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ABSTRACT

GLOBAL MANY-TO-MANY ALIGNMENT OF MULTIPLE

PROTEIN-PROTEIN INTERACTION NETWORKS

Proteins are the essential parts of organisms and almost every biological process within

a living cell is mediated by proteins and their interactions. Due to such importance, proteins

are at the core of many researches in systems biology and evolutionary biology. In particu-

lar, defining the function of a protein and identifying functionally orthologous proteins are

crucially important in many research areas and precise function of a protein can only be de-

fined by biochemical and structural studies. However, many computational methods are also

developed for such purposes and they use the sequence and interaction data of proteins since

it provides a presumption about the chemical structure of a protein. For example, network

alignment studies aims to find clusters of functionally related proteins across given protein

interaction networks usually by implementing the given networks as graphs and employing

some graph theoretical approaches. In this thesis, we focus on the problem of global many-

to-many alignment of multiple protein-protein interaction networks. We define the problem

as an optimization problem and this is the first combinatorial definition that is given for the

problem in the literature. Then, we prove the computational intractability of this problem

and we propose a new heuristic algorithm for the solution. We provide the test results of

the proposed algorithm on both actual and synthetic PPI networks and it outperforms the

existing algorithms, that serve at similar purpose, in terms of many evaluation aspects.
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ÖZET

BİRDEN ÇOK PROTEİN ETKİLEŞİM AĞININ ÇOKA ÇOK

OLARAK HİZALANMASI

Proteinler canlı organizmaların temel yapıtaşlarını oluşturur ve hücreler içerisindeki

birçok biyolojik süreci düzenlerler. Bu büyük önemleri nedeniyle de sistem biyolojisi ve

evrimsel biyoloji alanlarında birçok araştırmanın odağı halindedirler. Özellikle protein-

lerin fonksiyonlarının tanımlanması ve fonksiyonel olarak benzer proteinlerin gruplanması

birçok araştırma alanı için büyük önem taşımaktadır. Fakat bir proteinin kesin fonksiy-

onu ancak biyokimyasal ve yapısal analizlerle bulunabilmektedir. Bununla beraber protein-

lerin dizilim ve etkileşim bilgilerini kullanarak bu amaçlara hizmet eden hesapsal yöntemler

de geliştirilmektedir. Örneğin ağ hizalama çalışmaları bunlardan biridir ve verilen protein

ağları içerisinden fonksiyonel olarak birbirine benzeyen proteinleri kümelemeyi amaçlar. Bu

çalışmalar genellikle verilen ağların çizgeler olarak tanımlanmasını ve bu çizgeler üzerinde

çeşitli çizge teorik yaklaşımlar uygulanmasını içerirler. Bu tez kapsamında ise birden çok

protein ağının çoka çok olarak hizalanması problemi ele alınmaktadır. Bu tez ile bu hiza-

lama problemi bir optimizasyon problemi olarak tanımlanmakta ve bu tanım bu problem

için literatürde verilmiş olan ilk kombinatöryel tanımdır. Daha sonra bu problemin işlemsel

karmaşıklığı analiz edilmekte ve problemin çözümü için bir buluşsal algoritma önerilmektedir.

Sunulmuş olan BEAMS algoritmasının hem gerçek hemde sentetik ağlar üzerindeki test

sonuçları sunulmakta ve bu sonuçlar literatürde aynı amaca hizmet eden diğer algoritmalar

ile karşılaştırıldığında, BEAMS algoritmasının birçok açıdan diğer benzer algoritmalardan

daha etkili çalıştığı görülmektedir.
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1. INTRODUCTION

This introductory chapter is divided into four sections to provide better understanding

of the biological background of the thesis. We first start by giving information about genes,

gene products, their functions and sequence alignment. Then, we give information about the

functional orthology of genes and proteins and we continue by explaining protein interaction

networks. In the last section, network alignment is introduced to the reader and existing

alignment algorithms are summarized for a better understanding of global network alignment

problem.

1.1. Genes, Proteins and Comparative Genomics

Every living organism is made of cell or cells and all living organisms carry out count-

less different biological activities during their lifetime. Most of these biological activities

take place inside the cells and these cellular processes are always mediated by some specific

molecules and their interactions with other molecules. In particular, proteins and their inter-

actions are at the core of many cellular processes and these proteins are mostly synthesized

within the cells of organisms.

The information to synthesize such proteins is mostly inherited from the ancestors of

the cell and it is part of the genetic information that is handed down from generation to

generation through their genomes. DNA molecules in genomes store this information in a

chemical code with its chemical building blocks and the interpretation machinery of this

code is essentially the same for every species [2]. According to the central dogma of biology,

chemical code of the needed information is first transcribed into a chemically related set of

molecules, messenger RNA (mRNA) and then, this coded information in mRNA is translated

into a chemically related protein molecule in ribosome, a special organelle of the cell. The
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information-carrying transcribed parts of the DNA molecules are called as genes and thereby

proteins are considered as the products of their coding genes.

Amino-acids are the fundamental building blocks of proteins and every protein has an

amino-acid sequence which is determined by the chemical code sequence of its coding gene.

The amino-acid sequence and the folding of protein determines its specific three dimensional

structure and this structure lies at the core of determining its interactions and function

within the cell.

Breakthrough advances in sequencing technology of genomes and proteins resulted in

huge amount of fruitful sequence data of genomes and proteins for many species. Due to this

progress, a new field of study, comparative genomics was born and it aims to provide insights

about the evolutionary and functional mechanisms on genomes by comparing sequence data

of different genes and gene products that are from different species. As mentioned by Fang

et al., all species originates from a common ancestor and these variations are because of

the natural selection and being exposed to different complicated environmental changes.

They continue by stating, with the field of comparative genomics, divergence of species

from the common ancestor can be deciphered by comparing genomes of different organisms

and, evolutionary processes such as gene deletion, gene speciation, gene duplication and

horizontal gene transfer cause additional complexity for current comparisons [3]. Therefore,

these complexities have forced researchers to develop different aspects for analyzing the data

which is highly increasing in quantity and quality. So far, there have been many breakthrough

progresses and many tools have been created for such comparisons. For example, ”Basic

Local Alignment Search Tool (BLAST)” [4] is one of the most important tools that is used

for measuring how similar two genes and two gene products are in their sequences.
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1.2. Functional Orthology of Genes and Proteins

Evolutionary processes on genomes cause speciation, duplication and deletion of genes

and that is the reason why species have different DNA sequences in their genomes despite

the origination from a common ancestor. If two genes share a common ancestral gene, they

are called as homologs and there are two types of homologous genes. If these genes belong to

the different species they are called as orthologs and otherwise called as paralogs [5]. In other

words, if two genes in different species have evolved through speciation processes they become

orthologous and if two genes from the same specie have evolved through duplication processes

they become paralogous [5]. Whether they are paralogous or orthologous, homologous genes

are mostly similar to each other in their sequences.

In comparative genomics, accurate orthologous gene identification bears a crucial im-

portance for many other research areas such as gene function prediction, phylogenetic anal-

yses, and genomic context analyses [5] and there is a large variety of proposed orthologs

prediction methods in literature [6, 7, 8, 9, 10, 11, 12, 13]. Orthologous genes and proteins

are also analyzed to identify whether they share the same function in their cellular pro-

cesses. Generally it is assumed that orthologous proteins are functionally related but they

need further analyses to identify their functional orthology.

Defining a function for proteins is still an extensively studied area of proteomics science

and sequence alignment tools and interaction data of proteins are intensively used in this area.

Accurate function prediction for a protein can only be achieved by biochemical and structural

studies, however, due to the high quantity of proteins, it is impossible to perform such studies

for every protein in all species. For this reason, development of reliable computational

methods for protein function prediction bears a crucial importance to progress in genomics

science. So far developed computational methods for such predictions mostly rely on the

sequence alignment and interaction data of proteins and they are proven to be reliable in
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many ways. Besides, representing the interaction data of proteins as networks comes in

handy for such function prediction studies.

1.3. Protein-Protein Interaction (PPI) Networks

As mentioned before, cellular activities of all organisms are mostly mediated by pro-

teins and their interactions. Technological advances, several high throughput measurement

techniques and computational methods enabled to discover these protein-protein interac-

tions (PPIs) for many species and these interactions are at the center of many researches in

many areas. According to Singh et al. [14], ”the data from these techniques, which are still

being perfected, are being supplemented by high-confidence computational predictions and

analyzes of PPIs [15, 16, 17]”. For better analysis and representation, many complex sys-

tems in biology such as PPIs, metabolic processes, gene regulations and signal transductions

are usually represented by networks and structural information of PPI networks for many

species are becoming increasingly complete and accurate with those techniques. With the

availability of these networks, new area for systematic studies of PPI networks was born and

especially, cross-species network comparisons have taken a considerable interest from many

researchers. In many computational comparison studies, these networks are implemented

with graphs where nodes represent the proteins and the edges correspond to interactions

between pairs of proteins.

Network comparison can provide valuable insights about the structural and organi-

zational features of PPI networks [18] and by discovering network similarities of different

species, valuable insights can be developed about the evolution, cellular biology and maybe

diseases. For these reasons, as mentioned by Sharan and Ideker, three types of network com-

parison methods has been suggested in general and these methods are network integration,

network querying and network alignment [1].
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Network integration is the study of comparing PPI network of a specie with other net-

works of the same specie. This other compared network can be metabolic, signal transduc-

tion or gene regulatory network and by this method it is aimed to discover the interrelations

within the specie which can also result in function prediction for the proteins in the PPI net-

work [19]. Furthermore, network querying studies aim to find subnetworks in a PPI network

that is similar to the desired subnetwork whether from the same specie or different species

and by this querying, it is aimed to develop knowledge about the evolutionary processes as

it is mentioned in such articles [20, 21, 22, 23, 24, 25, 26]. Network alignment, which is also

the main topic of our interest in this thesis, is explained in more detail in the next section.

1.4. Network Alignment of PPI Networks

Network alignment is the study of comparing two or more networks to identify similar

or dissimilar regions across given networks. Network alignment of PPI networks is a crucially

important study area in comparative genomics since it provides a better understanding and

gives valuable insights in many areas, such as functional module conversation across species,

functional orthologous proteins identification, prediction of homologous proteins and creation

of phylogenetic relationships between different organisms. For such different purposes, two

different network alignment type exists which are local network alignment and global network

alignment. Additionally, if alignment is performed only with two networks it is named as

pairwise alignment but if performed with more networks, it is named as multiple alignment.

Figure 1.1 illustrates the network alignment problem.

As mentioned by Singh et al., whether it is local or global, network alignment algo-

rithms generally aim to reveal one or more common subgraphs across the graphs of given

input networks and the uniformity of these graphs make way for conserving edges of these

subgraphs. They continue by stating that, this conservation leads to a mapping between

the nodes (proteins) from different networks but the difficulty is to create such mappings
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Figure 1.1. Visual description of network alignment problem (taken from [1]).

which are evolutionarily related [14]. Therefore, network alignment algorithms do not only

deal with the network topologies of input networks to decide alignments, they also consider

evolutionary relations of proteins such as their sequences since sequence similarities could

represent evolutionary relations.

