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ABSTRACT

DISORDER INDUCED ELECTRONIC AND MAGNETIC
PROPERTIES OF GRAPHENE QUANTUM DOTS

In this thesis, we aim to study magnetic properties of hexagonal shaped graphene
quantum dots with armchair edge in the case of atomic collapse by modelling two vacan-
cies on it. The measured relativistic electron transport property of the graphene allows us
to observe the phenomenon called ”atomic collapse” in a small energy scale which exis-
tence is proven theoretically before for atoms whose atomic number is higher than 170.
First we modelled a Coulomb potential at the center of a hexagonal shaped and armchair
edged GQD and examined by using tight-binding method. We obtain similar results with
previous works. After that, we started to study magnetic properties of the dot by mean-
field Hubbard method which includes spins into calculation. We modelled a vacancy
close to the center of the dot and examined electronic and magnetic properties by MFH
metod. Also we modelled two vacancies on the dot that we changed the distance between
them and the direction respectively. Also by applying Coulomb potential at the center
of the vacancies we examined magnetic behaviour at the atomic collapse regime. Also,
we compared our results with the works obtained by using RKKY (Ruderman-Kittel-
Kasuya-Yosida) interaction method which considers the indirect interactions of magnetic
impurities that uses electrons of metallic substrates. We found that increasing Coulomb
potential and increasing distance between the vacancies, reduces correlations of electrons
around the vacancies. The ground state energy difference between ferromagnetic and anti-
ferromagnetic systems, that proportional to interaction strength, shows similar behaviour
that has been observed by using RKKY method. Also if we take out two atoms from the
same sublattice and with the same spin property, changing Coulomb potential leads to
ferromagnetic-anti-ferromagnetic phase transition, independent from the atomic collapse
behaviour. Also we observed that there is no direct link between the magnetic transition

and the energy difference of the vacancy states.
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OZET

GRAFEN KUANTUM NOKTALARIN DUZENSIZLIKLERDEN
DOGAN ELEKTRIK VE MANYETIK OZELLIKLERI

Bu tezde, armchair kenarli, altigen seklindeki Grafen Kuantum Noktalarinda iki
bosluk modelleyerek, atomik ¢cokme bolgesindeki manyetik davranmiglarini incelemeyi
hedefledik. Grafenin Olciilen, relativistik elektron iletim 6zelligi bizi; atom numarasi
170’ten fazla olan atomlar i¢in varlig1 teorik olarak ispat edilmis, atomik ¢cokme davrani-
st diisiik enerji seviyelerinde gézlemlememize izin verir. Ilk olarak; grafende goriilen
atomik ¢cokme durumunu, armchair kenarl altigen grafen Kuantum Noktalarinda merkeze
bir Coulomb potansiyeli koyup, siki bag modelini kullanarak inceledik ve literatiir ile
uyumlu sonuclar elde ettik. Bunun iizerine elektron spinlerini de hesaba katan bir model
olan ortalama-alan Hubbard modelini kullanarak, kuantum noktanin manyetik 6zellikleri-
ni incelemeye gectik. Kullandigimiz grafen kuantum noktalar: iizerinde iki adet atomik
bosluk modelleyip, aralarindaki mesafeyi ve durus yonlerini degistirdik. Ayrica yarattigi-
miz bogluklarin bulundugu pozisyonlara Coulomb potansiyeli uygulayarak atomik ¢cokme
bolgesindeki manyetik davraniglar1 gézlemledik. Ayrica, elde ettigimiz sonuglarla RKKY
(Ruderman-Kittel-Kasuya-Yosida) etkilesimi modeline gore elde edilmis sonuglar1 kargi-
lagtirdik. Bu model manyetik momente sahip safsizlik atomlarinin metale ait elektronlar
vasitasiyla dolayl bir sekilde birbiriyle etkilesimini tanimlar. Yaptigimiz calismalarda ar-
tan Columb potansiyelinin ve atomik bogluklar arasindaki artan mesafenin atomik bogluk-
lar etrafindaki elektronlar arasindaki korelasyonu azalttigin1 gézlemledik. Ferromanyetik
ve anti-ferromanyetik taban durumu enerji farki ile orantili olan; etkilesim katsayisinin
onceden RKKY metodu ile bulunan sonuglarla uyumlu sonug¢ verdigini bulduk. Ayrica
degisen Coulomb potansiyelinin atomik ¢cokme davranisindan bagimsiz olarak ferromanye-
tik-anti-ferromanyetik faz degisimine yol actigini gozlemeledik (AA durumu). Ayrica
manyetik faz degisimi ile atomik bosluk durumlarinin enerji farklar1 arasinda direkt bir

baglant1 olmadigin1 gdzlemledik.
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CHAPTER 1

INTRODUCTION

Graphene is a two-dimensional crystal structure with thickness of one atomic
layer, made up from only carbon atoms(Novoselov et al. (2004)). Even though graphene
was investigated many times since 1947, the work of P. R. Wallace(Wallace (1947)), it’s
popularity came after Geim and Novoselov’s work on isolation of graphene by mechanical

exfoliation which was awarded with Nobel prize in 2010(Novoselov et al. (2004)).

Figure 1.1. Graphene(left) consists of a 2D hexagonal lattice of carbon atoms and
Graphite(right) is a stack of graphene layers(Source: Neto et al. (2006))

By treating one single layer of graphite by tight-binding method; Wallace found
interesting results like, electrons’ massless Dirac-fermion behaviour at this structure and
that 1s a semimetal with zero energy band gap. Then Geim and Novoselov synthesed this
theoretical matter by only using a scotch tape. This method’s scientific name is “mechan-
ical exfoliation™, but it’s known as scotch tape method” because of Novoselov, Geim
and co-workers used a scotch tape to obtain graphene in 2004(Novoselov et al. (2004)).
Scotch tape’s adhesivity overwhelms weak van der Waals forces, and that bonds between
graphite’s layers brake by mechanical force. So, peeling off repeatedly, single layer of
graphite(graphene) can be obtained. Even though application of this method is easy and
low costed, samples are obtained are too small to use(up to 10 pm) for commercial pur-
poses.

Many theoretical properties of graphene predicted after the Wallace’s work and
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Figure 1.2. Comparison of graphene producing methods respect to their qualities and
prices. (Source: Novoselov et al. (2012)).

there are new methods to obtain graphene(Juang et al. (2010); Reina et al. (2009); Berger
et al. (2004); Boukhvalov and Katsnelson (2008); Staudenmaier (1898)).

One of them is CVD synthesis technique. This technique provides few or mul-
tilayer graphene films with high quality and large-scale(Juang et al. (2010)). There are
different ways to obtain graphene in this method.(Juang et al. (2010); Reina et al. (2009))
Basically, the method involves carbon based gaseous precursor’s disassociation at high
temperatures in high vacuum. Then by cooling the chamber, a thin film of carbon atoms
forms on a the substrate.

