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DETERMINATION OF TIME-OF-USE PRICES IN ELECTRICITY MARKETS
USING CLUSTERING ANALYSES

ABSTRACT

In this thesis, a clustering analysis to determine the blocks (clusters) of hours for
time-of-use (TOU) pricing scheme is proposed and different clustering algorithms
are compared using different measures, i.e., change in overall revenue, mean
absolute percent error and adjusted coefficient of determination (R?) from multiple
linear regression analyses. Hourly electricity price and demand (load) data for two
seasons (winter and summer) from Pennsylvania-New Jersey-Maryland (PJM)
wholesale electricity market for 2014-2015 is used and based on detailed descriptive
analyses and observations, three blocks of hours (off-peak, mid-peak and on-peak)
are presented. In R software, two clustering algorithms (agglomerative hierarchical
and k-means) are employed and several clusters for summer and winter weekday
hours are formed. The average of the hourly electricity prices in the same cluster for
off-peak, mid-peak and on-peak hours determines the TOU pricing scheme (hours in
each cluster and prices for each clusters). These prices are compared to real-time
pricing (RTP) rates in terms of change in overall revenue collected (price*load) and
mean absolute percent error with respect to RTP rates.

Finally, in order to measure the significance of the TOU price and the demand
relationship, multiple linear regression analyses are performed. In the regression
models, dependent variable is the TOU price (or logarithm of it) and independent
variables are the average load (or logarithm of it) of the TOU block of hours, lagged
TOU price and lagged TOU average load as well as categorical variables for off-
peak, mid-peak and on-peak hours for each TOU pricing scheme. Using Minitab
software, different regression models are built and adjusted R?, significance of
regression coefficients and the significance of the overall model are computed. The
significant models (with 95% confidence) are reported and the TOU clusters with
higher adjusted R? values are determined. Moreover, in order to measure the
autocorrelation effect, Durbin-Watson statistics for each significant regression model
are calculated and positive correlation among dependent and independent variables

are reported. These analyses can be used by electricity market retailers, distribution



companies as well as regulatory bodies in determining TOU time blocks (clusters)
and prices.

Keywords: TOU, Pricing Scheme, Clustering Algorithm, Multiple linear regression
analysis, PJIM wholesale market



ELEKTRIK PIYASALARINDA COK ZAMANLI FIYATLARIN KUMELEME
ANALIZLERI KULLANILARAK BELIRLENMESI

OZET

Bu c¢alismada, ¢ok zamanlhh (CZ) fiyatlandirma i¢in saat Obeklerinin
(kiimelemelerinin) belirlenmesine yonelik bir kiimeleme analizi onerilmis ve farkli
kiimeleme algoritmalar1 farkli Olgiilerle (coklu dogrusal regresyon analizindeki
diizeltilmis belirlilik katsayis1 —R?, toplam gelirdeki degisim ve ortalama mutlak
yilizde hata gibi) karsilastirilmistir. 2014-2015 yillar1 i¢in Pennsylvania-New Jersey-
Maryland (PJM) toptan elektrik piyasasindan alinan mevsimlik (kis ve yaz) saatlik
elektrik fiyat ve talep (yuk) verileri kullanilmis ve detayli agiklayici istatiksel analiz
ve gozlemlere dayanarak ii¢c saat 6begi (gece, giindiiz ve puant) sunulmustur. Daha
sonra, R yaziliminda iki farkli kiimeleme algoritmasi (hiyerarsik yigmaci ve k-
ortalamalar) kullanilmis ve yaz/kis isgiinleri i¢in kiimelemeler olusturulmustur.
Gece, gilindiiz ve puant saatler icin aym kiimelemedeki saatlik elektrik fiyatlari
ortalamalar1 ile ¢ok zamanh fiyatlandirma plani (her kiimelemedeki saatler ve her
kiimeleme i¢in fiyatlar) belirlenmistir. Bu fiyatlar, gercek zamanl fiyatlar (GZF) ile
toplanan toplam gelir (fiyat*ylik) ve GZF’ye gore ortalama mutlak ylizde hata

bakimindan karsilagtirilmistir.

Son olarak, CZ fiyat ve talep iliskisinin anlamliligin1 6lgmek iizere ¢oklu dogrusal
regresyon analizleri yapilmistir. Regresyon modellerinde bagimli degisken CZ fiyat
(veya logaritmasi) ve bagimsiz degiskenler CZ saat 6beginin ortalama yiikleri (veya
logaritmasi), zamani geciktirilmis CZ fiyat, zaman geciktirilmis CZ ortalama yiik ile
her bir CZ fiyatlandirma plani i¢in gece, giindiiz ve puant saatlerini belirten golge
degiskenlerdir. Minitab yazilimi kullanilarak farkli regresyon modelleri olusturulmus
ve diizeltilmis belirlilik katsayis1 (diizeltilmis R?), regresyon katsayilar1 anlamlilig
ve modelin anlamliligi hesaplanmistir. Anlamli modeller (%95 giivenle) rapor
edilmis ve yiiksek diizeltilmis R? degeri olan CZ kiimelemeleri belirlenmistir. Bunun
yanisira, otokorelasyonun etkisini 6lgmek iizere her bir anlamli model i¢in Durbin-
Watson istatistikleri hesaplanarak bagimli ve bagimsiz degiskenler arasindaki pozitif

korelasyon rapor edilmistir. Bu analizler elektrik piyasasi perakende saticilari,



dagitim sirketleri ve diizenleyici kurumlar tarafindan ¢ok zamanli saat 6beklerinin ve

fiyatlarin belirlenmesi i¢in kullanilabilecektir.

Anahtar sozciikler: Cok zamanli fiyatlandirma, kiimeleme algoritmalari, coklu

dogrusal regresyon analizi, PJM toptan elektrik piyasasi

Vi
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Chapter 1: Introduction

1.1 Overview of Electricity Markets around the World

Throughout the world, the electricity (or power) markets, which have long been
influenced by upright integrated utilities, are undergoing vital changes in the
composition of its regulation and operations. Owing to the current directives, these
markets are evolving into a deregulated form in which the market coercions derives
power prices. The market is now becoming competitive and the environment of the
market is altering the customary centralised-operation procedures. This
transformation is frequently known as “deregulation” (or else known as
“restructuring”, “privatisation”, “liberalisation”, and “competitiveness”) in electricity
markets. Many power corporations have broken apart into various agents that
specialize in electricity supply, distribution, and production. These agents are
essential to adopt latest management techniques to sustain in this competitive market.
Also, it requires latest modelling methods that imitate how power market participants
may respond to the changing financial, economic, and regulatory condition in which

they operate.

Electricity is a type of a secondary energy source that is primary to our lives today,
for many of us, life without electricity would be inconceivable. The productive life
normally arrives at a pause when an event such as a blackout happens (all have had
such an experience before), everything is stopped and people wait for the electricity
to come back before being capable of doing nearly everything. In 1987, the electric
competition was introduced earliest in Chile. Not long later, Wales and England and
other advanced states followed. In United States (U.S.), the Energy Policy Act (EPA)
of 1992 publically motivated a transformation of wholesale electricity competition.
Competitive electricity wholesale markets slice up customary upright integrated
(monopolistic and mostly state-owned) power entity, detaching electricity generation
proprietor from the entities responsible for electricity distribution, transmission, and
retail sale. Alternative to generating electricity to only cover the requirements of their
electricity consumers, generation proprietary propose their power into a centralised
wholesale market, and sold through the process of an auction (Chao and Huntington,
2013). In most cases, nevertheless, customers have very small impact on the design

of these power markets. Juries composed of officials from producers, transmission
1



and distribution corporations, regulators and retailers take all resolutions. There is a
clear and comprehensible reason for these circumstances, most customers with the
feasible exception of the large ones, do not have the prowess and financial incentives
needed to contribute efficiently in the market, due to time-consuming and composite
tasks involved. Perhaps, as a result of this lack of representation, many electricity
markets do not deal with most customers as an authentic load side that is able to take
sensible decisions but simply as a demand that obeys the market outcome under all
situations. Wholesale electricity markets have become utterly advanced and have
been impartially successful especially over the last ten years. When we compare the
retail electricity market with the wholesale market, the retail market has been very
less successful, due to lack of customer participation, e.g., the chance to react spot

electricity rates (Kirschen, 2003).

The proposed time-of-use (TOU) pricing method for electricity markets is mainly
beneficial for regulatory bodies (who can set the retail prices), retailers and
distribution companies. The liberalisation process for electricity markets in Europe
has progressively focused on energy market amalgamation and associated cross
border issue. The liberalisation signs of the federal energy market are now nearer to
the long-term goals of a sole European electricity market. The interface point
between the federal energy markets needs physical technical positioning and inter-
connections. The announcment of the opening of European-Union power sectors the
drivers have attained a degree of, institutions; systemize structures, and rules in the
federal markets. The opening of markets has proceeded swiftly and in most
instances, beyond the minimum requirements. Many customers and specifically
substantially large consumers are seeing converging and lower electricity rates. The
productivity of energy corporations has increased, while at the same time their profits
in the highly competitive markets (e.g., Wales and England) appears to have

decreased, reflecting continued redundancy in size (Jamasb and Pollitt, 2005).

For numerous reasons, power utilities, and electric network corporations have been
restricted to reorganize their functioning’s from upright integrated mechanism to
unfold market system (Bhattacharya et al., 2012). The philosophy of managing the
system has also changed, with the deregulation and reorganising electricity

transmission industry. The customary procedure was to supply all demands of
2



electricity whenever they happen, nevertheless, the current philosophy describes that

the system will be more effective if variation in load is kept as low as possible.

Power deregulation has been utterly meagre in scope focusing on retailing and
wholesale pricing. Many large generators were granted jurisdictional rights to sell
electricity at deregulated rates (Bushnell et al., 2008). Transmission and distribution
regions abide regulation but have been restructured to facilitate retail choice and
wholesale markets. Many utilities have remained as the ownership of distribution
lines but have renounced the day-to-day command of the network system to
independent system operators (ISOs). 1SO controls the power system and supplies
the market contributors with peer access to the system network. It also supervises at
the least one interchange organised through which companies can trade electricity (in
some countries, e.g. Turkey, there is a separate entity called “Independent Market

Operator”, IMO, which only deals with market operations, but not the system issues).

