
KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

BIG DATA PLATFORM DEVELOPMENT WITH A TELECOM

DSL

CÜNEYT ŞENBALCI

May, 2013

 C
Ü

N
E

Y
T

 Ş
E

N
B

A
L

C
I

 M
aster T

h
esis

 2

0
1
3

BIG DATA PLATFORM DEVELOPMENT WITH A TELECOM

DSL

CÜNEYT ŞENBALCI

B.S., Computer Engineering, Kadir Has University, 20011

M.S., Computer Engineering, Kadir Has University, 2013

Submitted to the Graduate School of Science and Engineering

In partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

KADIR HAS UNIVERSITY

May, 2013

KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

BIG DATA PLATFORM DEVELOPMENT WITH A TELECOM DSL

CÜNEYT ŞENBALCI

APPROVED BY:

Asst. Prof. Zeki BOZKUŞ Kadir Has University _______________

(Thesis Supervisor)

Asst. Prof. Taner ARSAN Kadir Has University ________________

Prof. Dr. Selim AKYOKUŞ Doğuş University ________________

APPROVAL DATE: 14/05/2013

i

BIG DATA PLATFORM DEVELOPMENT WITH A TELECOM

DSL

Abstract

The amount of data in our world has shown exponential growth in recent years. This

creates a very large collection of data sets –so called big data- in many

organizations. Enterprises want to process their own big data to generate values from

data to improve productivity, innovation and customer relationship better than their

competitors. However, big data is so large and complex that it becomes difficult to

process using traditional database management techniques. In this paper, we present

a system which can be used to analyses for big data of telecom industries. Our

system consists of three parts: Domain Specific Language (DSL) for telecom

industries, parallel programming platform by using map reduce programming model

and a viewer to present the results for human analysis. We integrated these three

components by using a Distributed File Descriptor (DFD) to pass file information

among each other. Our DSL offer many statements which are essential for telecom

industries such as telephone call records, network logs and web link analysis. The

platform component can perform highly parallel computations asked by DSL by

using many different clusters of computers in data center. Our viewer component

uses web browser to present result with many different graphics styles. Our solution

for big data provides a comprehensive solution: Our DSL is much higher level than

SQL. We do not ask programmer to write low level traditional code with Java or C

by using Map Reduce techniques. We provide our own viewer.

Keywords: Big Data, Domain Specific Language, Distributed File Descriptor,

Parallel Programming, Map Reduce.

ii

TELEKOM DSL İLE BÜYÜK VERİ PLATFORMU GELİŞTİRME

 Özet

Son yıllarda dünyamızdaki veri miktarı katlanarak artmaktadır. Bu durum şirketler

içerisinde büyük veri olarak adlandırılan yapıların ortaya çıkmasına neden

olmaktadır. Günümüz şirketleri rakiplerinin önüne geçebilmek adına gerekli olan

verimlilik, yenilik ve müşteri ilişkileri gibi analiz sonuçlarını kendi bünyelerinde

bulunan verileri işleyerek elde etmek isterler. Ancak büyük veri gerçek anlamda

çok büyük ve karmaşık olduğundan ötürü geneleksel veri yönetim sistemleri ile

işlenmesi imkansız denecek kadar zordur. Bu çalışmada size telekom firmaları

için geliştirilmiş olan büyük veri sistemini sunacağız. Sistemimiz üç ana

bölümden oluşmaktadır: DSL adı verilen Telekom alanına özgü bir dil, Map

Reduce programlama modeli içeren paralel programlama platform ve sonuçların

kullanıcıya sunulduğu bir arayüz. Bu üç ana bölüm birbirleri ile dağıtık dosya

tanımlayıcısı olarak adlandırdığımız -DFD- framework’ü kullanarak

haberleşmektedir. Önermiş olduğumuz DSL çözümümüz telekom firmalarına

özgü telefon kayıtları, ağ kayıtları, link analizleri gibi verilerin paralel olarak

işlenmesine olanak sağlar. Ayrıca veri merkezinde dağıtık yapıda bulanan cihazlar

üzerinde işlemlerin paralel olarak çözümlenmesini sağlar. Web tabanlı sonuç

gösterim ara yüzü ile işlenen verilerin efektif olarak gösterilmesi amaçlanmıştır.

Tanımlamış olduğumuz DSL dili, SQL dilinden oldukça basit bir dildir.

Kullanıcının dosyalar üzerinde herhangi bir paralel işlem yaptırması için Map

Reduce tekniklerini içeren C, Java gibi kodları yazmasına gerek olmamaktadır.

Aynı dil ile sonuç gösterimini kullanmak mümkündür.

Anahtar Kelimeler: Büyük Veri, DSL, DFD, Paralel Programlama, Map

Reduce.

iii

Acknowledgements

I would like to offer my special thanks to my supervisor Asst. Prof. Zeki Bozkuş

who always helped me during the thesis period. Thank you for your useful advices

and encouragement.

In addition, I would like to thank Bahtiyar Karanlık and Halit Olalı from Elkotek

for their assistance. They provided Petaminer platform for our usage.

I would like to express my very great appreciation to Mr. Mustafa Yelmer for

helping me to get through the difficult times. Thank you for his valuable and

constructive suggestions during the planning and designing of this research work.

Last, but not least, I would like to thank my family for their unconditional support

and encouragement. I am also grateful to my best friends Aykut and Mustafa for

their useful advices and unconditional support.

