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ABSTRACT

In this thesis, synthesis algorithms for resistively terminated LC ladder networks are proposed.
The algorithms are based on scattering transfer matrix factorization. Four algorithms are given
for low-pass, high-pass, band-pass and band stop cases. The basic idea for the algorithms is the
following:

Firts, a constant is computed from the scattering transfer matrix. According to this constant, the
component type of the first element is decoded, then its value is calculated from the given matrix.
By using the given scattering transfer matrix and the formed scattering transfer matrix of the
extracted element, the scattering transfer matrix of the remaining network is obtained. Then the
same procedure is applied until reaching the termination resistance.

In literature, this problem is solved by using impedance / admittance parameters.

In this thesis, the synthesis problem has been solved by using scattering paramaters, and so an

alternative synthesis method has been developed.



OZET

Bu yiiksek lisans tezimde, diren¢ ile sonlandirilmis LC merdiven devrelerin sentezi ig¢in
algoritmalr Onerilmistir. Bu algoritmalar sagilma transfer matrisi faktorizasyonuna dayanur.
Algak-geciren, yiiksek-geciren, band-gegiren ve band-sondiiren durumlar i¢in dort algoritma
gelistirilmigtir. Algoritmalarin temelinde su fikir yer almaktadir:

Ik olarak, verilen sagilma tranfer matrisi kullanilarak bir sabit hesaplanir. Bu sabitin degerine
gore ¢ekilecek elemanim tipine karar verilir, daha sonra verilen sagilma transfer matrisi
kullanilarak eleman degeri hesapanir. Bu elemana ait sagilma transfer matrisi ve verilen sagilma
transfer matrisi kullanilarak, kalan devrenin sagilma transfer matrisi hesaplanir. Ayni islem
sonlandirma direncine ulasincaya kadar tekrarlanir.

Bu problem, literatiirde empedans / admitans parametreleri kullanilarak ¢izilmistir.
Bu tezde, sagilma parametreleri kullanilarak sentez problemi ¢oziilmiis ve dolayisiyla alternatif

bir sentez metodu gelistrilmistir.
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CHAPTER 1
INTRODUCTION

The realization problem of network synthesis deals with all procedures and techniques that can
be used to identify a specific network with the impedance or admittance function which is either
given or determined by solution of the approximation problem. However, before it is possible to
solve the realization problem it is necessary that the impedance or admittance functions meet
certain constraints to insure that physically realizable networks having the desired characteristics
may be identified with it. To determine these characteristics, it is necessary to study the
characteristics of physically realizable networks.

Physical realizability is of primary importance in network synthesis, and the realizability of a
network is dependent on the relative position of the poles of its characterizing function. Usually,
network will be physically realizable if none of the poles and zeros of its impedance function
falls within the right half of the s-plane (o is positive and w either positive or negative).
For instance, it is not necessary for the zeros of the transfer impedance functions, representing
networks which couple two or more sets of terminals, to lie in the left half-plane or on the

jw-axis for the networks to be realizable.

However, of this point it is convenient to study only the characteristics of functions having poles

and zeros restricted to the left half of the s-plane or jw-axis.

If a polynomial is such that all real roots and the real parts of all complex roots are either zero or
negative, then the function is known as a Hurtwitz polynomial.

Most synthesis procedures require that network functions be broken up into a number of terms
which can be identified with network elements. A continued-fraction expansion is one procedure
that can often be used to decompose a network function. A second procedure for breaking up
functions is the partial-fraction expansion.

So it is possible to synthesize a given driving-point reactance function as any one of the four
Cauer and Foster forms (two from continued-fraction expansion and two from partial-fraction
expansion). In some causes it may be more desirable to synthesize one form than another, due to
practical considerations. Perhaps the element values for one form of network are not realistic

from the stand point of physical size, cost, weight or commercial availability.



In this work, synthesis of resistively terminated LC ladder networks is studied. In the proposed
synthesis procedures transfer scattering matrix components have been utilized. So in chapter 2,
fundamental properties of lossless two-ports and scattering parameters have been summarized.

In chapter 3, canonic forms of LC ladder networks are explained.

Then in chapter 4, proposed synthesis procedures and examples are given to illustrate the

utilization of the algorithms.



CHAPTER 2
FUNDAMENTAL PROPERTIES OF LOSSLESS TWO-PORTS

2.1. Scattering Parameters

The network parameters (like Z or Y parameters) need open and short circuits in order to acquire
the coefficients. As far as higher frequencies are concerned, it is difficult to accomplish an open
or short circuit, and the accuracy of any measurements depends on how well the terminations are
accomplished. Additionally, many active circuits oscillate at open and short circuit terminations,

and measurements executed under these conditions are meaningless.

S -parameters, or scattering is one of the useful network expressions developed to characterize
microwave circuits. The S -parameters are possible to be measured by employing any suitable
termination. Maybe the most important characteristic is that these parameters are possible to be

measured at very high frequencies in accuracy.

_a b
Z]_ I1 |2
; 4 Two-P 4
v , wo-Port ' 7
: Vi ! Network ! V2 ?
-«— «—
o}] a

Figure 2.1 General two-port network [1].

In Figure 2.1, you can see a two-port network which is driven at port 1 by a V, voltage source

with internal impedance Z,Q2 and terminated at port 2 by a Z,Q load. Z, and Z, are the

reference impedances and is possible to be designated as any value, although 50Q is the mostly

used value. The voltages and currents are shown in Figure 2.1, and two new parameters which

are functions of V,, I, and Z, are expressed as [1]

V,+Z1,
Q= ———
2,|ReZ,|

(2.1.9)

and



b =— i L (2.1.b)
2,|ReZ,|

where Z; as the complex conjugate of Z,, and Re Z, is the real part of the reference impedance.
If we select b, as the dependent variable and a, as the independent variable, the following

expression is possible for the two-port in Figure 2.1

bl = S113‘1 + S'12‘5‘2,

(2.2)
b,=S,,a +S,,a,.
Equation (2.2) is possible to be written in matrix form as [1],
b=Sa
where
b. S;; S
b:[l]S:{ H 12} and [a, a,] (2.3)
b2 S21 S22

for any two port network.

The coefficients of the S -matrix is possible to be found by substituting a, =0 and a, =0, then
calculating S,,, S,, and S,,, S,, inarow. From Figure 2.1, it can be seen that the output voltage

is (—1,Z,). Then if we replaced it into (2.1.a):

Vot 2,0, —1,Z2,+ 7,1,

= = =0
2,|Rez,|  2,|ReZ,|

2

a, is always zero at any port which is not attached to a source and terminated with the reference

impedance. So, the S -parameters of any network is possible to be measured with ease by

attaching a source to one port a time.



According to transmission line theory, it is possible to be expressed that [1]

Vi =V, +Vig

and

I _Vil _ViR
'z Z

where the subscripts I and R stand for the incident and reflected components of voltage, in a

row. If Z, is deemed to be real, and replacing into (2.1.a)

V. V.
L +V. Z|- "R
a_Vi+Zi|i _(\/|I+ |R)+ I[Zi Zij_ V“
" 2Rez]| 2 /Rez| Rez,|’
and into (2.1.b)
(V) v,
4V )—Z7| LR
_Vi—Zi*Ii _(V|I+ |R) I(Zi Zi]_ ViR
" 2/Rez,| 2./Rez|] RezZ,|

That shows that a, is a function of the incident voltage and b; is a function of reflected voltages.

Both parameters are the square root of power, as it can be seen below, that is to say

So, a, is an incident wave, |a,|* is incident power, b, is a reflected wave, and |b;|* is reflected

power. According to (2.2), it can be seen that the reflected wave at each port is the total of the

incident waves from all ports changed by coefficients of the S -parameter matrix.

5



By using Figure 2.2, |a1|2 is possible to be expressed as,

i VJ v,

‘ 2[Rz ‘ " 4Rez]

la|" =

and it is concluded that |a1|2 is the available power from the source. If we substract the reflected

power from the available power from the source, the following can be found

|ai|2 —|bi|2 =aa —bb’

vz )+ z) -z -z
4ReZ,|

2z, (V17 +v)1,)
~ 4Rez|
z

= |Re lZl| Re(vlll*)

This is the transfered power to the network. When the source is attached to port 1, |a2|2 is zero

and |b,|” is possible to be found as

2

V 22|2 :|ReZz|||2|2

2\|ReZ,|

|2|_

which is the transfered power to the load.

