
 

 

  

EE 599 MASTER THESIS 

 

SCATTERING TRANSFER MATRIX FACTORIZATION BASED 

SYNTHESIS OF RESISTIVELY TERMINATED LC LADDER 

NETWORKS 

 

 

 

 

Zafer AYDOĞAR 

(2007.11.01.002) 

 

 

 

Supervisor: Assoc.Prof. Metin ŞENGÜL 

 

 

 

 

Institute of Science and Engineering 

Kadir Has University 

February 2011 

 





 

i 

 

 

 

 

 

ABSTRACT 

 

In this thesis, synthesis algorithms for resistively terminated LC ladder networks are proposed. 

The algorithms are based on scattering transfer matrix factorization. Four algorithms are given 

for low-pass, high-pass, band-pass and band stop cases. The basic idea for the algorithms is the 

following: 

Firts, a constant is computed from the scattering transfer matrix. According to this constant, the 

component type of the first element is decoded, then its value is calculated from the given matrix. 

By using the given scattering transfer matrix and the formed scattering transfer matrix of the 

extracted element, the scattering transfer matrix of the remaining network is obtained. Then the 

same procedure is applied until reaching the termination resistance.  

In literature, this problem is solved by using impedance / admittance parameters. 

In this thesis, the synthesis problem has been solved by using scattering paramaters, and so an   

alternative synthesis method has been developed. 
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ÖZET 

 

Bu yüksek lisans tezimde, direnç ile sonlandırılmış LC merdiven devrelerin sentezi için 

algoritmalr önerilmiştir. Bu algoritmalar saçılma transfer matrisi faktorizasyonuna dayanır. 

Alçak-geçiren, yüksek-geçiren, band-geçiren ve band-söndüren durumlar için dört algoritma 

geliştirilmiştir. Algoritmaların temelinde şu fikir yer almaktadır: 

İlk olarak, verilen saçılma tranfer matrisi kullanılarak bir sabit hesaplanır. Bu sabitin değerine 

göre çekilecek elemanın tipine karar verilir, daha sonra verilen saçılma transfer matrisi 

kullanılarak eleman değeri hesapanır. Bu elemana ait saçılma transfer matrisi ve verilen saçılma 

transfer matrisi kullanılarak, kalan devrenin saçılma transfer matrisi hesaplanır. Aynı işlem 

sonlandırma direncine ulaşıncaya kadar tekrarlanır. 

  Bu problem, literatürde empedans / admitans parametreleri kullanılarak çizilmiştir. 

 Bu tezde, saçılma parametreleri kullanılarak sentez problemi çözülmüş ve dolayısıyla alternatif 

bir sentez metodu geliştrilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

The realization problem of network synthesis deals with all procedures and techniques that can 

be used to identify a specific network with the impedance or admittance function which is either 

given or determined by solution of the approximation problem. However, before it is possible to 

solve the realization problem it is necessary that the impedance or admittance functions meet 

certain constraints to insure that physically realizable networks having the desired characteristics 

may be identified with it. To determine these characteristics, it is necessary to study the 

characteristics of physically realizable networks. 

Physical realizability is of primary importance in network synthesis, and the realizability of a 

network is dependent on the relative position of the poles of its characterizing function. Usually, 

network will be physically realizable if none of the poles and zeros of its impedance function 

falls within the right half of the s-plane (   is positive and  either positive or negative).         

For instance, it is not necessary for the zeros of the transfer impedance functions, representing 

networks which couple two or more sets of terminals, to lie in the left half-plane or on the       

j -axis for the networks to be realizable. 

However, of this point it is convenient to study only the characteristics of functions having poles 

and zeros restricted to the left half of the s-plane or j -axis. 

 If a polynomial is such that all real roots and the real parts of all complex roots are either zero or 

negative, then the function is known as a Hurtwitz polynomial. 

Most synthesis procedures require that network functions be broken up into a number of terms 

which can be identified with network elements. A continued-fraction expansion is one procedure 

that can often be used to decompose a network function. A second procedure for breaking up 

functions is the partial-fraction expansion. 

So it is possible to synthesize a given driving-point reactance function as any one of the four 

Cauer and Foster forms (two from continued-fraction expansion and two from partial-fraction 

expansion). In some causes it may be more desirable to synthesize one form than another, due to 

practical considerations. Perhaps the element values for one form of network are not realistic 

from the stand point of physical size, cost, weight or commercial availability. 
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In this work, synthesis of resistively terminated LC ladder networks is studied. In the proposed 

synthesis procedures transfer scattering matrix components have been utilized. So in chapter 2, 

fundamental properties of lossless two-ports and scattering parameters have been summarized. 

In chapter 3, canonic forms of LC ladder networks are explained. 

Then in chapter 4, proposed synthesis procedures and examples are given to illustrate the 

utilization of the algorithms. 
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CHAPTER 2 

 

FUNDAMENTAL PROPERTIES OF LOSSLESS TWO-PORTS 

 

2.1. Scattering Parameters 

 

The network parameters (like Z or Y parameters) need open and short circuits in order to acquire 

the coefficients. As far as higher frequencies are concerned, it is difficult to accomplish an open 

or short circuit, and the accuracy of any measurements depends on how well the terminations are 

accomplished. Additionally, many active circuits oscillate at open and short circuit terminations, 

and measurements executed under these conditions are meaningless. 

 

S -parameters, or scattering is one of the useful network expressions developed to characterize 

microwave circuits.  The S -parameters are possible to be measured by employing any suitable 

termination. Maybe the most important characteristic is that these parameters are possible to be 

measured at very high frequencies in accuracy. 

 

 

 

 

 

 

Figure 2.1 General two-port network [1]. 

 

In Figure 2.1, you can see a two-port network which is driven at port 1 by a sV  voltage source 

with internal impedance 1Z  and terminated at port 2 by a 2Z  load. 1Z  and 2Z  are the 

reference impedances and is possible to be designated as any value, although 50  is the mostly 

used value. The voltages and currents are shown in Figure 2.1, and two new parameters which 

are functions of iV , iI  and iZ  are expressed as [1] 
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                                    (2.1.b) 

 

where *

iZ as the complex conjugate of iZ , and iZRe  is the real part of the reference impedance. 

If we select ib  as the dependent variable and ia  as the independent variable, the following 

expression is possible for the two-port in Figure 2.1 

 

.2221212

,2121111

aSaSb

aSaSb




                                      (2.2) 

 

Equation (2.2) is possible to be written in matrix form as [1], 

 

aSb    

where 











2

1

b

b
b , S 









2221

1211

SS

SS
 and   [ 1a  2a ]                                                                                    (2.3) 

 

for any two port network. 

 

The coefficients of the S -matrix is possible to be found by substituting 02 a  and 01 a , then 

calculating 11S , 21S  and 12S , 22S  in a row. From Figure 2.1, it can be seen that the output voltage 

is )( 22ZI . Then if we replaced it into (2.1.a): 

 

0
Re2Re2 2
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

Z

IZZI

Z
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a  

 

ia  is always zero at any port which is not attached to a source and terminated with the reference 

impedance. So, the S -parameters of any network is possible to be measured with ease by 

attaching a source to one port a time. 
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According to transmission line theory, it is possible to be expressed that [1] 

 

iRiIi VVV   

 

and 

 

i

iR

i

iI

i
Z

V

Z
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where the subscripts I  and R  stand for the incident and reflected components of voltage, in a 

row. If iZ  is deemed to be real, and replacing into (2.1.a) 
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and into (2.1.b) 
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That shows that ia  is a function of the incident voltage and ib  is a function of reflected voltages. 

