

KADIR HAS UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINERRING

MESSAGE-PASSING BASED ALGORITHM FOR THE GLOBAL
ALIGNMENT OF CLUSTERED PAIRWISE PPI NETWORKS

GRADUATE THESIS

DOĞAN YİĞİT YENİGÜN

December, 2013

 D
oğan Y

iğit Y
enigün

M
.S. Thesis

 2013

MESSAGE-PASSING BASED ALGORITHM FOR THE GLOBAL
ALIGNMENT OF CLUSTERED PAIRWISE PPI NETWORKS

DOĞAN YİĞİT YENİGÜN

Submitted to the Gradute School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

COMPUTER ENGINEERING

KADIR HAS UNIVERSITY

December, 2013

vi

ABSTRACT

MESSAGE-PASSING BASED ALGORITHM FOR THE GLOBAL ALIGNMENT
OF CLUSTERED PAIRWISE PPI NETWORKS

Doğan Yiğit Yenigün

Master of Science in Computer Engineering

Advisor: Assoc. Prof. Cesim Erten

December, 2013

Constrained global network alignments on pairwise protein-protein interaction

(PPI) networks involve matchings between two organisms where proteins are

grouped together in a great number of clusters, produced by algorithms that seek

functionally ortholog ones and these organisms are represented as graphs. Unlike

balanced global network alignments (GNA), this has not gained much popularity in

bioinformatics. Only a few methods have been proposed thus far; by assuming

specific structures of networks including the clusters themselves and the density of

the PPI networks are not too large, then optimal alignments can be encountered.

Here, we introduce a general-purpose algorithm that is able to work on any kind of

graph structures while taking advantage of the message-passing method, based on

propagation between clusters. When these graphs satisfy conditions like continuous

interaction connectivity of proteins across all neighbored clusters, in addition to

previous explanations, the optimality of alignments can still be achieved.

Convergence of the cluster network can occur at the point where the maximum

number of conserved interactions are detected. Many experiments were made with

balanced GNA algorithms and our algorithm may find more conservations and more

importantly, alignments have higher biological quality than other ones in various

instances.

Keywords: network alignment, graphs, message-passing, clustering

vii

ÖZET

KÜMELENMİŞ İKİLİ PROTEİN-PROTEİN ETKİLEŞİM AĞLARININ GLOBAL
HİZALANMASI İÇİN MESAJ VERMEYE DAYALI ALGORİTMA

Doğan Yiğit Yenigün

Bilgisayar Mühendisliği, Yüksek Lisans

Danışman: Doç. Dr. Cesim Erten

Aralık, 2013

İkili protein-protein etkileşim ağları üzerinde kısıtlanmış global ağ hizalaması,

işlevsel olarak ortak proteinleri arayan algoritmalar tarafından üretilen çok sayıdaki

küme içerisinde gruplanmış olan iki organizmanın proteinleri arasında en iyi

eşleşmeleri içerir ve bu organizmalar graph yapısı olarak gösterilirler. Dengeli global

ağ hizalamanın aksine biyoenformatik alanında fazla popülerlik kazanmamıştır. Şu

ana kadar sadece birkaç yöntem önerilmiştir; kümelerin kendileri de dahil özel ağ

yapıları ve protein-protein etkileşim ağlarının yoğunluğunun çok büyük olmadığı

varsayılırsa, en iyi hizalamalarla karşılaşılabilir. Burada, her tür graph yapısı

üzerinde çalışabilen ve kümeler arasında yayılıma dayalı mesaj verme yönteminden

faydalanan genel amaçlı bir algoritmayı sunuyoruz. Bu graphlar önceki varsayımlarla

beraber birbirine komşu tüm kümeler boyunca proteinlerin devamlı etkileşim

bağlantıları olması gibi koşulları sağlarlarsa, hizalamaların en iyisine halen

ulaşılabilir. En çok sayıda korunmuş etkileşimlerin bulunduğu noktada küme ağının

yakınsaması meydana gelebilir. Dengeli global ağ hizalama algoritmaları ile birçok

deney yapılmıştır ve bizim algoritmamız diğerlerinden daha fazla korunmuş

etkileşimi bulabilir ve daha da önemlisi, değişik örneklerde hizalamalar daha yüksek

biyolojik kaliteye sahip olabilir.

Anahtar Kelimeler: ağ hizalama, graphlar, mesaj verme, kümeleme

viii

Acknowledgements

I, hereby, thank my thesis instructor, Assoc. Prof. Cesim Erten, for the advices

of thesis progression, the proposals of methods, approaches in development of the

algorithm and the meetings we have made for disscusions. This thesis is in

collaboration with TÜBİTAK project, BionetAlign: Global Alignments with the

Intention of Functional Orthology Mining in Biochemical Networks, conducted by

himself.

ix

Table of Contents

Abstract vi

Özet vii

Acknowledgements viii

Table of Contents ix

List of Tables xi

List of Figures xii

List of Symbols xiii

List of Abbreviations xiv

1 Introduction 1

2 Methods and The Message-Passing Algorithm 7

 2.1 Problem Definition.. 7

 2.2 The Cluster Network... 8

 2.2.1 Cluster Nodes... 8

 2.2.2 Cluster Edges.. 10

 2.2.3 Cluster Permutations.. 12

 2.3 Conserved Interactions Within Clusters.................................... 14

 2.4 Plausible Edge Counts... 17

 2.5 The Message-Passing Method... 19

 2.5.1 Our Formation and Vision of Message-Passing............... 19

 2.5.2 Functions of the Message-Passing, External

 Conservations and Output.. 21

 2.5.3 Deatiled Analysis and Claims.. 27

 2.5.4 Discussions for Convergence... 34

 2.6 The Whole Algorithm Pseudocode... 36

3 Experiments and Results 39

 3.1 Comparisons with Algorithms.. 39

x

 3.1.1 Evaluation of Conserved Interactions.............................. 42

 3.1.2 Runtime Performances... 45

 3.1.3 Discussion of Our Algorithm Runtime Determinants...... 47

 3.2 Biological Significance... 48

Conclusion 52

References 55

xi

List of Tables

Table 3.1 Results of the clusterization made by Inparanoid............................ 41

Table 3.2 Number of matches of alignments generated by algorithms............ 43

Table 3.3 Number of total conserved interactions extracted by algorithms..... 44

Table 3.4 Total runtime of the algorithms against all instances....................... 46

Table 3.5 GO consistency scores of all alignments by algorithms

(unfiltered).. 50

Table 3.6 GO consistency scores of all alignments by algorithms (filtered)... 50

xii

List of Figures

Figure 2.1 An illustration of the addition of cluster edges................................ 11

Figure 2.2 An example of all available permutations of a cluster..................... 13

Figure 2.3 A demonstration of internal conserved interactions (fixed scores)

 search for some permutations... 16

Figure 2.4 Counting pluasible edges of a cluster permutation.......................... 18

Figure 2.5 An example of external conserved interaction (edge score) between

 clusters.. 24

Figıre 2.6 Alignment optimality between two clusters with multiple edges.... 31

xiii

List of Symbols

α : The control parameter

߶ : Unit fixed score

߰ : Unit edge score

 Cluster permutations : ߨ

Λ : Existence of external conserved interactions

xiv

List of Abbreviations

PPI : Protein-protein Interaction

GNA : Global Network Alignment

LNA : Local Network Alignment

MP-CNet : Message-Passing on the Clustered Network

SPINAL : Scalable Protein Interaction Network Alignment

MI-GRAAL : Matching-based Integrative Graph Aligner

DIP : Database of Interacting Proteins

HPRD : Human Protein Reference Database

1

Chapter 1

Introduction

Thanks to the fast growth of available biological data for several decades, in

parallel, many computational methods and approaches have been produced over

time, paving the way for uncovering interactions and recognizing patterns

biologically between organisms as they play an important role in bioinformatics.

High-throughput techniques like yeast two-hybrid system (Fields and Songs, 1989;

Finley and Brent, 1994; Sato et al., 1994; Ito et al., 2001) and co-

immunoprecipitation unified with mass spectrometry (Aebersold and Mann, 2003)

have contributed to the presence of such data, particularly various species, by a

significant proportion.

In recent years, protein-protein interaction (PPI) network alignments, which are

the most noticeable type of data accepted by many researchers, are studied for

observing the similarities in terms of pathways, homologies and functions between

pairs of species. The set of instructions running on network data for the analysis are

network alignment algorithms. The general aim is to create the best alignment as

large and accurate as possible based on given two or more PPI networks from

different species. For supplying easiness to these algorithms, these kind of networks

can be represented as graphs in terms of data structure where proteins are nodes and

interactions between proteins are edges. This is the most convenient way to perform

2

measurements on PPI networks because recent algorithms have been designed to

work on graph structures and make one-to-one matchings, hence these are

comprehended like graph matching algorithms. Additionally, any other materials

may be included as input data (e.g. sequence similarity of proteins) for smoother and

more accurate alignments.

In general term, they can be categorized in two main groups: Local network

alignment (LNA) algorithms identify subnetworks of different species that match

closely to each other in terms of network topology and/or other variables. The first

known algorithm of this type is PathBLAST (Kelley et al., 2003, 2004) that enforces

the BLAST algorithm (Altschul et al., 1990) for searching the high-scoring local

alignments between PPI networks. Sharan et al. (2005) extends the idea with

NetworkBLAST to include multiple species. MaWISh (Koyutürk et al., 2006) adapts

to the duplication and elimination models inspired by biological events to perform

local alignment. Graemlin (Flannick et al., 2006) takes advantage of conserved

functional modules of networks. Global network alignment (GNA) algorithms, on

the other hand, take PPI networks as a whole and provide one-to-one matches across

all proteins. IsoRank (Singh et al., 2007) is known to be the first algorithm to make

alignment globally on pairwise PPI networks, using eigenvalue formulation. Later,

the algorithm was expanded to work on multiple networks as well (Singh et al.,

2008) and so with IsoRankN (Liao et al., 2009). Graemlin was later modified to

generate global alignments beyond pairwise networks, examining phylogenetic

relationships (Flannick et al., 2008). PATH algorithm (Zaslavskiy et al, 2009a)

adapts to convex-concave relaxation approach to find a solution path over the

pairwise networks. PISwap (Chindelevitch et al., 2010) first performs the global

alignment by sequence data, then necessary changes are made by benefiting from

3

network topology. MI-GRAAL (Kuchaiev and Przulj, 2011) constructs the alignment

by integration and several different sources of protein similarity, and was

demonstrated to outperform other variants such as H-GRAAL (Milenkovic et al.,

2010) and GRAAL (Kuchaiev et al., 2010). The last known state-of-the-art algorithm

of global alignment is SPINAL (Aladag and Erten, 2013) which consists of two

stages; first estimating alignment scores, then resolving conflicts to enhance the

alignment while also dealing with scalability issues. Additionally, SubMAP has been

proposed (Ay et al., 2011) that has the capability of making one-to-many mappings

of proteins.

LNA methods are able to expose more than one region of matches between

networks, i.e. local matchings provide specific areas of interactions amongst these

network of proteins. However, GNA looks for comprehensive matchings by taking

into account all proteins and attempts to align them. This gives the best conserved

functions as much as possible. By the aspect of computation, GNA is more difficult

than LNA because one protein in a network is sought to match with a protein of the

other network that achieves the highest optimality, although it is desirable for many

algorithms to detect functional orthologs. In addition, most of GNA algorithms are

allowed to use weights between the network topology and protein sequence

similarities (denoted with ߙ or ߣ) in order to perform the alignment. This gives rise

to number of different alignments and flexibility to the output. Algoritms that accept

such a control parameter are generally classified as balanced GNA algorithms.

Another issue of network alignment is intractability in terms of computation,

when networks are getting too dense. This causes alignments to become distant from

exactness. Furthermore, there is no algorithm to work in polynomial time for the

problem (Zaslavskiy et al., 2009b) as the current algorithms endavours to make the

4

best approximate results by impliying heuristic methods but with NP-hardness (Klau,

2009; Aladag and Erten, 2013).

While on the research of identification of protein interactions across species

especially before network alignment algorithms were produced widely, some

questions have been arisen such as which proteins or genes are in common with

those from other species (i.e. orthologs), and which provide shared biological

functions against their ancestors or familiar organisms. For this approach, Inparanoid

(Remm et al., 2001), HomoloGene and OrthoMCL (Li et al., 2003) have been

proposed to disambiguate functionally ortholog proteins by grouping them in clusters

after specific methods are implemented based on the algorithms. By using the

information of finite number of clusters as well as covered proteins, the whole can be

interpreted as a separate network, i.e. the cluster network and necessary connections

are carried out between those with specific regulations; for example, conservation of

functions in proteins of pairwise PPI networks for any two clusters. This kind of

study is usually referred to constrained GNA problem, where proteins are restricted

to match with the others solely in the same clustered group and attempts to create an

alignment in this way. This may help reduce the intractability issue of the networks

and perhaps holding functionally ortholog proteins together may bring more

potentials for similar properties.

