variables in 

shared memory. Local non-saved variables are thread private, and all other variables 

are shared by default. The directive !$OMP THREADPRIVATE can make a named 

common private to each thread. 

 

Threaded I/O is well understood in C [21], and many of the same issues arise with 

OpenMP Fortran I/O. A single process necessarily has one set of I/O files and 

pointers. This means that Fortran’s single process model of I/O is appropriate. I/O is 

“thread safe” if multiple threads can be doing I/O (i.e., making calls to I/O library 

routines) at the same time. OpenMP Fortran requires thread safety for I/O to distinct 

unit numbers (and therefore to distinct files), but not to the same I/O unit number. A 

SPMD program that writes to the same file from several threads will have to put all 

such I/O operations in critical regions. It is therefore not possible in OpenMP to 

perform parallel I/O to a single file. 

 

The integer function OMP_GET_NUM_THREADS() returns the number of threads,  

the integer function OMP_GET_THREAD_NUM() returns this thread’s index  
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etween 0 and OMP_GET_NUM_THREADS()-1. The compiler directive !$OMP 

BARRIER is a global barrier which requires all operations before the barrier on all 

threads to be completed before any thread advances beyond the call. The directives 

!$OMP CRITICAL and !$OMP END CRITICAL provide a critical region capability, 

with more flexiblity than that in Co-Array Fortran, and in addition there are intrinsic 

routines for shared locks that can be used for the fine grain synchronization typical of 

threaded programs [21]. The directives !$OMP MASTER and !$OMP END 

MASTER provide a region that is executed by the master thread only, !$OMP 

SINGLE and !$OMP END SINGLE identify a region executed by a single thread. 

Note that all directive defined regions must start and end in the same lexical scope. It 

is possible to write your own synchronization routines, using the basic directive 

!$OMP FLUSH. This routine forces the thread to both complete any outstanding  

writes into memory and refresh from memory any local copies of data it might be 

holding (in registers for example). It only applies to “thread visible” variables in the 

local scope, and can optionally include a list of exactly which variables it should be 

applied to. BARRIER, CRITICAL, and END CRITICAL all imply FLUSH, but  

unlike Co-Array Fortran it is not automatically applied around subroutine calls. This 

means that the programmer has to be very careful about making assumptions that 

thread visible variables are current. Any user-written synchronization routine should 

be preceeded by a FLUSH directive every time it is called. 

 

A subset of OpenMP’s loop-level directives, that automate the allocation of loop 

iterations between threads, are also available to SPMD programs but are not typically 

used. 

 

Unlike High Performance Fortran (HPF) [22], which has compiler directives that are 

carefully designed to not alter the meaning of the underlying program, the OpenMP 

directives used in SPMD-threaded programming are declaration attributes or 

executable statements. They are still properly expressible as structured comments, 

starting with the string “!$OMP”, because they have no effect when the program has 

exactly one thread. But they are not “directives” in the conventional sense. For 

example “!$OMP BARRIER” does not allow any thread to continue until all have 

reached the statement. When there is more than one thread, SPMD OpenMP defines 
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a new language that is different from uni-processor Fortran in ways that are not 

obvious by inspection of the source code. For example: 

 

1. Saved local variables are always shared and non-saved local variables are 

always threadprivate. It is all too easy to inadvertently create a saved 

variable. For example, in Fortran 90/95 initializing a local variable, e.g., 

INTEGER :: I=0, creates a saved variable. A DATA statement has a similar 

effect in both Fortran 77 and Fortran 90/95. In OpenMP such variables are 

always shared, but often the programmer’s intent was to initialize a 

threadprivate variable (which is not possible with local variables in version 

1.1). 

2. In version 1.1, only common can be either private or shared under programmer 

control. Module variables, often used to replace common variables in Fortran 

90/95, are always shared. Version 2.0 allows individual saved and module 

variables to be declared private. 

3. ALLOCATE is required to be thread safe, but because only common variables 

can be both private and non-local, it is difficult to use ALLOCATABLE for 

private variables. A pointer in THREADPRIVATE common may work, but is  

not a safe alternative to an allocatable array. 

4. It is up to the programmer to avoid race conditions caused by the compiler 

using copy-in/copy-out of thread-shared array section subroutine arguments. 

5. There is no way to document the default case using compiler directives. There 

is a !$OMP THREADPRIVATE directive but no matching optional !$OMP 

THREADSHARED directive. Directives that imply a barrier have an option, 

NOWAIT, to skip the barrier but no option, WAIT, to document the default 

barrier. 

6. Sequential reads from multiple threads must be in a critical region for thread 

safety and provide a different record to each thread. In all process-based 

SPMD models sequential reads from multiple processes provide the same 

record to each process. 

 

SPMD OpenMP is not a large extension to Fortran but OpenMP programs cannot be 

maintained by Fortran programmers unfamiliar with OpenMP. For example, a  

programmer has to be aware that adding a DATA statement to a subroutine could 
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change the multi-thread behavior of that subroutine. In contrast, adding a DATA 

statement, or making any other modifications, to a Co-Array Fortran program is 

identical in effect to making the same change to a Fortran 90/95 program providing 

no co-arrays are involved (i.e., providing no square brackets are associated with the 

variable in the local scope). 

 

Version 2.0 of the specification adds relatively few capabilities for SPMD programs, 

but the extension of THREADPRIVATE from named common blocks to saved and 

module variables will provide a significantly improved environment particularly for 

Fortran 90 programmers. It is unfortunate that there is still no way to document the 

default via a similar THREADSHARED directive. If this existed, the default status 

of variables would cease to be an issue because it could be confirmed or overridden 

with compiler directives. The lack of fully thread safe I/O places an unnecessary 

burden on the SPMD programmer. The standard should at least require that thread 

safe I/O be available as a compile time option. This is much easier for the compiler  

writer to provide, either as a thread-safe I/O library or by automatically inserting a 

critical region around every I/O statement, than the application programmer. The 

sequential read limitation is a basic property of threads, and is primarily an issue 

because many Fortran programmers are familiar with process-based SPMD APIs. 

Version 2.0 has a COPYPRIVATE directive qualifier that handles this situation 

cleanly. For example: 

 

!$OMP SINGLE 

READ(11) A,B,C 

!$OMP END SINGLE, COPYPRIVATE(A,B,C) 
 

Here “A,B,C” are threadprivate variables that are read on one thread and then copied 

to all other threads by the COPYPRIVATE clause at the end of the single section. 