The other one is thermal Decomposition of SiC. The SiC crystal is heated at high
temperatures between 1250 C° and 1450 C° for 1-20 min. Under these conditions Si
sublimates, and the C atoms forms thin graphite layers(Berger et al. (2004)).

Other than this methods; Reduction of Graphite Oxide(GO) method, produce

graphitic oxide, sometimes called graphitic acid by using intercalated graphite compounds.



There are several ways developed by Hummers(Hummers and Offeman (1958)), Brodie(Brdoie
(1859)), and Staudenmeier(Staudenmaier (1898)). Because of the hybridization type of
carbon atoms changes sp® to sp?, final samples has energy gap in the electron density of
states(Boukhvalov and Katsnelson (2008)). But depending on hydrophilic character, GO
is easy to disperse in water therefore it can be used intercalation compound in different

materials(Stankovich et al. (2007)).
(@) Aj

Figure 1.3. Graphene with (a) zigzag edge and (b) armchair edge.(Source: Nikolai
A. Poklonski (2012))

Graphene can be fabricated in different size and shapes(nanoribbon, nanotube,
quantum dot, fullerene etc.) in order to obtain some specific characteristics. One of them
is GQD, which is the main material in this thesis. Sizes of GQDs can go up to 10 layers
high and width of 100 nanometers(Li et al. (2013)). Fabrication of GQDs can be consid-
ered in two main title; the first one is top-down method which means the direct cutting
of graphene-like materials (i.e. graphene oxide, graphene, carbon nanotubes, graphite
powder and coal etc.) into dot size by using various processes. The second on is bottom-
up method, which uses graphene-like smaller polycyclic aromatic hydrocarbons (PAHs)
molecular precursors (such as fullerene, benzene, hexaperi-hexabenzocoronene, glucose
etc.). Those are goes into chemical reactions to build GQDs up(Tian et al. (2018)).

GQDs can be found in different shapes(triangular, hexagonal, etc.) with differ-
ent edge types(zigzag, armchair, mixed)(Fig. 1.3) and each combination has different

bandgap properties(Guclu (2014)). In Fig. (1.4), we see how those edge types strongly



related to energy spectrum. For the hexagonal-shaped GQD with zigzag edge, there is a
small band gap while hexagonal-shaped GQD with armchair edge and triangular-shaped
GQD with zigzag edge have a well defined gap around 0.2t. Also the triangular zigzag
dot has degenerate energy levels at the Fermi level.

While creating those kind of dots in desired shapes, if free electrons on edges
interact with the substate it seriously afects the properties of graphene. In order to prevent

this effect, passivation of dangling o bonds is in use(Liu et al. (2017)).
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Figure 1.4. Single-particle tight-binding spectrum of (a) armchair hexagonal, (b)
zigzag hexagonal, and (c) zigzag triangular graphene quantum dot struc-
tures consisting of similar number of carbon atoms (t=-2.8 eV). Top panel
shows the atomic positions.(Source: Sheng et al. (2012))

One of the theoretical properties seen at graphene is atomic collapse behaviour of
electrons. The first steps through that concept taken when the Dirac equation solved for
an electron in a field of a point charge by Darwin(Darwin (1928)) and Gordon(Gordon
(1926)). It is seen that for point charges which has greater charge than 137 electrons
has, shows no discrete energy spectrum. Here, stable atomic bound states are begins
to ’dive” into the positron continuum and lifetimes becomes finite(Wang et al. (2013)).
As electron wave function component falls toward the nucleus, a positron component
escapes to infinity. After that realization the Dirac equation solved for more realistic case:
for a field with finite radius, a nucleus! Then, critical value for the observation of atomic

collapse found as 7., ~ 172.
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Figure 1.5. Schematic drawing of the atomic bounding energies as function of the
atomic number Z and the level diving process in the supercritical regime.
The dotted curves indicate the solutions for a point charge while the solid
curves take into account the finite size of the nucleus (Source: Moldovan
and Peeters (2016))

Because of the nature doesn’t serve an atom that much heavy, people tried to ob-
tain that value by colliding heavy ions. Although, positron peaks are observed in that
experiments, due to the complexity of the process’, that peaks couldn’t related to specific
positron creation case(Schweppe et al. (1983); Cowan et al. (1985); Soff et al. (1985)).
Now, thanks to graphene’s large fine structure constant, we are able to observe this phe-

nomena in a small energy scale.



CHAPTER 2

THEORETICAL FOUNDATIONS

In this section we will introduce graphene and examine it’s electronic behaviour by
the first method that been used historcially(Wallace (1947)). Then we will also introduce
Mean-Field Hubbard model which we’ll use for investigating it’s magnetic effects by

including spin property of electrons and electron-electron interactions with this model.

2.1. Tight-Binding Model

Tight-binding method can be considered as the most elementary method to threat
crystal structures. Although its simplicity it’s very accurate for graphene(Wallace (1947)).
In an atom its electrons stack in shells around a nucleus. In a complex structure of atoms,
they prefer to create electronic bonds that they can find them in a more stable state. As
electronic shells getting closer to be filled the more stable state occurs. Electrons in
closed shells(conduction electrons) are less likely to interact compared to in unclosed
shells(valence electrons). So, for those “likely to interact” electrons must overcome an
energy that occurs from overlapping wave functions with other atoms’ electrons in order
to disperse along the crystal.

Carbon atoms that forms graphene, has six electrons. Four out of six of them are
valence electrons. Normally, a carbon atom has atomic orbital configuration 1s22s22p?
in the ground state. But in the formation of graphene structure, three of those valence
electrons occupies s, 2p,., 2p, orbitals becoming sp? hybridized, and creates o bonds with
its neighbour carbon atoms on the plane. Those strong bonds are related to mechanical
properties of graphene. The remaining unhybridized electron fills the p, orbital. This
orbital stands perpendicular to the surface and it creates 7 bond which is the result of the
overlapping p, orbitals of the other carbon atoms. Those bonds determines the electronic
features of graphene. The first examination of graphene in 1947, P.R. Wallace studied
those electrons in p, orbitals; in his paper, titled The Band Theory of Graphite”, and
he gave highly accurate calculations for graphene although tight-binding model does not
take electron-electron interactions into account.

For generating the method, we can write total electronic wave function as super-



Figure 2.1. (a) Lattice structure of graphene. (b) sp? hybridization of carbon atoms
to form the 2D crystal structure of graphene as well as delocalized 7 or-
bitals.(Source: Liang (2014)).

position of localized orbitals

Y(F) =Y Cigi(F—77) @.1)
By solving time-independent Schrodinger equation we can find the C;’s,

H(7) = Ey(F) 22)

We multiply the equation by (¢;| from the left and then extend it, in terms of localized

orbitals.