iv

Table of Contents

Abstract .. i

Özet .. ii

Acknowledgements ... iii

Table of Contents .. iv

List of Tables ... vi

List of Figures ... vii

List of Abbreviations .. ix

Introduction .. 1

1.1. Thesis Structure .. 4

Big Data Technologies And Characteristics .. 5

2.1. Characteristics of Big Data Concept ... 6

2.1.1. Volume .. 6

2.1.1. Variaty ... 7

2.1.1. Velocity ... 7

2.2. Types of Tools in Big Data Concept .. 8

2.2.1. Infrastructure ... 9

2.2.2. Distributed Servers .. 9

2.2.3. Distributed Storage .. 10

2.2.4. Programming Models .. 12

v

2.3. High Performance Schema Free Databases .. 15

2.4. Processing & Analyzing ... 17

2.5. Case Study: Hadoop ... 19

Higher Level Domain Specific Language For Big Data Concept 21

3.1. Big Data Solution For Telecom Industries: Petaminer .. 21

3.1.1. Storage and Search Solutions .. 26

3.1.2. Search and Analytics Solutions ... 27

3.1.3. Analytics and Data Mining Solutions .. 28

3.2. Domain Specific Language for Telecom Industries ... 29

3.2.1. Domain Specific Language - DSL ... 31

3.2.2. Distributed File Descriptor .. 34

3.2.3. Result Viewer .. 34

3.2.4. Case Study: DPI Operation .. 34

Performance Results .. 36

Related Works .. 44

Conclusion .. 47

References ... 48

Curriculum Vitae ... 50

vi

List of Tables

Table 1: NoSQL vs RDBMS Basics………………………………… 16

Table 2: File Descriptor Attributes……………………………..…… 33

Table 3: Node Scalability Table………………………………..…… 36

Table 4: Execution Time Table ………….........……………………..…… 37

Table 5: Speedup Table ………….........…………….………...……..…….38

Table 6: HBase DB Write Performances…………. …………..…… 40

vii

List of Figures

Figure 1: IBM characterizes Big Data by V
3
...………………………………....... 6

Figure 2: Emerging Technologies Hype Cycle 2012…….…………………….. .8

Figure 3: HDFS Architecture……………………….…….…...……………….. 11

Figure 4: Map Reduce Algorithm ……………………………………………… 13

Figure 5: Example Map Reduce WordCount Code ……………………….....… 14

Figure 6: NoSQL vs RDBMS ………….………………………………………. 16

Figure 7: Example Pig Script…... ……………………………………………… 17

Figure 8: Example Hive Script ………...…………………………….………… 18

Figure 9: Hadoop Infrastructure …...………...………………………………….20

Figure 10: Global IT Spending by Industry Verticals 2010-2015………… 21

Figure 11: Petaminer Big Data Solution Platform..……………..……………….24

Figure 12: DSL Solution for Big Data Platform…………………………….30

Figure 13: Node Scalability.…..………......…………………………..……...….37

Figure 14: Execution Time.......…………………………..…………………..….38

Figure 15: Speedup…………………….....…………………………..……...….39

Figure 16: HBase Avg. Import Performance…………………………..…...41

Figure 17: HBase Disk Usage – Sample 1.…………………………..……...….42

Figure 18: HBase Compression Tests of Sample 2....………………..……...….43

viii

Figure 19: HBase Disk Usage – Sample 2....………………………..……...….43

ix

List of Abbreviations

DSL Domain Specific Language

DFD Distributed File Descriptor

RDBMS Relational Database Management Systems

DWH Data Warehouse

GFS Google File System

HDFS Hadoop File System

MR Map Reduce

SQL Structured Query Language

NoSQL Not only SQL

JSON Java Script Object Notation

EC2 Elastic Cloud Computing

S3 Simple Storage Server

IT Information Technologies

Mngt Management

CSV Comma Separated Value

1

Chapter 1

Introduction

In this project, I will describe a system that offer a special big data analysis platform

for telecom industries. This platform has three main parts that suggests a new kind

of domain specific system for processing and visualization of large data files for

telecom organizations. These are Domain Specific Language (DSL), parallel

processing/analyzing platform for big data and an integrated result viewer. Also, to

pass information between these modules and organize communication, Distributed

File Descriptor (DFD) is designed. By using this structure, steps of data

processing/analyzing and visualization of results can be performed easily without

writing complex queries or C, Java codes. This also prevents consuming too much

time to perform some basic operations.

To find out benefits of this domain specific solution, we have to examine standard

framework of big data concept carefully. At the beginning, I will describe Big Data

subject and workflow of processing and analyzing phases.

Global data usage has been increasing exponentially since last ten years [1]. If we

look at the type of these data, we can show that huge amount of them are generated

in our daily life. For example; we share 50 million tweets per day, 700 billion

minutes are spent on Facebook each month, 2.9 million number of emails are sent

every day, 75 million hours video are uploaded YouTube every minute, 1.3 exabytes

data are sent and received by mobile users, 24 petabyte data are processed by

Google each day and 72.9 items are ordered on Amazon per second. With this

example, we can obtain that data sources of enterprises are changing and increasing.

Customer feedback, call detail records, billing, social media analyzing, emails, web

server logs, databases are some of the most important information for enterprises.

2

 Collection and correlation of different kind of data is not an easy operation.

Traditional storage and processing systems cannot be used to handle these large

datasets [2]. All of these large datasets are called as Big Data. This concept has

special infrastructure and tools to perform for data storing, processing, analyzing

operations. This infrastructure can be grouped 4 different part: Infrastructure,

Programming Models, High Performance Schema Free Databases, Processing &

Analyzing.

Infrastructure creates the base of Big Data concept. Distributed parallel processing

and storing tools are placed on this structure which is generally known as distributed

servers or cloud. These are easy to manage virtual systems that are served as IaaS by

big companies such as Google, Amazon, and Microsoft. On the other hand, storage

is another issue to store all datasets on distributed platform. Especially, Amazon-S3

and one of the most popular open source tool Hadoop Distributed File System.

Traditional programming models cannot be designed for large datasets. Therefore,

Google is developed a new kind of programming framework that is called Map

Reduce [3]. This programming model helps problems to divide multiple tasks and

solve them in parallel way. Most and important part of Big Data tools (analyzing and

processing) use this algorithm to increase efficiency of solving complex tasks like

Hadoop [4], Hive [5], Pig [6], Cascading, Cascalog, Sawzall, Dremel and so on.

If companies want to manage large datasets, relational database management

systems are not enough to achieve this target. Therefore, High Performance Schema

Free Databases –generally known as NoSQL databases- are designed to perform

data operations efficiently and rapidly. BigTable, Hbase, Cassandra are some of the

most popular NoSQL database systems.

3

When companies deal with big data, it is very hard to obtain valuable information in

it. So it is very important to process and analyze of big data on the distributed

parallel systems. There are some special kinds of tools to overcome this issue like

Hive, Pig, Mahout [7], R and so on.

Nowadays lots of organizations try to adopt big data systems. However, there are

still some disadvantages in Big Data concept for midsize companies. First of all,

integration of these technologies requires great software engineering skills.