Additionally, alignment algorithms may also differ with respect to the types of map-

pings they provide. One-to-one alignment approaches aim to generate alignments where the

output alignment either maps a protein in a network to exactly one protein from one of

the networks or leaves the protein unmapped [14, 27, 28]. One-to-many alignments have

been proposed for the global alignment of other biological networks including metabolic

pathways, where each metabolic reaction in a pathway is mapped to a subset of reactions

from another pathway [29, 30]. Finally, for many-to-many alignments the goal is to extract

clusters of proteins where each cluster may include any number of proteins from the input

networks [31, 32]. The proteins mapped to the same cluster as a result of the alignment

are all expected to compose a functionally orthologous group. Note that among all three
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versions of the network alignments, the many-to-many version is the most general. Further-

more, as far as constraints from evolutionary molecular biology are concerned, it provides

a more intuitive definition; the evolutionary distance between organisms under study may

have large variations, leading to different numbers of proteins functioning similarly when

considered in different networks.

In the following subsections, we continue by giving more detail about local and global

network alignments.

1.4.1. Local Network Alignment

Local network alignment aims to discover highly similar structured subgraphs in given

network graphs and it is performed for detecting similar functional modules in different

species. At the early stages of network alignment algorithms, instead of global alignment al-

gorithms, many local alignment algorithms have been developed and proposed. For example,

NetworkBLAST [33] and PathBLAST [21] adapted the underlying ideas of BLAST sequence

alignment algorithm; Graemlin [34] used protein modules for producing alignments; Berg

and Lassig [35] has used Bayesian approach; MaWish [36] used evolution based scoring and

Narayanan and Karp [37] performed a graph matching algorithm. However, Singh et al.

states that, all these algorithms mostly rely on sequence similarities of proteins to reduce

the complexity of problem so that they suffer from not considering network topologies in a

significant level [14].

The outcomes of local network alignment algorithms provide clues about the functions

of proteins by having many proteins of the same known function in the same detected

common subgraph and in such situations, it is expected that remaining functionally unknown

proteins of that subgraph have the same function as the rest.
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1.4.2. Global Network Alignment

Informally, global alignment of multiple PPI networks is the problem of generating

functional orthologous disjoint protein clusters through given networks. Since functional

orthology is both about the interactions and sequences of proteins, global alignment seeks

to create any kind of mapping between all proteins of given networks that will conserve the

network topology and ensure the mapped proteins are highly sequence similar to each other.

Zaslavskiy et al. states that, it is a more challenging problem than local alignment from a

computational point of view since it searches for the best global mapping solution among

all global possibilities [38]. They continue by stating, global alignment problem can also be

considered as the problem of finding weighted graph matching between given PPI network

graphs [38].

For all global network alignment algorithms, integration of network topology and se-

quence similarities has a crucial role. Aladağ and Erten states that, ”Network alignment

algorithms on the other hand incorporate the interaction data as well as the evolutionary re-

lationships represented possibly in the form of sequence data. Based on the assumption that

the interactions among functionally orthologous proteins should be conserved across species,

such incorporation is usually achieved by aligning proteins so that both the sequence simi-

larities of aligned proteins and the number of conserved interactions are large” [38].

Lately, global alignment problem has taken considerable interest and many algorithms

are proposed for the problem solution. Some of them are GA [38], NATALIE [39], Ne-

tAlignBP, NetAlignMR [40], Graemlin [34], IsoRank [14], IsoRankN [32], MI-GRAAL [41]

and variants [42], algorithm of Shih and Parthsarathy [37] and SPINAL [28]. Among all

these existing algorithms, only IsoRankN algorithm is introduced in this thesis since it is the

latest and so far best algorithm about global many-to-many alignment of multiple protein

interaction networks.
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IsoRankN algorithm generates the many to many clusters of global alignment results in

two phases. In the first phase, it calculates a functional similarity score for each cross-species

protein pairs, where it balances the the topological similarity and sequence similarity of the

proteins with a user defined value α. Functional similarity score generation is performed by

the original IsoRank algorithm and it uses a spectral graph theory for these calculations.

Then, IsoRankN constructs a similarity graph with these scores and it performs a star aligned

approach on this graph. After the creation of stars which is based on generated similarity

scores, it performs spectral partitioning method on generated stars to decide final clusters.

1.5. The Scope and Contribution of the Thesis

The focus of this thesis is on global many-to-many alignment of multiple PPI networks.

We first provide a formal combinatorial definition of the problem and it is the first formal

definition in the literature. We proceed with proving its computational intractability even

in a quite restricted case. We next provide a general framework for the problem, where

we decompose the original problem into two subproblems; that of backbone extraction and

backbone merging. Informally, each backbone in this framework corresponds to a closely

related central group of proteins, at most one from each network. Once all the backbones

are determined, the latter subproblem involves merging together the backbones with higher

chances of coexistence in a cluster of orthologous proteins. We provide heuristic methods for

both subproblems which together form our proposed algorithm based on backbone extraction

and merge strategy, BEAMS. We experimentally evaluate the algorithm with regards to

several biological significance metrics proposed in literature and compare it against a state-

of-the-art and one of the most popular global many-to-many alignment methods, IsoRankN.

The experimental results indicate that BEAMS alignments provide more consistent clusters

than those of IsoRankN. Furthermore, considering the heavy computational load of the

problem, the exceptional running time of BEAMS as compared to that of IsoRankN is a

further improvement resulting from the provided framework and the algorithm.
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2. METHODS AND ALGORITHMS

In this chapter, we first define the problem of global many-to-many alignment of mul-

tiple PPI networks as an optimization problem. Later on, we propose a new heuristic algo-

rithm for the solution. Proposed algorithm is named as BEAMS after its method Backbone

Extraction And Merging Strategy which will be explained in following sections.

2.1. Problem Definition

Although the one-to-one version of the problem has been formally defined in previous

work [28], no formal combinatorial definition exists for the many-to-many version of the

alignment problem apart from parameter learning based definitions [34]. We first provide a

formally defined optimization goal for the problem that captures the essence of the informal

definition provided in the Introduction. The definition is based on an intuitive generalization

of the global one-to-one network alignment problem definition provided in [14, 28].

Let G1(V1, E1), G2(V2, E2), . . . , Gk(Vk, Ek) be the input PPI networks where Gi cor-

responds to the ith PPI network and Vi, Ei denote respectively the vertex set (proteins)

and the edge set (interactions) of Gi. Let S indicate the edge-weighted complete k−partite

similarity graph where the ith partition of S is Vi and each edge (u, v) in S is assigned a

positive real weight w(u, v). This weight corresponds to the sequence similarity score s(u, v)

between u and v, usually assumed to be the Blast bit score of u and v, where u ∈ Gi, v ∈ Gj

and i 6= j. Let Sβ be a subgraph of S with the same set of vertices. Sβ represents a filtered

version of the similarity graph S, so that only edges between pairs of proteins with relatively

high sequence similarity are retained. For a fixed Sβ, the global many-to-many alignment

of all the input PPI networks is the problem of finding a maximal set of non-overlapping
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clusters CL = {Cl1, Cl2, . . . , Clm} that maximizes the following alignment score:

AS(CL) = α× CIQ(CL) + (1− α)×
∑
∀Cli∈CL ICQ(Cli)

|CL|
(2.1)

Here α is a real number between 0 and 1. It is a balancing parameter that determines

the contribution weight of network topology as compared to homological similarity in the

construction of output alignments. Each cluster Cli is defined to be a complete c−partite

subgraph of Sβ where 1 < c ≤ k. A set of clusters CL is maximal if no additional clusters can

be added to CL, that is no further complete c−partite subgraph remains in Sβ. Note that

maximizing the AS score does not automatically guarantee the maximality of the output set

of clusters.

CIQ(CL) denotes cluster interaction quality and is a measure of interaction conser-

vation between all cluster pairs in CL. Let EClm,Cln denote the set of all PPI edges with

endpoints in distinct clusters Clm, Cln. We define a conservation score for each such edge

(u, v), denoted with cs(u, v). Let sm,n denote the number of PPI networks shared by the

vertices in Clm, Cln and let s′m,n be the number of distinct PPI networks containing the edges

in EClm,Cln . We assign cs(u, v) = 0 if s′m,n = 1 and cs(u, v) = s′m,n/sm,n otherwise. This is a

generalization of edge conservation definition of pairwise network alignments. Note that for

pairwise alignments edge conservation is assigned a binary value, that is a PPI edge in one

network is either conserved in the other network or not. However for multiple alignments the

employed definition may assign rational conservation values. We formally define CIQ(CL)

as follows:

CIQ(CL) =

∑
∀Clm,Cln

∑
∀(u,v)∈EClm,Cln cs(u, v)∑

∀Clm,Cln |EClm,Cln|
(2.2)
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cs1 = 4/4 cs2 = 3/4 cs3 = 3/3 cs4 = 2/3 cs5 = 0

G1

G2

G3

G4

Figure 2.1. Conservation scores on a sample alignment covering all notable cases.

For a sample ciq calculation, see Figure 2.1. Note that, rectangular groups represent

the clusters of the alignment. The dotted edges represent the protein-protein interactions.

Proteins of each PPI network are drawn at separate horizontal layers. The CIQ score for

this alignment is (4× 4/4 + 4× 3/4 + 4× 3/3 + 2× 2/3 + 0)/16 = 0.771.

In Equation 2.1, ICQ(Cli) stands for the internal cluster quality of a given cluster

Cli and is a measure of sequence similarities of involved proteins. Let wmax(u) denote the

maximum weight of any edge incident on u in Sβ. Denote the edge set of Cli with E(Cli).

ICQ(Cli) is defined as follows:

ICQ(Cli) =

∑
∀(u,v)∈E(Cli)

w(u,v)2

wmax(u)×wmax(v)
|E(Cli)|

(2.3)

2.2. BEAMS Algorithm

We first show that for a fixed Sβ, the global many-to-many network alignment problem

is computationally intractable. Due to clarity considerations we leave the proof to the

Chapter 3.

Proposition 2.2.1. For all α 6= 0, the global many-to-many alignment problem is NP-hard
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even for the restricted case where two PPI networks are aligned and all edge weights in Sβ

are equal.

Considering this NP-hardness result, it is necessary to devise efficient heuristics for the

problem. Regarding the cluster definition of Equation 2.1 we make the following observation.

Each cluster Cli which is a complete c−partite graph, can be subdivided into a set of ni

disjoint cliques, where ni denotes the size of the maximum partition of Cli. In fact, ni

is the minimum possible size for such a set and each clique in the set has size c′ where

1 ≤ c′ ≤ c. Therefore we view the original alignment problem of being composed of two

subproblems: backbone extraction and backbone merging. A backbone is defined as a clique

in Sβ and a set of appropriate backbones together form a cluster. The first subproblem is

that of extracting a minimal set of disjoint cliques from Sβ which covers Sβ completely and

that maximizes the alignment score AS when each nontrivial clique of size greater than one

is considered a cluster in the definition of Equation 2.1. The set is minimal in the sense that

no output pair of cliques can be merged together to form a larger clique. Informally, each

backbone corresponds to an orthologous set of proteins with at most one protein from each

of the input networks. Thus the backbone extraction problem can actually be viewed as the

global one-to-one alignment of multiple networks. A group of backbones is called mergeable

if their union provides a valid cluster, that is a complete c− partite graph. We define

the second subproblem as finding a minimal set of mergeable backbone groups such that

no further mergeable group remains and that maximizes the resulting AS score when each

mergeable backbone group is considered a cluster in the definition of Equation 2.1. Note that

a mergeable group represents a cluster of proteins that are highly homologous since every

pair of proteins from different networks are connected by large weight edges in the filtered

similarity graph Sβ. Thus imposing the constraint that no further merging can be done on

the set implies the intuition that no two pairwise homologous clusters should be part of the

output alignment separately. We show that even these subproblems are computationally

hard and we provide efficient heuristics for each one. In what follows, we first present the
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details of Sβ construction, then proceed to provide descriptions of the two main steps of the

BEAMS algorithm.