Co-Array Fortran I/O is designed to work with threads or processes, and a proposed 

extension can handle this case: 

 

READ(11,TEAM=ALL) A,B,C 

 

All images in the team perform the identical read and there is implied 

synchronization before and after the read. If images are implemented as threads, the 

I/O library could establish a separate file pointer for each thread and have each 

thread read the file independently or the read could be performed on one thread and 

the result copied to all others. 
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The limitations of OpenMP are more apparent for SPMD programs than for those 

using loop-level directives, which are probably the primary target of the language.  

SPMD programs are using orphan directives, outside the lexical scope of the parallel 

construct that created the threads [28]. OpenMP provides a richer set of directives 

within a single lexical scope, which allow a more complete documentation of the 

exact state of all variables. However, it is common to call a subroutine from within a 

do loop that has been parallelized and the variables in that subroutine have the same 

status as those in a SPMD subroutine. Also, almost all OpenMP compilers support 

Fortran 90 or 95, rather than Fortran 77, but version 1.1 directives largely ignore 

Fortran 95 constructs. Version 2.0 has more complete Fortran 95 support, which 

provides an incentive for compilers to be updated to version 2.0. 

5.2 A simple example 

 

The calculation of  was used as an example in the original OpenMP proposal [25], 

which presented three versions using OpenMP’s loop level parallelization constructs,  

using MPI, and using pthreads. SPMD versions using Co-Array Fortran and OpenMP 

Fortran are presented here. First Co-Array Fortran: 

 

program compute_pi 

double precision :: mypi[*],pi,psum,x,w 

integer                :: n[*],me,nimg,i 

nimg = num_images() 

me    = this_image() 

if (me==1) then 

   write(6,*) ’Enter number of intervals’; read(5,*) n 

   write(6,*) ’number of intervals = ’,n 

   n[:] = n 

endif 

call sync_all(1) 

w = 1.d0/n; psum = 0.d0 

do i= me,n,nimg 

    x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x) 

enddo 

mypi = w * psum 

call sync_all() 

if (me==1) then 

   pi = sum(mypi[:]); write(6,*) ’computed pi = ’,pi 

endif 

call sync_all(1) 

end 
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The number of intervals and the partial sums of  are declared as co-arrays, because 

these must be communicated between images. All other variables are local to each 

image. The number of intervals is input on image 1 and broadcast to all images. Note 

that n without square brackets refers to the local part, n[me]. All images wait at the 

first sync_all for image 1 to arrive, signaling that n is safe to use. Each image then 

waits at the second sync_all for all images to complete the calculation. Finally, the 

first image adds the co-array of partial sums and writes out the result. The final 

sync_all prevents the other images from terminating the program before image 1 

completes the write. 

 

In OpenMP Fortran this becomes: 

 

program main 

call omp_set_dynamic( .false.) 

call omp_set_nested( .false.) 

!$omp parallel 

call compute_pi 

!$omp end parallel 

stop 

end 

subroutine compute_pi 

double precision :: psum,x,w ! threadprivate 

integer :: me,nimg,i ! threadprivate 

double precision :: pi 

integer :: n 

common /pin/ pi,n 

!*omp threadshared(/pin/) 

integer omp_get_num_threads,omp_get_thread_num 

nimg = omp_get_num_threads() 

me = omp_get_thread_num() + 1 

!$omp master 

write(6,*) ’Enter number of intervals’; read(5,*) n 

write(6,*) ’number of intervals = ’,n 

pi = 0.d0 

!$omp end master 

!$omp barrier 

w = 1.d0/n; psum = 0.d0 

do i= me,n,nimg 

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x) 

enddo 

!$omp critical 

pi = pi + (w * psum) 

!$omp end critical 

!$omp barrier 

!$omp master 

write(6,*) ’computed pi = ’,pi 
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!$omp end master 

!$omp barrier 

End 
 

All SPMD OpenMP programs start with the same main program. It spawns the 

number of threads specified by the environment variable OMP_NUM_THREADS, 

then immediately calls the top level subroutine that represents the actual program to  

replicate. On exit from this subroutine all threads except the master thread are freed 

and the program then exits. The number of intervals and _ are declared in named 

common and are therefore global (thread-shared) variables by default. There is no 

compiler directive available to confirm the default, so a pseudo-directive, !*omp 

threadshared, is used to document that the common is shared. All other variables are 

local to the subroutine and therefore private to each thread (no saved variables). The 

number of intervals is input on the master thread, and since n is a global variable it is 

automatically available on all threads. All threads wait at the first !$omp barrier for 

the master thread to arrive, signaling that n is safe to use. Each thread then 

independently calculates its part of  and adds it to the total . Updating  is in a 

critical region, so that only one thread at a time can access . Each thread then waits 

at the second !$omp barrier for all threads to complete the calculation. Finally, the 

master thread writes out the result. The final !$omp barrier prevents the other threads 

from terminating the program before the master completes the write. This is probably 

unnecessary, since it is the master that will execute stop in the main program. 

 

A relatively minor difference between the two versions is that Co-Array Fortran has 

a richer set of synchronization operations. In many cases, sync_all(1) is significantly 

faster than sync_all() because the former allows the image to continue as soon as 

image 1 arrives and the latter requires the image to wait for all images to arrive. 

OpenMP’s !$omp barrier is the only synchronization of its kind provided by 

OpenMP and is equivalent to sync_all(). A synchronization routine like 

sync_all(wait) can be written in OpenMP, provided it is always called in conjunction 

with a !$omp flush directive. The primary difference between the two versions is that 

global variables are co-arrays spread across all images in Co-Array Fortran, but are 

standard variables in global memory (not assigned to any particular thread) in 

OpenMP Fortran. However, the difference is more one of style than substance. The 
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OpenMP version can be rewritten in Co-Array Fortran, by only using the part of each 

co-array on image 1: 

 

program compute_pi 

double precision :: psum,x,w 

integer :: me,nimg,i 

double precision :: pi[*] ! only use pi[1] 

integer :: n[*] ! only use n[1] 

 

nimg = num_images() 

me = this_image() 

 

if (me==1) then 

write(6,*) ’Enter number of intervals’; read( 5,*) n 

write(6,*) ’number of intervals = ’,n 

pi = 0.d0 

endif 

call sync_all() 