Both parameters are the square root of power, as it can be seen below, that is to say 

 

i

iR

i

i

iI

i
Z

V
b

Z

V
a

Re
,

Re

2

2

2

2
 . 

 

So, ia  is an incident wave, 
2

ia  is incident power, ib  is a reflected wave, and 
2

ib  is reflected 

power. According to (2.2), it can be seen that the reflected wave at each port is the total of the 

incident waves from all ports changed by coefficients of the S -parameter matrix. 
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By using Figure 2.2, 
2

1a  is possible to be expressed as, 

1
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and it is concluded that 
2

1a  is the available power from the source. If we substract the reflected 

power from the available power from the source, the following can be found 
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
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This is the transfered power to the network. When the source is attached to port 1, 
2

2a  is zero 

and 
2

2b  is possible to be found as 

 

2

22

2

2

2

*

222

2 Re
Re2

IZ
Z

IZV
b 


  

 

which is the transfered power to the load. 

 

S -parameter matrix coefficients ( ijS ) are all ratios of reflected-to-incident waves, which is a 

very suitable expression for microwave circuits. If we attach generator with available power 
2

ia   

to port i , a  at port i  and b  at all ports is possible to be measured. At port i , 
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where inZ  is the input impedance at port i . Thus, 

 

 iniiS Reflection coefficient at port i  

 

and 

 


2

2

2

i

i

ii

a

b
S Reflected power from the input / available power from the source = Return loss at 

port i . 

 

At any port j , whilst ji  , 

 


2

2

2

i

j

ji

a

b
S Transfered power to the load / Available power from the source = Transducer 

power gain. 

 

According to the conservation of energy, the total power incident at all ports of a passive network 

equal the power received by the network, plus power coming from the network. Thus the 

difference between incident and reflected power gives the power dissipated in the network, that is 

to say 
22

ii ba  . The over-all dissipated power is possible to be concluded as the total of the 

dissipated power at each port [1]: 

 

  
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1
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1

22
, or 

 

    bbaaP
TT

d

**                                (2.4.a) 

where  T
a*

 and  Tb*
 are acquired by substituting each element of a  and b  with its complex 

conjugate and then by transposing. From (2.3), 
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aSb

*** 
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which is replaced into (2.4.a): 

 

      aSaSaaP
TTT

d

***   

 

and then rewritten as 

 

    aSSIaP
TT

d

**                                    (2.4.b) 

 

where I  is the unit matrix. The term between braces in (2.4.b) indicates if the dissipated power 

is positive or negative. This term is possible to be written as [1] 

 

  SSIQ
T*                                       (2.5) 

 

which is expressed as the dissipation matrix. When Q  is not negative, the network is passive, or 

the dissipated power is greater than or equal to zero. 

 

As far as a passive two-port is concerned [1], 

 

1
2

21

2

11  SS                                    (2.6.a) 

 

and 

 

1
2

12

2

22  SS                                               (2.6.b) 

If the two-port is nondissipative, in that case the dissipated power is zero and (2.5) is possible to 

be stated as 
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which is possible to be broadened as stated below 

 

121

*

2111

*

11  SSSS                                    (2.7.a) 

022

*

2112

*

11  SSSS                                    (2.7.b) 

021

*

2211

*

12  SSSS                                    (2.7.c) 

122

*

2212

*

12  SSSS .                                   (2.7.d) 

 

According to (2,7), it is possible to be stated that 

*

2222

*

1111 SSSS                                     (2.8.a) 

*

2121

*

1212 SSSS  .                                   (2.8.b) 

 

Based on these equations it is possible to be stated that the magnitudes of reflection and 

transmission coefficients are bounded by unity, i.e. 1jiS  for jp  . 

 

From the discussions above, the fundamental features of the scattering matrix of a nondissipative  

two-port is possible to be stated as [2,3]: 

1. The elements of S -matrix are rational and real for real p . 

2. S -matrix is analytic in 0Re p . 

3. S -matrix is paraunitary and meets pISS T * . 

4. If S -matrix is symmetric )( 2112 SS  , then the nondissipative two-port is reciprocal. 

 

The relevant impedance and admittance matrices can easily be obtained, if the above conditions 

stated is met by the scattering matrix and the realizability theory in immittance formalism is 

possible to be established. It is usually stated based on Darlington‟s approach and stated by 
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means of the driving point functions of a two-port terminated by a resistance at the output. At 

this stage, it is purposeful to state the below fundamental features regarding the driving point 

reflectance and impedance functions [2,3]: 

 

 The function )(1 pS  is stated to be bounded real (BR) if 

1. )(1 pS  is real for p  real, 

2. )(1 pS  is analytic in 0Re p , 

3. 1)(1 jS  for all  . 

 If we use the bounded real reflection function ( )(1 pS ) of a resistively terminated two-

port stated above, the corresponding driving point input impedance is obtained from 

)(1

)(1
)(

1

1
1

pS

pS
pZ




 .                                      (2.9) 

This impedance function is a positive real function (PRF) and meets the below conditions, 

1. )(1 pZ  is real for p  real, 

2. 0)(Re 1 pZ  for 0Re p . 

 

The following is possible to be stated for the realizability of driving point functions as a 

resistively terminated two-port network: 

A rational positive real impedance function (or a bounded real reflection function) can be 

realized as a resistively terminated nondissipative two-port. 

When handling cascade connected networks, usually the scattering transfer matrix is employed in 

substitution for the scattering matrix. If we recompose the port variables ia  and ib  in the 

scattering equations (2.2), the following is obtained: 
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

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
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

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





2

2

2221

1211

1

1

b

a

TT

TT

a

b
.                                      (2.10) 

This expresses the scattering transfer matrix T . The relations between the elements of T -matrix 

and the elements of S -matrix are as follows: 
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S
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S

S
T

S

S
T

S

S
T                      (2.11) 

 



 

11 

 

 

 

where ]det[S  expresses the determinant of the S -matrix. According to the definitions stated 

above, the elements of the scattering transfer matrix for a nondissipative two-port are rational 

functions, and if the two-port is reciprocal too, the reciprocity condition 2112 SS   leads up to the 

expression of   1det T . 

2.2 Canonic Representation of Scattering Matrix and Scattering Transfer Matrix 

Scattering matrix is possible to be expressed by employing three canonic polynomials. For a 

nondissipative two-port, the canonic forms of the scattering matrix and the scattering transfer 

matrix with respect to these polynomials are stated by 

 



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



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




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f
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hf

fh

g
S

*

*

*

* 1
,

1








                                 (2.12) 

 

where )(* pff   means the paraconjugate of a real function. The polynomials gf ,  and h  

possess the following features [2,3]: 

 ),(),( pggpff   and )(phh   are real polynomials in the complex frequency p . 

 g  is a strictly Hurwitz polynomial. 

 f  is monic, i.e. its leading coefficient is equal to unity. 

 gf ,  and h  polynomials are related by the condition 

*** ffhhgg                                     (2.13) 

   is a constant )1(  . 