2.2.1. Construction of Sβ

Considering the sizes of the networks under consideration and the fact that multiple

networks constitute the study subject, a suitable filtration on the complete sequence similar-

ity graph S is necessary for mainly two reasons. Firstly, even the suboptimal polynomial-time

heuristic algorithms require large amounts of computational power as the size of S increases.

Furthermore, taking into account the complete graph S may lead to incorrect alignments as

far as biological significance measures are concerned. Most pairs of proteins from different

networks do not bear any significance in terms of sequence similarity scores and employing

an alignment with the unfiltered similarity graph S may align proteins with almost no ho-

mological similarity. As the evolutionary distance between pairs of input networks might

be quite different, we employ a relative filtration that takes into account the relative dif-

ferences in sequence similarities of pairs of networks. For some user-defined threshold β,

we construct the filtered similarity graph Sβ, so that each edge (u, v) is removed from S if

w(u, v) < β ×max(u, v), where max(u, v) denotes the maximum of w(u, v′) or w(u′, v) for

any u′, v′ from the networks of u and v respectively.

2.2.2. Backbone Extraction

Regarding the first subproblem defined within the BEAMS framework, we show that

the backbone extraction problem is NP-hard even for quite a restricted case. The full proof

can be found in the Chapter 3.

Proposition 2.2.2. For all values of α 6= 0, the backbone extraction problem is NP-hard

even for the restricted case where two PPI networks are aligned and all edge weights in Sβ

are equal.
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Sβ

NG1

NG2

2 3

4

5

G2

G3

G4

G1 1

C0 = {4, 5} C1 = M1 = {1, 2}
M2 = {1, 3} C2 = {1, 3, 4}

B3

B2

C3 = M3 = ∅

NG3

B1

Figure 2.2. Sample neighborhood graph construction and candidate generation for a small

instance.

Since the backbone extraction problem is NP-hard, we devise an iterative greedy heuris-

tic that runs in polynomial time assuming the number of networks under consideration is con-

stant. Our algorithm employs concepts related to maximum edge weighted cliques (MEWC),

candidate generation based on neighborhood graph constructions, and a greedy selection

heuristic aiming to optimize the AS score. The pseudocode is shown in Algorithm 1.

We start with an empty backbone set and a candidate set that consists only of C0 which

is the MEWC of Sβ. The jth iteration of the main loop of the algorithm consists of four

main steps: Selecting a new backbone Bj among already existing j candidates, removing

the backbone from Sβ, generating the new candidate Cj, and finally updating all existing

candidates. The first step simply involves selecting the new backbone as the candidate

providing the maximum AS score when considered together with all existing backbones.

Each candidate Cj is defined with respect to an already existing backbone Bj other than the
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special candidate C0 which is updated throughout iterations as Sβ is updated. To generate

a new candidate Cj via the function call Generate Cand(Sβ, Bj), we first construct the

neighborhood graph of Bj, which is the induced subgraph in Sβ of the set of PPI neighbors

of all the nodes in Bj. If the neighborhood graph does not contain any Sβ edges, then the

candidate Cj is empty. Otherwise, we find the MEWC, Mj, of this neighborhood graph and

we generate Cj by constructing the G-MEWC of Mj in Sβ. Here G-MEWC corresponds

to generalized MEWC which is defined as the maximum edge weighted clique in Sβ that is

required to include all the nodes of Mj; see Figure 2.2 for a sample neighborhood graph

construction and candidate generation on a small instance. In Figure 2.2, the dotted edges

represent protein interactions and each network is drawn at a separate horizontal layer.

Edges between different layers represent Sβ edges. Besides, the bold Sβ edge between 4 and

5 represents high homological similarity between the corresponding proteins. Candidates are

generated with respect to Sβ and backbones B1, B2, and B3.

Note that on top of the interaction conservation advantages brought by neighborhood

graphs, constructing the MEWC of the neighborhood graph guarantees a highly similar

backbone candidate as far as homological sequence similarities represented by Sβ edges are

concerned. The G-MEWC construction on the other hand, is a precautionary measure to

enable possible extensions of a candidate towards networks other than those of its respective

backbone. As the last step within an iteration, we generate each candidate anew, again

with respect to its corresponding backbone and the updated Sβ, if it shares any nodes with

the new backbone Bj. The iterations continue until Sβ contains only isolated nodes, that is

those of degree zero.

2.2.2.1. Computing Generalized MEWC. We employ a branch-and-bound type algorithm

to find the generalized maximum edge weighted clique of Sβ that is required to contain a

given set of nodes, Mj. Note that assigning Mj = ∅, the problem reduces to that of finding

the maximum edge weighted clique.



17

As is the case with usual branch-and-bound type algorithms, we traverse the search

tree T in a depth first manner. Each node at level-i of T represents a clique of size i+ |Mj|

in Sβ, that must include nodes in Mj. During the traversal, for each traversed node η =

{u1, . . . , ui+|Mj |} of T representing a clique containing nodes u1, . . . , ui+|Mj |, we store the

neighborhood set of η, denoted with Nη which contains nodes that are in the common Sβ

neighborhood of nodes u1, . . . , ui+|Mj |. The total edge weight of η is denoted with EW (η).

Let Rep(Nη) denote the set of partition numbers of Sβ (the set of PPI networks) that has

a node in the set Nη. Throughout the traversal, we store the best node of the search,

denoted with bestη and its weight with EW (bestη). To complete the description of the

algorithm, we need only to specify the rules for branching and the bound formulation of

the search. An upper bound for the potential weight of a node η in T is assigned to,

EW (η)+
∑
∀ut∈η

∑
∀r∈Rep(Nη)wmax(ut, r)+PWmax(Nη), where wmax(ut, r) denotes the weight

of the maximum weighted edge between ut and any node in the rth partition of Sβ, and

PWmax(Nη) represents the maximum potential weight of a possible clique in Nη. Formally,

PWmax(Nη) is defined as the sum of the edge weights of the |Rep(Nη)|×(|Rep(Nη)|−1)
2

heaviest

edges of Sβ. If the defined potential weight of a node η is greater than EW (bestη) we branch

at node η, which implies creating a new node η′ at the next level i+ 1, where η′ = {u1, . . . ,

ui+|Mj |, ui+|Mj |+1} such that ui+|Mj |+1 ∈ Nη.

2.2.3. Backbone Merging

We previously defined the backbone merging problem as finding a minimal set of merge-

able backbone groups that maximizes the resulting AS score. With regards to the second

main step of the BEAMS algorithm, we first state the following proposition about the com-

putational complexity of the corresponding problem. The full proof can be found in the

Chapter 3.

Proposition 2.2.3. For α 6= 0, the backbone merging problem is NP-hard even for the

restricted case where two PPI networks are aligned and all edge weights in Sβ are equal.
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We provide an iterative greedy heuristic for the backbone merging step. Let MB

denote the set of mergeable backbone groups. Initially MB contains all backbones provided

by the first backbone extraction step. It is updated at every iteration of the algorithm by a

greedy selection strategy which, similar to the backbone extraction step, employs a candidate

generation and selection idea. At each iteration we construct all pairs of mergeable groups in

MB which all together provide the set of all candidates of that iteration. For each candidate

we compute the AS score of MB considering the candidate pair as a single group. Note

that some groups in MB may consist of a single node. Such groups are excluded from the

AS score computations. We then select the candidate which provides the maximum score

and update MB by merging the pair. The algorithm stops when no mergeable pair remains

which provides a minimal set MB. We finally remove groups with a single node and provide

the resulting set as the output set of clusters. A full discussion of several implementation

details regarding this step and the algorithm as a whole are left to the Chapter 4.
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Algorithm 1 EXTRACT BACKBONES
1: Input: Sβ, G1, G2, . . . , Gk, α

2: Output: Set of backbones B = {B1, B2, . . . , Bn}

3: B = ∅;C = ∅

4: //Initial candidate

5: C0 = MEWC(Sβ); C = C ∪ {C0}

6: repeat

7: Bnew = Select Cand(C,B); B = B ∪ {Bnew}

8: Remove Bnew from Sβ

9: //Generate new candidate

10: Cnew = Generate Cand(Sβ, Bnew); C = C ∪ {Cnew}

11: //Update each candidate in C

12: for all Ci ∈ C do

13: if Ci ∩Bnew 6= ∅ then

14: if i == 0 then

15: C0 = MEWC(Sβ)

16: else

17: Ci = Generate Cand(Sβ, Bi)

18: end if

19: end if

20: end for

21: until Sβ contains only isolated nodes

22: //Each isolated node is a backbone itself

23: for all nodes u ∈ Sβ do

24: Bnew = {u}; B = B ∪ {Bnew}

25: end for
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3. NP-HARDNESS PROOFS

In this chapter, we provide the NP-hardness proofs of the propositions in Section 2.

The following propositions correspond in the same order to Propositions 2.1, 2.2, and 2.3. All

the proofs are based on reductions from Monotone 1in3SAT which is a restricted version of

the 3SAT problem [43]. In Monotone 1in3SAT exactly one literal in each clause is required

to be true and none of the clauses contains negated literals.

3.1. NP-Hardness Proof of Global Many-to-Many Alignment Problem

Proposition 3.1.1. For all α 6= 0, the global many-to-many alignment problem is NP-hard

even for the restricted case where two PPI networks are aligned and all edge weights in Sβ

are equal.

Proof. Given a Monotone 1in3SAT instance Φ, we show how to construct an instance of the

global many-to-many alignment problem that consists of two interaction networks G1, G2

and Sβ the filtered sequence similarity graph. The variable and the clause gadgets are as

shown in Figure 3.1. Note that each lp node in the auxiliary group is connected to all 6 of

the lq and lr nodes of the auxiliary group, each lq node is connected to all 6 of the lp and

lr nodes, and finally each lr node is connected to all 6 of the lp and lq nodes. These PPI

interactions are not shown in the figure for clarity. The variable gadget corresponding to a

variable xp consists of two nodes vTp and vFp in G1, and a single node vp in G2. Corresponding

to a clause ci = (xp ∨ xq ∨ xr) of Φ there are three nodes aip, a
i
q, a

i
r in G1. In G2 12 nodes

are created for the same clause. The nodes lip, l
i
q, l

i
r make up the main group. Additionally

there are three auxiliary groups, one for each literal in ci. The nodes lpip, lp
i
q, lp

i
r make up

the auxiliary group for p; lqip, lq
i
q, lq

i
r make up the auxiliary group for q; lrip, lr

i
q, lr

i
r make up

the auxiliary group for r. In terms of the PPI edges, the variable gadget contains no edges
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Main GroupAuxiliary Groups

vTp vFpvTq vFqvTr vFr

vpvqvr

aip air

lip liq lir

lpip lpiq lriplpir lqip lqiq lqir

aiq

lriq lrir

G1

G2

Figure 3.1. Construction of the clause gadget for a clause ci = (xp ∨ xq ∨ xr) and the

variable gadgets for xp, xq, xr of Proposition 3.1.1.

between its own nodes. In the clause gadget the main group is a K3 in G2. The auxiliary

groups altogether is almost a K9 in G2, except the auxiliary group of p has a missing edge

between lpiq and lpir, the auxiliary group of q has a missing edge between lqip and lqir, and

finally the auxiliary group of r has a missing edge between lrip and lriq. With regards to the

edges between variable gadget nodes and clause gadget nodes, each node vTp is connected in

G1 to every node ajp for every clause cj such that xp ∈ cj. Similarly in G2, the node vp is

connected to every node ljp such that xp ∈ cj for some clause cj. Regarding similarity edges,

there are edges (vp, v
T
p ), (vp, v

F
p ) in the variable gadget. In the gadget for clause ci, a

i
p is

connected to lip, lp
i
p, lq

i
p, lr

i
p; a

i
q is connected to liq, lp

i
q, lq

i
q, lr

i
q; a

i
r is connected to lir, lp

i
r, lq

i
r, lr

i
r

in the similarity graph. For simplicity we call Sβ edges incident on a main group node a

main group edge and those incident on an auxiliary group node an auxiliary group edge. All

similarity graph edges have equal weight.