To the best of our knowledge, there are not much studies so far involving the

solution of this problem. Bandyopadhyay et al. (2006) investigated the proteins

between Drosophila melanogaster and Saccharomyces cerevisiae to identify

functionally orthologs using Markov random field (MRF) methods while these are

constrained to belong to the respective clusters, produced by Inparanoid algorithm.

Another noteworthy procedure is the message-passing algorithm by Zaslavskiy et al.

5

(2009b), that is able to align the networks optimally with meesage-passing on

particular clustered structure of proteins assuming if the network is sparse. Here,

message-passing is a form of communication where objects send and receive

messages to each other. A special variant, belief propagation (BP) has been

introduced (Pearl, 1982) to make inferences on graphical models (e.g. Bayeisan

networks and Markov random fields) and included in many applications, for

instance, artificial intelligence (Pearl, 1988), statistics (Lauritzen, 1996), low-density

parity-check codes and any other areas with experimental successes (Horn, 1999; Aji

and McEliece, 2000; Yedidia et al., 2000).

In this paper, we propose a new algorithm, called MP-CNet which is the

abbreviation of Message-Passing on the Clustered Network, to execute on

constrained GNA problem and it attempts to find the best alignment with as many as

conservations of proteins on clustered pairwise PPI networks with BP-based message

passing method, possessing some ideas of Zaslavskiy et al. (2009b). Here, clusters

propagate their best matches to their neighbors in order to increase the overall

amount of conserved interactions and the whole cluster network converges at a point

when the maximum amount is reached. Our contribution is that we show a general-

purpose algorithm with the implementation of message-passing can be used on any

kind of cluster network structure including the PPI networks themselves. The

methods, in some cases, have resemblances with the implementation of maximum

weight bipartite matching, but are not complicated at all. Also, by checking the

capabilities with other algorithms, we draw attention to the situations that our

algorithm can reveal larger number of conserved interactions if filterings are applied

to other alignments and highlight that it can provide higher quality of biological

impacts than existing algorithms.

6

The rest of the paper is organized as follows. In section 2, we highly detail

working principles of MP-CNet by explaining the definition of the problem to solve,

data processing stages, any procedures, approaches involved in the message-passing

method through the subsections. In addition, the algorithm progession and claims of

optimal alignments are elaborated. In section 3, we compare our algorithm to other

global alignment algorithms that approaches the problem as balanced, by the aspect

of number of found conserved interactions, running performances and general

biological quality of the alignments. In Conclusion section, important remarks and

final discussions are made, in additon to any future plans for further improvements.

7

Chapter 2

Methods and The Message-Passing Algorithm

2.1. Problem Definition

Our algorithm, MP-CNet, is designed to work on pairwise protein-protein

interaction networks. We denote ܩ	 = 	 (ܸீ , 	ܪ and (ீܧ = 	 (ுܸ , ு) as two undirectedܧ

graphs which are the PPI networks of two different species. ܸீ 	= 	 {݃ଵ, … , ݃ெ} and

ுܸ 	= 	 {ℎଵ, … , ℎே} are the finite set of nodes of their respective graphs, each

representing the proteins of PPI networks. ீܧ 	⊂ 	 ܸீ 	×	 ܸீ and ܧு 	⊂ 	 ுܸ 	× 	 ுܸ are

the edges of these graphs which corresponds to the interactions between proteins. We

assume there are no any self-loops i.e., (݃௜, ݃௜) ∉ ீܧ	 and (ℎ௝, ℎ௝) 	∉ ,ு. In additionܧ	

we are given a set of disjoint clusters ܩܥ = {ܿ݃ଵ, … , ܿ݃௥} such that each ܿ݃௣ consists

of a subset of nodes of ܸீ and a subset of nodes of ுܸ.

Here, a pair of node mappings (݃௜, ℎ௝), (݃௞, ℎ௟) provide a conserved interaction

if (݃௜, ݃௞) ∈ ீܧ and (ℎ௝, ℎ௟) ∈ ுܧ . Given the two graphs ܩ and ܪ together with the

set of clusters ܩܥ , we define the constrained global network alignment (GNA)

problem that of finding a one-to-one mapping that satisfies the constraints; that is,

each mapped pair belongs to the same cluster ܿ݃௣ ∈ and that maximizes number ܩܥ

of conserved interactions. Before discussing the algorithm in detail, we highlight the

main processes involved in preparing the input data.

8

2.2. The Cluster Network

The construction of the cluster network is the first major part of processing the

input data. This network itself can be thought of as a separate graph but has a

correlation with the PPI network graphs in accordance with the clusterization of

nodes. For this purpose, we denote ܩܥ be the cluster graph (network) which will be

substantially used by MP-CNet in many stages. Of course, like the PPI network

graphs, we denote ஼ܸீ 	= 	 {ܿ݃ଵ, … , ܿ݃௑} to represent the finite number of disjoint

clusters and ܧ஼ீ 	⊂ 	 ஼ܸீ 	× 	 ஼ܸீ are the finite set of edges of the cluster graph. In the

initialization, ܧ஼ீ remains empty. We first describe how the cluster set ܩܥ is

constructed and the corresponding vertex set of ஼ܸீ .

2.2.1. Cluster Nodes

For the generation of ஼ܸீ , we benefit from Inparanoid algorithm (Remm et al.,

2001) which is known to exhibit a good overall balance by both sensitivity and

specificity (Chen et al., 2007). Mentioning briefly, Inparanoid automatically detects

orthologs and in-paralogs between any given two species and uses special techniques

for revealing the clusters. From the definition, ortholog proteins are that evolve

directly from a single species from the last common ancestor and have a high

proportion to share function. Paralog ones are homologs that contain uncertainty of

functional equivalence between the orthologs which are derived from a single

ancestor at the speciation event. It is also noted that paralogs can be arisen from

duplication event before speciation is occured. For this reason, paralogs are split into

two types: In-paralogs are the ones that are duplicated after the speciation as they are

considered to be orthologs. Those preceding the speciation are denoted as out-

9

paralogs and they are not counted orthologs. In this context, Inparanoid algorithm

does not include out-paralogs in the output.

There are many parameters available in the algorithm which can affect the

placement of proteins (i.e. the orthologs) into clusters, thus the whole general output.

The most notable one is pairwise similarity score and this is where the orthology

detection begins by computing all similarity scores between all existing protein

sequences of two species. It is measured by another program called BLAST

(Altschul et al., 1990) to create E-values for all possible pairs of proteins from

pairwise species. These values are helpful to determine the orthologs and clusters

afterwards. Furthermore, a score cut-off is required to distinguish the scores from

spurious ones, i.e. any cluster whose score is less than the cut-off will not be

included in the output. Overlap cut-off is also used to determine the ratio that the

matching protein of the longer sequence must surpass its total length. In-paralog

confidence values, bootstrapping for ortholog groups and coverage cut-off are the

other countable essential parameters. The output consist of cluster number, its score

and proteins from the PPI networks in the related cluster.

The rest of the details of the algorithm are out of the scope of this paper (for

more details, see Remm et al., 2001). We only focus on the results (i.e. the set of

clusters), generated by Inparanoid and mainly, MP-CNet uses it as a guide to produce

the clusters and place the appropriate proteins into them correctly. Only the cluster

number and its proteins are needed for generating the clusters. It can be seen that

clusters with higher scores are likely to be at the top of the clustering information.

However, it is not necessary to be in order, though it helps to become organized and

understand them better.

10

When we look at each cluster, three specific kinds can be encountered: One-to-

one clusters contain only one node (protein) from both graphs. In other words, the

single node from graph ܩ in this cluster can merely match one node from graph ܪ,

leaving no other option to match from outside. One-to-many clusters have one node

from graph ܩ and more than one nodes from graph ܪ and vice versa. However, there

is still one match that can really occur. For many-to-many clusters, more than one

nodes from both graphs are involved. The amount of matches in that kind of cluster

is the same with whose number of nodes in the respective graph is less. At the time

of the creation of each cluster node ܿ݃௜, it is recognizable that not every one of them

cover the same number of nodes from both graphs. This especially happens for all

one-to-many and some many-to-many clusters. To address this issue, we insert

dummy nodes (i.e. artificial nodes) to whichever the number of subset of ܸீ or ுܸ

nodes is smaller in the cluster node ܿ݃௜ and they have no edges in their respective

PPI-network graphs. The main reason for ensuring the equalization to each cluster is

to simplify the algorithm description and implementation details, and this allows

every nodes to be matched, although those with dummy nodes are not included in the

output. Namely, it must not be perceived such that we do not equalize the number of

nodes between graphs ܩ and ܪ; we just perform this on clusters which needs to be

equalized by getting the number of 'real' nodes contained. Consequently, ∀ܿ݃௜ ∈ ܩܥ

has the same total number of nodes covered from both graphs and we denote

ܿ݃௜ = {(݃௔ , … , ݃௠), (ℎ௕, … , ℎ௡)} where ݃௔ , … , ݃௠ 	 ∈ 	 ܸீ 	and ℎ௕, … , ℎ௡ 	 ∈ 	 ுܸ.

2.2.2. Cluster Edges

After preparing all cluster nodes, we perform a check on each cluster to

observe if it can make connections to other clusters and so, these connections will be

interpreted as cluster edges (added into ܧ஼ீ) for our cluster graph.

11

This process is straightforward. We take every possible combination of cluster

pairs, that is, ܿ݃௜ , ܿ݃௝ 	 ∈ 	 ஼ܸீ and 1	 ≤ ݅	 < ܴ, ݅ < 	݆	 ≤ ܴ, every (ܿ݃௜, ܿ݃௝) pairs are

investigated. For any pair, we start from the subset of nodes of ܸீ of cluster nodes

ܿ݃௜ and ܿ݃௝ 	 ({݃௔ , … , ݃௠} 	 ∈ ܿ݃௜ and {݃௕, … , ݃௡} ∈ 	 ܿ݃௝) to compare them with all

available edges from ீܧ for an existence of at least one edge, involving these nodes.

Next, we advance to make the similar comparison with the subset of nodes of ுܸ of

these clusters to the graph edges of ܧு. That is, we perform this with {ℎ௔ , … , ℎ௠} ∈

	ܿ݃௜ and {ℎ௕, … , ℎ௡} ∈ 	 ܿ݃௝ to all edges from ܧு . If such edges are found for both

sides, then it is safe to add a connection between these cluster nodes and included in

஼ீܧ . This goes on like this until every combination of cluster node pairs are

examined. Note that in Figure 2.1, an edge between ܿ݃௜ and ܿ݃௞ is not formed

because there is no edge available in ܧு that involves one node from the subsets of

ுܸ of ܿ݃௜ and ܿ݃௞ . As a result, the construction of our cluster graph ܩܥ is finally

completed.

Figure 2.1 An illustration of the addition of cluster edges ࡳ࡯ࡱ. Blue and green
components represent nodes and edges of graph ࡳ and ࡴ, respectively. Here, bold

edges satisfy connections between ࢐ࢍࢉ-࢏ࢍࢉ and࢑ࢍࢉ- ࢐ࢍࢉ.

12

The structure of ܩܥ is vital for MP-CNet because it will be used every time in

the oncoming stages and so the finding of conserved interactions between cluster

nodes. The structure can be in any form such that there may be many cluster nodes

having one or more connections (sometimes called adjacents or neighbors) to any

other; lots of small or a large group of joint networks. In the meantime, the number

of cluster edges ܧ஼ீ can vary, depending on the number of cluster nodes, number of

covered nodes in clusters ∀ܿ݃௜ ∈ ீܧ and the edges of ܩܥ and ܧு . Note that more

connections among all existing cluster nodes allow to get more conserved

interactions.

2.2.3. Cluster Permutations

We have presented an easiness to our algorithm by adding dummy nodes to the

necessary clusters to make the number of subset of nodes from ܸீ and ுܸ equal.

Now, we would like to extract how many different varieties of matches could be

carried out for all clusters. For this reason, the creation of permutations begins when

construction of ܩܥ is finished.

Let ࡼ be the permutation space, containing all possible permutations of

∀ܿ݃௜ 	 ∈ ஼ܸீ , a multi-dimensional variable. Also, let ߨ(ܿ݃௜) be the permutations of

ܿ݃௜. Here, in this process, one-to-one and many-to-many clusters are used, since all

one-to-many clusters are converted to many-to-many by the insertion of dummy

nodes to them. We assume ∀ܿ݃௜, these permutations are derived from the subset of

nodes of ுܸ, while fixing the subset of ܸீ nodes. This is not limited to this shape and

one can make by using the appropriate ܸீ nodes, too. However, this requires a

comprehensive redesign to our algorithm for further steps to provide full

compatibility. Hence, from the rest of the paper on, we comply that the permutations

remain with subset of nodes of ுܸ at all times.

