

KADIR HAS UNIVESITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

THE PERFORMANCE –WISE COMPARISON OF THE MOST WIDELY USED

NOSQL DATABASES

Ahmed Tallal Aladily

June, 2015

ii

A
H

M
ED

 TA
LLA

L A
LA

D
ILY

M
.Sc. Th

esis

 2
015

Stu
d

en
t’s Fu

ll N
am

e

P

h
.D

. (o
r M

.S. o
r M

.A
.) Th

esis

 2
01

1

iii

THE PERFORMANCE –WISE COMPARISON OF THEMOST WIDELY USED

NOSQL DATABASES

Ahmed Tallal Aladily

Submitted to the Graduate School of Science and Engineering

In partial fulfillment of the requirements for the degree of

Master of Science In

Information Technologies

KADIR HAS UNIVERSITY

June, 2015

iv

KADIR HAS UNIVERSITY GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

THE PERFORMANCE –WISE COMPARISON OF TheMOST WIDELY USED

NOSQL DATABASES

Ahmed Tallal Aladily

APPROVED BY:

Prof. Dr. Hasan Dağ (Advisor), Kadir Has University ___________________

Asst. Prof. Selçuk A. Öğrenci, Kadir Has University ___________________

Assoc. Prof. Dr. Mehmet .N. Aydın, Kadir Has University ___________________

v

Acknowledgments
I would like to acknowledge all the guidance and constant support of my
thesis advisor Prof. Dr. Hasan Dağ and also I would like to acknowledge
my friend and classmate Tayfun Yalçınkaya for his assistant in my research
and all the professors who taught me in my study life.

vi

Table of Contents
Acknowledgments ... v

Abstract ... 1

1. Introduction ... 2

1.1 Background ... 2

1.2 noSQL Based Databases .. 3

1.3 noSQL Databases Classification: ... 7

1.3.1 Key Value stores .. 7

1.3.2 Document databases ... 8

1.3.3 Wide-Column or Column Family Stores .. 9

1.3.4 Graph Databases ... 10

2. Characteristics of both SQL and noSQL databases ... 12

2.1 Differences between RDBMS and noSQL .. 12

2.2 When to choose RDBMS ... 12

2.3 When and why we choose noSQL .. 12

3. Architectures of noSQL databases ... 14

3.1 MongoDB .. 14

3.2 CouchDB ... 16

3.3 Cassandra ... 17

3.4 Hbase ... 18

4. Implementation .. 19

4.1 Installation CouchDB on windows: ... 19

4.1.1 Installation CouchDB on Unix: ... 19

4.2 Install MongoDB on Linux: .. 20

4.3 Installing Cassandra on Linux: .. 22

4.4 Installing Hbase: .. 22

5. Analysis .. 26

5.1 MongoDB .. 26

5.2 CouchDB ... 28

5.3 Cassandra ... 28

5.4 HBase ... 29

5.5 Yahoo Cloud Serving Benchmark.. 32

5.6 Conclusion .. 44

5.7 Suggestions ... 44

vii

Bibliography ... 45

Appendix : Creating databases in noSQL .. 48

Creating database in CouchDB "Futon" .. 48

Creating database in MongoDB: .. 54

1

Abstract
This work deals with the comparison of the most widely used noSQLdatabases.

Chapter one deals in great details with the SQL databases and the noSQL databases

including characteristics and the four types of noSQL databases, the second Chapter

deals with the characteristics of the SQL and noSQL databases and the main

differences between SQL databases and the noSQL databases,The third chapter deals

with the architecture of the Couchdb, Mongodb, Cassandra, and Hbase.Chapter four

deals with installation of the Couchdb, Mongodb, Cassandra and Hbase and Chapter

five deals with analysis of the four noSQL databases and it also include the

performance wise comparison.

2

Chapter 1

1. Introduction
Data is growing at a very rapid pace these days. There are many of new business

applications that are centered around processing large amount of data, The nature of

data is also quite diverse, for example data can now be anything from blogs, photos,

tweets, messages and videos etc. so there is a massive need for unstructured database

like noSQLdatabases, also in term of big data analytics noSQL is one of the solution

that were adopted by companies in IT community that are became more interested in

data driven to make their decision depending on data analytics.

1.1 Background
Of many different types of data models the relational model has been choose since the

80s, MySQL, oracle and SQL servers known as (RDBMS) Relational Database

Management System, later on however the number of the cases the RDBMS use show

problems and deficits in the data modeling, big amounts of data cannot be handled by

RDBMS in term of scalability.

There are two main trends that IT and software community should give attention

to:(Hossain, 2013).

1. The volume the data is growing exponentially generated by the users, social media,

networking, big distributed systems, like Google, LinkedIn, Amazon and other

services in the cloud.

2. The variety of data and complexity beside interdependency on the internet, open

sources from very large number of different systems.

3

Figure 2: Big Data Concepts(Connolly, 2012).

1.2 noSQLBased Databases
"noSQL, for not Only SQL, refers to an eclectic and increasingly familiar group of

non-relationaldata management systems; where databases are not built primarily on

tables, and generally do not useSQL for data manipulation. noSQL database

management systems are useful when working with a hugequantity of data when the

data's nature does not require a relational model. noSQL systems aredistributed, non-

relational databases designed for large-scale data storage and for massively-parallel

dataprocessing across a large number of commodity servers. They also use non-SQL

languages andmechanisms to interact with data (though some new feature APIs that

convert SQL queries to thesystems native query language or tool). noSQL database

systems arose alongside major Internetcompanies, such as Google, Amazon, and

Facebook; which had challenges in dealing with hugequantities of data where

conventional RDBMS solutions could not cope.

They can support multiple activities, including exploratory and predictive analytics,

ETL-style data transformation, and non-mission-critical OLTP (for example,

managing long-duration or inter-organization transactions). Originally motivated by

Web 2.0 applications, these systems are designed to scale to thousands or millions of

users doing updates as well as reads, in contrast to traditional DBMSs and data

warehouses"(Hossain, 2013).

4

noSQLDatabases and how it started

"Google started off with BigTablewhich is a massive distributed scalable system that

effectively operated on Big Data. Looking at this, other companies followed suit by

investing heavily in research to create their own custom scalable solutions for their

needs"(Narde, 2013).

"The conventional ACID (Atomicity, Consistency, Isolation and Durability)

properties were deemed as too regressive and inflexible towards scaling out, so

another model namely BASE (Basically available and eventually consistent) came

into practice, variousnoSQLsystems were derived from Google's BigTable or

Amazons Dynamo"(Narde, 2013), figure(1) below shows the benefits of noSQL

databases.

Figure 1: Benefits and advantages of noSQLdatabases(N.Rohan, 2013).

noSQL database are horizontally scalable, transportable, unstructured, low

inmaintenance and much faster compare to their relational counter parts, since noSQL

databases don’t assign or employ between data relational constraints it employs other

different method to store the data.

5

SQL Characteristics

This section describes the characteristics ofSQL databases:

a) Data is stored in columns and tables.

b) Relationships are represented by objects.

c) There exists a Data Manipulation Language.

d) There exists a Data Definition Language.

e) One is able to conduct Transactions.

f) There is an abstraction from physical layer(Hare, 2011).

SQL Physical Layer Abstraction

This section describes Physical Layer Abstraction:

 Applications specify what, not how.

 There is aquery optimization engine.

 Physical layer can change without modifying applications.

One can easily create indexes to support queries.

Data Manipulation Language (DML)

This section describes Data Manipulation Language:

Manipulation of data with select, update, inserts, and deletes statements.

 Select T1.Col1, T2.Col2

 From Tbl1, Tbl2

Where T1.Col1 = T2.Col1 …

Datais being aggregated.

procedures and functions using

using compound statements

using transaction control.

Data Definition Language

This section describes Data Definition Language:

The schema is defined at the beginning as shown below:

Create table (col1.datatype1, col2.datatype..)

To define the relationships there should constraints to manage the relationships.

 Primary key "first"

Foreign key.

Triggers should be existing to manipulate statements of insert, update and delete.

Models have to be stored.

 Alter statements...

 Drop statements...

Access control and security.

6

Transactions – ACID Properties

This section describes ACID Properties briefly:

a) Atomicity:means that all of the tasks in a transaction completesor none of the task

completes.
b) Consistency:means that a transaction transforming the databasefrom one specific

consistent state to the other consistentstate.

c) Isolation:The results of any changes which ismade during atransaction are not

visible until the transaction becamecommitted.
d) Durability:The results of any committed transaction survive failures.

Below are examples of commercial SQL Database:

IBM DB2,MySQL, Microsoft SQL Server, Sybase SQL, Oracle RDMS.

Abig portion of the world’s community use SQL relational database management

systems, RDBMS.

noSQLDefinition

noSQL databases knows as one of the tools that has been created to manage and

analyze unstructured database for example the data of the web2 on the internet, it is

unstructured, horizontally scalable, transportable, low in maintenance, non-schema

and if we compare it with RDBMS its more faster, since noSQL do not employ

between data relationalconstraints, they employ other methods to store the data.

noSQLDatabases Characteristics

The CAP theorem means three basic characters Consistency means that all the clients

see current data regardless of updates and deletes, Availability means the system

continues to operate as expected even with node failures and Partition Tolerance

means that the system continues to operate as expected despite network or message

failures. The CAP theorem shows that only two of the three aspects of scaling can be

achieved at the same time.

7

Figure 3: noSQLDatabase Characteristics(Hossain, 2013).

1.3 noSQL Databases Classification:

According to Leavitt N. classification in "2010" the noSQL databases are classified into three

types, key value store example on this type SimpleDB (Amazon SimpleDB, 2015),column

oriented database example on this type Cassandra (CassandraPro., 2015), Hbase(Apache

HBase, 2015), BigTable(Chang F., 2008), and document store example on this type

CouchDB(Couchdoc., 2015),MongoDB(MongoDB, 2015). We classify noSQL databases in

this research into four basic types:

1) Key-Value stores.

2) Document databases.

3) Wide-Columnor ColumnFamily.

4) Graph databases.

1.3.1 Key Value stores

"Key-Value stores typically, these DMS store items as alpha-numeric identifiers

(keys) and associated values in simple, standalone tables (referred to as hash tables).

The values may be simple text strings or more complex lists and sets. Data searches

can usually only be performed against keys, not values, and are limited to exact

matches"(Manoj, 2014).

8

Figure4: Key/Value Store(Hossain, 2013).