 

If the two-port is reciprocal, in that case the polynomial f  is either even or odd. In this case, 

1  if f  is even, and 1  if f  is odd. Consequently, for a nondissipative reciprocal two-

port 

 

1* 
f

f
                                      (2.14) 

 

and the expression (2.13) is possible to be changed as 

2

** fhhgg  .                                    (2.15) 
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CHAPTER 3 

 

CANONIC FORMS OF LC LADDER NETWORKS [4] 

 

Now we are going to investigate the functions we made mention of; we will talk about their 

characteristics, the characteristics of the networks to realize them and their driving-point 

reactance functions. 
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2
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2
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1 )(Re
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BBAA
pZ
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










                                                                                               (3.2) 

It is unity that both the highest-order terms and the lowest-order terms of in a pure reactance 

function differ in order. The result of the division would be a constant term which may indicate 

that a resistance is present in cases where the orders of the numerator and denominator are equal. 

Although we are dealing with a pure reactance network, the real parts of the function have to 

satisfy the conditions we have listed in the (3.2) as well. )](Re[ 1 jZ have to be positive and real 

for a physically realizable network. Consequently 021

2

21  BBAA  , with respect (3.2). When 

21

2

21 BBAA  equals to zero, a limiting condition occurs which will be valid for reactance 

networks except in the trivial cases when  )(,0)( 11 pZpZ ,or ppZ )(1 . That is, just in two 

cases the real part of the function can be zero; either 1A and 2B must be zero or 2A  and 1B  must 

be zero. The driving-point impedance will be as such: 

2

1
1

)(

)(
)(

A

pB

pD

pN
pZ                                                                                                                  (3.3) 

or 

2

1
1

)(

)(
)(

pB

A

pD

pN
pZ  .                                                                                                               (3.4) 
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In the former equation, if we substitute jp  , it will form two general reactance functions both 

of which will have zeros at 0 ; one of which will have a pole as  approaches to infinity and; 

the other having a zero at infinity. These forms can be written as such: 

Case A: 
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CaseB: 

))...()((

))...()((
)(

222

3

22

1

2

1
222

4

22

2

2

1

n

n
KjjZ












                                                                 (3.6) 

If we substitute jp   in (3.4), then we will have two general reactance functions both of 

which will have poles at 0 . At infinity one of these functions will have a zero. Whereas, the 

other the other has a pole as   approaches to infinity. These forms can be written as such: 

,
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Out of these four forms listed above we can synthesize various different physically realizable 

reactance networks. Also it is possible to derive and synthesize susceptance functions having the 

same forms as physically realizable networks. These equations are formed by F. M. Foster. He 

showed the poles and zeros by nn    ,,......, 121 . As K is a positive real constant 

and nn   1321 ..... , mutual separation of the poles and zeros are accountes. 

The reactance plot of the function we have seen in (3.5) which has a zero at 0  and poles at ω 

= ∞, will have such a form: 

 



 

14 

 

 

 

 

Figure 3.1 Reactance plot for Eq. (3.5) 

Such a network will pretend like an inductor at low and high frequencies. 

The reactance variation of the function we have seen in (3.6), which has zeros at 0 and at    ω 

= ∞, will have a frequency similar to the figure above, except that the reactance will approach 

zero when ω approaches to infinity. Such a network will pretend like an inductor at low 

frequencies and like a capacitor at high frequencies.  

Similarly, reactance variation of the driving-point function we have seen in (3.7), which has 

poles at 0  and at ω = ∞, will have such a form: 

 

 

Such a network will pretend like a capacitor at low frequencies and like an inductor at high 

frequencies.  

The reactance variation of the function we have seen in (3.8), which has a pole at 0 and a 

zero at ω = ∞, will have a frequency similar to the figure above, except that the reactance will 

approach zero when ω approaches to infinity. Such a network will pretend like capacitors at low 

and high frequencies.  

 

 

0  1  2  3  1  n  n 
 

) (  j X 

0  1  2  1  n  n  

) (  j X 

 3 

Figure 3.2 Reactance plot for Eq. ( 3.7) 
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3.1. Foster Canonic Forms 

 

There are several networks that can be synthesized to realize these functions. For instance if the 

equations shown in (3.5) and (3.6) form a partial-fraction, then the residues 1k of the conjugate 

poles 1  must have equal magnitudes by using the conjugate poles as denominators. By 

combining these conjugate poles, the partial-fraction expansion will have such a form: 
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kjjZ .                                                                   (3.9) 

Then, if we substitute jp  , and if we replace the constant factors by new constants the 

equation will be 
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01 )(
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pK
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pK
pKpZ                        (3.10) 

While the term pK0  stands for an inductor of 0K  henrys, the 2
nd

, 3
rd

, 4
th
, etc. terms will take the 

form  2

1

2
0

p

pK
, same as the impedance of a parallel combination of inductance and 

capacitance, which was previously indicated in equation: 

Series combiniation:    
Cp

LCp

C
LpZ

p

p

11
)(

2

1


 , 

Parallel combination: 
11

1
)(

21







LCp

Lp

L
C

pZ

p

p

.                                                             (3.11) 

In the equation above, whether the expansion was derived from (3.5) or (3.6) determines the 

form last term. If it was derived from the former, then the form of the last term will 

be  2

1

2
1

p

pK
, whereas if it was derived from the latter the form of the last term will be 

p

K n , 

representing a capacitor. 

As we have just mentioned, the last term of the (3-10) will depend on from which equation it was 

derived. On the other hand the first term represents an inductance and the remainder of the terms 

is a series of parallel LC elements. As it is not possible for constant terms to exist, hence a term 

having the form of pK n  could be combined with the first term, the last term have to have the 

form of 
p

K n , if it is present.  

We can realize (3.5) and (3.6) as LC networks of the form shown below, since (3.10) represents 

the sum of a series of impedances derived from them. 
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Figure 3.3 First Foster form 

Considering (3.5), when we expand the function the term 
p

K n  will no longer be present, 

therefore the last element of the network above, that is the series capacitor, will also no longer be 

present. It is first element will be an inductor. Considering (3.4), 
p

K n  will still be present, 

therefore the first element will be an inductor and the last element will be a capacitor. 

We can also expand the functions we have seen in the (3.7) and (3.8) in partial fractions by using 

the conjugate poles as the denominators. Thence, the residues 1k  of the conjugate poles 1  must 

have equal magnitudes by using the conjugate poles as denominators. By combining these 

conjugate poles, the partial-fraction expansion will have such a form: 
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Then, if we substitute jp  , and if we replace the constant factors by new constants the 

equation will be 








2

4

2

4

2

2

2

20

1 )(
 p

pK

p

pK

p

K
pZ                         (3.13) 

In the latter equation, while the term 
p

K 0  stands for series capacitor, the 2
nd

, 3
rd

, 4
th

, etc. terms of 

the function stand for parallel LC combinations, which were previously indicated in (3.10). In the 

equation above, whether the expansion was derived from (3.7) or (3.8) determines the form last 

term. If it was derived from (3.7), then the form of the last term will be pK n which indicates that 

a series inductor is present, whereas if it was derived from (3.8) the form of the last term will be 

 2

1

2
1

p

pK
. Consequently, (3.13) indicates that the type of networks formed will be same for 

equations (3.5) and (3.6) and for (3.7) and (3.8). 
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  We can also use the admittance functions 
)(

1
)(

1

2
pZ

pY   to realize the (3.5), (3.6), (3.7) and 

(3.8). Similar to the method we use for impedance functions, when we expand the admittance 

functions in partial-fraction expansions, the result will be the terms of the 

form  2

1

2

1,,

p

pK
p

K
Kp

. If present, the first and/or last terms of the expansion will be of the 

form Kp  or
p

K
, the former denoting a capacitor of K farads and the latter denoting an inductor 

of
K

1
henrys. The remaining terms will be of the form  2

1

2
1

p

pK
 representing the admittance 

of a series LC combination. To exemplify, the impedance of a series LC combination shown in 

equation (3.11) was given as
pC

LCp 12 
 . Therefore, its admittance will be 

12 LCp

C p
. As a result, 

the impedance of (3.5), (3.6), (3.7) and (3.8) can be realized as admittance functions, so that a 

second type of network will be formed, which is demonstrated in the figure above.  