13

For any cluster ܿ݃௜, its subset of nodes of ுܸ are taken and sent out to a special

function to generate the permutations. We follow the permutation-without-repetiton

rule, so these permutations are distinctive from each other when generated. There is

another variable, ݌, which holds the current iteration of nodes to check if it is a

permutation candidate to be added to not. In the intial step, first node is placed to ݌,

then a second one and so on like a stack. We actualize the examination of duplication

when ݌ contains more than one node and less than ݊, which is the maximum number

of nodes can be together, and the checks are happened in every addition. For the

group of nodes in ݌ at any time, we first treat them like they form a permutation and

continue to add nodes up to ݊ if there is no duplication occured within all nodes

inside, otherwise the last added node is removed (i.e. popped back) from ݌ and the

next one is placed. When the number of nodes in ݌ is reached to ݊, we ensure that

every node is different from each other, therefore it is secure to mark them as a

permutation of ܿ݃௜ and included in ߨ(ܿ݃௜), then certainly to ࡼ (Figure 2.2). This

goes on until all the subset of nodes of ுܸ from cluster nodes are taken care of.

Figure 2.2 An example of all available permutations of a cluster. Note that the
cluster ࢏ࢍࢉ has 3 nodes from ࡴࢂ and 3! = 6 different permutations were generated.

14

A cluster ܿ݃௜ has ݊! amount of permutations, similarly what we have said

previously, where ݊ is the number of subset of ுܸ nodes covered in ܿ݃௜ . They are

always stored till the completion of MP-CNet. Like the cluster edges of ܩܥ , the

permutation space ࡼ is important. In the next stages and even in the message-passing

process for the conserved interactions, we always iterate through permutations.

2.3. Conserved Interactions Within Clusters

The stages from now on until the message-passing derive the second major part

of input data processing. Here, we attempt to uncover the conserved interactions for

all clusters internally and the first usage of permutation space ࡼ take place for this

purpose. Any found conserved interactions here can make a small contribution to the

optimal alignment; that is, such a permutation of a cluster with internal conserved

interactions is likely to be selected as the best although it is not always guaranteed.

Because there could be another permutation in that cluster whose, for example,

amount of external conserved interactions is higher then others with only internal

ones, where this alteration of selection is happened in the message-passing. This will

be discussed in Section 2.5. All in all, finding this kind of interactions in clusters is

an important property for all permutations as an indicator of their capabilities.

We first denote ℱ࣭ to keep the number of internal conserved interactions found

for all permutations of any cluster ܿ݃௜ 	 ∈ 	 ஼ܸீ; along with this, ܵܨ(ܿ݃௜) represents

amount of found internal ones for all its permutations ߨ(ܿ݃௜)௫ ∈ (௜݃ܿ)ߨ	 where

1	 ≤ 	ݔ ≤ ݊!. Mostly, we call this value as permutation fixed score or permutation

intra-cluster score. The main reason why we name them in this shape is because we

normally allow the user in MP-CNet to enter a unit score for each internal conserved

interactions discovered, denoted with ߶ and more importantly, these values are held

15

as constant for use in other stages, especially in the message-passing. For easy

understanding to the rest of the paper, we always treat them like a fixed score.

For any cluster node ܿ݃௜, it is not required to utilize the cluster edges. Only the

matches which the permutation ߨ(ܿ݃௜)௫ creates and the edges from ீܧ and ܧு are

needed. Note that the edges connected within ܿ݃௜ could provide fixed scores. As a

side note, meanwhile, we demonstrate these matches for any cluster permutation like

this: for {݃௔ , ݃௕, … , ݃௨} ∈ 	 ܿ݃௜ and ൛ℎ௜ , ℎ௝ , … , ℎ௭ൟ ∈ 	 ܿ݃௜ , in first permutation

ଵ(௜݃ܿ)ߨ , for instance, the matches are made as follows: (݃௔ , ℎ௜) , (݃௕, ℎ௝) ,…,

(݃௨ , ℎ௭) . The similar production of matches are applied to the forthcoming

permutations but with the necessary alterations for which subset of nodes from ܸீ

are matched against the subset of nodes from ுܸ as the node order of ߨ(ܿ݃௜)௫ states.

So, the last permutation is the completely reversed one of the first and its matches go

like in this shape: (݃௔ , ℎ௭), ൫݃௕, ℎ௬൯,…, (݃௨ , ℎ௜). From these descriptions we have

explained thus far, a permutation can have ݊ amount of matches, which is also the

same with the number of subset of nodes covered from ܸீ and ுܸ . In addition,

(݊(݊ − 1)	/	2)	number of different pairs of matches can be selected.

The computation of conserved incteractions within clusters is simple. In any

cluster ܿ݃௜ 	 ∈ 	 ஼ܸீ , we initally choose a pair of matches

,݅)ܯ ݆) = 	 [(݃௔ , ℎ௖), (݃௕, ℎௗ)] that are made within the permutation ߨ(ܿ݃௜)௫ 	 ∈

	and 1 ,(௜݃ܿ)ߨ	 ≤ ݅	 < ݊ , ݅	 < ݆	 ≤ ݊ . Here, ݃௔ and ݃௕ are taken to search for the

existence of an edge in ீܧ . Then, we are ready to move on to search for ℎ௖ and ℎௗ by

scanning all edges of ܧு, if such an edge is available from ீܧ . Otherwise, we pass on

to the next possible pair of matches, as it is certain the previous one does not have

the opportunity to make a internal conservation. To sum it up for this process, fixed

score of a cluster permutation ߨ(ܿ݃௜)௫ increases by the value of ߶ if and only if

16

(݃௔ , ݃௕) and (ℎ௖ , ℎௗ) of selected pair of matches from the subset of nodes of ܸீ and

ுܸ enclose an identical edge from ீܧ and ܧு, respectively (Figure 2.3). At the end,

the score is placed to ܵܨ(ܿ݃௜) and to ℱ࣭ when completed ∀ߨ(ܿ݃௜). It can be also

noted that a permutation can have a maximum fixed score of (݊	 × ߶) which could be

feasible whether the subset of nodes of that cluster mold complete subgraphs. Later,

we check which permutation(s) possesses the best fixed score for each cluster by

creating a list variable ℱ࣭ℬ , for this purpose. It is necessary to keep the best

permutations for comparison with another list variable, which is mentioned in

Section 2.4 for getting our algorithm ready for message-passing. Here, in any cluster

ܿ݃௜ , fixed score of every permutation is checked and the best ones are added to

(௜݃ܿ)ܤܵܨ ⊂ 	ℱ࣭ℬ.

Figure 2.3 A demonstration of internal conserved interactions (fixed scores) for
some permutations from (࢏ࢍࢉ)࣊ for ࣘ = 1.0.

It is admissible that one-to-one clusters cannot have fixed scores, due to having

only one match and a single node from ܸீ and ுܸ as its subset. Hence, they are

directly skipped by our algorithm. For some many-to-many clusters which were

normally one-to-many clusters, all of them, but converted to that type by the addition

of dummy nodes, we do not expect any fixed scores again, although they are

17

permitted to be searched. So, it shows that only the 'real' many-to-many clusters have

the capability to include fixed scores for their permutations.

2.4. Plausible Edge Counts

After the preparation of permutation fixed scores for all clusters, additionally

we apply a heuristic approach to measure the number of occurences in edges of ீܧ

and ܧு for the covered subset of nodes ∀ܿ݃௜ ∈ This may give a clue for the .ܩܥ

permutation ߨ(ܿ݃௜)௫ , having a greater number of edges that their subset of nodes

existed in the edges of ீܧ and ܧு respectively, brings more potential to extract many

conserved interactions, so it is likely to be chosen as the best permutation in that

cluster. It should be noted that every kind of edges of ீܧ and ܧு are searched,

including those within clusters or going from one cluster to another and no matter the

cluster ܿ݃௜ has neighbors or not. We denote ℰࣝ on this objective to store the edge

counts of all cluster nodes and an extra sub-dimension ܥܧ(ܿ݃௜) ⊂ 	ℰࣝ for all

permutations of ܿ݃௜. These values are merely used in this step and together with the

fixed scores ℱ࣭ we have gathered previously, the best permutations are decided

initially for getting ready MP-CNet to the message-passing stage.

In any cluster ܿ݃௜, the matches of permutation ߨ(ܿ݃௜)௫ are taken one by one as

they are shown with, for instance, ߨ(ܿ݃௜((ݖ)ܯ))௫ = (݃௔ , ℎ௕) where 1 ≤ ݖ ≤ ݊. We

begin browsing all edges of ீܧ to count how many times the node ݃௔ was

encountered in them and keep the total number in ݏ݈݌(݃௔). Then, the same action is

applied to ℎ௕ for counting the occurence in the set of edges ܧு and the value is

assigned to ݏ݈݌(ℎ௕). By comparing both ݏ݈݌(݃௔) and ݏ݈݌(ℎ௕), we determine the

plausible edge count of the match with these rules:

18

(a) If 	ݏ݈݌(݃௔) = ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌ ,(ℎ௕)ݏ݈݌ 	൯ = (௔݃)ݏ݈݌ 	∨ ;(ℎ௕)ݏ݈݌	

(b) Else if ݏ݈݌(݃௔) < ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌ ,(ℎ௕)ݏ݈݌ 	൯ = ;(௔݃)ݏ݈݌

(c) Else if 	ݏ݈݌(݃௔) > ௫(൯(ݖ)ܯ௜൫݃ܿ)ߨ	൫ݏ݈݌ ,(ℎ௕)ݏ݈݌ 	൯ = .(ℎ௕)ݏ݈݌

Simply, the count total of a match is equal to whichever of ݏ݈݌(݃௔) or ݏ݈݌(ℎ௕)

is less. It is also comprehensible that matches made with dummy nodes do not yield

any counts. When all matches are measured, we sum every value to ݏ݈݌(ߨ(ܿ݃௜)௫) =

	∑ ൯௡	൯(ݖ)ܯܿ݃௜൫	൫ݏ݈݌
௭ୀଵ to finally specify the plausible edge count of that

permutation of cluster ܿ݃௜ (Figure 2.4).

Figure 2.4 Counting plausible edges of a cluster permutation. Here, in the example
above, all available matches plausibly carry 1,2 and 1 edges respectively for a total

of 4 plausible edges.

The next step is to decide, similarly to fixed scores, which permutation(s) has

the best value of edge counts ∀ܿ݃௜. Each value of edge counts is investigated and

permutation(s) achieving the best value is assigned to another list ℰࣝℬ to hold the

indexes of the best permutations ܤܥܧ(ܿ݃௜) ⊂ 	ℰࣝℬ.

Now, we are one step closer ahead to select the initial best permutations ∀ܿ݃௜

to start the message-passing process. All clusters are examined in order, so we bring

both best fixed-scoring and edge-counting permutation sublists (ܤܵܨ(ܿ݃௜) and

19

(௜݃ܿ)ܤܥܧ) for the appropriate cluster to be compared with each other. Any

permutation which is encountered in both lists is added to ܯܥ(ܿ݃௜) 	⊂ 	ࣝℳ ,

indicating the common bests. In a situation that more than one permutation are

included in ܯܥ(ܿ݃௜) , one permutation is picked randomly to become the best.

Another case can happen that no common-best permutation is returned where we

give the priority to the best fixed-scoring permutations to supply that such a cluster

node as the best one. Finally, we move these best permutations of all clusters to ࣪ℬ,

for usage in the message-passing. By reaching this point, we accomplish the input

data processing series.

2.5. The Message-Passing Method

Our algorithm, fundamentally, perform the alignment with the message-

passing. The importance of this stage is elevated because the output available upon

completion of the algorithm is entirely built on passing information between clusters

as accurately as possible. For this reason, we have progressed through many steps to

make the data consistent in hand to not unexpectedly fall with unusual results and

coherently match the definition of constrained GNA problem. Here, we emphasize

on the operation of message-passing, evaluations of the progess, getting optimal

alignment and convergence in the following sections.

2.5.1. Our Formation and Vision of Message-Passing

Message-passing, in general, is the paradigm of communication where

messages are sent from a sender source to one or more recipients. Our approach is

very similar to this notion, but with slight modifications; that is, at any iteration,

clusters of graph ܩܥ look for the neighborhoods of other clusters and those

neighbored ones convey their best permutations back to currently investigated ones.

20

At that moment, clusters use them with their own permutations to make

consequences. Then, upon getting the knowledge, a new best permutation is decided

for the next iteration, and so progressively constitute the alignment with the highest

number of conserved interactions comprised. While performing the message-passing,

the most necessary factor is the number of external conserved interactions that

permutations of clusters produced. As deciding the new best ones, not only do we

take advantage of these numbers, but also their internal conserved interactions (i.e.

fixed scores).

At the time of designing our message-passing method, we were highly thrilled

from the elucidations of Zaslavskiy et al. (2009b). The authors asserted a method

which could be solved exactly and efficiently in some cases and the definition of

clusterization technique was what we have expressed in Section 2.2.1. Moreover, this

situation was studied beforehand for finding the functionally ortholog proteins (see

Bandyopadhyay et al., 2006). The strong assumption the authors claimed is the exact

optimization can be obtained if the cluster network is a particular structure such that

it has many isolated cluster nodes, no loop throughout all connected clusters, or is

just a single connected component like a tree. Their advancement of the message-

passing method is as follows: One of the cluster node is selected to be the root to

assign any other clusters a distance value, indicating how many connections must be

passed over in order to reach the root. They are required for assessing which are the

parents and children of each other and traversing each cluster by using breadth first

search. The algorithm begins at the highest distance value of clusters as they are

children and thus, only the conserved interactions within are measured and a vector

is placed to them that carries out the best number of these. While moving up,

conserved interactions between child clusters of parents are also calculated, hence

21

the root should have the highest. This covers the forward step so far. Next, the

backward step is implemented to gather those vectors in each cluster to achieve the

optimal alignment overall.

