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ABSTRACT 
 

MESSAGE-PASSING BASED ALGORITHM FOR THE GLOBAL ALIGNMENT 
OF CLUSTERED PAIRWISE PPI NETWORKS 

Doğan Yiğit Yenigün 

Master of Science in Computer Engineering 

Advisor: Assoc. Prof. Cesim Erten 

December, 2013 

 

Constrained global network alignments on pairwise protein-protein interaction 

(PPI) networks involve matchings between two organisms where proteins are 

grouped together in a great number of clusters, produced by algorithms that seek 

functionally ortholog ones and these organisms are represented as graphs. Unlike 

balanced global network alignments (GNA), this has not gained much popularity in 

bioinformatics. Only a few methods have been proposed thus far; by assuming 

specific structures of networks including the clusters themselves and the density of 

the PPI networks are not too large, then optimal alignments can be encountered. 

Here, we introduce a general-purpose algorithm that is able to work on any kind of 

graph structures while taking advantage of the message-passing method, based on 

propagation between clusters. When these graphs satisfy conditions like continuous 

interaction connectivity of proteins across all neighbored clusters, in addition to 

previous explanations, the optimality of alignments can still be achieved. 

Convergence of the cluster network can occur at the point where the maximum 

number of conserved interactions are detected. Many experiments were made with 

balanced GNA algorithms and our algorithm may find more conservations and more 

importantly, alignments have higher biological quality than other ones in various 

instances.  

Keywords: network alignment, graphs, message-passing, clustering 
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ÖZET 
 

KÜMELENMİŞ İKİLİ PROTEİN-PROTEİN ETKİLEŞİM AĞLARININ GLOBAL 
HİZALANMASI İÇİN MESAJ VERMEYE DAYALI ALGORİTMA 

Doğan Yiğit Yenigün 

Bilgisayar Mühendisliği, Yüksek Lisans 

Danışman: Doç. Dr. Cesim Erten 

Aralık, 2013 

 

İkili protein-protein etkileşim ağları üzerinde kısıtlanmış global ağ hizalaması, 

işlevsel olarak ortak proteinleri arayan algoritmalar tarafından üretilen çok sayıdaki 

küme içerisinde gruplanmış olan iki organizmanın proteinleri arasında en iyi 

eşleşmeleri içerir ve bu organizmalar graph yapısı olarak gösterilirler. Dengeli global 

ağ hizalamanın aksine biyoenformatik alanında fazla popülerlik kazanmamıştır. Şu 

ana kadar sadece birkaç yöntem önerilmiştir; kümelerin kendileri de dahil özel ağ 

yapıları ve protein-protein etkileşim ağlarının yoğunluğunun çok büyük olmadığı 

varsayılırsa, en iyi hizalamalarla karşılaşılabilir. Burada, her tür graph yapısı 

üzerinde çalışabilen ve kümeler arasında yayılıma dayalı mesaj verme yönteminden 

faydalanan genel amaçlı bir algoritmayı sunuyoruz. Bu graphlar önceki varsayımlarla 

beraber birbirine komşu tüm kümeler boyunca proteinlerin devamlı etkileşim 

bağlantıları olması gibi koşulları sağlarlarsa, hizalamaların en iyisine halen 

ulaşılabilir. En çok sayıda korunmuş etkileşimlerin bulunduğu noktada küme ağının 

yakınsaması meydana gelebilir. Dengeli global ağ hizalama algoritmaları ile birçok 

deney yapılmıştır ve bizim algoritmamız diğerlerinden daha fazla korunmuş 

etkileşimi bulabilir ve daha da önemlisi, değişik örneklerde hizalamalar daha yüksek 

biyolojik kaliteye sahip olabilir. 

Anahtar Kelimeler: ağ hizalama, graphlar, mesaj verme, kümeleme 
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Chapter 1 

Introduction 

Thanks to the fast growth of available biological data for several decades, in 

parallel, many computational methods and approaches have been produced over 

time, paving the way for uncovering interactions and recognizing patterns 

biologically between organisms as they play an important role in bioinformatics. 

High-throughput techniques like yeast two-hybrid system (Fields and Songs, 1989; 

Finley and Brent, 1994; Sato et al., 1994; Ito et al., 2001) and co-

immunoprecipitation unified with mass spectrometry (Aebersold and Mann, 2003) 

have contributed to the presence of such data, particularly various species, by a 

significant proportion. 

In recent years, protein-protein interaction (PPI) network alignments, which are 

the most noticeable type of data accepted by many researchers, are studied for 

observing the similarities in terms of pathways, homologies and functions between 

pairs of species. The set of instructions running on network data for the analysis are 

network alignment algorithms. The general aim is to create the best alignment as 

large and accurate as possible based on given two or more PPI networks from 

different species. For supplying easiness to these algorithms, these kind of networks 

can be represented as graphs in terms of data structure where proteins are nodes and 

interactions between proteins are edges. This is the most convenient way to perform 
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measurements on PPI networks because recent algorithms have been designed to 

work on graph structures and make one-to-one matchings, hence these are 

comprehended like graph matching algorithms. Additionally, any other materials 

may be included as input data (e.g. sequence similarity of proteins) for smoother and 

more accurate alignments. 

In general term, they can be categorized in two main groups: Local network 

alignment (LNA) algorithms identify subnetworks of different species that match 

closely to each other in terms of network topology and/or other variables. The first 

known algorithm of this type is PathBLAST (Kelley et al., 2003, 2004) that enforces 

the BLAST algorithm (Altschul et al., 1990) for searching the high-scoring local 

alignments between PPI networks. Sharan et al. (2005) extends the idea with 

NetworkBLAST to include multiple species. MaWISh (Koyutürk et al., 2006) adapts 

to the duplication and elimination models inspired by biological events to perform 

local alignment. Graemlin (Flannick et al., 2006) takes advantage of conserved 

functional modules of networks. Global network alignment (GNA) algorithms, on 

the other hand, take PPI networks as a whole and provide one-to-one matches across 

all proteins. IsoRank (Singh et al., 2007) is known to be the first algorithm to make 

alignment globally on pairwise PPI networks, using eigenvalue formulation. Later, 

the algorithm was expanded to work on multiple networks as well (Singh et al., 

2008) and so with IsoRankN (Liao et al., 2009). Graemlin was later modified to 

generate global alignments beyond pairwise networks, examining phylogenetic 

relationships (Flannick et al., 2008). PATH algorithm (Zaslavskiy et al, 2009a) 

adapts to convex-concave relaxation approach to find a solution path over the 

pairwise networks. PISwap (Chindelevitch et al., 2010) first performs the global 

alignment by sequence data, then necessary changes are made by benefiting from 
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network topology. MI-GRAAL (Kuchaiev and Przulj, 2011) constructs the alignment 

by integration and several different sources of protein similarity, and was 

demonstrated to outperform other variants such as H-GRAAL (Milenkovic et al., 

2010) and GRAAL (Kuchaiev et al., 2010). The last known state-of-the-art algorithm 

of global alignment is SPINAL (Aladag and Erten, 2013) which consists of two 

stages; first estimating alignment scores, then resolving conflicts to enhance the 

alignment while also dealing with scalability issues. Additionally, SubMAP has been 

proposed (Ay et al., 2011) that has the capability of making one-to-many mappings 

of proteins. 

LNA methods are able to expose more than one region of matches between 

networks, i.e. local matchings provide specific areas of interactions amongst these 

network of proteins. However, GNA looks for comprehensive matchings by taking 

into account all proteins and attempts to align them. This gives the best conserved 

functions as much as possible. By the aspect of computation, GNA is more difficult 

than LNA because one protein in a network is sought to match with a protein of the 

other network that achieves the highest optimality, although it is desirable for many 

algorithms to detect functional orthologs. In addition, most of GNA algorithms are 

allowed to use weights between the network topology and protein sequence 

similarities (denoted with ߙ or ߣ) in order to perform the alignment. This gives rise 

to number of different alignments and flexibility to the output. Algoritms that accept 

such a control parameter are generally classified as balanced GNA algorithms. 

Another issue of network alignment is intractability in terms of computation, 

when networks are getting too dense. This causes alignments to become distant from 

exactness. Furthermore, there is no algorithm to work in polynomial time for the 

problem (Zaslavskiy et al., 2009b) as the current algorithms endavours to make the 
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best approximate results by impliying heuristic methods but with NP-hardness (Klau, 

2009; Aladag and Erten, 2013).  

While on the research of identification of protein interactions across species 

especially before network alignment algorithms were produced widely, some 

questions have been arisen such as which proteins or genes are in common with 

those from other species (i.e. orthologs), and which provide shared biological 

functions against their ancestors or familiar organisms. For this approach, Inparanoid 

(Remm et al., 2001), HomoloGene and OrthoMCL (Li et al., 2003) have been 

proposed to disambiguate functionally ortholog proteins by grouping them in clusters 

after specific methods are implemented based on the algorithms. By using the 

information of finite number of clusters as well as covered proteins, the whole can be 

interpreted as a separate network, i.e. the cluster network and necessary connections 

are carried out between those with specific regulations; for example, conservation of 

functions in proteins of pairwise PPI networks for any two clusters. This kind of 

study is usually referred to constrained GNA problem, where proteins are restricted 

to match with the others solely in the same clustered group and attempts to create an 

alignment in this way. This may help reduce the intractability issue of the networks 

and perhaps holding functionally ortholog proteins together may bring more 

potentials for similar properties. 

To the best of our knowledge, there are not much studies so far involving the 

solution of this problem. Bandyopadhyay et al. (2006) investigated the proteins 

between Drosophila melanogaster and Saccharomyces cerevisiae to identify 

functionally orthologs using Markov random field (MRF) methods while these are 

constrained to belong to the respective clusters, produced by Inparanoid algorithm. 

Another noteworthy procedure is the message-passing algorithm by Zaslavskiy et al. 
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(2009b), that is able to align the networks optimally with meesage-passing on 

particular clustered structure of proteins assuming if the network is sparse. Here, 

message-passing is a form of communication where objects send and receive 

messages to each other. A special variant, belief propagation (BP) has been 

introduced (Pearl, 1982) to make inferences on graphical models (e.g. Bayeisan 

networks and Markov random fields) and included in many applications, for 

instance, artificial intelligence (Pearl, 1988), statistics (Lauritzen, 1996), low-density 

parity-check codes and any other areas with experimental successes (Horn, 1999; Aji 

and McEliece, 2000; Yedidia et al., 2000).  

In this paper, we propose a new algorithm, called MP-CNet which is the 

abbreviation of Message-Passing on the Clustered Network, to execute on 

constrained GNA problem and it attempts to find the best alignment with as many as 

conservations of proteins on clustered pairwise PPI networks with BP-based message 

passing method, possessing some ideas of Zaslavskiy et al. (2009b). Here, clusters 

propagate their best matches to their neighbors in order to increase the overall 

amount of conserved interactions and the whole cluster network converges at a point 

when the maximum amount is reached. Our contribution is that we show a general-

purpose algorithm with the implementation of message-passing can be used on any 

kind of cluster network structure including the PPI networks themselves. The 

methods, in some cases, have resemblances with the implementation of maximum 

weight bipartite matching, but are not complicated at all. Also, by checking the 

capabilities with other algorithms, we draw attention to the situations that our 

algorithm can reveal larger number of conserved interactions if filterings are applied 

to other alignments and highlight that it can provide higher quality of biological 

impacts than existing algorithms. 
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The rest of the paper is organized as follows. In section 2, we highly detail 

working principles of MP-CNet by explaining the definition of the problem to solve, 

data processing stages, any procedures, approaches involved in the message-passing 

method through the subsections. In addition, the algorithm progession and claims of 

optimal alignments are elaborated. In section 3, we compare our algorithm to other 

global alignment algorithms that approaches the problem as balanced, by the aspect 

of number of found conserved interactions, running performances and general 

biological quality of the alignments. In Conclusion section, important remarks and 

final discussions are made, in additon to any future plans for further improvements. 
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Chapter 2 

Methods and The Message-Passing Algorithm 

2.1. Problem Definition 

Our algorithm, MP-CNet, is designed to work on pairwise protein-protein 

interaction networks. We denote ܩ	 = 	 (ܸீ , 	ܪ and (ீܧ = 	 ( ுܸ ,  ு) as two undirectedܧ

graphs which are the PPI networks of two different species. ܸீ 	= 	 {݃ଵ, … , ݃ெ} and 

ுܸ 	= 	 {ℎଵ, … , ℎே}  are the finite set of nodes of their respective graphs, each 

representing the proteins of PPI networks. ீܧ 	⊂ 	 ܸீ 	×	 ܸீ  and ܧு 	⊂ 	 ுܸ 	× 	 ுܸ are 

the edges of these graphs which corresponds to the interactions between proteins. We 

assume there are no any self-loops i.e., (݃௜, ݃௜) ∉ ீܧ	  and (ℎ௝, ℎ௝) 	∉  ,ு. In additionܧ	

we are given a set of disjoint clusters ܩܥ = {ܿ݃ଵ, … , ܿ݃௥} such that each ܿ݃௣ consists 

of a subset of nodes of ܸீ  and a subset of nodes of ுܸ. 