We show that Φ is satisfiable if and only if the constructed graph admits a global

many-to-many alignment with an AS score of 1. Assume Φ is satisfiable. From the variable

gadget of a variable xp we choose (vTp , vp) as a cluster if xp is assigned True in Φ and (vFp , vp)

if it is assigned False. For a clause gadget corresponding to ci = (xp ∨ xq ∨ xr), without

loss of generality let xp be the True literal. We choose three clusters (aip, l
i
p), (a

i
q, lp

i
q), and
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(air, lp
i
r). Note that the nodes aiq, a

i
r are clustered with their corresponding nodes from the

auxiliary group of p. The provided clustering is a valid alignment according to the problem

definition provided in the section 2.1. We show that with such a clustering the AS score

is 1. The ICQ score of each cluster is exactly one since each sequence similarity edge is

assumed to have equal weight. We only need to prove that the CIQ score of the output

clusters is exactly 1. Note that this corresponds to a cluster selection where the interactions

between all cluster pairs are conserved. We only need to show this for a pair that consists

of a cluster from a clause gadget and a cluster from a variable gadget, since the clause

clusters are chosen so that no PPI edge exists between any pair of clause clusters, and the

variable gadget itself contains a single cluster. Both G1, G2 PPI edges connecting to the

cluster (aip, l
i
p) are conserved since aip is connected to vTp , lip is connected to vp, and (vTp , vp)

is one of the constructed clusters. The clusters (aiq, lp
i
q), and (air, lp

i
r) do not have PPI edges

to variable gadget clusters; (vFq , vq), (v
F
r , vr) are their variable gadget clusters and no edge

exists between the pairs ≺aiq, vFq � ≺air, vFr �, ≺lpiq, vq�, and ≺lpir, vr�.

For the reverse direction we show that the existence of a legal alignment with AS score

1 implies the satisfiability of Φ. If such an alignment exists then it must be the case that its

CIQ score is also 1, that is every edge between any pair of clusters in the alignment must be

conserved. Every G1 node in a clause gadget is neighbors in the similarity graph with nodes

that have a single similarity edge which implies that every G1 node must be involved in a

cluster by the maximality property of a legal alignment. Since the G1 nodes in the clause

gadget do not have any common similarity graph neighbors this further implies that each

one must be in a separate cluster and that for every clause gadget there must exactly be

three disjoint clusters. We first show that one of these clusters is a main group edge and the

other two are auxiliary group edges. Furthermore the auxiliary group edges are incident on

nodes that belong to the auxiliary group of the node that the main group edge is incident

on.
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Note that there are no three auxiliary group nodes that are pairwise disjoint in G2.

This implies that one of the clusters must involve a main group node for otherwise there

would be a G2 edge that is not conserved in G1. Without loss of generality let lip be that

node for the gadget corresponding to the clause ci = (xp ∨ xq ∨ xr). The clusters of aiq and

air can not include any main group node since that would introduce a nonconserved edge.

Their clusters must then respectively be (aiq, lp
i
q), (air, lp

i
r), since among the similarity graph

neighbors of aiq, a
i
r the only auxiliary group nodes that are disjoint in G2 are lpiq and lpir,

and including any other node in the clusters would introduce a nonconserved edge. Note

that lpiq, lp
i
r are PPI neighbors in G2 with every other node among the auxiliary group. This

implies that the cluster of lip must be (aip, l
i
p) since including any other auxiliary group node

that are neighbors of aip in the similarity graph would introduce a nonconserved edge.

For the truth assignment of φ we assign every literal that corresponds to a main edge

cluster in a clause gadget to True and every literal that corresponds to an auxiliary edge

cluster to False. Thus obviously only one literal per clause is assigned True. We finally need

to show that this assignment is a valid assignment in the sense that a variable assigned to

True in some clause gadget is not assigned to False anywhere else and vice versa. Let xp be

a variable assigned True due to the main edge cluster selection in a cluster ci. It must be the

case that in the variable gadget corresponding to xp the node vTp must belong to a cluster,

for otherwise there would be a nonconserved PPI edge between lip and vp. This implies xp

can not be assigned False anywhere else due to auxiliary edge clustering, since no auxiliary

group nodes are connected to vp in G2 and there would be a nonconserved edge.

3.2. NP-Hardness Proof of Backbone Extraction Problem

Proposition 3.2.1. For all values of α 6= 0, the backbone extraction problem is NP-hard

even for the restricted case where two PPI networks are aligned and all edge weights in Sβ

are equal.
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Figure 3.2. Construction of the clause gadget for a clause ci = (xp ∨ xq ∨ xr) and the

variable gadgets for xp, xq, xr of Proposition 3.2.1.

Proof. Given a Monotone 1in3SAT instance Φ, we show how to construct an instance of the

backbone extraction problem that consists of two interaction networks G1, G2 and Sβ the

filtered sequence similarity graph; see Figure 3.2 for the construction of clause and variable

gadgets. For each clause ci of Φ we create a clause node vci in G1. Additionally, for each

variable xp of Φ we create a variable node vxp in G1. For a clause node vci where ci =

(xp ∨ xq ∨ xr), we create three PPI edges (vci , vxp), (vci , vxq), (vci , vxr) in G1. Corresponding

to each clause node vci of G1 we create three nodes vixp , v
i
xq , v

i
xr in G2. We call these nodes

clause nodes of G2. Also for each variable node vxp of G1 we create two variable nodes vTxp , v
F
xp

in G2, each of which is called a literal node of G2. Each node vixp of G2 is connected with three

PPI edges with vTxp , v
F
xq , v

F
xr in G2. The filtered similarity graph Sβ is constructed as follows.

We add three edges between vci of G1 and each of its corresponding clause nodes in G2, that

is vixp , v
i
xq , v

i
xr . Additionally we add two similarity graph edges between each variable node

vxp of G1 and the literal nodes vTxp , v
F
xp of G2. Note that all the sequence similarity edges

are assumed to have equal weight. We show that Φ is satisfiable if and only if the AS score

of the optimum solution to the backbone extraction problem on the instance G1, G2, Sβ is

exactly 1. Assuming Φ is satisfiable the backbone involving a clause node vci of G1 is the

edge (vci , v
i
xp) where xp is the true literal in ci and the backbone involving a variable node

vxt of G1 is the edge (vxt , v
T
xt) if xt is assigned True in Φ and it is the edge (vxt , v

F
xt) if it
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is assigned False in Φ. We show that this assignment of backbones provides a legal output

for the backbone extraction problem and that its AS score is 1. It is easy to see that the

assignment is legal since the output set of backbones is a minimal disjoint set of cliques. The

ICQ score of each backbone is exactly one since each sequence similarity edge is assumed

to have equal weight. We only need to prove that the CIQ score of the output backbones is

exactly 1. Note that this corresponds to a backbone selection where the interactions between

all backbone pairs are conserved. For a backbone (vci , v
i
xp) assigned by the construction, we

show that every edge incident on the backbone be it in G1 or G2 is conserved. The node vci

is connected to vxp , vxq , vxr in G1 and the node vixp is connected to vTxp , v
F
xq , v

F
xr in G2. Since

each of (vxp , v
T
xp), (vxq , v

F
xq), (vxr , v

F
xr) is also selected as a backbone every edge involving vci

and vixp is conserved. Note that considering only the backbones involving clause nodes of

G1, G2 is sufficient since there are no PPI edges between any variable node pair of G1 and

the same is true for any literal node pair of G2.

For the other direction, we show that if there exists a legal backbone extraction that

provides an AS score of 1, then we can find an assignment of variables that gives rise to a

satisfiable assignment of Φ that is valid with respect to the definition of Monotone 1in3SAT.

First we note that every node in G1 must be involved in a backbone due to the full-coverage

condition in the definition of a legal backbone set. Furthermore this backbone cannot be a

trivial backbone containing only the node itself for otherwise the backbone set would not

be minimal; a clause node in G1 is connected to three nodes from G2 in Sβ which have no

other similarity edges and similarly a variable node in G1 is connected to two nodes from

G2 in Sβ which also have no other similarity edges. Given the output backbone set, for each

backbone (vci , v
i
xp) involving a clause node of G1 we assign xp True and xq, xr False. First

we show that with this assignment every variable xp is assigned either True or False.

We start by showing that a variable assigned True by a backbone assignment must not

be assigned False by the rest of the backbone assignments. In addition to clause ci, let cj be
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another clause containing variable xp. Assuming (vci , v
i
xp) is a backbone, we need to show

that (vcj , v
j
xp) is also a backbone and thus its assignment of xp does not conflict with that

of the former backbone. We show that the backbone (vci , v
i
xp) implies that (vxp , v

T
xp is also a

backbone. The variable node vxp has two candidates for a nontrivial backbone, (vxp , v
T
xp) and

(vxp , v
F
xp). Thus (vci , vxp) is a PPI edge in G1 that must be conserved and this conservation

is only possible by selecting the former backbone candidate since vixp is connected only to vTxp

with a PPI edge in G2. The existence of the backbone (vxp , v
T
xp further implies the existence

of the backbone (vcj , v
j
xp). This follows from an argument similar to the one above. The

clause node vcj has three candidates for a nontrivial backbone among which (vcj , v
j
xp) has to

be selected as only vjxp has a PPI edge with vTxp in G2 that conserves the edge (vcj , vxp). Next

we show that a variable assigned False by a backbone assignment must not be assigned True

by the rest of the backbone assignments. Assuming (vci , v
i
xq) is not a backbone, we need to

show that there exists no other backbone vcj , v
j
xq . If (vci , v

i
xq) is not a backbone (vxq , v

F
xq must

be a backbone. This follows from the fact that (vci , vxp or (vci , vxr) must be a backbone and

both of vxp , vxr are connected to vFxq rather than vTxq in G2. The existence of the backbone

(vxq , v
F
xq) implies the nonexistence of (vcj , v

j
xq) since there exists no PPI edge (vjxq , v

F
xq) in G2

to conserve the PPI edge (vcj , vxq) of G1. Finally due to the truth value assignment rule,

it is obvious that for each clause exactly one literal is assigned True which implies a valid

satisfiable Monotone 1in3SAT instance.

3.3. NP-Hardness Proof of Backbone Merging Problem

Proposition 3.3.1. For all values of α 6= 0, the backbone merging problem is NP-hard even

for the restricted case where two PPI networks are aligned, all backbones are 2-cliques and

all edge weights in Sβ are equal.