Considering the definition of constrained GNA problem and the idea of our

proposed algorithm here, the cluster network must not have restrictions to any

specific structure as miscellaneous types can be encountered depending mainly on

the structure of both PPI network graphs and the generated clusters by a clustering

algorithm. In other words, ܩܥ can contain a large component of joint clusters or lots

of small ones separated from each other and reasonably become cyclic. Therefore,

we always obey the generality of these graph structures and our aim, hereby, is to

build an algorithm which is able to work on any of them; still matching the

description of constrained GNA problem.

Unlike Zaslavskiy et al. (2009b), there does not have to be a root cluster to be

chosen and this dismisses the setup of the assignment of distance values to all other

clusters. Though every time marking a random cluster as root gives a different result,

we are on the side of having a steady one to make the general traceability of the

output easier. In addition, the forward and backward steps, that is, the message-

passing seems to happen only one time. As we do not want to limit to just one

iteration like this, a larger number of iteration scheme is adopted enabling our

algorithm to search the conserved interactions on clusters again for probability of

having more than previous iterations. These adjustments are applied to make it also

more compatible against the form of any cluster networks.

2.5.2. Functions of the Message-Passing, External Conservations and Output

We express how our message-passing method is progressed. Thus far, the best

permutations of all clusters, stored in ࣪ℬ , have been acquired along with the

22

permutation fixed scores ℱ࣭. First of all, we start with a simple check if ܧ஼ீ ≠ 	∅.

Otherwise, it is not worth to do the message-passing on ܩܥ ; the alignment is

provided only with the contribution of fixed scores from clusters. Furthermore, there

is a maximum limit to the number of iterations, denoted with ݇௠௔௫ which is user-

defined, to ensure our algorithm to cease at a certain point if no convergence is

occured.

At any iteration ݇, each cluster ܿ݃௜ is traversed to detect its neighbors (i.e.

connections) and these are kept in ܰ(ܿ݃௜) so the implementation of message-passing

to which clusters are determined at the moment. It is noticeable that any cluster with

no neighbors are skipped so we leave them with only the best fixed score for the

contribution of the final alignment. Certainly, it is not essential to change the best

permutation of those clusters at every iteration, holding them fixed across all

iterations until ݇௠௔௫ or convergence. Otherwise, for a cluster ܿ݃௜ with ܰ(ܿ݃௜) ≠ 	∅,

its all available permutations are examined, because having connections can affect

the total number of conserved interactions between other clusters (Zaslavskiy et al.,

2009b). In any ߨ(ܿ݃௜)௫ , we begin with the addition of fixed score, fetched from

(௜݃ܿ)ܵܨ , to ܵܥ(ߨ(ܿ݃௜)௫) which represents the total score of the permutation.

Meanwhile, the cluster is made ready by having one-to-one matches of ߨ(ܿ݃௜)௫ .

Then, the neighbored clusters are called to propagate their best permutations that are

available from ࣪ℬ to the current cluster. All clusters in ܰ(ܿ݃௜) are later adjusted

with the setting of subset of nodes of ுܸ, indicated by the propagated permutations to

obtain appropriate matches. After that, the finding of external conserved interactions

between the currently investigated cluster ܿ݃௜ and its neighbors begins.

Like the implementation of fixed score, described in Section 2.3, external

conserved interactions can be represented like a score and mostly define them as

23

permutation edge score or permutation inter-cluster score, denoted with ߰ and our

algorithm allows the user to enter a unit score for that kind. In contrast to getting

fixed scores, now two clusters are required for search.

In the message-passing method, we always keep the matches of neighbor

clusters in ܰ(ܿ݃௜) static until all permutations of ߨ(ܿ݃௜) are investigated. These

neighbors are traversed one by one as we get the external conservations

independently. Assuming cluster ܿ݃௜ and one neighbor in ܰ(ܿ݃௜) is fully ready for

searching, we take one match from each. Note that if a permutation of ߨ(ܿ݃௜)

contains ݉ matches and the other one from ߨ(ܿ݃௝) contains ݊ matches, where

ܿ݃௝ ∈ ܰ(ܿ݃௜) , then up to ݉	 × ݊ different pairs of matches are investigated for

getting edge score. For any matches, e.g. ߨ(ܿ݃௜((ݕ)ܯ))௫ = (݃௔ , ℎ௖) and

௣(((ݖ)ܯ)௝݃ܿ)ߨ = (݃௕, ℎௗ) , where 1 ≤ ݕ ≤ ݉ , 1 ≤ ݖ ≤ ݊ ; ݃௔ , ݃௕ ∈ ܸீ , ℎ௖ , ℎௗ ∈

ுܸ, ܿ݃௝ ∈ ܰ(ܿ݃௜) and ݌ indicates the best permutation among all in ߨ(ܿ݃௝), we first

look into the edge existence in ீܧ (i.e. protein interaction) between ݃௔ and ݃௕ nodes.

If our algorithm comes across such an edge, then the same action is performed for ℎ௖

and ℎௗ nodes with ܧு. When both conditions are satisfied, the permutation ߨ(ܿ݃௜)௫

gains unit edge score ߰ (Figure 2.5). When all match combinations are examined, the

accumulated edge score is divided by 2 and then it is added to ܵܥ(ߨ(ܿ݃௜)௫). The

total score of any permutation can be universally formulated by the equation below

in any iteration ݇:

(௫(௜݃ܿ)ߨ)ܥܵ = +	(௫(௜݃ܿ)ߨ)ܵܨ ෍
Λ[�	ߨ(ܿ݃௜((ݕ)ܯ))௫	 �, [௣(((ݖ)ܯ)௝݃ܿ)ߨ 	× 	߰		

2 	
∀௖௚ೕ	∈ே(௖௚೔)

 (2.1)

In equation (2.1), Λ[−,−] indicates the availability of conserved interaction

between the matches of those corresponding cluster permutations, given a value of 0

or 1 and is multiplied by ߰. There is an important reason for dividing the unit score

24

by 2. This is because we expect ܿ݃௝ , when it becomes the currently investigated

cluster by MP-CNet and where ܿ݃௝ is the neighbor of ܿ݃௜ at the time, formally

ܿ݃௝ ∈ ܰ(ܿ݃௜), to exhibit the similar satisfaction exactly between the matches (ݖ)ܯ

of its such permutation and (ݕ)ܯ of the permutation of its neighbor, those which

provided conserved interaction already. In this way, they mutually supplement each

other by guaranteeing there really exists a conserved interaction with these selected

permutations and matches. The only concern might be that if the permutation in

 is not the (௝݃ܿ)ߨ which carries out the same interaction(s) with the one in (௜݃ܿ)ߨ

best, at the time ܿ݃௝ is being investigated for edge conservation while ܿ݃௜ becomes

its neighbor, there is a situation that another permutation from ߨ(ܿ݃௜) with the

convenient match can compensate this affair.

Figure 2.5 An example of external conserved interaction between clusters. Here, (࢈ࢍ , (࢐ࢎ
match of ࢞(࢏ࢍࢉ)࣊ and (ࢊࢍ, .supply a conservation externally ࢖(࢐ࢍࢉ)࣊ match of (࢜ࢎ

After the calculation of edge scores of all permutations ∀ܿ݃௜, we look for the

best scorings to be included in ࣪ℬ′ along with the highest score achieved for ܿ݃௜.

That means every permutation score ܵܥ(ߨ(ܿ݃௜)௫) are compared, just like the

previous sections involving the selection of the bests. For those having more than

one cluster accomplishing the same highest scores, these are broken randomly by

selecting one of them and we put it into ࣪ℬ′ and, meanwhile, the highest score is

25

accumulated in another variable, denoted with Θ஼ீ , hence the total best scores of all

clusters are acquired in every iteration. This can be formed with the formulation in

the equation below.

 Θ஼ீ = 	 ෍ max (௫(௜݃ܿ)ߨ)ܥܵ	 , ݔ∀
௖௚೔	∈	௏಴ಸ

 (2.2)

Note that every best score from clusters summed to Θ஼ீ may or may not

contain the fixed scores as only we check the value of permutation scores. When a

higher Θ஼ீ is achieved in iteration ݇ than previously, the value is kept in maxΘ஼ீ , so

the highest possible score is determined until either convergence or ݇௠௔௫ is reached.

It should be pointed out that we do not remove ࣪ℬ of the current iteration ݇

yet. As every best permutations of all ܿ݃௜ clusters is placed into ࣪ℬ′, now these

values are used together to know the state of convergence of the cluster network.

This is an important property that determines the continuity of conserved interaction

searching, and it is checked in every iteration when all clusters are traversed for edge

scores. This process is basically done by comparing the eqaulity of the best

permutations of each cluster such that if every value in ࣪ℬ is completely the same

with ࣪ℬ′, for instance, ܲܤ(ܿ݃ଵ) = (ଶ݃ܿ)ܤܲ ,ᇱ(ܿ݃ଵ)ܤܲ = and so on, then ,(ଶ݃ܿ)′ܤܲ

MP-CNet no longer proceeds the computation of edge scores i.e. convergence is

achieved and the alignment is prepared for the output. Otherwise, it continues the

computation till ݇௠௔௫ is reached, and ࣪ℬ	 ← 	࣪ℬ′ is performed at the end of every

iteration.

We also take another action, particularly when edge score calculation is

finished thus the best permutations (࣪ℬ′) are decided, which could be a heuristic

approach to create an alternative alignment at the end. For this purpose, ࣝ࣪ℬ is

created at the beginning of the message-passing, holding how many times a

26

permutation is chosen as the best and the value corresponding to that permutation of

ܿ݃௜ is increased by 1 and stored in ܤܲܥ(ܿ݃௜) ⊂ 	ࣝ࣪ℬ . Note that the size of

is equal to the number of permutations generated for cluster ܿ݃௜ (௜݃ܿ)ܤܲܥ . It is

implemented in every iteration till the convergence is achieved or ݇ ௠௔௫ is reached.

Then, the most selected permutations among all ongoing iterations are picked up and

placed in ∆࣪ℬ . Then, the alternative alignment is made available to the output,

which can be supportive to the regular one in terms of number of conserved

interactions with slightly different results. It is noted that the convergence check is

not performed with ∆࣪ℬ; only ࣪ℬ is required for this objective.

The last portion of the message-passing of our algorithm is to present the

alignment output, additionally how many conserved interactions occurred across all

available matches of ܩܥ, and which pairs of matches provide these interactions by

showing their relative nodes from ܸீ and ுܸ. Every 'valid' matches are gathered from

clusters (i.e. not including matches involving a dummy node), hence denote ℳ஼ீ to

contain all these matches together. Every combination of ℳ஼ீ[݅]~ℳ஼ீ[݆] (1	 ≤ ݅ <

,ݔܽ݉ ݅ < ݆ ≤ (ݔܽ݉ is examined. Similar to what we have done previously, the

matched nodes of ܸீ and ுܸ are taken for the existence of interactions (edges)

between them in ீܧ and ܧு, respectively. Those pair of matches are made available

to the output and placed to ࣝℐ஼ீ when conditions are met. Then, the same process is

applied to the alternative alignment by getting the valid matches and checking the

presence of these (to ࣝℐ∆஼ீ). As a result, we create not only one steady alignment but

also a different one with our alternative intuition. We expect the number of

recognized conserved interactions and those derived from matches should be

identical.

27

2.5.3. Detailed Analysis and Claims

When MP-CNet achieves convergence of the input or ݇௠௔௫ is reached, total

score, alignment, and conserved inteactions actualized by the pair of matches are

presented. However, it is challenging make sure if the alignment is really optimal.

About networks which are not large and too dense, relating to PPI networks and

clusters, it may be somewhat predictable. During our research, we had come up with

some remarkable claims that is visible to the most of the input whereas there is still

extreme situations that are excluded from them. In this subsection, we would like to

explain these by general basic samples, then moving to more complex ones.