Here, a pair of node mappings (݃௜, ℎ௝), (݃௞, ℎ௟) provide a conserved interaction 

if (݃௜, ݃௞) ∈ ீܧ  and (ℎ௝, ℎ௟) ∈ ுܧ . Given the two graphs ܩ and ܪ together with the 

set of clusters ܩܥ , we define the constrained global network alignment (GNA) 

problem that of finding a one-to-one mapping that satisfies the constraints; that is, 

each mapped pair belongs to the same cluster ܿ݃௣ ∈  and that maximizes number ܩܥ

of conserved interactions. Before discussing the algorithm in detail, we highlight the 

main processes involved in preparing the input data. 
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2.2. The Cluster Network 

The construction of the cluster network is the first major part of processing the 

input data. This network itself can be thought of as a separate graph but has a 

correlation with the PPI network graphs in accordance with the clusterization of 

nodes. For this purpose, we denote ܩܥ be the cluster graph (network) which will be 

substantially used by MP-CNet in many stages. Of course, like the PPI network 

graphs, we denote ஼ܸீ 	= 	 {ܿ݃ଵ, … , ܿ݃௑} to represent the finite number of disjoint 

clusters and ܧ஼ீ 	⊂ 	 ஼ܸீ 	× 	 ஼ܸீ  are the finite set of edges of the cluster graph. In the 

initialization, ܧ஼ீ  remains empty. We first describe how the cluster set ܩܥ  is 

constructed and the corresponding vertex set of ஼ܸீ . 

2.2.1. Cluster Nodes 

For the generation of ஼ܸீ , we benefit from Inparanoid algorithm (Remm et al., 

2001) which is known to exhibit a good overall balance by both sensitivity and 

specificity (Chen et al., 2007). Mentioning briefly, Inparanoid automatically detects 

orthologs and in-paralogs between any given two species and uses special techniques 

for revealing the clusters. From the definition, ortholog proteins are that evolve 

directly from a single species from the last common ancestor and have a high 

proportion to share function. Paralog ones are homologs that contain uncertainty of 

functional equivalence between the orthologs which are derived from a single 

ancestor at the speciation event. It is also noted that paralogs can be arisen from 

duplication event before speciation is occured. For this reason, paralogs are split into 

two types: In-paralogs are the ones that are duplicated after the speciation as they are 

considered to be orthologs. Those preceding the speciation are denoted as out-
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paralogs and they are not counted orthologs. In this context, Inparanoid algorithm 

does not include out-paralogs in the output.  

There are many parameters available in the algorithm which can affect the 

placement of proteins (i.e. the orthologs) into clusters, thus the whole general output. 

The most notable one is pairwise similarity score and this is where the orthology 

detection begins by computing all similarity scores between all existing protein 

sequences of two species. It is measured by another program called BLAST 

(Altschul et al., 1990) to create E-values for all possible pairs of proteins from 

pairwise species. These values are helpful to determine the orthologs and clusters 

afterwards. Furthermore, a score cut-off is required to distinguish the scores from 

spurious ones, i.e. any cluster whose score is less than the cut-off will not be 

included in the output. Overlap cut-off is also used to determine the ratio that the 

matching protein of the longer sequence must surpass its total length. In-paralog 

confidence values, bootstrapping for ortholog groups and coverage cut-off are the 

other countable essential parameters. The output consist of cluster number, its score 

and proteins from the PPI networks in the related cluster. 

The rest of the details of the algorithm are out of the scope of this paper (for 

more details, see Remm et al., 2001). We only focus on the results (i.e. the set of 

clusters), generated by Inparanoid and mainly, MP-CNet uses it as a guide to produce 

the clusters and place the appropriate proteins into them correctly. Only the cluster 

number and its proteins are needed for generating the clusters. It can be seen that 

clusters with higher scores are likely to be at the top of the clustering information. 

However, it is not necessary to be in order, though it helps to become organized and 

understand them better. 
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When we look at each cluster, three specific kinds can be encountered: One-to-

one clusters contain only one node (protein) from both graphs. In other words, the 

single node from graph ܩ in this cluster can merely match one node from graph ܪ, 

leaving no other option to match from outside. One-to-many clusters have one node 

from graph ܩ and more than one nodes from graph ܪ and vice versa. However, there 

is still one match that can really occur. For many-to-many clusters, more than one 

nodes from both graphs are involved. The amount of matches in that kind of cluster 

is the same with whose number of nodes in the respective graph is less. At the time 

of the creation of each cluster node ܿ݃௜, it is recognizable that not every one of them 

cover the same number of nodes from both graphs. This especially happens for all 

one-to-many and some many-to-many clusters. To address this issue, we insert 

dummy nodes (i.e. artificial nodes) to whichever the number of subset of ܸீ  or ுܸ 

nodes is smaller in the cluster node ܿ݃௜ and they have no edges in their respective 

PPI-network graphs. The main reason for ensuring the equalization to each cluster is 

to simplify the algorithm description and implementation details, and this allows 

every nodes to be matched, although those with dummy nodes are not included in the 

output. Namely, it must not be perceived such that we do not equalize the number of 

nodes between graphs ܩ and ܪ; we just perform this on clusters which needs to be 

equalized by getting the number of 'real' nodes contained. Consequently, ∀ܿ݃௜ ∈  ܩܥ

has the same total number of nodes covered from both graphs and we denote 

ܿ݃௜ = {(݃௔ , … , ݃௠), (ℎ௕, … , ℎ௡)} where ݃௔ , … , ݃௠ 	 ∈ 	 ܸீ 	and ℎ௕, … , ℎ௡ 	 ∈ 	 ுܸ. 

2.2.2. Cluster Edges 

After preparing all cluster nodes, we perform a check on each cluster to 

observe if it can make connections to other clusters and so, these connections will be 

interpreted as cluster edges (added into ܧ஼ீ ) for our cluster graph. 
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This process is straightforward. We take every possible combination of cluster 

pairs, that is, ܿ݃௜ , ܿ݃௝ 	 ∈ 	 ஼ܸீ  and 1	 ≤ ݅	 < ܴ, ݅ < 	݆	 ≤ ܴ, every (ܿ݃௜, ܿ݃௝) pairs are 

investigated. For any pair, we start from the subset of nodes of ܸீ  of cluster nodes 

ܿ݃௜ and ܿ݃௝ 	 ( {݃௔ , … , ݃௠} 	 ∈ ܿ݃௜ and {݃௕, … , ݃௡} ∈ 	 ܿ݃௝) to compare them with all 

available edges from ீܧ  for an existence of at least one edge, involving these nodes. 

Next, we advance to make the similar comparison with the subset of nodes of ுܸ of 

these clusters to the graph edges of ܧு. That is, we perform this with {ℎ௔ , … , ℎ௠} ∈

	ܿ݃௜ and {ℎ௕, … , ℎ௡} ∈ 	 ܿ݃௝  to all edges from ܧு . If such edges are found for both 

sides, then it is safe to add a connection between these cluster nodes and included in 

஼ீܧ . This goes on like this until every combination of cluster node pairs are 

examined. Note that in Figure 2.1, an edge between ܿ݃௜  and ܿ݃௞  is not formed 

because there is no edge available in ܧு that involves one node from the subsets of 

ுܸ  of ܿ݃௜  and ܿ݃௞ . As a result, the construction of our cluster graph ܩܥ  is finally 

completed. 

 

Figure 2.1 An illustration of the addition of cluster edges ࡳ࡯ࡱ. Blue and green 
components represent nodes and edges of graph ࡳ and ࡴ, respectively. Here, bold 

edges satisfy connections between ࢐ࢍࢉ-࢏ࢍࢉ and࢑ࢍࢉ- ࢐ࢍࢉ. 
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The structure of ܩܥ is vital for MP-CNet because it will be used every time in 

the oncoming stages and so the finding of conserved interactions between cluster 

nodes. The structure can be in any form such that there may be many cluster nodes 

having one or more connections (sometimes called adjacents or neighbors) to any 

other; lots of small or a large group of joint networks. In the meantime, the number 

of cluster edges ܧ஼ீ  can vary, depending on the number of cluster nodes, number of 

covered nodes in clusters ∀ܿ݃௜ ∈ ீܧ and the edges of ܩܥ  and ܧு . Note that more 

connections among all existing cluster nodes allow to get more conserved 

interactions. 

2.2.3. Cluster Permutations 

We have presented an easiness to our algorithm by adding dummy nodes to the 

necessary clusters to make the number of subset of nodes from ܸீ  and ுܸ  equal. 

Now, we would like to extract how many different varieties of matches could be 

carried out for all clusters. For this reason, the creation of permutations begins when 

construction of ܩܥ is finished. 

Let ࡼ  be the permutation space, containing all possible permutations of 

∀ܿ݃௜ 	 ∈ ஼ܸீ , a multi-dimensional variable. Also, let ߨ(ܿ݃௜) be the permutations of 

ܿ݃௜. Here, in this process, one-to-one and many-to-many clusters are used, since all 

one-to-many clusters are converted to many-to-many by the insertion of dummy 

nodes to them. We assume ∀ܿ݃௜, these permutations are derived from the subset of 

nodes of ுܸ, while fixing the subset of ܸீ  nodes. This is not limited to this shape and 

one can make by using the appropriate ܸீ  nodes, too. However, this requires a 

comprehensive redesign to our algorithm for further steps to provide full 

compatibility. Hence, from the rest of the paper on, we comply that the permutations 

remain with subset of nodes of ுܸ at all times. 
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For any cluster ܿ݃௜, its subset of nodes of ுܸ are taken and sent out to a special 

function to generate the permutations. We follow the permutation-without-repetiton 

rule, so these permutations are distinctive from each other when generated. There is 

another variable, ݌, which holds the current iteration of nodes to check if it is a 

permutation candidate to be added to not. In the intial step, first node is placed to ݌, 

then a second one and so on like a stack. We actualize the examination of duplication 

when ݌ contains more than one node and less than ݊, which is the maximum number 

of nodes can be together, and the checks are happened in every addition. For the 

group of nodes in ݌ at any time, we first treat them like they form a permutation and 

continue to add nodes up to ݊ if there is no duplication occured within all nodes 

inside, otherwise the last added node is removed (i.e. popped back) from ݌ and the 

next one is placed. When the number of nodes in ݌ is reached to ݊, we ensure that 

every node is different from each other, therefore it is secure to mark them as a 

permutation of ܿ݃௜  and included in ߨ(ܿ݃௜), then certainly to ࡼ (Figure 2.2). This 

goes on until all the subset of nodes of ுܸ from cluster nodes are taken care of. 

 

Figure 2.2 An example of all available permutations of a cluster. Note that the 
cluster ࢏ࢍࢉ has 3 nodes from ࡴࢂ and 3! = 6 different permutations were generated. 
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A cluster ܿ݃௜  has ݊!  amount of permutations, similarly what we have said 

previously, where ݊ is the number of subset of ுܸ nodes covered in ܿ݃௜ . They are 

always stored till the completion of MP-CNet. Like the cluster edges of ܩܥ , the 

permutation space ࡼ is important. In the next stages and even in the message-passing 

process for the conserved interactions, we always iterate through permutations. 

2.3. Conserved Interactions Within Clusters 

The stages from now on until the message-passing derive the second major part 

of input data processing. Here, we attempt to uncover the conserved interactions for 

all clusters internally and the first usage of permutation space ࡼ take place for this 

purpose. Any found conserved interactions here can make a small contribution to the 

optimal alignment; that is, such a permutation of a cluster with internal conserved 

interactions is likely to be selected as the best although it is not always guaranteed. 