Secondly, it is not business friendly because customers need to write Java, Pig, Hive

scripts. Last and the most important disadvantage is management of parallel tasks

with right big data tools.

Although there are lots of advantages of Big Data concept, it is still very difficult to

manage these systems for many enterprises. Therefore, this study suggest a new

higher level language –called as DSL- which helps enterprises to process big data

without writing any complex low level traditional parallel processing codes, a new

kind of result viewer and this paper also presents a Big Data solution system that is

called Petaminer.

4

1.1. Thesis Structure

Thesis has two main parts: Theoretical information about Big Data concept and a

solution to simplify Domain Specific data operations.

First part summarizes evolution of Big Data concept:

- Big Data Characteristics

- Big Data Infrastructure

- Types of Big Data Tools

Second part is about Big Data platform and higher level processing language that

called as Domain Specific Language for telecom industries:

- Information about Petaminer Big Data Platform

- DSL and Result Viewer Solutions

- DFD Analysis

5

Chapter 2

Big Data Technologies and Characteristics

Nowadays, quintillion bytes of data are created and this data exponentially grows

day by day. Traditional databases, management and analysis tools, algorithms and

processes cannot be easily applied these large datasets which is called as Big Data

[8]. These are gathered from everywhere such as social networks, sensors, digital

signals, health, finance, science and so on. In other words, almost every dataset has

great potential to become Big Data because it has higher importance to get valuable

information for many organizations. However, there are great challenges to achieve

this because of storing data that is unstructured format, processing and analyzing

without using traditional RDBs (Relational Databases) and analyzing tools.

Therefore, there are special systems to perform these kinds of operations. All these

system is generally called as Big Data concept. This concept has three main

characteristics:

- Volume

- Variety

- Velocity

6

Figure 1: IBM characterizes Big Data by V
3

2.1. Characteristics of Big Data Concept

2.1.1. Volume

Volume of data that is stored to analyze is extremely increasing. Today, there are

almost 2.7 Zettabytes of data in the digital world. If we look at social media, 100

Terabytes of data are uploaded on Facebook and 230 million of tweets are written

every day. Also 2.9 billion emails are sent in everyday routine [9].

Every year structured and unstructured data grow %60 and 35 Zettabytes of data are

expected to be generated annually by 2020 [9].

Day by day volume of data change terabytes to petabytes and will be zettabytes.

Therefore to handle and store this large datasets become very important for

organization over Big Data concept.

7

2.1.2. Variety

Volume of data is increasing and Big Data concept is not only deal to handle these.

It has to deal with its variety. Because data come from everywhere such as sensors,

mobile devices, web, social networks, emails, log files and so on. All of them have

their own types. Therefore there is not only structured data types but also semi

structured and unstructured which is not suitable to store in traditional RDBMS.

To combine and store structured and unstructured data types is another important

characteristic and big deal for Big Data concept.

2.1.3. Velocity

Another characteristic of Big Data concept is time of between arrival, to be stored

and also to be processed of data. It is very important to handle and to process data in

this short interval. For example, Google, which have an extreme Big Data

infrastructure, has a great search algorithm. When we type something its search

engine, millions of results return in milliseconds. This is related with how

organizations are efficiently stored and processed data as quick as possible.

These are 3 main characteristic which called as V
3

[2]. According to organization

infrastructure, number of characteristics may be increased. However, all of them are

always related with Big Data concept.

8

Figure 2: Emerging Technologies Hype Cycle 2012

2.2. Types of Tools in Big Data Concept

Big Data concept is just not deal with traditional approaches as we mentioned

before. Therefore some tools and algorithms which are specific for Big Data tools

are created to perform large datasets in this concept. There is some important factors

to determine which type of tools are suitable:

- Infrastructure (Distributed Servers / Cloud / Storage)

- Programming Models (Distributed Algorithms)

- High Performance Schema Free Databases (NoSQL DBs)

- Processing & Analyzing (Data Mining etc.)

9

2.2.1. Infrastructure

Big Data needs big infrastructures such as lots of distributed servers, cloud systems

and storage tools. Many organizations do not need to set up this physical system

because big vendors (such as Google, Amazon, etc.) of the market serve this

platform as IaaS. These vendors provide flexible, scalable, fail-safety virtual systems

[1]. Infrastructure of Big Data systems has two parts:

- Distributed Servers (Cloud)

- Distributed Storage

2.2.2. Distributed Servers

Distributed Servers, which is generally called Cloud Servers, hold computing and

storage units on different machines. They provide cluster of machines that can be

easily manageable and customizable. Therefore any user of this kind of server

vendors does not need to change anything physically when storage and number of

processes are rapidly increasing. Because Distributed Server Vendors just offer a

web UI, that customer can change his distributed virtual system by changing number

of machine and its properties. Some important Distributed Server infrastructures are:

- Amazon-EC2 (Amazon Elastic Compute Cloud)

- Google App Engine

- Windows Azure

- Elastic

- Beanstalk

- Heroku

10

2.2.3. Distributed Storage

Processing of large datasets cannot allow performing special data operations by

using traditional file systems that are not design for it [1]. Because, large sets of data

are written or read multiple gigabytes at once while dealing big data. To solve this

issue, large datasets are stored across multiple machines that are called Distributed

Storage. There are two different Distributed Storage infrastructures:

- Amazon-S3 (Amazon Simple Storage Server)

- HDFS (Hadoop Distributed File System/Server)

- GFS (Google File System)

GFS and Amazon-S3 are designed for specific usage. For example, GFS is

optimized for Google’s search operations. Amazon-S3 is generally used for personal

storage and process operations. However, Amazon-S3 can offer Hadoop

infrastructure according to customer’s needs.

On the other hand, HDFS is open source solution for processing distributed large

datasets. Also it has very important differences from other distributed systems. First

one is detection of faults and other one is that HDFS does not need high-cost

hardware.

Hadoop File System

HDFS consists of a main NameNode and worker DataNodes. NameNode manages

some file operations like read, write and so on. It also organizes mapping of blocks

to DataNodes. DataNodes are responsible for processing file operations. They also

manage creation of the new operational blocks.

11

Figure 3: HDFS Architecture

(Source: http://hadoop.apache.org/docs/r1.0.4/hdfs_design.html)

There are some key goals of HDFS system. It has powerful and quick fault detection

infrastructure. It enables to access data quickly with streaming data access support.