 

w = 1.d0/n[1]; psum = 0.d0 

do i= me,(n[1]),nimg 

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x) 

enddo 

call start_critical() 

pi[1] = pi[1] + (w * psum) 

call end_critical() 

call sync_all() 

 

if (me==1) then 

write(6,*) ’computed pi = ’,pi 

endif 

call sync_all() 

end 
 

In order to emulate shared variables, the Co-Array Fortran code replicates them on 

all images but only uses the part on image 1. All references to such variables must 

end in[16]. In the case of large shared arrays, it would be possible to avoid the space 

this wastes by defining a co-array of a derived type with a pointer component and 

then only allocating an array to the pointer on image 1. This sounds complicated, but 

is in fact the standard way for Fortran 90/95 to handle an array of arrays (or in this 

case a co-array of arrays). The master directive in OpenMP is replaced by a test for 

the first image. Co-Array Fortran does not treat the first image any differently than 

the others (i.e., it has no master image). However, standard input is available on the 

first image only, so if the master’s tasks include reading standard input Co-Array 

Fortran must use the first image as the master. 
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Similarly, the Co-Array version can be expressed in OpenMP by adding a perthread 

dimension to each shared variable: 

 

program main 

call omp_set_dynamic( .false.) 

call omp_set_nested( .false.) 

!$omp parallel 

call compute_pi 

!$omp end parallel 

stop 

end 

subroutine compute_pi 

integer, parameter :: max_threads=128 

double precision :: pi,psum,x,w 

integer :: me,nimg,i 

double precision :: mypi 

integer :: n 

common /pin/ mypi(max_threads),n(max_threads) 

!*omp threadshared(/pin/) 

integer omp_get_num_threads,omp_get_thread_num 

 

me = omp_get_thread_num() + 1 

nimg = omp_get_num_threads() 

if (me==1) then 

if (nimg>max_threads) then 

write(6,*) ’error - too many threads ’,nimg 

stop 

endif 

write(6,*) ’Enter number of intervals’; 

read(5,*) n(me) 

write(6,*) ’number of intervals = ’,n(me) 

n(1:nimg) = n(me) 

endif 

!$omp flush 

call caf_sync_all(1) 

 

w = 1.d0/n(me); psum = 0.d0 

do i= me,n(me),nimg 

x = w * (i - 0.5d0); psum = psum + 4.d0/(1.d0+x*x) 

enddo 

mypi(me) = w * psum 

!$omp barrier 

if (me==1) then 

pi=sum(mypi(1:nimg)); write(6,*) ’computed pi=’,pi 

endif 

!$omp flush 

call caf_sync_all(1) 

end 
 



40 

 

In order to emulate co-arrays, the OpenMP code puts them in named common (i.e. 

makes them shared variables) and converts co-array dimensions into additional 

regular array dimensions. Since array size has to be known at compile time, the 

parameter max_threads is introduced which has to be no smaller than the actual 

number of threads at run time. If this is set to a safe value, e.g., the number of 

processors on the machine, it is probably an over estimate and hence wastes memory.  

Co-Array Fortran allows the local part of a co-array to be referenced without square 

brackets, but all references to emulated co-arrays must include the co-dimensions, 

e.g. n(me). It also “knows” that the co-size is num_images(), so mypi[:] is legal Co- 

Array Fortran but must become mypi(1:nimg) in OpenMP Fortran. The routine 

caf_sync_all is assumed to be an OpenMP implementation of sync_all but it can only 

synchronize threads, the !$omp flush is also required to synchronize shared objects. 

5.3 A comparison 

 

The features of SPMD OpenMP Fortran and Co-Array Fortran are summarized in 

Figure 5.1. OpenMP Fortran is only applicable to systems with a single global 

memory space, and perhaps only to those with flat single level addressing and cache 

coherence across the entire memory space (i.e., systems such as the Cray T3E are not 

candidates for OpenMP). However, this includes a wide range of SMP and DSM 

systems with from 2 to 256 processors. OpenMP is a relatively new “standard,” but it 

has wide vendor and third party support is available on almost all machines with a 

suitable global shared memory, from PC’s to MPP’s. Compilers with partial support 

for OpenMP typically do not support it in SPMD-mode, but most compilers now 

claim full version 1.1 complience. Version 2.0 complient compilers are not yet 

typically available, but for SPMD programmers only the extension of 

THREADPRIVATE to saved and module variables and the new COPYPRIVATE 

clause are significant, so even partial support for version 2.0 may be sufficient. 

 

Co-Array Fortran can take full advantage of a hardware global memory, but it can 

also be used on shared nothing systems with physically distinct memories connected 

by a network. However, performance is expected to only be about as good as MPI on 

such systems. Co-Array Fortran can be implemented using threads or processes, or 

on a cluster of SMP systems it could even use threads within a SMP system and 
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processes between systems. It is therefore more widely applicable than OpenMP 

Fortran. However, the Cray T3E is the only machine with a Co-Array Fortran 

compiler today and it implements only a subset of the language. There is  

 

 

Figure 5.1:7 Features of SPMD OpenMP Fortran and Co-Array Fortran 

 

 
 

a definite need for a source to source compiler that will allow Co-Array Fortran to 

run on the same systems as OpenMP Fortran. This is discussed in more detail in 

Chapter 5.4. 

 

Any Co-Array Fortran program is translatable into OpenMP Fortran and vice versa. 

However, the differences between co-arrays and shared arrays tend to steer 

programmers to alternative solutions to the same problem. For example, suppose 

there are P images or threads and we need to perform operations both on an array, 

A(1:M,1:N), and its transpose, AT(1:N,1:M). For simplicity further assume that both 

M and N are multiples of P. In Co-Array Fortran we would probably store both as 

co-arrays, A(1:M,1:N/P)[*] and AT(1:N,1:M/P)[*], and write a routine to copy 

between them. Since A and AT are co-arrays, the routine can do a direct copy 

without using intermediate buffers. In OpenMP, for efficiency of memory layout we 

might similarly store both as private arrays on each thread, A(1:M,1:N/P) and 

AT(1:N,1:M/P), but now we have to provide a shared buffer to copy between them. 
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The simplest shared buffer to use is the entire array, B(1:M,1:N). Then the copy 

routine is just copy each private A into the shared B, barrier, copy the shared B into 

each private AT. An alternative in OpenMP is to always store the array as a whole 

shared array, A(1:M,1:N). It may then be unnecessary to store the transpose at all, 

although cache effects may make it advisable to also have a shared transpose, 

AT(1:N,1:M). The shared array approach is also available in Co-Array Fortran by 

placing arrays on one image, but to avoid wasting memory a co-array of arrays, 

CA[1]%A(1:M,1:N), would probably be used rather than a simple co-array, 

A(1:M,1:N)[1]. In either case, the co-array syntax makes clear that accessing the 

“shared” array is a potentially expensive remote memory operation. The shared array 

approach is sometimes the easiest to use, and is more cleanly expressible in OpenMP 

Fortran, but it comes at the cost of less programmer control over performance. 