Because there could be another permutation in that cluster whose, for example, 

amount of external conserved interactions is higher then others with only internal 

ones, where this alteration of selection is happened in the message-passing. This will 

be discussed in Section 2.5. All in all, finding this kind of interactions in clusters is 

an important property for all permutations as an indicator of their capabilities. 

We first denote ℱ࣭ to keep the number of internal conserved interactions found 

for all permutations of any cluster ܿ݃௜ 	 ∈ 	 ஼ܸீ; along with this, ܵܨ(ܿ݃௜) represents 

amount of found internal ones for all its permutations ߨ(ܿ݃௜)௫ ∈ (௜݃ܿ)ߨ	  where 

1	 ≤ 	ݔ ≤ ݊!. Mostly, we call this value as permutation fixed score or permutation 

intra-cluster score. The main reason why we name them in this shape is because we 

normally allow the user in MP-CNet to enter a unit score for each internal conserved 

interactions discovered, denoted with ߶ and more importantly, these values are held 
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as constant for use in other stages, especially in the message-passing. For easy 

understanding to the rest of the paper, we always treat them like a fixed score. 

For any cluster node ܿ݃௜, it is not required to utilize the cluster edges. Only the 

matches which the permutation ߨ(ܿ݃௜)௫  creates and the edges from ீܧ  and ܧு  are 

needed. Note that the edges connected within ܿ݃௜ could provide fixed scores. As a 

side note, meanwhile, we demonstrate these matches for any cluster permutation like 

this: for {݃௔ , ݃௕, … , ݃௨} ∈ 	 ܿ݃௜  and ൛ℎ௜ , ℎ௝ , … , ℎ௭ൟ ∈ 	 ܿ݃௜ , in first permutation 

ଵ(௜݃ܿ)ߨ , for instance, the matches are made as follows: (݃௔ , ℎ௜) , (݃௕, ℎ௝) ,…, 

(݃௨ , ℎ௭) . The similar production of matches are applied to the forthcoming 

permutations but with the necessary alterations for which subset of nodes from ܸீ  

are matched against the subset of nodes from ுܸ as the node order of ߨ(ܿ݃௜)௫ states. 

So, the last permutation is the completely reversed one of the first and its matches go 

like in this shape: (݃௔ , ℎ௭), ൫݃௕, ℎ௬൯,…, (݃௨ , ℎ௜). From these descriptions we have 

explained thus far, a permutation can have ݊ amount of matches, which is also the 

same with the number of subset of nodes covered from ܸீ  and ுܸ . In addition, 

(݊(݊ − 1)	/	2)	number of different pairs of matches can be selected. 

The computation of conserved incteractions within clusters is simple. In any 

cluster ܿ݃௜ 	 ∈ 	 ஼ܸீ , we initally choose a pair of matches 

,݅)ܯ ݆) = 	 [(݃௔ , ℎ௖), (݃௕, ℎௗ)]  that are made within the permutation ߨ(ܿ݃௜)௫ 	 ∈

	and 1 ,(௜݃ܿ)ߨ	 ≤ ݅	 < ݊ , ݅	 < ݆	 ≤ ݊ . Here, ݃௔  and ݃௕  are taken to search for the 

existence of an edge in ீܧ . Then, we are ready to move on to search for ℎ௖ and ℎௗ by 

scanning all edges of ܧு, if such an edge is available from ீܧ . Otherwise, we pass on 

to the next possible pair of matches, as it is certain the previous one does not have 

the opportunity to make a internal conservation. To sum it up for this process, fixed 

score of a cluster permutation ߨ(ܿ݃௜)௫  increases by the value of ߶ if and only if 
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(݃௔ , ݃௕) and (ℎ௖ , ℎௗ) of selected pair of matches from the subset of nodes of ܸீ  and 

ுܸ enclose an identical edge from ீܧ  and ܧு, respectively (Figure 2.3). At the end, 

the score is placed to ܵܨ(ܿ݃௜) and to ℱ࣭ when completed ∀ߨ(ܿ݃௜). It can be also 

noted that a permutation can have a maximum fixed score of (݊	 × ߶) which could be 

feasible whether the subset of nodes of that cluster mold complete subgraphs. Later, 

we check which permutation(s) possesses the best fixed score for each cluster by 

creating a list variable ℱ࣭ℬ , for this purpose. It is necessary to keep the best 

permutations for comparison with another list variable, which is mentioned in 

Section 2.4 for getting our algorithm ready for message-passing. Here, in any cluster 

ܿ݃௜ , fixed score of every permutation is checked and the best ones are added to 

(௜݃ܿ)ܤܵܨ ⊂ 	ℱ࣭ℬ. 

 

Figure 2.3 A demonstration of internal conserved interactions (fixed scores) for 
some permutations from (࢏ࢍࢉ)࣊ for ࣘ = 1.0. 

 
It is admissible that one-to-one clusters cannot have fixed scores, due to having 

only one match and a single node from ܸீ  and ுܸ  as its subset. Hence, they are 

directly skipped by our algorithm. For some many-to-many clusters which were 

normally one-to-many clusters, all of them, but converted to that type by the addition 

of dummy nodes, we do not expect any fixed scores again, although they are 
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permitted to be searched. So, it shows that only the 'real' many-to-many clusters have 

the capability to include fixed scores for their permutations. 

2.4. Plausible Edge Counts 

After the preparation of permutation fixed scores for all clusters, additionally 

we apply a heuristic approach to measure the number of occurences in edges of ீܧ  

and ܧு  for the covered subset of nodes ∀ܿ݃௜ ∈  This may give a clue for the .ܩܥ

permutation ߨ(ܿ݃௜)௫ , having a greater number of edges that their subset of nodes 

existed in the edges of ீܧ  and ܧு respectively, brings more potential to extract many 

conserved interactions, so it is likely to be chosen as the best permutation in that 

cluster. It should be noted that every kind of edges of ீܧ  and ܧு  are searched, 

including those within clusters or going from one cluster to another and no matter the 

cluster ܿ݃௜ has neighbors or not. We denote ℰࣝ on this objective to store the edge 

counts of all cluster nodes and an extra sub-dimension ܥܧ(ܿ݃௜)  ⊂ 	ℰࣝ  for all 

permutations of ܿ݃௜. These values are merely used in this step and together with the 

fixed scores ℱ࣭  we have gathered previously, the best permutations are decided 

initially for getting ready MP-CNet to the message-passing stage. 

In any cluster ܿ݃௜, the matches of permutation ߨ(ܿ݃௜)௫ are taken one by one as 

they are shown with, for instance, ߨ(ܿ݃௜((ݖ)ܯ))௫ = (݃௔ , ℎ௕) where 1 ≤ ݖ ≤ ݊. We 

begin browsing all edges of ீܧ  to count how many times the node ݃௔  was 

encountered in them and keep the total number in ݏ݈݌(݃௔). Then, the same action is 

applied to ℎ௕  for counting the occurence in the set of edges ܧு  and the value is 

assigned to ݏ݈݌(ℎ௕). By comparing both ݏ݈݌(݃௔) and  ݏ݈݌(ℎ௕), we determine the 

plausible edge count of the match with these rules: 
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(a) If 	ݏ݈݌(݃௔) = ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌  ,(ℎ௕)ݏ݈݌ 	൯ = (௔݃)ݏ݈݌ 	∨  ;(ℎ௕)ݏ݈݌	

(b) Else if  ݏ݈݌(݃௔) < ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌ ,(ℎ௕)ݏ݈݌ 	൯ =  ;(௔݃)ݏ݈݌

(c) Else if 	ݏ݈݌(݃௔) > ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌  ,(ℎ௕)ݏ݈݌ 	൯ =  .(ℎ௕)ݏ݈݌

Simply, the count total of a match is equal to whichever of ݏ݈݌(݃௔) or ݏ݈݌(ℎ௕) 

is less. It is also comprehensible that matches made with dummy nodes do not yield 

any counts. When all matches are measured, we sum every value to ݏ݈݌(ߨ(ܿ݃௜)௫) =

	∑ ൯௡	൯(ݖ)ܯܿ݃௜൫	൫ݏ݈݌
௭ୀଵ  to finally specify the plausible edge count of that 

permutation of cluster ܿ݃௜ (Figure 2.4). 

 

Figure 2.4 Counting plausible edges of a cluster permutation. Here, in the example 
above, all available matches plausibly carry 1,2 and 1 edges respectively for a total 

of 4 plausible edges. 
 

The next step is to decide, similarly to fixed scores, which permutation(s) has 

the best value of edge counts ∀ܿ݃௜. Each value of edge counts is investigated and 

permutation(s) achieving the best value is assigned to another list ℰࣝℬ to hold the 

indexes of the best permutations ܤܥܧ(ܿ݃௜) ⊂ 	ℰࣝℬ. 

Now, we are one step closer ahead to select the initial best permutations ∀ܿ݃௜ 

to start the message-passing process. All clusters are examined in order, so we bring 

both best fixed-scoring and edge-counting permutation sublists ( ܤܵܨ(ܿ݃௜)  and 
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(௜݃ܿ)ܤܥܧ  ) for the appropriate cluster to be compared with each other. Any 

permutation which is encountered in both lists is added to ܯܥ(ܿ݃௜) 	⊂ 	ࣝℳ , 

indicating the common bests. In a situation that more than one permutation are 

included in ܯܥ(ܿ݃௜) , one permutation is picked randomly to become the best. 

Another case can happen that no common-best permutation is returned where we 

give the priority to the best fixed-scoring permutations to supply that such a cluster 

node as the best one. Finally, we move these best permutations of all clusters to ࣪ℬ, 

for usage in the message-passing. By reaching this point, we accomplish the input 

data processing series. 

2.5. The Message-Passing Method 

Our algorithm, fundamentally, perform the alignment with the message-

passing. The importance of this stage is elevated because the output available upon 

completion of the algorithm is entirely built on passing information between clusters 

as accurately as possible. For this reason, we have progressed through many steps to 

make the data consistent in hand to not unexpectedly fall with unusual results and 

coherently match the definition of constrained GNA problem. Here, we emphasize 

on the operation of message-passing, evaluations of the progess, getting optimal 

alignment and convergence in the following sections. 

2.5.1. Our Formation and Vision of Message-Passing 

Message-passing, in general, is the paradigm of communication where 

messages are sent from a sender source to one or more recipients. Our approach is 

very similar to this notion, but with slight modifications; that is, at any iteration, 

clusters of graph ܩܥ  look for the neighborhoods of other clusters and those 

neighbored ones convey their best permutations back to currently investigated ones. 
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At that moment, clusters use them with their own permutations to make 

consequences. Then, upon getting the knowledge, a new best permutation is decided 

for the next iteration, and so progressively constitute the alignment with the highest 

number of conserved interactions comprised. While performing the message-passing, 

the most necessary factor is the number of external conserved interactions that 

permutations of clusters produced. As deciding the new best ones, not only do we 

take advantage of these numbers, but also their internal conserved interactions (i.e. 

fixed scores). 

At the time of designing our message-passing method, we were highly thrilled 

from the elucidations of Zaslavskiy et al. (2009b). The authors asserted a method 

which could be solved exactly and efficiently in some cases and the definition of 

clusterization technique was what we have expressed in Section 2.2.1. Moreover, this 

situation was studied beforehand for finding the functionally ortholog proteins (see 

Bandyopadhyay et al., 2006). The strong assumption the authors claimed is the exact 

optimization can be obtained if the cluster network is a particular structure such that 

it has many isolated cluster nodes, no loop throughout all connected clusters, or is 

just a single connected component like a tree. Their advancement of the message-

passing method is as follows: One of the cluster node is selected to be the root to 

assign any other clusters a distance value, indicating how many connections must be 

passed over in order to reach the root. They are required for assessing which are the 

parents and children of each other and traversing each cluster by using breadth first 

search. The algorithm begins at the highest distance value of clusters as they are 

children and thus, only the conserved interactions within are measured and a vector 

is placed to them that carries out the best number of these. While moving up, 

conserved interactions between child clusters of parents are also calculated, hence 
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the root should have the highest. This covers the forward step so far. Next, the 

backward step is implemented to gather those vectors in each cluster to achieve the 

optimal alignment overall. 