Proof. We similarly construct a reduction from the Monotone 1in3SAT problem. For a given

Monotone 1in3SAT instance Φ we provide the construction of G1, G2, Sβ and the backbone
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Figure 3.3. Construction of the clause gadget for a clause ci = (xp ∨ xq ∨ xr) and the

variable gadgets for xp, xq, xr of Proposition 3.3.1.

set B. For each variable xp of Φ three nodes axp , a
T
xp , a

F
xp are created in G1. Corresponding

to each clause ci = (xp ∨ xq ∨ xr) we create four nodes aci , a
i
xp , a

i
xq , a

i
xr . The edge set of G1

consists of edges (aci , axt) for each clause ci, where xt is a literal in ci. The node set of G2 is

similar to that of G1, that is for each variable xp three nodes bxp , b
T
xp , b

F
xp and for each clause

ci four nodes bci , b
i
xp , b

i
xq , b

i
xr are created. Regarding the edges of G2, for each clause ci, we

add the edge (bixt , b
T
xt) for each literal xt ∈ ci and the edge (bixt , b

F
xw) for each literal pair

xt, xw ∈ ci and xt 6= xw. For each clause ci, we add the following similarity edges: (aci , bci)

and for each xt ∈ ci, (aci , b
i
xt), (aixt , bci), (aixt , b

i
xt). For each variable xp the following similarity

edges are added: (axp , bxp), (axp , b
T
xp), (axp , b

F
xp), (aTxp , bxp), (a

T
xp , b

T
xp), (a

F
xp , bxp), (a

F
xp , b

F
xp). We

assign a similarity score of 0.5 for each similarity edge. Finally the backbone set B consists

of single edges. For each clause ci we have four backbones denoted with clause backbones:

(aci , bci) and (aixt , b
i
xt) for each xt ∈ ci. For each variable xp we have three backbones denoted

with literal backbones: (axp , bxp), (a
T
xp , b

T
xp), (a

F
xp , b

F
xp). Note that this backbone set includes

all nodes from the input networks and it is minimal, that is no pair of backbones can be

merged together to form a larger clique. The construction is illustrated in Figure 3.3.

A key observation is that the maximum CIQ score attainable in any backbone merging

of such an input instance is 0.5. This is due to the fact that the cluster backbone (aci , bci)
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can only be merged with only one of (aixt , b
i
xt) for some xt ∈ ci which further implies that

two backbones in the clause gadget can not be merged with any other backbones. Six G2

edges are incident on those two backbones and none of them can be conserved due to lack of

G1 edges incident on them and at most 6 PPI edges out of all 12 in the gadgets involving a

clause and all its literals can be conserved. Thus the maximum AS score achievable in any

alignment is 0.5.

We show that Φ is satisfiable if and only if the constructed instance has a back-

bone merging that provides a legal alignment with maximum score of 0.5. Assume Φ

has a satisfying assignment. For each clause ci, the clusters resulting from mergings is

as {{(aci , bci), (aixp , b
i
xp)}, {(a

i
xq , b

i
xq)}, {(a

i
xr , b

i
xr)}} where each set in this multiset represents

a set of merged backbones into a cluster and xp is the only variable assigned True in

ci. The clusters resulting from backbone merging in the corresponding variable gadgets

is as {{(axp , bxp), (aTxp , b
T
xp)}, {(a

F
xp , b

F
xp)}} for the True literal xp and {{(axq , bxq), (aFxq , b

F
xq)},

{(aTxq , b
T
xq)}}, and {{(axr , bxr), (aFxr , b

F
xr)}, {(a

T
xr , b

T
xr)}} for the False literals xq, xr. Note that

with the provided mergings, the resulting clusters conserve 6 out of all 12 PPI edges from

G1, G2 between the clusters, when clusters related to a single clause and its variables are con-

sidered. Since every variable has the same truth value assignment in all the clauses, the AS

score of the constructed alignment is exactly 0.5, the maximum possible score. Furthermore

it is easy to verify that the provided alignment is legal with respect to the main problem

definition; each cluster is a complete c−partite subgraph of Sβ for 1 < c ≤ 2 and the set of

clusters is maximal, that is no further complete c−partite subgraph remains in Sβ.

For the reverse direction, assume we have a legal alignment with AS score 0.5. In any

legal alignment, it should be that for a cluster ci = (xp ∨ xq ∨ xr), any backbone merging

must include three resulting clusters: {(aci , bci), (aixt , b
i
xt)} for some xt ∈ ci and {(aixw , b

i
xw)}

for xw ∈ ci and xw 6= xt. We construct a truth value assignment for Φ by considering

each cluster and assigning xt, the variable involved in a merging, to True and the remaining
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two variables to False. We show that this is a legal Monotone1in3SAT assignment and it

evaluates to True.

Since for each cluster exactly one variable is assigned True, it easy to verify that

the provided assignment of truth values makes Φ True. It remains to show that this

assignment is legal in the sense that a variable xt assigned True due to a clause gad-

get must be assigned True in every clause gadget. As both the AS score and the ICQ

score of the alignment is 0.5, it should be that the CIQ score is also 0.5. This im-

plies that for every clause gadget and the gadgets involving its variables exactly 6 out of

all 12 edges must be conserved, that is all three G1 edges involved in the gadgets must

be conserved. Given a clause ci = (xp ∨ xq ∨ xr), without loss of generality let xp be

the variable involved in merging for the clause gadget of ci, that is the clusters result-

ing from merging is as {{(aci , bci), (aixp , b
i
xp)}, {(a

i
xq , b

i
xq)}, {(a

i
xr , b

i
xr)}}. All three G1 edges

incident on the first cluster must be conserved. To conserve the edge (aci , axp) the clus-

ters resulting from mergings in the variable gadget of xp must be {{(axp , bxp), (aTxp , b
T
xp)},

{(aFxp , b
F
xp)}}. To conserve the edge (aci , axq) the clusters resulting from mergings in the

variable gadget of xq must be {{(axq , bxq), (aFxq , b
F
xq)}, {(a

T
xq , b

T
xq)}}. Finally, to conserve the

edge (aci , axr) the clusters resulting from mergings in the variable gadget of xr must be

{{(axr , bxr), (aFxr , b
F
xr)}, {(a

T
xr , b

T
xr)}}. We show that for any clause cj such that xp ∈ cj, it

must be that xp is the variable involved in merging for the clause gadget of cj, that is

the resulting three clusters of cj’s gadget must be {(aci , bci), (aixp , b
i
xp)} and {(aixw , b

i
xw)} for

xw ∈ ci and xw 6= xp. Assume for the sake of contradiction, xp is not involved in merging

for the gadget of cj, that is one of the resulting three clusters is {(aci , bci), (aixw , b
i
xw)} for

some xw ∈ cj and w 6= p. Then it is impossible to conserved the edge (acj , axp) incident on

the cluster {(axp , bxp), (aTxp , b
T
xp)} since the cluster is incident on only one G2 edge which is

(bixp , b
T
xp). This further implies a CIQ score strictly less than 0.5 which is a contradiction.
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4. IMPLEMENTATION DETAILS AND RUNNING TIME

ANALYSIS

We provide a discussion of BEAMS in terms of its running time requirements and

describe implementation details when necessary. The initial preprocessing step of Sβ con-

struction is trivial and requires O(|E|) time where E represents the set of edges in the

k−partite graph S.

With regards to the running time analysis of the backbone extraction step described

in pseudocode in Algorithm 1 of the Chapter 2, we first provide a description of our im-

plementation of finding the generalized maximum edge weighted clique, G-MEWC. Since

the input to the G-MEWC algorithm changes throughout the execution of the algorithm we

provide a description of the algorithm on a general k′−partite graph G′ = (V ′, E ′) and a

given M which denotes the set of nodes required to be in the output maximum edge weighted

clique. As a preprocessing step of the G-MEWC algorithm, for each node ut ∈ V ′, we first

compute and store wmax(ut, r) for each 1 ≤ r ≤ k′ edges. The preprocessing also includes

the computation of the sum of the weights of the largest r×(r−1)
2

edges. All this information

is then employed to speed up the bound calculations; when computing an upper bound for

the potential weight of a node η of the branch-and-bound tree this preprocessed data is used

rather than computing it repeatedly for each tree node. The only remaining information

during a bound phase of a node η is the common neighborhood of all the nodes stored at η

which is computed employing the neighborhood information of η’s parent in the tree. This

requires O(∆) time, where ∆ denotes the maximum degree of any node in G′. The number

of nodes of the branch-and-bound tree is bounded by O(|V ′|k′) if M = ∅ and O(∆k′−|M |)

otherwise, since the common neighborhood of M can be of size at most ∆. The total running

time of G-MEWC is then O(∆|V ′|k′) if M = ∅ and O(∆k′−|M |+1) otherwise. Note that the

former version of G-MEWC is denoted with MEWC in Algorithm 1.
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Let V denote the set V1 ∪ . . . ∪ Vk. The running time of Algorithm 1 is dominated

by the time spent in the main repeat loop of lines 6 through 21. Note that the number of

iterations of the loop is O(|V |), since the maximum number of output backbones can be

at most |V |, each iteration finds a new backbone, and the iterations continue until no new

backbones remain. The function Select Cand at line 7 finds the candidate that scores the

best when considered with the already existing backbone set. Both the new ICQ and the

CIQ scores are calculated by computing the contribution of the new backbone and combining

this contribution with the existing values. To compute the contribution of the ICQ score of

a given candidate with the existing backbones requires O(k2) time, whereas the contribution

to the CIQ score is computed in time O(k2∆max), where ∆max is the maximum degree of

any node in V in its respective PPI network. Since the number of candidates at a specific

iteration is bounded by O(|V |), the running time required by line 7 is O(|V |k2∆max). For

the Generate Candidate function calls of lines 10 and 17, one call to MEWC is made on the

neighborhood graph of the input backbone and one call to G-MEWC is made on Sβ with

the set M containing at least two elements. Note that the size of the neighborhood graph is

at most k∆max. The total running time of these two calls is O(∆(k∆max)
k + ∆k−1), where

the first term indicates the time required for the first call and the second term stands for

the running time of the second call. Hereinafter ∆ denotes the maximum degree of any node

in Sβ, since ∆ gets its maximum value when G-MEWC is called on Sβ. For the calls at

line 15 the set M is empty, thus each call requires the heavier version of G-MEWC, namely

MEWC on Sβ which requires running time O(∆|V |k). Therefore to speed up the algorithm,

we do not actually compute MEWC at each execution of line 15, but rather employ some

preprocessing and proceed with updates when necessary. As a preprocessing, the G-MEWC

is initially computed for M = {u} for each node u in V and all these G-MEWC sets are

stored in a list which requires O(|V |∆k) time in total. At each iteration two main operations

regarding line 15 are implemented: find max and update. The former finds the maximum

weighted G-MEWC stored in the current list, whereas the latter recomputes G-MEWC of

the nodes in the list that contain nodes already assigned to some backbone. Since each
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iteration of the repeat loop assigns at most k nodes to a new backbone, these nodes can be

part of at most k∆ G-MEWC sets. Thus all the updates at a specific iteration of the repeat

loop requires O(k∆) updates each of which requires O(∆k) time. In total the running time

required by line 15 is then bounded by O(|V |+ k∆k+1)). Note that line 15 is executed only

once for the update of C0 within the for loop of lines 12 through 20. However line 17 is

executed O(|V |) times since the number of candidates at a specific iteration can be at most

|V |. Thus the total running time of the main repeat loop and in turn that of the whole

Algorithm 1 is O(|V |2∆(k∆max)
k + |V |2∆k−1 + |V |k∆k+1). Assuming ∆max = O(∆) and k

a small constant, which usually is the case for the PPI networks under study, the running

time is O(|V |2∆k+1).

For the second main phase of BEAMS which consists of backbone merging, assume a

backbone list MB is given. We treat MB as a cluster list, iteratively update it, and finally

the list remaining at the end of this phase becomes the set of output clusters. First a list

of all mergeable pairs of backbones, CMB is constructed. Note that this is done only once,

at the beginning of this phase. Next we iteratively select the best pair from CMB, one that

provides the best AS score with the rest of the clusters in MB, remove the pair from MB,

insert the merged pair back into MB, and update CMB by removing the two candidates

corresponding to the merged pair from CMB and inserting their intersection back into CMB.