 

 

Figure 3.4 Second Foster form 

The equations (3.5), (3.6), (3.7) and (3.8) will determine if a parallel inductor or capacitor will be 

present as the first or last element of the network. 

The networks we have seen in Figures 3.3 and 3.4 are the first two forms of pure reactance 

networks that were developed by R.M.Foster, therefore sometimes called as the Foster canonic 

forms. They entail networks that are able to represent any given impedance function through a 

minimum number of elements. The minimum number of elements that a pure reactance network 

would have is
2

1 mn
, where n represents the degree of the highest-order terms in the 

Ln - 1 

L 0 

L 2 L 1 

C 1 C 2 Cn - 1 Cn 
Y 1 ( p ) 
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numerator polynomial and m represents the degree of the highest-order terms in the denominator 

of the driving-point function. 

3.2. Cauer Canonic Forms 

We can show the driving-point impedance for a pure LC network as the ratio of two Hurwitz 

polynomials. As it is unity that the highest-order terms of the numerator and denominator 

polynomials differ in degree, we can presume that the numerator is of n
th 

order and the 

denominator is of )1( n  order. Accordingly we may write the impedance as such: 




























5

5

3

3

1

4

4

2

2

1 )(
n

n

n

n

n

n

n

n

n

n

papap

papap
KpZ .                                                                             (3.14) 

We may expand such a function through a process of long division and inversion to produce a 

continued-fraction expansion. Such a continued-fraction expansion is likely to have a form 

shown above: 








pC
pL

pC

pLpZ

2

2

1

11

1

1

1
)(  .                                                                          (3.15) 

In the expansion, we have substituted the multiplying constants by new constants, namely, 

,2211 ,,, CLCL  etc. Accordingly, the above equation may suggest a third form of network, which 

is shown below (Figure 3.5). The last term of the continued-fraction expansion being an inductor 

or a capacitor determines the way in which the network will be ceased. 

 

We can also invert the impedance function of (3.14) in order to give an admittance of 

)(

1
)(

1

1
pZ

pY  . Hence, we may also expand the admittance to produce a continued fraction 

which can have such a form: 

C 1 C 2 C 3 

Z 1 ( p ) 

1 L L 2 L 3 

Figure 3.5 Network for expansion of Eq. (3.15). 
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Then, we have substituted the multiplying constants by new constants, namely,  ,2211 ,,, CLCL etc. 

again. Accordingly, the above equation may suggest a fourth form of network, which is shown 

below (Figure 3.6). The last term of the continued-fraction expansion being an inductor or a 

capacitor determines the way in which the network will be ceased. 

               

We may also presume that in the driving-point impedance of equation (3.14), the denominator is 

of n
th

 order and the numerator is of )1( n  order, hence derive the networks that are shown in 

Figures 3.5 and 3.6. In such a situation the expansion of 
)(

1
)(

1

1
pZ

pY   will yield a network in 

the form of Figure 3.5 and the expansion of )(1 pZ  will yield a network in the form of Figure 3-6. 

Also, another two canonic forms of reactance functions will be produced out of these networks. 

For example, suppose we have a continued-fraction expansion that we use for testing a Hurwitz 

polynomial. We separate the polynomial into E(p) and O(p), E(p) standing for the even powers of 

s and O(p) standing for the odd powers of s. In order to run the test, we need to develop 

expansions of either 
)(

)(
)(

pO

pE
pR   or 

)(

)(
)(

pE

pO
pR   till we determine each coefficients. The 

coefficients must be positive real numbers; hence the expansion must produce n of them for to let 

the n
th

 order polynomial be positive real. 

Suppose that we choose n as an even number. Then, E(p) will be an even-ordered polynomial of 

order n, and O(p) will be an even-ordered polynomial of order )1( n , for a reactance function. 

The ratio 
)(

)(
)(

pE

pO
pR   will have the form that of equation (3.14). If it is positive real, then there 

could be only n terms in its continued-fraction expansion. When we choose n as an odd number, 

then O(p) will be an odd-ordered polynomial of order n, and E(p)will be an odd-ordered 

C 3 C 2 C 1 

L 3 L 1 L 2 
Z 1 ( p ) 

 

Figure 3.6 Network for expansion of Eq. (3.16) 
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polynomial of order )1( n , for a reactance function. This time the expansion of 
)(

)(
)(

pE

pO
pR   

must have only n terms. As a result, as it is unity that the highest-order terms of the numerator 

and denominator of a reactance function would differ, the continued- fraction expansion of these 

functions will always produce n terms. 

The elements of a canonic reactance network will be
2

)1( mn . Here, n stands for the degree 

of the highest-order terms in the numerator and m stands for the degree of the highest-order 

terms in the denominator of the reactance function. The canonic form will have n elements for a 

numerator with a degree of n and denominator with a degree of 1 mn . Accordingly, the 

network that represents the continued-fraction expansion of the reactance function must also be 

canonic. When the highest-order term of the denominator is greater than the highest-order term 

of the numerator by unity, the case will be quite the similar.  

The figure belows reprents a summary of the canonic Foster and Caurer forms.          

 

Figure 3.7 Canonic Structures of LC Ladder Networks, a) Foster‟s forms b) Cauer‟s forms 

Structure  2 

  

a) 

Structure 3 

  

b) 

Structure 4 

Structure  1 
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CHAPTER 4 

PROPOSED SYNTHESIS PROCEDURES  

4.1. Synthesis via Scattering Transfer Matrix Factorization 

Decomposition of a lossless two-port network is a classical problem which has been formulated 

in the literature in many different ways. The conventional approach is to start from a given 

driving-point function (impedance or reectance) and extract elementary sections, depending on 

the nature of the transmission zeros being extracted. In this approach, the extraction mechanics 

and the computation of the remaining impedance or reflectance functions can be quite involved 

and usually require intensive computational operations. An alternative way of accomplishing the 

canonic decomposition of lossless two-ports in cascade involves factoring the chain matrix or the 

scattering transfer matrix. It has long been recognized that the transfer matrix constitutes a better 

tool, mainly because of the simple representation in terms of only three canonical polynomials 

[5]. The factorization of the transfer matrix of a lossless two-port into a product of two simpler 

transfer matrices has been treated rigorously by Fettweis [6,7]. The problem is reduced to the 

solution of a set of linear equations introducing a mathematically well formulated alternative for 

the conventional cascade synthesis problem. The methods works directly on the canonic 

polynomial description of two-ports and involves algebraic decomposition of a given polynomial 

set, which describes the transfer matrix of a lossless two-port into subsets of polynomials of the 

same type. 