Considering the definition of constrained GNA problem and the idea of our 

proposed algorithm here, the cluster network must not have restrictions to any 

specific structure as miscellaneous types can be encountered depending mainly on 

the structure of both PPI network graphs and the generated clusters by a clustering 

algorithm. In other words, ܩܥ can contain a large component of joint clusters or lots 

of small ones separated from  each other and reasonably become cyclic. Therefore, 

we always obey the generality of these graph structures and our aim, hereby, is to 

build an algorithm which is able to work on any of them; still matching the 

description of constrained GNA problem. 

Unlike Zaslavskiy et al. (2009b), there does not have to be a root cluster to be 

chosen and this dismisses the setup of the assignment of distance values to all other 

clusters. Though every time marking a random cluster as root gives a different result, 

we are on the side of having a steady one to make the general traceability of the 

output easier. In addition, the forward and backward steps, that is, the message-

passing seems to happen only one time. As we do not want to limit to just one 

iteration like this, a larger number of iteration scheme is adopted enabling our 

algorithm to search the conserved interactions on clusters again for probability of 

having more than previous iterations. These adjustments are applied to make it also 

more compatible against the form of any cluster networks. 

2.5.2. Functions of the Message-Passing, External Conservations and Output 

We express how our message-passing method is progressed. Thus far, the best 

permutations of all clusters, stored in ࣪ℬ , have been acquired along with the 
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permutation fixed scores ℱ࣭. First of all, we start with a simple check if ܧ஼ீ ≠ 	∅. 

Otherwise, it is not worth to do the message-passing on ܩܥ ; the alignment is 

provided only with the contribution of fixed scores from clusters. Furthermore, there 

is a maximum limit to the number of iterations, denoted with ݇௠௔௫ which is user-

defined, to ensure our algorithm to cease at a certain point if no convergence is 

occured. 

At any iteration ݇, each cluster ܿ݃௜  is traversed to detect its neighbors (i.e. 

connections) and these are kept in ܰ(ܿ݃௜) so the implementation of message-passing 

to which clusters are determined at the moment. It is noticeable that any cluster with 

no neighbors are skipped so we leave them with only the best fixed score for the 

contribution of the final alignment. Certainly, it is not essential to change the best 

permutation of those clusters at every iteration, holding them fixed across all 

iterations until ݇௠௔௫ or convergence. Otherwise, for a cluster ܿ݃௜ with ܰ(ܿ݃௜) ≠ 	∅, 

its all available permutations are examined, because having connections can affect 

the total number of conserved interactions between other clusters (Zaslavskiy et al., 

2009b). In any ߨ(ܿ݃௜)௫ , we begin with the addition of fixed score, fetched from 

(௜݃ܿ)ܵܨ , to ܵܥ(ߨ(ܿ݃௜)௫)  which represents the total score of the permutation. 

Meanwhile, the cluster is made ready by having one-to-one matches of ߨ(ܿ݃௜)௫ . 

Then, the neighbored clusters are called to propagate their best permutations that are 

available from ࣪ℬ  to the current cluster. All clusters in ܰ(ܿ݃௜) are later adjusted 

with the setting of subset of nodes of ுܸ, indicated by the propagated permutations to 

obtain appropriate matches. After that, the finding of external conserved interactions 

between the currently investigated cluster ܿ݃௜ and its neighbors begins. 

Like the implementation of fixed score, described in Section 2.3, external 

conserved interactions can be represented like a score and mostly define them as 
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permutation edge score or permutation inter-cluster score, denoted with ߰ and our 

algorithm allows the user to enter a unit score for that kind.  In contrast to getting 

fixed scores, now two clusters are required for search. 

In the message-passing method, we always keep the matches of neighbor 

clusters in ܰ(ܿ݃௜)  static until all permutations of ߨ(ܿ݃௜)  are investigated. These 

neighbors are traversed one by one as we get the external conservations 

independently. Assuming cluster ܿ݃௜ and one neighbor in ܰ(ܿ݃௜) is fully ready for 

searching, we take one match from each. Note that if a permutation of ߨ(ܿ݃௜) 

contains ݉  matches and the other one from ߨ(ܿ݃௝)  contains ݊  matches, where 

ܿ݃௝ ∈ ܰ(ܿ݃௜) , then up to ݉	 × ݊  different pairs of matches are investigated for 

getting edge score. For any matches, e.g. ߨ(ܿ݃௜(	(ݕ)ܯ	))௫ = (݃௔ , ℎ௖)  and 

௣((	(ݖ)ܯ	)௝݃ܿ)ߨ = (݃௕, ℎௗ) , where 1 ≤ ݕ ≤ ݉ , 1 ≤ ݖ ≤ ݊ ; ݃௔ , ݃௕ ∈ ܸீ , ℎ௖ , ℎௗ ∈

ுܸ, ܿ݃௝ ∈ ܰ(ܿ݃௜) and ݌ indicates the best permutation among all in ߨ(ܿ݃௝), we first 

look into the edge existence in ீܧ  (i.e. protein interaction) between ݃௔ and ݃௕ nodes. 

If our algorithm comes across such an edge, then the same action is performed for ℎ௖ 

and ℎௗ nodes with ܧு. When both conditions are satisfied, the permutation ߨ(ܿ݃௜)௫ 

gains unit edge score ߰ (Figure 2.5). When all match combinations are examined, the 

accumulated edge score is divided by 2 and then it is added to ܵܥ(ߨ(ܿ݃௜)௫). The 

total score of any permutation can be universally formulated by the equation below 

in any iteration ݇: 

(௫(௜݃ܿ)ߨ)ܥܵ  = +	(௫(௜݃ܿ)ߨ)ܵܨ ෍
Λ[�	ߨ(ܿ݃௜((ݕ)ܯ))௫	 �, [௣(((ݖ)ܯ)௝݃ܿ)ߨ 	× 	߰		

2 	
∀௖௚ೕ	∈ே(௖௚೔)

 (2.1) 

In equation (2.1), Λ[−,−] indicates the availability of conserved interaction 

between the matches of those corresponding cluster permutations, given a value of 0 

or 1 and is multiplied by ߰. There is an important reason for dividing the unit score 
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by 2. This is because we expect ܿ݃௝ , when it becomes the currently investigated 

cluster by MP-CNet and where ܿ݃௝  is the neighbor of ܿ݃௜  at the time, formally 

ܿ݃௝ ∈ ܰ(ܿ݃௜), to exhibit the similar satisfaction exactly between the matches (ݖ)ܯ 

of its such permutation and (ݕ)ܯ of the permutation of its neighbor, those which 

provided conserved interaction already. In this way, they mutually supplement each 

other by guaranteeing there really exists a conserved interaction with these selected 

permutations and matches. The only concern might be that if the permutation in 

 is not the (௝݃ܿ)ߨ which carries out the same interaction(s) with the one in (௜݃ܿ)ߨ

best, at the time ܿ݃௝ is being investigated for edge conservation while ܿ݃௜ becomes 

its neighbor, there is a situation that another permutation from ߨ(ܿ݃௜)  with the 

convenient match can compensate this affair.  

 

Figure 2.5  An example of external conserved interaction between clusters. Here, (࢈ࢍ ,  (࢐ࢎ
match of ࢞(࢏ࢍࢉ)࣊ and (ࢊࢍ,  .supply a conservation externally ࢖(࢐ࢍࢉ)࣊ match of (࢜ࢎ

 

After the calculation of edge scores of all permutations ∀ܿ݃௜, we look for the 

best scorings to be included in ࣪ℬ′ along with the highest score achieved for ܿ݃௜. 

That means every permutation score ܵܥ(ߨ(ܿ݃௜)௫)  are compared, just like the 

previous sections involving the selection of the bests. For those having more than 

one cluster accomplishing the same highest scores, these are broken randomly by 

selecting one of them and we put it into ࣪ℬ′ and, meanwhile, the highest score is 
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accumulated in another variable, denoted with Θ஼ீ , hence the total best scores of all 

clusters are acquired in every iteration. This can be formed with the formulation in 

the equation below.  

 Θ஼ீ = 	 ෍ max (௫(௜݃ܿ)ߨ)ܥܵ	 , ݔ∀
௖௚೔	∈	௏಴ಸ

 (2.2) 

Note that every best score from clusters summed to Θ஼ீ  may or may not 

contain the fixed scores as only we check the value of permutation scores. When a 

higher Θ஼ீ  is achieved in iteration ݇ than previously, the value is kept in maxΘ஼ீ , so 

the highest possible score is determined until either convergence or ݇௠௔௫ is reached.  

It should be pointed out that we do not remove ࣪ℬ of the current iteration ݇ 

yet. As every best permutations of all ܿ݃௜  clusters is placed into ࣪ℬ′, now these 

values are used together to know the state of convergence of the cluster network. 

This is an important property that determines the continuity of conserved interaction 

searching, and it is checked in every iteration when all clusters are traversed for edge 

scores. This process is basically done by comparing the eqaulity of the best 

permutations of each cluster such that if every value in ࣪ℬ is completely the same 

with ࣪ℬ′, for instance, ܲܤ(ܿ݃ଵ) = (ଶ݃ܿ)ܤܲ ,ᇱ(ܿ݃ଵ)ܤܲ =  and so on, then ,(ଶ݃ܿ)′ܤܲ

MP-CNet no longer proceeds the computation of edge scores i.e. convergence is 

achieved and the alignment is prepared for the output. Otherwise, it continues the 

computation till ݇௠௔௫ is reached, and ࣪ℬ	 ← 	࣪ℬ′ is performed at the end of every 

iteration. 

We also take another action, particularly when edge score calculation is 

finished thus the best permutations (࣪ℬ′) are decided, which could be a heuristic 

approach to create an alternative alignment at the end. For this purpose, ࣝ࣪ℬ  is 

created at the beginning of the message-passing, holding how many times a 
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permutation is chosen as the best and the value corresponding to that permutation of 

ܿ݃௜  is increased by 1 and stored in ܤܲܥ(ܿ݃௜) ⊂ 	ࣝ࣪ℬ . Note that the size of 

is equal to the number of permutations generated for cluster ܿ݃௜ (௜݃ܿ)ܤܲܥ . It is 

implemented in every iteration till the convergence is achieved or ݇ ௠௔௫ is reached. 

Then, the most selected permutations among all ongoing iterations are picked up and 

placed in ∆࣪ℬ . Then, the alternative alignment is made available to the output, 

which can be supportive to the regular one in terms of number of conserved 

interactions with slightly different results. It is noted that the convergence check is 

not performed with ∆࣪ℬ; only ࣪ℬ is required for this objective. 

The last portion of the message-passing of our algorithm is to present the 

alignment output, additionally how many conserved interactions occurred across all 

available matches of ܩܥ, and which pairs of matches provide these interactions by 

showing their relative nodes from ܸீ  and ுܸ. Every 'valid' matches are gathered from 

clusters (i.e. not including matches involving a dummy node), hence denote ℳ஼ீ  to 

contain all these matches together. Every combination of ℳ஼ீ[݅]~ℳ஼ீ[݆] (1	 ≤ ݅ <

,ݔܽ݉ ݅ < ݆ ≤ (ݔܽ݉  is examined. Similar to what we have done previously, the 

matched nodes of ܸீ  and ுܸ  are taken for the existence of interactions (edges) 

between them in ீܧ  and ܧு, respectively. Those pair of matches are made available 

to the output and placed to ࣝℐ஼ீ  when conditions are met. Then, the same process is 

applied to the alternative alignment by getting the valid matches and checking the 

presence of these (to ࣝℐ∆஼ீ). As a result, we create not only one steady alignment but 

also a different one with our alternative intuition. We expect the number of 

recognized conserved interactions and those derived from matches should be 

identical. 
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2.5.3. Detailed Analysis and Claims 

When MP-CNet achieves convergence of the input or ݇௠௔௫  is reached, total 

score, alignment, and conserved inteactions actualized by the pair of matches are 

presented. However, it is challenging make sure if the alignment is really optimal. 

About networks which are not large and too dense, relating to PPI networks and 

clusters, it may be somewhat predictable. During our research, we had come up with 

some remarkable claims that is visible to the most of the input whereas there is still 

extreme situations that are excluded from them. In this subsection, we would like to 

explain these by general basic samples, then moving to more complex ones. 