1.2 Objectives and Contribution of this Study

Much of the power demand in the U.S. is strenuous to a handful throughout the year,
fundamentally throughout the summer season. This is usually the so-called “peak”
load, which puts a considerable strain on the grid and hence, the risk of brownouts
and blackouts is very high specifically in a summer season. It also notably raises the
year round rates of electricity for customers. Better knowledge and decision making
by consumers throughout the on-peak period of the load could substantially decrease
this strain on the grid and the risk of electricity outages. Our main objective is to help
the regulatory bodies, retailers or distribution companies in setting a TOU pricing
scheme, which in turn can help minimize the power consumption during the peak

hour periods.

Demand side management (DSM) is the modification of the customer demand for
electricity through different techniques such as behavioural change through
instructions and financial incentives. Normally, the objective of DSM is to motivate
the customer to utilize less electricity throughout the peak hours demand period or to
shift the time of electricity usage to off-peak periods such as weekends and night-
time. On peak load, management does not certainly reduce total electricity

3



utilisation, but could be awaited to decrease the requirement for investment in the
system network or power generation plants for meeting demand during the peak

hour’s period.

TOU pricing combined with smart meters indicates that consumer can even better
control over their monthly energy consumption bill. By regulating their energy
utilisation habits they can benefit when the prices of the electricity are lower. When
the consumers know precisely how much energy they are utilising and what the
prices are at a given specific hour or period, then the customers obtain the authority
to make smarter decisions when utilising electricity. The electricity consumer will
also benefit by minimizing their electricity utilisation patterns during the on-peak
period through pricing with customer rewards for switching their utilisation pattern

from on-peak hours to off-peak hours.

TOU pricing is a significant DSM technique, which could motivate and appreciate
the customer’s conducts and attain the purpose of decreasing the demand of the peak
hour period and shift demand to off-peak periods. A simple TOU pricing scheme can
be obtained by dividing the hours of the day into three patterns (namely, off-peak,

mid-peak, and on-peak).

1.3 Scope and Outline of the Thesis

In this study, firstly we have analysed the overall hourly electricity prices and loads
(demands) from Pennsylvania-New Jersey-Maryland interconnection (PJM), only the
weekdays (excluding holidays and weekends) and winter and summer seasons
separately. Then, we focused on the price and demand level of these weekdays and
observe the behaviour of the prices with respect to their demand level at each hour of
the day (hour 1 to hour 24). Based on the analyses in price level at different hours
and comparing the price and demand at different hours, we have represented the
three patterns of electricity pricing scheme as off-peak, mid-peak, and on-peak (i.e.,
TOU patterns) and then we converted these price as well as demand levels into three

clusters.

This thesis consists of five chapters, listed below:

4



Chapter 1 provides the introduction, including history and importance of the
electricity prices as well as loads and brief details of the previous studies done on the
electricity prices in the U.S. competitive electricity markets. It also provides the

objectives and contribution of this study and gives the basic structure of this thesis.

Chapter 2 includes the overview of electricity pricing schemes, (i.e., RTP, TOU
pricing and fixed (flat) pricing schemes and comparison among these schemes). It
also provides a background on demand response in electricity markets. It defines
how the demand of electricity affects the price in the competitive market as well as
the relationship between the demand and price of the electricity. It also provides

information about how TOU blocks of hours are determined for pricing.

Chapter 3 gives the overview of clustering method (hierarchical and k-means). It also
provides the detailed literature review of both clustering methods. It explains the
single, average, median, complete, centroid, ward, and ward.d2 linkage methods in
hierarchical clustering. On the other hand, for k-means clustering the selection of k
(number of clusters) and its purpose as well as its drawbacks are presented. It also
provides the cluster analyses for electricity prices and demands in two seasons

(winter and summer). At the end of this chapter, there is a discussion of the results.

Chapter 4 presents the multiple linear regression analysis of clusters. It gives
information about how the regression model are built and it analyses the significant
models in details e.g., autocorrelation among the prices and demands (i.e., using the
Durbin-Watson test to check positive or negative correlation). Finally, it provides the
discussion of the regression models and best models that explains the relationship
among dependent and independent variables.

Chapter 5 includes the conclusion of this research and further research areas that can

be explored.



Chapter 2: Overview of Electricity Pricing and Demand Response in Electricity
Markets

2.1 Overview of Electricity Pricing

Electricity (power) prices (rates) normally reflect the prices to construct, maintain,
support and operate power generation plants and the grid (the composite system of
electricity distribution and transmission lines). There are numerous principal
component effects for electricity price such as fuel price, maintenance of power
generation plants as well as distribution and transmission system, weather conditions,
and regulations. Power prices are normally highest for commercial and residential
customers, because it costs extra to distribute power to them. Industrial customers
utilise more electrical energy and can obtain it at inflated voltage levels. Therefore, it
is highly effective and less costly to distribute electricity to this type of consumers.
The rates of power to industrial consumers are generally close to the wholesale price
of electricity. In 2014, the mean retail rate of the electrical energy in the US was
10.45 cents/kWh. The price for the residential consumer was about 12.50 cents/kWh,
whereas industrial consumers face an average price 7.01 cents/kWh. On the other
hand, for the commercial user the average price was 10.75 cents/kWh, and for the
transportation, it was 10.27 cents/kWh. There are several different pricing schemes

for electricity pricing, which will be detailed in the next subsection:

e TOU Pricing Scheme
e RTP Scheme

e Flat Rate Pricing Scheme

2.1.1 TOU Pricing Scheme

In the TOU pricing scheme, both periods including the time and prices are fixed for
some specific cycle. The widespread classification of TOU prices for electricity
consumers are most frequently offered the rates established in advance, but can be
changing over the day to apprehend the anticipated impact of varying electricity
conditions (Faruqui et al., 2014). In TOU pricing scheme, the hours of the day are

categorized into three blocks depending upon the demand and/or price.



o Off-peak

e Mid-peak

e On-Peak
Off-peak is the period of time at which both the prices and load of the electricity are
usually low (i.e., due to the low load of electricity the production cost of electricity is
also low, especially in base load conventional generators). The off-peak demand can
be handled through cheaper power generation plants (e.g., hydro). TOU at peak
periods means that the demand is the highest due to the commercial usage like
production industries at this time, hence, the price of the electricity is the highest due
to high generation rate. Mid-peak prices/loads are in between the off-peak and these

on-peak price/load levels.

The distinctive feature of the many TOU rates is that they are established well in
prior of the electricity supply/demand cycle and are not regulated to reflect real time
conditions. To set up the rates that vary from fixed intervals of time is a technique to
approximate the RTP rates. This, as a consequence, would miss the full variability of
RTP if such TOU prices are established in advance (Hogan, 2014).

The principal forces at the back of the TOU prices are to consider the time difference
in the prices formed at the wholesale market to generate electricity, motivate the
consumers to minimize utilization during the peak demand hours or simply to move
or change their electricity consumption to off-peak periods, permitting the advantage

or other energy manufacturers to perform facilities more effectively.

TOU rates for domestic electricity consumers still have to obtain extensive
acceptance. This is because of their capability to save customers, such as above $1.2
billion every year in California only as claimed by the Energy Power Research
Institute (EPRI) (King, 2001). Put in an application to all domestic consumers in the
U.S., about 10% minimization of electricity during the peak demand hours would
translate to around 20,000 MW (this is around the similar peak load hours for

Electric and Pacific Gas, the nation’s biggest amalgamate of gas and electric utility).

Time differentiated rates should target at giving an economic inducement to

consumers to change their utilization patterns by decreasing peak hour’s demand and
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moving energy consumption from peak demand hours to off-demand hours. The
details on cross-price and rates flexibility of domestic electricity or power demand by
TOU are extraordinarily important to evaluate the effectiveness of time differentiated
rates policy. From the hypothetical viewpoint, the implementation of the TOU rates
should provide increase in public welfare. Time differentiated rates policy can also
allow, prices that are adjacent to marginal rates and forefront to welfare.
Nevertheless, cost responsiveness in a TOU price infrastructure can be much higher
in the long period of time when consumers have the chance to respond to rates
increase by buying more efficient apparatus and appliances. In the limited period of
time or in short run domestic customers can decrease utilization only by preceding

usage or by moving consumption to off-peak time period (Filippini, 2011).

2.1.2 RTP Scheme

In RTP scheme, prices of electricity change on an hourly basis. Normally, the prices
of the electricity are fixed and announced only on an hour ahead or day ahead basis.
These pricing strategies can be utilized efficiently to influence the consumer usage
during the peak demand hours. It considers the wholesale rates (the marginal price of
electricity), weather conditions, generator breakdown, and shortage in production
due to some uncertain conditions and another incident in an electricity wholesale
market. Utilities can exercise different retail charges for different days and for the

different hours of the day.

From the producer’s point of view, RTP rates decreases the entire payments to
producers in the wholesale market, owing to the fact that the reduction in demand
during the peak hours when rates of electricity are very high. Moreover, RTP rates
can decrease the capability of producers to market power practice. When producers
tend to withhold their capacity, retail rates also increase. After that, the profitability
of rate increases is balanced by the demand of response (i.e. the rate increase can be
counteracted by the reduction in demand and due to this reduction in demand it can
also reduce the profitability) and practices of the power market is also discouraged.
Ultimately, RTP can decrease the demand for excess capacity by either moving
consumption from peak hours to off-peak hours or by minimizing consumption at

peak hours of the specific period of time (Borenstein et al., 2002).
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In spite of the fact that RTP is a vital conceptual progress over TOU pricing strategy,
it normally has evasive benefits. The unreliability and uncertainty of rates switch the
price risk to consumers and accordingly, it has failed to entice more customers.
Furthermore, the billing costs and incremental metering connected with the
application of the RTP rates can demoralize utilities and customers. The examination
for Electric Company and Pacific Gas calculated these costs around $1 billion
(Faruqui and Sergici, 2010).

Final customers may not respond to RTP scheme for two principal reasons. Firstly,
the price of examining and estimation of hourly rates and persistently optimising the
utilization may be immense for small consumers. Secondly, adjusting utilization
freely may not be possible for customers due to physical characteristics and
configuration of the transmission network, in particular, frequently directed
intervention (because of the scarcity and congestion in transmission grid) that can be
controlled by the transmission network operator normally takes place at the zones
level. This means that discrete customers cannot have their control for being served
by the transmission network operator (Joskow and Tirole, 2004).