 

OpenMP Fortran contains no directives to control the layout of shared arrays in 

memory. This is not an issue on SMP systems with uniform memory access, but  

where in memory shared arrays are placed may have a large effect on performance 

on non-uniform memory access (NUMA) systems. This limits OpenMP’s scalability 

to large numbers of nodes, since large node-count systems tend to be NUMA. 

OpenMP Fortran is primarily designed for fine grained loop parallelization, which is 

typically appropriate for small node counts. Therefore the lack of layout control is 

less of an issue for OpenMP in its primary domain of interest, but it is a concern for  

SPMD programs. All memory in Co-Array Fortran is associated with a local image, 

so memory placement on NUMA systems is simple to arrange and does not effect 

scalability. Since Co-Array Fortran always knows when remote communication is 

involved, the global memory does not need to be cache coherent and in fact each 

image’s memory can be physically and logically distinct with only a fast network 

connecting them. Overall, Co-Array Fortran has clear advantages on systems with 

large node counts (above about 32 processors). 

 

Co-Array Fortran is a simple set of extensions to Fortran 90/95. The features that are 

compatible with Fortran 77 do not produce a viable subset language. OpenMP 

compilers typically support Fortran 90 or 95, but the version 1.1 compiler directives 

really only apply well to Fortran 77 programs. The lack of support for thread private 

module variables and for ALLOCATABLE are two examples of this. Fortran 77 is 
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probably still the dominant variant for SPMD programs, but large projects, in 

particular, are increasingly migrating to Fortran 95 and will need version 2.0 

OpenMP compilers. 

 

One example of Co-Array Fortran’s reliance on Fortran 90/95 features is that any 

subroutine with a co-array dummy argument must have an explicit interface. Hence a 

Fortran 77 subset would either have to ban co-array dummy arguments or provide an 

extension to the existing language that distinguishes between co-array actual 

arguments and local part actual arguments without an explicit interface. Explicit 

interfaces make Co-Array Fortran significantly safer to use. The compiler always has 

complete knowledge of co-arrays except in the special case when the local part of a 

co-array is passed to a dummy argument of co-rank zero. The programmer is 

responsible for co-array safety in this special case, and must make sure that no other 

image references the passed piece of the co-array between the subroutine call and 

return. A synchronization call in Co-Array Fortran always implies that all co-arrays 

are up to date (except those passed to co-rank zero dummies, and these must not be 

referenced from other images anyway). All the co-array “machinery” works behind 

the scenes to allow the programmer to do the obvious thing and in fact get the 

expected result. 

 

OpenMP Fortran provides a significantly lower level programmer interface. Once an 

object has been passed to a procedure through its argument list there is no way to tell 

if it is a shared object or a private object. Pointers can be shared or private and both 

can reference either shared or private variables, so it is possible (although unsafe) for 

one thread to access the private memory of another thread. Also, synchronization 

primitives only apply to shared objects in the local scope. All subroutine arguments 

are potentially “thread visible” (i.e. shared), so all have to be flushed even though 

some may actually be private. Local scope synchronization has several pitfalls to trap 

the unwary programmer. One of the most obvious is 

copy-in/copy-out: 

 

common/shared/ i(100) 

!$omp master 

i(1:100) = 0 

!$omp end master 

!$omp barrier 

call sub1(i(2:100:2)) 
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!$omp master 

write(6,*) i(4) 

!$omp end master 

end 

subroutine sub1(i2) 

integer :: i2(0:49),omp_get_thread_num 

i2(omp_get_thread_num()) = omp_get_thread_num() 

!$omp barrier 

end 

The barrier in sub1 synchronizes i2, but, since it is not an assumed shape array, i2 is 

probably only a local contiguous copy of i(2:100:2) and a different local copy on 

every thread (the only practical alternative a compiler has is to in-line sub1). If a 

local copy is used, the barrier has no effect on i and when each thread returns from 

sub1 they will independently copy back their entire local version of i(2:100:2) into 

the shared original and perhaps also update a register holding i(4) from the local 

version. This means that there is no way to tell if the write prints the value 1, as 

expected, or 0. This is not just a local scope issue, since the problem remains even if 

the second barrier is moved from inside sub1 to just after the call to sub1. The value 

of i(4) then depends on which thread exits sub1 last. The only safe approach is for 

the programmer to manually implement steps similar to those that Co-Array Fortran 

takes. Issue a !$omp flush before and after every subroutine call that might contain 

synchronization, and if a shared array section that is not contiguous in array element 

order is passed to a subroutine the associated dummy array argument must be 

assumed shape (and the subroutine interface therefore explicit). The OpenMP 

specification makes the above example illegal, i.e. it places the responsibility onto 

the programmer to avoid such copyin/ copy-out race conditions. Co-Array Fortran 

guarantees that copy-in/copy-out is never required for co-array dummy arguments, 

e.g., if i2 were a co-array an array section actual argument would be illegal (and 

detectable as an error at compile time) unless i2 is declared assumed shape. All 

library-based SPMD APIs have similar consistency problems. The MPI-2 standard 

[23] has a good discussion of these issues, which can cause optimization problems in 

Fortran 77 but are much more serious for Fortran 90/95. Co-Array Fortran may be 

unique among SPMD APIs in having no known conflicts with Fortran 90/95. High 

Performance Fortran is also consistent with Fortran 95, but is not formally a SPMD 

API although it is often implemented using SPMD. 
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The previously listed limitations make OpenMP Fortran a less than optimal choice 

for very large SPMD programs, but it has the important advantage of being widely 

available. There is a preliminary port of the NRL Layered Ocean Model (NLOM) to 

OpenMP Fortran [32]. NLOM already ran in SPMD-mode using MPI or SHMEM. 