The smallest cluster network ܩܥ we are able to reduce at most is only two

cluster nodes, call ܿ݃ଵ and ܿ݃ଶ, along with only one edge available in ீܧ and ܧு ,

connected between these clusters respectively and no edge internally. The number of

subset of nodes from ܸீ and ுܸ in clusters can be at least one, but for comfortable

analysis, let ܿ݃ଵ have ݉ and ܿ݃ଶ have ݊ subset of nodes, no matter if there exists

dummy nodes. For any iteration ݇ , ࣪ℬ was already made ready in the previous

iteration, ݇ − 1. As we traverse each cluster node, and so initially for ܿ݃ଵ, there is

only one neighbor available, say ܰ(ܿ݃ଵ) = {ܿ݃ଶ} . Then, ܿ݃ଶ is set to contain

matches for its best permutation, obtained from ࣪ℬ. It is noticable in this simple

example that there should exist a match from ߨ(ܿ݃ଶ((ݔ)ܯ))௣	 that connects the

nodes ݃௨ and ℎ௩ that already have an edge in ீܧ and ܧு, going to other appropriate

node in cluster ܿ݃ଵ. Likewise, ܿ݃ଵ should have a match between ݃௔ and ℎ௕, for some

permutations. To know which of them satisfies, all matches of each permutation of

ܿ݃ଵ are examined to check for existence, as their matches are taken one by one

against the matches of the best permutation of ܿ݃ଶ . Suppose ߨ(ܿ݃ଵ((ݕ)ܯ))௧ is

selected and these matches between two clusters achieve an external conserved

28

interaction, if the matched nodes of ݃௔-݃௨ and ℎ௕-ℎ௩ are the edges themselves in	ீܧ

and ܧு . In this manner, permutation ߨ(ܿ݃ଵ)௧ gets a score by the value of ߰/2 .

However, as we continue examining the permutations, there could be another one,

 ௪, that has the same match, making connection between the same nodes ݃௔(ଵ݃ܿ)ߨ

and ℎ௕ , thus gaining ߰/2 score. Here, we assert that by fixing the match of such

permutation of ܿ݃ଵ , and there are ݉ − 1 other matches remaining, maximum of

(݉ − 1)! different forms of matches can be attained. This constitutes a significant

claim such that for any cluster, (݉ − 1)! different permutations gain edge score by

߰/2 if there goes one interaction from ீܧ and ܧு to its neighbor cluster in ܰ(ܿ݃௜),

for ݉	 ≥ 31. Likewise, all of these explanations are valid for ܿ݃ଶ, as its neighbor

becomes ܿ݃ଵ, where the matches are necessarily set for the best permutation. Here,

(݊ − 1)! permutations can get ߰/2, so obviously more than one of them reach the

same achievement of having the best score. After these two cluster node traverses are

made, however, there are (݉ − 1)! and (݊ − 1)! choices of best permutations of

respective clusters that MP-CNet should select. As discussed in Section 2.5.2, a

greedy approach is implemented to represent the permutations to become the best for

the next iteration by first assigning to ࣪ℬ′. When no convergence is materialized

then these are overwritten to ࣪ℬ, so these actions are taken again. On the other hand,

due to the design of the algorithm, when there are no more iterations for message-

passing by reaching ݇௠௔௫, the alignment output is represented optimally. Meanwhile,

here comes the better understanding of why ߰ edge score is divided by 2. As the best

permutations of ܿ݃ଵ and ܿ݃ଶ together generate the same external conservation even

1 Here, (3-1)! = 2! = 2, so there is not only one permutation getting the edge score by having the
same matches; also always valid for much higher number of pairs of nodes in clusters. For others, like
one or two node pairs, 1! = 2! = 1 permutation can obtain the score.

29

though asynchronously, summing these scores guarantee a such external

conservation truly exists.

Now, we extend this situation by inserting new edges to ீܧ (or ܧு) that goes

from one cluster to another while the other remains at one edge. It should be

approached with two main types: Whether these edges are connected with the other

one or disconnected to observe the effects to the whole cluster network, external

conservation finding and convergence. First, assume it sustains the connectivity with

the existed edge. "Connectivity", hereby, means there is a common node between

them, for instance, considering an edge ݃௔-݃௕ and the new edge ݃௔-݃௖ both source

and target nodes are covered in different clusters, the common node ݃௔ provides the

connectivity of these two edges. We also agree that a single edge between clusters is

a connection, too. Imagine the current cluster network like this, two different nodes

of ܸீ in ܿ݃ଵ have one plausible edge and one node of ܸீ from ܿ݃ଶ have two

plausible edges while the other graph remains unaffected. Here, ܿ݃ଶ still possesses

the probability for (݊ − 1)! permutations to get ߰/2 because there is only one node

(as well as match) in ܿ݃ଶ that can give the conserved interaction externally. If we

take a look at the possibilities for ܿ݃ଵ, then the number of permutations that are able

to obtain edge score become 2	 × (݉ − 1)! as there are now two-to-one possible

such matches for some permutations in ܿ݃ଵ satisfying connections between nodes

with available edges in their networks. Therefore, at the end of iteration ݇, MP-CNet

now has 2	 × (݉ − 1)! and (݊ − 1)! permutations to select as their bests for the next

one, respectively. Total edge score, however, is still the same. We claim from this

current sample that the number of available edges from one graph, travelling through

two clusters and maintaining the other with one edge merely allows a cluster the

possibility for up to ݊	 × (݊ − 1)! = ݊! permutations have edge score, but because of

30

one edge existence of the other PPI-network graph, there is no way to multiply the

total score of these two connected clusters as only one match of their such

permutations can perform it. The convergence and optimal alignment is still achieved

by the algorithm, but due to the increased number of permutation choices, this also

raises the finite number of iterations ݇ to make it happen. Considering the edge

disconnection of edges of ீܧ and/or ܧு, we have conjectured that this, unfortunately,

often causes no convergence for ܩܥ no matter how ݇௠௔௫ is as much as high. This is

such a bizarre condition that by examining the possible best permutations ܵܤܥ(ܿ݃௜)

for each cluster in every iteration until the maximum, the best of one or more are

completely different than the previous iteration that leave MP-CNet no opportunity

to make convergence, though the highest total score can be reached. The discrepancy

of dissimilar best permutations of clusters repeat in at least two-iteration cycles, and

by checking ࣪ℬ at ݇௠௔௫ , these permutation indexes cannot form the optimal

alignment but partially i.e. an approximate one is encountered.

A little more complex structure between these two clusters could be that both

ீܧ and ܧு contain more than one edge and still going from ܿ݃ଵ to ܿ݃ଶ. This affects

some permutations that achieve conserved interactions externally with more than one

matches. Suppose the edges in their respective PPI-network graphs remain the

connectivity for having convergence and alignment optimally, now such a

permutation from ߨ(ܿ݃௜) possesses a likelihood that its matches against the ones of

the best permutation of the neighbor clusters together produce ܿ × (߰/2) edge

scores, where ܿ can take any value, indicating the times of happenings of

conservation with these permutation matches, here ܿ	 > 1 is preferred for this

purpose (Figure 2.6). There can be other permutations that have edge scores but not

higher than the bests when all are investigated. Therefore, this shape of two clusters

31

allow MP-CNet to make the best permutation selection of each cluster with fewer

options for determining ࣪ℬ for the next iteration and can help convergence

occurence by a bit less iteration made. Additionally, another important claim is

obtained, thanks to our analysis, that the edge score of a cluster permutation can get

at most is ܿ × (߰/2). In other words, the maximum edge score of a permutation is

dependent on the number of edges between two clusters whichever is lower. If there

are three edges from ீܧ and two edges from ܧு, going from one cluster to another,

for example, then a permutation cluster edge score can be up to 2 × (߰/2).

Figure 2.6 Alignment optimality between two clusters with multiple edges

The more complicated cluster network input for the algorithm is surely enough

multiple clusters as real examples should contain hundreds of clusters, along with

lots of possible cluster edges in terms of the clustering algorithm output. For making

necessary interpretations of this form, consider simple ܩܥ consists of (i) three

clusters where ܿ݃ଵ is connected to ܿ݃ଶ, and ܿ݃ଶ is connected to ܿ݃ଷ, (ii) four clusters

where the connections are made between ܿ݃ଵ-ܿ݃ଷ and ܿ݃ଶ-ܿ݃ସ, so two separate sub-

cluster networks and, of course, edge connectivity of proteins is still maintained for

32

those. About (i), the algorithm always starts at ܿ݃ଵ with ܰ(ܿ݃ଵ) = {ܿ݃ଶ} and

definitely, all permutations in ߨ(ܿ݃ଵ) are compared with the best permutation

 ௣, hence there will be best-scoring permutations to choose from and similarly(ଶ݃ܿ)ߨ

for ܿ݃ଷ, ܰ(ܿ݃ଷ) = {ܿ݃ଶ}. For ܿ݃ଶ, however, there are more neighbors detected, say

ܰ(ܿ݃ଶ) = {ܿ݃ଵ, ܿ݃ଷ} and ܰ(ܿ݃ଶ) > 1. MP-CNet traverses these neighbors one by

one for permutations to make external conservations with the bests of its neighbors.

Here, more important matter is the maximal edge score of a permutation of a cluster

being examined can go up to (ܿ + ݀) × (߰/2), where ܿ and ݀ denote the highest

times of conservation occurences from neighbor clusters and reflect the lesser

number of edges of ீܧ or ܧு moving from this cluster to the related neighbor. From

this vision, it is discernable for a cluster that having many neighbor connections can

also bring more scores to its permutations and it will become easier for MP-CNet to

select the best one if the matches of the permutation are capable of performing the

most conserved interactions with the neighbor bests externally, so contributing to

convergence of ܩܥ in a way that it can always become the best one through

iterations. About (ii), the investigation of sub-network clusters are applied

independently from each other such that only the neighbors can affect the others with

regard to conserved interactions and determination of best permutations. On the one

hand, a sub-cluster network has no influence to other familiar structure, even if the

convergence happens between these clusters at iteration ݇, they must wait for the

other in order to cary out a full convergence, otherwise they are continued for

searching. That is because our algorithm is designed for globally aligning the clusters

(and not for local search) that all best permutations must be exactly the same with the

previous selections, as indicated in Section 2.5.2 like ࣪ℬ = 	࣪ℬ′. This points out a

33

disadvantage that causes more iterations to be done overall. Despite under this

setting, the optimal alignment is still returned.

So far, we have elucidated a lot for necessities of alignment optimality of the

cluster network by also adapting to the methods of MP-CNet. To sum the things up,

we propose both ீܧ and ܧு must have sustainable connectivity between each

connected clusters in order to converge at a finite number of iterations and at that

point the best possible alignment is made to the output, particularly achievable for

small or medium sized graphs, otherwise the algorithm is progressed until ݇௠௔௫ for

the best approximate one. Edge disconnections of protein networks across some or

many clusters can cause the impossibility of convergence at all, and again an

approximate alignment. In addition, we never discussed the situation of the inclusion

of fixed scores (internal conserved interactions) for clusters. Here, our researches on

many different structures showed that by testing the same instances with fixed scores

(ℱ࣭) do not make any changes to the general optimality of alignment and

convergence. There is a relationship between ߶ and ߰ unit scores that we always

recommend the scoring schema of ߶	 ≥ 	߰ . This is another criterion for getting

optimal alignments. Initially, permutations with best fixed scores and with the

maximum plausible edge counts become the best of their related clusters before

message-passing begins and have more probability to remain it for the most

iterations unless another permutation has higher score. In this way, we do not see a

loss of total conserved interactions that prevents the optimality but other distinct

variants may be encountered like some external conservations are not presented at

the end. In contrast where ߶ < 	߰, the algorithm sometimes returns less total score

and significantly decreases the likelihood of the alignment to become optimal. This is

not the desired situation as keeping both values equal is most convenient way. We

34

adopt the value of 1.0 for the experiments in Section 3 to see the exact number of

total conserved interactions. All in all, these further explanations were made for MP-

CNet to show how it works at a smooth rate of performance against the given input.

2.5.4. Discussions for Convergence

Convergence of ܩܥ is a crucial feature for MP-CNet as it makes the decision of

if we should go on computing the edge scores of all clusters with the updated best

permutations or stop immediately and progress to prepare the alignment. Here,

convergence, on one hand, ensures no more conserved interactions (i.e. no higher

scores) can be produced by the algorithm and also states that continuing after this

point causes loss of time. When this is materialized, we always inquire the output

alignment and our algorithm with these questions: (a) Does the algorithm always

converge? (b) If it converges, does the alignment become optimum? (c) What is the

maximum number of iterations until convergence is achieved?

Depending on the structure of both PPI networks and the cluster network which

is made in the data processing stage, it is hard to come up with common and proper

answers for these questions, due to the spantaneousness of constrained GNA problem

and the design of our algorithm to this. Assuming simple and sparse kinds of these

networks each, then the questions of our inquiry can be answered without not much

difficulties. On the other hand, the matters are getting to impossibility for more

complicated structures of both PPI and cluster networks. Despite the hardness, here

we attempt to give general responses to these questions and mostly attribute to the

claims and analysis that have been obtained during the research and development of

MP-CNet, together with the results that have been encountered by many different

inputs as they were explained in the previous section.

35

Starting from question (a), the cluster network can be converged if ܩܥ does not

have a complicated joint structure among cluster nodes either having lots of small

subnetworks or a large one. Hence, the alignment output can be seen without

reaching the maximum iteration limit ݇௠௔௫ if it is high enough. It should not be

forgotten that as we have said in the previous section, the edge connectivity of subset

of ܸீ and ுܸ nodes between any connected clusters must be sustained and again

having disconnections of edges can lead to disallow the algorithm to achieve

convergence. This is also valid for graphs with more complexity overall and if it is

hoped to ensure full edge connectivities across all clusters, then there is still a

probability to achieve convergence during the message-passing but after hundreds or

even thousands of number of iterations, leaving the only choice to increase ݇௠௔௫ to

be able to encounter.