Throughout iterations the most time consuming task is that of computing the best pair in

CMB. Let Cmax denote the size of the maximum cluster output by the algorithm. Computing

the ICQ contribution of a single candidate requires time O(|Cmax|2). The CIQ contribution

can be computed in time O(|Cmax∆max|), since this is an upper bound on the total number of

PPI edges incident on the nodes of a candidate. Thus a single execution of this step requires

O(|V |2|Cmax|2 + |V |2|Cmax|∆max) time since the number of candidates at each iteration is

bounded by O(|V |2). There are O(|V |) iterations in total. Thus the total running time is

bounded by O(|V |3Cmax|2 + |V 3||Cmax|∆max). Note that Cmax is usually a small constant.

For our experimental instances the average size of an output cluster is usually almost equal
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Table 4.1. Required CPU times in minutes for both algorithms executing on the IsoBase

data for five networks. The BEAMS algorithm is executed with the parameter setting of

β = 0.4.

BEAMS IsoRankN

α = 0.3 65 1407

α = 0.4 64 1511

α = 0.5 62 1784

α = 0.6 62 3619

α = 0.7 69 7117

to k. Again assuming ∆max = O(∆) the running time of this phase becomes O(|V |3)∆.

Since ∆k is usually much larger than |V |, the execution time required for the initial phase of

backbone extraction dominates that required by the backbone merging. With the reasonable

assumption that |V | = O(∆k), we have that the running time of the BEAMS algorithm is

O(|V |2∆k+1). We note that gains in running time such as those achieved via the branch-and-

bound computations are not reflected in this upper bound and the actual execution time of

the algorithm is actually much less than that represented in the bound. It is not possible

to compare this formal bound with that of the IsoRankN algorithm, since no running time

analysis is provided for IsoRankN. A major advantage of the BEAMS algorithm as compared

to IsoRankN [32] is the speed of execution. We evaluated both algorithms in terms of their

required CPU times on IsoBaSe [44], the database employed in the experimental evaluations

of the section 5.1. We present the required CPU times for all the tested networks in Table 4.1.

The required times are shown for each α setting employed in the experimental evaluations of

the section 5.1. The average time required by IsoRankN over all α settings is 3487 minutes,

almost 58 hours, whereas the average time required by BEAMS is almost one hour. These

results are obtained by running both algorithms on an Intel(R) Xeon(R) CPU 2.67GHz with

24GB of memory.
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5. DISCUSSION OF RESULTS

We implemented the BEAMS algorithm in C++ employing the LEDA library [45]. We

experimented on both real and synthetic PPI networks. Regarding the former, we present a

discussion of the global many-to-many alignment results for the PPI networks of five exten-

sively studied species: Caenorhabditis elegans (worm), Drosophila melanogaster (fly), Homo

sapiens (human), Mus musculus (mouse) and Saccharomyces cerevisiae (yeast). As input

data, the BEAMS algorithm requires the PPI networks and the pairwise sequence similarity

scores of aligned proteins. All this data is retrieved from the IsoBase [44] database which

is the same as that used by the IsoRank, IsoRankN, and the SPINAL algorithms. These

PPI networks are formed by combining the network data from various databases including

DIP [46], BIOGRID [47], HPRD [48], MINT [49] and IntAct [50]. The C. Elegans network

has 19756 proteins and 8639 interactions, the D. Melanogaster network has 14098 proteins

and 49467 interactions, the H.Sapiens network has 22369 proteins and 105232 interactions,

the M. Musculus network has 24855 proteins and 776 interactions, the S. Cerevisiae network

has 6659 proteins and 164718 interactions, and in total there are 87737 proteins and 328832

interactions. Pairwise sequence similarity scores correspond to the BLAST Bit-values of the

protein sequences retrieved from Ensembl [51]. With regards to the experimental results on

synthetic data, we employed synthetic PPI networks retrieved from the NAPAbench [18].

It is a recently proposed network alignment benchmark intended mainly for a comparative

study of different global many-to-many network alignment algorithms.

IsoRankN is one of the most popular algorithms in the global many-to-many network

alignment literature. It has been shown that compared to other popular alignment algorithms

such as Graemlin, NetworkBLAST-M, and MI-GRAAL, it provides better performance un-

der measures suitable for network alignment quality determination [32, 18]. Furthermore

the informal optimization goals of both IsoRankN and the BEAMS algorithms are quite
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similar in the sense that they both aim at maximizing a suitable optimization scoring func-

tion that balances the contribution of homological similarities of clustered proteins and the

edge conservation between pairs of clusters via a suitably assigned constant α. We therefore

extensively compare the BEAMS algorithm with IsoRankN. Herein we present the experi-

mental results for different values of α varying from 0.3 to 0.7 in the increments of 0.1. The

BEAMS algorithm has an additional user-defined parameter β, the filtering ratio, which is

set to 0.4. Below we provide a detailed evaluation of the alignment results produced by

the two algorithms. We present our experimental evaluations regarding these synthetic and

actual networks separately in two sections.

5.1. Alignment of Actual PPI networks

In the next two sections, we first analyze the output clusters in terms of properties

formalized in Section 2.1. Following this discussion we next provide an evaluation based on

biological significance of the resulting alignments for actual PPI networks of five species.

5.1.1. Analysis of Output Clusters

Table 5.1 provides a summary of a quantitative analysis of the alignments produced

by the BEAMS and the IsoRankN algorithms. For the first five multirows of the table, the

top row corresponds to the number of generated clusters and the bottom row provides the

total number of proteins in the output clusters. For a more detailed analysis, in addition

to the total coverage values provided by all the clusters, we also provide a separate analysis

by subdividing the output set based on the number of networks represented in the clusters.

The first four rows provide these results for c = 2, 3, 4, 5 respectively where c denotes the

number of networks in the clusters under consideration. It is easy to verify that the clusters

produced by the BEAMS algorithm alignments has far better total coverage than those of the

IsoRankN alignments; for each α, the BEAMS algorithm aligns almost 50% more proteins
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Table 5.1. Analysis of Output Clusters

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

c = 2
7251 7238 7242 7249 7245 0 0 0 0 0

20540 20359 20419 20399 20392 0 0 0 0 0

c = 3
3259 3261 3277 3280 3277 4717 4716 4708 4714 4699

12089 12187 12259 12286 12204 15891 15860 15827 15859 15807

c = 4
3281 3287 3283 3286 3291 3058 3052 3036 3035 3040

16254 16353 16311 16322 16450 14651 14611 14540 14533 14550

c = 5
2090 2092 2081 2081 2074 2099 2101 2104 2084 2083

13117 13094 13012 12978 12940 12834 12844 12868 12718 12697

Total 15881 15878 15883 15896 15887 9874 9869 9848 9833 9822

Cov. 62000 61993 62001 61985 61986 43376 43315 43235 43110 43054

Inter.

7060 7286 7425 7317 7407 5978 5956 6024 5653 5766

114889 114919 114323 114839 114306 109364 108778 108374 107310 106642

%6.15 %6.34 %6.49 %6.37 %6.48 %5.47 %5.48 %5.56 %5.27 %5.41

AS 0.5978 0.5175 0.4372 0.3563 0.2762 0.4909 0.4254 0.3606 0.2941 0.2288

than IsoRankN. Considering the clusters as claimed orthologies, this implies that the BEAMS

algorithm leaves out much less unexplained data by proposing orthology relations for most

of the proteins. Out of all the 87737 proteins, around 62000 are assigned to clusters by

our algorithm. The main reason behind this discrepancy is the lack of IsoRankN clusters

containing only proteins from two networks. Such a deficiency may lead to unreasonable

conclusions, as it is quite natural to expect orthologous groups with proteins from only two

species given that the pairwise evolutionary distances of the species under consideration have

large variations.

The top row in the multirow indicated with Inter. provides the number of conserved

interactions resulting from the output alignments, the middle row indicates the total number

of interactions between clusters, and the bottom row provides their ratios. A protein-protein

interaction is assumed to be conserved if its cs score is greater than 0, that is the interaction
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is between a pair of proteins from different clusters which further contain at least one more

pair of interacting proteins from another PPI network. The number of conserved interactions

is a common performance indicator employed in the alignment studies since it is a measure

of the topology conservation achieved by the alignment. For all instances of α the BEAMS

algorithm provides more conserved interactions than IsoRankN. Furthermore this superior-

ity is not simply due to the large number of clusters produced by the BEAMS alignments;

considering the ratio of the number of conserved interactions to the total number of inter-

actions between clusters, it can be observed that the BEAMS alignments conserve a larger

ratio of existing edges between all clusters. Finally, the last row of the table provides the AS

score of alignments as defined in Equation 2.1. Comparing the scores under corresponding

α values, the AS scores of BEAMS is larger than those of IsoRankN in all cases.

5.1.2. Evaluations based on Biological Significance

Similar to previous PPI network alignment studies, our biological significance evalu-

ations are based on the hierarchical GO categorization, where proteins are annotated with

appropriate GO categories organized as a directed acyclic graph (DAG) [52]. In order to

standardize the GO annotations of proteins, similar to the evaluation methods of [14, 32, 28],

we restrict the protein annotations to level 5 of the GO DAG by ignoring the higher-level

annotations and replacing the deeper-level category annotations with their ancestors at the

restricted level. The protein annotations are used to measure the consistency of generated

clusters. A cluster is annotated if at least two of its proteins are annotated by some GO

categories. An annotated cluster is considered consistent if all of its proteins share at least

one common standard GO annotation. The consistency evaluations of the BEAMS and the

IsoRankN alignments are provided in the first five multirows of Table 5.2. The top row in

each of these multirows indicates the number of annotated clusters, the middle row pro-

vides the number of consistent clusters, and finally the bottom row indicates the ratio of

consistent clusters to annotated clusters. This ratio for all the clusters altogether is shown
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Table 5.2. Biological Significance Evaluations.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

c = 2

2150 2143 2147 2139 2132 0 0 0 0 0

1997 1992 1997 1992 1985 0 0 0 0 0

%92.9 %92.9 %93.0 %93.1 %93.1 - - - - -

c = 3

1791 1787 1792 1786 1784 2523 2516 2524 2528 2524

1478 1469 1479 1468 1466 1926 1924 1938 1944 1943

%82.5 %82.2 %82.5 %82.2 %82.2 %76.3 %76.5 %76.8 %76.9 %77.0

c = 4

2497 2503 2499 2503 2517 2275 2272 2253 2252 2255

1843 1852 1840 1842 1853 1616 1613 1608 1606 1601

%73.8 %74.0 %73.6 %73.6 %73.6 %71.0 %71.0 %71.4 %71.3 %71.0

c = 5

1971 1974 1961 1962 1954 1958 1960 1963 1941 1943

1375 1382 1384 1382 1371 1309 1308 1305 1293 1298

%69.8 %70.0 %70.6 %70.4 %70.2 %66.9 %66.7 %66.5 %66.6 %66.8

Total
8409 8407 8399 8390 8387 6756 6748 6740 6721 6722

6693 6695 6700 6684 6675 4851 4845 4851 4843 4842

Specificity 79.59 79.64 79.77 79.67 79.59 71.80 71.80 71.97 72.06 72.03

Sensitivity 22231 22258 22304 22234 22218 16350 16333 16334 16315 16301

Relative
7473 7468 7497 7507 7495 1592 1543 1527 1588 1578

Sensitivity

MNE 1.2881 1.2908 1.2902 1.2909 1.2890 1.4685 1.4679 1.4672 1.4682 1.4672

NGOC 0.3093 0.3075 0.3086 0.3097 0.3096 0.2413 0.2410 0.2424 0.2427 0.2422

as a separate row indicated by specificity to be consistent with the terminology employed

in previous alignment studies [18]. Considering the complete set of annotated clusters, it is

clear that the BEAMS alignments outperform those of IsoRankN in terms of the number of

consistent clusters. Furthermore the aligned clusters are more specific than those produced

by IsoRankN. To measure how sensitive the provided alignment results are, we employ the

sensitivity definition as in [18]. It represents the total number of annotated proteins in all

the consistent clusters. Additionally, we provide an alternative sensitivity definition, relative

sensitivity. A relative sensitivity value shown under a BEAMS column provides the num-
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ber of annotated proteins in consistent clusters in a BEAMS alignment and in inconsistent

clusters in an IsoRankN alignment under the same α settings. The relative sensitivity value

under an IsoRankN column provides the exact opposite. The BEAMS alignments provide

much better sensitivity and relative sensitivity than those of IsoRankN. This is especially

evident with the relative sensitivity measure; taking the average over all α settings BEAMS

has a relative sensitivity that is almost five times better than that of IsoRankN. In other

words, the proteins aligned into consistent clusters by BEAMS but not by IsoRankN is far

more than the exact opposite.