Because of the simplicity of this type ,its became suited and fast, highly scalable

retrieving of the values which is needed for application like manage the user profiles

or retrieving names, this is one of the reasons that make Amazon do extra use of its

own key value system(G. DeCandia, 2007). Examples of KeyValue StoresDynamo

(Amazon), Voldemort (LinkedIn), Redis(Redis, 2015), BerkeleyDB, Riak(Riak,

2015).

1.3.2 Document databases

This type of noSQL databases are designed to manage and store different format of

data files like XML and JSON files or BSON files, this type differ from key value

store type that column value inside the databases are semi structured and much more

complicated than key value store type, single column can have hundreds of same

attributes and the number and the type of the attributes can be different in each row

inside the database. Examples on this type are CouchDB and MongoDB.

9

(Harris, 2011)Figure 5: Document Store noSQL Database

Document store is good to store big amount of data collections like link in files, email

messages , text document,XML documents in addition to conceptual documents, they

are also good for storing sparse data generally which is irregular semi structured

(Orend, 2010).

1.3.3 Wide-Column or Column FamilyStores
This type of noSQL databases is very similar structure to the classic relational

database management system, since all the data are stored in databases in order of sets

of columns and rows, the data stored related that is retrieved together may be gathered

as a group.

This type is designed to manage huge amount of data complexity, for example

Cassandra is on the column family type which is designed to provide salability and

high availability, two important examples of this type is Cassandra and Hbase which

is open source runs on the top of Hadoop (HDFS).

10

(Shinde, 2015)Figure 6: WideColumn Store

1.3.4 Graph Databases

In this type of noSQL database system relational tables are represented as structure

graphs, and it is similar to the object oriented databases or object oriented network, it

focuses on the visual represent of information and make it more friendly to the other

noSQL databases.

(Staff, 2010)Figure 7: Graph Database

11

Generally graph databases became very useful when the interest is in the relationship

between the data more than the data itself, as example social networks, Neo4j and

InfoGrid are two examples of graph databases.

12

Chapter 2

2. Characteristics of both SQL and noSQL databases

2.1 Differences between RDBMS and noSQL
The main difference of noSQL against SQL databases is noSQL is unstructured

databases horizontally scalable, highly available,denormalized as we know when

designing the structure of the SQL database at the end stage we normalize it, exactly

the reverse content of the noSQL which is denormalized, According to big data

prospective noSQL is much more efficient and productive than SQL, and SQL is

much suitable for the variety types of data, since every noSQL database is designed or

created for a specific task,noSQL databases is much more cost effective and efficient

than SQL, noSQL databases is distributed and highly available not as SQL.

The amount of data and the distribution databases system is very important issue for

choosing noSQL databases instead of other relational databases (Kopp, 2011).

2.2 When to choose RDBMS
Using noSQL databases for such conditions like small or not huge amount of data is

not a good way because when the amount of data are small like bank databases or

workshop databases which is properly structured, SQL databases is quite enough to

handle the data, Actually there is some properties or features that is better to choose

SQL databases instead of noSQL databases: ACID properties, joins and queries,

integrity, table based, relations between tables.

2.3 When and why we choose noSQL
According to the issues below we can notice when to choose noSQL databases as a

solution:

1) Matter of size: when we have very large amount of data sets, consistency and

scalability is much easier to achieve.

2) Speed issue: usually noSQL databases work faster sometimes extremely faster

read and writes operation very fast depending on the data being queried.

3) Schema design: noSQL database as a solution shows very big flexibly.

4) Easy replication: noSQL databases are growing very rapidly, and can easily

being scaled and work with clusters.

5) Multiple options (choices): the variety of noSQL data models depending on

the type of data.

13

noSQLscale andRDBMS does not scale.

Usually the system scale in two ways one of them is the nodes is upgraded, the other

way is adding more nodes, the system should be capable to handle these two

conditions, the system performance should increase in linear way, according to

RDBMS prospective the limitation in the scalability ofRDBMS, replication and data

sharding are not the suitable choice to achieve scalability in RDBMS, relational

databases cannot achieve the general data sharding because it requires distinct entities

of data, in relational database it is very difficult to achieve the reason why because its

table based nature.

Table based property of relational database make them the proper choice to ensure

ACID(Atomicity, Consistency, Integrity, Durability) features or properties,

comparing to noSQL database can easily distribute the rows over the nodes because

of the table less schema and each entity (record) is not distributed over multiple nodes

rather the whole entity (record) is stored in a single node(Kopp, 2011).

Why choosing noSQL ?

For the last few decades the big companies like Amazon, Facebook and link-in who

are depending on the concept of "Data Driven" which means that decisions they make

depend on the customer data analytics, in addition to that the huge growth of the

customer data and the complexity of the data (text, audio, video, login files, maps,

doc,etc.) shows there is a massive need to a new tools or systems that deals with this

huge amount of unstructured data.

For example Cassandra noSQL database was adopted by Facebook company, and

Voldemort noSQL database was adopted by link in company, However when creating

and designing the structure of these systems, being open sourced and assigned to a

specific task for example CouchDB which is apache noSQL database is designed to

analyses web application data using Jason file format, Hbase for example designed to

run the much complexity data on the internet like data of web2.0, in addition to what

we describe above the noSQL database system can be applied using the

cloud(CouchBase, 2015).

14

Chapter 3
3. Architectures of noSQL databases

3.1 MongoDB
MongoDB is non-schema noSQL database open source document store or database,

which provides high availability, high performance and scalability.

Document format
Each record in MongoDB is represented as document consist of field and value pairs,

the document of MongoDB are known as objects, fields values may include any other

document, arrays, arrays of documents.

{
name: "sue"  filed:value
age : 26  filed:value
status: "A"  filed:value
groups: ["news", " sports"]  filed:value

}

The benefits of using the documents are:

• In programming languages documents are correspond to native type.

• Reducing the need expensive joins because of having embedded documents and

arrays.

• Fluent polymorphismare supported by dynamic schema.

Key Features
High Performance
MongoDBprovidedata persistence and high performance as follows,

• reducing the input/output activity on the database system by supporting for

embedded data models.

• in embedded documents and arrays indexes always support faster queries and can

include keys.

High Availability
To supply or achieve high availability there is for MongoDB facility of replication,

which is called replica sets. Also provide:

• Failoverautomatically.

• Redundancy of data.

Replica set in MongoDB is a group of servers that manipulate or maintain the same

data set by increasing data availability and providing redundancy.

Automatically Scaling
MongoDBalso provides horizontal scalability as one of its basic functionality.

• Sharding is distributing the data across the cluster of machines automatically.

• Eventually consistent reads and low latency throughput high deployments can be

provided by replica sets.

15

Map Reduce

Map reduce is a data processing paradigm for condensing large volumes of data into

useful aggregated results. For map-reduce operations, MongoDBprovides the Map

Reduce database command.

The figure below shows the map-reduce operation:

Figure(8) Map Reduce operation (MongoDB, 2015).

"In this map-reduce operation, MongoDBapplies the map phase to each input

document (i.e. the documents in the collection that match the query condition). The

map function emits key-value pairs. For those keys that have multiple values,

MongoDBapplies the reduce phase, which collects and condenses the aggregated data.

MongoDBthen stores the results in a collection. Optionally, the output of the reduce

function may pass through a finalize function to further condense or process the

results of the aggregation.

The entire map-reduce functions in MongoDBare javascripts and run within the

MongoDBprocess.

http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce
http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce
http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce

16

Map-reduce operations take the documents of a single collection asthe input and can

perform any arbitrary sorting and limitingbefore beginning the map

stage. MapReduce can return the results of a map-reduce operation as a document, or

may write the results to collections. The input and the output collections may

besharded"(MongoDBInc, 2015).

Map-Reduce JavaScript Functions

"In MongoDB, map-reduce operations use custom JavaScript functions to map, or

associate, values to a key. If a key has multiple values mapped to it, the

operationreduces the values for the key to a single object.

The use of custom JavaScript functions provides flexibility to map-reduce operations.

For instance, when processing a document, the map function can create more than one

key and value mapping or no mapping. Map-reduce operations can also use a custom

JavaScript function to make final modifications to the results at the end of the map

and reduce operation, such as perform additional calculations"(MongoDB, 2015).

3.2 CouchDB
CouchDB database is no schema, and semi structured data model based on JSON,

materialized views structure produced from document collections, the views with the

map reduce method allowing bothincremental maintenance and parallelcomputation

of their content, data management distributed techniques:horizontal

scalability,consistent hashing,parallelcomputing,data replication and reconciliation

etc.(Abiteboul, 2011).

Data model
JSON file is a text file format, which is designed for serializing java scripts objects,

Basic use: in a web environment data exchange.

Extend use: storage of data and serialization XML document is very easy to integrate

to any programming language with minimum parsing effort, in addition to that no

schema, no query language at the moment.

Core: keyvalue construct
Example:

"title": "The Social network"

Atomic data types: character strings, integers, floating-point number and

Booleans (true or false). Non-string values need not be surrounded by ’"’.

"year": 2010

http://docs.mongodb.org/manual/reference/glossary/#term-collection
http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce

17

Complex values: objects
An unordered set of name /value pairs called as objects, the types of objects can be

distinct , also the key appearance only once, each object can be used as value

component of a key value construct.

"director": {

"last_name": "Fincher",

"first_name": "David",

"birth_date": 1962

}

Complex values: arrays

An ordered collection of values that contain different data types are known as arrays

in these values.

"actors": ["Eisenberg", "Mara", "Garfield", "Timberlake"]

A document here is the object which can be represented with a nesting of array and

object constraints.

{

"title": "The Social network",

"year": "2010",

"director": {"last_name": "Fincher",

"first_name": "David"},

"actors": [

{"first_name": "Jesse", "last_name": "Eisenberg"},

{"first_name": "Rooney", "last_name": "Mara"}

}

3.3 Cassandra
"Apache Cassandra in a nutshell is an open source, peer to peer distributed database

architecture, decentralized, easily scalable, fault tolerant, highly available, eventually

consistent, schema free, column oriented database. Generally in a master/slave setup,

the master node can have far reaching effects if it goes offline. By contrast, Cassandra

has a peer-to-peer distribution model, such that any given node is structurally

identical to any other node—that is, there is no ―master‖ node that acts differently

than a ―slave‖ node. The aim of Cassandra’s design is overall system availability and

ease of scaling. Cassandra data model comprises of Key space (something like a

database in relational databases) and column families (tables). Cassandra defines a

column family to be a logical division that associates similar data. Basic Cassandra

data structures: The column, which is a name/value pair and a client-supplied

timestamp of when it was last, updated, and a column family, which is a container for

rows that have similar, but not identical, column sets"(Aircc.Corporation, 2015).

"There is no need to store a value for every column every time a new entity is stored.