(i H|Y) — E{ilo) =0 (2.3)

> Cal{ilHIdn) = E(dilén)) =0 (2.4)

n



At this point, in order to simplify our job, we will only consider about nearest neighbour

atoms. Now, summation below only depends on neighbour atoms.

> CulldilH|dn) — E(dil6n)) = 0 2.5)
(n,1)

where (n, i) indicates summation is over nearest neighbour atoms where integrals

. t ifi=n
(Dil H|pn) = (2.6)
0 ifi#n

We can use Bloch wavefunctions due to translational symmetry,
) = =3 Frig(r— ) @7
k \/N i v

In graphene, carbon atoms are in formation of the honeycomb lattice. The unit cell of a
honeycomb lattice contains two atoms, A and B, that form triangular Bravais sublattices.
Using the Bloch’s theorem the wave functions for that sublatices can be written in terms

of localized p. orbitals as,

efhag (F— Ry) (2.8)

> Mg, (F— Rp) (2.9)
Rp

where N4 and Np are the number of A and B sublattice sites, respectively. For

graphene, the positions of sublattice R4 and Rp are given as

R4 = na; +mas + b, (2.10)
RB = na; + mas, (211)

The total wavefunction can be written as linear combination of two sublattice wavefunc-



tions:

Ui(r) = A (r) + By (r) (2.12)

Plugging the total wavefunction into time independent Schrodinger equation and mul-
tiplying from the left side with each sublattice wavefunctions we can get Ay and By

coefficients.

(W [ H i) = (W |w) (2.13)
(WP | H ) = (¢ [¥) (2.14)

Due to neglected on-site energies we have:

(Wi | H i)

0 2.15)
(Wi [H|vi) =0

(2.16)

and we left with the off-site hopping integrals with only nearest neighbour hopping pa-

rameters included,

WPIH) = - M gt - R)H(r - Ra)on(r — Ra) Q17
(Ra,Rp)

here, the integral is a constant and will be shown as ¢ further. If the summation expanded

over the three nearest neighbour, equation 2.17 can be written as,

(WP H gty = t(e™ ™ 4 e(mikb=ar) o o(=ik(b—a2)) (2.18)
= tf(k) (2.19)



Here, lattice vectors for graphene defined as,
a = g(\@, 3), ay= g(—\/ﬁ, 3) and b= a(0,1) (2.20)
Knowing that,

WP HW2)* = (Wi H WP ) (2.21)

We can write the problem that reduced to eigenvalue problem in matrix form,

E(k) A _ (0 ) A (2.22)
By, fk)* 0 By,

And its eigenvalues are,
E. (k) = £[tf (k)| (2.23)

which corresponds to the spinors below,

VGRS :
Bi) V2 \ g

Note that the spectrum is gapless at six points in the first Brilloin zone and there
is a symmetry with respect to the Fermi level ( Er = 0). However this symmetry is
broken if the next nearest neighbours are taken into account. Two of these six corners,
indicated by K and K’, are non-equivalent and the other four points can be obtained
by a translation by reciprocal vectors. Other high symmetry points of reciprocal space
are; the I' point in the center of the Brillouin zone and the M point which is between

the closest K and K’ points(Guclu (2014)). While examining electronic properties, we

10
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Figure 2.2. (a) Band structure of Graphene, (b) Closeup to Fermi Level.

expand energy dispersion E(k) in Taylor series around K and K’ points,

fK+aq)=f(K)+ [(K)q (2.25)
which q is a small vector taken respect to K point.

f(K + q) _ (e—z‘Kb + e—z‘K(b—al) + e(—iK(b—az))

— [igbe ™" +iq(b — a1)e KO~ 4 iq(b — ap)e Ko=) 026
= (1 —iqb)[e™ ™K + e Hbma) 4 omiK(bme)] '

+ [iga;e®07) 4 jqaye K]

here K = (4£/3a,0) and by putting the other vectors,

f(K+q)=(1- z’qb)i + e%‘j— e 5| —i{z( — % +z§>a(qx73) + 2)qy>
3o B D)

3
= ia(—qm, —iqy)

(2.27)

11
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Figure 2.3. Symmetry points of Graphene.

then, equation 2.24 can then be written as

A 0 . —ig,) (A
Exq) = 7] = _gm o ) (A (2.28)
By qz +1Qy 0 By

Eigenenergies and corresponding eigenfunctions are,

3
Eic(a) = £5alt|ldl, (2.29)
1 7i9q/2
Vicla) = 75 (iewq /2> (2.30)

= signs for a conduction and valence band, respectively. Same calculations can be done
around point K’ for small q, and we get same eigenenergies and eigenvectors. By intro-

ducing a Fermi velocity vp = Pg—g , we can write equation (2.29) as

E(q) = +hvr|q| (2.31)

This solution is identical to the solution of the Dirac Hamiltonian for relativistic massless

12



fermions. Here, a speed of light is played by a Fermi velocity. One can estimate vp ~
10%m /s which is 300 times smaller than a speed of light. Two eigenfunctions for K and
K’ points of spinor wave functions for fermions. Here, a role of spin is played by wave
functions of two sublattices, A and B. Because of that, they called as pseudospins and
can be described by Pauli matrices o = (0,,0,,0,). Thus, the eigenfunctions given by

equation 2.30 are usually called pseudospinor. (Guclu (2014)).

1

Figure 2.4. A benzene ring(Source: Guclu (2014)).

Easiest way to describe TB hamiltonian is using second-quantizatiton notation:

Hrp =Y tij(cl,cjo + hc) (2.32)

{ig)

Here, cj, is the annihilation operator which annihilates an electron from the j site with
spin o, and the cja creates the same electron on < site with hopping energy ¢;; = —2.8
eV(Castro Neto et al. (2009)). (ij) indicates that we are considering only the nearest
neighbour hoppings. In the further calculations we’ll also include second nearest neigh-
bour hopping energy.

A simple example about how a TB Hamiltonian appears can be shown by mod-
elling a benzene ring(Fig. 2.4). Here, the electron on site 1 can hop to only 2nd and 6th

sites. The the electron on site 2 can hop to only Ist and 3rd sites, and goes on. The TB

13



Hamiltonian in matrix form appears as,

(0t 00 0 ¢
t 0t 000
Hrpyzene = vorueoo (2.33)
00¢t0¢tO0
000 ¢ O0 ¢
t 000 ¢t 0

2.2. Mean-Field Hubbard Model

While using TB model, we totally ignored spin dependence and electronic cor-
relation effects. Because of that, we cannot expect to investigate magnetic properties of
the system. Hubbard method is a simplified instrument to investigate ferromagnetism,
it neglects n-fold degeneracy of any orbital that valence electrons are in and defines the
orbitals as a half-filled s orbital(Eder (2017)). Foreseeingly, finding out that the Hubbard
model is nothing but TB model with an extra electron-electron interaction term, won’t be
surprising. Now, starting from exact many-bond Hamiltonian written in second quanti-
zation formalism we are going to derive Hubbard Hamiltonian and Mean-Field Hubbard

Hamiltonian further.