The original code is 69,000 lines of Fortran 77 including 22,000 comment lines of 

which 500 are compiler directives (many are repeats in different dialects). Ignoring 

communication routines, adding support for OpenMP required 900 OpenMP 

compiler directives, 500 to characterize all COMMON’s (could be reduced using 

INCLUDE) and 400 primarily to handle I/O. This illustrates a general property of 

compiler directive based APIs, they are very verbose. Other, extensive, changes were 

required to allow sequential I/O to be compatible with either SPMD processes or 

SPMD threads. Programs that do all sequential I/O from a single image would not 

require these modifications. If the COPYPRIVATE directive qualifier had been 

available the sequential I/O modifications would have been greatly simplified.  

Shared variables were added to handle sequential I/O, but in general variables 

outside communication routines are THREADPRIVATE. Fortunately, NLOM does 

not  use modules and most saved local variables had already been placed in common. 

However, DATA statement initialization had to be modified to make sure there were 

no implied saved local variables. Since this was a prototype port, the required 

communication routines were generated by replicating the existing 4,000 line 

SHMEM version and making as few changes as possible to support OpenMP. 

 

The native OpenMP port of NLOM has been made obsolete by adding support to 

NLOM for a dialect of Co-Array Fortran that can be automatically translated into 

OpenMP Fortran using a nawk [18] script (described in more detail below). Outside 

communication routines, this involved adding macros (that are null except when 

using Co-Array Fortran) to 230 I/O statements and adding Co-Array syntax to a 

single subroutine that defines arrays (co-arrays) used by communication routines. 

Inside communication routines, this involved replicating and modifying SHMEM-

specific code fragments for Co-Array Fortran (with each SHMEM library call 

mapping to a single co-array assignment statement), and adding a macro identifying 

the local part of a co-array to 375 assignment statements. The latter are only required 

due to limitations in the nawk script and are null when using a true Co-Array Fortran 

compiler. The total effort involved in writing the nawk script and adding Co-Array 
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Fortran support to NLOM was significantly less than required to add native OpenMP 

support. The nawk script adds all required OpenMP compiler directives and emulates 

Co-Array Fortran I/O, thus removing the two most time consuming aspects of the 

port. 

 

NLOM is typical of many SPMD codes in using a program-specific interface to 

handle all communication. This greatly simplifies porting to a new SPMD API, but 

reduces the opportunity for optimization with a low latency API (such as either Co-

Array and OpenMP Fortran). Porting an existing SPMD program, e.g. one using 

MPI, that did not separate out communication to OpenMP Fortran would be difficult,  

because MPI allows communication between what are in OpenMP terms 

THREADPRIVATE objects and in fact has no concept of THREADSHARED 

objects. Porting any existing SPMD program to Co-Array Fortran would be much 

easier, because all objects including co-arrays can be treated as local to an image and 

co-arrays need only be introduced at all for objects that are involved in 

communication. 

5.4 Translation 

5.4.1 Subset Co-Array Fortran 

 

The full Co-Array Fortran language [24] provides support for legacy SPMD 

programs based on Cray’s SHMEM put and get library [16]. It requires that all 

variables in named COMMON be treatable either as standard variables or as co-

arrays, and which objects in the COMMON block are co-arrays is allowed to vary 

between scoping units. This makes it difficult to implement co-arrays as if they were 

Fortran arrays of higher rank. The following relatively minor restrictions on the full 

language define a formal Subset that significantly widens the implementation 

choices, and in particular allows a simple mapping from Co-Array Fortran to 

OpenMP Fortran. 

 

1. If a named COMMON includes a co-array, every object in that COMMON 

must be a co-array. The objects in the COMMON must agree in size, type, 

shape, co-rank and co-extents in all scoping units that contain the COMMON. 

2. The EQUIVALENCE statement is not permitted for co-arrays. 
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3. The sum of the local rank plus the co-rank of a co-array is limited to seven. 

4. A dummy co-array argument cannot have assumed size local dimensions. 

5. A dummy co-array argument cannot have assumed shape local dimensions, 

unless the co-rank is one. The actual argument shall then also have co-rank 

one. 

6. If a dummy argument has both nonzero local rank and nonzero co-rank and 

does not have assumed shape local dimensions, the actual argument must  

agree in size and type with the dummy argument. 

 

The restrictions on COMMON are similar to nonsequence COMMON in HPF [22].  

The restrictions on EQUIVALENCE are more severe than in HPF, for simplicity, but 

in Subset Co-Array Fortran the restrictions only apply to co-arrays. COMMON can 

be largely replaced by MODULE for new programs, so the restrictions are easily met 

except when migrating legacy Fortran 77 programs that make heavy use of 

COMMON and either EQUIVALENCE or different layouts for the same named 

common in different scopes. If the objects in a legacy COMMON already agree in 

size, type, and shape in all scoping units (which is good programming practice), then 

every object in that COMMON can be converted to a co-array without changing the 

meaning of the program. This is because a reference to a co-array without square 

brackets is always a reference to the local part of the co-array. Migration to the 

Subset is therefore easy in this case. 

 

In Co-Array Fortran both the local rank and the co-rank of a co-array can be seven, 

but the local rank plus co-rank of any co-array subobject that is actually used in an 

executable statement must be no more than seven (because the rank and co-rank are 

merged and the object treated as a standard array subobject). Thus the Subset’s 

restriction on local rank plus co-rank to seven is not typically a severe additional 

constraint. It would be helpful if Fortran 2000 increased the limit on the rank from 

seven to, say, ten, since this would give more room for rank plus co-rank. 

 

The restrictions on dummy co-array arguments may require the programmer to 

explicitly pass additional array dimension information through the argument list. The 

restriction on assumed shape is probably the most severe of all for new programs,  

since assumed shape arrays are a significant simplifying factor in Fortran 90/95 

programs and Co-Array Fortran requires some kinds of co-array actual arguments to 
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only be associated with assumed shape dummy arguments. It is a consequence of the 

fact that co-size is always NUM_IMAGES() and therefore that, when the co-rank is 

greater than one, the co-array has no final extent, no final upper bound, and no co-

shape. 

 

The Subset does not allow any kind of array element sequence association for co-

arrays. It therefore prohibits an element of a co-array being passed to a subroutine 

and treated there as a co-array of non-zero rank. Only entire co-arrays can be passed 

to explicit-shape co-array dummy arguments and the size of the actual and dummy 

argument must be identical. 