As it is well known, canonic forms of the scattering matrix S  and the scattering transfer matrix 

T  of a lossless two-port N , referred to a real terminating resistances are defined as 
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where )(pg  is a strictly Hurwitz polynomial of degree n , and )( ph  and )(pf  are real 

polynomials of nrees deg  satisfying the paraunitary relation 

 

)()()()()()( pfpfphphpgpg                                                                                     (4.2) 
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Figure 4.1 Decomposition of a lossless two-port 

 

The problem is to decompose the lossless reciprocal two-port N  into two cascade connected 

lossless two-ports aN  and bN  which are also reciprocal (Fig 4.1). This amounts to factoring the 

transfer matrix T  into a product of two transfer matrices [8], 

 

)()()( pTpTpT ba                                                                         (4.3) 

where 
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The polynomial sets  )(),(),( pfphpg aaa  and  )(),(),( pfphpg bbb  have the same properties as 

 )(),(),( pfphpg  and in particular must satify paraunitary relations similar to (4-3), i.e., 

 

)()()()()()( pfpfphphpgpg aaaaaa  ,                                                                         (4.5) 

)()()()()()( pfpfphphpgpg bbbbbb  .                                                                         (4.6) 

 

Equation (4) implies the following: 

)()()()()( phphpgpgpg baaba   ,                                                                                      (4.7) 

)()()()()( phpgpgphph baaba   ,                                                                                      (4.8) 

)()()( pfpfpf ba ,                                                                                                                  (4.9) 

ba  .                                                                                                                                 (4.10) 

Under the use of these equalities, if one writes )()()( 1 pTpTpT ab

 , three equations can be 

obtained as 
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So if the scattering transfer matrix describing the network is given, the following synthesis 

algorithm can be proposed: The component type and its value is determined via the given 

scattering transfer matrix. Then the polynomials of the extracted component are formed, and by 

using )()()( 1 pTpTpT ab

  expression, the polynomials of the remaining network are obtained. 

This process is repeated until the termination resistance is reached. 

 

4.2. Low-Pass Case 

The scattering transfer matrix of the low-pass network is given as 
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where the polynomials )( pg , )( ph  and )(pf  can be written as follows 

n
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1)( pf .                                                                                                                                  (4.18) 

Component value of the element that will be extracted can be calculated as 

11  




nn

nn

hg

hg
CV




                                                                                                                   (4.19) 

where 
n

n

g

h
 , and if 1 , the component is a series inductor, if 1 , the component is a 

paralel capacitor. 

Then the polynomials ( )(),(),( pfcpgcphc ) and their paraconjugates ( )(),(),( pfcpgcphc  ) 

of the extracted series inductor or paralel capacitor can be calculated as 

p
CV

hcphcphc
2

)( 01


 , p

CV
hcphcphc

2
)( 01


 ,                              (4.20) 

1
2

)( 01  p
CV

gcpgcpgc , 1
2

2
)( 01  p

CV
gcpgcpgc ,                          (4.21) 
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1)( pfc , 1)( pfc , 1C  if the component is a series inductor and 1C  if the 

component is a paralel capacitor. 

By using these polynomials and the constant C , scattering transfer matrix of the component can 

be formed as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT

ccc

ccc

c

c



.                                                                                       (4.22) 

Then scattering transfer matrix of the remaining network can be calculated as 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



.                                                              (4.23) 

The second component can be extracted by using the polynomials of the remaining network, 

)(),(),( pfpgph RRR  and the constant R . 

The extraction of the components proceeds in a similar fashion until the final termination 

resistance is reached. 

 

4.2.1.  Low-Pass Case Example 

The scattering transfer matrix of the low-pass network is given as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT




                   

where the polynomials )( pg , )( ph , )(pf  and the constant   are given as 

432 60514)( ppppph  ,                                                                                           

432 60352471)( pppppg  ,                                                                                 

1)( pf , 1 .                                                                                                               

Since 1 , the first component is a series inductor, and the value of the inductor is 

3
)5(135

60160

33

44 










hg

hg
CV




.                                                                                   

The polynomials of the component can be written as 

ppp
CV

hphph ccc
2

3

2

31

2
)( 01 





,               

ppp
CV

hphph ccc
2

3

2

31

2
)( 01 





,                                                      

1
2

3
1

2
)( 01  pp

CV
gpgpg ccc ,                                                                        
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1
2

3
1

2
)( 01  pp

CV
gpgpg ccc .                                                               

1)( pfC  and 1)( pfC .                                                                                                 

Then the scattering transfer matrix of the remaining network is 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



                                                         

where  

pppphpppph RR
2

1
520)(,

2

1
520)( 2323  ,                                               

ppppgppppg RR
2

11
1520)(,

2

11
1520)( 2323  ,                                            

1)( pfR , 1)( pfR . 

Then calculate the new constant (  ) via the polynomials of the remaining network obtained 

above to decide the type of the second component as follows; 

1
20

20

3

3 



g

h
 . Since 1 , the second component is a paralel capacitor. The value of 

the paralel capacitor is 

2
5115

)20(120

22

33 










hg

hg
CV




.                                                                                  

After completing the calculations, the following component values are obtained, 

1,4,5,2,3 2211  RCLCL , where R  is the termination resistance. 
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Figure 4.2 Synthesized low-pass network 
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4.3. High-Pass Case 

The scattering transfer matrix of the high-pass network is given as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT




                                                                                               (4.24) 

where the polynomials )( pg , )( ph  and )(pf  can be written as follows 

n

n pgpgpggpg  2

210)( ,                                                                                           (4.25) 

n

n phphphhph  2

210)( ,                                                                                            (4.26) 

nppf )( .                                                                                                                               (4.27) 

Component value of the first element that will be extracted can be calculated as 

00

11

hg

hg
CV








                                                                                                                                                 (4.28) 

where 
0

0

g

h
 , and if 1 , the first component is a series capacitor, if 1 , the first 

component is a paralel inductor. 

Then the polynomials ( )(),(),( pfcpgcphc ) and their paraconjugates ( )(),(),( pfcpgcphc  ) 

of the extracted series capacitor or parallel inductor can be calculated as 

CV
hphph CCC

2
)( 01


 ,  

CV
hphph CCC

2
)( 01


                                               (4.29)  

CV
pgpgpg CCC

2

1
)( 01  , 

CV
pgpgpg CCC

2

1
)( 01                                   (4.30) 

ppfc )( , ppfc  )( , 1C  if the component is a series capacitor and 1C  if the 

component is a paralel inductor. 

By using these polynomials and the constant C , scattering transfer matrix of the component can 

be formed as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT

ccc

ccc

c

c



.                                                                                       (4.31) 

Then scattering transfer matrix of the remaining network can be calculated as 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



.                                                              (4.32) 

The second component can be extracted by using the polynomials of the remaining network, 

)(),(),( pfpgph RRR  and the constant R . 
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The extraction of the components proceeds in a similar fashion until the final termination 

resistance is reached. 

 

 4.3.1. High-Pass Case Example 

The scattering transfer matrix of the high-pass network is given as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT




                                                                                         

where the polynomials )( pg , )( ph , )(pf  and the constant   are given as 

21667.00556.00139.0)( ppph  ,                                                                                

325.01111.00139.0)( ppppg  ,                                                                             

3)( ppf  , 1 .                                                                                                            

Since 1 , the first component is a series capacitor, and the value of the capacitor is 

6
0139.00139.0

0556.01111.0

00

11 










hg

hg
CV




.                                                                            

The polynomials of the component can be written as 

12

1

62

1

2
)( 01 




CV
hphph CCC


                                                                             

12

1

62

1

2
)( 01 




CV
hphph CCC


,                                                                       

12

1

62

1

2

1
)( 01 


 pp

CV
pgpgpg CCC ,               

12

1

62

1

2

1
)( 01 


 pp

CV
pgpgpg CCC ,                                          

ppfC )(  and ppfC  )( .                                                                                            

Then the scattering transfer matrix of the remaining network is 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



                                                         

where  

pphpph RR 0833.00833.0)(,0833.00833.0)(  ,                                              

22 4167.00833.0)(,4167.00833.0)( pppgpppg RR  ,                                     

2)( ppfR  , 2)( ppfR  .                                                                                                 
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Then calculate the new constant (  ) via the polynomials of the remaining network obtained 

above to decide the type of the second component as follows; 

1
0833.0

0833.0

0

0 



g

h
 . Since 1 , the second component is a paralel inductor. The value 

of the paralel capacitor is 

3
0833.00833.0

0833.04167.0

00

11 










hg

hg
CV




.   