1
H = Z tpqc;)cq + 5 Z(pq|V|rs)c;cflcrcS (2.34)
P

pqrs

For the first term, where p = io, ¢ = jo’ and o indicates spin dependence.

tpg = (pltlq) = (ioltlo's) = (ilt]j) {olo”) (2.35)
6 /

oo
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Similarly for interaction term, p = io, p = jo', r = ko”, s =lo"”

1 1
Vij =35> (palVirs)chcheres = 5> (ij|[VIkl)clclewer (o]0™) (o']0")  (2.36)
2 pqrs 2 igkl 5 5

Finally, equation (2.34) can be written as,

H = Zt”clc] + = Z ij|V|kl)clclerer(alo™)(o'|0”) (2.37)

z]kl

Next, to calculate on-site repulsion term saying that

(#|V]is) = (2.38)

1
5 Z(ij|V|kl>c;c}U,cw/cia = — Z Ucw wer'Cw (2.39)

igkl ioo’

After expanding the spin terms and exploiting the second quantization algebra, final on

site expression becomes,

— Z CirCit chzi —|—cuc7¢cﬁcn U Z N1 (2.40)

niT nw

Likewise for off-site repulsion term,

<]Z|V|Z.7> ‘/1] and _Z jZ|V|ZJ Cio zcr’cw/cig' (241)
7]

O'O'

It is necessary to convert our quartic hamiltonian into a quadratic one because handling a
quartic hamiltonian is almost impossible even for a computational power. Again using the

properties {c;,,cjo} = 0and {c}a,, Cio } = 0 05, and also converting suitable products
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of creating and annihilation operators into number operators; we get,

E Vi — E V. T
5 l]CwCJU CwCJU) 5 Ucw UU/ 51] +CZUCJU )CJU
v

z;ﬁ] 1#] =0
oo’ oo’ i£]
1
= B Z VijhioNjor
i#]
79 (2.42)
1
=5 > Vig(marngr + nayngy + nirngy + nign)
—
oo’
1
D) Z Vij (niynay) (nJTnji Z Vijnin;
i#] M 2

0'0'

Finally Hubbard and extended Hubbard Hamiltonian can be written as summation of all

terms.

H= Z tijcl cio + U Z Ny Ty += Z Vinin; (2.43)
Z#J

\ J

~
Hubbard M odel

~~
Extended Hubbard M odel

Now, we can make some comments on the model by looking closely. The first term is
the TB term in second quantization form. It represents electrons’ moving from one site
with hopping energy ¢. The second term is for on-site Coulomb repulsion that prevents
us to putting two electrons with opposite spin in same site, by costing it with raising
the system’s energy, which is less favorable if we want to find ground state energy for
a system. Actually, putting opposite spins in same site lowers the energy but, because
of number of inetracting electrons equal to number of sites for graphene, keeping them
in different sites is more favorable in order to lower the total energy. The third term is
off-site Coulomb repulsion term that includes the interaction energy of the electrons on
different sites. Also one can notice that there is no term related to putting electrons with
same spin on same site in accordance with the Pauli exclusion principle.

Now that the exact Hamiltonian is derived, we can begin derivation of mean-field
Hubbard Hamiltonian. Now we are going to assume that, system interacts with a constant

background charge field and to do so we begin by expressing the number operators as an
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average value plus a deviation from the average:

nip = (Nip) + (niy — (nag)) and ng = (nay) + (niy — (nqy)) (2.44)
—— ————
AniT Anii
Nie = (Nig) + (Nic — (Nis)) and Njo = <nj0> + (njtf - <nj0>) (2.45)
An; An;

For on-site term using equation (2.44),

naniy = [(niy) + Ang][(ng) + Angy]
= (nip)(nay) + (nip) Angy + Ang(ng) + AngAngy
—_——

~0

(2.46)

A (nap)nay + (na)nir — (na) (nay)

By using equation (2.45) similar to preceding calculation off-site repulsion term becomes,
Finally Hamiltonian can be approximated by,

H =~ Ztijc;c;a + UZ(TLn)nn + (nignir — (nir) (nay)
ij i
(2.48)

3 S Vigtndng + {nghs — (b ()
i

Our Hamiltonian is now in quadratic form in the mean-field approxiamtion, and it makes
the diagonalization easier. Now we’ll take average value of an p, orbital as 1 for a charge

neutral system and also average value of a spin as 1/2 for both up and down spin; for

17



considering the bulk graphene.
(n;) =1 and (niz) = =

which makes bulk mean field Hamiltonian,
H]B\;[l]bj’k - th Cig ](7 + 5 Z NNy — ZV;J n; + ng — 1)

To get the single body mean field Hubbard Hamiltonian, we are going to use

HMF — HMF . HBulk + HBulk
0

- W+ U Z<"z‘¢>”z¢ + (nip)nip — (nir) (nay)

b3 S Vigtmang + (ghms — i) )

i#]

0
Ztmca jcr U Z annZi Z V;J L + n] - 1)
+ Ztlj Civ ]o + 5 Z NNy — Z ‘/z] n; + n; — 1)
= Z tlJCw jo + 5 Z annN +5 Z ‘/;J T + n]

\ 7
g

Z<'L]> Tij (C;ro_c]'g—l-h.c.)
1 1
+U Y [((ni) — )i+ ((nig) = 5)na]

2

45 S Valltn) = s + () — 3 + Comstarts

0

(2.49)

(2.50)

(2.51)
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Finally knowing that V;; = V);, mean field Hamiltonian becomes its last form as follow.

1 1
HMFH = E Tl‘j(Czo.C}L-a + hC) + U E (<n,—T> — é)nw + ((’l’lu) — §)nz¢

10’ (2.52)
t3 Z Vij[({ni) — 1)ng + ({n;) — 1)n;]

2.3. Further Calculation Details

Before discussing the results, some calculation details should be given. For all
calculations both for Tight-Binding and mean-field Hubbard method, hopping parameters
are taken as t=-2.8 eV for the nearest neighbors and snne=0 eV and snne=-0.1 eV for the
second nearest neighbors(Castro Neto et al. (2009)). Because of vagueness of fermi level
for the spatially non-symmetric vacancy modellings on the dots, calculations made by
taking snne=0 eV and snne=-0.1 eV and are given together. On site Coulomb interaction
term U is taken to be 16.522/x where & is effective dielectric constant and can be changed
for the desired substrate. For the long-range off-site Coulomb interactions V;; are taken
as 8.64/k and 5.33/k for the first and the second nearest neighbours respectively and
1/d;; for other distant atoms. All interaction integrals are calculated by considering Slater
7, orbitals.