Mean normalized entropy (MNE) is another consistency evaluation metric employed

in previous studies [32, 28]. The normalized entropy of an annotated cluster Clx is defined

as NE(Clx) = − 1
log d
×∑d

i=1 pi × log pi, where pi is the fraction of proteins in Clx with the

annotation GOi, and d represents the number of different GO annotations in Clx. For MNE

the sum of these values are averaged over the total number of annotated clusters. Note

that lower MNE values indicate better consistency. Yet another consistency evaluation

metric is GO consistency (GOC) defined in [28]. Since GOC is defined for the one-to-one

alignment of a pair of networks, we extend the definition to many-to-many alignments of

multiple networks by normalizing the score. For an annotated cluster Clx let GOint(Clx) and

GOuni(Clx) indicate respectively the intersection set of GO annotations of proteins in Clx

and the union set of GO annotations of all the proteins in Clx. The normalized GOC score

denoted with nGOC is defined as the weighted mean of |GOint|/|GOuni| over all annotated

clusters, where the weight of each cluster is the number of annotated proteins it contains.

In terms of better consistency larger nGOC values are more desirable. With respect to both

metrics, MNE and nGOC, the BEAMS algorithm clearly outperforms IsoRankN.

In addition to these evaluation metrics, intended to measure biological significance of

output alignments, we also provide a specific clustering instance resulting from the align-

ments of BEAMS and IsoRankN on the same dataset. Figure 5.1 illustrates the specific
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Figure 5.1. Comparative visualization of a sample clustering produced by the BEAMS and

the IsoRankN algorithms running on the IsoBase data. Both clusters of the BEAMS

alignment are consistent. Only the two leftmost clusters of the IsoRankN alignment are

consistent.

clusters. The alignments are obtained under the setting of α = 0.5 for both algorithms.

Two clusters from the alignment of BEAMS, one with eight proteins from five networks

and one with four proteins from four networks, are depicted. Former cluster includes the

proteins F17A2.5, F31E3.1, CG8933, ENSG00000185630, ENSG00000112043, Pbx2, Pbx1,

and YPL177C. This cluster is consistent since all its annotated proteins share the same GO

annotation, GO:0006355, regulation of transcription, DNA-dependent. The second cluster

includes the proteins T28F12.2, CG17117, ENSG00000160199, and Pknox1. This cluster

is also consistent; all annotated proteins share the annotation GO:0043565, sequence spe-

cific DNA binding. We note that not only the pair of clusters are consistent with respect

to a low-level GO annotation, indicating a high functional orthology among the members,

but also provides high interaction conservation; all six interactions between these clusters

are conserved with the maximum possible conservation score of 1. On the other hand, the

clusters from the IsoRankN alignment including respective proteins are defective in several

ways. Proteins T28F12.2, ENSG00000160199, and Pknox1 are clustered into an inconsistent

cluster with three other proteins, and protein Pbx2 is not aligned with any other protein
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by the IsoRankN algorithm. The other proteins of this inconsistent cluster, M7.2, CG9797,

and YGL096W, are aligned into a consistent cluster by BEAMS which is not depicted in the

figure for compactness. The clustering produced by the IsoRankN alignment further suffers

from poor interaction conservation. Out of the six conserved by the BEAMS alignment, four

are conserved by IsoRankN with a conservation score of 0.75, one is not conserved, and one

is not included in the alignment at all. All this facts indicates the superiority of BEAMS

algorithm over IsoRankN when these proteins and their interactions are considered.

5.2. Alignment of Synthetic PPI Networks

The Network Alignment Performance Assessment Benchmark (NAPAbench) is a re-

cently proposed network alignment benchmark intended mainly for a comparative study of

different global network alignment algorithms [18]. Three different datasets are provided

for the pairwise, 5-way, and 8-way alignments each standing for the alignment of two, five,

and eight networks respectively. For each dataset, there are three different network families

that are generated with different network growth heuristics: Crystal growth (CG) model,

duplication-mutation-complementation (DMC) model, and duplication with random muta-

tion DMR model. We present experimental evaluations of global many-to-many alignment

results on 8-way alignment datasets for each network family. Experiments are performed

under different settings of α varying from 0.3 to 0.7 in the increments of 0.1, whereas β is

fixed to 0.2 for the BEAMS algorithm. Note that for the experiments applied on the IsoBase

data presented in the previous section we employed the β = 0.4 setting. This discrepancy

stems from the fact that the NAPAbench networks are completely synthetic and fewer se-

quence similarity data should be filtered out compared to alignments on actual networks of

IsoBase. We present the quantitative information and the functional consistency evaluations

of the resulting alignments in two tables per network family. Each pair of tables are similar

to the pair presented in the previous section for the IsoBase evaluations, that is the rows

and columns represent analogous data. Note that functional consistency of synthetic net-
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work alignments corresponds to the biological significance of actual PPI network alignments

presented in the previous section. Functional group id assignments, again synthetically con-

structed within the NAPAbench data, are used for the functional consistency evaluations.

Since these functional groups do not have any hierarchical organization, all functional group

ids are treated as if they belong to the standard level.

All eight synthetic networks of the CG family have the same size; each has 1000 proteins

and 3985 interactions. In the DMC and DMR network families, networks have 1000 proteins,

whereas number of interactions vary. In the DMC family, the number of interactions for each

network are 1919, 1853, 1923, 1840, 1867, 1848, 1818, and 1867. In the DMR family, the

number of interactions are 2031, 2092, 1967, 1977, 1959, 1998, 2030, and 2056. Similar to the

evaluations of actual PPI networks of IsoBase, we first provide the quantitative analysis of

the alignment results in Tables 5.3- 5.5 for the CG, DMC, and DMR alignments respectively.

It is easy to verify that the clusters produced by the BEAMS algorithm alignments has better

total coverage than those of the IsoRankN alignments on all network families. This indicates

the ability of the BEAMS algorithm to explain more data. For the alignment of the CG

family, BEAMS conserves more interactions than IsoRankN. Note that this superiority in

terms of interaction conservation which affects the resulting AS scores in turn, does not

hold for the DMC and DMR network family alignments; IsoRankN provides alignments

with larger interaction conservation. This discrepancy is mainly due to the sizes of output

clusters and the synthetic nature of the employed data. Generated clusters of the BEAMS

alignments have an average size of 6.1, whereas IsoRankN clusters have an average size of

9.2. Interaction conservation is trivially proportional to the sizes of output clusters; the

larger the clusters, the better the interaction conservation. A second implication of large

interaction conservation is the larger AS scores achieved by the IsoRankN alignments as

compared to those of BEAMS. Note that under normal circumstances large clusters would

be expected to decrease the ICQ scores representing the normalized homological similarity

of the proteins within each cluster, which would in turn balance out the affects of larger
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interaction conservation and finally lead to similar overall AS scores. However due to the

synthetic nature of the employed data, the ICQ scores of the alignment are underrated as

far as their contribution to the AS score; as α approaches 0, the AS scores of the alignments

become almost equal. Note large output clusters, although may lead to good interaction

conservation and in turn to higher AS scores in some cases, have the potential deficiency of

misleading results by including mostly inconsistent members. This actually is the case for

the networks under study and is discussed as part of the functional consistency evaluations

described next.

For the functional consistency comparison of the two algorithms’ alignment results, we

present the evaluations of performed alignments in Tables 5.6- 5.8 for the CG, DMC, and

the DMR families respectively. All evaluation metrics defined in the previous section are

computed and the functional consistency evaluation tables similar to the biological signifi-

cance evaluation table are provided. By inspecting the tables, it can immediately be verified

that, the BEAMS alignments are far more consistent than those of IsoRankN. Furthermore

BEAMS alignments are more specific and sensitive. Especially the BEAMS algorithm out-

performs IsoRankN with regards to the specificity of the alignments, which is at least 80 for

the BEAMS alignments, whereas it is at most 67 for those of IsoRankN. Sensitivity, that is

the number of annotated proteins assigned to a consistent cluster, of the BEAMS alignment

is also %50 larger than that of IsoRankN alignments on average. Moreover, the relative

sensitivity of the BEAMS alignments are 7 times better than those of IsoRankN on average.

Finally, BEAMS clearly outperforms IsoRankN by the overall quality of generated clusters

measured through the evaluation metrics, MNE and NGOC. The gap between the MNE

and NGOC score of two algorithms’ alignments is significantly large which indicates the

superiority of the BEAMS algorithm over IsoRankN when generating functionally consistent

clusters.