For question (b), this always causes anxiety such that it is pretty ambiguous

that the optimality of alignment or not should be predicated to either the simplicity of

PPIs and the cluster network graphs or the performance of our algorithm against the

given input. To make it clear, one way is to run the algorithm several times over the

same input and see whether convergence is achieved and the same total score (or

total conserved interactions) is obtained every time at the point of convergence. If it

does not happen, only the total score is observed. Then, we can interpret the

alignment has a likelihood to be optimal, otherwise approximate. Another way is,

particularly on cluster nodes with totally less than 10 or 15, an exhaustive search

(e.g. brute force) is implemented hereafter the completion of the algorithm.

Therefore, the optimality of the alignment can be decided by comparing the outcome

of the exhaustive search (as it has usually more than one alignment options) with the

36

one generated by MP-CNet in terms of total score, number of conserved interactions

and the best permutations of clusters.

For question (c), we have already given answers in (a) by a large proportion. In

addition to this, it is hard to predict the exact range of number of iterations at first for

the given input. Of course, for those where there is always convergence, the

minimum and maximum number of ݇ iterations can be observed by running several

times again or if not, raising ݇௠௔௫ is the only relief; and in the worst case, it is not

observable at all due to the claims we counted above.

2.6. The Whole Algorithm Pseudocode

The general pseudocode of all the stages of MP-CNet together up to and

including the message-passing and the alignment output are given below. Please note

that some formulations or equations may slightly differ from what was described in

the text but they still do the same matter.

MP-CNet(ܩܥ,ܪ,ܩ,߶,߰){
 1 BEGIN

 2 Construct PPI-network graphs ܩ and ܪ

 3 Begin constructing the cluster network graph ܩܥ
 by placing subset of nodes of ܸீ and ுܸ into
 appropriate clusters and necessarily add dummy
 nodes for equalization

 4 Add connections between any ܿ݃௜ and ܿ݃௝ if edge
 connectivities of their ܸீ and ுܸ nodes are
 satisfied

 5 Generate permutations ∀ܿ݃௜, stored in ࣪.

 6 Calculate fixed scores ∀ߨ(ܿ݃௜) and ∀ܿ݃௜, stored
 in ℱ࣭
 - if an edge from ீܧ and ܧு exists between any
 pair of matches in ߨ(ܿ݃௜)௫, then ܵܨ(ߨ(ܿ݃௜)௫) += ߶

37

 7 Decide best permutations for each ܿ݃௜, hold them
 in ℱ࣭ℬ

 8 Count maximum plausible edges ∀ߨ(ܿ݃௜) and ∀ܿ݃௜,
 stored in ℰࣝ
 - Applied rules for any match
 if ݏ݈݌(݃௔) = ܿ)ߨ൫ݏ݈݌ ,(ℎ௕)ݏ݈݌	 ௜݃൫(ݖ)ܯ൯)௫൯	+= (௔݃)ݏ݈݌ 	∨ (ℎ௕)ݏ݈݌	
 else if ݏ݈݌(݃௔) < =+	௫൯(൯(ݖ)ܯ௜൫݃ܿ)ߨ൫ݏ݈݌ ,(ℎ௕)ݏ݈݌	 (௔݃)ݏ݈݌
 else if ݏ݈݌(݃௔) > =+	௫൯(൯(ݖ)ܯ௜൫݃ܿ)ߨ൫ݏ݈݌ ,(ℎ௕)ݏ݈݌	 (ℎ௕)ݏ݈݌

 9 Decide best permutations for each ܿ݃௜, hold them
 in ℰࣝℬ

 10 Get common best permutation by ܤܵܨ(ܿ݃௜) ∩ (௜݃ܿ)ܤܥܧ
 and append to ࣪ℬ
 - For more than one permutation, randomly pick
 one of them
 - if no common best available, then select one
 from ܤܵܨ(ܿ݃௜)

 // The message-passing method
 11 ݇ ← 1;
 if ܧ஼ீ = 	∅, then do not start the method and
 prepare the output
 - Algorithm exits here

 12 while (not converged and ݇	 < 	݇௠௔௫)

 13 for ∀ܿ݃௜:
 Get the neighbors ܰ(ܿ݃௜) and their best perm.
 if ܰ(ܿ݃௜) ≠ 	∅:
 for ∀ߨ(ܿ݃௜)௫ 	 ∈ :(௜݃ܿ)ߨ
 Add fixed score ܵܨ(ߨ(ܿ݃௜)௫) to ܵܥ(ߨ(ܿ݃௜)௫)
 for ∀ܿ݃௝ ∈ ܰ(ܿ݃௜):
 Set the permutation ߨ(ܿ݃௝)௣
 Determine the total score of ߨ(ܿ݃௜)௫ by
 comparing all possible pair of matches
 with ߨ(ܿ݃௝)௣
 - if Λൣ�	ߨ(ܿ݃௜((ݕ)ܯ))௫	 �, ௣൧(((ݖ)ܯ)௝݃ܿ)ߨ = 1, then
=+	(௫(௜݃ܿ)ߨ)ܥܵ ((Λ	 × ߰)	/	2)
 Assess the best-scoring perm. and append to ࣪ℬ′
 - For more than one permutation, randomly pick
 one of them
 Aggregate the best score of ܿ݃௜ to Θେୋ
=+	(௫(௜݃ܿ)ߨ)ܤܲܥ 1

38

 14 if Θେୋ > Θେୋ: maxΘେୋݔܽ݉ = 	Θେୋ

 15 if ࣪ℬᇱ = 	࣪ℬ: mark ܩܥ converged

 16 ࣪ℬ	 ← 	࣪ℬᇱ;
 goto step 12

 17 Decide the most selected permutations
(௜݃ܿ)ܤܲܥ∀ ⊂ 	ࣝ࣪ℬ and append to ∆࣪ℬ

 18 Output the alignments from ࣪ℬ and ∆࣪ℬ by
 showing the total score maxΘେୋ of ࣪ℬ, matches and
 ࣝℐ஼ீ, ࣝℐ∆஼ீ

 19 END
}

MP-CNet is written in C++ and LEDA (Mehlhorn and Naher, 1999). The

reason for using LEDA libraries is to handle graph structures easily and store

necessary values in single or multi-dimensional list variables as the data structure

allows them to become flexible (i.e. not static) throughout the algorithm.

39

Chapter 3

Experiments and Results

MP-CNet algorithm works smoothly over the clustered network as well as

maximum amount of conserved interactions possible from pairwise PPI networks

and the whole alignment are delivered to the output. To estimate how robust and fast

our algorithm is, we have experimented with other algorithms on various biological

sources. Here, the experiments are mainly done with balanced GNA algorithms,

although their approaches of the problem solution has differences with ours. They are

primarily quantified on three important factors: (i) Assess the total number of

conserved interactions, (ii) observe the time elapsed while perpetrating the data and

(iii) a special experiment to measure the biological quality of the alignments of

algorithms in terms of Gene Ontology (GO) annotations that proteins possess their

biological features (Ashburner et al., 2000).

3.1. Comparisons with Algorithms

We chose SPINAL2 (Aladag and Erten, 2013), IsoRank3 (Singh et al., 2008)

and MI-GRAAL4 (Kuchaiev and Przulj, 2011) graph matching algorithms which are

balanced GNA algorithms to do tests with MP-CNet. The basis of these experiments

2 SPINAL is available to download at http://hacivat.khas.edu.tr/~cesim/spinal.html
3 IsoRank and other variants as well as IsoBase database are available at
http://groups.csail.mit.edu/cb/mna/isobase/index.html
4 MI-GRAAL is available to download at http://bio-nets.doc.ic.ac.uk/MI-GRAAL/

40

is to infer if our algorithm, designed to work on constrained global networks,

performs as good as against the balanced ones. For data sources, we used the

database of IsoBase (Park et al., 2011) and acquired the networks of four species:

Caenorhabditis elegans (worm), Drosophila melanogaster (fruit fly), Homo sapiens

(human) and Saccharomyces cerevisiae (yeast). Moreover, we benefited from

Database of Interacting Proteins-DIP 5 (Xenarios et al., 2002) to identify which

proteins nestle IDs of DIP from their respective species in IsoBase. Although this

causes reduction to total number of proteins as well as interactions, it becomes more

tractable to observe the outcome of alignments generated by the algorithms. By

sorting out the proteins of each species, total of 2621 proteins of C. elegans, 7017

proteins of D. melanogaster, 942 proteins of H. sapiens and 4894 proteins of S.

cerevisiae contain IDs from DIP database (format shape as DIP:xxxxxN). The next

step is to fetch the protein sequences that are available in FASTA format and they

were downloaded from DIP website. With careful analysis, we identified that

sequences of a few proteins from each species do not exist, so they are taken off from

the input.

Having protein sequences in FASTA format are crucial for Inparanoid

algorithm (Remm et al., 2001); the only accepted type of input, for generating

clusters as well as ortholog and in-paralog proteins in terms of sequence similarities

with BLAST scores and, of course, it composes a part of the input for MP-CNet.

Additionally, the algorithm allows third group as an out-group which is useful for

eliminating false ortholog assignments but also a risk for losing gracious ones. For

this reason, we never used out-groups while generating the clusters and these

parameter values are entered: score cut-off of 20 bits, confidence cut-off of 0.05,

5 DIP database is available at dip.doe-mbi.ucla.edu/dip/Main.cgi

41

sequence overlap cut-off of 0.5, group merging cut-off of 0.5, no grey zone and

BLOSUM62 scoring matrix i.e. the one for comparison of eukaryotes. All of these

except score cut-off are default values. Furthermore, we let Inparanoid to run

BLAST with two-pass strategy between protein sequences of two species in order to

perform clusterization easily due to no knowledge about how much the similarity of

all involved proteins are at the beginning. As a result, clusters of every combination

of pairwise species are attained, but not all proteins are covered in accordance with

the defined values and naturalness of the mechanisms of Inparanoid. Here, C.

elegans-D. melanogaster, C. elegans-H. sapiens, C. elegans-S. cerevisiae, D.

melanogaster-H. sapiens, D. melanogaster-S. cerevisiae and H. sapiens-S. cerevisiae

pairs generate 976, 171, 509, 321, 1300 and 187 clusters respectively. Roughly three

fourth of them are one-to-one clusters while the rest are one-to-many and many-to-

many. Refer to Table 3.1 for more details.

Table 3.1 Results of the clusterization made by Inparanoid

Pairs Inparanoid
Clusters

Proteins
Covered

One-to-one
Clusters

One-to-many
Clusters

Many-to-many
Clusters

C.eleg
D.mela 976 1045 / 1219 817 144 15

C.eleg
H.sapi 171 194 / 235 124 40 7

C.eleg
S.cere 509 597 / 627 397 98 14

D.mela
H.sapi 321 392 / 434 227 85 9

D.mela
S.cere 1300 1577 / 1524 1011 257 32

H.sapi
S.cere 187 232 / 227 132 51 4

Besides, we have configured these four species to give them shape as graph

structures (i.e. PPI networks) and taken appropriate interactions for full coherence;

fulfilling our intention that they now become the input properly for use in MP-CNet

42

and other balanced GNA algorithms as well with further necessary comparisons. The

final input of all species are as follows: 2538 proteins and 3801 interactions in C.

elegans, 6983 proteins and 22367 interactions in D. melanogaster, 895 proteins and

2459 interactions in H. sapiens and 4874 proteins and 27712 interactions of S.

cerevisiae.

In these experiments, SPINAL and IsoRank are executed with various values

of the control parameter (ߙ	 ∈ [0,1]) , which is needed to determine usage ratio

between network topology and sequence similarity. Starting from ߙ = 0.3, and

progressively increasing by 0.1 up to 0.7, different alignment outputs were produced.

Additionally, two versions of SPINAL are used as it consists of two main parts; one

with the usage of coarse and fine-grained phases (call SPINAL-2 in this experiment)

and the other with the usage of only coarse-grained phase (call SPINAL-1) (Aladag

and Erten, 2013). For MP-CNet and MI-GRAAL, they do not include a control

parameter, hence only one alignment output is used for comparison. MP-CNet is run

on available pairs of species several times and the best one yielding the most

conservations is acquired, preferably with the results of ࣪ℬ if the numbers are equal

to that of ∆࣪ℬ (see Section 2.5.2). For the alignment of MI-GRAAL algorithm,

signatures, degrees, clustering coefficients and BLAST e-value scores for sequence

similarity are used together, which composes the Alignment3 version and gives the

most conservations under this setting (Kuchaiev and Przulj, 2011). These

experiments were run on a computer with Linux-based operating system, 3.3 GHz

x86-64 processor and 3 GBs of RAM.