The smallest cluster network ܩܥ  we are able to reduce at most is only two 

cluster nodes, call ܿ݃ଵ and ܿ݃ଶ, along with only one edge available in ீܧ  and ܧு , 

connected between these clusters respectively and no edge internally. The number of 

subset of nodes from ܸீ  and ுܸ in clusters can be at least one, but for comfortable 

analysis, let ܿ݃ଵ have ݉ and ܿ݃ଶ have ݊ subset of nodes, no matter if there exists 

dummy nodes. For any iteration ݇ , ࣪ℬ  was already made ready in the previous 

iteration, ݇ − 1. As we traverse each cluster node, and so initially for ܿ݃ଵ, there is 

only one neighbor available, say ܰ(ܿ݃ଵ) = {ܿ݃ଶ} . Then, ܿ݃ଶ  is set to contain 

matches for its best permutation, obtained from ࣪ℬ. It is noticable in this simple 

example that there should exist a match from ߨ(ܿ݃ଶ((ݔ)ܯ))௣	 that connects the 

nodes ݃௨ and ℎ௩ that already have an edge in ீܧ  and ܧு, going to other appropriate 

node in cluster ܿ݃ଵ. Likewise, ܿ݃ଵ should have a match between ݃௔ and ℎ௕, for some 

permutations. To know which of them satisfies, all matches of  each permutation of 

ܿ݃ଵ  are examined to check for existence, as their matches are taken one by one 

against the matches of the best permutation of ܿ݃ଶ . Suppose ߨ(ܿ݃ଵ((ݕ)ܯ))௧  is 

selected and these matches between two clusters achieve an external conserved 
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interaction, if the matched nodes of ݃௔-݃௨ and ℎ௕-ℎ௩ are the edges themselves in	ீܧ  

and ܧு . In this manner, permutation ߨ(ܿ݃ଵ)௧  gets a score by the value of ߰/2 . 

However, as we continue examining the permutations, there could be another one, 

 ௪, that has the same match, making connection between the same nodes ݃௔(ଵ݃ܿ)ߨ

and ℎ௕ , thus gaining ߰/2 score. Here, we assert that by fixing the match of such 

permutation of ܿ݃ଵ , and there are ݉ − 1  other matches remaining, maximum of 

(݉ − 1)! different forms of matches can be attained. This constitutes a significant 

claim such that for any cluster, (݉ − 1)! different permutations gain edge score by 

߰/2 if there goes one interaction from ீܧ  and ܧு to its neighbor cluster in ܰ(ܿ݃௜), 

for ݉	 ≥ 31. Likewise, all of these explanations are valid for ܿ݃ଶ, as its neighbor 

becomes ܿ݃ଵ, where the matches are necessarily set for the best permutation. Here, 

(݊ − 1)! permutations can get ߰/2, so obviously more than one of them reach the 

same achievement of having the best score. After these two cluster node traverses are 

made, however, there are (݉ − 1)! and (݊ − 1)!  choices of best permutations of 

respective clusters that MP-CNet should select. As discussed in Section 2.5.2, a 

greedy approach is implemented to represent the permutations to become the best for 

the next iteration by first assigning to ࣪ℬ′. When no convergence is materialized 

then these are overwritten to ࣪ℬ, so these actions are taken again. On the other hand, 

due to the design of the algorithm, when there are no more iterations for message-

passing by reaching ݇௠௔௫, the alignment output is represented optimally. Meanwhile, 

here comes the better understanding of why ߰ edge score is divided by 2. As the best 

permutations of ܿ݃ଵ and ܿ݃ଶ together generate the same external conservation even 

                                                             
1    Here, (3-1)! = 2! = 2, so there is not only one permutation getting the edge score by having the 
same matches; also always valid for much higher number of pairs of nodes in clusters. For others, like 
one or two node pairs, 1! = 2! = 1 permutation can obtain the score. 
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though asynchronously, summing these scores guarantee a such external 

conservation truly exists. 

Now, we extend this situation by inserting new edges to ீܧ  (or ܧு) that goes 

from one cluster to another while the other remains at one edge. It should be 

approached with two main types: Whether these edges are connected with the other 

one or disconnected to observe the effects to the whole cluster network, external 

conservation finding and convergence. First, assume it sustains the connectivity with 

the existed edge. "Connectivity", hereby, means there is a common node between 

them, for instance, considering an edge ݃௔-݃௕ and the new edge ݃௔-݃௖ both source 

and target nodes are covered in different clusters, the common node ݃௔ provides the 

connectivity of these two edges. We also agree that a single edge between clusters is 

a connection, too. Imagine the current cluster network like this, two different nodes 

of ܸீ  in ܿ݃ଵ  have one plausible edge and one node of ܸீ  from ܿ݃ଶ  have two 

plausible edges while the other graph remains unaffected. Here, ܿ݃ଶ still possesses 

the probability for (݊ − 1)! permutations to get ߰/2 because there is only one node 

(as well as match) in ܿ݃ଶ that can give the conserved interaction externally. If we 

take a look at the possibilities for ܿ݃ଵ, then the number of permutations that are able 

to obtain edge score become 2	 × (݉ − 1)! as there are now two-to-one possible 

such matches for some permutations in ܿ݃ଵ satisfying connections between nodes 

with available edges in their networks. Therefore, at the end of iteration ݇, MP-CNet 

now has 2	 × (݉ − 1)! and (݊ − 1)! permutations to select as their bests for the next 

one, respectively. Total edge score, however, is still the same. We claim from this 

current sample that the number of available edges from one graph, travelling through 

two clusters and maintaining the other with one edge merely allows a cluster the 

possibility for up to ݊	 × (݊ − 1)! = ݊! permutations have edge score, but because of 
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one edge existence of the other  PPI-network graph, there is no way to multiply the 

total score of these two connected clusters as only one match of their such 

permutations can perform it. The convergence and optimal alignment is still achieved 

by the algorithm, but due to the increased number of permutation choices, this also 

raises the finite number of iterations ݇  to make it happen. Considering the edge 

disconnection of edges of ீܧ  and/or ܧு, we have conjectured that this, unfortunately, 

often causes no convergence for ܩܥ no matter how ݇௠௔௫ is as much as high. This is 

such a bizarre condition that by examining the possible best permutations ܵܤܥ(ܿ݃௜) 

for each cluster in every iteration until the maximum, the best of one or more are 

completely different than the previous iteration that leave MP-CNet no opportunity 

to make convergence, though the highest total score can be reached. The discrepancy 

of dissimilar best permutations of clusters repeat in at least two-iteration cycles, and 

by checking ࣪ℬ  at ݇௠௔௫ , these permutation indexes cannot form the optimal 

alignment but partially i.e. an approximate one is encountered. 

A little more complex structure between these two clusters could be that both 

ீܧ  and ܧு contain more than one edge and still going from ܿ݃ଵ to ܿ݃ଶ. This affects 

some permutations that achieve conserved interactions externally with more than one 

matches. Suppose the edges in their respective PPI-network graphs remain the 

connectivity for having convergence and alignment optimally, now such a 

permutation from ߨ(ܿ݃௜) possesses a likelihood that its matches against the ones of 

the best permutation of the neighbor clusters together produce ܿ × (߰/2)  edge 

scores, where ܿ  can take any value, indicating the times of happenings of 

conservation with these permutation matches, here ܿ	 > 1  is preferred for this 

purpose (Figure 2.6). There can be other permutations that have edge scores but not 

higher than the bests when all are investigated. Therefore, this shape of two clusters 
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allow MP-CNet to make the best permutation selection of each cluster with fewer 

options for determining ࣪ℬ  for the next iteration and can help convergence 

occurence by a bit less iteration made. Additionally, another important claim is 

obtained, thanks to our analysis, that the edge score of a cluster permutation can get 

at most is ܿ × (߰/2). In other words, the maximum edge score of a permutation is 

dependent on the number of edges between two clusters whichever is lower. If there 

are three edges from ீܧ  and two edges from ܧு, going from one cluster to another, 

for example, then a permutation cluster edge score can be up to 2 × (߰/2).  

 

Figure 2.6 Alignment optimality between two clusters with multiple edges 
 

The more complicated cluster network input for the algorithm is surely enough 

multiple clusters as real examples should contain hundreds of clusters, along with 

lots of possible cluster edges in terms of the clustering algorithm output. For making 

necessary interpretations of this form, consider simple ܩܥ  consists of (i) three 

clusters where ܿ݃ଵ is connected to ܿ݃ଶ, and ܿ݃ଶ is connected to ܿ݃ଷ, (ii) four clusters 

where the connections are made between ܿ݃ଵ-ܿ݃ଷ and ܿ݃ଶ-ܿ݃ସ, so two separate sub-

cluster networks and, of course, edge connectivity of proteins is still maintained for 
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those. About (i), the algorithm always starts at ܿ݃ଵ  with ܰ(ܿ݃ଵ) = {ܿ݃ଶ}  and 

definitely, all permutations in ߨ(ܿ݃ଵ)  are compared with the best permutation 

 ௣, hence there will be best-scoring permutations to choose from and similarly(ଶ݃ܿ)ߨ

for ܿ݃ଷ, ܰ(ܿ݃ଷ) = {ܿ݃ଶ}. For ܿ݃ଶ, however, there are more neighbors detected, say 

ܰ(ܿ݃ଶ) = {ܿ݃ଵ, ܿ݃ଷ} and ܰ(ܿ݃ଶ) > 1. MP-CNet traverses these neighbors one by 

one for permutations to make external conservations with the bests of its neighbors. 

Here, more important matter is the maximal edge score of a permutation of a cluster 

being examined can go up to (ܿ + ݀) × (߰/2), where ܿ  and ݀  denote the highest 

times of conservation occurences from neighbor clusters and reflect the lesser 

number of edges of ீܧ  or ܧு moving from this cluster to the related neighbor. From 

this vision, it is discernable for a cluster that having many neighbor connections can 

also bring more scores to its permutations and it will become easier for MP-CNet to 

select the best one if the matches of the permutation are capable of performing the 

most conserved interactions with the neighbor bests externally, so contributing to 

convergence of ܩܥ  in a way that it can always become the best one through 

iterations. About (ii), the investigation of sub-network clusters are applied 

independently from each other such that only the neighbors can affect the others with 

regard to conserved interactions and determination of best permutations. On the one 

hand, a sub-cluster network has no influence to other familiar structure, even if the 

convergence happens between these clusters at iteration ݇, they must wait for the 

other in order to cary out a full convergence, otherwise they are continued for 

searching. That is because our algorithm is designed for globally aligning the clusters 

(and not for local search) that all best permutations must be exactly the same with the 

previous selections, as indicated in Section 2.5.2 like ࣪ℬ = 	࣪ℬ′. This points out a 
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disadvantage that causes more iterations to be done overall. Despite under this 

setting, the optimal alignment is still returned.  

So far, we have elucidated a lot for necessities of alignment optimality of the 

cluster network by also adapting to the methods of MP-CNet. To sum the things up, 

we propose both ீܧ  and ܧு  must have sustainable connectivity between each 

connected clusters in order to converge at a finite number of iterations and at that 

point the best possible alignment is made to the output, particularly achievable for 

small or medium sized graphs, otherwise the algorithm is progressed until ݇௠௔௫ for 

the best approximate one. Edge disconnections of protein networks across some or 

many clusters can cause the impossibility of convergence at all, and again an 

approximate alignment. In addition, we never discussed the situation of the inclusion 

of fixed scores (internal conserved interactions) for clusters. Here, our researches on 

many different structures showed that by testing the same instances with fixed scores 

(ℱ࣭ ) do not make any changes to the general optimality of alignment and 

convergence. There is a relationship between ߶ and ߰ unit scores that we always 

recommend the scoring schema of ߶	 ≥ 	߰ . This is another criterion for getting 

optimal alignments. Initially, permutations with best fixed scores and with the 

maximum plausible edge counts become the best of  their related clusters before 

message-passing begins and have more probability to remain it for the most 

iterations unless another permutation has higher score. In this way, we do not see a 

loss of total conserved interactions that prevents the optimality but other distinct 

variants may be encountered like some external conservations are not presented at 

the end. In contrast where ߶ < 	߰, the algorithm sometimes returns less total score 

and significantly decreases the likelihood of the alignment to become optimal. This is 

not the desired situation as keeping both values equal is most convenient way. We 
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adopt the value of 1.0 for the experiments in Section 3 to see the exact number of 

total conserved interactions. All in all, these further explanations were made for MP-

CNet to show how it works at a smooth rate of performance against the given input. 