S -parameter matrix coefficients (S;) are all ratios of reflected-to-incident waves, which is a

very suitable expression for microwave circuits. If we attach generator with available power |ai|2
toport i, a atport i and b at all ports is possible to be measured. At port i,

6



bi _Vi_zi*li _Zinli_zi*li _Zin_Zi*

i a.__V|+ZIII _Zin|i+zi|i _Zin+zi

where Z, is the input impedance at port i. Thus,

S,; =T, =Reflection coefficient at port i

and

by|’ _ _
|3n|2 = | '| > = Reflected power from the input / available power from the source = Return loss at
i

port i.

At any port j, whilst i# j,

2

b.

‘Sji‘z :‘ "2 =Transfered power to the load / Available power from the source = Transducer
a.

power gain.

According to the conservation of energy, the total power incident at all ports of a passive network
equal the power received by the network, plus power coming from the network. Thus the

difference between incident and reflected power gives the power dissipated in the network, that is
to say |ai|2 —|bi|2. The over-all dissipated power is possible to be concluded as the total of the

dissipated power at each port [1]:

n

=3 (af ~b[)- Saa -0 or
i=1 i=1

i=1

P, = [a*]Ta—[b*]Tb (24.9)

where [a*]T and [b*]T are acquired by substituting each element of a and b with its complex

conjugate and then by transposing. From (2.3),



b=Sa

o[ =[s" Tl

which is replaced into (2.4.a):

o, <[ Ta-[s Tl sa

and then rewritten as

P =l T -[s] s} (2.4.0)

where | is the unit matrix. The term between braces in (2.4.b) indicates if the dissipated power
IS positive or negative. This term is possible to be written as [1]

Q=1-[s"]'s @5)

which is expressed as the dissipation matrix. When Q is not negative, the network is passive, or

the dissipated power is greater than or equal to zero.

As far as a passive two-port is concerned [1],

|311|2 "'|821|2 <1 (2.6.8)
and
1S,|" +[S,,|" <1 (2.6.b)

If the two-port is nondissipative, in that case the dissipated power is zero and (2.5) is possible to

be stated as



[s]'s=1

or

{S; S;MSM 812}{1 0}
S, Sy |lSx S 01

which is possible to be broadened as stated below

SIS, +55,S,, =1 (2.7.3)
S'S,,+55,S,, =0 (2.7.)
S5S,,+55,S,, =0 (2.7.0)
S5S., +55,5,, =1. (2.7.d)

According to (2,7), it is possible to be stated that
Sllsl*l = 522322 (2.8.9)
S.,S., = S,,S,,. (2.8.b)

Based on these equations it is possible to be stated that the magnitudes of reflection and

transmission coefficients are bounded by unity, i.e. ‘Sji‘ <1l for p=jow.

From the discussions above, the fundamental features of the scattering matrix of a nondissipative
two-port is possible to be stated as [2,3]:

1. The elements of S -matrix are rational and real for real p.
2. S -matrix is analyticin Rep>0.
3. S -matrix is paraunitary and meets S!S =1 Vp.

4. If S -matrix is symmetric (S,, =S,,), then the nondissipative two-port is reciprocal.

The relevant impedance and admittance matrices can easily be obtained, if the above conditions
stated is met by the scattering matrix and the realizability theory in immittance formalism is

possible to be established. It is usually stated based on Darlington’s approach and stated by

9



means of the driving point functions of a two-port terminated by a resistance at the output. At
this stage, it is purposeful to state the below fundamental features regarding the driving point
reflectance and impedance functions [2,3]:

e The function S,(p) is stated to be bounded real (BR) if
1. S,(p) isreal for p real,
2. S,(p) isanalyticin Rep>0,
3.1S,(jw)| <1 forall w.

e If we use the bounded real reflection function (S,(p)) of a resistively terminated two-

port stated above, the corresponding driving point input impedance is obtained from

_1+5,(p)
Zl(p)—l_sl(p)- (2.9)

This impedance function is a positive real function (PRF) and meets the below conditions,

1. Z,(p) isreal for p real,
2. ReZ,(p)>0 for Rep>0.

The following is possible to be stated for the realizability of driving point functions as a
resistively terminated two-port network:

A rational positive real impedance function (or a bounded real reflection function) can be
realized as a resistively terminated nondissipative two-port.

When handling cascade connected networks, usually the scattering transfer matrix is employed in

substitution for the scattering matrix. If we recompose the port variables a, and b, in the

scattering equations (2.2), the following is obtained:

bl _ T11 T12 a,
{al:|_|:T21 Tzz}{bz}. (210)

This expresses the scattering transfer matrix T . The relations between the elements of T -matrix

and the elements of S -matrix are as follows:

detS
T, =- , Ty=—o2 T, =" T22=S— (2.11)

S21 21 21 21

10



where det[S] expresses the determinant of the S -matrix. According to the definitions stated
above, the elements of the scattering transfer matrix for a nondissipative two-port are rational
functions, and if the two-port is reciprocal too, the reciprocity condition S,, =S, leads up to the
expression of det[T]=1.

2.2 Canonic Representation of Scattering Matrix and Scattering Transfer Matrix

Scattering matrix is possible to be expressed by employing three canonic polynomials. For a
nondissipative two-port, the canonic forms of the scattering matrix and the scattering transfer
matrix with respect to these polynomials are stated by

h  uf. . h
gt M) L _1fHE (2.12)
gl f —uh fluh g

where f, = f(—p) means the paraconjugate of a real function. The polynomials f,g and h
possess the following features [2,3]:

e f=1(p),g=9(p), and h=h(p) are real polynomials in the complex frequency p.
e ¢ isastrictly Hurwitz polynomial.

e f ismonic, i.e. its leading coefficient is equal to unity.

f,g and h polynomials are related by the condition
9g.=hh.+f f. (2.13)

e s isaconstant (u=+1).

If the two-port is reciprocal, in that case the polynomial f is either even or odd. In this case,
u=+1if f iseven,and ¢ =-1if f is odd. Consequently, for a nondissipative reciprocal two-

port

u=—=41 (2.14)

and the expression (2.13) is possible to be changed as

gg.=hh +puf?. (2.15)

11



CHAPTER 3
CANONIC FORMS OF LC LADDER NETWORKS [4]

Now we are going to investigate the functions we made mention of; we will talk about their
characteristics, the characteristics of the networks to realize them and their driving-point

reactance functions.

Z,(p)= I;Ep;
— (a‘n p + a'n—2 pn_2 to + a0)+ p(an—l pn_2 + an—s pn_4 Fo + al)
~ (byp™#b, ,p" ey )+ s(b, P2 4By P by
- B~ Bz + odlz o)
_N(p)
Z,(p) = D(p)
2= b e b @)
Re[Z,(p)],_,, = 22+ BB, (3.2)

A’ +®°B,’

It is unity that both the highest-order terms and the lowest-order terms of in a pure reactance
function differ in order. The result of the division would be a constant term which may indicate
that a resistance is present in cases where the orders of the numerator and denominator are equal.
Although we are dealing with a pure reactance network, the real parts of the function have to
satisfy the conditions we have listed in the (3.2) as well. Re[Z,(jw)]have to be positive and real
for a physically realizable network. Consequently A A, + »°B,B, >0, with respect (3.2). When
A A, +w’B,B,equals to zero, a limiting condition occurs which will be valid for reactance
networks except in the trivial cases when Z,(p) =0,Z,(p) = ,orZ,(p) = p. That is, just in two
cases the real part of the function can be zero; either A and B, must be zero or A, and B, must

be zero. The driving-point impedance will be as such:

N(p) _ pB, 3.3
Z,(p)= D(p) ~ 7 (3.3)
or

N(p) A
7 =M _ . 3.4
1(P) D(p) _ P, (3.4)

12



In the former equation, if we substitute p = jw, it will form two general reactance functions both

of which will have zeros atw =0; one of which will have a pole as  approaches to infinity and;

the other having a zero at infinity. These forms can be written as such:

Case A:
. (0 =0, ) @0% —0,)..(0? - &*n)
= 3.
Zi(Je)= JakK (0* — 0 )@° — 0°)..(0% — @*n1) (35)
CaseB:
Z (@) = joK (0* — 0, )(@° —®,)..(0* — ©*ns) (3.6)

2 —0)(@0? - ,)..(0? - 0*)

(0
If we substitute p= jo in (3.4), then we will have two general reactance functions both of
which will have poles atw = 0. At infinity one of these functions will have a zero. Whereas, the

other the other has a pole as @ approaches to infinity. These forms can be written as such:

2o = fo e e o), =
jo (0 -0, ) (0 —®,")...(0° — @ n1)

2,0y = o @) co )l moh), (32)
Jo (0 —o, )0 —®,")..(0° — o)

Out of these four forms listed above we can synthesize various different physically realizable
reactance networks. Also it is possible to derive and synthesize susceptance functions having the
same forms as physically realizable networks. These equations are formed by F. M. Foster. He

showed the poles and zeros by t+w, tw,,.....x o, ,,t®,. As K is a positive real constant
and o, < w, < @,..... <o, ,< ®,, mutual separation of the poles and zeros are accountes.