44

Table 5.3. Analysis of Output Clusters for CG Network Family.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2
207 200 203 198 196 0 0 0 0 0

569 548 543 528 525 0 0 0 0 0

k = 3
184 182 187 188 200 184 199 190 181 169

680 661 695 691 740 645 709 676 651 609

k = 4
189 187 179 182 182 128 103 101 122 129

923 895 857 865 860 706 565 552 647 702

k = 5
127 131 138 136 126 59 74 76 65 56

728 763 797 788 730 440 516 514 432 369

k = 6
115 113 110 114 113 79 67 60 54 55

786 778 760 796 785 749 633 566 519 479

k = 7
81 84 85 79 83 49 59 66 72 65

625 657 669 600 647 608 743 840 897 765

k = 8
360 361 360 361 362 277 275 280 282 299

3477 3484 3430 3508 3493 4246 4237 4251 4278 4488

Total 1263 1258 1262 1258 1262 776 777 773 776 773

Coverage 7788 7786 7788 7776 7780 7394 7403 7399 7424 7412

Interactions
24950 25119 25113 25096 25167 22416 22349 22512 22821 22972

29687 29676 29709 29657 29736 25491 25552 25618 25865 25848

%84.0 %84.6 %84.5 %84.6 %84.6 %87.9 %87.5 %87.9 %88.2 %88.9

AS 0.5704 0.5888 0.6059 0.6289 0.6480 0.5096 0.5339 0.5645 0.5952 0.6305
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Table 5.4. Analysis of Output Clusters for DMC Network Family.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2
210 218 218 213 224 0 0 0 0 0

577 592 599 583 614 0 0 0 0 0

k = 3
169 165 164 168 154 185 197 183 173 168

621 601 594 606 548 624 673 626 605 572

k = 4
184 177 173 187 175 141 142 150 154 150

892 873 838 903 842 752 751 795 834 792

k = 5
134 134 135 141 144 66 71 78 93 104

774 750 781 792 813 468 500 540 629 716

k = 6
150 158 162 154 150 77 89 95 85 85

1037 1092 1110 1053 1007 741 872 952 839 859

k = 7
101 94 101 105 110 76 68 75 85 82

764 724 775 791 828 893 836 906 987 951

k = 8
336 338 332 329 331 271 266 254 244 239

3127 3155 3096 3071 3127 3935 3790 3624 3513 3478

Total 1284 1284 1285 1297 1288 816 833 835 834 838

Coverage 7792 7787 7793 7799 7779 7413 7422 7443 7407 7368

Interactions
9690 9979 9971 9959 9948 11174 11144 11145 11106 11019

14375 14373 14419 14406 14415 13200 13364 13345 13294 13229

%67.4 %67.4 %69.2 %69.1 %69.0 %84.7 %83.4 %83.5 %83.5 %83.3

AS 0.4932 0.5007 0.5007 0.5037 0.5023 0.5092 0.5269 0.5470 0.5740 0.5938
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Table 5.5. Analysis of Output Clusters for DMR Network Family.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2
250 243 245 247 262 0 0 0 0 0

691 654 650 668 705 0 0 0 0 0

k = 3
173 175 178 176 177 214 205 200 214 188

633 638 630 633 648 755 709 715 751 668

k = 4
188 182 192 188 191 137 126 122 112 130

863 841 893 875 889 702 681 640 603 700

k = 5
122 115 123 125 104 72 80 84 88 82

701 660 718 715 584 502 544 576 615 598

k = 6
116 130 123 115 135 70 78 80 79 94

756 859 805 762 881 630 682 698 695 797

k = 7
98 97 98 93 97 69 75 75 85 79

770 779 761 732 743 830 955 961 1003 909

k = 8
361 362 357 363 357 266 260 263 256 255

3416 3396 3375 3445 3391 4036 3864 3853 3779 3725

Total 1308 1304 1316 1307 1323 828 824 824 834 828

Coverage 7830 7827 7832 7830 7841 7455 7445 7443 7446 7397

Interactions
10477 10395 10389 10341 10577 12037 12042 12205 12081 12184

15740 15756 15774 15733 15766 14807 14835 14750 14802 14692

%66.6 %66.0 %65.9 %65.7 %67.1 %81.3 %81.2 %82.7 %81.6 %82.9

AS 0.4899 0.4831 0.4819 0.4808 0.4790 0.4960 0.5123 0.5426 0.5616 0.5883
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Table 5.6. Functional Consistency Evaluation for the Alignment of CG Network Family.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2

123 112 113 112 108 0 0 0 0 0

103 94 94 89 87 0 0 0 0 0

%83.7 %83.9 %83.2 %79.5 %80.5 - - - - -

k = 3

181 176 181 183 198 174 188 178 168 153

151 146 146 155 169 120 128 113 106 104

%83.4 %82.9 %80.7 %84.7 %85.3 %69 %68.1 %63.5 %63.1 %68.0

k = 4

189 187 178 181 182 125 101 97 118 126

150 156 148 150 148 86 73 72 87 95

%79.4 %83.4 %83.1 %82.9 %81.3 %68.8 %72.3 %74.2 %73.7 %75.4

k = 5

127 131 138 136 126 59 73 75 64 56

102 107 108 107 102 38 45 49 39 33

%80.3 %81.7 %78.3 %78.7 %80.9 %64.4 %61.6 %65.3 %61.0 %59.0

k = 6

115 113 110 114 113 79 67 60 54 55

88 91 91 93 89 50 47 43 41 37

%76.5 %80.5 %82.7 %81.6 %78.8 %63.3 %70.1 %71.7 %76.0 %67.3

k = 7

81 84 85 79 83 49 59 66 72 65

76 80 82 74 78 28 30 35 37 42

%93.8 %95.2 %96.5 %93.7 %94.0 %57.1 %50.8 %53.0 %51.3 %64.6

k = 8

360 361 360 361 362 277 275 280 282 299

354 356 355 360 359 162 160 157 158 164

%98.3 %98.6 %98.6 %99.7 %99.2 %58.5 %58.2 %56.1 %56.0 %54.8

Total
1176 1164 1165 1166 1172 763 763 756 758 754

1024 1030 1024 1028 1032 484 483 469 468 475

Specifity 87.07 88.49 87.90 88.16 88.05 63.43 63.30 62.04 61.74 63.00

Sensitivity 6508 6580 6569 6596 6592 4078 4054 3992 3965 4021

Relative
2707 2784 2838 2881 2825 277 258 261 250 254

Sensitivity

MNE 0.1176 0.1047 0.1116 0.1089 0.1097 0.2898 0.2855 0.2924 0.2893 0.2750

NGOC 0.9008 0.9125 0.9101 0.9129 0.9128 0.5949 0.5901 0.5823 0.5765 0.5857
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Table 5.7. Functional Consistency Evaluation for the Alignment of DMC Network Family.

BEAMS IsoRankN

α 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2

118 129 127 119 134 0 0 0 0 0

90 93 87 86 97 0 0 0 0 0

%76.3 %72.1 %68.5 %72.3 %72.4 - - - - -

k = 3

165 160 161 163 152 173 186 176 163 158

134 133 132 134 125 111 129 126 109 111

%81.2 %83.1 %82.0 %82.2 %82.2 %64.2 %69.3 %71.6 %66.9 %70.2

k = 4

184 177 173 187 175 141 142 149 154 150

147 145 140 146 146 121 116 119 122 123

%79.9 %81.9 %80.9 %78.1 %83.4 %85.8 %81.7 %79.9 %79.2 %82.0

k = 5

134 134 135 141 144 66 71 78 91 104

111 109 111 118 119 43 51 58 64 64

%82.8 %81.3 %82.2 %83.7 %82.6 %65.1 %71.8 %74.4 %70.3 %61.5

k = 6

150 158 162 154 150 77 89 95 85 85

108 112 115 111 108 50 54 62 55 58

%72.0 %70.9 %80.0 %72.1 %72.0 %64.9 %60.7 %65.3 %64.7 %68.2

k = 7

101 94 101 105 110 76 68 75 85 82

77 70 72 76 84 50 41 40 52 49

%76.2 %74.5 %71.3 %72.4 %76.4 %65.8 %60.3 %53.3 %61.2 %59.8

k = 8

336 338 332 329 331 271 266 254 244 239

299 300 303 298 298 158 156 148 144 137

%89.0 %88.7 %91.3 %90.6 %90.0 %58.3 %58.6 % 58.3 %59.0 %57.3

Total
1188 1190 1191 1198 1196 804 822 827 822 818

966 962 960 969 977 533 547 553 546 542

Specifity 81.31 80.84 80.60 80.88 81.69 66.29 66.54 66.87 66.42 66.26

Sensitivity 6027 5996 6005 6009 6048 4242 4205 4200 4244 4173

Relative
2234 2278 2288 2238 2322 449 487 483 473 447

Sensitivity

MNE 0.1736 0.1799 0.1817 0.1782 0.1708 0.2625 0.2567 0.2506 0.2561 0.2544

NGOC 0.8356 0.8311 0.8326 0.8331 0.8391 0.6194 0.6123 0.6098 0.6178 0.6103
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Table 5.8. Functional Consistency Evaluation for the Alignment of DMR Network Family.

BEAMS IsoRankN

α .3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

k = 2

127 118 115 117 136 0 0 0 0 0

94 92 87 88 107 0 0 0 0 0

%74.0 %78 %75.6 %75.2 %78.7 - - - - -

k = 3

162 164 167 164 166 189 183 179 195 170

130 133 133 133 130 127 120 120 130 122

%80.2 %81.1 %79.6 %81.1 %78.3 %67.2 %65.6 %67.0 %66.7 %71.8

k = 4

187 180 191 186 190 133 124 119 112 128

140 139 143 144 147 104 90 88 83 94

%74.9 %77.2 %74.9 %77.4 %77.4 %78.2 %72.6 %73.9 %74.1 %73.4

k = 5

122 115 123 125 104 72 79 84 88 81

102 93 102 105 81 42 50 58 61 52

%83.6 %80.9 %82.9 %84.0 %77.9 %58.3 %63.3 %69.0 %69.3 %64.2

k = 6

116 130 123 115 135 70 77 79 78 94

84 95 93 85 93 43 47 48 63

%72.4 %73.1 %75.6 %73.9 %68.9 %61.4 %61.0 %60.8 %61.5 %67.0

k = 7

98 97 98 93 97 69 75 75 85 79

76 72 69 66 73 35 34 36 39 43

%77.5 %74.2 %70.4 %71.0 %75.3 %50.7 %45.3 %48.0 %45.9 %54.4

k = 8

361 362 357 363 357 266 260 263 256 255

328 331 330 332 323 147 150 157 158 140

%90.9 %91.4 %92.4 %91.5 %90.5 %55.3 %57.7 %59.7 %61.7 %54.9

Total
1173 1166 1174 1163 1185 799 798 799 814 807

954 955 957 953 954 498 491 507 519 514

Specifity 81.33 81.90 81.52 81.94 80.51 62.33 61.53 63.45 63.76 63.69

Sensitivity 5997 6006 6007 6025 5928 3786 3815 3976 4050 3927

Relative
2653 2660 2544 2504 2545 442 469 513 529 544

Sensitivity

MNE 0.1727 0.1678 0.1711 0.1691 0.1813 0.2860 0.2917 0.2792 0.2813 0.2721

NGOC 0.8389 0.8416 0.8414 0.8447 0.8294 0.5549 0.5597 0.5838 0.5934 0.5789
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6. CONCLUSION AND FUTURE RESEARCH

6.1. Conclusion

Frst of all, with this thesis, we provide the first formal combinatorial definition in the

literature for the problem of global many-to-many network alignment of multiple PPI net-

works and it is an important task to turn biological problem into a combinatorial problem

for better analyses. We proceed with another important study, proving the computational

intractability of this problem even in a quite restricted case. We next propose a new algo-

rithm BEAMS for the solution of the problem and we experimentally evaluate our proposed

algorithm with regards to several biological significance metrics proposed in literature. The

results indicate that BEAMS algorithm generates highly reliable protein clusters and most

of these generated clusters are biologically consistent. We also compare this new algorithm

against one of the most popular global many-to-many alignment methods, IsoRankN. The

experimental results indicate that BEAMS algorithm outperforms IsoRankN in generating

more consistent clusters. Furthermore, considering the heavy computational load of the prob-

lem, the exceptional running time of BEAMS algorithm as compared to that of IsoRankN

can be considered as another important improvement of BEAMS algorithm.

6.2. Future Research

BEAMS algorithm is proven to be the state-of-the-art algorithm for the global many-

to-many alignment of multiple PPI networks but still it can be improved by some future

researches. Instead of using only sequence similarities in the similarity graph S, different

methods could be developed for this similarity score computation. If this score is com-

puted through some measure of functional similarity, this could increase the performance of

BEAMS algorithm. Additionally, since the BEAMS algorithm has been developed heuris-
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tically, some other heuristic strategies could be developed for the solution to the problem.

Besides, backbone extraction and merging problems could also be handled by some other

heuristic strategies, too. If these heuristic strategies perform well within the BEAMS algo-

rithm, overall quality of the alignments that is generated with the algorithm would increase.
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