  

                                      Figure 4.3 Synthsizes high-pass network 

After completing the calculations, the following component values are obtained, 

1,2,3,6 211  RCLC , where R  is the termination resistance. 

4.4. Band-Pass Case 

The scattering transfer matrix of the band-pass network is given as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT




                                                                                               (4.33) 

where the polynomials )( pg , )( ph  and )(pf  can be written as follows 

n

n pgpgpggpg  2

210)( ,                       (4.34) 

n

n phphphhph  2

210)( ,                       (4.35) 

2/)( nppf  .                          (4.36)  

The constant   can be calculated as 
0

0

g

h
 . If 1 , the block that will be extracted is series 

connected series-LC section, and the component values of this series-LC section can be 

calculated via the following equations 

11  




nn

nn

hg

hg
L




 and 

00

11

hg

hg
C








 .                                                                                     (4.37) 

Then the polynomials  ( )(),(),( pfcpgcphc ) and their paraconjugates ( )(),(),( pfcpgcphc  ) 

of the extracted series inductor and series capacitor can be calculated as; 

C 1 C 2 

L 1 R 
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For series inductor: 

p
L

hcphcphc
2

)( 01


 , p

L
hcphcphc

2
)( 01


 ,                                            (4.38) 

1
2

)( 01  p
L

gcpgcpgc , 1
2

2
)( 01  p

L
gcpgcpgc ,                            (4.39) 

1)( pfc , 1)( pfc , 1C .                                                                                            (4.40) 

For series capacitor: 

C
hphph CCC

2
)( 01


 ,  

C
hphph CCC

2
)( 01


                                         (4.41) 

C
pgpgpg CCC

2

1
)( 01  , 

C
pgpgpg CCC

2

1
)( 01                                (4.42)  

ppfc )( , ppfc  )( , 1C .                                                                                       (4.43) 

By using these polynomials belong to the series inductor and the constant C , scattering transfer 

matrix of the series inductor can be formed as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT

ccc

ccc

c

c



.                                                                                      (4.44) 

Then scattering transfer matrix of the remaining network can be calculated as 

 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



.                                                             (4.45) 

Then by using these polynomials belong to the series capacitor and the constant C , scattering 

transfer matrix of the series capacitor can be formed as 















)()(

)()(

)(

1
)(

pgph

phpg

pf
pT
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c

c



.                                                                                      (4.46) 

Then scattering transfer matrix of the remaining network can be calculated as 













 

)()(

)()(

)(

1
)()()( 1

pgph

phpg

pf
pTpTpT

RRR

RRR

R

cR



.                                                             (4.47) 

If 1 , the block that will be extracted is parallel connected parallel-LC section, and the 

component values of this parallel-LC section can be calculated via the following equations 

00

11

hg

hg
L








  and 

11  




nn

nn

hg

hg
C




.                                                                                    (4.48) 

Then the polynomials  ( )(),(),( pfcpgcphc ) and their paraconjugates ( )(),(),( pfcpgcphc  ) 

of the extracted parallel inductor and parallel capacitor can be calculated as; 
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For parallel inductor: 

L
hphph CCC

2
)( 01


 ,  

L
hphph CCC

2
)( 01


                                                   

(4.49) 

L
pgpgpg CCC

2

1
)( 01  , 

L
pgpgpg CCC

2

1
)( 01                                      (4.50) 

ppfc )( , ppfc  )( ,                                                                                                       ( 4.51) 

For paralel capacitor: 

p
C

hcphcphc
2

)( 01


 , p

C
hcphcphc

2
)( 01


 ,                                (4.52) 

1
2

)( 01  p
C

gcpgcpgc , 1
2

2
)( 01  p

C
gcpgcpgc ,                            (4.53) 

1)( pfc , 1)( pfc , 1C                                                                                               (4.54) 

By using these polynomials belong to the parallel inductor and the constant C , scattering 

transfer matrix of the parallel inductor can be formed as 









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
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)()(

)()(
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1
)(
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phpg
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c

c



.                                                                                       (4.55) 

Then scattering transfer matrix of the remaining network can be calculated as 













 
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RRR

RRR

R

cR



.                                                              (4.56) 

Then by using these polynomials belong to the parallel capacitor and the constant C , scattering 

transfer matrix of the parallel capacitor can be formed as 















)()(

)()(
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1
)(
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pf
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c

c



.                                                                                       (4.57) 

Then scattering transfer matrix of the remaining network can be calculated as 













 

)()(

)()(
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1
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RRR

R

cR



.                                                              (4.58) 

The next block can be extracted by using the polynomials of the remaining network, 

)(),(),( pfpgph RRR  and the constant R . 

The extraction of the components proceeds in a similar fashion until the final termination 

resistance is reached. 
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4.4.1. Band-Pass Case Example 

The scattering transfer matrix of the band-pass network is given as 















)()(

)()(

)(

1
)(
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


                                                                                         

where the polynomials )( pg , )( ph , )(pf  and the constant   are given as 

432 120302621)( ppppph  ,                                                                               

432 120905681)( pppppg  ,                                                                               

2)( ppf  , 1
1

1

0

0 
g

h
 .                                                                                             

Since 1 , the first block is a series connected series-LC section, and the component values 

of the section are 

4
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For series inductor: 
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L

hcphcphc 2
2
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2
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
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hcphcphc 2

2
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
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2
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L
gcpgcpgc ,                             
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2

2
)( 01  pp

L
gcpgcpgc ,                                                                  

1)( pfc , 1)( pfc , 1C ,                                                                                       

Then after extracting the series inductor, the scattering transfer matrix of the remaining network 

is 













 

)()(
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where  

3232 30621)(,30621)( pppphpppph RR  ,                                        

3232 303681)(,303681)( ppppgppppg RR  ,                                         

2)( ppfR  , 
2)( ppfR  .                                                                                                                    

For series capacitor: 
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Then after extracting the series capacitor, the scattering transfer matrix of the remaining network 

is 
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where  

22 61)(,61)( pphpph RR  ,                                                                            

22 661)(,661)( pppgpppg RR  ,                                                                  

ppfR )( , ppfR  )( .                                                                                               

 

Then calculate the new constant (  ) via the polynomials of the remaining network obtained 

above to decide the type of the second component as follows; 
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 . Since 1 , the second block is a paralel connected parallel-LC section. 