2.5.4. Discussions for Convergence 

Convergence of ܩܥ is a crucial feature for MP-CNet as it makes the decision of 

if we should go on computing the edge scores of all clusters with the updated best 

permutations or stop immediately and progress to prepare the alignment. Here, 

convergence, on one hand, ensures no more conserved interactions (i.e. no higher 

scores) can be produced by the algorithm and also states that continuing after this 

point causes loss of time. When this is materialized, we always inquire the output 

alignment and our algorithm with these questions: (a) Does the algorithm always 

converge? (b) If it converges, does the alignment become optimum? (c) What is the 

maximum number of iterations until convergence is achieved? 

Depending on the structure of both PPI networks and the cluster network which 

is made in the data processing stage, it is hard to come up with common and proper 

answers for these questions, due to the spantaneousness of constrained GNA problem 

and the design of our algorithm to this. Assuming simple and sparse kinds of these 

networks each, then the questions of our inquiry can be answered without not much 

difficulties. On the other hand, the matters are getting to impossibility for more 

complicated structures of both PPI and cluster networks. Despite the hardness, here 

we attempt to give general responses to these questions and mostly attribute to the 

claims and analysis that have been obtained during the research and development of 

MP-CNet, together with the results that have been encountered by many different 

inputs as they were explained in the previous section. 
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Starting from question (a), the cluster network can be converged if ܩܥ does not 

have a complicated joint structure among cluster nodes either having lots of small 

subnetworks or a large one. Hence, the alignment output can be seen without 

reaching the maximum iteration limit ݇௠௔௫  if it is high enough. It should not be 

forgotten that as we have said in the previous section, the edge connectivity of subset 

of ܸீ  and ுܸ  nodes between any connected clusters must be sustained and again 

having disconnections of edges can lead to disallow the algorithm to achieve 

convergence. This is also valid for graphs with more complexity overall and if it is 

hoped to ensure full edge connectivities across all clusters, then there is still a 

probability to achieve convergence during the message-passing but after hundreds or 

even thousands of number of iterations, leaving the only choice to increase ݇௠௔௫ to 

be able to encounter.  

For question (b), this always causes anxiety such that it is pretty ambiguous 

that the optimality of alignment or not should be predicated to either the simplicity of 

PPIs and the cluster network graphs or the performance of our algorithm against the 

given input. To make it clear, one way is to run the algorithm several times over the 

same input and see whether convergence is achieved and the same total score (or 

total conserved interactions) is obtained every time at the point of convergence. If it 

does not happen, only the total score is observed. Then, we can interpret the 

alignment has a likelihood to be optimal, otherwise approximate. Another way is, 

particularly on cluster nodes with totally less than 10 or 15, an exhaustive search 

(e.g. brute force) is implemented hereafter the completion of the algorithm. 

Therefore, the optimality of the alignment can be decided by comparing the outcome 

of the exhaustive search (as it has usually more than one alignment options) with the 
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one generated by MP-CNet in terms of total score, number of conserved interactions 

and the best permutations of clusters.  

For question (c), we have already given answers in (a) by a large proportion. In 

addition to this, it is hard to predict the exact range of number of iterations at first for 

the given input. Of course, for those where there is always convergence, the 

minimum and maximum number of ݇ iterations can be observed by running several 

times again or if not, raising ݇௠௔௫ is the only relief; and in the worst case, it is not 

observable at all due to the claims we counted above. 

2.6. The Whole Algorithm Pseudocode 

The general pseudocode of all the stages of MP-CNet together up to and 

including the message-passing and the alignment output are given below. Please note 

that some formulations or equations may slightly differ from what was described in 

the text but they still do the same matter. 

MP-CNet(ܩܥ,ܪ,ܩ,߶,߰){ 
  1 BEGIN 
 
  2 Construct PPI-network graphs ܩ and ܪ 
 
  3 Begin constructing the cluster network graph ܩܥ 
    by placing subset of nodes of ܸீ  and ுܸ into 
    appropriate clusters and necessarily add dummy 
    nodes for equalization 
 
  4 Add connections between any ܿ݃௜ and ܿ݃௝ if edge 
    connectivities of their ܸீ  and ுܸ nodes are  
    satisfied 
 
  5 Generate permutations ∀ܿ݃௜, stored in ࣪. 
 
  6 Calculate fixed scores ∀ߨ(ܿ݃௜) and ∀ܿ݃௜, stored 
    in ℱ࣭ 
    - if an edge from ீܧ and ܧு exists between any 
      pair of matches in ߨ(ܿ݃௜)௫, then ܵܨ(ߨ(ܿ݃௜)௫) += ߶ 
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  7 Decide best permutations for each ܿ݃௜, hold them 
    in ℱ࣭ℬ 
 
  8 Count maximum plausible edges ∀ߨ(ܿ݃௜) and ∀ܿ݃௜, 
    stored in ℰࣝ 
    - Applied rules for any match 
      if ݏ݈݌(݃௔) = ܿ)ߨ൫ݏ݈݌  ,(ℎ௕)ݏ݈݌	 ௜݃൫(ݖ)ܯ൯)௫൯	+= (௔݃)ݏ݈݌ 	∨  (ℎ௕)ݏ݈݌	
      else if ݏ݈݌(݃௔) < =+	௫൯(൯(ݖ)ܯ௜൫݃ܿ)ߨ൫ݏ݈݌  ,(ℎ௕)ݏ݈݌	  (௔݃)ݏ݈݌
      else if ݏ݈݌(݃௔) > =+	௫൯(൯(ݖ)ܯ௜൫݃ܿ)ߨ൫ݏ݈݌  ,(ℎ௕)ݏ݈݌	    (ℎ௕)ݏ݈݌
 
  9 Decide best permutations for each ܿ݃௜, hold them 
    in ℰࣝℬ 
 
 10 Get common best permutation by ܤܵܨ(ܿ݃௜) ∩  (௜݃ܿ)ܤܥܧ
    and append to ࣪ℬ 
    - For more than one permutation, randomly pick 
      one of them 
    - if no common best available, then select one 
      from ܤܵܨ(ܿ݃௜) 
 
    // The message-passing method 
 11 ݇ ← 1; 
    if ܧ஼ீ = 	∅, then do not start the method and 
    prepare the output 
    - Algorithm exits here 
 
 12 while ( not converged and ݇	 < 	݇௠௔௫ ) 
 
 13 for ∀ܿ݃௜: 
      Get the neighbors ܰ(ܿ݃௜) and their best perm. 
      if ܰ(ܿ݃௜) ≠ 	∅: 
        for ∀ߨ(ܿ݃௜)௫ 	 ∈  :(௜݃ܿ)ߨ
          Add fixed score ܵܨ(ߨ(ܿ݃௜)௫) to ܵܥ(ߨ(ܿ݃௜)௫) 
          for ∀ܿ݃௝ ∈ ܰ(ܿ݃௜): 
            Set the permutation ߨ(ܿ݃௝)௣ 
            Determine the total score of ߨ(ܿ݃௜)௫ by 
            comparing all possible pair of matches 
            with ߨ(ܿ݃௝)௣ 
            - if Λൣ�	ߨ(ܿ݃௜((ݕ)ܯ))௫	 �, ௣൧(((ݖ)ܯ)௝݃ܿ)ߨ = 1, then 
=+	(௫(௜݃ܿ)ߨ)ܥܵ               ((Λ	 × ߰)	/	2) 
      Assess the best-scoring perm. and append to ࣪ℬ′ 
      - For more than one permutation, randomly pick 
        one of them 
      Aggregate the best score of ܿ݃௜ to Θେୋ 
=+	(௫(௜݃ܿ)ߨ)ܤܲܥ       1 
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 14 if Θେୋ > Θେୋ: maxΘେୋݔܽ݉ = 	Θେୋ 
 
 15 if ࣪ℬᇱ = 	࣪ℬ: mark ܩܥ converged 
 
 16 ࣪ℬ	 ← 	࣪ℬᇱ; 
    goto step 12 
 
 17 Decide the most selected permutations 
(௜݃ܿ)ܤܲܥ∀     ⊂ 	ࣝ࣪ℬ and append to ∆࣪ℬ 
 
 18 Output the alignments from ࣪ℬ and ∆࣪ℬ by  
    showing the total score maxΘେୋ of ࣪ℬ, matches and  
    ࣝℐ஼ீ, ࣝℐ∆஼ீ 
 
 19 END 
} 
 
MP-CNet is written in C++ and LEDA (Mehlhorn and Naher, 1999). The 

reason for using LEDA libraries is to handle graph structures easily and store 

necessary values in single or multi-dimensional list variables as the data structure 

allows them to become flexible (i.e. not static) throughout the algorithm. 
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Chapter 3 

Experiments and Results 

MP-CNet algorithm works smoothly over the clustered network as well as 

maximum amount of conserved interactions possible from pairwise PPI networks 

and the whole alignment are delivered to the output. To estimate how robust and fast 

our algorithm is, we have experimented with other algorithms on various biological 

sources. Here, the experiments are mainly done with balanced GNA algorithms, 

although their approaches of the problem solution has differences with ours. They are 

primarily quantified on three important factors: (i) Assess the total number of 

conserved interactions, (ii) observe the time elapsed while perpetrating the data and 

(iii) a special experiment to measure the biological quality of the alignments of 

algorithms in terms of Gene Ontology (GO) annotations that proteins possess their 

biological features (Ashburner et al., 2000). 

3.1. Comparisons with Algorithms 

We  chose SPINAL2 (Aladag and Erten, 2013), IsoRank3 (Singh et al., 2008) 

and MI-GRAAL4 (Kuchaiev and Przulj, 2011) graph matching algorithms which are 

balanced GNA algorithms to do tests with MP-CNet. The basis of these experiments 

                                                             
2     SPINAL is available to download at http://hacivat.khas.edu.tr/~cesim/spinal.html 
3  IsoRank and other variants as well as IsoBase database are available at 
http://groups.csail.mit.edu/cb/mna/isobase/index.html 
4     MI-GRAAL is available to download at http://bio-nets.doc.ic.ac.uk/MI-GRAAL/ 
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is to infer if our algorithm, designed to work on constrained global networks, 

performs as good as against the balanced ones. For data sources, we used the 

database of IsoBase (Park et al., 2011) and acquired the networks of four species: 

Caenorhabditis elegans (worm), Drosophila melanogaster (fruit fly), Homo sapiens 

(human) and Saccharomyces cerevisiae (yeast). Moreover, we benefited from 

Database of Interacting Proteins-DIP 5  (Xenarios et al., 2002) to identify which 

proteins nestle IDs of DIP from their respective species in IsoBase. Although this 

causes reduction to total number of proteins as well as interactions, it becomes more 

tractable to observe the outcome of alignments generated by the algorithms. By 

sorting out the proteins of each species, total of 2621 proteins of C. elegans, 7017 

proteins of D. melanogaster, 942 proteins of H. sapiens and 4894 proteins of S. 

cerevisiae contain IDs from DIP database (format shape as DIP:xxxxxN). The next 

step is to fetch the protein sequences that are available in FASTA format and they 

were downloaded from DIP website. With careful analysis, we identified that 

sequences of a few proteins from each species do not exist, so they are taken off from 

the input. 

Having protein sequences in FASTA format are crucial for Inparanoid 

algorithm (Remm et al., 2001); the only accepted type of input, for generating 

clusters as well as ortholog and in-paralog proteins in terms of sequence similarities 

with BLAST scores and, of course, it composes a part of the input for MP-CNet. 