MFH problems are solved self consistently because of there is no formal wave-
functions for MFH problem. In this process, we used eigenfunctions of TB hamiltonian
with additional initial conditions to attract electrons around the centers of the Coulomb
potential applied at the first step. End of the every self consistent loop we checked that
how much the current ground state smaller from the previous one and used their differ-
ences as a cut-off for a small value(check if abs(GSE(n) — (GSE(n — 1)) <= 1071%).
Also with different weight adjustments for wavefunctions between the self consistent cal-
culation steps, we provide proper conditions in order to minimise the step number and to
get proper ground state energy at the same time. For example, we took 40 percent of the
previous wavefunction and 60 percent of the current. To do so, we prohibited divergence

from the ground state energy.
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CHAPTER 3

DISORDERS AND GRAPHENE

In this chapter we will categorize possible disorder types can be found on graphene
and discuss theoretical foundations how graphene’s electronic properties change related

to defects generally.

3.1. Absence of Backscattering

The analytical calculations show that long-range potential which ranges more than
the lattice constant, vanishes the probability of backscattering by making effective poten-
tial same both A and B sublattices(Ando and Nakanishi (1998)). In other words, the con-
served symmetry of sublattices causes destructive interference between scattering waves.

This makes graphene highly conductive.

3.2. Long-Range Disorder

Graphene products can be disordered due to the surface atoms of the substrate
that it putten on, and we will consider those kind of disorders as long-range disorder.
Physcally, if the potential range is larger than the lattice constant but much smaller than the
typical electron wavelength we call that type of disorders as long-range disorders(Ando
et al. (2002)) . In order to model the long-range disorder due to the potential fluctuations
by the substrate, we can use a superposition of gaussian electrostatic potential. The long-
range disorders can cause a magnetic phase transition. Also, if the disorder has a long-
range character, it can lead to charge localizations as electron-hole puddles(Altintas et al.

(2017)).

3.3. Short-Range Disorders

Examples of this types of disorder arises because of localised defects such as va-

cancies, F centres, interstitials, substitutional impurity atoms, di-vacancies, dislocations.
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By modelling a short-range disorder, a Dirac-delta potential can be considered at the dis-
order center. For short range disorders, scattering potential is smaller than the lattice
constant of graphene(Ando et al. (2002)). In our work our defects are in vacancy type.
A vacancy can be described as absence of an atom on the lattice. Vacancies are mostly
produced by post-synthesis process like knock-on events by high energy electron, ion, or
neutron radiation can dislodge or fully remove a carbon atom(Collins (2009)). In weakly-
bonded metal crystals an absence of an atom can be considered as a small perturbation.
But for graphene it’s not the case. When a graphene vacancy breaks o bonds, the en-
egy must be considered around 7.8 eV(Kaxiras and Pandey (1988)). Vacancies result
wtih three dangling bonds that will interact or rehybridize with surrounding molecules
or atoms. The lattice defects break the lattice symmetry. This broken symmetry causes
a local magnetic moment in a small site around the defect. Therefore, one can induce a

local magnetism in graphene by introducing the lattice defects.

3.4. Supercritical Disorders

After derivation of the Schrodinger’s equation(Schrodinger (1926)) for quantum
mechanical systems, theorists tried to derive an equation for the relativistic particles which
are already has quantum mechanical properties(Klein (1927); Gordon (1926); Dirac and
Fowler (1928a,b)). In 1928 P. A. M. Dirac derived that equation which is know by his

name, as stated below,

(Bmc2 + c< i anpn>>1/}(a:, t) = ihad}éﬁ’ 2 (3.1)
n=1

Here, o and [ are corresponds to,

a, = and (= (3.2)
o, O 0 1
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where

(0 1> (0 —z') (1 0)
01 = ) O9 = ) 03 = (33)
10 i 0 0 —1

are Pauli spin matrices. Solution of Dirac equation proposed negative energy values.
Dirac explained that by thinking as all of the negative energy states are already filled
with electrons and if one of those electrons kicked out by help of external energy, let say
photons, it leaves a "hole” behind with positive charge(Dirac and Fowler (1930)). Then
the "holes”, that we recognise as positrons today, are discovered experimentally by Carl
D. Anderson in 1933(Anderson (1933)). After derivation of the equation, Darwin(Darwin
(1928)) and Gordon(Gordon (1926)) tested it with a special potential V (r) = —Za/r

and reached Sommerfeld formula for a hydrogenic atom(Sommerfeld (1919)) which is,

mc?

E = (3.4)

1 (Za)?
3 [V/(+1/2)2=(Za)2+n]

L
137

number. If we look closer, we can see that states with total angular momentum j=1/2 gives

Here o = is fine structure constant, j is total angular momentum and n is quantum

imaginary values while 1 > Za. So that is making Z = 137 is a critical value for a point

like nucleus for Dirac equation. For example 1s;/, energy is calculated by

B, = mc*y/1 — (Za)?, (3.5)
which becomes zero at Z = 137 and the slope of the curve E;, , (Z)

dE151/2(Z) 2
— = M —— 3.6
dz 1—(Za)? (3.6)

which goes to infinity as Z goes to 137 and offered wavefunctions at small distances
begins to oscillate near the origin and loses its physical meaning. Electron states goes into
positron states when the atomic number changes from sub-critical to supercritical. Which

brings us break down of the wavefunction what is called as “atomic collapse”. Because
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of the point charge description of atom is far from being physical, an investigation of
finite radius solution needed(Pomeranchuk and Smorodinsky (1945); Werner and Wheeler
(1958); Pieper and Greiner (1969)). In a tidiuos examination made by Soff et. al it is
calculated as Z,.,. =~ 172(Soff and Rafelski (Soff and Rafelski)).