The values of this paralel-LC section are 
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For parallel inductor: 
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Then after extracting the parallel inductor, the scattering transfer matrix of the remaining network 

is 
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where 

pphpph RR  )(,)( ,                                                                                                

ppgppg RR  1)(,1)( ,                                                                                         

1)( pfR , 1)( pfR .                                                                                                    

For paralel capacitor: 
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Then after extracting the parallel capacitor, the scattering transfer matrix of the remaining 

network is 


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where  

0)(,0)(  phph RR
,                                                                                                   

1)(,1)(  pgpg RR
,                                                                                                     

1)( pfR , 1)( pfR .                                                                                                    

which describes the termination resistance, .1R  
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After completing the calculations, the following component values are obtained, 

1,2,3,5,4 2211  RCLCL , where R  is the termination resistance. 

 

Figure 4.4 Synthesized band-pass network 

 

4.5. Band-Stop Case 

The scattering transfer matrix of the band-stop network is given as 
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where the polynomials )( pg , )( ph  and )(pf  can be written as follows 

n
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210)( ,                                                                                           (4.60) 
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)()( , where ii jp   is the resonant frequencies 

of the LC sections. 

The constant   can be calculated as: 1  if 02/ nh , and 1  if 02/ nh . If 1 , the 

block that will be extracted is parallel connected series-LC section, and the component values of 

these LC section can be calculated via the following equations 
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If 1 , the block that will be extracted is series connected parallel-LC section. The 

component values of this LC section can be calculated via the following equations 
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Then the polynomials( )(),(),( pfcpgcphc ) and their paraconjugates ( )(),(),( pfcpgcphc  ) 

of the extracted section can be calculated as: 
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L 2 C 2 R 
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For parallel connected series-LC section: 
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For series connected parallel-LC section: 
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By using these polynomials and the constant C , scattering transfer matrix of the section that 

will be extracted can be formed as 
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Then scattering transfer matrix of the remaining network can be calculated as 
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The next section can be extracted by using the polynomials of the remaining network, 

)(),(),( pfpgph RRR  and the constant R . 

The extraction of the components proceeds in a similar fashion until the final termination 

resistance is reached. 

4.5.1. Band-Stop Case Example 

The scattering transfer matrix of the band-stop network is given as 
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where the polynomials )( pg , )( ph , )(pf  and the constant   are given as 

32 2462)( pppph  ,                                                                                                  

432 252605441)( pppppg  ,                                                                            

421905.0004.0)( pppf  , 1  since 062 h . 
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Since 1 , the first block is a series connected parallel-LC section, and the component values 

of the section are 
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For series connected parallel-LC section: 
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By using these polynomials and the constant C , scattering transfer matrix of the section that 
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Then scattering transfer matrix of the remaining network can be calculated as 
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Since 1 , the nexr block is a parallel connected series-LC section, and the component values 

of the section are 
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For parallel connected series-LC section: 
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By using these polynomials and the constant C , scattering transfer matrix of the section that 

will be extracted can be formed as 
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Then scattering transfer matrix of the remaining network can be calculated as 
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where 
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1)(,1)(  pgpg RR
,                                                                                                    
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which describes the termination resistance, .1R  

After completing the calculations, the following component values are obtained, 

1,7,6,2,3 2211  RCLCL , where R  is the termination resistance. 

 

Figure 4.5 Synthesized band-stop network 
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CHAPTER 5 

 

CONCLUSION 

    There are two basic procedures for a given reactance function to synthesize in the literature:  

Continued-fraction expansion and partial-fraction expansion. 

The first procedure yields Cauer‟s forms and the second produre yields Foster‟s forms. In these 

procedures, impedance or admittance functions are utilized. 

But on the proposed procedures in this thesis, impedance or admittance functions are not used. 

Belevitch notation is used in the thesis to represent a network. In this representation, three 

polynomials are utilized; h, g and f polynomials, and scattering transfer matrix of a network is 

expressed in terms of three polynomials. 

   The proposed synthesis algorithms are based on decomposition of scattering transfer matrix. 

After getting element type and value, the scattering transfer matrix of the remaining network is 

obtained, and the same procedure is applied to synthesize all the elements in the network.  

   Similar algorithms are given for low-pass, high-pass, band-pass and band-stop LC ladder 

networks.  
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APPENDICES 

A1-Low Pass Case Matlab Code 

clc 

clear 

h= input („Enter h Polynomial:‟)  

g= input(„Enter g Polynomial:‟) 

g_boy=length(g); 

m=h(length(h))/g(length(g)); 

if m>0 

    disp('The first component is a series inductor') 

    disp('The last component is the termination resistance') 

else 

    disp('The first component is a parallel capacitor') 

    disp('The last component is the termination resistance') 

end 

for b=1:g_boy-1 

    h_length=length(h); 

    g_length=length(g); 

    m=h(length(h))/g(length(g)); 

    EV=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1)); 

    CV(b)=EV; 

    hc=[0 m*EV/2]; 

    hcp=[0 -m*EV/2]; 

    gc=[1 EV/2]; 

    gcp=[1 -EV/2]; 

    hbx=conv(h,gc)-conv(g,hc); 

    gbx=conv(g,gcp)-conv(h,hcp); 

        for a=1:g_length-1 

        hb(a)=hbx(a); 

        gb(a)=gbx(a); 

    end 

    hb; 

    gb; 
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    clear EV 

    clear hc 

    clear hcp 

    clear gc 

    clear gcp 

    clear h 

    clear g 

    clear m 

    clear hbx 

    clear gbx 

    h=hb; 

    g=gb; 

    clear hb 

    clear gb 

    h_length=length(h); 

    g_length=length(g); 

    if length(g)==1 

        CV(length(CV)+1)=(g+h)/(g-h); 

    end 

end 

CV 
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A2-High Pass Case Matlab Code 

clc 

clear 

h= input („Enter h Polynomial:‟)  

g= input(„Enter g Polynomial:‟) 

g_boy=length(g); 

m=h(1)/g(1); 

if m>0 

    disp('The first component is a series capacitor') 

    disp('The last component is the termination resistance') 

else 

    disp('The first component is a parallel inductor') 

    disp('The last component is the termination resistance') 

end 

for b=1:g_boy-1 

    h_length=length(h); 

    g_length=length(g); 

    m=h(1)/g(1); 

    EV=(g(2)-m*h(2))/(g(1)+m*h(1)); 

    CV(b)=EV; 

    hc=[m/(EV*2) 0]; 

    hcp=[m/(EV*2) 0]; 

    gc=[1/(2*EV) 1]; 

    gcp=[1/(2*EV) -1]; 

    hbx=fliplr(conv(h,gc)-conv(g,hc)); 

    gbx=fliplr(conv(g,gcp)-conv(h,hcp)); 

        for a=1:g_length-1 

        hb(a)=hbx(a); 

        gb(a)=gbx(a); 

    end 

    hb=fliplr(hb); 

    gb=fliplr(gb); 

    hb=hb./gb(1); 
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    gb=gb./gb(1); 

    clear EV 

    clear hc 

    clear hcp 

    clear gc 

    clear gcp 

    clear h 

    clear g 

    clear m 

    clear hbx 

    clear gbx 

    h=hb; 

    g=gb; 

    clear hb 

    clear gb 

    h_length=length(h); 

    g_length=length(g); 

    if length(g)==1 

        CV(length(CV)+1)=1/((g+h)/(g-h)); 

    end 

end 

CV 
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A3-Band Pass Case Matlab Code 

clc 

clear 

h= input („Enter h Polynomial:‟)  

g= input(„Enter g Polynomial:‟) 

g_boy=length(g); 

m=h(1)/g(1); 

if m>0 

    disp('The first block is a series connected series-LC section') 

    disp('The last component is the termination resistance') 

    n=1; 

else 

    disp('The first block is a parallel connected parallel-LC section') 

    disp('The last component is the termination resistance') 

    n=2; 

end 

k=1; 

for b=1:(g_boy-1)/2 

    h_length=length(h); 

    g_length=length(g); 