Additionally, the algorithm allows third group as an out-group which is useful for 

eliminating false ortholog assignments but also a risk for losing gracious ones. For 

this reason, we never used out-groups while generating the clusters and these 

parameter values are entered: score cut-off of 20 bits, confidence cut-off of 0.05, 

                                                             
5    DIP database is available at dip.doe-mbi.ucla.edu/dip/Main.cgi 
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sequence overlap cut-off of 0.5, group merging cut-off of 0.5, no grey zone and 

BLOSUM62 scoring matrix i.e. the one for comparison of eukaryotes. All of these 

except score cut-off are default values. Furthermore, we let Inparanoid to run 

BLAST with two-pass strategy between protein sequences of two species in order to 

perform clusterization easily due to no knowledge about how much the similarity of 

all involved proteins are at the beginning. As a result, clusters of every combination 

of pairwise species are attained, but not all proteins are covered in accordance with 

the defined values and naturalness of the mechanisms of Inparanoid. Here, C. 

elegans-D. melanogaster, C. elegans-H. sapiens, C. elegans-S. cerevisiae, D. 

melanogaster-H. sapiens, D. melanogaster-S. cerevisiae and H. sapiens-S. cerevisiae 

pairs generate 976, 171, 509, 321, 1300 and 187 clusters respectively. Roughly three 

fourth of them are one-to-one clusters while the rest are one-to-many and many-to-

many. Refer to Table 3.1 for more details. 

Table 3.1  Results of the clusterization made by Inparanoid 

Pairs Inparanoid 
Clusters 

Proteins 
Covered 

One-to-one 
Clusters 

One-to-many 
Clusters 

Many-to-many 
Clusters 

C.eleg 
D.mela 976 1045 / 1219 817 144 15 

C.eleg 
H.sapi 171 194 / 235 124 40 7 

C.eleg 
S.cere 509 597 / 627 397 98 14 

D.mela 
H.sapi 321 392 / 434 227 85 9 

D.mela 
S.cere 1300 1577 / 1524 1011 257 32 

H.sapi 
S.cere 187 232 / 227 132 51 4 

 

Besides, we have configured these four species to give them shape as graph 

structures (i.e. PPI networks) and taken appropriate interactions for full coherence; 

fulfilling our intention that they now become the input properly for use in MP-CNet 
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and other balanced GNA algorithms as well with further necessary comparisons. The 

final input of all species are as follows: 2538 proteins and 3801 interactions in C. 

elegans, 6983 proteins and 22367 interactions in D. melanogaster, 895 proteins and 

2459 interactions in H. sapiens and 4874 proteins and 27712 interactions of S. 

cerevisiae. 

In these experiments, SPINAL and IsoRank are executed with various values 

of the control parameter (ߙ	 ∈ [0,1]) , which is needed to determine usage ratio 

between network topology and sequence similarity. Starting from ߙ  = 0.3, and 

progressively increasing by 0.1 up to 0.7, different alignment outputs were produced. 

Additionally, two versions of SPINAL are used as it consists of two main parts; one 

with the usage of coarse and fine-grained phases (call SPINAL-2 in this experiment) 

and the other with the usage of only coarse-grained phase (call SPINAL-1) (Aladag 

and Erten, 2013). For MP-CNet and MI-GRAAL, they do not include a control 

parameter, hence only one alignment output is used for comparison. MP-CNet is run 

on available pairs of species several times and the best one yielding the most 

conservations is acquired, preferably with the results of ࣪ℬ if the numbers are equal 

to that of ∆࣪ℬ  (see Section 2.5.2). For the alignment of MI-GRAAL algorithm, 

signatures, degrees, clustering coefficients and BLAST e-value scores for sequence 

similarity are used together, which composes the Alignment3 version and gives the 

most conservations under this setting (Kuchaiev and Przulj, 2011). These 

experiments were run on a computer with Linux-based operating system, 3.3 GHz 

x86-64 processor and 3 GBs of RAM. 

3.1.1. Evaluation of Conserved Interactions 

Counting conservations are based on the matches of alignments that balanced 

GNA algorithms generated upon completion, including MP-CNet. Firstly, we take all 
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of them even their numbers are larger than ours highly. Later, for a fair comparison, 

filterings are applied to all alignments of balanced GNAs to detect which proteins of 

all matches are available in ones covered in clusters by Inparanoid, regardless of 

where they belong to. For example, about two organisms between C. elegans and D. 

melanogaster, for any match, the protein of C. elegans is explored to see if the same 

one is covered in a cluster, then the other one of D. melanogaster, thus it becomes 

available in the filtered matches of the alignment. Total number of matches of all 

algorithms are available in Table 3.2, where for those with ߙ are averaged. Note that 

SPINAL-1 could not complete successfully for D. melanogaster-S. cerevisiae pairs, 

so it is marked with (X) including this and the following tables. 

Table 3.2 Number of matches of alignments generated by algorithms (unfiltered / 
filtered); only unfiltered numbers in MP-CNet column 

Pairs MP-CNet SPINAL-1 SPINAL-2 IsoRank MI-GRAAL 
C.eleg 
D.mela 995 2495 / 818 2495 / 350 2523 / 389 2538 / 214 

C.eleg 
H.sapi 180 837 / 133 840 / 61 874 / 70 895 / 28 

C.eleg 
S.cere 524 2354 / 432 2403 / 175 2523 / 290 2538 / 92 

D.mela 
H.sapi 330 844 / 256 856 / 65 874 / 51 895 / 43 

D.mela 
S.cere 1339 X 4871 / 441 4872 / 742 4874 / 311 

H.sapi 
S.cere 191 774 / 160 831 / 52 874 / 65 895 / 11 

 

Before the interpretations of results, there is an important factor that must be 

conceded at the beginning. Since balanced GNA algorithms perform one-to-one 

matching of proteins as a whole, and our algorithm is adapted to match them on the 

basis of restriction in clusters, we do not expect a greater number of conservations 

than others. It is possible for these algorithms to find hundreds of conserved 

interactions overall. Therefore, we compare by only taking the filtered alignments, 
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better for more equitable. These experiments are also made to learn how competitive 

an algorithm for the solution of constrained GNA problem could be and the general 

position where it could be placed between those with balanced ones. 

Numbers of conserved interactions are determined by picking up two pairs of 

matches and traversing all possible combinations, say ܯ,(݅)ܯ(݆) ∈ 	ℳ; 1 ≤ ݅ < ݉ 

and ݅ < ݆ ≤ ݉. All instances of compared algorithms are investigated with all edges 

of two PPI networks, ீܧ  and ܧு . By cautious implementation, we have extracted 

these numbers of filtered alignments that are presented in Table 3.3. 

Table 3.3 Number of total conserved interactions extracted by algorithms (filtered); 
while MP-CNet remains unfiltered. Note that numbers ranging from 0.3 to 0.7 

indicates the control parameter value (α). 

Pairs MP-CNet 
SPINAL-1 / SPINAL-2 IsoRank 

MI-GRAAL 0.3  0.4  0.5   0.6 0.7 0.3 0.4 0.5 0.6 0.7 
C.eleg 
D.mela 35 28/48 28/32 29/34 31/33 30/45 13 13 12 13 12 32 

C.eleg 
H.sapi 6 5/3 5/5 4/4 4/5 4/0 2 2 2 2 2 2 

C.eleg 
S.cere 25 24/20 24/21 21/23 22/22 23/27 13 11 10 11 12 1 

D.mela 
H.sapi 27 14/2 14/6 15/4 14/5 13/2 3 3 3 3 3 9 

D.mela 
S.cere 99 X/50 X/60 X/56 X/70 X/66 53 53 55 56 51 26 

H.sapi 
S.cere 62 49/7 47/9 47/9 47/8 46/6 16 16 18 17 16 1 

 

From what we have ascertained from the table above, MP-CNet generally 

performs better than balanced GNA algorithms in terms of total found conserved 

interactions, mainly due to the included number of matches to filtered alignments 

that they are not much. Here, excluding our algorithm, SPINAL performs the best 

nearly in all instances, then sometimes MI-GRAAL comes after and sometimes 

IsoRank. On the other hand, it is inevitable for these balanced GNA algorithms to 

have a greater number of convservations when alignments are not undergone for 

filtering, so this makes MP-CNet become behind these algorithms. In C. elegans-D. 
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melanogaster, for example, alignments of SPINAL-1, SPINAL-2 and IsoRank 

averagely contain 649, 1972 and 292 conserved interactions and the number for MI-

GRAAL is 2052 as only one alignment is available. 

During the experiments, we have discovered a correlation for MP-CNet; first, 

observe the total number of connections (i.e. cluster edges) made between clusters in 

the following order of pairs of species in Table 3.3: 35, 6, 25, 26, 99 and 62. It 

remarks that these numbers are equal or very close to the total conservation numbers, 

definitely indicating there is only one (but not two or more for almost all) external 

interaction of every connected pairs of clusters and no fixed scores6. Herewith, it 

could be implied that clustering results of Inparanoid and all available interactions in 

ீܧ  and ܧு  have direct influences on the success of MP-CNet with an elevated 

percentage. The general shape they constituted may take the algorithm to the worse 

situation than balanced GNAs or better, depending on the alignments in unfiltered or 

filtered form. That is, for a pair of species, MP-CNet can be an alternative tool for 

uncovering the conservation of proteins by a higher amount than what other 

algorithms achieved so far if matches of proteins are checked to be covered in 

cluster, i.e. alignments are filtered with regard to the results of clustering algorithms. 

3.1.2. Runtime Performances 

Total elapsed time is another considerable criterion for all algorithms while 

finding the conservations. It is chosen to become preferable if such one can make it 

faster than others naturally. For this reason, we also measured the time for all 

algorithms against the instances in this category of our experiments (Table 3.4). 

It can be smoothly realized that runtime of any balanced GNA algorithm is 

changed steadily such that if PPI networks become denser, then the time increases 

                                                             
6    Only 1 internal conserved interaction (fixed score) is available for D. melanogaster-S. cerevisiae. 
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accordingly. Our analysis showed that MI-GRAAL by far is the slowest algorithm 

for process of the alignment although given number of conserved interactions could 

be high when unfiltered (see Aladag and Erten, 2013).   Runtime of  IsoRank is fairly 

Table 3.4 Total runtime of the algorithms against all instances 

Pairs MP-CNet SPINAL IsoRank MI-GRAAL 

C.eleg-D.mela 35 mins 6 mins 2-6 mins 2 hours 

C.eleg-H.sapi 31 secs 1 min 19-36 secs 5,5 mins 

C.eleg-S.cere 13 mins 6 mins 1,5-6 mins 1,4 hours 

D.mela-H.sapi 49 mins 3 mins 1-2 mins 23 mins 

D.mela-S.cere 2,9 hours 15 mins 7-33 mins 4,1 hours 

H.sapi-S.cere 91 secs 5 mins 1-2 mins 22 mins 

 

good and comparable to SPINAL, but low amount of conservations is its weakness 

on the way. We gave a range of runtimes to that algorithm because changing the 

control parameter affects the total duration, so the number of iterations it had made 

for its alignment optimality. There is no doubt for SPINAL in general so that it is a 

fast algorithm while the alignment output it constituted is the best among other 

balanced ones if we do not count MP-CNet for filtered ones, thanks to the scalability 

feature it possesses for what makes it the state-of-the-art algorithm of today (Aladag 

and Erten, 2013).  

For MP-CNet, the runtimes are not regular regardless of the size of the PPI 

networks. Due to this reason, it is ambiguous where we put the algorithm next to the 

others. According to the table above, what we learnt that its computation is faster 

than MI-GRAAL usually. Sometimes, the fastest algorithm especially for C. elegans-

H. sapiens and H.sapiens-S. cerevisiae and if some samples of IsoRank with lower 

value of ߙ are not counted. For D. melanogaster-H. sapiens, the algorithm becomes 

the slowest among all others. Though the estimation of this situation is pretty hard, it 
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could be answered partially with the claims we have gotten in the previous test 

branch: The success rate and total time of our algorithm is not only dependent on the 

implementation of the message-passing method and heuristic approaches but also the 

shape of PPI network inputs they form, the set of clusters, proteins covered in 

clusters and edge connections across all clusters. 

3.1.3. Discussion of Our Algorithm Runtime Determinants 

The discrepancy of runtime of MP-CNet is concatenated to lots of elements, 

such as number of proteins and interactions in PPI networks, set of clusters, proteins 

comprised in them; total number of connections and generated permutations across 

all clusters, etc. As it can be seen, the total time is likely to be under a minute, in 

several minutes or even a few hours, perhaps a bit more in the worst cases. Unlike 

balanced GNA algorithms, it becomes challenging to predict the total duration 

properly if such an algorithm is trained for solving the constrained GNA problem.  