Ofcourse, Z., is much higher atomic number than natural atoms can have. In or-
der to obtain the effects of those superheavy atoms, the collision of heavy ions idea arose.
However, experimens and theoretical calculations leaded to spontaneous positron emis-
sion, the actual source of those emissions cannot be clearly explained(Schweppe et al.
(1983); Cowan et al. (1985); Soff et al. (1985)). Thanks to massless Dirac fermions at
graphene with Fermi velocity vp = ¢/300 we can investigate atomic collapse physics
much smaller energy scale and in two dimensions(Vafek and Vishwanath (2014)). Con-

sidering Fermi velocity at graphene we define an effective fine-structure constant as,

Q)
[
[\)

1
a=— = —9 (3.7

where « is the dielectric constant. Because this effective fine-structure constant will be
much higher than the original one, Z. needed can be taken much smaller(Shytov et al.
(2007, 2008)). That means even a charged impurity composed from an element with a
small atomic number can be used to observe atomic collapse. So, using graphene changes
the energy scale from MeV to sub-eV(Moldovan and Peeters (2016)). The new challange
was the observe this effect experimentally. Atomic collapse demonstrated on graphene
by using Ca dimmers(Fig. 3.1) at a temperature about absolute zero(Wang et al. (2013);
Moldovan and Peeters (2016)).
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Figure 3.1. Evolution of charged impurity clusters from subcritical to supercritical
regime. (A to E) dI/dV spectra measured at different distances from the
center of Ca dimer clusters (i.e., artificial nuclei) composed of one to five
dimers. (F to J) Theoretical normalized dI/dV spectra (obtained from the
Dirac equation) for graphene at the same distances from dimer clusters as

in (A) to (E). (Source: Wang et al. (2013))
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CHAPTER 4

DEFECT EFFECTS IN GQDS

In this chapter we’ll investigate, single and double defect effects. First, by placing

a tunable impurity at the center of a GQD we’ll examine how the electronic states behave

using Tight-Binding and Mean-Field Hubbard model. Then we’ll place a vacancy near the

center for the same purpose and also use this system to gradually introduce the magnetic

behaviour on the GQD. Second, by placing two vacancies in GQDs, we’ll observe how

its magnetic behaviour change due to distance and the beta value. Then we’ll try to

understand that how its magnetic behaviour changes using physical concepts.

4.1. Single Defect Effects

Figure 4.1.

Visualization of applied potential with a cut-off area(red area) on hexago-
nal GQD with armchair edge.

To demonstrate effect of a charged impurity, we modified that Coulomb potential

with a decaying length, it becomes,

—hwpl ifr <142A
Vr) = o (4.1)
—hopl ifr > 1424
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where 7, = 1.42A4 is the lattice constant and the [(beta) is a dimensionless constant that
we’re going to use for tune the potential. This kind of supercritical potential has been
demonstrated by pushing five Calcium dimers in a place as a cluster at at low temperature
T <10K.

We calculated eigenenergies for a GQD(14622 Atoms) with arcmhair edges by
using TB method, considering it has an applied Coulomb potential shown in equation
(4.1) at the center of the dot without a second nearest neighbour hopping term. A toy

model of the system is shown in the Fig. (4.1).

Eigenenergy (eV)

Figure 4.2. TB eigenenergies vs beta for armchair edged hexagonal GQD(14622
Atoms) with snne=0 eV

To examine the behaviour of the electrons under different potential strengths, we
varied the beta value from O to 2, by raising it 0.1 at every step(Fig. 4.2). The first thing
we can observe is the totally symmetric distribution of the energy levels at beta=0 due
to absence of the Coulomb potential. Then, the energy levels begin to decrease while
the Coulomb potential increase. We see that the first atomic collapse behaviour occurs
at beta=0.5 for the first energy state above the fermi level. At this point the Coluomb
potential induces an energy about 1.44 x ! eV. That is less than the energy needed to
power a single 100 watt light bulb for one second. This value supports our "low energy
scale” argument. We also marked the other crucial points which are helping the examine

distinct wave function behaviours.
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Figure 4.3. Corresponding probability densities for specific beta values pointed in Fig.
(4.2) versus p=r1/R.

Fig. 4.3 describes the probability density of electronic states marked in previous
Fig. 4.2 versus the unitless distance p = r/R to the Coulomb potential. Here r stands
for a distance of any position on the GQD from the Coulomb potential that stands on the
center of the dot; and R stands for the longest distance from the Coulomb potential. We
can see that at beta=0.20(red line), there is almost no probability of finding electron close
around the Coulomb potential. Starting with beta=0.50(green line), probability distributes
evenly, which is the point that we observe the first collapsing event. Then probablity of
finding the related electron is getting higher and higher due to beta, around the Coulomb
potential.

Wave functions that belong to the analytic solution for the finite-size impurity has
e~ 2V (Z)*=3%logr factor(Van Pottelberge et al. (2017)). That function shows a strict be-
haviour which is fast oscillations at very close points to the impurity, when the charge
is increased. This is a sign for the atomic collapse for us. We can clearly observe that
behaviour in Fig. 4.3 at beta=1.21(blue line) and beta=1.80(purple line) for related elec-

tronic states.
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Figure 4.4. (a) Energy spectrum for a dot with a Coulomb impurity. The dashed curves
are for a point impurity and the solid ones for a finite size impurity of
radius equal to the lattice parameter.(b) Probability density vs p for the
points labeled by (1) to (4) in (a).(Source: Van Pottelberge et al. (2017))

When we compared our results with the analytic calculations for a circular quan-
tum dot with infinite-mass boundary condition(Berry and Mondragon (1987)) and under
the effect of the same Coulomb potential(Fig. 4.4), we see that both results are simi-
lar(Van Pottelberge et al. (2017)). The crucial point of that comparison is the working
spaces. In our examination we made our Tight-Binding calculations in the real space, the
analytical calculations made in the momentum space due to effective-mass approxima-

tion. Taking this into account, one can be fascinated due to those similarities.

snne=0 eV 04 i snne=-0.1 eV

T
: R\ N NN N
SN . \
~ N : N WM
e R R \

Eigenenergy (eV)
Eigenenergy (eV)

Figure 4.5. (a) TB eigenenergies vs beta for armchair edged hexagonal GQD(5514
Atoms) with snne=0 eV and (b) snne=-0.1 eV.
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Then we make the same TB calculations for a smaller system(5514 Atoms). At
this point, our choice of the smaller system is to reduce the time consumption. Because
further calculations will include electron-electron interactions and this will take much
higher time. So, we will show that the same behaviour still can be observed in this smaller
system.

Here, we include the second nearest neighbour energy as -0.1 eV, we clearly see
that the energy levels shift about 0.3 eV(Fig. 4.5). However, we also see that the beta
value still remain same for the collapsing behaviour. This can be explained by symmetry
of the system that is arising from both sublattice symmetry and the central place of the
Coulomb potential. We will break soon this symmetry by creating vacancies on the GQD
and importance of the snne energy will be seen more clear. Those resemblances generate

a reliable ground for the further calculations.
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Figure 4.6. (a),(b)Tight Binding and (c),(d) Mean-Field Hubbard results for armchair
edged hexagonal GQD(5514 Atoms) with snne=0 eV and snne=-0.1.