The reactance plot of the function we have seen in (3.5) which has a zero at @ =0 and poles at ®

= oo, Will have such a form:

13



X(j w)4

>

Figure 3.1 Reactance plot for Eq. (3.5)
Such a network will pretend like an inductor at low and high frequencies.
The reactance variation of the function we have seen in (3.6), which has zerosat @ =0and at ®
= oo, Will have a frequency similar to the figure above, except that the reactance will approach
zero when o approaches to infinity. Such a network will pretend like an inductor at low
frequencies and like a capacitor at high frequencies.
Similarly, reactance variation of the driving-point function we have seen in (3.7), which has

poles at w =0 and at o = oo, will have such a form:

X (j @)

Figure 3.2 Reactance plot for Eq. ( 3.7)
Such a network will pretend like a capacitor at low frequencies and like an inductor at high
frequencies.
The reactance variation of the function we have seen in (3.8), which has a pole at w=0and a
zero at » = oo, will have a frequency similar to the figure above, except that the reactance will
approach zero when ® approaches to infinity. Such a network will pretend like capacitors at low

and high frequencies.

14



3.1. Foster Canonic Forms

There are several networks that can be synthesized to realize these functions. For instance if the
equations shown in (3.5) and (3.6) form a partial-fraction, then the residues k, of the conjugate
poles £ @, must have equal magnitudes by using the conjugate poles as denominators. By

combining these conjugate poles, the partial-fraction expansion will have such a form:

: . 2k 2k
Z(jo)=] ko“”‘(@z _10;2) (a)z _30&))2)4_}
L 3

(3.9)

Then, if we substitute p= jw, and if we replace the constant factors by new constants the

equation will be

Z,(p)=Kyp+ 2K1p2+ 2K3p2+--- (3.10)
pP*+of P+

While the term K, p stands for an inductor of K, henrys, the 2", 3", 4™ etc. terms will take the

form KO%Z +w2), same as the impedance of a parallel combination of inductance and
1

capacitance, which was previously indicated in equation:

2
Series combiniation:  Z,(p) =L, +i = LCp~+1 :
C, Cp
Parallel combination: Z,(p) = ! = Lf : (3.11)
C 1 LCp®+1
p +r

p
In the equation above, whether the expansion was derived from (3.5) or (3.6) determines the

form last term. If it was derived from the former, then the form of the last term will

be Kl%)z N wz), whereas if it was derived from the latter the form of the last term will be Kp” :
1

representing a capacitor.

As we have just mentioned, the last term of the (3-10) will depend on from which equation it was
derived. On the other hand the first term represents an inductance and the remainder of the terms
is a series of parallel LC elements. As it is not possible for constant terms to exist, hence a term

having the form of K p could be combined with the first term, the last term have to have the

n

form of

, if it is present.

We can realize (3.5) and (3.6) as LC networks of the form shown below, since (3.10) represents

the sum of a series of impedances derived from them.
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L1 L2 L1

Lo (irll
- |
c1 c2 cn-1
2

O

Figure 3.3 First Foster form

. . K :
Considering (3.5), when we expand the function the term p” will no longer be present,

therefore the last element of the network above, that is the series capacitor, will also no longer be

present. It is first element will be an inductor. Considering (3.4), —~ will still be present,
p

therefore the first element will be an inductor and the last element will be a capacitor.

We can also expand the functions we have seen in the (3.7) and (3.8) in partial fractions by using
the conjugate poles as the denominators. Thence, the residues k, of the conjugate poles + @, must
have equal magnitudes by using the conjugate poles as denominators. By combining these

conjugate poles, the partial-fraction expansion will have such a form:

) |k k k
Z,(jo) = J[;OJF(; j‘;’)z)+ (wf _“Zz)+--}-
2 4

Then, if we substitute p= jw, and if we replace the constant factors by new constants the

(3.12)

equation will be

z(p)=FKo, KeP Kb (3.13)

2 2 2 2
P pt+to, p t+ao,

: : K . .
In the latter equation, while the term —Z stands for series capacitor, the 2", 3", 4™ etc. terms of
p

the function stand for parallel LC combinations, which were previously indicated in (3.10). In the
equation above, whether the expansion was derived from (3.7) or (3.8) determines the form last

term. If it was derived from (3.7), then the form of the last term will be K, p which indicates that

a series inductor is present, whereas if it was derived from (3.8) the form of the last term will be
K:p (pz N wz). Consequently, (3.13) indicates that the type of networks formed will be same for
1

equations (3.5) and (3.6) and for (3.7) and (3.8).
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We can also use the admittance functions Y, (p) = to realize the (3.5), (3.6), (3.7) and

1
(3.8). Similar to the method we use for impedance functions, when we expand the admittance
functions in partial-fraction expansions, the result will be the terms of the

K
KpiilKlp

form P (pz N wz). If present, the first and/or last terms of the expansion will be of the
1

K . . . .
form Kp or—, the former denoting a capacitor of K farads and the latter denoting an inductor
p

of%henrys. The remaining terms will be of the form Kl%)z N wz) representing the admittance

1

of a series LC combination. To exemplify, the impedance of a series LC combination shown in

2 C
LCP™ L therefore, its admittance will be ——2— . As a result,

equation (3.11) was given as
| (3.10) : LCp® +1

p
the impedance of (3.5), (3.6), (3.7) and (3.8) can be realized as admittance functions, so that a

second type of network will be formed, which is demonstrated in the figure above.

(e, - ———
L1 % L2 Ln-1
Y1l
—(>p) L0§ —_cC1 —_—cC2 —=cCn1 ==Cn
(o, L 2 - --

Figure 3.4 Second Foster form
The equations (3.5), (3.6), (3.7) and (3.8) will determine if a parallel inductor or capacitor will be
present as the first or last element of the network.
The networks we have seen in Figures 3.3 and 3.4 are the first two forms of pure reactance
networks that were developed by R.M.Foster, therefore sometimes called as the Foster canonic
forms. They entail networks that are able to represent any given impedance function through a
minimum number of elements. The minimum number of elements that a pure reactance network

. n+m+1 . .
would have IS+T+, where n represents the degree of the highest-order terms in the
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numerator polynomial and m represents the degree of the highest-order terms in the denominator
of the driving-point function.

3.2. Cauer Canonic Forms

We can show the driving-point impedance for a pure LC network as the ratio of two Hurwitz
polynomials. As it is unity that the highest-order terms of the numerator and denominator
polynomials differ in degree, we can presume that the numerator is of n™ order and the
denominator is of (n—1) order. Accordingly we may write the impedance as such:

n n-2 n-4
p-+a,,p +a, ,p t+--

Z =K .
1(p) pn_l+an—3pn_3+an—5pn_5+"'

(3.14)

We may expand such a function through a process of long division and inversion to produce a
continued-fraction expansion. Such a continued-fraction expansion is likely to have a form

shown above:

Z,(p)=Lp+ 1 : (3.15)
C,p+

Lp+r
2P C,p+.