    %m=h(1)/g(1); 

    if rem(n,2)==1 

        if rem(n,2)==0 

            m=h(1)/g(1); 

            m=-1*m; 

            h=-1.*h; 

        else 

            m=h(1)/g(1); 

        end 

        L=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1)); 

        C=(g(2)-m*h(2))/(g(1)+m*h(1)); 

        CV(k)=L; 

        k=k+1; 
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        CV(k)=C; 

        k=k+1; 

        hcl=[0 m*L/2]; 

        hclp=[0 -m*L/2]; 

        gcl=[1 L/2]; 

        gclp=[1 -L/2]; 

        hcc=[m/(C*2) 0]; 

        hccp=[m/(C*2) 0]; 

        gcc=[1/(2*C) 1]; 

        gccp=[1/(2*C) -1]; 

        hbx=conv(h,gcl)-conv(g,hcl); 

        gbx=conv(g,gclp)-conv(h,hclp); 

        for a=1:length(g)-1 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb; 

        gb; 

        clear L 

        clear C 

        clear EV 

        clear hcl 

        clear hclp 

        clear gcl 

        clear gclp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=hb; 

        g=gb; 

        clear hb 

        clear gb 
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        h_length=length(h); 

        g_length=length(g); 

        hbx=fliplr(conv(h,gcc)-conv(g,hcc)); 

        gbx=fliplr(conv(g,gccp)-conv(h,hccp)); 

        for a=1:length(g)-1 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb=fliplr(hb); 

        gb=fliplr(gb); 

        hb=hb./gb(1); 

        gb=gb./gb(1); 

        clear L 

        clear C 

        clear EV 

        clear hcc 

        clear hccp 

        clear gcc 

        clear gccp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=hb; 

        g=gb; 

        clear hb 

        clear gb 

        h_length=length(h); 

        g_length=length(g); 

        n=n+1; 

    else 

        if rem(n,2)==0 

            m=h(1)/g(1); 
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            m=-1*m; 

            h=-1.*h; 

        else 

            m=h(1)/g(1); 

        end 

        C=(g(length(g))+m*h(length(h)))/(g(length(g)-1)-m*h(length(h)-1)); 

        L=(g(2)-m*h(2))/(g(1)+m*h(1)); 

        CV(k)=L; 

        k=k+1; 

        CV(k)=C; 

        k=k+1; 

        hcl=[m/(L*2) 0]; 

        hclp=[m/(L*2) 0]; 

        gcl=[1/(2*L) 1]; 

        gclp=[1/(2*L) -1]; 

        hcc=[0 m*C/2]; 

        hccp=[0 -m*C/2]; 

        gcc=[1 C/2]; 

        gccp=[1 -C/2]; 

        hbx=fliplr(conv(h,gcl)-conv(g,hcl)); 

        gbx=fliplr(conv(g,gclp)-conv(h,hclp)); 

        for a=1:length(g)-1 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb=fliplr(hb); 

        gb=fliplr(gb); 

        hb=hb./gb(1); 

        gb=gb./gb(1); 

        clear C 

        clear L 

        clear EV 

        clear hcl 

        clear hclp 
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        clear gcl 

        clear gclp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=-1.*hb; 

        g=gb; 

        clear hb 

        clear gb 

        h_length=length(h); 

        g_length=length(g); 

        hbx=conv(h,gcc)-conv(g,hcc); 

        gbx=conv(g,gccp)-conv(h,hccp); 

        for a=1:length(g)-1 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb; 

        gb; 

        clear EV 

        clear hcc 

        clear hccp 

        clear gcc 

        clear gccp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=hb; 

        g=gb; 

        clear hb 
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        clear gb 

        h_length=length(h); 

        g_length=length(g); 

        n=n-1; 

    end 

    if length(g)==1 

        if rem((g_boy-1)/2,2)==0 

            CV(length(CV)+1)=(g+h)/(g-h); 

        else 

            CV(length(CV)+1)=1/((g+h)/(g-h)); 

        end 

    end 

end 

CV 
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A4-Band Stop Case Matlab Code 

clc 

clear all 

h= input („Enter h Polynomial:‟)  

g= input(„Enter g Polynomial:‟) 

g_boy=length(g); 

if h((length(g)+1)/2)<0 

    m=-1; 

else 

    m=1; 

end 

if m>0 

    disp('The first block is a series connected parallel LC section') 

    disp('The last component is the termination resistance') 

else 

    disp('The first block is a parallel connected series LC section') 

    disp('The last component is the termination resistance') 

end 

k=1; 

for b=1:(g_boy-1)/2 

    h_length=length(h); 

    g_length=length(g); 

    if h((length(g)+1)/2)<0 

        m=-1; 

    else 

        m=1; 

    end 

    if m==-1 

        L=(g(length(g))-m*h(length(h)))/(g(length(g)-1)+m*h(length(h)-1)); 

        C=(g(2)+m*h(2))/(g(1)-m*h(1)); 

        CV(k)=L; 

        k=k+1; 

        CV(k)=C; 
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        k=k+1; 

        hc=[0 -C 0]; 

        hcp=[0 C 0]; 

        gc=[2 C 2*L*C]; 

        gcp=[2 -C 2*L*C]; 

        hbx=deconv(conv(h,gc)-conv(g,hc),conv([1 0 L*C],[1 0 L*C])); 

        gbx=deconv(conv(g,gcp)-conv(h,hcp),conv([1 0 L*C],[1 0 L*C])); 

        hbx=hbx./gbx(1); 

        gbx=gbx./gbx(1); 

        for a=1:g_length-2 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb; 

        gb; 

        clear C 

        clear L 

        clear hc 

        clear hcp 

        clear gc 

        clear gcp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=hb; 

        g=gb; 

        clear hb 

        clear gb 

        h_length=length(h); 

        g_length=length(g); 

    elseif m==+1 

        C=(g(length(g))-m*h(length(h)))/(g(length(g)-1)+m*h(length(h)-1)); 
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        L=(g(2)+m*h(2))/(g(1)-m*h(1)); 

        CV(k)=L; 

        k=k+1; 

        CV(k)=C; 

        k=k+1; 

        hc=[0 L 0]; 

        hcp=[0 -L 0]; 

        gc=[2 L 2*L*C]; 

        gcp=[2 -L 2*L*C]; 

        hbx=deconv(conv(h,gc)-conv(g,hc),conv([1 0 L*C],[1 0 L*C])); 

        gbx=deconv(conv(g,gcp)-conv(h,hcp),conv([1 0 L*C],[1 0 L*C])); 

        hbx=hbx./gbx(1); 

        gbx=gbx./gbx(1); 

        for a=1:g_length-2 

            hb(a)=hbx(a); 

            gb(a)=gbx(a); 

        end 

        hb; 

        gb; 

        clear C 

        clear L 

        clear hc 

        clear hcp 

        clear gc 

        clear gcp 

        clear h 

        clear g 

        clear m 

        clear hbx 

        clear gbx 

        h=hb; 

        g=gb; 

        clear hb 

        clear gb 
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        h_length=length(h); 

        g_length=length(g); 

    end 

    if length(g)==1 

        CV(length(CV)+1)=1/((g+h)/(g-h)); 

    end 

end 

CV 
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