 

5.4.2 Subset Co-Array Fortran into OpenMP Fortran 

 

Subset Co-Array Fortran has been designed to be implementable by mapping co-

arrays onto arrays of higher rank. In particular, they are implementable as shared 

OpenMP Fortran arrays. The translation of the Co-Array Fortran  program into 

OpenMP Fortran presented in Chapter 5.3 illustrates what a compiler is required to 

do. Any saved or module local variables must be placed in THREADPRIVATE 

named common (or just declared THREADPRIVATE in version 2.0). Any named 

common that does not contain co-arrays must be made THREADPRIVATE. All co-

arrays must be shared objects. Square brackets are merged to create arrays of higher 

rank. The convention that references to a co-array without square brackets is a 

reference to the local part of the co-array requires first expanding the reference to 

include both round brackets and square brackets, and then merging square brackets to 

create an array subobject. References to co-arrays in procedure calls do not typically 

include square brackets, but the intent is always unambiguous because the interface 

must be explicit when the dummy argument is a co-array. If the dummy argument is 

not a co-array, the reference must be expanded to explicitly pass the local part of the  

co-array to the procedure. If the dummy argument is an assumed shape co-array 

(with co-rank one), the dummy is translated to an assumed shape array with one 

higher rank and special handling may also be required on the calling side. Co-Array 

intrinsic procedures can be implemented as an OpenMP module. All caf-procedure 

calls [24], i.e., calls to procedures that could contain synchronization, must be 

bracketed by FLUSH directives that explicitly name all actual co-arrays in the local 
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scope. A generic FLUSH without arguments would also be sufficient, but is less 

efficient because OpenMP would then flush objects that the original Co-Array source 

has identified as not being thread visible. All of Co-Array I/O maps directly onto 

threadsafe OpenMP I/O, so the translator may have to explicitly make I/O thread 

safe, using critical directives, but the mapping is otherwise straight forward. The 

translation process has been presented as if performed by a Subset Co-Array Fortran 

source to OpenMP Fortran source compiler. Many of the steps are trivial if actually 

performed by retargeting an existing native OpenMP Fortran compiler to support 

Subset Co-Array Fortran. So on machines with a cache-coherent shared memory and 

an OpenMP compiler it would take very little effort on the vendors part to support 

Subset Co-Array Fortran. A single compiler is typically already used for standard 

Fortran and OpenMP Fortran, with the target language specified at compile and link 

time. With minor upgrades the same compiler can also support Subset Co-Array 

Fortran. There would be a single compiler but three distinct languages, so linking 

standard Fortran and Subset Co-Array Fortran objects together would not be 

supported (just as linking standard Fortran and OpenMP Fortran objects is not  

supported now). 

 

As a “proof of concept” a nawk script has been developed to translate Subset Co-

Array Fortran directly into OpenMP Fortran. Since this is a pattern matching script, 

rather than a compiler, it treats some keywords as reserved and requires some 

statements be expressed in one of the several alternatives that Fortran provides. In 

order to implement TEAM read, I/O unit numbers are restricted to be less than 

100,000. The only other significant variances from the Subset Co-Array Fortran 

language are those made necessary by a lack of a symbol table identifying modules 

and co-arrays by name. The most serious of these is that the local part of a co-array 

cannot be referenced without square brackets. To simplify local parts, the script will  

automatically translate a copy of the co-array’s declaration square brackets, with "*" 

replaced by "@" into square brackets identifying the local part. For example: 

 

COMMON/XCTILB4/ B(N,4)[0:MP-1,0:*] 

 SAVE /XCTILB4/ 

 CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 

B(:,3)[0:MP-1,0:@] = B(:,1)[I_IMG_S,J_IMG_S] 

B(:,4)[0:MP-1,0:@] = B(:,2)[I_IMG_S,J_IMG_N] 

CALL SYNC_ALL( WAIT=(/IMG_S,IMG_N/) ) 
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Only the local part of B(:,3) and B(:,4) is used, but square brackets are still  required 

and have been provided by replicating the square bracket declaration of B with "*" 

replaced by "@". The advantage of this extension to the language is that these square 

brackets can be removed by a batch stream editor to produce a legal Subset program. 

 

Absent a symbol table tracking explicit interfaces, passing co-arrays to subroutines 

also requires extensions to the Subset language. A whole co-array can be passed to a 

co-array dummy just as in the Subset, but all other cases rely on an extension to the 

Subset to allow co-array sections to be passed as arguments. A co-array section 

passed to a co-array dummy must include square brackets that cover the entire co-

extent. A local part passed to a dummy of co-rank zero must use square brackets to 

form the corresponding co-array section. 

 

The nawk script obviously provides a way of running Co-Array Fortran programs 

(after some manual tweaking) via an OpenMP compiler. But it can also be simply  

viewed as a pre-processor that provides an improved SPMD interface for OpenMP. It 

has several major advantages over native OpenMP Fortran for SPMD programs. For 

example, I/O is consistent with process-based SPMD APIs and the mapping of 

variables onto shared and private memory is greatly enhanced (because the script  

automatically places variables in COMMON as necessary). Co-Array Fortran 

intrinsic procedures provide a much richer set of synchronization options than 

OpenMP, and the special handling of caf-procedures ensures that synchronization of 

threads implies synchronization of co-arrays. A disadvantage of the nawk script is 

that it provides no error checking. Legal Co-Array Fortran programs are translated to 

legal OpenMP Fortran programs, but illegal programs will also be translated and it is 

up to the OpenMP compiler to detect the error. Error messages are likely to be 

obscure, but relatively few lines are modified in the translation so inspection of the 

OpenMP source should provide an indications of the error. A true Subset Co-Array 

compiler, either provided as an addition to an OpenMP compiler or as a stand-alone 

source to source compiler, would not have any of the restrictions of the nawk script 

and would be able to provide clear and relevant error diagnostics for non-conforming 

syntax.  
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One advantage that OpenMP has over Co-Array Fortran is that if an OpenMP 

program is designed to work when there is exactly one thread, it is then also a legal 

Fortran 90/95 program. The compiler directives have no effect on one thread, and are 

ignored by the Fortran 90/95 compiler. A library of a few standard procedures is 

required, but is trivial to implement for a single thread. This is not the case for Co-

Array Fortran. Obviously, a Subset Co-Array Fortran source to OpenMP Fortran 

source compiler would also be a Subset Co-Array Fortran source to Fortran 90/95 

source compiler in the special case of one image. A much simpler source to source 

compiler is sufficient in this special case, and a public domain implementation would 

provide a useful service to the Co-Array Fortran programming community. This is 

not quite just a matter of deleting all references to square brackets, because the 

effective rank of a co-array subobject is the sum of its local rank and co-rank. If the 

square brackets are deleted the effective rank may change, giving rise to illegal ranks 

for intrinsic procedure arguments and non-conforming ranks in some array 

assignment statements involving co-arrays. 
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Chapter 6 Related Work 

 

This chapter starts with an overview of existing parallel programming languages; 

MPI and UPC, Next it gives example of theese two languages programming code 

with the same problem in the case study. And shows how the  parallel matrix 

multiplication code looks like in MPI and UPC.     