For example, column family data model,A cluster is a container for key spaces

typicallya single key space. A key space is the outermost container for data in

Cassandra, but it’s perfectly fine to create as many keyspaces as the application needs.

A column family is a container for an ordered collection of rows, each of which is

itself an ordered collection of columns"(Manoj, 2014).

18

Figure: 9Cassandra data Model(Hewitt, 2010).

3.4 Hbase
"Apache HBase is an open source, non-relational, persistent, strictly consistent fault

tolerantdistributed database runs on top of HDFS (Hadoop Distributed File System)

modeled afterGoogle's Big table providing the capabilities on Hadoop. Hbase is a

Master/Slave approachcomprising of one master server and many region servers

where the master node is responsiblefor assigning or load balancing across region

servers. Region servers are slaves like responsiblefor all read and write requests for all

regions they serve, and also split regions that have exceededthe configured region size

thresholds. The store files are typically saved in the HadoopDistributed File System

(HDFS), which provides a scalable, persistent, replicated storage layer

for HBase. It guarantees that data is never lost by writing the changes across a

configurablenumber of physical servers" (Manoj, 2014).

"Hbase follows Big table data model, a sparse, distributed, persistent

multidimensional sortedmap. The map is indexed by a row key, column key, and a

timestamp; each value in the map is anuninterrupted array of bytes. Hbase data model

is column oriented storage structure typicallygrouped into one or more tables. Row

keys in table are arbitrary strings; Bitable maintains datain lexicographic order by row

key. The row range for a table is dynamically partitioned. Columnkeys are grouped

into sets called column families, which form the basic unit of access control.

Alldata stored in a column family is usually of the same type. A column family must

be createdbefore data can be stored under any column key in that family each cell in a

BigTable cancontain multiple versions of the same data; these versions are indexed by

64-bit integerstimestamp. Although conceptually a table is a collection of rows with

columns in HBase,physically they are stored in separate partitions called regions.

Every region is served by exactlyone region server, which in turn serves the stored

values directly to clients"(Manoj, 2014).

19

Chapter 4

4. Implementation

4.1 Installation CouchDB on windows:
Usually there are methodsfor installingCouchDB on windows system.

Installation from binaries
Get the latest Windows binaries from CouchDB website.

This is the simplest way to goto the old release and it's available at archive.

"We have to follow the installation steps:

a)Next on ―Welcome‖ screen.

b) Accept the License agreement.

c)Select the installation directory.

(CouchDocument, 2015)."d)Specify ―Start Menu‖ group name

After that approve like installing CouchDB as service and let it started automatically

after installation.

Probably, you should see the statement))

."After that verify installation settings

.After thatInstall CouchDB

Open Futon (if you didn't selectauto start CouchDB after installation you have to start

it as manual" (CouchDocument, 2015).

"Note:in some cases you might be asked to reboot Windows to complete installation

process, because of using on different Microsoft Visual C++ runtimes by CouchDB"

(CouchDocument, 2015).

4.1.1 Installation CouchDB on Unix:

Dependencies
"You should have the following installed:

Erlang OTP (>=R14B01, =<R17)

ICU

OpenSSL

Mozilla SpiderMonkey (1.8.5)

GNU Make

GNU Compiler Collection

libcurl

help2man

Python (>=2.7) for docs

Python Sphinx (>=1.1.3)"(CouchDBLearn, CouchDB Learing, 2014).

After satisfying the dependences you have to run the configuration for it, the default

CouchDB be installed into usr/local the script above will set it up, for customizing the

installation write pass-help to this script,

If everything was done successfully you should see on the screen the following

message:

We have configured Apache CouchDB.

20

To install CouchDB you should run:
"Make && sudo make install we only need to use sudo if we’re installing into a

system directory.

Try gmake if make is giving you any problems.

If everything was successful we should see the following message.

we have installed Apache CouchDB.

First Run

You can start the CouchDB server by running:

sudo -i -u CouchDBCouchDB

This uses the sudo command to run the Couchdb command as the Couchdb user.

When CouchDB starts it should eventually display the following message:

Apache CouchDB has started.

To check that everything has worked, point your web browser to :

http://127.0.0.1:5984/_utils/index.html

From here you should verify your installation by pointing your web browser to:

http://localhost:5984/_utils/verify_install.html"(CouchDBLearn, 2014).

4.2 Install MongoDBon Linux:
"Restart MongoDByou can restart the mongod process by issuing the following

command (as root or with sudo):

service mongod restart"(MongoDBDoc., 2015)

"Follow the state of this process by watching the output in the

/var/log/mongo/mongod.log file to watch forerrors or important messages from the

server" (MongoDBDoc., 2015)

"Install MongoDBon Ubuntu This tutorial outlines the steps to install MongoDBon

Ubuntu Linux systems. The tutorial uses deb packages to install. Although Ubuntu

include its own MongoDBpackages, the official MongoDBpackages are generally

more up to date" (MongoDBDoc., 2015).

"Note: If you use an older Ubuntu that does not use Upstart, (i.e. any version before

9.10 ―Karmic‖) please follow thePackage Options TheMongoDBdownloads

repository provides the mongodb-10gen package, which contains the latest stable

release. Additionally you can install previous releases of MongoDB" (MongoDBDoc.,

2015).

"You cannot install this package concurrently with the MongoDB, MongoDB-server,

or MongoDB-clients packages provided by Ubuntu"(MongoInstall, 2015).

21

Install MongoDB

"Configure Package Management System (APT) The Ubuntu package management

tool (i.e. dpkg and apt).

ensure package consistency and authenticity by requiring that distributors sign

packages with GPG keys.Issue the following command to import the MongoDBpublic

GPG Key1" (MongoInstall, 2015)

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 recv 7F0CEB10

"Create a /etc/apt/sources.list.d/mongodb.list file using the following command,

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo

tee /etc/apt/sources.list.d/mongodb.list" (MongoInstall, 2015)

Now write the following command to reload your repository:

sudo apt-get update

"Install Packages Issue the following command to install the latest stable version of

MongoDB:

sudo apt-get install mongodb-10gen

When this command completes, you have successfully installed

MongoDBContinue(MongoInstall, 2015)for configuration and start-upSuggestions"

"Manage Installed Versions You can use the mongodb-10gen package to

installprevious versions of MongoDB.

To install a specific release, append the version number to the package name, as in the

following example:(MongoInstall, 2015)"

apt-get install mongodb-10gen=2.2.3

"This will install the 2.2.3 release of MongoDB. You can specify any available

version of MongoDB; however:

apt-get will upgrade the mongodb-10gen package when a newer version becomes

available. Use the following pinning procedure to prevent unintended upgrade, to pin

a package, issue the following command at the system prompt to pin the version of

MongoDBat the currently installed version" (MongoInstall, 2015).

echo "mongodb-10gen hold" | sudo dpkg --set-selections" (MongoInstall, 2015)."

22

4.3 Installing Cassandra on Linux:
"Check that Java is installed by running the following command in a terminal

window:

java -version

Note:Any version of Java is fine for installing an evaluation instance. For production

deployments, see InstallingOracle JRE.

Download the Cassandra package (required), and the optional OpsCenter.

To get the latest versions of DataStax and OpsCenter Community Editions and the

Portfolio Demo"(DataStax, 2014):

"$ curl -OL http://downloads.datastax.com/community/dsc-cassandra-1.0.9-bin.tar.gz

$ curl -OL http://downloads.datastax.com/community/opscenter.tar.gz

Unpack the distributions

$ tar -xzvf dsc-cassandra-1.0.9-bin.tar.gz

$ tar -xzvf opscenter.tar.gz

(DataStaxTut., 2015)$ rm *.tar.gz "

4.4 Installing Hbase:

"This chapter explains how HBase is installed and initially configured. Java and

Hadoop are required to proceed with HBase, so you have to download and install

java and Hadoop in your system" (Hbasetutorials, 2015).

Pre-Installation Setup"

Before installing Hadoop into Linux environment, we need to set up Linux

using ssh (Secure Shell). Follow the steps given below for setting up the Linux

environment" (Hbasetutorials, 2015).

Creating a User"

First of all, it is recommended to create a separate user for Hadoop to isolate the

Hadoop file system from the Unix file system. Follow the steps given below to create

a user"(Hbasetutorials, 2015).

 "Open the root using the command su"(Hbasetutorials, 2015).

 "Create a user from the root account using the command user add username "

(Hbasetutorials, 2015).

 "Now you can open an existing user account using the command suusername."

(Hbasetutorials, 2015)

"Open the Linux terminal and type the following commands to create a user."

(Hbasetutorials, 2015)

 "$ su

password:

useraddHadoop

passwdHadoop

New passwd:

Retype new passwd" (Hbasetutorials, 2015)

http://downloads.datastax.com/community/opscenter.tar.gz

23

"Setup of SSH and Key Generation

SSH setup is required to perform different operations on the cluster such as start,

stop, and distributed daemon shell operations. To authenticate different users of

Hadoop, it is required to provide public/private key pair for a Hadoop user and share

it with different users" (Hbasetutorials, 2015).

"The following commands are used to generate a key value pair using SSH. Copy the

public keys form id_rsa.pub to authorized_keys, and provide owner, read and write

permissions to authorized_keys file respectively"(Hbasetutorials, 2015).

"$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys " (Hbasetutorials, 2015)

 "Verify ssh

sshlocalhost" (Hbasetutorials, 2015)

 "Installing Java

Java is the main prerequisite for Hadoop and HBase. First of all, you should verify

the existence of java in your system using java -version. The syntax of java version

command is given below" (Hbasetutorials, 2015).

"$ java –version " (Hbasetutorials, 2015)

"If everything works fine, it will give you the following output" (Hbasetutorials,

2015).

"java version 1.7.0_71

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)" (Hbasetutorials, 2015)

"If java is not installed in your system, then follow the steps given below for

installing java" (Hbasetutorials, 2015).

 "Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following

link Oracle Java.

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system"

(Hbasetutorials, 2015).

"Step 2

Generally you will find the downloaded java file in Downloads folder. Verify it and

extract the jdk-7u71-linux-x64.gz file using the following

commands"(Hbasetutorials, 2015).

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

24

"$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz" (Hbasetutorials, 2015)

Step 3"

To make java available to all the users, you have to move it to the location

/usr/local/. Open root and type the following commands"(Hbasetutorials, 2015).

"$ su

password:

mv jdk1.7.0_71 /usr/local/

exit" (Hbasetutorials, 2015)

Step 4"

For setting up PATH and JAVA_HOME variables, add the following commands

to ~/.bashrc file" (Hbasetutorials, 2015).