In the expansion, we have substituted the multiplying constants by new constants, namely,

L,,C,,L,,C, etc. Accordingly, the above equation may suggest a third form of network, which

is shown below (Figure 3.5). The last term of the continued-fraction expansion being an inductor

or a capacitor determines the way in which the network will be ceased.

L1 L2 L3

- - -

Z1(p)
—

Tcl C2 = =C3
o

Figure 3.5 Network for expansion of Eq. (3.15).

We can also invert the impedance function of (3.14) in order to give an admittance of

1
Z,(p)

Y, (p) = . Hence, we may also expand the admittance to produce a continued fraction

which can have such a form:

18



1 1

Z(p) 1, 1
cp 1.1 1 1

+ + + -
Lp C,p Lip - . (3.16)

Y, (p) =

Then, we have substituted the multiplying constants by new constants, namely, L,,C;,L,,C, etc.
again. Accordingly, the above equation may suggest a fourth form of network, which is shown
below (Figure 3.6). The last term of the continued-fraction expansion being an inductor or a
capacitor determines the way in which the network will be ceased.

o—i

Cc2 C3
Il |1 ®
1

E@ L1 L2 L3

[e}

) Figure 3.'6 Network for exp'ansion of Eq. ('3.16)

We may also presume that in the driving-point impedance of equation (3.14), the denominator is

of ™ order and the numerator is of (n—1) order, hence derive the networks that are shown in

Figures 3.5 and 3.6. In such a situation the expansion of Y, (p) = will yield a network in

1

the form of Figure 3.5 and the expansion of Z,(p) will yield a network in the form of Figure 3-6.

Also, another two canonic forms of reactance functions will be produced out of these networks.
For example, suppose we have a continued-fraction expansion that we use for testing a Hurwitz
polynomial. We separate the polynomial into E(p) and O(p), E(p) standing for the even powers of

s and O(p) standing for the odd powers of s. In order to run the test, we need to develop

E®) |, roy OO
op * P T E)

coefficients must be positive real numbers; hence the expansion must produce n of them for to let

expansions of either R(p) = till we determine each coefficients. The

the n™ order polynomial be positive real.
Suppose that we choose n as an even number. Then, E(p) will be an even-ordered polynomial of

order n, and O(p) will be an even-ordered polynomial of order (n—1), for a reactance function.

The ratio R(p) = % will have the form that of equation (3.14). If it is positive real, then there

could be only n terms in its continued-fraction expansion. When we choose n as an odd number,

then O(p) will be an odd-ordered polynomial of order n, and E(p)will be an odd-ordered
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O(p)
E(p)

must have only n terms. As a result, as it is unity that the highest-order terms of the numerator

polynomial of order(n—1), for a reactance function. This time the expansion of R(p) =

and denominator of a reactance function would differ, the continued- fraction expansion of these
functions will always produce n terms.

(n+m+1)

The elements of a canonic reactance network will be 5 Here, n stands for the degree

of the highest-order terms in the numerator and m stands for the degree of the highest-order
terms in the denominator of the reactance function. The canonic form will have n elements for a
numerator with a degree of n and denominator with a degree of n=m-1. Accordingly, the
network that represents the continued-fraction expansion of the reactance function must also be
canonic. When the highest-order term of the denominator is greater than the highest-order term
of the numerator by unity, the case will be quite the similar.

The figure belows reprents a summary of the canonic Foster and Caurer forms.

Ly

Structure 1

)
Structure 2 )

\_°
/- o 228 N Y
Structure 3 = J— J_
T T
b) ’
< o—— I
N

Figure 3.7 Canonic Structures of LC Ladder Networks, a) Foster’s forms b) Cauer’s forms
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CHAPTER 4
PROPOSED SYNTHESIS PROCEDURES

4.1. Synthesis via Scattering Transfer Matrix Factorization

Decomposition of a lossless two-port network is a classical problem which has been formulated
in the literature in many different ways. The conventional approach is to start from a given
driving-point function (impedance or reectance) and extract elementary sections, depending on
the nature of the transmission zeros being extracted. In this approach, the extraction mechanics
and the computation of the remaining impedance or reflectance functions can be quite involved
and usually require intensive computational operations. An alternative way of accomplishing the
canonic decomposition of lossless two-ports in cascade involves factoring the chain matrix or the
scattering transfer matrix. It has long been recognized that the transfer matrix constitutes a better
tool, mainly because of the simple representation in terms of only three canonical polynomials
[5]. The factorization of the transfer matrix of a lossless two-port into a product of two simpler
transfer matrices has been treated rigorously by Fettweis [6,7]. The problem is reduced to the
solution of a set of linear equations introducing a mathematically well formulated alternative for
the conventional cascade synthesis problem. The methods works directly on the canonic
polynomial description of two-ports and involves algebraic decomposition of a given polynomial
set, which describes the transfer matrix of a lossless two-port into subsets of polynomials of the
same type.

As it is well known, canonic forms of the scattering matrix S and the scattering transfer matrix

T of a lossless two-port N, referred to a real terminating resistances are defined as

S(p)

1 (h(p) uf(—p)] T 1 (ug(—p) h(p)j 4.1)

"o\ f(p) —uh(=p) T(p)\uh=p) g(p)

where g(p) is a strictly Hurwitz polynomial of degree n, and h(p) and f(p) are real

polynomials of degrees < n satisfying the paraunitary relation

g(p)g(=p) —h(p)h(=p) = f(p) f(-p) (4.2)
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_______________________

Figure 4.1 Decomposition of a lossless two-port

The problem is to decompose the lossless reciprocal two-port N into two cascade connected

lossless two-ports N, and N, which are also reciprocal (Fig 4.1). This amounts to factoring the

transfer matrix T into a product of two transfer matrices [8],

T(p) =T.(p)-T,(p) (4.3)

where

(4.4)

-p) h
T ()=t (uaga( P) h.(p)

— h
J, Tb( ) 1 (/ubgb( p) b(p)j
fa(p) lualla( p) ga(p)

f,(p) Lthy (=P) 9, (P)

The polynomial sets {g, (p).h, (p), f,(p)} and {g, (p),h, (p), f,(p)} have the same properties as

{g(p), h(p), f(p)} and in particular must satify paraunitary relations similar to (4-3), i.e.,

9.(P)9.(=p)—h,(p)h,(—=p) = f,(p) f.(-=P), (4.5)
9, (P) 9y (=P) —hy, (P) N, (=p) = f,(p) f, (=P)- (4.6)

Equation (4) implies the following:

9(p) = 9.(P) 9, (P) + 21,0, (=P)h, (P), (4.7)
h(p) =h.(P)9,(P) + 1. 9. (—=P)N, ()., (4.8)
f(p)=f.(p)f,(p), (4.9)
M= g . (4.10)

Under the use of these equalities, if one writes T, (p) =T. (p)T(p), three equations can be
obtained as

h(p)g.(P)—g(p)h, (p) (4.11)
H, . (p) . (=p)

h,(p) =
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9(P)g. (=p) —h(p)h, (=p) (4.12)

R N T B

. (p) = :((F;)) 1 (4.13)

=15 (4.14)
Ha

So if the scattering transfer matrix describing the network is given, the following synthesis
algorithm can be proposed: The component type and its value is determined via the given
scattering transfer matrix. Then the polynomials of the extracted component are formed, and by

using T, (p) =T, (p)T(p) expression, the polynomials of the remaining network are obtained.

This process is repeated until the termination resistance is reached.

4.2. Low-Pass Case

The scattering transfer matrix of the low-pass network is given as

1 (u#9(=p) h(p)

T(p) = —( (4.15)

f(p)\ih(=p) 9(p)
where the polynomials g(p), h(p) and f(p) can be written as follows
9(P) =0 + 9P +9,P* +...+9,p", (4.16)
h(p) =h, +hp+hp*+...+h p", (4.17)
f(p)=1. (4.18)
Component value of the element that will be extracted can be calculated as
CV = Qo tuh, (4.19)

01— H hn—l

where 1= h—” and if 4 =+1, the component is a series inductor, if ¢ =-1, the component is a

n
paralel capacitor.