It deals with large datasets. Modular system of HDFS can be portable many

heterogeneous software and hardware systems.

HDFS Failure Check System

HDFS has a great failure check system to prevent any data loss. Especially, data disk

failure, data integrity failure, and metadata disk failure are always controlled by

HDFS failure check system.

12

Data disk failure is checked by NameNode. In HDFS structure, every DataNode

sends Heartbeat messages to the NameNode periodically. Therefore, NameNode

knows which DataNode is working and which is not. Therefore if one of the disks

fails, NameNode creates a replication of this DataNode on a healthy disk.

Data integrity is another important issue for HDFS. Dealing with streaming data

always requires checking failure or corruption of content. Thus, HDFS has a

checksum system for every block of file to save data integrity. In that case, every

DataNode verifies all content by using related checksum before data processing.

Metadata files have many replications on HDFS. When any file is changed in there,

other replications of files automatically are changed.

2.2.4. Programming Models

Standard programming models generally do not deal with how much data is

processing. In that case, to simplify complex programming tasks, Map Reduce

algorithm is developed by Google and now it is most popular programming model

approach all around the world [10].

Before usage of this algorithm, hundreds or thousands of machines are needed to

process large datasets in an acceptable time In that case, parallelize, distribution of

data, fault tolerant and load balancing are the most complex operations while dealing

with large number of machines. Map Reduce library offers powerful interface that

enables to process on distributed systems without handle these kinds of operations.

There are some examples that are easily solved by using Map Reduce algorithm:

Count of URL Access Frequency, Reverse Web-Link Graph, Term-Vector per Host

(importance level of a part in large sets), and Inverted Index (for search operations

on datasets).

13

Map Reduce is generally called a framework that main target is to solve problems by

using parallel processing approach. There are three main step:

- First the problem is divided into smaller problems. (Map Step)

- Second, these smaller problems are solved in parallel way.

- Finally, all solutions which come from small parts are combined to create

original problem solution. (Reduce Step)

Figure 4: Map Reduce Algorithm

When user program creates map and reduce tasks, there are some limitations to

increase the efficiency of the system. Number of maps is generally calculated by

using input size and block size. Therefore, 1 TB data on the 128 MB block size are

14

usually needs approximately 8000 maps. On the other hand, number of reduces is

related with number of nodes multiplied by 0.95 or 1.75.

The Map Reduce framework works with <key, value> pairs. Therefore, it gets the

input as a set of <key, value> pairs and generates output as a set of <key, value>

pairs at the end of the job. There is a sample code to find out general structure of

Map Reduce:

Figure 5: Example Map Reduce WordCount Code

Map Reduce is the most popular algorithm, so many Big Data systems (analysis and

processing tools) are based on Map Reduce framework such as Hadoop, Hive, Pig,

Cascading, Cascalog, Sawzall, Dremel, mrjob, Caffeine, S4, MapR, Acunu, Flume,

Kafka, Azkaban, Oozie, Greenplum.

15

2.3. High Performance Schema Free Databases

When organizations deal with large datasets, relational database systems are not

enough to perform data operation and processing. Therefore, High Performance

Schema Free Databases that are called as NoSQL (Not Only SQL) Databases are

designed to perform data operations efficiently and quickly. There are some

characteristics of NoSQL DBs that traditional databases cannot support:

- Support to process large datasets at once.

- Work on distributed systems.

- Different from standard SQL interface.

- Based on key value storage type like JSON (Schema free, no need to

predefine).

- Fast, flexible, easy to write queries.

Some important implementations are BigTable, HBase, MongoDB, Cassandra,

Redis, CouchDB, Hypertable, Voldemort, ZooKeeper and so on.

16

Figure 6: NoSQL vs RDBMS

(Source: http://cdi-mdm.blogspot.com/2011/07/nosql-newsql-and-mdm.html)

DB Type Specifications

NoSQL

High Performance

Linear Scalability

Schema Free/Flexible

RDBMS

Complex Joins

Predefined Schemas

Declarative Syntax

Transactions (ACID)

NoSQL & RDBMS Deals with data and its operations

Table 1: NoSQL vs RDBMS Basics

17

2.4. Processing & Analyzing

The amount of data has been increasing exponentially. Processing and analyzing

these large datasets are most important to obtain valuable information from this sea

of data. However it is big challenge to analyze growing volume of information that

meaningful patterns are just handled by using special kind of processing and

analyzing tools. Therefore there are lots of processing and analyzing tools such as

Hive, Pig, Mahout, R and so on.

Pig and Hive are most popular tools on Hadoop platform. Pig is firstly developed by

Yahoo and Hive developed by Facebook. Then, both of them are taken under

Apache open source platform foundation.

Pig

Pig is the one of the most important high level processing platform for creating Map

Reduce programs. This platform has own language that is called as Pig Latin. It is

very similar with SQL. It has also User Defined Functions (UDF) module that allow

to user writing own functions by using Java, Phython, Javascript, Ruby or Groovy

[11].

18

Figure 7: Example Pig Script

Pig Latin is a language that fits between low level styles of Map Reduce and

declarative style of SQL. Even if it seems like SQL type, Pig Latin is procedural

[15].

Hive

Hive is a data warehouse system that can be integrated with hadoop for analysis of

large datasets. It provides a language like SQL that is called as HiveQL. It has full

support of Map Reduce operations. Thus, there are some important properties of

Hive. Indexing is used for increasing speed of operation. Hive also supports

different storage types (HDFS, TEXT, SEQUENCEFILE, HBase, etc.). UDFs can

be used to handle some new operations in Hive platform.

19

Figure 8: Example Hive Script

2.5. Case Study: Hadoop

Big companies like Google, Microsoft, Amazon have their own big data solutions.

However, they are not open source and not suitable for middle-scale organizations.

At that point, Doug Cutting developed an open source version of this concept called

Hadoop which is based on Map Reduce algorithm [10]. Then, Yahoo and other

organizations support this framework and Hadoop became a distributed parallel

processing framework which has own distributed database, file system; and also

processing, analytic and visualization tools. Now it is one of the most powerful,

scalable, flexible parallel computing frameworks that supports many open source

processing and analyzing modules. Hadoop framework has these main modules [4]:

- Hadoop Common: Utility tool that supports all Hadoop modules

- Hadoop Distributed File System (HDFS): File system of Hadoop to manage

Big Data

- Hadoop YARN: Cluster management system of Hadoop

- Hadoop MapReduce: Parallel processing modüle of Hadoop

- Ambari: Hadoop cluster monitoring module

- Avro: Data serialization system.