A compulsory requirement for application of a RTP scheme is the metering
technologies, which can calculate the utilization of consumers on a specific period of
time or interval basis. These specific time period or interval meters can preserve an
individual utilization measurement for every single hour in a billing interval.
Consequently, utilities can achieve their billing and metering process and the end
user can collect the electricity pricing information. The price of a domestic period or
interval meter is particularly six-time the price of a commercial period meter and a
traditional domestic meter is about two times the price of the domestic period meter
(Waters, 2004).

A further possibility to the usual electricity retail market is the price model such as
conservation with the inclined block rates (IBR). In IBR, the marginal cost rises by
the entire amount consumed. That cost is further away from the definite threshold in
the entire hourly/daily/monthly domestic load, the energy cost will rise to a value

which is very high as compared to the normal price of electricity. This produces
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incentives for customers to preserve their load of electricity at daytime at different
hours in such a way to avoid compensate electricity at a higher price. On the other
hand, IBR helps in the balancing of load and decreasing the peak to average ratio
(PAR, load factor) as well. Increasing demand needs the impending activation of
high priced/unreliable production set, or load reduction request are commonly sent
out by the utilities when electricity demand is high enough to put the grid reliability
at risk. Usually in a smart grid, the proceed notice for a reduction in load commonly
sent from one side to the other through the communication network to every meter
asking electricity plan to take suitable action. This will reschedule the section of the
forthcoming electricity utilization automatically to some later hours of the day which
is leading to the great reduction in the entire load of the electricity distribution
(Mohsenian and Leon, 2010).

In 2001, the electricity market in the California demonstrated very high rates for
electricity and scarcity threats. The difficulty that comes into view in California and
another retail market are innate to the design of market and design response is
incisive in a most promising solution. A comprehensive study of RTP efficiency
revealed that efficiency gains from RTP are notable or meaningful when the demand
flexibility is extremely low. Excluding this, it is divulged that the TOU toll, which is,
off-peak and peak toll price of the electricity simply, represents very little efficiency

gains when compared to the RTP.

The most often debated subject about RTP is the compulsory or voluntary
application of the specified class of end users. Normally, RTP is related with huge
numbers of the end-user. In execution of the entire programme RTP is voluntary.
Compulsory RTP does not mean inevitably that end users are uncovered to the direct
risk of the electricity market. A day-ahead or forward contract is a fine opportunity to
decrease the risk and it can also decrease the volatility of price compensate (Faria
and Vale, 2011).

2.1.3 Flat Rate Pricing Scheme
The most frequently used retail pricing strategy all around the world is the fixed

pricing per kWh of electricity consumed before deregulation and even after
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deregulation. Regulated rates for small commercial and residential customers in the

U.S. are most commonly fixed for a year (Dewees, 2001).

The fixed electricity rates is determined on the basis of allocated price and an
allocated output determined where this allocated price schedule and the price
schedule of the marginal supply intersects. The vertical sum output of the allocated
price schedule and the revealed load price schedules equal to the marginal price of
supply (Clarke, 1971). Fixed pricing strategy mainly focuses on the usage based
rather than the time based. Due to this feature of the fixed pricing, it faces a lot of
criticism and that is why end-users are billed on their collective consumption over a
period. The price of the electricity that the customer pays is time invariant in the
fixed pricing scheme. Consequently, customers are retained from the RTP variations
that occur in the wholesale market and therefore their monthly bills remains the same
by following the effective fixed rate scheme. Due to this stability in price, the retailer

is able to encounter their revenue.

The problem today is that customers are unconcerned to electricity prices and have
no curiosity of cutting power during the price spikes, because regional or state
regulatory bodies seclude them from the volatility of prices. Consequently, the end-
users become insensitive to changes in electricity price. Most of the inefficiency and
incompleteness of the market are due to this insensitive demand in the wholesale
market.

The major problem when dealing with fixed pricing scheme is its unevenness. The
electricity production cost is high at peak hours but the distribution price to the end-
user remains fixed in all the hours in the day. Plants that generate imperative
electricity to fulfil the spike or peak demand is high priced to run as compared to the

hydro or nuclear plants that fulfill the mid-peak or off-peak demand.

On the other hand, one may have to wait up until these contract finishes to get lower
rates if the market rates fall. The certitude of acquiring fixed prices could charge a
customer more money. Utmost weather conditions will not change consumer rates,

so it is the great loss for producers to produce electricity during peak hours.
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2.1.4 Comparison of RTP and TOU Pricing Rates

In economic hypothesis, efficient pricing is attained when the electricity is priced at
the marginal cost of providing the electricity demand of the last increment and this
can be achieved only by a perfectly competitive market. Nevertheless, the time
varying pricing concept commenced before the studies on peak demand pricing
(Celebi and Fuller, 2007). Peak demand and their cost have been a concern because
of the capacity needs for these demands. In peak demand pricing, the marginal cost
of electricity is high throughout the periods of the peak demand and is reflected in
customer prices, for example, the prices in the TOU periods. In TOU pricing scheme,
both specific time periods and the pricing in that period are known as forecasted and
are fixed for some time period (e.g., season). While in the case of real-time pricing,
normally prices are fixed and vary on an hourly basis and known only on an hourly
ahead or day ahead basis. On the other hand, RTP rates reflects the weather
condition, wholesale prices, generation shortage, generator failures or other

contingency that may happen in an electricity wholesale market.

The theoretical part of the peak demand literature on pricing was not capable of
giving empirical answers to the problem and numerous large-scale pilot projects has
been organized with TOU pricing scheme above the past three decades. Studies for
these pilot projects can be found in (King and Chatterjee, 2003; Aigner, 1984). These
studies gathered data that enable econometricians to approximate the factors of
electricity demand functions such as self and cross price elasticities, lag elasticities
and elasticities of substitution. Few countries even executed TOU pricing scheme on
a national level (Chick, 2002). Another study for California (State-wide Pilot
Pricing) has demonstrated that industrial and residential and small to medium
commercial consumers cut energy utilization in peak demand periods in response to
TOU prices (Faruqui and George, 2005).

Hogan (2014) chooses RTP rather than the TOU rates because of larger error in
capturing RTP rates due to TOU rates. There is a considerable efficiency difference
between even the best TOU plan and RTP. In this study, mean absolute percent error

(MAPE) between TOU and RTP rates is employed to measure this efficiency.
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2.1.5 Scatter Diagrams for Hourly Electricity Prices

We are using PJM data in our study, because it is easily available and accessible
from PJM website (PJM, 2016). PJM started in 1927, established the world’s first
ongoing power pool. Further utilities joined in 1956, 1965, and 1981. During this

time PJM was operated by a section of single member utility.

In this study, only 2014-2015 data for winter season and 2015 data for summer
season are used. In winter case, three months (December, January, and February) are
selected and data for 12 weeks is obtained. Only weekdays (Monday to Friday) data
are employed because the weekends including any holidays are assumed to be off-
peak, however, a similar analyses can be performed on weekends and holidays. In
the weekday’s data for winter season, there are 56 observations (weekdays) of 12
weeks. Similarly summer season composed of months June, July, and August with
14 weeks and 65 observations of weekdays.
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Figure 1: Scatterplot Prices for Winter Season
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Scatterplot of Summer Prices(Weekdays)
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Figure 2: Scatterplot Prices for Summer Season

Figure 1 and Figure 2 are scatterplot figures for all hourly price observations in
winter (56 observations) and in summer (65 observations) seasons, respectively. It
can be observed that the winter season data is highly diversified. There is more
amount of noise in the winter season as compared to the summer season. Also it
should be noted that there are more price outliers for the winter season than the

summer season.

2.1.6 Boxplot Figures for Seasonal (Winter/Summer) Hourly Electricity Prices

Boxplot figures normally depict the distribution of data based on the five number
summary: minimum, first quartile, median, third quartile, and maximum. Also it can
identify outliers using a simple criterion (i.e., any data point more than 1.5 times the
interquartile range (IQR) below the first quartile or above the third quartile values).
We have plotted the boxplot figures of electricity prices for 24-hour (day) to check

the sparsity in the dataset of both seasons (winter and summer).
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Figure 3: Boxplot for Winter Season Prices

Boxplot for Summer Season Price

100
1

80
1

2 T 1 i o

60
1

o

o
° °

55@**55555955BQHHE559555

o - o

Price
40

20

o

T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1u 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

Figure 4: Boxplot for Summer Season Prices

In the above boxplots, the horizontal line (dark black line) in the box is the median.
If the horizontal line (dark black line) in the box is situated on the upper side then it
is a positively (left) skewed distribution and if it occurs on the down-side of the box
then it is negatively (right) skewed distribution. Note that Figure 3 and Figure 4 are

zoomed to better reflect the price fluctuations during the day.

The vertical dotted lines (called “whiskers™) on both sides of the box above and
below represent the spreading of data or the distribution of the data. As we can see
from the Figures 3 and Figure 4 (e.g. by observation), the prices can be clustered into

three groups such as off-peak, mid-peak and on-peak. Finally, the (0) represents the
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outliers which occurs either above or below of the whisker limits. Outliers can be
defined as the abnormal levels of observations that are situated far away from the

normal level.

2.2 Demand Response and its Effect on Electricity Prices

Demand response (DR) is about shifts in utilisation period of electricity by end-user
from their normal consumption patterns in reaction to variations in the electricity
price over time” (Albadi and Saadany, 2008). DR incorporates all the utilization
patterns of electricity modifications by end-user that has planned to change
consumption timing, the level of immediate demand, or the consumption of total
electricity. Eventually, the ultimate aim of the DR is to minimize the peak demand.
In order to reduce the peak load or the peak demand, the dynamic pricing
performance is calculated by using the elasticity of the demand price which depicts

the customer’s sensitivity to the electricity prices.

DR programs have numerous advantages in North America and all around the world
(Charles River Associate, 2005). As an example, New York Independent System
Operator (NYISO) incentive based programs paid out more than 14,000 programme
participants about US$ 7.2 million in incentive for freeing 700 MW peak of off-peak
load in the summer season of 2003. Presently, one-third of its customers are on the

TOU pricing scheme.