"export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH= $PATH:$JAVA_HOME/bin" (Hbasetutorials, 2015)

"Now apply all the changes into the current running system"(Hbasetutorials, 2015).

"$ source ~/.bashrc " (Hbasetutorials, 2015)

Step 5"

Use the following commands to configure java alternatives"(Hbasetutorials, 2015):

"# alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar" (Hbasetutorials, 2015)

"Now verify the java -version command from the terminal as explained

above"(Hbasetutorials, 2015).

"Downloading Hadoop

After installing java, you have to install Hadoop. First of all, verify the existence

ofHadoop using Hadoopversion command as shown below"(Hbasetutorials, 2015).

"Hadoopversion "(Hbasetutorials, 2015)

25

"If everything works fine, it will give you the following output" (Hbasetutorials,

2015).

"Hadoop 2.6.0

Compiled by jenkins on 2014-11-13T21:10Z

Compiled with protoc 2.5.0

From source with checksum 18e43357c8f927c0695f1e9522859d6a

This command was run using

/home/Hadoop/Hadoop/share/Hadoop/common/Hadoop-common-2.6.0.jar" (Hbasetutorials,

2015)

"If your system is unable to locate Hadoop, then download Hadoop in your

system.Follow the commands given below to do so.

Download and extract Hadoop-2.6.0 from Apache Software Foundation using

thefollowing commands"(Hbasetutorials, 2015).

"$ su

password:

cd /usr/local

wget http://mirrors.advancedhosters.com/apache/Hadoop/common/Hadoop-

2.6.0/Hadoop-2.6.0-src.tar.gz

tarxzfHadoop-2.6.0-src.tar.gz

mvHadoop-2.6.0/* Hadoop/

exit" (Hbasetutorials, 2015)

Chapter 5

http://apache.bytenet.in/hadoop/common/hadoop-2.6.0/

26

5. Analysis
In this chapter we show the Comparison in Data model, query model, replication

model between the noSQL databases and also the performance of the

noSQLdatabases:

5.1 MongoDB
"MongoDBis an open-source document-oriented database written in C++ and is

completely schema-free and manages JSON-style documents. It focuses on high-

performance providing the developer with a set of features to easily model and query

data"(AbertoAcademy., 2008).

a) Data model

"MongoDBstores data as BSON objects, which is a binary-encoded serialization of

JSON-like documents. It supportsall the data types that are part of JSON but also

defines new data types, i.e. the Date data type and the Big Data

type"(AbertoAcademy., 2008)"and also support all the data type that is the part of

Jason. The key advantage of using BSON is efficiency as it is abinary

format"(ResGate, 2015). "Documents are contained in collections, they can be seen as

an equivalent to relational databasetables. Collections can contain any kind of

document, no relationship is enforced, and still documents within acollection usually

have the same structure as it provides a logical way to organize data. As data within

collections isusually contiguous on disk, if collections are smaller better performance

is achieved. Each document is identifiedby a unique ID (−id field), which can be

given by the user upon document creating orautomatically generated bythe

database"(ResGate, 2015). "An index is automatically created on the ID field

although other indexes can be manually createdin order to speed up common queries.

Relationships can be modeled in two different ways embedding documents

orreferencing documents. Embedding documents means that a document might

contain other data fields related to thedocument, i.e. a document modeling a blog post

would also contain the post’s comments. This option might lead tode-normalization of

the database, as the same data might be embedded in different documents.

Referencing documentscan be seen as the relational database equivalent of using a

foreign-key. Instead of embedding the whole data, thedocument might instead store

the ID of the foreign document so that it can fetch. It is important to note

thatMongoDBdoes not provide the ability to join documents, therefore when

referencing documents, any necessary join has tobe done on the client-

side"(AbertoAcademy., 2008).

b) Query model

"Many traditional SQL queries have a similar counterpart on MongoDB’s query

Language. Queries are expressedas JSON objects and are sent to MongoDBby the

database driver (typically using the find method)"(ResGate, 2015). "Morecomplex

queries can be expressed using a Map Reduce operation, and it may be useful for

batch processing of dataand aggregation operations. The user specifies the map and

reduces functions in JavaScript and they are executed onthe server side. The results of

theoperation are stored in a temporary collection, which is automatically removedafter

27

the client gets the results. It is also possible for the results to be stored in a permanent

collection, so that they arealways available" (ResGate, 2015).

c) Replication model

"MongoDBprovides Master-Slave replication and Replica sets, where data is

asynchronously replicated betweenservers. In either case only one server is used for

write operations at a given time, while read operations can be redirectedto slave

servers. Replica sets are an extension of the popular Master-Slave replication scheme

in order toprovide automatic failover and automatic recovery of member nodes

(MongoRep, 2011). A replicate set is a group of servers where atany point in time

there is only one master server, but the set is able to elect a new master if the current

one goes down.

Data is replicated among all the servers from the set. Figure (10) illustrates the two

different replication models. SinceMongoDBhas only one single active master at any

point in time, strong consistency can be achieved if allthe read operations are done on

the master " (AbertoAcademy., 2008).

"MongoDBdoes not provide version concurrency control; reads from the slave servers

employ eventual consistencysemantics. The ability to read from slave servers is

usually desired to achieve load balance, therefore the client is alsoable to enforce

Figure:(10) Illustration of master-slave replication(AbertoAcademy., 2008).

that a certain write has replicated to a certain number of slave servers. This feature

helps dealing withimportant writes, where eventual consistency semantics might not

be suitable, while at the same time providing theflexibility to read from slave servers"

(AbertoAcademy., 2008).

28

5.2 CouchDB
Opensource document database and which written in Erlang. It concern with the

ACID properties, providing much more serializability.

a) Data model

"Data is stored as semi-structured documents in CouchDB. A document is a JSON file

which is a collection of namedkey-value pairs. Values can be numbers, string,

Booleans, lists or dictionaries. Documents are not bound to follow anystructure and

can be schema-free. Each document CouchDB database is identified by a unique ID

(the –id field).

CouchDB is a simple container of a collection of documents and it does not establish

any mandatory relationshipbetween them" (AbertoAcademy., 2008).

b) Query model

"CouchDB exposes a Restful HTTP API to perform basic CRUD operations on all

stored items and it uses the HTTPmethods POST, GET, PUT and DELETE to do so.

More complex queries can be implemented in the form of views(as was seen before)

and the result of these views can also be read using the REST API"(AbertoAcademy.,

2008).

c) Replication model

"CouchDB is a peer-based distributed database system (CouchIntro, 2011) it allows

peers to update and change data and then directionallysynchronizes the changes.

Therefore, we can model either master-slave setups (were synchronizations

areunidirectional) or master-master setups were changes can happen in either of the

nodes and they must be synchronizedin a bidirectional way.

Each document is assigned a revision id and every time a document is updated, the

old version is kept and theupdated version is given a different revision id. Whenever a

conflict is detected, the winning version is saved as themost recent version and the

losing version is also saved in the document’s history. This is done consistently

throughoutall the nodes so that the exact same choices are made. The application can

then choose to handle the conflict by itself(ignoring one version or merging the

changes)" (AbertoAcademy., 2008).

d) Consistency model

"CouchDB provides eventual consistency. As multiple masters are allowed, changes

need to be propagated to theremaining nodes, and the database does not lock on

writes. Therefore, until the changes are propagated from node tonode the database

remains in an inconsistent state. Still, single master setups (with multiple slaves) are

also supported,and in this case strong consistency can be achieved"(AbertoAcademy.,

2008).

5.3 Cassandra
Apache Cassandra is a free, open-source distributed, structured key-value store with

eventual consistency. It is developed by Facebook. While providing high availability

and scalability Cassandra was designed tohandle very huge amounts of

data,(CassandraPro., 2015).

29

a) Data model

"A typical instance of Cassandra consists of only one table with a distributed

multidimensional map indexed by a keyand tables. Rows are generally identified by a

string-key and row operations are atomic even if there are manyColumns being read

or written. As in the big table, column-families have to be defined in advance, that is

before acluster of servers comprising a Cassandra instance is launched. The number

of column-families per table is infinitehowever it is expected to specify only few of

them. A column family consists of columns and super columns, whichcan be added

dynamically (i.e. at runtime) to column-families and are not restricted in

number.Columns have aname and store a number of values per row, which are

identified by a timestamp (as in Big table). Every row in a tablehas different number

of columns. Client specific applications may use ordering of columns within a column

family inwhich name and timestamp can be considered as super-column. Super-

columns have a name and number of columnsassociated with them randomly"

(AbertoAcademy., 2008).

b) Query model

"Since Cassandra is in the essence of a key-value store, the querying model provides

only three simple operations.

A key can access all the values and return the column value associated with that key.

Additional methods for gettingmultiple values or getting multiple columns are also

available. But they all rely on the key as input. Additionally it is also possible to run

Map Reduce jobs on the database, in order to process complex queries. This can be

done byusing Apache Hadoop, which is a framework for distributed data processing.

To simplify this task, Cassandra alsoprovides Pig (Hadoop, 2011) support that enables

the user to write complex Map Reduce jobs in a high-level language similar to

that of SQL. These queries are generally used as an offline method for the analysis of

data" (AbertoAcademy., 2008).

c) Replication model

"Since Cassandra is distributed in nature, data is partitioned over a set of nodes and

each data item is assigned to aspecific node. Data items are assigned to a position by

hashing the data item’s key, using consistent hashing.

Nodes are also assigned a random value within the hashing’s space, which represents

its position on the ring. To findwhich node is the coordinator for a given data item, it

is necessary to go through the ring in a clockwise manner, andfind the first node with

a position larger than the data item’s position. The client will be able to specify the

numberof replicas that each data item should have. The data item’s coordinator node

is then responsible for the replication. Several replication policies are available, were

the system might be aware of a node’s geographic position (i.e. replicateto other

datacenters or to other racks)"(AbertoAcademy., 2008).

5.4 HBase
Hbase is a distributed, open-sourceand columndatabasewritten in Java runs as pat the

top of Hadoop which is run on the top of HDFS (Hadoop Distributed File System)

which provide capabilities for Hadoop and give a good way to store huge amount of

data.

30

Figure 11.Representation of HBase’s data model.

a) Data model

"HBase’s data model is very similar to that of Cassandra, as they are both based on

Google’s BigTable. It follows a key-value model where the value is a tuple consisting

of a row key, a technologies.

The Column key and a timestamp (i.e. a cell)(Cass.Benchmark, 2013) made of rows

and columns, as seen in figure (11). A row can be a row key with number of columns.