6.1 MPI 

MPI is a language-independent communications protocol used to program parallel 

computers. Both point-to-point and collective communication are supported. MPI "is 

a message-passing application programmer interface, together with protocol and 

semantic specifications for how its features must behave in any 

implementation." MPI's goals are high performance, scalability, and portability. MPI 

remains the dominant model used in high-performance computing today. 

6.2 UPC 

Unified Parallel C (UPC) is an extension of the C programming language designed 

for high-performance computing on large-scale parallel machines, including those 

with a common global address space (SMP and NUMA) and those with distributed 

memory (e.g. clusters). Theprogrammer is presented with a single shared, partitioned 

address space, where variables may be directly read and written by any processor, 

but each variable is physically associated with a single execution per processor. 

In order to express parallelism, UPC extends ISO C 99 with the following constructs: 

 An explicitly parallel execution model 

 A shared address space 

 Synchronization primitives and a memory consistency model 

 Memory management primitives 

http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Parallel_computers
http://en.wikipedia.org/wiki/Parallel_computers
http://en.wikipedia.org/wiki/Message-passing
http://en.wikipedia.org/wiki/High-performance_computing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/High-performance_computing
http://en.wikipedia.org/wiki/Parallel_machine
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Symmetric_multiprocessing
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Distributed_memory
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/C_(programming_language)#C99
http://en.wikipedia.org/wiki/Memory_management
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processor. UPC uses a Single Program Multiple Data (SPMD) model of computation 

in which the amount of parallelism is fixed at program startup time, typically with a 

single thread of. 

The UPC language evolved from experiences with three other earlier languages that 

proposed parallel extensions to ISO C 99: AC, Split-C, and Parallel C Preprocessor 

(PCP). UPC is not a superset of these three languages, but rather an attempt to distill 

the best characteristics of each. UPC combines the programmability advantages of 

the shared memory programming paradigm and the control over data layout and 

performance of the message passing programming paradigm. 

6.3 Matrix Multiplication in MPI and UPC 

6.3.1 MPI code for matrix multiplication; 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <mpi.h> 

#define ms 2 

 

int main(int argc,char* argv[]) 

{ 

    int i,j,k; 

    int x,c; 

    int matrix_a[ms][ms]; 

    int matrix_b[ms][ms]; 

    int matrix_c[ms][ms]; 

    int myrank, p; 

    int NRPE; 

    double starttime, endtime; 

 

    MPI_Init(&argc, &argv); 

    MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 

    MPI_Comm_size(MPI_COMM_WORLD, &p); 

    MPI_Status status; 

 

    NRPE = ms / p; 

 

    if(myrank == 0) 

    { 

         printf("\nTCE 3411 Parellel Processing : Matrix     

Multiplication\n"); 

      

         printf("\nDate : %s",__DATE__); 

         printf("\nTime : %s",__TIME__); 

         

printf("\n====================================================\

n"); 

 

         

        printf("\n   matrix a \n"); 

        printf("--------------\n"); 

 

http://en.wikipedia.org/wiki/SPMD
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Split-C
http://en.wikipedia.org/wiki/Superset
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Programming_paradigm
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        for(i=0; i<ms; ++i) 

            for(j=0; j<ms; ++j) 

                matrix_a[i][j] = rand() % 10; 

 

        for(i=0; i<ms; ++i) 

        { 

            for(j=0; j<ms; ++j) 

                printf("%3d", matrix_a[i][j]); 

            printf("\n"); 

        } 

         

        printf("\n   matrix b \n"); 

        printf("--------------\n"); 

 

        for(x=0; x<ms; ++x) 

            for(c=0; c<ms; ++c) 

                matrix_b[x][c] = rand() % 10; 

 

        for(x=0; x<ms; ++x) 

        { 

            for(c=0; c<ms; ++c) 

                printf("%3d", matrix_b[x][c]); 

            printf("\n"); 

        } 

 

    } 

 

        for(i=0; i < ms; i++) 

    { 

        MPI_Bcast(matrix_b[i], ms*ms, MPI_INT, 0, 

MPI_COMM_WORLD); 

    } 

    printf("\n MATRIX B by Process: %d\n", myrank); 

    for(x=0; x<ms; ++x) 

    { 

        for(c=0; c<ms; ++c) 

            printf("%3d", matrix_b[x][c]); 

        printf("\n"); 

    } 

     

    for(i=0; i<p; i++) 

    { 

      for(j=0; j<ms; j++) 

       { 

            MPI_Send(&matrix_a[j], ms*NRPE, MPI_INT, i, 0, 

MPI_COMM_WORLD); 

            NRPE++; 

       } 

    } 

     

    starttime = MPI_Wtime(); 

    for (k=0; k<ms; k++) 

    for (i=0; i<ms; i++) { 

      matrix_c[i][k] = 0; 

      for (j=0; j<ms; j++) 

        matrix_c[i][k] = matrix_c[i][k] + matrix_a[i][j] * 

matrix_b[j][k]; 

      } 

      endtime   = MPI_Wtime(); 

    MPI_Send(&matrix_c[i][k], ms*ms, MPI_INT, 0, 0, 

MPI_COMM_WORLD); 
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       if(myrank == 0) 

     

     printf("\n\nParellel Time %f seconds\n",endtime-

starttime); 

    } 

  printf ("\n"); 

 

    return 0; 

    MPI_Finalize(); 

} 

6.3.2 UPC code for matrix multiplication; 

 

#define M 200 

#define N 250 

#define P 50 

shared double A[M][P]; 

shared double B[P][N]; 

shared double C[M][N]; 

static double timer(){ 

  struct timeval tv; 

  gettimeofday(&tv,NULL); 

  return (double)tv.tv_sec + 1e-6*(double)tv.tv_usec; 