Shifting electricity load and exerting less expensive electricity to the system, the
customers can take the benefit from DR. Since they incorporate bottleneck relief,
enhance reliability, lower volume requirement and system benefits from economic
load response which should be greater than end-use customer benefits per unit (Spees
and Lave, 2007). Perhaps to concede the end-user customer time to aim and respond
without having to invest in automated technology, day-ahead prices have been
utilized in closely all associated programmes. Although the price in the day-ahead
market is a powerful forecaster of the RTP rate, it cannot interact with unpredicted
system circumstances such as power failures or other crisis. Benefits of the system
from instantaneous load reduction and load shedding or power failure in emergency

conditions can only be accumulated from the active management of load or instant
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prices. The prompt response needs automated technology that takes actions in the
favour of the end-use customer in response to the broadcasted prices. Providing end-
users with knowledge on both day-ahead and RTP rates would enable real time
response. Alongside this advantage, DR is adequate to give system reliability, cost
minimization, efficiency in the market, risk handling, market power reduction and at

the last environmental benefits.

DR markets in the U.S. are usually run by the regional transmission operators
(RTOs). These programs normally include subsidies of one class to another
(Walawalker et al., 2008). Two types of DR programs are offered by PJM.

e Economic DR Program

e Emergency DR program

In the economic demand response, if the LMP in a specified region is over a trigger
point (set at $75/MWh by PJM) then PJM pays the Location Marginal Price (LMP)
to customers. PJM remunerates the end-user the difference between the LMP and the
generation and transmission (G&T) unit of the end-user bill, when the LMP is below
or equal to $75/MWh. PJM suggests this economic DR program in both real-time
and day-ahead markets. The major difference between non-compliance there is no
restriction in the real-time market while effective bidding represents a responsibility
to reduce load into the day-ahead DR market program.

The emergency DR programme, is a discretionary programme for legitimacy that
offers electricity payments to end-user that curtail load during the emergency in the
system. The payments that are offered to the customer are above of $500/MWh or
regional LMP for that hour. There is no punishment in this programme for non-

compliance because this programme is hardly used by PJM (less than twice a year).

2.2.1 Scatter Diagrams for Hourly Electricity Load for Each Season
In this section, the hourly load data for summer and winter seasons can be observed

from the following scatter diagrams.
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Figure 6: Scatter Diagram of Loads for Summer Season

Figure 5 and Figure 6 are scatter diagrams for all the observations in winter (56
days) and summer (65 days) seasons, respectively. It can be observed that the winter
season load is highly diversified. There is more amount of variation in the winter
season as compared to the summer season. Also it should be noted that there are

more outliers for the winter season than the summer season.
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2.2.2 Boxplot Figures for Seasonal (Winter/Summer) Hourly Electricity Loads
The following boxplot figures show the hourly distribution of load data, median

values and the outliers of each of the winter and the summer seasons.

Boxplot for Winter Season Demands
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Figure 7: Boxplot for Winter Season Demands

Boxplot for Summer Season Demands
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Figure 8: Boxplot for Summer Season Demands

In the above boxplots, the horizontal line (dark black line) in the box is the median.
If the horizontal line (dark black line) in the box is situated on the upper side then it
is a positively (left) skewed distribution and if it occurs on the down- side of the box
then it is negatively (right) skewed distribution. Note that Figure 3 and Figure 4 are

zoomed to better reflect the price fluctuations during the day.

The vertical dotted lines (called “whiskers”) on both sides of the box above and
below represent the spreading of data or the distribution of the data. As we can see
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from the Figure 3 and Figure 4, the loads can be also clustered into three groups such
as off-peak, mid-peak and on-peak by observing the figures. Finally, the (0)
represents the outliers which occurs either above or below of the whisker limits. Note

that there are more outliers in winter season than the summer season.

2.3 Price and Demand Relation in PIM Market

We can examine the relationship between prices and demands by comparing the
winter and summer seasons. By looking at the price and load boxplots of both
seasons, it can be observed that if the demand of electricity is increased then price of
electricity is increased as well in both cases. Next, we can inspect the prices and

demands of electricity an hourly basis for each season.

By observing the Figure 3 and Figure 7, the initial hours from hour 1 to hour 6 in
both price and load figures are similar for winter season. Because the price levels
from hour 1 to hour 6 is less as compared to the remaining hours in the boxplots we
assumed these prices are off-peak. For hour 7 and hour 8, the prices of the electricity
and the demand of the electricity are also at its peak. On the other hand, from hour 18
to hour 21 the prices of the electricity is very high and when we observe the load
figures the demand of the electricity is also at its peak. Therefore, it can be observed
that these hours (h6, h7, and h18 to h21) are on-peak hours. The rest of the hours of
the electricity prices are in between the off-peak and on-peak period and it is similar
for the demand of the electricity in these periods, which can be the mid-peak period

for winter season.

Secondly, we compare the price and load boxplots for the summer season. By
looking at the Figure 4 and Figure 8, the prices of the electricity are decreased first
from hour 2 to hour 5, then it continuously increased from hour 6 to hour 18 and
after this hour, it starts decreasing again from hour 19 till the end of hour 24. The
load Figure 8 shows a similar behaviour. The next step is to group the electricity
prices by looking at the hours in these boxplots. By focusing on this pattern, we
divide the prices in the boxplot into three groups such as off-peak, mid-peak and on-

peak. The off-peak prices in summer season are from hour 1 to hour 9 and hour 23
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and hour 24. The mid-peak prices are from hour 10 to hour 12 and from hour 19 to

hour 22. The on-peak period in summer season is from hour 13 to hour 18.

2.4 How TOU Rates are Determined?

Generally, TOU blocks are determined in a market by the observation of load only.
Then, TOU rates are chosen accordingly, but not based on the price levels, mostly to
ensure cost recovery and load reduction. Initially, we made a boxplot to check the
relationship between the price and demand levels in the PJIM market. After finding
the results, we classified the hours of the day into three groups (off-peak, mid-peak,
and on-peak) where the whole data is clustered using the three groups by using
several clustering methods (namely hierarchical and k-means methods) for hours of
the day (i.e., TOU) and compare them using multiple linear regression analyses (i.e.,
the relation of price demand (load) and blocks of hours is better reflected) and also
measure the revenue change (compared to RTP) as well as percent error of TOU
prices (i.e., compared to the RTP rate using mean absolute percent error or MAPE ).

Then we select the best overall TOU prices for different seasons.
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Chapter 3: Overview of Clustering Methods

3.1 Hierarchical Clustering
Hierarchical clustering is a method that seeks to develop a hierarchy of clusters.

Some of the literature on hierarchical clustering is reviewed below.

The general idea of the clustering of data is the method of recognizing the cluster or
natural grouping within the multidimensional data depending upon the similarity
measure between data, such as Euclidean distance. In hierarchical clustering, the
algorithm is used to create a cluster tree (dendrogram) by using merge techniques or
splitting heuristics. Cluster tree can be defined as “a cluster tree depicting a sequence
with each cluster being a split up of the data set” (Leung et al., 2000). Hierarchical
algorithms that are used for the partition to create the cluster tree are called divisive
algorithm. Similarly, the most frequent algorithms that are used for merging to create
the dendrogram are called agglomerative. According to Leung et al. (2000), this
clustering algorithm is not sensitive to initiation, vigorous in the presence of the
noise and creates clustering that is alike to that can be recognized by human eyes

(e.g., by observation).

The technique of establishing hierarchical clustering of a mutually exclusive
subsidiary, every one of which has components that are maximally identical with
respect to stated attributes, is recommended for use in large scale studies, especially
when a detailed optimal solution for an identified number of groupings is not
practical. By repeating this procedure until only a single group remains, the complete
hierarchical shape and a quantitative approximation of the loss with every phase in
the grouping of the data can be obtained (Ward, 1963).

A dendrogram tree illustrates the hierarchical associations of the clusters explained
by the analysis. There are variety of criteria that have been practiced to explain the
heights of nodes joining the dendrogram clusters for incremental cluster analysis of
sum of squares, including (1) rise in dispersion at every phase (Gordon, 1981), (2)
entire dispersion at every phase (Murtagh, 1983; Anderberg, 1971), (3) dispersion
within cluster of discrete clusters (Pielou, 1984), (4) average dispersion with-in
cluster of discrete clusters (Birks et al., 1975). All of these scales somewhat gives
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different details about the analysis. The dendrogram or tree diagrams are subject to
reversals with scales (1) and (4). The tree diagram of (3) and (4) give details about
the separate clusters. The scale (3) dispersion with-in cluster is extremely dependent
on the size of the cluster. Entire dispersion with-in the cluster (2) does not illustrate
the incremental formation of the cluster and subject to reversals. The connecting
node of every merger raises the connecting nodes of all former mergers. Normally,

the tree diagrams of (2) and (4) give the most practical information.

Hierarchical clustering procedures are based on the utilisation of the proximity
matrix specifying the similarity between the data points of each pair to be clustered.
The end result of this technique is a dendrogram which represents the nested
grouping of patterns and similarity levels at which grouping change (Jain et al.,
1999).

On the other hand, divisive hierarchical clustering algorithms initiate with the entire
pattern allocated to a single cluster. Then, abpartitioning technique is applied to that
single cluster at every level until every cluster comprises one pattern or uniform
pattern. After that, the most two alike clusters are merged with each other. Therefore,
this step is replicated until the entire patterns are allocated to a single cluster (Turi,
2001). There are numerous agglomerative hierarchical clustering algorithms that
were suggested in many studies which contrast with each other in a way that most
two alike clusters are estimated. But there are two most famous agglomerative
hierarchical clustering algorithms, complete linkage (Anderberg, 1973) and single
linkage (Sneath and Sokal, 1973). In our study, we also used the median, average,

ward.d and ward.d2 algorithms for clustering the prices and loads.

In the beginning of the agglomerative hierarchical clustering procedure, each and
every component is in a cluster of its own. These specified clusters are then
consecutively merged into big clusters until the entire component end-up being in the
similar cluster. The two clusters are divided by the smallest distance are combined at
every stage. The meaning of the smallest distance is what we differentiate between
the contrasting agglomerative hierarchical clustering. Single linkage clustering in
statistics is one of the various techniques which we are using for agglomerative

hierarchical clustering. The distance between the two clusters is directed by a single
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element pair, specifically, that component pair (one in every cluster) that are nearest
to each other. The smallest distance of these links that continues to exist at each stage
leads to the fusion of the pair of clusters whose components are involved. This
procedure is also called nearest neighbour clustering. The outcome of the clustering
can be seen as a dendrogram, which depicts the succession of cluster fusion and the
time interval (distance) at which every fusion was happening (Sneath and Sokal,
1973).

In dendrogram, the horizontal axis appears for the variance and distance between the
clusters. On the other hand, the vertical axis illustrates the clusters and objects. The
dendrogram is impartially very easy to explain. However, our main attention is to
find the similarity between the data and clustering. Each and every connecting fusion
(point) of three clusters is depicted on the diagram by cleaving of a horizontal line
into a pair of horizontal lines. The split position of the horizontal lines, which are

represented by the small erect bar, gives the variance (distance) between the clusters.