The Rows are lexicographically sorted with the lowest order appearing first in the

table. The Columns contain a version history of their contents, which is ordered by a

timestamp. Columns are grouped into Column Families and they have a common

prefix in the form of family: qualifier manner. At column family level both tunings

and storage specifications are done, it is advisable that all column family members

have the same general access pattern and size characteristics" (AbertoAcademy.,

2008).

b) Query model

"HBase provides a Java API which can be used to make queries. The obvious map

operations such as put, delete andupdate are provided by this API An abstraction layer

Filter, gives the applications the ability to define severalfilters for a row key, column

families, column key and timestamps and the results can be iterated using the

Scannerabstraction. For more complex queries it is possible to write MapReduce jobs

which run on the underlying Hadoopinfrastructure. Using Pig it is very much possible

to query data using a high-level, SQLlike, and language. It isalso possible to use

Cascadingto simplify the process of writing MapReduce jobs. In addition to the Java

API, itis also possible to access HBase through REST, Avro or Thrift gateway APIs.

A shell for direct user interaction withHBase also exists here"(AbertoAcademy.,

2008).

c) Replication model

"HBase uses a simple master-slave replication model. The replication is done

asynchronously, that is, the clusters can be geographically distant and the links

connecting them can be offline for some time, and rows inserted on the master server

may not be available at the same time on the slave servers, hence providing only

eventual consistency.

Replication is performed by replicating wholewaledits in order to maintain

atomicity.WALEdits are used in HBase’s transaction log (WAL) to represent the

collection of edits corresponding to a single transaction " (AbertoAcademy., 2008).

31

d) Consistency model

"HBase is strictly consistent. Every value appears in one region only which is

assigned to one region server at a time, within the appropriate boundary for its row. If

thereplication is enabled and one reads it from the slave servers, only eventual

consistency can be guaranteed, as the replication is done asynchronously.

Rowoperations are atomic. It is possible to make transactions inside a row.

Transactions over multiple rows are unsupported at the moment of this

writing"(AbertoAcademy., 2008).

Ease of Use

According to the installation part and setting MongoDB shows that the most simple

and Straightforward way comparing with others noSQL databases Cassandra, Hbase,

and CouchDB.

The MongoDB server have been set up on the default part, looks like downloading

the MongoDB and setting the configuration as simple as getting tar zips from 10g

website after unzipping and running the MongoDB daemon thread.

And Cassandra shows the most complexity of the installed systems because it is

required a lot of parameters and editing of the Cassandra.yaml file to run it on micro

instance.

The need of restating the Cassandra server with the memory allocated for JVM and

the frequent memory issues, because the previous allocated memory could not keep

the collection of the garbage efficiently due to JVM heap lack size specified to the

process of Cassandra(Patil, 2011).

This section deals with the comparison of Query form of the noSQL:

Couchdb query,MongoDBquery,SQL, Cassandra Query Language (CQL).

In this section we will compare the four types query standard statements, first we

write the SQL standard query statements as most developers are familiar with.

SQL

update tablename set colField1 = colFieldValue

where primary key = primary keyValue

CouchDB

function(doc)

if document(doc.last_name){

emit(doc.last_name,doc)

}

}

MongoDB

db.tableName.update({ fcolField1: f $eq: primaryKeyValue}},

 {f $set: fcolField1 = coalfield Value gg}})

CQL(Cassandra)

Update tableName SET colField0=value0, colField1=value1

WHERE primary Key=primaryKeyValue

32

So we can see that there is a small different between CQL Cassandra Query Language

Because of its column data structure, MongoDB queries are little different using

JSON type structure document and it's not too complex to adjust either.

5.5 Yahoo Cloud Serving Benchmark
"The Yahoo Cloud Computing benchmark or YCSB is a Java based tool that is used

tobenchmark various databases and noSQLsystems. It is an open source project and

caneasily be extended for new and upcoming noSQLor SQL database systems. It is a

Javabased program which can be installed on the system by downloading via github

or compiling source code directly. The main feature of YCSB is

extensibility"(N.Rohan, 2013). Followingis the architecture of YCSB.

Figure(12) : YCSB Architecture(N.Rohan, 2013)

Workload generator

Workload generator splits the workload work into two basic phases, a) first phase

called load phase means the environment which has to be set up to the database which

we are going to test it by creating tables and populating the tables. b) The second

phase called run phase means running different operations/queries against the

database to show the output results to the user(N.Rohan, 2013).

The Following workloads are the workloads that we haveused for evaluation:

Workload A: can be named as standard workload benchmark and it contains 50% read

of the operations and 50% update.

Workload B: This workload contains 100% read operations only inside thedatabase.

There are more than this two workload adopted by YCSB and we also can vary the

percentage of the parameters to execute more workloads, However the basic

workloads for the YCSB is workload A and workload B.

33

The variety of the parameters can be shown in the table below.

Table 1: workload properties

Parameter Description

record count number of insertion record

read % read operation percentage

write% write operation percentage

record size size in bytes

fields number of columns

Database layer

The main part of the YCSB is these layers which pair up different noSQL databases

can be as an option, it converts the calls which is made by user workload into read and

write calls to the database which is under the test specifically.

There are six steps for running a workload:

1. Set up the database system to test.

2. Choose the appropriate database interface layer.

3. Choose the appropriate workload.

4. Choose the appropriate runtime parameters (number of nodes, target

throughput,e.t.c)

5. Load the data.

6. Execute the workload.

34

Nodejs creating and push record into Cassandra

Firstwe create my source code to generate my data with node.js for more speed performance

not like php apache running code it’s a synchronously "working fast ".

After that using Cassandra query language CQL to create table "twissandra"and the fields

"follower, since, username" :

After that generating the records (600000) :

<?php

$dbh=mysql_connect('37.230.106.13','onrdgcom','ujSh9l7W11');

if (!$dbh) {

die('Baglanamadi: ' . mysql_error());

}

mysql_select_db('onrdgcom_twissandra');

for ($i=0;$i<10000;$i++){

$username= tkg.$i;

$follower= ktr.$i;

$since="1970-01-01 00:00:01";

 $result = mysql_query("INSERT INTO `followers` (follower, since, username) VALUES

('$follower', '$since', '$username')");

}

?>

CQL> CREATE TABLE twissandra.followers (username text, follower text, since

timestamp, primary key(username, follower));

CQL> select count (*) from twissandra .followers limit 600000;

Output:

Count

 600000

<1 row>

35

First showing the transfer code in php:

<?Php

;(require('autoload.php//'

usephpcassa\ColumnFamily;

usephpcassa\ColumnSlice;

usephpcassa\Connection\ConnectionPool;

usephpcassa\SystemManager;

usephpcassa\Schema\StrategyClass;

);$dbh=mysql_connect('37.230.106.13','onrdgcom','ujSh9l7W11'

if (!$dbh) {

die('Baglanamadi: ' . mysql_error (());

}

mysql_select_db('onrdgcom_twissandra');

;"($result1 = mysql_query("SELECT * FROM followers

;($row1 = mysql_fetch_array($result1,MYSQL_ASSOC

Create a new keyspace and column family//

;(sys = new SystemManager('127.0.0.1' $

($sys->create_keyspace(twissandra, array

strategy_class" =>StrategyClass::SIMPLE_STRATEGY,"

;(((""strategy_options" =>array('replication_factor' => '1

);$sys->create_column_family(twissandra, 'followers'

//Start a connection pool, create our ColumnFamily instance

pool = new ConnectionPool('twissandra', array('127.0.0.1',’cassandra'));$

//array parameters must be name of cassandra nodes

);followers = new ColumnFamily($pool, 'followers'$

while ($row1 = mysql_fetch_array($result1,MYSQL_ASSOC)){

};$user=$row1{'username'

$followers->insert($user, array("follower" => $row1{'follower'}, "since" =>

$row1{'since}));'

}

echo "end of file";"

? >

36

Transfer Data from Node.js to Cassandra

For data transfer with Node.js to Cassandra we have to write a small Node.js program

which shown below.

varhelenus = require('helenus'),

pool = new helenus.ConnectionPool({

hosts : ['localhost:9160'],

keyspace : 'twissandra',

user: ",

password: ",

timeout : 800000 ,

});

pool.on('error',

function(err){

console.error(err.name, err.message);

 });

varsinc="1970-01-01 00:00:01 ";

var i=0 ;

pool.connect(function(err, keyspace)}

if(err){

throw(err);

 }else{

while (i<1000000){

i++;

varstr="tkg" + i;

var pass="ktr" + i ;

pool.cql("insert into followers (username,follower,since) VALUES (?,?,?)",[str, pass,

sinc],function(err, results));

 }

}

});

console.log("end of program");

37

The workload of the YCSB executed as shown below:

Workload A:50% Read, 50% update , we can call it [update heavy workload].

Workload B: 95% Read, 5% update, we can call it [Read Mostly workload]

Workload C:100% Read only, we can call it [Read only workload]

Workload F: 50% Read, 50% modify-write, we can call it [Read-modify-write

workload],In this workload a recordsare read, updated and all the changes are saved.

Workload G: 5% Read, 95% update, we can call it [update mostly workload]

Workload H: 100% update, we can call it [update only workload]

Read and write (insert) testing noSQL databases Using Yahoo Cloud Serving

Benchmark(YCSB):

The Data:Loading

The figure below showing us the results of data loading with (600,000)record into the

computer.

Figure:13Time of loading

This figure shows the loading time of two different types of noSQL databases bottom

thebest loading time was presented by Hbase(column family) with a loading time of

only (2:32) two minutes and thirty two seconds which is muchfaster than Cassandra

(5.45) and MongoDB execution time was (3.32).

2.32

4.45

3.32

0 1 2 3 4 5

Hbase

Cassandra

MongoDB

Loading Data(Min.sec)

38

Workload A

The figure 14explain the results obtained whenwe execute workload A which is

contain 50% of reads and 50% of updates on (600,000)record.

Figure:14Time of executing workload A

As we can see a good performance presented by the column family Cassandra (8.89)

seven minutes and eighty nine seconds faster than MongoDB(18:10), while Hbase

shows low performance in this workload .

Workload B

The figure 15explain the results obtained when we execute workload B that is consist

of 95% reads and 5% updates on(600,000) records.

Figure:15Time of executing workload B

During execution of workload B, Column Family databases and Document Store databases

had similar resultsCassandra time is (16.67) while MongoDBtime is (16.34) which is very
close to Cassandra execution time performance, while Hbase shows much time longer than
the others(23.32).