Then the polynomials (hc(p), gc(p), fc(p)) and their paraconjugates (hc(—p), gc(—p), fc(—p))

of the extracted series inductor or paralel capacitor can be calculated as

hc(p) = he, p+ he, =%p, hc(-p) = —hc, p + he, =—% P, (4.20)
CV 2CV
gc(p) = gc, p+9c, = p+1,  gc(-p)=-gc,p+gc, = p+1, (4.21)
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fc(p)=1, fc(—p)=1, w. =+1 if the component is a series inductor and g. =-1 if the

component is a paralel capacitor.

By using these polynomials and the constant ., scattering transfer matrix of the component can

be formed as

1 c gc (_ p) hc ( p)
T.(p) = (ﬂ j : (4.22)
fo(p)\ach.(=p)  9.(p)
Then scattering transfer matrix of the remaining network can be calculated as
~ 1 (#r9:(=P) hg(p)
T (P) =T (P)T(p) = [ : (4.23)
’ fa(P) L teha (=P)  9r(P)

The second component can be extracted by using the polynomials of the remaining network,
hs (P), 9 (P), fr(p) and the constant s, .
The extraction of the components proceeds in a similar fashion until the final termination

resistance is reached.

4.2.1. Low-Pass Case Example
The scattering transfer matrix of the low-pass network is given as

T(p):_(ug(—p) h(p)J
F(p)\eh(=p) a(p)

where the polynomials g(p), h(p), f(p) and the constant x are given as

1

h(p) = p+14p° -5p°+60p*,

g(p) =1+7p+24p*+35p°+60p*,

f(p)=1, u=+1.

Since u =+1, the first component is a series inductor, and the value of the inductor is

CV=g4+ﬂh4 _ 60+1-60 _
9s —uhy  35-1-(-9)

The polynomials of the component can be written as

CVv 1.3 3
hc(p):hclp+hc0:ﬂTp= pz_p!

hc(_p)z_hclp+h00=_—p=_ Pp=—20P,
CVv
gc(p)zgclp+gc0 =7p+1=—p+1,
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Ccv 3
gc(_p)z_gclp_'_gco Z_T p+1=_§ p+1

fe(p)=1and f.(-p)=1.
Then the scattering transfer matrix of the remaining network is

1 [:uRgR(_p) hR(p)]

TP =T PO =0 ahe p) 0a(p)

where

he (p) =-20p° +5p° —%p N (—p) =20p° +5p° +%p,

11 11
0 (P)=20p +15p° +=-p , g (~P)=-20p° +15p” ——"p,

fr(p) =1, fo(-p)=1.
Then calculate the new constant () via the polynomials of the remaining network obtained
above to decide the type of the second component as follows;

U= & = _Z—%O =-1. Since u=-1, the second component is a paralel capacitor. The value of
93

the paralel capacitor is

g; +uh;  20-1-(-20) 5

9,-uh,  15+1.5

CV =
After completing the calculations, the following component values are obtained,
L=3 C =2 L, =5 C,=4 R=1,where R isthe termination resistance.

1 L2

O— Y Y\ YN ..

—C1 —_—C2 § R

O & &
Figure 4.2 Synthesized low-pass network
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4.3. High-Pass Case
The scattering transfer matrix of the high-pass network is given as

1

- h
T(p) = (ug( p) (p)J (4.24)
f(p)\uh(=p) 9(p)

where the polynomials g(p), h(p) and f(p) can be written as follows

9(P) =gy + QP+, P +...+ 0, P", (4.25)
h(p) =h, +hp+hp*+...+h p", (4.26)
f(p)=p". (4.27)
Component value of the first element that will be extracted can be calculated as

cy = J—Hh (4.28)

g, +1hy

where u=-2, and if g =+1, the first component is a series capacitor, if x=-1, the first

0
component is a paralel inductor.
Then the polynomials (hc(p), gc(p), fc(p)) and their paraconjugates (hc(—p), gc(—p), fc(—p))

of the extracted series capacitor or parallel inductor can be calculated as

he (p) = he, P+ he, :%' he (=p) =—h¢, p + he, :ﬁ (4.29)

1
9c(P)=0ciP+0co = P+ 9c(=P)=-9uP+dco =—P (4.30)

2CV "oV
fc(p)=p, fc(—p)=-p, y. =+1 if the component is a series capacitor and x. =-1 if the
component is a paralel inductor.

By using these polynomials and the constant ..., scattering transfer matrix of the component can

be formed as

1 /ucgc(_p) hc(p)
T.(p) = ( : (4.31)
fc(p) luchc(_p) gc(p)
Then scattering transfer matrix of the remaining network can be calculated as
_ 1 (#:9:(=P) hg(p)
To(P) =T (P)T(p) = ( : (4.32)
’ fa(P) Lt (=) 9r(P)

The second component can be extracted by using the polynomials of the remaining network,

hs (P), 9 (P), fr(p) and the constant s, .
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The extraction of the components proceeds in a similar fashion until the final termination

resistance is reached.

4.3.1. High-Pass Case Example
The scattering transfer matrix of the high-pass network is given as

(o) :%(ug(—p) h(p)J
(P)\xh(=p) 9(p)

where the polynomials g(p), h(p), f(p) and the constant x are given as

h(p) = 0.0139—0.0556 p + 0.1667 p?,

g(p) =0.0139+0.1111p +0.5p” + p°,

f(p)=p°, u=+1.

Since u =+1, the first component is a series capacitor, and the value of the capacitor is

g, —uh, _0.1111+0.0556
go +4h, 0.0139+0.0139

CV =

The polynomials of the component can be written as

e (P) =heyp+hey = £ === =
he (=p) = —he, p+he, :ﬁzrlfj:é'
1 1 1
9c(P)=0eiP+Gco =Pt =Pt~ =P+,
1 1
9c(-P) =GP+ 0go = =Pt =P+~ =-P+ .

fo(p)=pand f.(-p)=-p.

Then the scattering transfer matrix of the remaining network is

1 [:uRgR(_p) hR(p)]
fe(P)\ sghz (=p) 9r(p)

T (p) =T, " (P)T(p) =

where

h, (p) =—0.0833+0.0833p , h,(—p) =—0.0833-0.0833p,
U (p)=0.0833+0.4167p+ p> , gs(—p)=0.0833-0.4167p + p?,

fo(p) = p*, fo(=p)=p°.
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Then calculate the new constant () via the polynomials of the remaining network obtained
above to decide the type of the second component as follows;

U= fo. _ 00833 -1. Since x=-1, the second component is a paralel inductor. The value
g, 0.0833

of the paralel capacitor is
g, —uh 0.4167+0.0833 3

CV = = =
g, +uh, 0.0833+0.0833
1L i
© 1l * Il
Ll§ éR
O ’

Figure 4.3 Synthsizes high-pass network
After completing the calculations, the following component values are obtained,
C,=6, LL=3 C,=2 R=1,where R isthe termination resistance.
4.4. Band-Pass Case

The scattering transfer matrix of the band-pass network is given as

T(p):%(ug(—p) h(p)J (4.33)
(P \uh(=p) 9(p)

where the polynomials g(p), h(p) and f(p) can be written as follows

9(P) = o+ 9P+, P +...+ 7, P", (4.34)
h(p) =h, +hp+hp*+...+h p", (4.35)
f(p)=p"%. (4.36)

h : L
The constant z can be calculated as 4 = —2. If 1 =+1, the block that will be extracted is series
0

connected series-LC section, and the component values of this series-LC section can be

calculated via the following equations

L = gn+:uhn and C:gl_:uhl

= . (4.37)
Oy —#h do +1hy

Then the polynomials (hc(p),gc(p), fc(p)) and their paraconjugates (hc(—p), gc(—p), fc(—=p))

of the extracted series inductor and series capacitor can be calculated as;
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For series inductor:

hc(p) =hc, p+hc, = 'UTL p,hc(—p) =-hc,p+hec, = —ﬂTL P, (4.38)
L 2L

gc(p) = gc, p+gc, =§p+1, QC(—p)=—gclp+gco=—7 p+1, (4.39)
fc(p) =1, fc(-p)=1, u. =+1. (4.40)
For series capacitor:

hc(p):h01p+hco Z%’ hc(_p):_h01p+hco =% (4-41)