20

- Cassandra: A high performance schema free database for Hadoop (NoSQL

DB)

- Chuckwa: Distributed system management tool.

- HBase: A high performance schema free database for Hadoop (NoSQL DB)

- Hive: Data analyzing tool for Hadoop

- Mahout: Data mining library for Hadoop

- Pig: High level language for execution of parallel operations

- ZooKeeper: Coordination service for Hadoop system.

Figure 9: Hadoop Infrastructure

21

Chapter 3

Higher Level Domain Specific Language For Big Data Concept

3.1. Big Data Solution For Telecom Industries: Petaminer

Global data usage has been extremely increasing day by day. Therefore many

enterprises want to collect these data and try to get best analysis for product strategy,

targeting sales, business performance optimization, prediction & recommendation,

resource management and so on.

Most of enterprises try to adopt their systems as Big Data concept. However, there

are some key industries that will really gain advantage from this infrastructure.

Figure 10: Global IT Spending by Industry Verticals 2010-2015

22

Main benefits of big data infrastructure are generally same for all of these industries:

- Improvement of service quality

- Prevent long time running queries for large datasets

- Get valuable information from multiple dimension and unstructured data

- Storing and accessing Cold Data is very effective in lower cost environments

- Single platform with modular tools

- Linear scalability

On the other hand, when organizations deal with big data, there are some challenges

that traditional data management and processing tools cannot handle. First of them is

collecting data sources from different kind of platform. Second is formatting

unstructured data into a format. Third one is processing and analyzing huge amount

of data. Final of them is to find best cost / performance ratio for the organizations.

 In this section, I’ll introduce a big data system of Elkotek for telecom industries that

is called Petaminer. Then, I’ll present a new higher level language –called DSL- for

processing and visualizing specific telecom operations easily. Finally, I’ll share

related works about similar big data processing language solutions.

Petaminer is big data management solution for telecom industries. It is developed by

Elkotek. It has 4 main big data aspects:

- Scalable

- Reliable

- Cost Effective

- Built on Industry Standards

This big data management system can allow increasing processing and storage

capacity on demand. Therefore, it is not a big issue to start a small system and grow

23

afterwards. Configurable data storage settings and task failure handle system make

this platform very reliable. Moreover, users -organizations- do not need to buy any

physical system or invest on any data modeling. Finally, it uses most powerful

Hadoop infrastructure and Google’s Map Reduce algorithm.

Petaminer consists of 4 main layers:

- Collect

o From different sources: DWH, RDBMS, FTP, Syslog..

o In different formats: CDR, Free Text, Email, Social Media, Log File..

- Manage

o Process: Workflow Mngt, Scheduling, Data Transformation, Alarm

Mngt.

o Store: Raw and generated data

- Analyze

o Parallel Processing Algorithm: Map Reduce

o Hadoop analysis modules: Hive, Pig, Mahout

- Report

o Export the results: integration with RDBMS, DWH, FTP..

o Enable real time query: Millisecond level query performance on

provided API

24

Figure 11: Petaminer Big Data Solution Platform

There are some excellence points that make Petaminer a better solution for Big Data

concept in telecom industry.

- HDFS-aware FTP Server

o Data, that is put on FTP, is automatically distributed on distributed

HDFS cluster

o If you have large datasets to push via FTP, you cannot deal with local

disk sizes

25

- Selective Mapping

o Map Reduce naturally iterates over all dataset

o On the other hand, Petaminer’s Selective Mapping layer increases

query performance by running queries only on chunks that contains

results

- Flexible Preprocessing

o According to Metadata Binding concept, each data has more meaning

in its context. Petaminer can store metadata about the context of the

data such as server ports, generation time, folder name, properties and

so on.

o Data Combiner helps Hadoop to manage large datasets on distributed

clusters.

- Parallel Compression

o Compression ratios and performances are very important on data

management and processing platforms.

o Petaminer provides a parallel data compression and decompression

method to increase disk utilization, query performance and decreases

processing time.

- Domain Specific Language Infrastructure

o Domain specific languages help business users to run complex

queries while staying in their domain eliminating to learn to write

scripts in Java, Pig or Hive languages

- Result (Report) Viewer Tool

o DSL related result visualizer helps to get perfect visual results just

writing simple DSL commands.

26

Lifecycle of Petaminer starts with store and search of big data. Then, search and

analyze. Finally, analyze and data mining. All of these steps are applied on large

datasets of telecom industries by Petaminer. This platform offers solutions such as

[1]:

- Storage and Search

o Application Logging

o CG NAT Log Analysis

o CDR Log Analysis

- Search and Analytics

o DPI Reporting

o Email Archiving and Analysis

- Analytics & Data Mining

o Network Analytics

o Social CRM

3.1.1. Storage and Search Solutions

Application Logging

Application logs are generally stored on RDBMS in many organizations. Large

numbers of logs are created by enterprise applications and these are still increasing

due to security concerns and regulatory requirements. However, traditional

RDBMSs are not suitable for storing and searching operations because of large

datasets. So these kinds of operations require new set of Technologies such as

distributed infrastructure.

27

CG NAT Log Analysis

Telecom operators need to deploy CG NAT solutions when they need transition

from IPv4 to IPv6. Logging IP usage records and being able to query them is a

necessity for companies that deploys CG NAT solutions. Correlating this entire

network logs with others help to identify customers and answer questions received

from legal entities. This is another problem to require Big Data solution.

CDR Log Analysis

Telecom companies create huge amount of Call Detail Records (CDRs) every

second. Processing, analyzing and serving CDR content requires real big processing

power and storage capacity. Therefore, Big Data technologies offer to build more

cost effective and high performance solutions.

3.1.2. Search and Analytics Solutions

DPI Reporting

DPI is one of the most popular analyzing concepts in telecom industry. Traditional

database systems cannot allow inspecting all data source and dropping lots of

information because of lacking database management system or data warehouse

power and capacity. Big Data technologies prevent this kind of data lose and also

enable to process at real time. This type of reporting gives lots of valuable

information about customer behavior.