In order to include spins and take a further step to examine the magnetization and

correlation effects, we need to electrons’ spin characterictics and the electron-electron
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(eV)

up

Eigenenergy

interaction into account. In order to introduce that properties, we calculated eigenener-
gies of the same system by MFH method. Here, we see that starting point of collapsing
behaviour shifts to beta=0.6. We are relating that shift is to screening effect(Kotov et al.
(2012)). We observe that shift for both snne=0 eV and snne=-0.1 eV cases(Fig. 4.6). Here
we only show down spin matrix eigenenergy values because of those are same for up spin

matrix values due to symmetry of the system.
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Figure 4.7. (a)Tight Binding results for hexagonal shaped GQD with armchair
edge(5513 Atoms), snne=0 eV. Mean-Field Hubbard results (b) up elec-
tron and (c) down electron eigenenergies for the same configuration. Red
lines stand for the vacancy states.

Tunable artificial atoms at a supercritically charged vacancy in graphene has been
observed(Mao et al. (2016)). Considering this, we started with taking out an atom from
the dot. While doing that, we chose one of the closest atoms to the center of the dot that
we considered as it has an electron with up spin state. Here we see the vacancy state at

0.25 eV at beta=0 for snne=-0.1 eV due to TB result(Fig. 4.7,(a). When we calculated
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eigenenergies of same system by MFH method, we observe that the vacancy state shifts
above for up spin energies and below for down spin energies with respect to TB result.
So, we see that, for the up spin electrons, the band gap is lesser than respect to the band

gap for the down spin electrons. Also, with respect to clean dot examination have been

made before, the beta value where the collapsing behaviour starts at, shifted from 0.6 to

around 0.7(Fig. 4.7 (b),(c)).

beta=0.2 beta=0.75

beta=1.21 beta=1.80

Figure 4.8. Spin densities for the single vacancy configuration with (a) beta=0.20, (b)
beta=0.75, (c) beta=1.21, (d) beta=1.80.

On the Other hand, absence of d and f shell electrons is makes an magnetic cou-
pling hard to observe. In graphene substances the source of magnetism are localized
electronic states. This localized states can be based on edge types or disorders. Here
we see in Fig. (4.8) how spin densities changing with beta for the same single vacancy
system. While beta is increasing we are losing localized spins. Because, at the beginning
electrons with a particular sign localises around the vacancy. In our single vacancy case,
down spins localises around the vacancy because of the removed carbon atom considered
as it has an up spin characteristic. While we are increasing the Coulomb potential, at
some point, even the opposite signed spins cannot resist to the attraction of the potential

and those pulled electrons spoils the local magnetisation.
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4.2. Magnetic Correlations Between Defects

To observe correlation and magnetic behaviour due to distance between vacancies,
we increased number of vacancies to two. In 1989, E. H. Lieb proved two theorems
about ground state magnetism for bipartite lattices, depending on Hubbard model. In
both theorems uniqueness of the ground state is also proved. In his work he showed that
ground state magnetic moment of a bipartite lattice is equal to half of the subtraction of
the number of each lattice sites(Lieb (1989)). In a mathematical description we can show

the theorem as,

_ [Na— Ng|

p 2

4.2)

Here, N4 and Np is number of A and B sublattices respectively.
So, we can use this descriptions as a tool to investigate the magnetic behaviour of

our substance, due to its biparticity.

Figure 4.9. Two toy models to show how the vacancies moving along in (a) zigzag and
(b) armchair direction. The A site that pointed with the star sign indicates
the fixed vacancy. The other vacancy moves on the other points.
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First, we tested if the Lieb’s theorem is valid for the double vacancy configuration
and also the magnetic correlations between the induced spins around the vacancies for
different distances between two vacancies and for different second nearest neigbour ener-
gies. While we are doing that, we take out an atom from A sublattice at five atom distance
from the center of the dot. Here we assume that A sublattice sites have electrons with
up spin in ground state and B sublattice sites have electrons with down spin. In every
configuration, we hold still this vacancy and changed the position of the other vacancy
along the zigzag direction and armchair direction. We take the longest distance between

the vacancies as ten atoms in zigzag direction.
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Figure 4.10. Ground state energy difference —(Es, -1 — Fs,—o) in logarithmic scale (in-
set: real) for AA case on (a) zigzag and (b) armchair direction calculated
by using MFH for hexagonal GQD with armchair edge with double va-
cancy(5512 Atoms). The red lines stands for snne=0 eV, the orange ones
for snne=-0.1 and the black ones for snne=-0.2 eV.

In the first case, we take out two atoms from two A sublattice sites which repre-
sents magnetic moment S, = 1. And also we demonstrated a possible excited state for
the same configuration which is made by taking out an atom from an A sublattice site,
considering it has an electron with up spin and also taking out an atom from an A sublat-
tice site but assuming it is an electron which has down spin. This system has magnetic
moment S, = 0. From now on, we will call both cases as "AA case” and imply the
difference by mentioning the magnetic moments.

Energy difference between two configurations, say Eg 1 — Eg o, gives the
energy needed to flip one spin, also this quantity is proportional to magnetic suscepti-

bility and the interaction strenght J due to RKKY method(M. Deaven et al. (1991)Ka-
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suya (1956)). RKKY method concerns about the indirect interaction between the mag-
netic impurities which are using host electrons in order to interact(Ruderman and Kittel
(1954),Power and Ferreira (2013)). Using this relation we observed the similarities be-
tween the correlation behaviour in magnetic impurity modelling and the vacancy type
defect modelling along zigzag and armchair direction(Black-Schaffer (2010)).

Because of the expected ground state belongs to S, = 1 configuration due to
Lieb’s theorem, that difference must be negative. At this point we calculated the energy
difference both zigzag and armchair directions and plotted those values respect to R /b.
Here b is the next-nearest neighbour distance, which is equals to 2.46A. Also we calcu-
ated Eg,_; — Eg_— difference for different snne values 0 eV, -0.1 eV, and -0.2 eV. We
observed that, Lieb’s theorem doesn’t hold for snne=-0.2 eV(Fig. 4.10) on both zigzag
and armchair directions. Here we used —(Es.—; — Es.—) instead of the Fg.—1 — Fg.—g

in order to show the logarithmic scale in negative values.
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Figure 4.11. Ground state energy difference Eg,—1 — Eg —( in logarithmic scale(inset:
real) for AB case on (a) zigzag and (b) armchair direction calculated
by using MFH for hexagonal GQD with armchair edge with double va-
cancy(5512 Atoms). The dark blue lines stands for snne=0 eV, the light
blue ones for snne=-0.1 and the black ones for snne=-0.2 eV.