On the other hand, complete linkage clustering algorithm combines the clusters
whose distance between their most faraway patterns is smallest. Generally, complete
linkage clustering algorithm creates dense clusters as compared to single linkage
clustering algorithm which creates elongated clusters. Consequently, complete
linkage clustering algorithms are normally better than single linkage clustering
algorithms (Jain et al., 1999).

In the average linkage agglomerative hierarchical clustering, we define the distance
between the pair of clusters to be the mean distance between the dataset in the first
cluster and dataset in the second cluster. By following this method, the distance
between clusters, at every stage of the procedure, we amalgamate the two clusters

that have the shortest mean linkage distance (Huth et al., 1993).

In the centroid linkage, agglomerative hierarchical clustering combines the clusters
in such a way that the distance between their centroids are the minimum or we define
the distances between the pair of clusters as the distance in-between the two average-

vectors of the clusters. At every stage of the procedure, we amalgamate the two
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clusters that have the shortest mean linkage distance. One drawback of this method is
that when combined with very large clusters the characteristics of the small cluster is
lost (Turi, 2001).

The median linkage agglomerative hierarchical clustering is defined as the median of
all distances between pairs of objects in order to decide how far they are apart
(Ultsch et al., 1995). The median method (Evritt and Brian, 1974; Gordon, 1967)
assumes the clusters are of equal size, hence the new group will always be between

the two groups being merged.

In the ward linkage agglomerative hierarchical clustering, the technique does not
directly explain a measure of the distances between a couple of clusters or points.
Generally, it is based on the analysis of variance (ANOVA) technique. At each step,
pair of clusters are merged, which gives the smallest increase in the merged sum-of-
squared error from the single univariate ANOVAs way that can be done for every
variable with classes (groups) as explained by the clusters at that phase of the
procedure. The main difference between ward.d and ward.d2 is the distances
measurement. The ward.d2 criterion values are “on a scale of distances” whereas the

Ward criterion values are “on a scale of distances squared” (Murtagh and Legendre,

2011).

3.2 K-means Clustering
The main objective of k-means clustering is to partition the dataset into k clusters in
which every observation is assigned to the cluster with the nearest average. The

literature on this clustering algorithm is reviewed below.

Martinez et al. (2007) explain k-means clustering as the process used to create a
grouping of the larger data set which represents the intention of behaviour of a
system as precise as possible. The k-means clustering technique is applied to larger
data set to extract the useful information for electricity time series data. This k-means
technique split the whole year data into alike groups of hours depending upon their

behavior at different days.
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Xu and Wunsch (2005) applied the k-means clustering which plays an essential role
in the clustering of data. The examination of the unlabelled data of cluster analysis is
either constructed by hierarchical structure or established by the different set of
groups according to their similarities and dissimilarities. The main aim of the
clustering is to remove the inherent uncertainty within the cluster and among the
clusters as well. In each iteration of k-means clustering, the algorithm removes the

noise and outliers that are present in the larger data set.

Meshram et al. (2013) discussed k-means algorithms in clustering the identical types
of load patterns. Typically, if the number of clusters is less due to the distribution of
data, than k-means algorithm enhances the rate of classification. Accurate load
forecasting plays a critical role to minimize the generation cost. It is also necessary
for the consumer’s reliability and also demonstrates that the electricity consumption

can be clustered on the basis of the load value and also the load pattern.

Li et al. (2014) provide a study of domestic customers where active DSR can create
benefit in terms of minimizing costs of electricity for customers and avoiding the
electricity use especially in peak demand periods for the distribution network
operators (DNOs). K-means clustering is also used to convert the RTP into a TOU
pricing scheme. It is done by taking the average of the prices in each cluster and this

average is the price for the corresponding TOU hours.

Hernandez et al. (2012) conducted a literature survey to understand the electricity
utilisation patterns that is highly important for the implementation of green trends
and the optimization of resources. A real industrial park has been examined by
clustering the separate days (working and non-working days) according to their load
curves and the consumption behaviour of the electricity on a daily basis. Significant
consumption behaviours have been recognized properly by the system with an

absolute unsupervised fashion (k-means clustering).

Alsabti et al. (1997) arrange the entire samples of big data or patterns in a k-
dimensional tree formation such that one can discover the entire patterns which are
nearest to the given specimen efficiently. All the specimens are strong candidates for

the nearest prototype at the foundation level. However, the entire prototype is
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arranged to their closest cluster by using clustering constraints. He applied the
approach that will recalculate the distance at each (or a few) iterations to reduce the

distance from the point to the centroid of the cluster.

Azevedo and Vale (2006) proposed a new procedure for price prediction, based on
artificial neural network (ANN) and k-means clustering techniques. The principal
concept of this method is that it has obtained statistical information from the
historical data. To find the patterns (similarities and dissimilarities) through ANN is
very difficult, hence, in order to find the patterns they used k-means clustering
techniques. K-means clustering technique enables to probe the structure of a group
and utilizes every group to train one particular neural network. These enable every
neural network to acquire knowledge in a more effective way by the information

from the previous data.

Martinez et al. (2011) presented a new method which is based on the similarity of
pattern sequence to forecast the behaviour of the time series. In order to find the
grouping and labelling of the samples from the data set, k-means clustering
techniques are used. Consequently, the projection of the set of data points is given as
follows. Firstly, former pattern sequence of the day to be forecasted is extracted.
Then, this succession is obtained from the previous data and the prophecy is
measured by taking the mean of all the samples instantly after the matched order or
sequence. This proposed algorithm provides very competitive results in the New
York market and it has been successfully applied to the electricity demand time

series and prices.

Rasanen and Kolehmainen (2009) suggested a valuable estimation technique for
clustering of time series and its application on concentrating or generation of more
authentic electricity load curves, especially in the case of small customers. This
approach is very less responsive to faulty value and this technique can also manage
time series of distant length. The accomplishment of this approach was calculated
using the data for 1035 actual customers. After the application of this approach the
three principal advantages are reported as: 1) managing the time series of different
length, 2) less responsive to missing value, and 3) ability to minimize the

dimensionality of actual time series.
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Mahmoudi et al. (2009) provided a clustering method that divides a set of the
specific characteristic vector into the cluster. This implementation of clustering the
load curves in deregulated and regulated markets was for better rate design, load and
price forecasting, system analysis, and distributed resource selection. In this study,
they have developed a new characteristic which they calculated the performance of
the algorithm of clustering on the basis of faraway dataset implementation on the

power system.

Bobric et al. (2009) provided the study of distribution network uncertainty and how
to cluster loads of buses for specific time at specific regions. The degree of
uncertainty is about the load level of the network, power losses, bus loads, and bus
voltage levels. First of all, it is very important to measure the load profile of buses by
using the available historical data. Then, using this data, they classified the electricity
demand profiles of large scale sets of data. They classified this information into
different clusters by using k-means clustering algorithms, which represents all the
information or points in clusters that are very much similar to each other and very

different when it is compared to the information or points in the other clusters.

3.3 How K is selected?

Determination of k (number of clusters) for a dataset is a problem that occurred
repeatedly and it is a difficult issue to resolve in any clustering analyses. The
performance of the clustering algorithm may be affected by the choice of k.
Consequently, instead of using a one pre-defined value for k, a number of values
might be chosen. It is important to have the number of values that are supposed to be
reasonably large to reflect the specific characteristics of the data sets (Pham et al.,
2005). The k-means clustering algorithm executed in many data analysis and data
mining software packages require the analyst to input the k value (number of
clusters) to be determined by the user. When k-means clustering is used as a pre-
processing tool, the number of clusters is determined by the specific requirements of

the main processing algorithm (Hansen and Larsen, 1996).

There are various statistical measurements available for choosing k. These

measurements are most frequently applied in the form of merging with probabilistic
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clustering techniques. The Bayesian information criterion and Akeikes information
criterion (Pelleg and Moore, 2000) is computed on datasets which are built by a
group of Gaussian distribution. The measurement applied by Hardy (1996) are based
on the supposition that the dataset apt the Poisson-distribution. Monte-Carlo
methods, which are related with the null-hypothesis, are utilized for evaluating the
results of clustering and also for determining the value of k (Halkidi et al., 2002).
Illustration verification is used most extensively due to its clarity and explanation
possibilities. Visual examples are often used to illustrate the drawbacks of an
algorithm or to present the expected clustering results (Bilmes et al., 1997;
Lindeberg, 1994).

In this study, we have clustered our data by the visualization of the scree plot. Scree
plots are commonly used in factor analysis and principal component analysis to
visually evaluate which factors or components describe most of the variability in the
data. We also used scree plots to visually evaluate the sparsity in the data. The best
possible pattern in a scree plot is a vertical curve, accompanied by the bend and then

a horizontal or flat line.
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Figure 9: Scree Plot for Winter Season
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Scree plot
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Figure 10: Scree Plot for Summer Season

The above plots show the k clusters (from 1 to 24 to reflect each hour) of the dataset.
When we see the diagrams there is a sharp decrease in between the initial three
dataset points but after this point, the data set shows very similar behavior and the

decrease in the value of within group sum of squares is not significant.

K-means algorithm also has some several drawbacks. To predict the value of k
(cluster) is very difficult. It did not work well with the universal cluster. Different
beginning partitions can give different ending clusters. It does not work properly
with k (in the real dataset) of different density and size. It has to run several times to
come over random starting centroids. However, its ease of practice and application in

many studies encourage us to use it in this study.
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3.4 Summary for Winter Clusters

Table 1 summarizes the overall clusters for the winter season (prices and demands)

in this study. It represent the blocks of hours for off-peak, mid-peak, and on-peak

periods.