Email Archiving and Analysis

Emails have very important part of communication platform today. Many

organizations do not offer an archival solution. End users generally save their

28

archives on their computers. Email Archiving and Analysis system offers a

searchable email archive that handle complex queries for the organizations. It is very

easy to detect usage patterns while dealing with their enterprise mailings.

3.1.3. Analytics & Data Mining Solutions

Network Analytics

Customers generally deal with various kinds of networks and systems. To define

customer experience always requires processing and analyzing all these large

network datasets such as structured or unstructured data, various kind of data and so

on. Petaminer Network Analytics solution helps enterprises to collect, correlate and

analyze their customer behavior. Different kind of customer data is always very

useful to find hidden patterns in Big Data concept.

Social CRM

Social networks are one of the most important platforms to find out customers and

potential customer’s needs. Analyzing social platforms help organization to

determine unhappy customers and solve their problems quickly, before customers

think negative about your business. Furthermore, social analysis gives the power of

determining marketing plans and identifies future expectation of organizations.

When customers of Elkotek –Petaminer platform- need to analyze a file, Elkotek

must write necessary scripts every time. This is too much time consuming for

Elkotek and their customers. This case is generally same as every big data platform

for all industries.

29

At that point, we provide a new solution that is called as Domain Specific Language

in that study. This is a new higher level language that customers do not need to write

any complex Pig, Hive queries or Map Reduce codes. Therefore, customers of big

data platforms such as Elkotek –Petaminer platform- can easily analyze their files on

their own.

3.2. Domain Specific Language For Telecom Industries

Domain Specific Language is the one of the main part of this solution. This concept

includes:

- Domain Specific Language - DSL

- Distributed File Descriptor - DFD

- Result Viewer

We designed DSL, DFD and result viewer by examining powerful big data analysis

platform - Petaminer - of Elkotek. Integration of the whole system described below:

30

Figure 12: DSL Solution for Big Data Platform

First of all, user writes DSL script to analyze files. Then, this script is sent DFD

module of Petaminer platform. In that section, DFD analyzes DSL script and

converts it into right structure. Then DFD determines correct operation analysis

frameworks and starts processing. Finally, generated output file information is sent

to the result viewer as a JSON format. Result Viewer reads the JSON and shows

related diagram for the user.

31

3.2.1. Domain Specific Language - DSL

This is very high level language. It is designed to prevent writing complex queries

such as Java, C Map Reduce algorithms. Also, it is short language and easy to

implement. Therefore, it prevents too much time consuming.

System works with two kinds of files. These are input files and output files. There

are some predefined input files such as:

- NETWORK_FILE

- SUBSCRIBER_FILE

- BILLING_FILE

- PAYMENT_FILE

- CROSS_SALES_FILE

- COMPETITOR_FILE

- CUSTOMER_COMPLAIN_FILE

We can think predefined files as first class object called as File Descriptor -FD-. We

define file objects like:

FD Input_FD;

Input_FD.fileType = “NETWORK_FILE”;

Therefore analyzing of these predefined files needs some operators. All operators

are in telecom domain and know about predefined input files. These are:

32

- Network Engineering Operators

o DPI

o NETWORK_TRAFFIC

o NETWORK_BANDWITH

o NETWORK_CLUSTERING

- Customer Support Operators

o USAGE_ANALYSIS

o CHURN

o COMPLAIN_ANALYSIS

o TOP_APPLICATION

o ANORMALY_DETECTION

- Finance & Marketing Operators

o MOST_PROFITABLE_CUSTOMER

o MOST_PROFITABLE_TRAFFIC

o CROSS_SALE

We can use predefined operators such as:

FD output_FD;

output_FD.location = “http://test.user/defined/output/path”;

ouput_FD = DPI input_FD;

Predefined File Descriptor attributes for specific operations:

33

Attributes
Input File Descriptor Output File Descriptor

Usage Explanation Usage Explanation

fileType “NETWORK_FILE”
Defines input

files
- -

location
“http://

server.com/file.xyz”

Location of

single input

file

“http://

server.com/newFile.xyz”

Single output

file location

location[]
{location1,

location2, ...}

Location of

multiple input

files

{location1,

 location2, ...}

Multiple

output files

location

failureCheck “YES” or “NO”

Need more

process power

and storage

- -

filterParams[]
{param1, param2,

...}

Under

development

according to

customer

needs

- -

getColumns[] - - {col1,col5, col9, ...}

Get the

related

column

values from

output files

titles[] - - {title1, title2, ...}

Title names

according to

column that

chosen

graphType - -
“PieChart” ,

“LineGraph”, etc.

Graph type

for Result

Viewer

graphName - - “My Graph” Graph Name

Table 2: File Descriptor Attributes

34

3.2.2. Distributed File Descriptor – DFD

DFD is the management system between DSL, Big Data platform -Petaminer- and

Result Viewer. It gets script from DSL and convert it right structure to process on

right operation framework. Then, it handles result files and sends them on Result

Viewer in JSON format. DFD is an embedded solution on Big Data platform like

user defined functions (UDF).

3.2.3. Result Viewer

After output files are generated, DFD send graph operations to the Result Viewer in

JSON format. Result Viewer takes it and generates related graph according to user

needs. Result Viewer will be implemented after all of these DSL and DFD structures

are finished.

3.2.4. Case Study: DPI Operation

DPI is the one of the most popular topic in telecom industry. Both detect of service

attacks –especially DoS- and customer behavior analysis, that is most hot topic these

days, is related with DPI operations.

Our implementation works with predefined network files. These files are generated

by using row-column style or CSV pattern standards. Therefore, user knows details

about network file and how to apply right operations on it. After applying

operations, output file has a predefined pattern and user can send this file to the

Result Viewer. Result Viewer shows these values graphically. Example script;

35

FD FD_Output;

FD_Output.location=“http://server.com/networkTraffic_2013_final_Out.txt”;

FD FD_Input;

FD_Input.fileType = “DPI”;

FD_Input.location = “http://myserver.com/networkTraffic_2013_final.txt”;

FD_Input.failureCheck = “YES”;

FD_Input.filterParams = {noRepeat, between: 04/13-05/13};

FD_Output = DPI FD_Input;

FD_Output.getCols[] = {1,8,9};

FD_Output.titles[] = {VoIP-Traffic, Email-Traffic, X-Traffic};

FD_Output.graphType = “lineGraph”;

FD_Output.graphName = “DPI Traffic Analysis”;

This is an example DSL script which performs DPI operation on a specific file.