Despite this ambiguity, a general assessment can be done with regard to what 

we have experienced for many different sizes of input: Constructing the graphs of 

PPI networks does not take much time almost and so placing the covered nodes into 

the appropriate clusters. However, for the detection of edge additions to ܧ஼ீ  between 

clusters, the overall time goes up if the number of clusters are high as well as 

available interactions of the networks of species. Then, these are used in other 

various stages such as getting fixed scores, plausible edge counts and, indeed, in the 

message-passing, proportionally affecting the elapsed time. Having more cluster 

permutations can also add more time for examination of fixed conservations, edge 

counts, external conservations and each selected pairs of matches. Note that one may 

hope in the message-passing stage that a cluster with permutations in a huge size 

does not have any neighbor, so every iteration is passed in a fast manner. 
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For a cluster containing lots of pairs of nodes (say, 10 or 15), the amount of 

permutations drastically increases to millions even billions, extending the total time 

much more, mainly because of ݊!. This points out to one of the weaknesses of MP-

CNet so that storing an incredible size of permutations requires a very high amount 

of memory that current modern computers may not hold them together, causing the 

algorithm to fail before the completion. To address this critical issue, we have 

applied a limit to clusters to make them have maximum number of node subset 

(mostly chosen 8, for this purpose), thus reducing the size of permutations and 

allowing comfortable progression. However, this also influences the total number of 

proteins covered as removed ones may have been in part of conserved interactions or 

have provided connections between clusters, which is not desirable. This restriction 

was reflected to the experiments we have materialized above for our algorithm and 

others in the next section in order to be able to complete for many instances. 

3.2. Biological Significance 

One of the other necessary measurement of alignments is the overall biological 

quality they own across all one-to-one matches, mainly based on gene ontology 

terms (GO). These are widely used to assimilate the representation of genes or 

proteins characteristics across the species and they consist of detectable or directly 

observable stuff that are represented and the relationships are shown. The ontology 

involves three main domains: Biological Process, for operations or sets of molecular 

events; Cellular Component, indicating the parts of a cell or its environment out of 

the cell and Molecular Function, showing the elemental activities of genes at the 

molecular level.  
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GO annotations of each species are retrieved from the Gene Ontology 

Consortium website7 (Ashburner et al., 2000). In our experiments, we took advantage 

of the sources of SPINAL algorithm as they already uncovered which GO 

annotations have been possessed by the proteins of species. The admissable 

calculation method of GO consistency score is composed of counting the overlapped 

GO terms that annotate pairs of matched proteins, collectively. We benefit from a 

formulization introduced in SPINAL to measure the score for all algorithms in 

comparison (Aladag and Erten, 2013): 

 
(ℳ)ܥܱܩ = 	 ෍ ߢ) × (|఑ܱܩ|

∀఑∈௓శ
 

ܩ ఑ܱ = {(݃௔ , ℎ௕) ∈ ℳ: (௔݃)ܱܩ| ∩ |(ℎ௕)ܱܩ =  {ߢ
(3.1) 

 

Here, ߢ denotes how many common GO annotations between ݃௔ and ℎ௕, easily 

accomplished by the intersection of these proteins, where ܱܩ(݃௔)  and ܱܩ(ℎ௕) 

indicates all available annotations of GO terms possessed by the proteins ݃௔ and ℎ௕, 

respectively. The total score is assessed by accumulating all found common ones, 

multiplying ߢ with its respective total set of overlap occurences among all proteins, 

exactly that number.  

A comprehensive experiment has been carried out by taking all matches from 

unfiltered and filtered alignments of balanced GNA algorithms against MP-CNet. 

Table 3.5 and 3.6 represents the results of these examinations. First of all, the GO 

consistency scores of MP-CNet look impressive. Receiving such quite good results 

are more than what we have expected. The reason why we keep it in the lower level 

at the beginning is because total conserved interactions may also have an affect to 

overall GO consistency. However, these results showed that this situation should be 

                                                             
7     Freely available at http://www.geneontology.org 
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concatenated to clusters and more than that the generation made by Inparanoid. As 

this algorithm does its best to cover the most orthologous proteins in many clusters; 

on one hand, these may carry the GO annotations that are mostly common to each 

other, and our algorithm has the potential to reveal these similar biological functions 

by a high proportion. This convinces that finding the annotations has no dependence 

to the availability of conserved interactions.  

Table 3.5 GO consistency scores of all alignments of the algorithms (unfiltered) 

Pairs MP-CNet SPINAL-1 / SPINAL-2 
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 1504 1874 / 736 1836 / 693 1814 / 640 1771 / 668 1761 / 682 
C.eleg-H.sapi 205 375 / 236 371 / 205 369 / 203 382 / 219 363 / 197 
C.eleg-S.cere 1385 1948 / 827 1945 / 880 1925 / 894 1923 / 875 1916 / 845 
D.mela-H.sapi 566 734 / 257 718 / 250 672 / 227 646 / 243 621 / 191 
D.mela-S.cere 3539 X / 1586 X / 1562 X / 1451 X / 1426 X / 1349 
H.sapi-S.cere 512 919 / 487 880 / 450 877 / 444 862 / 487 845 / 514 

Pairs MI-GRAAL IsoRank 
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 374 1169 1160 1135 1126 1116 
C.eleg-H.sapi 142 263 266 265 258 244 
C.eleg-S.cere 489 1553 1534 1542 1522 1530 
D.mela-H.sapi 160 322 311 306 309 301 
D.mela-S.cere 859 3407 3444 3448 3450 3405 
H.sapi-S.cere 315 596 617 613 613 592 

 
Table 3.6 GO consistecny scores of all alignments of the algorithms (filtered); 

while MP-CNet alignment remains unfiltered 

Pairs MP-CNet SPINAL-1 / SPINAL-2 
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 1504 1286 / 345 1256 / 337 1226 / 243 1200 / 280 1177 / 302 
C.eleg-H.sapi 205 168 / 67 152 / 43 146 / 46 131 / 44 134 / 29 
C.eleg-S.cere 1385 1211 / 255 1208 / 345 1188 / 280 1190 / 299 1186 / 278 
D.mela-H.sapi 566 448 / 77 436 / 76 408 / 61 407 / 70 381 / 38 
D.mela-S.cere 3539 X / 538 X / 522 X / 461 X / 473 X / 393 
H.sapi-S.cere 512 458 / 131 439 / 100 437 / 89 426 / 125 413 / 115 

Pairs MI-GRAAL IsoRank 
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 61 634 629 610 618 605 
C.eleg-H.sapi 9 75 75 68 68 60 
C.eleg-S.cere 65 823 818 814 797 799 
D.mela-H.sapi 33 105 99 97 97 96 
D.mela-S.cere 121 2014 2023 2007 1992 1970 
H.sapi-S.cere 4 193 193 207 201 196 



51 
 

By comparing the results with other balanced GNA algorithms, ours can 

outperform in many instances against unfiltered matches of the alignments. Here, 

SPINAL-1, the first version of the algorithm, provide the best GO consistecy score in 

all pairwise species. We could have said the same for D. melanogaster- S. cerevisiae 

pairs if the algorithm had accomplished the alignment without a problem, therefore 

marked with (X) as we stated in Table 3.2. IsoRank also performs nicely, and 

accumulates more score than MP-CNet in all ߙ parameter values for C. elegans-H. 

sapiens, C. elegnans-S. cerevisiae and H .sapiens-S. cerevisiae, but still not higher 

than SPINAL-1. Additionally, there is another case, attracting attention that MI-

GRAAL does not seem to be designed for extracting the similar GO annotations of 

matched proteins as confirmed by our results that it always stays behind than other 

algorithms, including MP-CNet. Observing the other table that involves the results of 

filtered alignments, every balanced GNA algorithm, including those with the variants 

of the control parameter values, GO scores are not higher than our algorithm. This is 

obviously because all matches of alignments are checked for the existence in clusters 

in terms of Inparanoid outcomes and that decreases the total number of matches 

pretty much. Despite this filtering, the superiorities between the algorithms (if we do 

not count ours), still continues exactly the same. Last, but not the least, this series of 

experiments constitute a substantial case study for balanced GNA algorithms to 

measure the performance overall including those were materialized in Section 3.1, 

and allows MP-CNet to be placed anywhere through them even though the 

differences of problem solution approach. 
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Conclusion 

We presented a new algorithm, MP-CNet, which executes on constrained 

pairwise protein-protein interaction (PPI) networks by taking advantage of the 

message-passing strategy with belief propagation to perform global alignment with 

the set of cluster groups, generated by Inaparanoid. It was explained in details that 

many data processing stages should be applied in order to have a relevant input for 

the enforcement of the message-passing method on the cluster network and not 

experience any serious errors. The algorithm can make the convergence, indicating 

the maximum number of conservation of interactions achieved after finite number of 

iterations, but mostly depends on the structure of cluster network and PPI networks 

to materialize as emphasized many times. Moreover, it was explained that the edge 

connectivity between proteins of individual PPI networks must be preserved across 

all connected clusters for convergence and higher contingency of optimal alignment. 

Experiments showed that MP-CNet, in many instances, could yield more 

conserved interactions than balanced GNA algorithms, when their whole alignments 

were taken with filterings applied such that the matches from proteins were checked 

with the ones covered in Inparanoid clusters to make reasonable comparisons. In 

addition, the general quality of biological features on the alignment output was tested 

with these algorithms in terms of Gene Ontology (GO). With no filter to the 

alignments and then with filters, alignments of MP-CNet has more enhanced 

biological quality in many cases, sometimes with fascinating amounts, though more 
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researches may be required if the most similar proteins in respective clusters in terms 

of their sequences precisely give higher rate of common GO annotations. 

Despite the admissable results by the aspect of conserved interaction numbers, 

our algorithm is highly dependent on the amount of connections carried out among  

and within all cluster nodes and the clustering results of Inparanoid. There is a 

significant correlation between the edge connections of clusters and conservation 

amount as the outcomes assess these values are very close to each other, and 

including almost no conservation within clusters (fixed scores) at all. This often 

causes a direct impact to stay behind to balanced GNA algorithms, assuming the 

alignments are not filtered. However, in reality, we are not limited to solely use 

Inparanoid for clustering information. MP-CNet can be adapted to those that are 

created from the other clustering algorithms as well, like HomoloGene, OrthoMCL 

(Li et al., 2003), etc. More than that, we can also implement our own clustering 

mechanism that covers almost all proteins. With this way, the comparisons can be 

repeated again to observe if it brings improvements to the global alignment of our 

algorithm overall and so the biological quality. In the meantime, instead of only 

using IsoBase (Park et al., 2011) and DIP databases (Xenarios et al., 2002), we can 

benefit from different databases, for instance BioGRID (Stark et al., 2006), HPRD 

(Mishra et al., 2006), Ensembl (Flicek et al., 2013), NCBI (Wheeler et al., 2007) and 

merge protein informations and networks together to have a more comprehensive 

input to MP-CNet. Thinking about the running time, sometimes a large portion of 

time elapsed is lost to process of the input data with regard to total proteins and 

interactions of PPI networks, connections of clusters, covered total number of 

proteins before the message-passing method begins. Therefore, this can be separated 

from the algorithm as a standalone program and appropriate inputs can be made 
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available readily in general, enabling to become competitive with other algorithms in 

terms of running time. Along with this, more heuristic approaches and scoring 

schemes could be added to the algorithm for making more powerful for aligning 

proteins, but it is still open for research and development. Another affair to discuss is 

MP-CNet fails to complete if such a cluster contains plentiful amount of protein pairs 

with the inclusion of dummy nodes, causing to have incredible size of permutations 

that total memory of a computer cannot handle them at all. We have applied a 

workaround to this issue by limiting clusters to have a predefined maximum amount 

of pairs, thus reducing the available permutations quantity. Despite this facility, these 

removed proteins may be valuable to the whole cluster network as it can affect 

connectivity of clusters and conservations of proteins. For this reason, more 

intelligent methods should be implemented in the future, handling proteins, 

permutations and matches more effectively. 

By presenting the capability of our messge-passing algorithm for constrained 

GNA problem, we assure it creates remarkable insights to researchers; so methods 

with better results could be produced, as they altogether could make considerable 

contributions to the understanding of the problem, bioinformatics and the 

identification of organism interactions. 
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