1 1

gc(p)zg(:lp‘*‘gco:p"‘fr gc(_p):_gmp*‘gco:_p‘*‘i (4.42)
fc(p)=p, fc(-p)=-p, x#. =+1. (4.43)

By using these polynomials belong to the series inductor and the constant .., scattering transfer

matrix of the series inductor can be formed as

1 :ucgc(_p) hc(p)
T.(p) = [ . (4.44)
fc(p) :Uchc(_p) gc(p)
Then scattering transfer matrix of the remaining network can be calculated as
_ 1 (#:9:(=P) hg(p)
T (p)=Tc1(p)T(p)=—{ : (4.45)
’ fa(P) Lt (=P)  9r(P)

Then by using these polynomials belong to the series capacitor and the constant ., scattering

transfer matrix of the series capacitor can be formed as

1 lucgc(_p) hc(p)
T.(p) = ( : (4.46)
fc(p) :Uchc(_p) gc(p)
Then scattering transfer matrix of the remaining network can be calculated as
_ 1 (#:9:(=P) hg(p)
T (p)=Tc1(p)T(p)=—( : (4.47)
’ fa(P) Lt (=) 9r(P)

If «=-1, the block that will be extracted is parallel connected parallel-LC section, and the
component values of this parallel-LC section can be calculated via the following equations

L:gl_—'Uhl and C :g”—‘_—’Uh”.
g, +uhy Oy —#h

Then the polynomials (hc(p),gc(p), fc(p)) and their paraconjugates (hc(—p), gc(—p), fc(—=p))

(4.48)

of the extracted parallel inductor and parallel capacitor can be calculated as;
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For parallel inductor:

hc(p):hmp"‘hco:Z_IuL hc(_p):_hc1p+hco=_2_lul_
(4.49)

1 1
gc(p)=9c1p+gco:p+zx gc(_p)=_g(:1p+gco:_p+z (4.50)
fc(p)=p, fc(-p)=-p, (4.51)
For paralel capacitor:

uC uC
hc(p) = he, p+ hc, :7p, hc(-p) = —hc, p + he, :—Tp, (4.52)
C 2C
gc(p) = gc, p+gc, =3 p+1, gc(—p) =-gc, p +gc, == p+1, (4.53)
fc(p) =1, fe(-p)=1, u. =-1 (4.54)

By using these polynomials belong to the parallel inductor and the constant x., scattering

transfer matrix of the parallel inductor can be formed as

1 /ucgc(_p) hc(p)
T R — . 455
+(P) fc(p)(uchc(—p) gc(p)j (#55)

Then scattering transfer matrix of the remaining network can be calculated as

1 [:uRgR(_p) hR(p)]
fo (P) LetrNr (=P)  9r(P) '

Then by using these polynomials belong to the parallel capacitor and the constant . , scattering

To(P) =T, (P)T(p) = (4.56)

transfer matrix of the parallel capacitor can be formed as

1 /ucgc(_p) hc(p)
T.(p)= ( : (4.57)
fo(P)\ sch.(=p)  9.(p)
Then scattering transfer matrix of the remaining network can be calculated as
_ 1 (#r9:(=P) hg(p)
T (p)=Tc1(p)T(p)=—[ : (4.58)
" fa(P) el (=P) G (P)

The next block can be extracted by using the polynomials of the remaining network,

hs (P), 9: (P), fr(p) and the constant s, .
The extraction of the components proceeds in a similar fashion until the final termination

resistance is reached.
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4.4.1. Band-Pass Case Example

The scattering transfer matrix of the band-pass network is given as

1 - h

T(p) = (ug( p) (p)J
f(p)Luh(=p) 9(p)

where the polynomials g(p), h(p), f(p) and the constant x are given as

h(p)=1-2p+26p* +30p® +120p*,

g(p)=1+8p+56p> +90p°® +120p*,

f(p)=p% u=t=to
g, 1

Since u=+1, the first block is a series connected series-LC section, and the component values

of the section are

L= g, +uh, =120+120=4 and C — g, —uh =8+2=5.
gn—l_:uhn—l 90-30 go +,Uh0 1+1
For series inductor:
hc(p):hclp+hC0=’uTLp:gp:2p, hC(—p):—hClp+hC0:—'UTLpz—Zp,
L 4
gc(p) = gc, p+9c, =§p+1=§p+1=2p+1,

2L
gc(—p) =—gc, p +9c, iy p+l=-2p+1,

fc(p) =1, fc(-p)=1, u. =+1,
Then after extracting the series inductor, the scattering transfer matrix of the remaining network
is

T (p) =T, " (P)T(p) =

1 [:uRgR(_p) hR(p)]
fe(P)\ sghz (=p) 9r(p)

where
he(p) =1-2p+6p>—30p° , h(—p) =1+2p+6p” +30p°,
gx(P)=1+8p+36p> +30p° ,gg(-p)=1-8p+36p*—30p°,

fe(p)=p*, fr(=p)=p".
For series capacitor:
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he (P) = hey P+ =%=2—2=%, he (—p) = —he,p+ heg =%=%
1 1 1
9c(P)=deiP+ 9o = Proc=Proe=P+
1 1
gc (=P) =-0c1P+9co =P =P

fc(p)=p, fc(=p)=-p,
Then after extracting the series capacitor, the scattering transfer matrix of the remaining network
is

- h
TR(p)zTC’l(p)T(p)= 1 [ﬂRgR( p) R(p)]

fo(P) L rhr (=P)  9r(P)
where
he(p)=-1-6p* ,he(-p)=-1-6p°,
0r(P)=1+6p+6p* ,gn(-p)=1-6p+6p°,
fe(p)=p, fr(=p)=-p.

Then calculate the new constant () via the polynomials of the remaining network obtained
above to decide the type of the second component as follows;
U= h—° = _Tl =-1. Since u =-1, the second block is a paralel connected parallel-LC section.
9
The values of this paralel-LC section are
L:gl_/uh1:6_o:3and C: gn+ﬂhn :6+6=2
go+uh0 1+1 gn—l_:uhn—l 6

For parallel inductor:

1
he (P) =he,p+he, = :_:_E, hC(_p):_hC1p+hCO=i:__
1 1
9c(P)=GeiP+Geo =P+ -=P+— =P+,

1
9c(=P)=-0c: P+ 9co =_p+g

fc(p)=p, fc(-p)=-p, . =-1
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Then after extracting the parallel inductor, the scattering transfer matrix of the remaining network
IS

T (p) =T, " (P)T(p) =

1 [:uRgR(_p) hR(p)]
fe(P)\ sghz (=p) 9r(p)

where

he(P)=-p .hx(=p)=p,
9r(P)=1+p ,ge(-p)=1-p,
fe(p) =1, fr(-p)=1.

For paralel capacitor:

c 1.2 C

he(p) = he, p+he, =”7p=7p=—p, he(-p) = —hc, p+ he, =—”7p= D,
C 2

gc(p) =gc, p+9c, =5 p+1=§p+1= p+1,

2C
gc(—p) =—gc, p +9c, == p+l=-p+1,

fe(p) =1, fo(-p) =1, pe =-1

Then after extracting the parallel capacitor, the scattering transfer matrix of the remaining
network is

- h
TR(p)zTC’l(p)T(p)= 1 [ﬂRgR( p) R(p)]

fe(P)\ sghz (=p) 9r(p)

where

he(p)=0 , he(-p)=0,
gr(P)=1 ,gr(-p)=1,
f(p) =1, fo(-p)=1.

which describes the termination resistance, R =1.
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After completing the calculations, the following component values are obtained,

L, =4, C, =5 L,=3 C,=2 R=1,where R isthe termination resistance.

o— Y M

11 C1
|l
I

O *
Figure 4.4 Synthesized band-pass network

4.5. Band-Stop Case
The scattering transfer matrix of the band-stop network is given as

1 - h
T(p) = (ug( p) (p)J (4.59)
f(p)Lh(=p) 9(p)
where the polynomials g(p), h(p) and f(p) can be written as follows
9(P) =0 + 9P +9,P* +...+9,p", (4.60)
h(p)=h, +hp+hp*+...+h p", (4.61)

n/2
f(p) :H(p+ p,)=f,+f,p>+f,p*+...+p", where p, =+ jw, is the resonant frequencies
i=1

of the LC sections.