} 

void verify(int niter){ 

  int i,j; 

  if (MYTHREAD == 0) { 

    for (i=2; i<M; i++) 

      for (j=0; j<N; j++) 

        { 

          double i1 = 1.0/((double)i+1); 

          double shb = niter * (pow (i1, (double)(j+1))-1) / 

(i1- 

1); 

          double diff = (C[i][j]-shb)/shb; if (diff < 0) diff = 

- 

diff; 

          if (diff > 1e-8) { 

                        printf("Verification FAILED\n"); 

                        return; 

                } 

        } 

  } 

} 

void init_matrix(){ 

  int i, j, k; 

  if (MYTHREAD == 0) { 

    for (i=0; i<M; i++) for (k=0; k<P; k++) A[i][k] = pow (1.0/ 

(double)(i+1), (double)k); 

    for (k=0; k<P; k++) for (j=0; j<N; j++) B[k][j] = k<=j; 

    for (i=0; i<M; i++) for (j=0; j<N; j++) C[i][j] = 0; 

  } 

  upc_barrier; 

void matmult_naive(){ 

      int i,j,k; 

      upc_forall (i=0; i<M; i++; continue) 

        upc_forall (j=0; j<N; j++; &C[i][j]) 

          { 

            double s = C[i][j]; 

            for (k=0; k<P; k++) s += A[i][k] * B[k][j]; 



56 

 

            C[i][j] = s; 

          } 

} 

int main(){ 

  int niter = 20; 

  double flops1; 

  int i, j, k, iter; 

  init_matrix(); 

  upc_barrier; 

  double t1 = timer(); 

  for (iter = 0; iter < niter; iter++) 

        matmult_naive(); 

  double t2 = timer(); 

  upc_barrier; 

  verify(niter); 

  upc_barrier; 

  double t = t2 - t1; 

  flops1 = (double)M * N * P * 2 * niter / t; 

  upc_barrier; 

  if (MYTHREAD==0) 

        printf ("Naive matmult UPC: %g GFlops\n", flops1*1e-9); 

  upc_barrier; 

  return 0; 
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Chapter 7 Case Study 

7.1 Matrix multiplication in Co Array Fortran 

For this study our platform is Amazon EC2 Cluster system with 16 CPU and CentOS 

operating system. 

 

For this study our problem is nxn matrix multiplication.  
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7.2 Co Array Fortran Code 

program matmul 

implicit none 

real, allocatable,dimension(:,:), codimension[:,:] :: a,b,c 

integer :: i 

integer :: j 

integer :: k 

integer :: l 

integer,parameter :: n = 10 

integer :: p 

integer :: q 

integer :: iAm 

integer :: myP 

integer :: myQ 

p = num_images() 

q = int(sqrt(float(p))) 

iAm = this_image() 

if (q*q /= p) then 

if(iAm == 1) write (*,"('num_images must be square: p=',i5)") p 

stop 

end if 

allocate(a(n,n)[q,*]) 

allocate(b(n,n)[q,*]) 
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allocate(c(n,n)[q,*]) 

myP = this_image(c,1) 

myQ = this_image(c,2) 

a = 1.0 

b = 1.0 

c = 0.0 

sync all 

do i=1,n 

do j=1,n 

do k=1,n 

do l=1,q 

c(i,j) = c(i,j) + a(i,k)[myP, l]*b(k,j)[l,myQ] 

end do 

end do 

end do 

end do 

if (any(c /= n*q)) write(*,"('error on image: ',2i5,e20.10)") 

myP, myQ, c(1,1) 

write(*,"('check sum[',i5',',i5,']',e20.10)") myP, myQ, sum(c) 

- q*n**3 

deallocate(a,b,c) 

end program matmul 

 

7.3 Performance Analysis 

As I defined in Chapter 7.1 my  platform for this case study  is Amazon EC2 Cluster 

system with 16 x Intel Xeon X5570, quad core”Nehalem” architecture CPU  and 

CentOS operating system. 

 

I ran the matrix multiplication program code for 120x120, 200x200, 320x320, 

400x400, 520x520, 600x600, 720x720, 800x800, 920x920 and 1000x1000 matrices 

each on 1CPU, 2 CPU, 4 CPU, 8 CPU, 16 CPU. 

Performance figures are shown below. Figure 7.1 shows performance table of CAF 

code. Figure 7.2 shows, performance chart of CAF code. Figure 7.3 shows 

performance chart of 120x120 matrix on 1CPU, 2 CPU, 4 CPU, 8 CPU and 16 CPU. 

Figure 7.4 shows performance chart of 520x520 matrix on 1 CPU, 2 CPU, 4 CPU, 8 

CPU, 16 CPU. An the last figüre, Figure 7.5 shows performance chart of 1000x1000 

matrix on 1 CPU, 2 CPU, 4 CPU, 8 CPU, 16 CPU.  
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Figure 7.1: Performance table of Co Array Fortran Code 

 

NxN 1 CPU 2 CPU 4 CPU 8 CPU 16 CPU 

120x120 0,0592 0,0312 0,0198 0,0162 0,0098 

200x200 0,1245 0,0834 0,0600 0,0424 0,0211 

320x320 0,3039 0,1821 0,1498 0,1268 0,0763 

400x400 0,5983 0,3876 0,2581 0,2136 0,1632 

520x520 3,1265 1,7426 1,2646 0,9828 0,6139 

600x600 4,0256 2,1674 1,5658 1,2318 0,0892 

720x720 5,4328 2,8710 2,0234 1,8341 1,3487 

800x800 6,1390 3,1438 2,2717 1,9732 1,6034 

920x920 7,1845 3,9048 3,1249 2,8645 2,2431 

1000x1000 8,8240 4,8296 3,5477 3,1241 2,4987 

 

 

Figure 7.2: Performance chart of CAF code for NxN matrix 
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Figure 7.3: Performance chart for 120x120 matrix 
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Figure 7.4: Performance chart for 520x520 matrix 
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Figure 7.5: Performance chart for 1000x1000 matrix 
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7.4. Conclusion 

Co-array Fortran looks and feels like Fortran and requires Fortran programmers to 

learn only a few new rules. The CAF syntax gives the programmer more control and 

flexibility. In Co-array fortran easy to write programs this increase the productivity. 

Co-array Fortran is a PGAS language and able to take adventages of PGAS.  There is 

no subroutine calls in Co-array Fortran compiler can optimize across assignment.  

The Co-array Fortran performance is better than the library based models.   
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