Table 1: Overall Winter Cluster (Prices and Demands)

Cluster Type Off-peak | Mid-peak | On-peak Cluster Method
Name
w1 (h1-h6) (h9-h17) | (h7-h8 and Winter By
h18-h21) Cluster 1 | Observation
of Winter
Prices
w2 (h1-h6and | (h9-h17) | (h7-h8 and Winter By
h23-h24) h18-h22) Cluster 2 | Observation
of Winter
Prices
(Alternative)
W3,W4,W5W6 | (h1-h6 and | (h7-h8) (h18) Winter Single,
h9-h17 Cluster Complete,
and h19- 3,4,5and 6 | Average and
h24) Median
Linkages
Hierarchical
Clustering
of Prices
W7,W8 (h1-hé and | (h7-h8) (h18-h22) Winter Ward.d and
h9-h17 Cluster 7 Ward.d2
and h23- and Linkages of
h24) Cluster 8 | Hierarchical
Clustering
of Prices
W9 (h1) (h2-h11) | (h12-h24) Winter K-means
cluster 9 Clustering
of Winter
Prices
W10 (h1-h6 and | (h11-h17 (h7-h10 Winter By
h24) and 23) and h18- | Cluster 10 | Observation
h22) of Winter
Loads
W11,W13 (h24) (h1-h6) (h7-h23) Winter Single and
Cluster 11 Average
and Cluster Linkage
13 Hierarchical
Clustering
of Loads
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W12,W16 (h1-h6 and | (h13-h17 (h7-h12 Winter Complete
h24) and h23) and h18- | Cluster 12 | and Ward.d2
h22) and Linkage of
Clusterl6 | Hierarchical
Clustering
of Loads
W14 (h1-h6) (h23-h24) | (h7-h22) Winter Median
Cluster 14 | Linkage of
Hierarchical
Clustering
of Loads
W15 (h1-h5) (h6 and (h7-h12 Winter Ward.d
h13-h17 and h18- | Cluster 15 | Linkage of
and h23- h22) Hierarchical
h24) Clustering
of Loads
W17 (h1-h9) (h18-h24) | (h10-h18) Winter K-means
Cluster 17 | Clustering
of Loads

There are several clusters for winter season according to clustering of prices and

demands, but we have used only those clusters which are significant and practical

(i.e., some clustering results have only one or two hours for some clusters). We

consider and analyse only those clusters that have at least 5 consecutive hours. The

details about each of these significant clusters are given in the subsequent sections.
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3.5 Summary for Summer Clusters

Table 2 summarizes the overall clusters for summer season (prices and demands) in

this study.
Table 2: Overall Summer Cluster (Prices and Demands)
Cluster Off-peak Mid-peak On-peak Cluster Method
Type Name
S1 (h1-h9and | (h10-h12 (h13-h18) Summer By
h23-h24) and h19- Cluster 1 | Observation
h22) of Summer
Prices
S2 (h1-h15 (h16) (h17) Summer Single
and h18- Cluster 2 Linkage
h24) Hierarchical
Clustering
of Prices
S3 (h3-h5) (h1-h2 and | (h13-h17) Summer Complete
h6-h12 and Cluster 3 Linkage of
h18-h24) Hierarchical
Clustering
of Prices
S4 (h1-h12 (h13-h16) | (h17-h18) Summer Average
and h19- Cluster 4 | Linkage of
h24) Hierarchical
Clustering
of Prices
S5 (h3-h5) (h1-h2 and (h18) Summer Median
h6-h17 and Cluster 5 Linkage of
h19-h24) Hierarchical
Clustering
of Prices
S6,S7 (h1-h7 and (h8-h12 (h13-h18) Summer | Ward.d and
h23-h24) and h19- Cluster 6 Ward.d2
h22) and Cluster | Linkage of
7 Hierarchical
Clustering
of Prices
S8 (h4-h5and | (h1-h3and | (h17-h23) Summer K-means
h24) h6-16) Cluster 8 Clustering
of Prices
S9 (h1-h8 and (h9-h12 (h13-h20) Summer Clustering
h24) and h21- Cluster 9 by
h23) Observation
of Demands
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S10 (h8 and (h1-h7) (h9-h23) Summer Single
h24) Cluster 10 Linkage
Hierarchical
Clustering
of Demands
S11 (h2-h6) (hland h7- | (h11-h22) Summer Complete
h10 and Cluster 11 | Linkage of
h23-h24) Hierarchical
Clustering
of Demands
S12 (h1-h8 and (h9-h10 (h11-h22) Summer Average
h24) and h23) Cluster 12 | Linkage of
Hierarchical
Clustering
of Demands
S13,S15 (h1-h8 and (h9-h11 (h12-h22) Summer | Median and
h24) and h23) Cluster 13 Ward.d2
and Linkage of
Clusterl5 | Hierarchical
Clustering
of Demands
S14 (h2-h6) (hland h7- | (h11-h22) Summer Ward.d
h10 and Cluster 14 | Linkage of
h23-h24) Hierarchical
Clustering
of Demands
S16 (h1-h11) (h19-h24) | (h12-h18) Summer K-means
Cluster 16 | Clustering
of Demands

There are several clusters for summer season according to clustering of prices and

demands, but we have used only those clusters which are significant and practical

(i.e., some clustering results have only one or two hours for some clusters). We

consider and analyse only those clusters that have at least 5 consecutive hours. The

details about each of these significant clusters are given in the subsequent sections.
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3.6 Clustering of Hours Using Hourly Electricity Prices (RTP)

We have used only weekdays (Monday to Friday) data, because the weekends
including national holidays are supposed to be off-peak. However, a similar analysis
can be performed for weekends and national holidays. The weekday’s data for winter
have 56 observations (weekdays), whereas for summer it has 65 observations. In this
study, only one year (2014-2015) data is used, but historical time-series data for

many years can be incorporated.

3.6.1 Results for Winter Season
In this section, the winter price data is clustered by observation and by hierarchical
and k-means clustering techniques.

3.6.1.1 Clustering by Observation

First we clustered the prices of winter season and found the TOU blocks (off-peak,
mid-peak, and on-peak) and we have used the median of the dataset to determine the

TOU prices.

TOU Prices (Winter Weekdays)
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Figure 11: TOU Prices of W1

Table 3 and Table 4 represent the different pricing schemes by observation. It also
gives the prices at each TOU blocks and the hours of the day. We are using the

median because of the skewed distribution of prices and the presence of outliers.
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Table 3: Clustering by Observing the Prices (W1)

W1

Off-peak Mid-peak On-peak
(h1 to h6) (h9tohl7and | (h7toh8and
h22-h24) h18 to h21)
Prices 31.267 38.859 56.129
Total Hours 6 12 6

Table 4: Clustering by Observing the Prices Alternatively (W2)

W2

Off-peak Mid-peak On-peak
(h1-h6 and (h9-h17) (h7-h8 and
h23-h24) h18-h22)
Prices 31.96 41.269 50.764
Total Hours 8 9 7

3.6.1.2 Clustering by Hierarchical Algorithm
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Figure 12: Single Linkage for Winter Prices
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Figure 12 and Figure 13 presents the hierarchical clustering method with single and
complete linkage methods, respectively. For both methods, it can be observed that

hclust (*, "complete”)

Figure 13: Complete Linkage for Winter Prices
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one cluster is very large as compared to the other clusters which is not a good

practice for TOU pricing (i.e., almost all hours are grouped as off-peak or mid-peak).

The main difference in these diagrams is only the sequence of clusters. First cluster

contains only one hour in both single and complete linkage methods. Third cluster in

single linkage contains only two hours, hours 7 and 8, while in complete linkage

these two hours are in the second cluster. The rest of the hours are clustered in a

single cluster, the second cluster in single linkage method and the third cluster in

complete linkage method.
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Figure 14: Average Linkage for Winter Prices
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Figure 15: Median Linkage for Winter Prices

In Figure 14 and Figure 15, clustering results for average and median linkage

methods are presented. They are similar to the single linkage and complete linkage
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methods. One cluster is very large and has many hours. The remainder of the clusters

have one or two hours in the cluster.
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Figure 16: Ward.d Linkage for Winter Prices
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Figure 17: Ward.d2 Linkage for Winter Prices

In Figure 16 and Figure 17 of ward.d and ward.d2 linkage methods, clustering results
seem better than the other linkage methods (single, complete, average, and median)
but not an ideal case for the winter season. The ward.d and ward.d2 linkage methods
are similar to each other such that the initial (first) cluster contains 17 hours (i.e.,
hour 1 to hour 6, hour 9 to hour 17 and hour 23 to hour 24). The second cluster
contains two hours (i.e., hour 7 and hour 8). The last cluster includes five hours (i.e.,
hour 18 to hour 22).
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3.6.1.3 Clustering by K-means Algorithm

We clustered the prices for winter season into three clusters as the scree plot

suggested.

K-means clustering
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These two components explain 76.59 % of the point variability.

Figure 18: K-means Clustering for Winter Prices

We have repeated the k-means algorithm to get an accurate k-means clustering result
because the algorithm starts from random centroids. The numeric numbers on above
Figure 18 depicts the number of hours. First cluster has only one hour which is the
off-peak block with a TOU price of $31.8. Second cluster is very large as compared
to cluster one and it includes 10 hours (i.e., hour 2 to hour 11). This is the mid-peak
period with a TOU price of $38.42. Third cluster is the largest cluster of the winter
prices which contains 13 hours (i.e., hour 12 to hour 24). This corresponds to the on-
peak period with a TOU price of $45.362.

3.6.2 Results for Summer Season

In this section, similar clustering analyses are performed for the prices in the summer

season.
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3.6.2.1 Clustering by Observation

We clustered the price data for summer season into three clusters by observation.
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Table 5 represents the pricing scheme of the TOU prices for summer season. Figure

19 provides a depiction of the TOU pricing scheme for this cluster (off-peak, mid-

peak, and on-peak prices).

Table 5: Clustering by Observing the Summer Prices (S1)

S1

Off-peak Mid-peak On-peak
(h1-h9 and (h10-h12 and (h13-h18)
h23 and h24) h19-h22)
Prices 19.521 26.113 32.369
Total Hours 11 7 6

3.6.2.2 Clustering by Hierarchical Algorithm
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Figure 20: Single Linkage for Summer Prices
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Figure 21: Complete Linkage for Summer Prices

Figure 20 shows the results for the single linkage method. One of the clusters is very
large as compared to other clusters. It contains 22 hours (i.e., hour 1 to hour 15 and
hour 18 to hour 24). On the other hand, the other two clusters contain only a single
hour. The complete linkage method is presented in Figure 21. It can be observed that
the complete linkage method seems better as compared to the single linkage method.
Cluster one contains total 6 hours (i.e., hour 13 to hour 18). Second cluster contains 3
hours (i.e., hour 3 to hour 5). Third cluster is the largest cluster, which contains 15
hours (i.e., hour 1 to hour2, hour 6 to hour 12, and hour 19 to hour 24).
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Figure 22: Average Linkage for Summer Prices
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Figure 23: Median Linkage for Summer Prices

Figure 22 and Figure 23 display the results for the average linkage and median
linkage methods, respectively. In both methods, the problem of having a very large
cluster persists. The main difference between average and median linkage methods is
that, in average linkage method first cluster is the largest cluster, whereas in median

linkage method third cluster is the largest one.
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Figure 24: Ward.d Linkage for Summer Prices
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Figure 25: Ward.d2 Linkage for Summer Prices

Results for the ward.d linkage and ward.d2 linkage methods are displayed in Figure

24 and Figure 25, respectively. These two methods provide a balance among clusters

in terms of number of hours included in each cluster. Ward.d linkage method and

ward.d2 linkage method are similar to each other. Cluster one in both linkages hold

the 9 hours (i.e., hour 1 to hour 7 and hour 23 to hour 24). The second cluster

accommodates 9 hours (i.e., hour 8 to hour 12 and hour 19 to hour 22). On the other

hand, the third cluster contains 6 hours (i.e., hour 13 to hour 18). Table 6 gives the

details about the ward.d linkage and ward.d2 linkage methods.