The constant x can be calculated as: x=-1if h ,, >0, and g=+1if h ,, <0. If x=-1, the

block that will be extracted is parallel connected series-LC section, and the component values of
these LC section can be calculated via the following equations
—uh h
L:gl lulandC: gn+lun .
o +uhy 7] |

If u=+1, the block that will be extracted is series connected parallel-LC section. The

(4.62)

component values of this LC section can be calculated via the following equations

|_=gn+—'uhn and ngl——,uhl. (4.62)
91— Ny o + uhy

Then the polynomials( hc(p), gc(p), fc(p)) and their paraconjugates (hc(—p), gc(=p), fc(—p))

of the extracted section can be calculated as:
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For parallel connected series-LC section:

he (p) =hy p® +he; p+he, =—Cp, he (=p) = hy, p* —he,p+hey =Cp (4.64)
9c(P)=9e, P* + 9P +9co = 2LCp* +Cp +2, (4.65)
9c(-P) =9, P* —Gci P+ 9co = 2LCP* —Cp +2 (4.66)
fc(p) = LCp® +1, fc(—p)=LCp* +1, p. =-1. (4.67)
For series connected parallel-LC section:

h.(p) =h, p? +hy p+he, =Lp, (4.68)
he (=p) = hy p* —he, p+hey =—Lp, (4.69)
9c(P) =9, P* +9c P +0co =2LCp* +Lp+2, (4.70)
9c(-P) =9, P* — G P+9co = 2LCP° —Lp+2, (4.71)

fc(p) = LCp® +1, fc(—p) =LCp® +1, pu. =+1.
By using these polynomials and the constant s, scattering transfer matrix of the section that

will be extracted can be formed as

1 lucgc(_p) hc(p)
T.(p) = ( : (4-72)
fo(P)\sch.(=p)  9.(p)
Then scattering transfer matrix of the remaining network can be calculated as
_ 1 (#:9:(=P) hg(p)
T (P) =T (P)T(p) = [ : (4-73)
’ fa(P) Latehe (=) 9r(P)

The next section can be extracted by using the polynomials of the remaining network,
hs (P), 9 (P), fr(p) and the constant s, .

The extraction of the components proceeds in a similar fashion until the final termination
resistance is reached.

4.5.1. Band-Stop Case Example

The scattering transfer matrix of the band-stop network is given as

1 (u19(=p) h(p)J

T =
(P) f(p)(ﬂh(—p) a(p)

where the polynomials g(p), h(p), f(p) and the constant x are given as
h(p)=2p-6p* -24p°,

g(p) =1+4p+54p* +60p° +252p*,

f (p) =0.004+0.1905p* + p*, 1 =+1since h, =—6<0.
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Since u =+1, the first block is a series connected parallel-LC section, and the component values
of the section are

L= gn+luhn — 252 :3andC:gl_IUhl=4_2
O,,—#h,, 60+24 g, +1hy 1

=2.

For series connected parallel-LC section:

he (p) =y p* +he,p+hey =Lp=3p, he(=p) =hyp® —he;p+hey =—Lp=-3p
9c(P)=9,P> +9c;P+0ce =2LCp° +Lp+2=2-3-2p* +3p+2=12p* +3p+2,
9c(=P)=9e2P® — e P+0co =2LCp* —Lp+2=12p° —3p+2

fc(p) =LCp® +1=3-2p* +1=6p> +1, fc(-p)=LCp® +1=6p* +1, g =+1.

By using these polynomials and the constant s, scattering transfer matrix of the section that

will be extracted can be formed as

’ f.(p) Luh (—=p) 9.(p)

Then scattering transfer matrix of the remaining network can be calculated as

_ T 1 1r9:r (=P) ha(p)
Te(P) =T (PITR) = fR(m[ﬂRhR(—p) %(p)]

where

h(p) =3p,

g(p) =1+3p+42p*,

f(p)=1/42+ p®, u=-1since h, =3>0.

Since u =-1, the nexr block is a parallel connected series-LC section, and the component values
of the section are

ngl—uh1 =3+3:6andC= 9, +uh, 42 _7
o +uhy 1 0,4, —#h,, 343

For parallel connected series-L.C section:

he (p) =hyp® +he p+hey =—Cp=-7p, hc(-p)=h,p* —he,p+he, =Cp=7p
9c(P)=9,P> +9c;P+0c, =2LCPp° +Cp+2=2-6-Tp° +7p+2=84p* +7p+2
9c(=P) =0, P* ~ 9P+ Yeo =2LCp° ~Cp+2=84p° ~Tp+2,

fc(p) =LCp® +1=6-7p° +1=42p° +1, fc(—p) =LCp® +1==42p° +1, p. =-1.
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By using these polynomials and the constant s, scattering transfer matrix of the section that

will be extracted can be formed as

1 (Iucgc(_p) hc(p)j
f.(p)\ h.(=p) 9.(p))’

Then scattering transfer matrix of the remaining network can be calculated as

1 [:uRgR(_p) hR(p)]
fe(P) g (=P)  9r(P) ,

T.(p) =

T (p) =T, " (P)T(p) =

where
he(p)=0 , he(-p)=0,
9r(P)=1 ,0:(-P)=1,
fo(p) =1, fo(~p)=L.
which describes the termination resistance, R =1.
After completing the calculations, the following component values are obtained,
LL=3 C =2 L,=6 C,=7 R=1,where R isthe termination resistance.
L1

—L

C1

L2

— C2

_ 1

O ®
Figure 4.5 Synthesized band-stop network
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CHAPTER 5

CONCLUSION

There are two basic procedures for a given reactance function to synthesize in the literature:
Continued-fraction expansion and partial-fraction expansion.

The first procedure yields Cauer’s forms and the second produre yields Foster’s forms. In these
procedures, impedance or admittance functions are utilized.

But on the proposed procedures in this thesis, impedance or admittance functions are not used.
Belevitch notation is used in the thesis to represent a network. In this representation, three
polynomials are utilized; h, g and f polynomials, and scattering transfer matrix of a network is
expressed in terms of three polynomials.

The proposed synthesis algorithms are based on decomposition of scattering transfer matrix.
After getting element type and value, the scattering transfer matrix of the remaining network is
obtained, and the same procedure is applied to synthesize all the elements in the network.

Similar algorithms are given for low-pass, high-pass, band-pass and band-stop LC ladder