3.1.1. Evaluation of Conserved Interactions

Counting conservations are based on the matches of alignments that balanced

GNA algorithms generated upon completion, including MP-CNet. Firstly, we take all

43

of them even their numbers are larger than ours highly. Later, for a fair comparison,

filterings are applied to all alignments of balanced GNAs to detect which proteins of

all matches are available in ones covered in clusters by Inparanoid, regardless of

where they belong to. For example, about two organisms between C. elegans and D.

melanogaster, for any match, the protein of C. elegans is explored to see if the same

one is covered in a cluster, then the other one of D. melanogaster, thus it becomes

available in the filtered matches of the alignment. Total number of matches of all

algorithms are available in Table 3.2, where for those with ߙ are averaged. Note that

SPINAL-1 could not complete successfully for D. melanogaster-S. cerevisiae pairs,

so it is marked with (X) including this and the following tables.

Table 3.2 Number of matches of alignments generated by algorithms (unfiltered /
filtered); only unfiltered numbers in MP-CNet column

Pairs MP-CNet SPINAL-1 SPINAL-2 IsoRank MI-GRAAL
C.eleg
D.mela 995 2495 / 818 2495 / 350 2523 / 389 2538 / 214

C.eleg
H.sapi 180 837 / 133 840 / 61 874 / 70 895 / 28

C.eleg
S.cere 524 2354 / 432 2403 / 175 2523 / 290 2538 / 92

D.mela
H.sapi 330 844 / 256 856 / 65 874 / 51 895 / 43

D.mela
S.cere 1339 X 4871 / 441 4872 / 742 4874 / 311

H.sapi
S.cere 191 774 / 160 831 / 52 874 / 65 895 / 11

Before the interpretations of results, there is an important factor that must be

conceded at the beginning. Since balanced GNA algorithms perform one-to-one

matching of proteins as a whole, and our algorithm is adapted to match them on the

basis of restriction in clusters, we do not expect a greater number of conservations

than others. It is possible for these algorithms to find hundreds of conserved

interactions overall. Therefore, we compare by only taking the filtered alignments,

44

better for more equitable. These experiments are also made to learn how competitive

an algorithm for the solution of constrained GNA problem could be and the general

position where it could be placed between those with balanced ones.

Numbers of conserved interactions are determined by picking up two pairs of

matches and traversing all possible combinations, say ܯ,(݅)ܯ(݆) ∈ 	ℳ; 1 ≤ ݅ < ݉

and ݅ < ݆ ≤ ݉. All instances of compared algorithms are investigated with all edges

of two PPI networks, ீܧ and ܧு . By cautious implementation, we have extracted

these numbers of filtered alignments that are presented in Table 3.3.

Table 3.3 Number of total conserved interactions extracted by algorithms (filtered);
while MP-CNet remains unfiltered. Note that numbers ranging from 0.3 to 0.7

indicates the control parameter value (α).

Pairs MP-CNet
SPINAL-1 / SPINAL-2 IsoRank

MI-GRAAL 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7
C.eleg
D.mela 35 28/48 28/32 29/34 31/33 30/45 13 13 12 13 12 32

C.eleg
H.sapi 6 5/3 5/5 4/4 4/5 4/0 2 2 2 2 2 2

C.eleg
S.cere 25 24/20 24/21 21/23 22/22 23/27 13 11 10 11 12 1

D.mela
H.sapi 27 14/2 14/6 15/4 14/5 13/2 3 3 3 3 3 9

D.mela
S.cere 99 X/50 X/60 X/56 X/70 X/66 53 53 55 56 51 26

H.sapi
S.cere 62 49/7 47/9 47/9 47/8 46/6 16 16 18 17 16 1

From what we have ascertained from the table above, MP-CNet generally

performs better than balanced GNA algorithms in terms of total found conserved

interactions, mainly due to the included number of matches to filtered alignments

that they are not much. Here, excluding our algorithm, SPINAL performs the best

nearly in all instances, then sometimes MI-GRAAL comes after and sometimes

IsoRank. On the other hand, it is inevitable for these balanced GNA algorithms to

have a greater number of convservations when alignments are not undergone for

filtering, so this makes MP-CNet become behind these algorithms. In C. elegans-D.

45

melanogaster, for example, alignments of SPINAL-1, SPINAL-2 and IsoRank

averagely contain 649, 1972 and 292 conserved interactions and the number for MI-

GRAAL is 2052 as only one alignment is available.

During the experiments, we have discovered a correlation for MP-CNet; first,

observe the total number of connections (i.e. cluster edges) made between clusters in

the following order of pairs of species in Table 3.3: 35, 6, 25, 26, 99 and 62. It

remarks that these numbers are equal or very close to the total conservation numbers,

definitely indicating there is only one (but not two or more for almost all) external

interaction of every connected pairs of clusters and no fixed scores6. Herewith, it

could be implied that clustering results of Inparanoid and all available interactions in

ீܧ and ܧு have direct influences on the success of MP-CNet with an elevated

percentage. The general shape they constituted may take the algorithm to the worse

situation than balanced GNAs or better, depending on the alignments in unfiltered or

filtered form. That is, for a pair of species, MP-CNet can be an alternative tool for

uncovering the conservation of proteins by a higher amount than what other

algorithms achieved so far if matches of proteins are checked to be covered in

cluster, i.e. alignments are filtered with regard to the results of clustering algorithms.

3.1.2. Runtime Performances

Total elapsed time is another considerable criterion for all algorithms while

finding the conservations. It is chosen to become preferable if such one can make it

faster than others naturally. For this reason, we also measured the time for all

algorithms against the instances in this category of our experiments (Table 3.4).

It can be smoothly realized that runtime of any balanced GNA algorithm is

changed steadily such that if PPI networks become denser, then the time increases

6 Only 1 internal conserved interaction (fixed score) is available for D. melanogaster-S. cerevisiae.

46

accordingly. Our analysis showed that MI-GRAAL by far is the slowest algorithm

for process of the alignment although given number of conserved interactions could

be high when unfiltered (see Aladag and Erten, 2013). Runtime of IsoRank is fairly

Table 3.4 Total runtime of the algorithms against all instances

Pairs MP-CNet SPINAL IsoRank MI-GRAAL

C.eleg-D.mela 35 mins 6 mins 2-6 mins 2 hours

C.eleg-H.sapi 31 secs 1 min 19-36 secs 5,5 mins

C.eleg-S.cere 13 mins 6 mins 1,5-6 mins 1,4 hours

D.mela-H.sapi 49 mins 3 mins 1-2 mins 23 mins

D.mela-S.cere 2,9 hours 15 mins 7-33 mins 4,1 hours

H.sapi-S.cere 91 secs 5 mins 1-2 mins 22 mins

good and comparable to SPINAL, but low amount of conservations is its weakness

on the way. We gave a range of runtimes to that algorithm because changing the

control parameter affects the total duration, so the number of iterations it had made

for its alignment optimality. There is no doubt for SPINAL in general so that it is a

fast algorithm while the alignment output it constituted is the best among other

balanced ones if we do not count MP-CNet for filtered ones, thanks to the scalability

feature it possesses for what makes it the state-of-the-art algorithm of today (Aladag

and Erten, 2013).

For MP-CNet, the runtimes are not regular regardless of the size of the PPI

networks. Due to this reason, it is ambiguous where we put the algorithm next to the

others. According to the table above, what we learnt that its computation is faster

than MI-GRAAL usually. Sometimes, the fastest algorithm especially for C. elegans-

H. sapiens and H.sapiens-S. cerevisiae and if some samples of IsoRank with lower

value of ߙ are not counted. For D. melanogaster-H. sapiens, the algorithm becomes

the slowest among all others. Though the estimation of this situation is pretty hard, it

47

could be answered partially with the claims we have gotten in the previous test

branch: The success rate and total time of our algorithm is not only dependent on the

implementation of the message-passing method and heuristic approaches but also the

shape of PPI network inputs they form, the set of clusters, proteins covered in

clusters and edge connections across all clusters.

3.1.3. Discussion of Our Algorithm Runtime Determinants

The discrepancy of runtime of MP-CNet is concatenated to lots of elements,

such as number of proteins and interactions in PPI networks, set of clusters, proteins

comprised in them; total number of connections and generated permutations across

all clusters, etc. As it can be seen, the total time is likely to be under a minute, in

several minutes or even a few hours, perhaps a bit more in the worst cases. Unlike

balanced GNA algorithms, it becomes challenging to predict the total duration

properly if such an algorithm is trained for solving the constrained GNA problem.

Despite this ambiguity, a general assessment can be done with regard to what

we have experienced for many different sizes of input: Constructing the graphs of

PPI networks does not take much time almost and so placing the covered nodes into

the appropriate clusters. However, for the detection of edge additions to ܧ஼ீ between

clusters, the overall time goes up if the number of clusters are high as well as

available interactions of the networks of species. Then, these are used in other

various stages such as getting fixed scores, plausible edge counts and, indeed, in the

message-passing, proportionally affecting the elapsed time. Having more cluster

permutations can also add more time for examination of fixed conservations, edge

counts, external conservations and each selected pairs of matches. Note that one may

hope in the message-passing stage that a cluster with permutations in a huge size

does not have any neighbor, so every iteration is passed in a fast manner.

48

For a cluster containing lots of pairs of nodes (say, 10 or 15), the amount of

permutations drastically increases to millions even billions, extending the total time

much more, mainly because of ݊!. This points out to one of the weaknesses of MP-

CNet so that storing an incredible size of permutations requires a very high amount

of memory that current modern computers may not hold them together, causing the

algorithm to fail before the completion. To address this critical issue, we have

applied a limit to clusters to make them have maximum number of node subset

(mostly chosen 8, for this purpose), thus reducing the size of permutations and

allowing comfortable progression. However, this also influences the total number of

proteins covered as removed ones may have been in part of conserved interactions or

have provided connections between clusters, which is not desirable. This restriction

was reflected to the experiments we have materialized above for our algorithm and

others in the next section in order to be able to complete for many instances.

3.2. Biological Significance

One of the other necessary measurement of alignments is the overall biological

quality they own across all one-to-one matches, mainly based on gene ontology

terms (GO). These are widely used to assimilate the representation of genes or

proteins characteristics across the species and they consist of detectable or directly

observable stuff that are represented and the relationships are shown. The ontology

involves three main domains: Biological Process, for operations or sets of molecular

events; Cellular Component, indicating the parts of a cell or its environment out of

the cell and Molecular Function, showing the elemental activities of genes at the

molecular level.

49

GO annotations of each species are retrieved from the Gene Ontology

Consortium website7 (Ashburner et al., 2000). In our experiments, we took advantage

of the sources of SPINAL algorithm as they already uncovered which GO

annotations have been possessed by the proteins of species. The admissable

calculation method of GO consistency score is composed of counting the overlapped

GO terms that annotate pairs of matched proteins, collectively. We benefit from a

formulization introduced in SPINAL to measure the score for all algorithms in

comparison (Aladag and Erten, 2013):

(ℳ)ܥܱܩ = 	 ෍ ߢ) × (|఑ܱܩ|

∀఑∈௓శ

ܩ ఑ܱ = {(݃௔ , ℎ௕) ∈ ℳ: (௔݃)ܱܩ| ∩ |(ℎ௕)ܱܩ = {ߢ
(3.1)

Here, ߢ denotes how many common GO annotations between ݃௔ and ℎ௕, easily

accomplished by the intersection of these proteins, where ܱܩ(݃௔) and ܱܩ(ℎ௕)

indicates all available annotations of GO terms possessed by the proteins ݃௔ and ℎ௕,

respectively. The total score is assessed by accumulating all found common ones,

multiplying ߢ with its respective total set of overlap occurences among all proteins,

exactly that number.

A comprehensive experiment has been carried out by taking all matches from

unfiltered and filtered alignments of balanced GNA algorithms against MP-CNet.

Table 3.5 and 3.6 represents the results of these examinations. First of all, the GO

consistency scores of MP-CNet look impressive. Receiving such quite good results

are more than what we have expected. The reason why we keep it in the lower level

at the beginning is because total conserved interactions may also have an affect to

overall GO consistency. However, these results showed that this situation should be

7 Freely available at http://www.geneontology.org

50

concatenated to clusters and more than that the generation made by Inparanoid. As

this algorithm does its best to cover the most orthologous proteins in many clusters;

on one hand, these may carry the GO annotations that are mostly common to each

other, and our algorithm has the potential to reveal these similar biological functions

by a high proportion. This convinces that finding the annotations has no dependence

to the availability of conserved interactions.