22.35

8.89

18.1

0 5 10 15 20 25

Hbase

Cassandra

MongoDB

workload A

23.32

16.67

16.34

0 5 10 15 20 25

Hbase

Cassandra

MongoDB

workload B

39

Workload C
The figure 16explain the results obtained while executing workload C that consists of

execution of 100% reads onlyon(600,000)record.

Figure:16Time of executing workload C

Here we can notice that Cassandra (16,7) gives better performance than

MongoDB(17min),and better than Hbase (29,22).

Workload F
The figure 17explain the results when we execute workload F that is (50% read, 50%modify-

write)on(600,000) records stored.

Figure:17Time of executing workload F

As we can see MongoDB give more efficient performance with execution time (18.31)

And Cassandra execution time is (13.27) while Hbase is (35.2).

Workload G

Figure 18explain the results when we execute workload G with (600,000) records,

performing (5% reads and 95% updates).

29.22

16.07

17

0 5 10 15 20 25 30 35

Hbase

Cassandra

MongoDB

workload C

35.2

13.27

18.31

0 10 20 30 40

Hbase

Cassandra

MongoDB

workload F

40

Figure:18Time of executing workload G

We can notice that Cassandra execution time (2:58) two minute and fifty eight seconds is

eleven times faster than the execution time ofMongoDB (19.65).

Workload H
Figure 19explain the results of the execution of workload H with 100% updates into a

database with (600,000) records.

Figure:19. Time of executing workload H

As we can see that the execution time for Cassandra (1.97) nighty seven seconds only which

is twenty one times faster than the execution time of MongoDB (22.68), while Hbase shows

(2.29).

Note: all of the above workloads are done on a single node computer and its specification is:

CPU Intel(R) core (TM) i7-4200 CPU 2.29 GH

 RAM 4,00 GB

Hard disk 100 GB

Overall Evaluation
During the previous tests we described the results classified by the type of operation assigned,

andshow Cassandra is the most effective and faster than the other (MongoDBand Hbase).

5.31

2.58

19.65

0 5 10 15 20 25

Hbase

Cassandra

MongoDB

workload G

2.29

1.97

22.68

0 5 10 15 20 25

Hbase

Cassandra

MongoDB

workload H

41

CPU Utilization

In addition to various benchmark workload we also record the CPU utilization on the

noSQL databases Cassandra and MongoDB while CouchDB was not available yet on

the web interface of EC2 cloud watch metrics, we used this metrics to record the

number of the CPU utilized while the workload A is running we insert (test) the

records as following (1000rec, 10000rec, 50000rec).

We can notice as shown in the table below that Cassandra is much lower than

MongoDB for the three test phases, means that Cassandra schema better performance

in term of CPU utilization

The table below shows how much of CPU resources has been used in percentage for

both MongoDB and Cassandra.

Table 2: Comparison of CPU utilization server side

no _records MongoDB Cassandra

1000 26 13

10000 45 29

50000 83 69

Sorting:

"Providing a sorted view of a given data set is a typical task for a database.

All examined databases can handle the ordering of objects by a single attribute, but

only the both document oriented databases MongoDBand CouchDB and the App

Engine data store allow the ordering by multiple attributes. All three of them require

specifying an index to be able to perform the ordering efficiently.

A sometimes-important feature of databases is the ordering of a set by the result of an

aggregation, like a count operation or summation. This is for example required for

Top N lists. If an application requires such a feature, one possible solution would be

to let the client handle the creation of top n list in a periodically batch process, it could

even use the database to store and order the result"(k.Orend, 2010). Table3 shows the

sorting of the different databases.

Table 3: Comparison of the sorting capabilities
 Singleattribute

ordering

multiple attributes

ordering

aggregation

result ordering

MongoDB Yes Yes No

CouchDB Yes Yes No

Cassandra Yes Yes No

42

Range Queries

CouchDB allows range queries at the same time on different attributes;MongoDB also

allows range queries on multiple attributes that connected to a logical operator,

CouchDB uses complex keys in the task which means the developers have to specify

an index with a key contain the attributes on that rang query being

performed(k.Orend, 2010).

Table 4 shows the different in the expression power for range queries of the

different databases.

Table 4: The range querying Comparison
noSQL DBs Onsingle attributes on

multipleattributes

on aggregation

results

MongoDB yes yes no

CouchDB yes yes no

Cassandra yes yes no

Aggregations

Aggregation means the task like counting ,summations and Average calculations and

other statistics calculations for example SimpleDB noSQL database support only

counting and don’t support other aggregation functions, CouchDB and big table

aggregation can be implemented with map reduce functions usage, but they do it

differently, big table uses Goggles map reduce frame on it, which can be as data input

source, in contrast CouchDB map reduce system stores the output as index which is

updated incrementally when the document is written, the advantage of CouchDB

database is that map reduce result always reflect the documents current state in the

database(k.Orend, 2010).

MongoDB also provides some extra functions for aggregation like summation and

average, grouped by statements, the functions in MongoDB can be used efficiently

with the index that can be specified, also MongoDB support the use of map reduce

function, in MongoDB map reduce shows better performance since it can instrument

previously specifying indexes, especially map reduce task strict to a query, which is

used to reduce the large amount number of documents that map reduce task has to

monitor.Table 5describe the difference of the aggregation functionalities

Table 5: Comparison of the aggregation functionalities.
noSQL DBs Counting Aggregation primitives

like Summations

and Averages

Complex aggregations

with

MapReduce

MongoDB yes yes yes

CouchDB Map reduce Map reduce yes

Cassandra yes yes no

43

Durability

"Durability means that all write operations that are committed to a database can never

be lost. This requires that new data is written in some way onto the hard disk before a

database can return the acknowledgement of a successful commit operation, so that

committed data cannot be lost even in the event of a power failure. InRDBMS,

durability is usually ensured through the usage of a transaction log file.

In this file, all transactions are written, before they are committed. If a failurelike a

power outage or some other kind of software or hardware failure happens, the

database can use this log to recover committed but not completely applied

transactions.

For distributed databases the term of durability can even be more extended, because

some databases can not only make sure that committed data is always persistent on a

single machine, but they can also make sure that the data is replicated to at least a

specific number of machines or even to different data centers distributed around the

world to be safe against geological disasters and permanent failures of single

machines"(k.Orend, 2010).

Table6: Comparison of the durability.
noSQL

DBs

Written on at

least one hard

diskafter commit

Replicated to

different machines

after commit

On disk integrity

MongoDB no only late

replication

Recovery may

cause data loss

and requires

consistency

checks of

the database files

CouchDB not butcan be enabled.

onlylate replication.

TheDatabase files

always be in

validity
Cassandra nodewrites data into the

local commit log file in

a sequential manner.

memtablegets

updatedin

asynchronous mode

Cassandra tool

"nodetool" provides

an option to

explicitly flush the

data in commit log

or memtable into

SSTables,

44

5.6 Conclusion

In this study we have compared most-widely used noSQL database systems. Namely,

CouchDB, MongoDB, and Cassandra. Although it is not exactly in the same group of

noSQL database systems we also added Hbase for the comparison when conducting

the tests to see its performance on a single node. All of our test results are average of

6 times. All the test workloads are done on single computer node.

The questions, for which we seek an answer, is what would be the best noSQL

database system to use for analyzing my data?, Our findings on this research for the

most widely used noSQL databases, namely MongoDB, Cassandra, Hbase as follow:

 MongoDB shows better performance than Cassandra when loading (reading in)

the data,

 when we have (50%) read and (50%) update operations Cassandra’s performance

is better than the others,

 when we have read heavy operationCassandra shows better performance than the

others,

 when we have execution of 100% read only operations Cassandra shows the best

performance,

 when we perform with (5%) reads and (95%) updates means update heavy

Cassandra shows the best performance.

 when we have only " updates " means100% updates only into a database

Cassandra shows better performance than the others.

5.7 Suggestions
Using the appropriate noSQL database for the task is very important issue for the IT

community, since there is no absolute evaluate for the question " which tool is the

write tool for the task?" ,the performance–wise (Read, Write, and Update) were be

compared in this researchon most widely used noSQL databases.

First, to avoid unnecessary complexity in transformation or mapping tasks developers

should evaluate the big amount of data to identify a proper data model and putting in

consider the queries supported by the database.

The requirements mentioned above are influencing the design of the data model in

massive way, developers have to deal with and manage the high performance of

partitioning and balancing the servers, high availability should be supported by rigid

consistency and asynchronous replication.

45

Bibliography

The MongoDBnoSQL Database Blog. (2009). Retrieved 2015, from BSON: http://

blog.mongodb.org/post/114440717/bson

Binary JSONx . (2011). Retrieved 2011, from BSON. BSON : http://bsonspec.org/

SQL to Mongo Mapping Chart –. (2011). Retrieved 2015, from Mongo DB: http:

www.mongodb.org/display/DOCS/SQL+to+Mongo+ Mapping+Chart

Futon: Web GUI Administration Panel. (2015). Retrieved 2015, from CouchDB:

http://docs.couchdb.org/en/latest/intro/futon.html

Amazon SimpleDB. (2015). Retrieved 2015, from Amazon:

http://aws.amazon.com/simpledb/

Apache HBase. (2015). Retrieved 2015, from Hbase: http://hbase.apache.org/

MongoDB. (2015). Retrieved 2015, from MongoDB: https://www.mongodb.org/

Redis. (2015). Retrieved 2015, from Redis: http://redis.io/

AbertoAcademy. (2008). Uporto. Retrieved 2015, from aberto: http://repositorio-

aberto.up.pt/

Abiteboul, S. (2011, Sep 23). An introduction to CouchDB, a “NoSQL” document database.

Retrieved 2015, from http://webdam.inria.fr/Jorge/files/slcouchdb.pdf

Aircc.Corporation. (2015). AIRCC Puplication. Retrieved 2015, from AIRCC Puplication:

http://www.airccse.org/

Cass.Benchmark. (2013). Accelerating Cassandra Performance and Reducing Read Latency .

California: Benchmarking Cassandra on Violin.

CassandraPro. (2015). Apache Cassandra. Retrieved 2015, from Cassandra:

http://cassandra.apache.org/

Chang F., D. J. (2008). Bigtable: A Distributed Storage System for Structured Data. ACM

Transactions on Computer Systems.