Table 6: Hierarchical Clustering of Summer Prices (S6-S7)

S6,S7

Off-peak Mid-peak On-peak
(h1-h7 and (h8-h12 and (h13-h17)
h23-24) h19-22)
Prices 18.3979 25.20357 32.36881
Total Hours 9 9 6

3.6.2.3 Clustering by K-means Algorithm

We have clustered the prices for winter season into three clusters as the scree plot

suggested.
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Figure 26: K-means Clustering of Summer Prices

As observed from Figure 26, the first cluster is the largest and holds 13 hours (i.e.,
hour 1 to hour 13). It is the mid-peak period with a TOU price of $21.899. Second
cluster accommodates 8 hours (i.e., hour 14 to hour 21) and it is the on-peak period
with a TOU price of $23.66. Finally, last cluster has only three hours (i.e., hour 22 to
hour 24) and it is the off-peak period with a TOU price of $17.89.

3.6.3 MAPE and Change in Revenue
Table 7 gives the details about the mean absolute percent error (MAPE) and the
change in revenue measures for all the clusters in winter and summer seasons when

compared to RTP in the market.
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Table 7: MAPE and Change in Revenue measures (TOU vs RTP for winter and
summer seasons)

Cluster Off-peak Mid-peak On-peak Change in MAPE
Type Price Prices Prices Revenue
(%) (%)
W1 31.267 38.859 56.129 9.513 67.47923
W2 31.96 41.269 50.764 10.373 67.70904
S1 19.521 26.113 32.369 8.292 90.50
S6,S7 18.3979 25.20357 32.36881 9.019 86.20

We found the revenue difference between the TOU price and RTP by multiplying the
hourly demands with corresponding RTP and TOU prices in both seasons and
computed the percent change in revenue when TOU prices are used instead of RTP.
The values in “Change in Revenue (%)” column in Table 7 reflect the reduction in
revenues collected when TOU prices are used. For the winter season, MAPEs are
low as compared to the summer season. Note that any pricing scheme other than RTP
will have a degree of error compared to RTP. The revenue requirements are less than

11% for all clustering results based on price data.

We have calculated the MAPE by using the following formula:

1
MAPE = 100 = EZI Revenue TOU — Revenue RTP|/RevenueRTP

where n = 24 x 56 for winter season and n = 24 % 65 for summer season, and | . |

denotes the absolute value.

Finally, Table 7 also shows the MAPE results for the winter and summer season
clusters. The MAPE values for W1 and W2 clusters are lower than these values for
S1, S6, and S7 clusters.

3.7 Clustering of Hours Using Hourly Electricity Demands (Loads)
In this section, we have analysed the demand (load) data similar to analyses for price
data in section 3.6.
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3.7.1 Results for Winter Season

By using the load data in both seasons (winter and summer) we have performed

similar clustering analyses as in section 3.6.

3.7.1.1 Clustering By Observation

By simply observing the hourly load dataset we have categorized the hours of the
day into three blocks (off-peak, mid-peak, on-peak)

Table 8: Clustering by Observing the Winter Demands (W10)

Off-peak Mid-peak On-peak
(h1-h6 and (h11-h17 and (h7-h10 and
h24) h23) h18-h22)
W10 Prices 31.1766 39.385 53.131
Total Hours 7 8 9
3.7.1.2 Clustering by Hierarchical Algorithm
&
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Figure 27: Single Linkage for Winter Load
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Agglomerative hierarchical Clustering
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Figure 28: Complete Linkage for Winter Loads

Figure 27 and Figure 28 shows the results for the single linkage and complete
linkage methods of the winter loads, respectively. First cluster holds 6 hours (i.e.,
hour 1 to hour 6). Second cluster contains only a single hour (i.e., hour is 24), while
the rest of the hours accommodate in the third cluster. Complete linkage method is
far better than the single linkage method. First cluster in complete linkage method
contains 7 hour (i.e., hour 1 to hour 6 and hour 24). Second cluster carries total of 6
hours (i.e., hour 13 to hour 17 and hour 23). Third cluster holds 11 hours (i.e., hour 7
to hour 12 and hour 18 to hour 22).
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Figure 29: Average Linkage for Winter Loads
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Figure 30: Median Linkage for Winter Loads
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In average linkage method (Figure 29) and median linkage method (Figure 30), one
cluster is very large and the other clusters are very small. The third cluster in average
linkage method is quite similar to the second cluster of the median linkage method.

But the main difference in both methods is the sequence of clusters.
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Figure 31: Ward.d Linkage for Winter Loads
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Figure 32: Ward.d2 Linkage for Winter Loads

Figure 31 and Figure 32 displays the results for ward.d linkage and ward.d2 linkage
methods, respectively. In these methods, it can be easily observed that ward.d2
linkage method is better. In ward.d linkage method first cluster consists of 5 hours
(i.e., hour 1 to hour 5). Second cluster contains 8 hours (i.e., hour 13 to hour 17, hour
23 to hour 24 and hour 6). Third cluster accommodates a total of 11 hours (i.e., hour
7 hour 12 and hour 18 to hour 22). In ward.d2 linkage method, first cluster contains 7
hours, second cluster contains 6 hours and the rest of the hours are in the third

cluster. The details for the ward.d2 method are given in the Table 9.
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Table 9: Hierarchical Clustering of Winter Demands (W12,W16)

Off-peak Mid-peak On-peak
(h1-h6 and (h13-h17 and | (h7-h12 and
h24) h23) h18-h22)
W12,W16 Prices 31.1766 36.6834 52.1051
Total Hours 7 6 11

3.7.1.3 Clustering by K-means Algorithm

Winter load data are clustered into three clusters by using the k-means clustering
algorithm.

K-means clustering

56.13

38.87

Component 2 (Price)
36.66

3327
|

3113

Component 1 (Hours)
These two components explain 98.24 % of the point variability.

Figure 33: K-means Clustering for Winter Loads

In Figure 33, the results depict the three clusters. These clusters are more balanced in
terms of number of hours in each cluster, compared to hierarchical clustering
algorithm results. First cluster contains a total of 9 hours (i.e., hour 1 to hour 9) and it
is the on-peak period with a TOU price of $46.367. Second cluster has 9 hours (i.e.,
hour 10 to hour 18) and it is the off-peak period with a TOU price of $35.017. Third
cluster holds 6 hours (i.e., hour 18 to hour 24) and it is the mid-peak period with a
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TOU price of $39.129. The point variability between two components shows how
much the dataset in the statistical distribution diverges from the mean. Table 10

summarizes the TOU pricing scheme for the k-means clustering algorithm.

Table 10: K-means Clustering of Winter Demands (W17)

Off-peak Mid-peak On-peak

(h1-h9) (h10-h18) (h19-h24)

W17 Prices 37.56026 43.36107 47.20006
Total Hours 9 9 6

3.7.2 Results for Summer Season

In this section, similar clustering analyses are performed for the loads in the summer

season.

3.7.2.1 Clustering by Observation

By observation of the load data in summer, we have clustered the hours of the day as

presented in Table 11.

Table 11: Clustering by Observing Summer Demands (S9)

Off-peak Mid-peak On-peak
(h1-h8 and (h9-h12 and (h13-h20)
h24) h21-h23)
s9 Prices 18.339 24.859 30.945
Total Hours 9 7 8
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3.7.2.2 Clustering by Hierarchical Algorithm
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Figure 34: Single Linkage for Summer Loads
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Figure 35: Complete Linkage for Summer Loads

In Figure 34 and Figure 35, the results for the single and complete linkage methods
are depicted, respectively. The main drawback of the single linkage method is that it
gives one large cluster and two small clusters, as we have examined in the clustering
of price in winter and summer seasons as well as the clustering of load data in winter
season. In single linkage method, the third cluster is the largest cluster and it contains
15 hours (i.e., hour 9 to hour 23). The second cluster holds only two hours (i.e., hour
8 and hour 24). The rest of the hours are in the first cluster. Compared to single
linkage method, the complete linkage method has balance among clusters. First
cluster holds a total of 12 hours, whereas second and third clusters contain 5 and 7
hours, respectively.
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Figure 36: Average Linkage for Summer Loads
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Figure 37: Median Linkage for Summer Loads

In Figure 36, the first cluster contains 9 hours (i.e., hour 1 to hour 8 and hour 24).
Second cluster is the smallest cluster that carries only three hours (i.e., hour 9 to hour
10 and hour 23). The rest of the hours are in the third cluster. In median linkage
method (Figure 37), the first cluster contains 9 hours (i.e., hour 1 to hour 8 and hour
24), the second one has 11 hours (i.e., hour 12 to hour 22), and the third cluster holds

only four hours (i.e., hour 9 to hour 11 and hour 23).
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Figure 38: Ward.d Linkage for Summer Loads

Agglomerative hierarchical Clustering

020 % 4 %

Height

— > — © =
© — o =2 o= o 2 = N — | e > N o> —

hclust (7, "ward.D2")

Figure 39: Ward.d2 Linkage for Summer Loads

Figure 38 and Figure 39 are exactly same for ward.d and ward.d2 linkage methods,
respectively. In both methods, the first cluster holds a total of 12 hours (i.e., hour 11
hour 22). The second cluster in both methods contains 5 hours (i.e., hour 2 to hour 6).
Finally, the third cluster accommodates 7 hours (i.e., hour 7 to hour 10, hour 23 to
hour 24 and hour 1) in both methods.
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3.7.2.3 Clustering by K-means Algorithm

We have clustered the loads for summer season into three clusters as the scree plot

suggested.