networks.
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APPENDICES

Al-Low Pass Case Matlab Code
cle

clear
h= input (‘Enter h Polynomial:”)
g= input(‘Enter g Polynomial:”)
g_boy=Iength(g);
m=h(length(h))/g(length(g));
if m>0
disp('The first component is a series inductor’)
disp('The last component is the termination resistance’)
else
disp('The first component is a parallel capacitor’)
disp('The last component is the termination resistance’)
end
for b=1:g_boy-1
h_length=Ilength(h);
g_length=length(g);
m=h(length(h))/g(length(g));
EV=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1));
CV(b)=EV;
hc=[0 m*EV/2];
hcp=[0 -m*EV/2];
gc=[1 EV/2];
gcp=[1-EV/2];
hbx=conv(h,gc)-conv(g,hc);
gbx=conv(g,gcp)-conv(h,hcp);
for a=1:g_length-1
hb(a)=hbx(a);
gb(a)=gbx(a);
end
hb;
gb;
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clear EV
clear hc
clear hcp
clear gc
clear gcp
clear h
clear g
clear m
clear hbx
clear ghx
h=hb;
g=gb;
clear hb
clear gb
h_length=length(h);
g_length=Ilength(g);
if length(g)==1
CV(length(CV)+1)=(g+h)/(g-h);
end
end
cVv
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A2-High Pass Case Matlab Code
clc
clear
h= input (‘Enter h Polynomial:”)
g= input(‘Enter g Polynomial:”)
g_boy=Iength(9);
m=h(1)/g(1);
if m>0
disp('The first component is a series capacitor’)
disp('The last component is the termination resistance’)
else
disp('The first component is a parallel inductor’)
disp('The last component is the termination resistance’)
end
for b=1:g_boy-1
h_length=Ilength(h);
g_length=length(qg);
m=h(1)/g(1);
EV=(g(2)-m*h(2))/(9(1)+m*h(1));
CV(b)=EV;
he=[m/(EV*2) 0],
hcp=[m/(EV*2) 0];
gc=[1/(2*EV) 1];
gep=[1/(2*EV) -1];
hbx=fliplr(conv(h,gc)-conv(g,hc));
gbx=fliplr(conv(g,gcp)-conv(h,hcp));
for a=1:g_length-1
hb(a)=hbx(a);
gb(a)=gbx(a);
end
hb=fliplr(hb);
gb=fliplr(gb);
hb=hb./gb(1);
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gb=gb./gb(1);
clear EV
clear hc
clear hcp
clear gc
clear gcp
clear h
clear g
clear m
clear hbx
clear ghx
h=hb;
g=gb;
clear hb
clear gb
h_length=length(h);
g_length=length(g);
if length(g)==1
CV(length(CV)+1)=1/((g+h)/(g-h));
end
end
cVv
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A3-Band Pass Case Matlab Code
clc
clear
h= input (‘Enter h Polynomial:”)
g= input(‘Enter g Polynomial:”)
g_boy=Iength(9);
m=h(1)/g(1);
if m>0
disp('The first block is a series connected series-LC section’)
disp('The last component is the termination resistance’)
n=1,
else
disp('The first block is a parallel connected parallel-LC section’)
disp('The last component is the termination resistance’)
n=2;
end
k=1;
for b=1:(g_boy-1)/2
h_length=Ilength(h);
g_length=length(g);
%m=h(1)/g(1);
if rem(n,2)==1
if rem(n,2)==0
m=h(1)/g(1);
m=-1*m;
h=-1.*h;
else
m=h(1)/g(1);
end
L=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1));
C=(9(2)-m*h(2))/(g(1)+m*h(1));
CV(k)=L;
k=k+1;
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CV(k)=C;

k=k+1;

hcl=[0 m*L/2];

hclp=[0 -m*L/2];

gcl=[1 L/2];

gclp=[1 -L/2];

hcc=[m/(C*2) 0];

hccp=[m/(C*2) 0];

gcc=[1/(2*C) 1];

geep=[1/(2*C) -1];

hbx=conv(h,gcl)-conv(g,hcl);

gbx=conv(g,gclp)-conv(h,hclp);

for a=1:length(g)-1
hb(a)=hbx(a);
gh(a)=gbx(a);

end

hb;

gb;

clear L

clear C

clear EV

clear hcl

clear hclp

clear gcl

clear gclp

clear h

clear ¢

clear m

clear hbx

clear gbx

h=hb;

g=gb;

clear hb

clear gb
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h_length=Ilength(h);

g_length=length(qg);

hbx=fliplr(conv(h,gcc)-conv(g,hcc));

gbx=fliplr(conv(g,gccp)-conv(h,hcep));

for a=1:length(g)-1
hb(a)=hbx(a);
gb(a)=gbx(a);

end

hb=fliplr(hb);

gb=fliplr(gb);

hb=hb./gb(1);

gb=gb./gb(1);

clear L

clear C

clear EV

clear hcc

clear hcep

clear gcc

clear gccp

clear h

clear g

clear m

clear hbx

clear gbx

h=hb;

g=gb;

clear hb

clear gb

h_length=length(h);

g_length=length(g);

n=n+1,

else

if rem(n,2)==0

m=h(1)/9(2);
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m=-1*m;
h=-1.*h:
else
m=h(1)/g(1);
end
C=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1));
L=(9(2)-m*h(2))/(g(1)+m*h(1));
CV(k)=L;
k=k+1;
CV(k)=C;
k=k+1;
hcl=[m/(L*2) 0];
hclp=[m/(L*2) 0];
gcl=[1/(2*L) 1];
gclp=[1/(2*L) -1];
hcc=[0 m*C/2];
hcep=[0 -m*C/2];
gcc=[1 C/2];
gcep=[1-C/2];
hbx=fliplr(conv(h,gcl)-conv(g,hcl));
gbx=fliplr(conv(g,gclp)-conv(h,hclp));
for a=1:length(g)-1
hb(a)=hbx(a);
gb(a)=gbx(a);
end
hb=fliplr(hb);
gb=fliplr(gb);
hb=hb./gb(1);
gb=gb./gh(1);
clear C
clear L
clear EV
clear hcl

clear hclp
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clear gcl

clear gclp

clear h

clear g

clear m

clear hbx

clear gbx

h=-1.*hb;

g=gb;

clear hb

clear gb

h_length=length(h);

g_length=Ilength(g);

hbx=conv(h,gcc)-conv(g,hcc);

gbx=conv(g,gccp)-conv(h,hcep);

for a=1:length(g)-1
hb(a)=hbx(a);
gb(a)=gbx(a);

end

hb;

gb;

clear EV

clear hcc

clear hcep

clear gcc

clear gccp

clear h

clear ¢

clear m

clear hbx

clear gbx

h=hb;

g=gb;

clear hb
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clear gb
h_length=Ilength(h);
g_length=length(qg);
n=n-1;
end
if length(g)==1
if rem((g_boy-1)/2,2)==0
CV(length(CV)+1)=(g+h)/(g-h);
else
CV(length(CV)+1)=1/((g+h)/(g-h));
end
end
end
cVv
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A4-Band Stop Case Matlab Code
clc
clear all
h= input (‘Enter h Polynomial:”)
g= input(‘Enter g Polynomial:”)
g_boy=Ilength(g);
if h((length(g)+1)/2)<0
m=-1;
else
m=1;
end
if m>0
disp('The first block is a series connected parallel LC section’)
disp('The last component is the termination resistance’)
else
disp('The first block is a parallel connected series LC section’)
disp(‘The last component is the termination resistance’)
end
k=1;
for b=1:(g_boy-1)/2
h_length=Ilength(h);
g_length=length(g);
if h((length(g)+1)/2)<0
m=-1,
else
m=1,
end
if m==-1
L=(g(length(g))-m*h(length(h)))/(g(length(g)-1)+m*h(length(h)-1));
C=(9(2)+m*h(2))/(9(1)-m*h(1));
CV(k)=L;
k=k+1;
CV(k)=C;
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k=k+1;
hc=[0 -C 0];
hcp=[0 C 0];
gc=[2 C 2*L*C];
gcp=[2 -C 2*L*C];
hbx=deconv(conv(h,gc)-conv(g,hc),conv([1 0 L*C],[1 0 L*C]));
gbx=deconv(conv(g,gcp)-conv(h,hcp),conv([1 0 L*C],[1 0 L*C])));
hbx=hbx./gbx(1);
gbx=gbx./gbx(1);
for a=1:g_length-2
hb(a)=hbx(a);
gb(a)=gbx(a);
end
hb;
gb;
clear C
clear L
clear hc
clear hcp
clear gc
clear gcp
clear h
clear g
clear m
clear hbx
clear gbx
h=hb;
g=gb;
clear hb
clear gb
h_length=length(h);
g_length=length(g);
elseif m==+1
C=(g(length(g))-m*h(length(h)))/(g(length(g)-1)+m*h(length(h)-1));
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L=(9(2)+m*h(2))/(g(1)-m*h(1));

CV(k)=L;

k=k+1;

CV(k)=C;

k=k+1;

hc=[0 L O];

hcp=[0 -L 0];

gc=[2 L 2*L*C];

gcp=[2 -L 2*L*C];

hbx=deconv(conv(h,gc)-conv(g,hc),conv([1 0 L*C],[1 0 L*C])));

gbx=deconv(conv(g,gcp)-conv(h,hcp),conv([1 0 L*C],[1 0 L*C]));

hbx=hbx./gbx(1);

gbx=gbx./gbx(1);

for a=1:g_length-2
hb(a)=hbx(a);
gh(a)=gbx(a);

end

hb;

gb;

clear C

clear L

clear hc

clear hcp

clear gc

clear gcp

clear h

clear ¢

clear m

clear hbx

clear gbx

h=hb;

g=gb;

clear hb

clear gb
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h_length=Ilength(h);
g_length=length(qg);
end
if length(g)==1
CV(length(CV)+1)=1/((g+h)/(g-h));
end
end
CcVv
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