Table 3.5 GO consistency scores of all alignments of the algorithms (unfiltered)

Pairs MP-CNet SPINAL-1 / SPINAL-2
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 1504 1874 / 736 1836 / 693 1814 / 640 1771 / 668 1761 / 682
C.eleg-H.sapi 205 375 / 236 371 / 205 369 / 203 382 / 219 363 / 197
C.eleg-S.cere 1385 1948 / 827 1945 / 880 1925 / 894 1923 / 875 1916 / 845
D.mela-H.sapi 566 734 / 257 718 / 250 672 / 227 646 / 243 621 / 191
D.mela-S.cere 3539 X / 1586 X / 1562 X / 1451 X / 1426 X / 1349
H.sapi-S.cere 512 919 / 487 880 / 450 877 / 444 862 / 487 845 / 514

Pairs MI-GRAAL IsoRank
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 374 1169 1160 1135 1126 1116
C.eleg-H.sapi 142 263 266 265 258 244
C.eleg-S.cere 489 1553 1534 1542 1522 1530
D.mela-H.sapi 160 322 311 306 309 301
D.mela-S.cere 859 3407 3444 3448 3450 3405
H.sapi-S.cere 315 596 617 613 613 592

Table 3.6 GO consistecny scores of all alignments of the algorithms (filtered);

while MP-CNet alignment remains unfiltered

Pairs MP-CNet SPINAL-1 / SPINAL-2
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 1504 1286 / 345 1256 / 337 1226 / 243 1200 / 280 1177 / 302
C.eleg-H.sapi 205 168 / 67 152 / 43 146 / 46 131 / 44 134 / 29
C.eleg-S.cere 1385 1211 / 255 1208 / 345 1188 / 280 1190 / 299 1186 / 278
D.mela-H.sapi 566 448 / 77 436 / 76 408 / 61 407 / 70 381 / 38
D.mela-S.cere 3539 X / 538 X / 522 X / 461 X / 473 X / 393
H.sapi-S.cere 512 458 / 131 439 / 100 437 / 89 426 / 125 413 / 115

Pairs MI-GRAAL IsoRank
 0.7 = ࢻ 0.6 = ࢻ 0.5 = ࢻ 0.4 = ࢻ 0.3 = ࢻ

C.eleg-D.mela 61 634 629 610 618 605
C.eleg-H.sapi 9 75 75 68 68 60
C.eleg-S.cere 65 823 818 814 797 799
D.mela-H.sapi 33 105 99 97 97 96
D.mela-S.cere 121 2014 2023 2007 1992 1970
H.sapi-S.cere 4 193 193 207 201 196

51

By comparing the results with other balanced GNA algorithms, ours can

outperform in many instances against unfiltered matches of the alignments. Here,

SPINAL-1, the first version of the algorithm, provide the best GO consistecy score in

all pairwise species. We could have said the same for D. melanogaster- S. cerevisiae

pairs if the algorithm had accomplished the alignment without a problem, therefore

marked with (X) as we stated in Table 3.2. IsoRank also performs nicely, and

accumulates more score than MP-CNet in all ߙ parameter values for C. elegans-H.

sapiens, C. elegnans-S. cerevisiae and H .sapiens-S. cerevisiae, but still not higher

than SPINAL-1. Additionally, there is another case, attracting attention that MI-

GRAAL does not seem to be designed for extracting the similar GO annotations of

matched proteins as confirmed by our results that it always stays behind than other

algorithms, including MP-CNet. Observing the other table that involves the results of

filtered alignments, every balanced GNA algorithm, including those with the variants

of the control parameter values, GO scores are not higher than our algorithm. This is

obviously because all matches of alignments are checked for the existence in clusters

in terms of Inparanoid outcomes and that decreases the total number of matches

pretty much. Despite this filtering, the superiorities between the algorithms (if we do

not count ours), still continues exactly the same. Last, but not the least, this series of

experiments constitute a substantial case study for balanced GNA algorithms to

measure the performance overall including those were materialized in Section 3.1,

and allows MP-CNet to be placed anywhere through them even though the

differences of problem solution approach.

52

Conclusion

We presented a new algorithm, MP-CNet, which executes on constrained

pairwise protein-protein interaction (PPI) networks by taking advantage of the

message-passing strategy with belief propagation to perform global alignment with

the set of cluster groups, generated by Inaparanoid. It was explained in details that

many data processing stages should be applied in order to have a relevant input for

the enforcement of the message-passing method on the cluster network and not

experience any serious errors. The algorithm can make the convergence, indicating

the maximum number of conservation of interactions achieved after finite number of

iterations, but mostly depends on the structure of cluster network and PPI networks

to materialize as emphasized many times. Moreover, it was explained that the edge

connectivity between proteins of individual PPI networks must be preserved across

all connected clusters for convergence and higher contingency of optimal alignment.

Experiments showed that MP-CNet, in many instances, could yield more

conserved interactions than balanced GNA algorithms, when their whole alignments

were taken with filterings applied such that the matches from proteins were checked

with the ones covered in Inparanoid clusters to make reasonable comparisons. In

addition, the general quality of biological features on the alignment output was tested

with these algorithms in terms of Gene Ontology (GO). With no filter to the

alignments and then with filters, alignments of MP-CNet has more enhanced

biological quality in many cases, sometimes with fascinating amounts, though more

53

researches may be required if the most similar proteins in respective clusters in terms

of their sequences precisely give higher rate of common GO annotations.

Despite the admissable results by the aspect of conserved interaction numbers,

our algorithm is highly dependent on the amount of connections carried out among

and within all cluster nodes and the clustering results of Inparanoid. There is a

significant correlation between the edge connections of clusters and conservation

amount as the outcomes assess these values are very close to each other, and

including almost no conservation within clusters (fixed scores) at all. This often

causes a direct impact to stay behind to balanced GNA algorithms, assuming the

alignments are not filtered. However, in reality, we are not limited to solely use

Inparanoid for clustering information. MP-CNet can be adapted to those that are

created from the other clustering algorithms as well, like HomoloGene, OrthoMCL

(Li et al., 2003), etc. More than that, we can also implement our own clustering

mechanism that covers almost all proteins. With this way, the comparisons can be

repeated again to observe if it brings improvements to the global alignment of our

algorithm overall and so the biological quality. In the meantime, instead of only

using IsoBase (Park et al., 2011) and DIP databases (Xenarios et al., 2002), we can

benefit from different databases, for instance BioGRID (Stark et al., 2006), HPRD

(Mishra et al., 2006), Ensembl (Flicek et al., 2013), NCBI (Wheeler et al., 2007) and

merge protein informations and networks together to have a more comprehensive

input to MP-CNet. Thinking about the running time, sometimes a large portion of

time elapsed is lost to process of the input data with regard to total proteins and

interactions of PPI networks, connections of clusters, covered total number of

proteins before the message-passing method begins. Therefore, this can be separated

from the algorithm as a standalone program and appropriate inputs can be made

54

available readily in general, enabling to become competitive with other algorithms in

terms of running time. Along with this, more heuristic approaches and scoring

schemes could be added to the algorithm for making more powerful for aligning

proteins, but it is still open for research and development. Another affair to discuss is

MP-CNet fails to complete if such a cluster contains plentiful amount of protein pairs

with the inclusion of dummy nodes, causing to have incredible size of permutations

that total memory of a computer cannot handle them at all. We have applied a

workaround to this issue by limiting clusters to have a predefined maximum amount

of pairs, thus reducing the available permutations quantity. Despite this facility, these

removed proteins may be valuable to the whole cluster network as it can affect

connectivity of clusters and conservations of proteins. For this reason, more

intelligent methods should be implemented in the future, handling proteins,

permutations and matches more effectively.

By presenting the capability of our messge-passing algorithm for constrained

GNA problem, we assure it creates remarkable insights to researchers; so methods

with better results could be produced, as they altogether could make considerable

contributions to the understanding of the problem, bioinformatics and the

identification of organism interactions.

55

References

Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Nature,
422(6928), 198-207.

Aji, S. M., and McEliece, R. J. (2000). The Generalized Distributive Law. IEEE
Trans. Inform. Theory, 46, 325-343.

Aladag, A. E., and Erten, C. (2013). SPINAL: Scalable Protein Interaction Network
Alignment. Bioinformatics, 29(7), 917-924.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of molecular biology, 215(3), 403-410.

Ay, F., Kellis, M., and Kahveci, T. (2011). SubMAP: Aligning Metabolic Pathways
with Subnetwork Mappings. Journal of Computational Biology, 18(3), 219-
235.

Bandyopadhyay, S., Sharan, R., and Ideker, T. (2006). Systematic identification of
functional orthologs based on protein network comparison. Genome
Research, 16(3), 428-435.

Chen, J., Mackey, A. J., Vermunt, J. K., and Roos, D. S. (2007). Assessing
Performance of Orthology Detection Strategies Appied to Eukaryotic
Genomes. PLoS ONE, 2(4), e383.

Chindelevitch, L., Liao, C., and Berger, B. (2010). Local optimization for global
alignment of protein interaction networks. Pacific Symposium on
Biocomputing, pages 123-132.

Fields, S. and Song, O. (1989). A novel genetic system to detect protein-protein
interactions. Nature, 340, 245-246.

Finley, R. L. and Brent, R. (1994). Interaction mating reveals binary and ternary
connections between drosophila cell cycle regulators. Proc. Natl. Acad. Sci.
USA, 91(26), 12980-4.

Flannick, J., Novak, A., Srinivasan, B. S., McAdams, H. H., and Batzoglou, S.
(2006). Graemlin: general and robust alignment of multiple large interaction
networks. Genome Research, 16(9), 1169-1181.

56

Flannick, J., Novak, A., Do, C. B., Srinivasan, B. S., and Batzoglou, S. (2008).
Automatic parameter learning for multiple network alignment. RECOMB,
pages 214-231.

Horn, G. B. (1999). Iterative Decoding and Pseudocodewords. Ph.D. dissertation,
Dept. elect. Eng., Calif. Inst. Technol., Pasadena, CA.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., et al. (2001). A comprehensive two-
hybrid analysis to explore the yeast protein interactome. Proceedings of the
National Academy of Sciences, 98(8), 4569-4574.

Kelley, B. P., Sharan, R., Karp, R. M., Sittler, T., et al. (2003). Conserved pathways
within bacteria and yeast as revealed by global protein network alignment.
Proceedings of the National Academy of Sciences, 100(20), 11394-11399.

Kelley, B. P., Yuan, B., Lewitter, F., Sharan, R., et al. (2004). PathBLAST: a tool for
alignment of protein interaction networks. Nucleic Acids Research, 32(Web-
Server-Issue), 83-88.

Klau, G. (2009). A new graph-based method for pairwise global network alignment.
BMC Bioinformatics, 10, S59.

Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., et al. (2006). Pairwise
alignment of protein interaction networks. Journal of Computational Biology,
13(2), 182-199.

Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., and Przulj, N. (2010).
Topological network alignment uncovers biological function and phylogeny.
Journal of The Royal Society Interface, 7(50), 1341-1354.

Kuchaiev, O. and Przulj, N. (2011). Integrative network alignment reveals large
regions of global network similarity in yeast and human. Bioinformatics,
27(10), 1390-1396.

Lauritzen, S. (1996). Graphical Models. Oxford University Press.

Li, L., Stoeckert, C., J., and Roos, D. S. (2003), OrthoMCL: identification of
ortholog groups for eukaryotic genomes. Genome Research, 13, 2178-2189.

Liao, C.-S., Lu, K., Baym, M., Singh, R., and Berger, B. (2009). IsoRankN: spectral
methods for global alignment of multiple protein networks. Bioinformatics,
25, 253-258.

Mehlhorn, K., and Naher, S. (1999). Leda: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press.

Milenkovic, T., Leong Ng, W., Hayes, W., and Przulj, N. (2010). Optimal network
alignment with graphlet degree vectors. Cancer Inform., 9, 121-137.

Park, D., Singh, R., Baym, M., Liao, C.-S., and Berger, B. (2011). IsoBase: a
database of functionally related proteins across PPI networks. Nucleic Acids
Research, 39, D295-D300.

57

Pearl, J. (1982). Reverend Bayes on Inference Engines: A Distributed Hierarchical
Approach. In Proceedings of the National Conference on Artificial
Intelligence, 133-136.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann.

Remm, M., Storm, C. E., and Sonnhammer, E. L., (2001). Automatic clustering of
orthologs and in-paralogs from pairwise species comparisons. Journal of
molecular biology, 314(5), 1041-1052.

Sato, T., Hanada, M., Bodrug, S., Shinji, I., et al. (1994). Interactions among
members of the Bcl-2 protein family analyzed with a yeast two-hybrid
system. Proc. Natl. Acad. Sci. USA, 91, 9238-9242.

Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., et al. (2005). Conserved patterns of
protein interaction in multiple species. Proceedings of the National Academy
of Sciences of the United States of America, 102(6), 1974-1979.

Singh, R., Xu, J., and Berger, B. (2007). Pairwise global alignment of protein
interaction networks by matching neighborhood topology. Research in
Computational Molecular Biology, pages 16-31. Springer.

Singh, R., Xu, J., and Berger, B. (2008). Global alignment of multiple protein
interaction networks. Proceedings of Pacific Symposium on Biocomputing,
pages 303-314.

Yedidia, J., Freeman, W., and Weiss, Y. (2000). Generalized Belief Propagation.
Mitsubishi Elect. Res. Lab., TR-2000-26.

Zaslavskiy, M., Bach, F. R., and Vert, J.-P. (2009a). A path following algorithm for
the graph matching problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(12), 2227-2242.

Zaslavskiy, M., Bach, F. R., and Vert, J.-P. (2009b). Global alignment of protein-
protein interaction networks by graph matching methods. Bioinformatics, 25,
i259-i267.