Connolly, S. (2012, May). 7 Key Drivers for the Big Data Market. Retrieved May 2015, from

Hortonworks: http://hortonworks.com/blog/7-key-drivers-for-the-big-data-market/

CouchBase. (2015). Why Nosql. Retrieved 2015, from CouchDb:

http://www.couchbase.com/nosql-resources/what-is-no-sql

CouchDBLearn. (2014). Retrieved 2015, from http://training.couchbase.com/

CouchDBLearn. (2014). CouchDB Learing. Retrieved 2015, from CouchDB:

http://webdam.inria.fr/Jorge/files/slcouchdb.pdf

46

Couchdoc. (2015). Apache CouchDB. Retrieved 2015, from CouchDB:

http://couchdb.apache.org/

CouchDocument. (2015). couchDocument. Retrieved 2015, from CouchDB:

http://couchdb.apache.org/

CouchIntro. (2011). Apache CouchDB: Introduction. Retrieved 2015, from The Apache

Software Foundation,: http://couchdb.apache.org/docs/intro.html

DataStax. (2014). Apache Cassandr1.0 Documentation. DataStaxCommunity.

DataStaxTut. (2015). DataStax. Retrieved 2015, from DataStax: http://www.datastax.com/

Futon. (2015). Futon: Web GUI Administration Panel. Retrieved 2015, from CouchDB:

http://docs.couchdb.org/en/latest/intro/futon.html

G. DeCandia, D. H. (2007, Oct 14). Dynamo: Amazon’s Highly Available Key-value Store.

Hadoop. (2011). The apache software foundation. Retrieved 2015, from Welcome to Apache

Pig: http://pig.apache.org/

Hare, K. W. (2011). A Comparison of SQL And Comparison of SQL. JCC Consulting,

Inc.Convenor, ISO/IEC JTC1 SC32 WG3. ISO/IEC JTC1/SC32/WG2 N1537.

Harris, D. (2011, july 29). GigaOM Research. Retrieved 2015, from GIGAOM:

https://gigaom.com/2011/07/29/couchbase-2-0-unql-sql-noSQL/

Hbasetutorials. (2015). tutorialspoint. Retrieved May 2015, from tutorialspoint:

http://www.tutorialspoint.com//hbase/hbase_installation.htm

Hewitt, E. (2010). Cassnadra The Defnitive Guide. O Really Media.

Hossain, A. B. (2013). NoSQL Database New Era of Databases for Big data Analytics

Classification, Characteristics and Comparison. International Journal of Database

Theory and Application, 6, 1.

k.Orend. (2010). Analysis and Classification of NoSQL Databases and Evaluation of their

Ability to Replace an Object-relational. Munchen: Technical University Munchen.

Kopp, M. (2011). NoSQL or RDBMS? Retrieved 2015, from About Performance:

http://apmblog.dynatrace.com/2011/10/05/nosql-or-rdbms-are-we-asking-the-

right-questions/

Manoj, V. (2014, August). Comparative Study Of Nosql Documen Column Store Database

And Evaluation Of Cassandra. International Journal of Database Management

Systems (IJDMS), 6.

MongoDatabase. (2015). MongoDB - Create Database. Retrieved 2015, from Tutorialspoint:

http://www.tutorialspoint.com/mongodb/mongodb_create_database.htm

47

MongoDB. (2015). map reduce. Retrieved 2015, from mongoDB:

http://docs.mongodb.org/manual/core/map-reduce/

MongoDBDoc. (2015). MongoDBmanual. Retrieved 2015, from MongoDB:

http://docs.mongodb.org/

MongoDBInc. (2015). mapreduce. Retrieved 2015, from MongoDB:

http://docs.mongodb.org/manual/core/map-reduce/

MongoInstall. (2015). MongoDB. Retrieved 2015, from MongoDB:

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

MongoRep. (2011). Replica Sets. Retrieved 2015, from MongoDB:

http://www.mongodb.org/

N.Rohan. (2013, December). A Comparison of Nosql Systems. New york: Rochester Institute

of Technology.

Narde, R. (2013). Comparison of NoSQL databases on the Cloud based on data model.

Rochester Institute, Computer Science. New York: Rochester Institute of Technology.

Orend, k. (2010). Analysis and compilation of nosql databases. Munchen: faculty of

inforamtion systems.

Patil, N. A. (2011). Sql versus noSQL data management in the cloud. New york: Rochester

Institute of Technology.

ResGate. (2015). Research Gate. Retrieved 2015, from Research Gate:

http://www.researchgate.net/

Riak. (2015). Riak Kv. Retrieved 2015, from Riak: http://basho.com/products/riak-kv/

Shinde, S. (2015). What is Wide Column Stores. Retrieved 2015, from Bigdata: http://bi-

bigdata.com/2013/01/13/what-is-wide-column-stores/

Staff, N. (2010, Feb). The top 10 ways to get to know Neo4j. Retrieved 2015, from Neo4j:

http://neo4j.com/blog/the-top-10-ways-to-get-to-know-neo4j/

48

Appendix : Creating databases in noSQL

Creating database in CouchDB "Futon"

Step1:

After CouchDB has started, you should see the Futon control panel in the CouchDBX

application. In case you can't, you can access Futon via your browser. Looking at the

log, CouchDBX tells us CouchDB was started at http://127.0.0.1:5984/ (may be

different on your system).

 Open a browser and go to http://127.0.0.1:5984/_utils/ and you should see

Throughout the rest of this tutorial I will be using Futon in Firefox. I'll also have

Firebug and the console view open to see all the HTTP requests Futon is sending

behind the scenes. This is useful as your application can do everything Futon is doing.

Let's go ahead and create a database called mycouchshop .

CouchDB jQuery PluginFuton is actually using a jQuery plugin to interact with

CouchDB. You can view that plugin

at http://127.0.0.1:5984/_utils/script/jquery.couch.js (bear in mind your port may be

different). This gives you a great example of interacting with CouchDB.

Step 2 - Users in CouchDB

CouchDB, by default, is completely open, giving every user admin rights to the

instance and all its databases. This is great for development but obviously bad for

49

production. Let's go ahead and setup and admin. In the bottom right, you will see

"Welcome to Admin Party! Everyone is admin! Fix this".

Go ahead and click fix this and give yourself a username and password. This creates

an admin account and gives anonymous users access to read and write operations on

all the databases, but no configuration privileges(Futon, 2015).

More on Users

In CouchDB it would be unwise to create a single super user and have that user do all

the read/write.

Users in CouchDB can be a little confusing to grasp initially, especiallyif you're used

to creating a single user for your entire application and then managing users yourself

within a user's table (not the MySQL users table). In CouchDB, it would be unwise to

create a single super user and have that user do all the read/write, because if your app

is client-side then this super user's credentials will be in plain sight in your JavaScript

source code.

CouchDB has user creation and authentication baked in. You can create users with the

jQuery plugin using $.couch.signup(). These essentially become the users of your

system. Users are just JSON documents like everything else so you can store any

additional attributes you wish like email for example.You can then use groups within

CouchDB to control what documents each user has write access to. For example, you

can create a database for that user to which they can write to and then add them to a

group with read access to the other databases as required.

50

Step 3 - Creating a Product Document

Now let's create our first document using Futon through the following steps:

1. Open the mycouchshop database.

2. Click "New Document".

3. Click "Add Field" to begin adding data to the JSON document. Notice how an

ID is pre-filled out for you, I would highly advise not changing this. Add key

"name" with the value of "Nettuts CouchDB Tutorial One".

4. Make sure you click the tick next to each attribute to save it.

5. Click "Save Document".

Go up a level, back to the database and you should see one document listed with the

previous ID as the key and a value beginning with{rev: . This is the JSON document

you just created.

51

Step 4 - Updating a Document

CouchDB is an append only database -- new updates are appended to the database and

do not overwrite the old version. Each new update to a JSON document with a pre-

existing ID will add a new revision. This is what the automatically inserted revision

key signifies. Follow the steps below to see this in action:

 Viewing the contents of the mycouchshop database, click the only record

visible.

 Add another attribute with the key "type" and the value "product".

 Hit "Save Document".

After hitting save, a new revision key should be visible starting with the number 2.

Going back a level to the mycouchshop database view, you will still see just one

document, this is the latest revision of our product document(Futon, 2015).

Revisions

While CouchDB uses revisions internally, try to not lean on it too much. The

revisions can be cleaned through Futon quite easily and it is not designed to be used

as a revision control system. CouchDB uses the revisions as part of its replication

functionality.

52

Step 5 - Creating a Document Using cURL

I've already mentioned that CouchDB uses a RESTful interface and the eagle eyed

reader would have noticed Futon using this via the console in Firebug. In case you

didn't, let's prove this by inserting a document using CURL via the Terminal.

First, let's create a JSON document with the below contents and save it to the desktop

calling the file person.json.

1

2

3

4

5

{
 "forename": "Gavin",
 "surname": "Cooper",
 "type": "person"
}

Next, open the terminal and execute cd ~/Desktop/ putting you in the correct directory

and then perform the insert with curl -X POST http://127.0.0.1:5984/mycouchshop/ -d

@person.json -H "Content-Type: application/json". CouchDB should have returned a

JSON document similar to the one below.

{"ok":true,"id":"c6e2f3d7f8d0c91ce7938e9c0800131c","rev":"1-

abadd48a09c270047658dbc38dc8a892"}

This is the ID and revision number of the inserted document. CouchDB follows the

restful convention and thus:(Futon, 2015)

 POST - creates a new record

 GET - reads records

 PUT - updates a record

 DELETE - deletes a record

53

Step 6 - Viewing All Documents

We can further verify our insert by viewing all the documents in

our mycouchshopdatabase by executing curl -X GET

http://127.0.0.1:5984/mycouchshop/_all_docs.

Step 7 - Creating a Simple Map Function

Viewing all documents is fairly useless in practical terms. What would be more ideal

is to view all product documents. Follow the steps below to achieve this:

 Within Futon, click on the view drop down and select "Temporary View".

 This is the map reduce editor within Futon. Copy the code below into the map

function.

1

2

3

4

5

function(doc) {
 if(doc.type === "product"&& doc.name) {
 emit(doc.name, doc);
 }
}

54

Creating database in MongoDB:
MongoDB use DATABASE_NAME is used to create database. The command will

create a new database, if it doesn't exist otherwise it will return the existing database.
Syntax:

Basic syntax of use DATABASE statement is as follows:

use DATABASE_NAME

Example:

If you want to create a database with name <mydb>, then use

 DATABASE statement would be as follows:

>use mydb

switched to db mydb

To check your currently selected database use the command db

>db

mydb

If you want to check your databases list, then use the command show dbs.

>show dbs

local 0.78125GB

test 0.23012GB

Your created database (mydb) is not present in list. To display database you need to

insert at least one document into it.

>db.movie.insert({"name":"tutorials point"})

>show dbs

local0.78125GB

mydb0.23012GB

test0.23012GB

In MongoDB default database is test.If youdidn't create any database thencollections

will be stored in test database.