After, DFD directs the output solution to the Result Viewer.

36

Chapter 4

Performance Results

We examined two kinds of performance results. First one is data processing and

analyzing performances. Another one is database write performances with HBase.

These are the key points to increase the general performance of the Big Data

systems. Increasing performance of DSL operations is related with performance of

Big Data platform. Therefore, we examined the some point of the Petaminer

performance results to analyze effects of the processing and database units.

Processing and Analyzing Performance Results

First of all, we observed the performance difference when number of nodes and its

map-reduce tasks are changed. Therefore, there are 6 different throughput results

that first two of them have 2 mapper tasks, second two of them have 3 mapper

tasks, fifth one has 6 and last one has 8 mapper tasks (Table 3). There are 10 GB

of data per node that has 1024 MB memory.

of Nodes Execution (seconds) Throughput (MB/s)

3 2629 11

3 2233 13

3 2069 14

4 1514 27

4 1380 29

4 1250 32

Table 3: Node Scalability Table

If we carefully look at the results, number of mapper tasks decrease execution

time and increase throughput. On the other hand, increasing number of nodes

37

provides extremely rise of throughput. Throughput of 4 nodes with 3 mappers is

twice of 3 nodes with same number of mappers (Figure 13).

Figure 13: Node Scalability

Another important performance issue while dealing with big data is to decrease

execution times. In that case, we examined execution time results. Like first

performance results, there are two sets of results. One of them is execution time

results with 2 and 3 mappers on each of three nodes. Another one is execution

time results with 3, 6 and 8 mappers on each of three nodes (Table 4).

38

of Map

Reduce Tasks
Execution 1 Execution 2 Mean

2, n = 3 2629 2233 2431

3, n = 3 2069 - 2069

3, n = 4 1514 1493 1503,5

6, n = 4 1470 1380 1425

8, n = 4 1250 - 1250

Table 4: Execution Time Table (n denotes number of nodes)

We observed that increasing number of mapper tasks decrease execution time

when number of nodes equal to 3 or 4 (n = 3, n = 4). Moreover, number of nodes

has a great performance effect to decrease execution time (Figure 14). There is an

important time difference between while changing total number of nodes 4 up

from 3 with fixed number of mapper tasks.

Figure 14: Execution Time

39

By using Table 4 values and variables, we created a speed up table to find out gain

while dealing with difference number of map/reduce tasks and nodes (Table 5).

of Map Reduce Tasks Execution Time Speed Up

2, n = 3 2431 1

3, n = 3 2096 1,175

3, n = 4 1503,5 1,617

6, n = 4 1425 1,706

8, n = 4 1250 1,945

Table 5: Speedup Table (n denotes number of nodes)

In Figure 15, it is possible to show execution time gain with speedup graph while

increasing number of map/reduce tasks and nodes. Increment rate of speed up is at

the higher level while increasing number of nodes as we expected.

Figure 15: Speedup

40

HBase NoSQL DB Write Performances

Another important point for Big Data platforms is to write large datasets into DB

as quick as possible. NoSQL databases like HBase are designed to perform these

kinds of database operations efficiently. Therefore, some compression options like

snappy driver and lzo increase the average import rate and also decrease the disk

usage to increase HBase performance. In Table 6, there are some different

samples such as 709 MB data, 1065 MB data and its compressed output, 95827

MB compressed data.

Data

Size

of

Records

Total

Time(sec)

Avg. Import

Performance

(MB/sec)

Disk

Usage

Compression

(LZO,

Snappy)

709,11 10934599 73,995 9 1802 NO

 1065 4863732 58,984 17 1331 NO

1065 4863732 49 21 530 YES

95827 437587321 4891 19 48784 YES

95827 437587321 5350 19 49029 YES

95827 437587321 5051 19 47246 YES

Table 6: HBase DB Write Performances

Average import performances are generally related with the data size and disk

usage. Starting with smaller data (709 MB) without compression helped to figure

out average import performance. Then approximately 1 GB of data is tested with

compressed and uncompressed. There is average import performance difference

between these samples that have same data size. Finally, average import rate of

compressed big size of sample data (95827 MB) are examined to find out the

effects of the large datasets (Figure 16).

41

Figure 16: HBase Avg. Import Performance

It is very important to store big data efficiently. Therefore, increasing write

performance of the system is related with data size and disk usage of these data. It

is possible to decrease disk size some tools like lzo compression system. In figure

17 shows that disk usage of 1065 MB sample data is compared with its

compressed sample.

42

Figure 17: HBase Disk Usage – Sample 1

Disk usage of another sample that has large size (95827 MB) is tested three times

with compression (Figure 18). Because, it is important to decrease disk size and

increase average import rate while dealing with real big data.

In Figure 19, disk usage rate of compressed big sample is almost same as first

sample in Figure 17. Therefore, it is possible to compress whole big data to

decrease disk usage and increase average import rate.

43

Figure 18: HBase Compression Tests of Sample 2

Figure 19: HBase Disk Usage – Sample 2

44

Chapter 5

Related Works

Hadoop [1] is one of the most popular open source modular and distributed system

that processes datasets by using parallel computing approaches. It has lots of

components to achieve this such as HDFS (Hadoop File System), YARN for cluster

management, Map Reduce algorithm, Cassandra DB, Hive[2] for query execution,

Pig[3] for high level implementation, Mahout for Data Mining and so on for specific

operations. Our DSL solution is a high level language solution for this kind of

Hadoop system but it has higher level implementation than Hadoop Hive, so it is

very easy to implement specific operations. Also Amazon WS uses Hadoop

infrastructure to perform high performance operations.

Map Reduce is a programming style that helps to process large datasets by splitting

them among different machines. Therefore there are lots of analysis tools to create

meaningfull knowledge by using Map Reduce approach. One of them is Dremel.