Then we made similar things for the second vacancy configuration. We take out
an atom from an A sublattice site and one atom from a B sublattice site which represents
magnetic moment S, = 0. Also again, we demonstrated a possible excited state for
the same configuration which is made by taking out an atom from an A sublattice site,
considering it has an electron with up spin and also taking out an atom from an B sublattice

site but assuming it has an electron which has also up spin. This system has magnetic
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moment S, = 1. From now on, we will call both cases as "AB case” and imply the
difference by mentioning the magnetic moments. In this part, the ground state must be
the S, = 0 configuration. So, Fg._; — Fgs. _ difference must be positive for this
configuration. In this case, we observe that even for snne=-0.2 eV, Lieb’s theorem holds

on both zigzag and armchair directions(Fig. 4.11).

AA case
dist: 0 Atom(s)
beta=0, snne=0

st -0.1
0.15
0.2
AA case AA case
dist: 5 Atom(s) dist: 10 Atom(s)
beta=0, snne=0 beta=0, snne=0
0 0
0.01 0.01
0.02
. . 0.02
L LI . .
f s 0.03 5t 5
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Figure 4.12. Spin densities for the two vacancy AA configuration for distance(a) 0 atom,
(b) 5 atoms, and(c) 10 atoms.

Here we see in Fig. 4.12 spin densities for AA case for beta=0 and snne=0 eV. Due
to absence of up spins, a localised magnetisation incudes around the vacancy by down spin
electrons. Closer the distance between the vacancies, correlation effects become higher.

Since we decided proper snne values, we can include the effect of Coulomb po-
tential at the vacancy centers and examine how the magnetization changes while the beta
value changes. In the Fig. 4.13, Eg _; — Eg o values on top are calculated along the
zigzag direction, and the bottom ones are along the armchair direction. Here we see anti-

ferromagnetic phase transition for AA case when we take beta=0.1. Moreover, when we
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Figure 4.13. Ground state energy difference Es._; — Eg. o for AA case on zigzag di-
rection for (a) snne=0 eV, (b) snne=-0.1 eV and armchair direction for (c)
snne=0 eV, (d) snne=-0.1 eV calculated by using MFH for hexagonal GQD
with armchair edge with double vacancy(5512 Atoms).

20

compare on both directions(zigzag, armchair), we see at beta=0.1, graphs show dramatic

differencies depending on inclusion of the second nearest neighbour energy(snne=-0.1

eV). Orders of energy difference Fg 1 — F/g.—¢ are close for the other beta values. Also,

if we keep increasing the beta value, Eg 1 — Eg__( goes to zero, gradually.

We see in Fig. 4.14, opposite type phase transition is not valid for AB case. Again,

values on top are calculated along the zigzag direction, and the bottom ones are along the

armchair direction. In a simple look, we can say that the interaction strength decreases

and magnetism dies with increasing beta for both AA and AB case. To explain the phase

transition in AA case, we investigate the possible relation between energy levels and the

distance between the vacancies while beta value varies.

In the Fig. (4.15), we draw few necessary states that can effect the phase transition.
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Figure 4.14. Ground state energy difference Fg._; — Fg.—o for AB case on zigzag di-
rection for (a) snne=0 eV, (b) snne=-0.1 eV and armchair direction for (c)
snne=0 eV, (d) snne=-0.1 eV calculated by using MFH for hexagonal GQD
with armchair edge with double vacancy(5512 Atoms).

Every different colour describes a state and every single line stands for a different distance
value between the vacancies. Here, we can see that energy difference between the vacancy
states are changing more dramatically than the other above states. How this energy gap
between the vacancy states change, gives the information about the most favourable spin
orientation.

We know that while beta=0(also the ground state) expected behaviour of mag-
netism is ferromagnetic for AA case. While beta changes, the system becomes excited
and spins can flip in order to be in a favourable low energy state. When we take out two
up spin electrons from the A sites, we left with two down spins more. Those down spins
will be in the different evergy levels due to Pauli exclusion principle. But, if the energy

difference between those levels are high, the electron on the above energy level would
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Figure 4.15. The first and second vacancy states and the the first three states above the
fermi level on zigzag direction

prefer to flip its sign to lower the systems energy. That will cause the anti-ferromagnetic
ordering. So, in AA case if the energy gap between the vacancy states is high, electrons
expected to be in an anti-ferromagnetic alignment.

Fig. 4.16 is to show how these difference changes between the states respect to
beta and the distance between the vacancies on zigzag direction. Here, we cannot detect
an exact correspondence between Eg _; — Eg__ difference and eigenenergy difference
between the vacancy states for both AA and AB case. So, the physical explanation of
phase transition that we observed in AA case remained unknown. To examine how the
magnetization of the GQD with atomic collapse, we can look at Fig. (4.15) again. To
determine the beta value that atomic collapse starts, we use the graph with snne=0eV(4.15
(a), (c)). Then we see that atomic collapse first occurs around beta=0.35. When we check
that value on the Fig. (4.16 (a),(c)), we detect no distinc behaviour then the other beta

values. Also again, we detect no relation between the atomic collapse and the magnetic

phase transition.
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Figure 4.16. AA case on zigzag direction. TB eigenenergy difference between the va-
cancy states for AA case with (a) snne=0 eV, (b) snne=-0.1 eV, and AB
case with (c) snne=0 eV, (d) down spin energy matrix with snne=-0.1 eV
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CHAPTER 5

CONCLUSION

In this thesis various defect types examined on hexagonal shaped GQD with arm-
chair edge in different context. Atomic collapse behaviour is examined on hexagonal
GQD with armchair edge. When the Coulomb potential applied to the center of the
dot, we see tight-binding calculations agrees with analytic calculations while inspecting
atomic collapse behaviour. As applied Coulomb potential increases, probability of finding
an electron around the potential center, increases. When mean-field Hubbard calculations
are examined for the same central potential problem; we observe, beta values needed to
observe atomic collapse behaviour are found higher respect to tight-binding calculations
due to screening. For the dots with double vacancy, increasing Coulomb potential and
increasing distance between the vacancies, reduces correlations of electrons around the
vacancies. Related calculations for interaction strength show similar decreasing fluctua-
tions along zigzag direction and smooth decreasing behaviour along armchair direction.
Also changing potential leads to ferromagnetic-anti-ferromagnetic phase transition, inde-
pendent from the atomic collapse behaviour(for AA case). Also we observed that there
is no direct link between the magnetic transition and the energy difference of the vacancy
states.

At this point further investigations will be illuminating. One option is applying
the Coulomb potential directly onto atoms without taking any atom out from the dot.
While doing that the Coulomb potential must be applied onto the same positions with the
positions of the vacancies investigated in this thesis. Examining the differences between
two investigations probably will give a perceivable explanation about how our method
and RKKY interaction related, by means of magnetization and couplings, in this system.
Also changing vacancy positions close to edges would change the beta value that magnetic

phase transition were happened.
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