MongoDB is a cross-platform, document oriented database that provides, high

performance, high availability, and easy scalability. MongoDB works on concept of

collection and document.

Database
Database is a physical container for collections. Each database gets its own set of files

on the file system. A single MongoDB server typically has multiple

databases(MongoDatabase, 2015).

55

Collection

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS

table. A collection exists within a single database. Collections do notenforce a

schema. Documents within a collection can have different fields. Typically, all

documents in a collection are of similar or related purpose.

Document
A document is a set of key-value pairs. Documents have dynamic schema. Dynamic

schema means that documents in the same collection do not need to have the same set

of fields or structure, and common fields in a collection's documents may hold

different types of data.

Below given table shows the relationship of RDBMS terminology with MongoDB.

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

column Field

Table Join Embedded Documents

Primary Key
Primary Key (Default key _id
provided by mongodb itself)

Database Server and Client

Mysqld/Oracle mongod

mysql/sqlplus mongo

Sample document
Below given example shows the document structure of a blog site which is simply a

comma separated key value pair.

{

 _id:ObjectId(7df78ad8902c)

title:'MongoDB Overview',

description:'MongoDB is no sql database',

by:'tutorials point',

url:'http://www.tutorialspoint.com',

tags:['mongodb','database','NoSQL'],

likes:100,

comments:[

{

user:'user1',

message:'My first comment',

dateCreated:newDate(2011,1,20,2,15),

like:0

},

{

user:'user2',

message:'My second comments',

dateCreated:newDate(2011,1,25,7,45),

like:5

}

56

]

}

Creating Database in Cassandra:

Creating a Table using Cqlsh

You can create a table using the command CREATE TABLE. Given below is the

syntax for creating a table.
Syntax

CREATE (TABLE | COLUMNFAMILY) <tablename>

('<column-definition>' , '<column-definition>')

(WITH <option> AND <option>)

Defining a Column

You can define a column as shown below.

column name1 data type,

column name2 data type,

example:

ageint,

name text

Primary Key

The primary key is a column that is used to uniquely identify a row.

Therefore,defining a primary key is mandatory while creating a table. A primary key

is made of one or more columns of a table. You can define a primary key of a table

as shown below(MongoDatabase, 2015).

CREATE TABLE tablename(

column1 name datatype PRIMARYKEY,

column2 name data type,

column3 name data type.

)

or

CREATE TABLE tablename(

column1 name datatype PRIMARYKEY,

column2 name data type,

column3 name data type,

PRIMARY KEY (column1)

)

57

Example

Given below is an example to create a table in Cassandra using cqlsh. Here we are:

Using the keyspace tutorialspoint

Creating a table named emp

It will have details such as employee name, id, city, salary, and phone number.

Employee id is the primary key.

cqlsh> USE tutorialspoint;

cqlsh:tutorialspoint>; CREATE TABLE emp(

emp_idint PRIMARY KEY,

emp_name text,

emp_city text,

emp_salvarint,

emp_phonevarint

);

Verification

The select statement will give you the schema. Verify the table using the select

statement as shown below.

cqlsh:tutorialspoint> select * from emp;

emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+----------+----------+-----------+---------

(0 rows)

Here you can observe the table created with the given columns. Since we have

deleted the keyspace tutorials point, you will not find it in the keyspaces

list(MongoDatabase, 2015).

Cassandra Data Model

The Cassandra data model is a dynamic schema, column-oriented data model. This

means that, unlike a relational database, you do not need to model all of the columns

required by your application up front, as each row is not required to have the same set

of columns.

Columns and their metadata can be added by your application as they are needed

without incurring downtime to your application.

There is an SQL like query language to query Cassandra Key Spaces. The name of the

Cassandra query language is CQL. CQL has some versions but the last version of

CQL is 3, so right now CQL3 is used to query Cassandra. CQL 3 tables, rows, and

columns can be viewed much the same way as SQL, which is different from

58

theinternal implementation in Cassandra. In SQL you define tables, which have

definedcolumns. The table defines the column names and their data types, and the

client application then supplies rows conforming to that schema. In Cassandra, you

also define tables and metadata about the columns, but the actual columns that make

up a row are determined by the client application.

CQL 3 has terms which are different from relational database terms. These terms are

given below.

Cluster: You can create different Cassandra datacenters means that different

Cassandra topologies can be created as datacenters. If you have more than 1

datacenter or topology, you can establish a communication among these datacenters.

Cluster names are given to different datacenters(MongoDatabase, 2015).

KeySpace:The name of Cassandra’s database which has same meaning with database

of RDBMS.
Column Family:The name of Cassandra’s tables which has same meaning with tables

or relations of RDBMS.
RowKey:In Cassandra each record is represented a row key.

An Example of Cassandra Data Model (Music Service)

This example contrasts two approaches to applying Cassandra's storage model:

• Using legacy sparse objects. Objects and fields correspond to rows and columns,

respectively, but we do not know what the fields are in advance.

• Using CQL 3 to transpose data partitions (wide rows) into familiar row-based result

sets, dramatically simplifying data modeling.

This example of a social music service requires a songs table having a title, album,

and artist column, plus a column called data for the actual audio file itself. The table

uses a UUID as a primary key.

CREATE TABLE songs (
id uuid PRIMARY KEY,
title text,
album text,
artist text,
data blob
);

In a relational database, you would create a playlists table with a foreign key to the

songs, but in Cassandra, you denormalize the data. Cassandra packs each song in a

playlist into one column, so fetching a playlist is just a single primary key lookup.

The column value holds the song id. To represent the playlist data in CQL3, you can

create a table like this:

CREATE TABLE playlists (

id uuid,

song_id uuid,

title text,

album text,

artist text,

PRIMARY KEY (id, song_id)

);

The combination of the id and song_id in the playlists table uniquely identifies a row

in the playlists table. You can have more than one row with the same id as long as the

rows contain different song_ids. Using UUIDs as surrogate keys instead of sequential

integers is a Cassandra best practice; using natural keys is also a good option. UUIDs

59

are handy for sequencing the data or automatically incrementing synchronization

across multiple machines(MongoDatabase, 2015).

We can insert some records which are shown below to “playlist”.

INSERT INTO playlists (id, song_id, title, artist, album)

VALUES (62c36092-82a1-3a00-93d1-46196ee77204,

'a3e64f8f-bd44-4f28-b8d9-6938726e34d4', 'La Grange', 'ZZ Top', 'Tres Hombres');

INSERT INTO playlists (id, song_id, title, artist, album)

VALUES (62c36092-82a1-3a00-93d1-46196ee77204,

'8a172618-b121-4136-bb10-f665cfc469eb', 'Moving in Stereo', 'Fu Manchu', 'We

Must Obey');

INSERT INTO playlists (id, song_id, title, artist, album)

VALUES (62c36092-82a1-3a00-93d1-46196ee77204,

'2b09185b-fb5a-4734-9b56-49077de9edbf', 'Outside

INSERT INTO playlists (id, song_id, title, artist, album)

VALUES (62c36092-82a1-3a00-93d1-46196ee77204,

'7db1a490-5878-11e2-bcfd-0800200c9a66',

'No One Rides for Free', 'Fu Manchu', 'OjoRojo');

After inserting the example data into playlists, the output of selecting all the data

looks like this:

The CQL 3 data maps to the storage engine's representation of the data as follows:

The solid lines show how the cell values get unpacked into three CQL 3 columns. The

dotted lines show how the clustering key portion of the compound primary key

becomes the song_id column. Presenting a storage engine row as a partition of two or

more object rows is a more natural row-column representation than earlier CQL

versions and the Thrift API(MongoDatabase, 2015).

60

Creating a Table using HBase Shell

You can create a table using the create command, here you must specify the table

name and the Column Family name. The syntax to create a table in HBase shell is

shown below.

create ‘<table name>’,’<column family>’

Example

Given below is a sample schema of a table named emp. It has two column families:

―personal data‖ and ―professional data‖.

Row key personal data professional data

You can create this table in HBase shell as shown below.

hbase(main):002:0> create 'emp', 'personal data', ’professional data’

And it will give you the following output.

0 row(s) in 1.1300 seconds

=> Hbase::Table - emp

Verification

You can verify whether the table is created using the list command as shown below.

Here you can observe the created emp table.

hbase(main):002:0> list

TABLE

emp

2 row(s) in 0.0340 seconds

Creating a Table Using java API

You can create a table in HBase using the createTable() method of

HBaseAdmin class.

This class belongs to the org.apache.Hadoop.hbase.client package. Given below are

the steps to create a table in HBase using java API.

Step1: Instantiate HBaseAdmin

This class requires the Configuration object as a parameter, therefore initially

instantiate the Configuration class and pass this instance to HBaseAdmin.

Configuration conf = HBaseConfiguration.create();

61

HBaseAdmin admin = new HBaseAdmin(conf);

Step2: Create Table Descriptor

HTableDescriptor is a class that belongs to the org.apache.Hadoop.hbaseclass. This

class is like a container of table names and column families.

//creating table descriptor

HTableDescriptor table = new HTableDescriptor(toBytes("Table name"));

//creating column family descriptor

HColumnDescriptor family = new HColumnDescriptor(toBytes("column family"));

//adding coloumn family to HTable

table.addFamily(family);

Step 3: Execute through Admin

Using the CreateTable() method of HBaseAdmin class, you can execute the created

table in Admin mode.

admin.createTable(table);

Given below is the complete program to create a table via admin.

importjava.io.IOException;

importorg.apache.Hadoop.hbase.HBaseConfiguration;

importorg.apache.Hadoop.hbase.HColumnDescriptor;

importorg.apache.Hadoop.hbase.HTableDescriptor;

importorg.apache.Hadoop.hbase.client.HBaseAdmin;

importorg.apache.Hadoop.hbase.TableName;

importorg.apache.Hadoop.conf.Configuration;

publicclassCreateTable{

publicstaticvoid main(String[]args)throwsIOException{

// Instantiating configuration class

Configuration con =HBaseConfiguration.create();

// Instantiating HbaseAdmin class

HBaseAdmin admin =newHBaseAdmin(con);

// Instantiating table descriptor class

HTableDescriptortableDescriptor=new

TableDescriptor(TableName.valueOf("emp"));

// Adding column families to table descriptor

62

tableDescriptor.addFamily(newHColumnDescriptor("personal"));

tableDescriptor.addFamily(newHColumnDescriptor("professional"));

// Execute the table through admin

admin.createTable(tableDescriptor);

System.out.println(" Table created ");

}

}

Compile and execute the above program as shown below(MongoDatabase, 2015).

$javac CreateTable.java

$java CreateTable

The following should be the output:

Table created