Dremel is a query execution system that quickly analysis large datasets . It has

similar architecture as Hive and Pig but provides powerful adhoc data analysis and

fast query engine [12]. DSL provides a high level language above Map Reduce

algorithms (such as Pig, Hive also Dremel) and prevent user to create complex SQL

queries to analysis read-only datasets. On the other, DSL is a high level language to

process specific operations (such as DPI, CHURN, so on…) on the file datasets.

FlumeJava is a library that increases the efficiency of Map Reduce tasks [13].

Unlike DSL solution, it is a low level library that helps to creates optimized Map

Reduce operations to process large datasets.

45

Sawzal [14] is another domain specific approach which is a new language above

Map Reduce framework. It is a language that easier to write Map Reduce programs.

Like Sawzall, DSL is very simple to write for domain specific operations. However,

Sawzall works above Map Reduce framework on the same layer. Our approach is

higher level solution which just deals with writing file process operations. Therefore

user not needs to change any process or algorithm in the Map Reduce layer for

writing file processes. On the other hand, DSL requires a specific Map Reduce

solution for distinct domains (such as telecommunication, health, science etc.).

Pig Latin is another data analysis language that works over Hadoop distributed

computing system. It is developed by Yahoo and works between declarative SQL

style and produceral low level Map Reduce style [15].

Spark is a parallel computing framework that uses RDD (Resilient Distributed

Datasets) to decrease loss of data [16], [17]. Therefore, in every distributed machine

when a partition is lost, the system generates same one for this specific cluster. DSL

infrastructure has same option for fault tolerance. For Map Reduce operations DSL

creates many copies of datasets to prevent the data loss.

Another large data analysis scripting language is SCOPE [18]. It has lots of features

from SQL. In addition users can define new functions by using this scripting

language. Like Sawzall and DSL, it has easy language to prevent writing many lines

of code. However it owns a special parallel processing layer which called Cosmos.

Another data analysis high-level programming language is DryadLINQ which is

also under development at Microsoft [19]. This language uses .NET platform to

write scripts and debugging them. It is non SQL based language like DSL.

All of above related works generally based on distributed file system (GFS, HFS,

etc.) and a parallel framework (such as MR, Dryad, etc.). DSL also have same

46

architecture but this higher level language has a different framework that prevent

user from complex distributed processes and writing complex queries. However, this

language and its operations just works on specific domains that hold related

algorithms for distributed systems.

47

Conclusion

In this thesis, we present a big data system for telecom industries which offers a

new higher level language for domain specific operations. Firstly, the

characteristics of big data are described. Then, criterias for determining big data

tools are grouped into four different parts: Infrastructure, Programming Models,

High Performance Schema Free Databases and Processing & Analyzing. After

that, telecom domain big data solution with a DSL concept is explained detailed.

Writing Map Reduce programs is very difficult and complex operation. Because

user has to write both processing and analyzing tasks by using Map Reduce

algorithms. This is also too much consuming. There are lots of solutions to handle

Map Reduce jobs very easily and effectively such as Dremel, Sawzall. However,

although effectiveness of processes increases, they are not higher level solutions

to write these queries easily. We provide a new higher level language that is called

DSL and design an integration framework -DFD- for messaging with domain

specific big data platform -Petaminer-. With this solution, user can easily perform

predefined operations in telecom domain and get solution with a result viewer.

Messaging protocol is designed with JSON which is very basic and common

solution all around the world.

There are some limitations in this study. Firstly, DFD framework is not designed

completely yet. And also result viewer is not implemented. Only DSL operators,

objects and attributes are designed and its tests still continue.

As a further research, DFD framework and result viewer should be implemented.

Then new operators and attributes can be defined to increase analyzing power of

DSL solution.

48

References

[1] Warden, P., Big Data Glossary, O’Reilly Media Publications, USA, 2011.

[2] Eaton, C., Deroos, D., Deutsch, T., Lapis, G., Zikopoulos, P., Understanding Big

Data, McGraw-Hill, USA, 2012.

[3] Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on

Large Clusters. Communications of the ACM, 51(1), 107-113.

[4] Apache Hadoop Project. Web site: http://hadoop.apache.org/

[5] Apache Hive Project. Web site: http://hive.apache.org/

[6] Apache Pig Project. Web site: http://pig.apache.org/

[7] Apache Mahout Project. Web site: http://mahout.apache.org/

[8] Critiques of Big Data execution. Web site:

http://en.wikipedia.org/wiki/Big_data#Critiques_of_the_Big_Data_paradigm

[9] Driving Marketing Effectiveness By Managing The Flood Of Big Data.

Web site: http://www.ibmbigdatahub.com/infographic/flood-big-data

[10] Lam, C., Hadoop In Action, Manning Publications, USA, 2010.

[11] Pig Languge. Web site: http://en.wikipedia.org/wiki/Pig_(programming_tool)

[12] S. Melnik, A. Gubarev, J. J. Long, g. Romer, S. Shivakumar, M. Tolton and T.

Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB, 2010.

[13] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. Henry, R. Bradshaw, and N.

Weizenbaum. FlumeJava: Easy, Efficient Data-Parallel Pipelines. In PLDI, 2010.

[14] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the Data:

Parallel Analysis with Sawzall. Scientific Programming, 13(4), 2005.

49

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a

Not-so-Foreign Language for Data Processing. In SIGMOD, 2008.

[16] M. Zaharia, M Chowdhury, M. J. Franklin, S. Shenker, I. Stoica. Spark: Cluster

Computing with Working Sets. June 2010.

[17] C. Engle, A. Lupher, R. Xin, M. Zaharia, H. Li, S. Shenker, I. Stoica. Shark:

Fast Data Analysis Using Coarse-grained Distributed Memory. SIGMOD 2012,

2012.

 [18] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J.

Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. VLDB,

1(2), 2008.

[19] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U´ . Erlingsson, P. K. Gunda, and J.

Currey. DryadLINQ: A System for General-Purpose Distributed Data-Parallel

Computing Using a High-Level Language. In OSDI, 2008.

50

Curriculum Vitae

 Cüneyt Şenbalcı was born in October 9th, 1987, in Istanbul. He received

his BS in Computer Engineering in 2011 from Kadir Has University. From 2011

to 2012, he worked as a freelancer Android Application Developer. Since the

beginning of 2012 he is Mobile Technology Services Engineer in Turk Telekom

Group which is the leading communication and convergence technology group in

Turkey.