3136

2461

2236

Component 2 (Price)

1939

16.88

Table 12 shows the number of hours in each cluster and the TOU prices at

K-means clustering

Figure 40: K-means Clustering for Summer Loads

Component 1 (Hours)
These two components explain 99.61 % of the point variability.

corresponding TOU clusters. The first cluster is the largest cluster in Figure 40.

Table 12: K-means Clustering of Summer Demands (S16)

Off-peak Mid-peak On-peak

(h1-h11) (h19-h24) (h12-h18)

S16 Prices 19.88266 24.60857 31.36208
Total Hours 11 6 7
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3.7.3 MAPE and Change in Revenue

Table 13 gives the change in revenue and mean percent error of the clusters by load

data in winter and summer seasons.

Table 13: MAPE and Change in Revenue measures (TOU vs RTP for winter and
summer seasons)

Cluster Off-peak Mid-peak On-peak Change in MAPE
Type Prices Prices Prices Revenue
(%) (%)
W10 31.1766 39.385 39.385 7.478 69.96397
W12,W16 31.1766 36.6834 36.6834 7.449 68.09051
W17 37.56026 43.36107 43.36107 8.431 73.27241
S9 18.339 24.859 24.859 8.875 86.37
S16 19.88266 24.60857 24.60857 9.253 92.50

For the winter season, MAPEs are low as compared to the summer season. MAPE
basically represents a measure of the accuracy of the procedure in statistics. The
error terms compared to RTP are large in this study. However, any pricing scheme
other than RTP will have a degree of error compared to RTP. Note that the revenue

requirements less than 10% for all clustering results based on load data.
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Chapter 4: Multiple Linear Regression Analyses of Clusters

4.1 Overview of Multiple Linear Regression Analyses

A lot of forecasting models have been developed by using demographic, social,
economic and geographic factors for electricity market outcomes. In this study, we
are using regression models: a) to decide on the TOU pricing scheme that improve
the relation between price and load levels and b) to choose among different
clustering algorithms we have presented in chapter 3 by using the regression analyses
results. In data modelling, regression analysis is a statistical procedure for
approximating the connection among different variables. It contains many
procedures for analysing and modelling a number of variables when the centre of
attention is the relationship between one or more independent variables (or
predictors) and a dependent variable. Normally, the examiner seeks to ascertain the
normal impact of one variable on another variable, such as the price is directly
affected by demand (Sykes, 1993).

In our models for both winter and summer seasons, we first find the median value of
TOU prices/loads for each week (12 weeks for winter and 14 weeks for summer),
and then compute the average TOU values for summer and winter season (i.e., a total
of 24 price and demand values). In our case, these average TOU prices are the
dependent variable, while the average TOU demands and categorical (off-peak, mid-

peak, on-peak) variables are the independent variables.

In multiple linear regression analysis, dependent variable is normally influenced not
only by ratio scale factor (price) but also by the quantitative elements. Such elements
usually show the absence or presence of attribute. There is only one way to quantify
such quality: by creating categorical (dummy) variables. These variables has the
value 1 or 0, 1 representing the presence (or possession) of that quality and 0
representing the absence of that quality. When one variable is present, the rest of the
other categorical variables are 0 (Gujarati and Porter, 2009). After creating the
categorical variables for three clusters (i.e., off-peak, mid-peak, on-peak), we have
performed the multiple linear regression analysis. We have also included logarithm
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(log) and lag of price and load data in our analyses. Lag of price (P.1) and lag of load
(Dt.1) as independent variables do not result in significant models (e.g., models
without significant coefficients), hence they are excluded from the main body of the

thesis, but the results for those models can be found in Appendix A and B.

We first examine the correlation among the prices and the demands for each hour of
a day in both winter and summer seasons.

Table 14: Correlation between Price and Demand (winter season)

Hours H1 H2 H3 H4 H5 H6 H7 H8
Correlation | 0.59 |0.589 | 0.621 | 0.621 | 0.595 | 0.598 | 0.5915 | 0.5334
Hours H9 H10 | H11 H12 H13 H14 H15 H16

Correlation | 0.627 | 0.689 | 0.682 | 0.692 | 0.668 | 0.584 | 0.4672 | 6096

Hours H17 | H18 | H19 H20 H21 H22 H23 H24

Correlation | 0.627 | 0.621 | 0.621 | 0.594 | 0.546 | 0.505 | 0.5239 | 0.5883

Table 15: Correlation between Price and Demand (summer season)

Hours H1 H2 H3 H4 H5 H6 H7 H8
Correlation | 0.7015 | 0.5311 | 0.4893 | 0.5836 | 0.573 | 0.2882 | 0.5956 | 0.3693
Hours H9 H10 H1l H12 | H13 | H14 H15 H16

Correlation | 0.5354 | 05955 | 0.6432 | 0.6764 | 0.495 | 0.5991 | 0.4436 | 0.6542

Hours H17 H18 H19 H20 | H21 | H22 H23 H24

Correlation | 0.4649 | 0.4003 | 0.5929 | 0.6168 | 0.575 | 0.4842 | 0.6157 | 0.5491

Table 14 and Table 15 show the correlation among the prices and the demands for
each hour of a day in both winter and summer. It is obvious that the price and
demand are positively correlated for every hour and season. We have performed a

Durbin-Watson test to confirm this in our regression analyses.

In econometrics, Durbin-Watson test is normally used to detect the existence of
autocorrelation (a connection between values split from each other by a specified lag
of time) in the residuals (errors of prediction) from an analysis of regression
(Gujarati and Porter, 2009). To observe the autocorrelation at significance level (a),

the test statistics is compared to the upper and lower critical values.

e Ho: p=0 AgainstH1: p>0. Reject Ho at a level if d<du. Then there is

remarkable positive autocorrelation.
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Ho: p=0 Against H1: p<0. Reject Ho at a level if the approximated (4-

d) < du. Then there is remarkable proof of negative autocorrelation.

Ho: p=0 Against H1: p#0. Reject Ho at 2a level if d<du or (4-d) <du,

than the test is inconclusive either the autocorrelation is positive or

negative.

The above conditions are used to observe the correlation between dependent and

independent variables. Minitab is used to find the value of the Durbin-Watson

statistics. After finding the “d” value on Minitab and by following the above

conditions, it is compared to the upper and lower values in the Durbin-Watson table

at 95% significance level.

4.2 Results for Multiple Linear Regression Analysis of Clusters

4.2.1 Regression Models for Winter Season

Table 16 shows the significant regression models for winter season for each

significant cluster found in section 3.6 and 3.7 for winter season. The regression

models are not only significant as a whole but also each independent variable’s

regression coefficient is significant.

Table 16: Regression Models for Winter Season

Clu. | Reg. | Dep. Ind. Adj. B P Durbin
Type | Mod | Var. Var. R Sig. Coe. Value Watson
Squ. Test
LogDt, | 0.919 | 4.78E- | 2.3013621 | 0.00027361 *
Off peak, 10 -14.285719 | 0.02603775 | d=1.23782
Log | Mid peak, -25.959484 | 3.8259E-06 | du=1.79
w1 1 Pt On peak -12.651630 | 0.01371609 | dI=0.99
2 Dt, 0.901 | 4.26E- | 0.0012432 | 0.00024272 *
Log | Off peak, 10 -14.935227 | 0.01794515 | d=1.32748
Pt Mid peak, -26.044454 | 3.3841E-06 | du=1.79
On peak -13.291040 | 0.01053947 | dI=0.99
w1 3 Pt Dt 0.918 | 4.26E- | 0.00124323 0.0002 *
Off peak 8 10 -14.935227 | 0.01794515 | d=1.3796
Mid peak -26.044454 | 3.3841E-06 | du=1.79
On peak -13.291040 | 0.01053947 | dI=0.99
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w1 Pt LogDt | 0.917 | 4.78E- | 291.301361 | 0.00027361 *
Offpeak | 8 10 | -14.285719 | 0.02603775 | d=1.3129
Mid peak -25.959484 | 3.8260E-06 | du=1.79
On peak -12.651630 | 0.01371609 | dI=0.99
LogDt, | 0.899 | 3.24E- | 2.0043206 | 0.00091441 *
Log | Off peak, 09 | -0.1614348 | 0.00309029 | d=1.19637
Pt | Mid peak, -0.2108863 | 3.2756E-05 | du=1.79
On peak -0.0948629 | 0.03627891 | dI=0.99
W2 Dt, 0.904 | 2.16E- | 9.0102E-06 | 0.00059411 *
Log | Off peak, 09 | -0.1592220 | 0.00287620 | d=1.23782
Pt | Mid peak, -0.2121049 | 2.3731E-05 | du=1.79
On peak -0.1017739 | 0.02449651 | dI=0.99
LogDt, | 0.907 | 2.53E- | 1.833776 | 2.7953E-05 *
W10 Log | Off peak, 10 -0.052795 | 0.04836555 | d=1.19637
Pt | Mid peak, -0.061588 | 0.02534380 | du=1.79
On peak -0.010865 | 0.00835644 | dI=0.99
W12, Log |LogDt,  |0837 |486E- |1.70482952 | 0.04912460 | *
W16 Pt Off peak, 08 -0.1609860 | 0.02447336 | d=1.3338
Mid peak, -0.1858552 | 0.00091076 | du=1.79
On peak -0.0823610 | 0.01664629 | dI=0.99
W17 Log |LogDt |0709 |1.08E- |3.14270506 | 1.2431E-06 | *
Pt Off peak, 05 0.06742078 | 0.00325183 | d=1.50811
Mid peak, -0.0038290 | 0.00517815 | du=1.79
On peak -0.0018451 | 0.00977066 | dI=0.99
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4.2.2 Regression Models for Summer Season

Table 17 depicts the significant regression models for summer season for each

significant cluster found in section 3.6 and 3.7 for summer season.

Table 17: Regression Models for Summer Season

Clu. Reg. | Dep. Ind. Adj. B P Durbin
Type Mod | Var. Var. R Sig. | Coe. Value Watson
Squ. Test

Log Dt, | 0.834 | 3.44E- | 2.96052953 | 0.00500161 | *

S1 1 Log Pt | Off 07 -0.1004265 | 0.00657479 | d=1.67509
peak, -0.2080328 | 0.00056359 | du=1.79
Mid -0.1469958 | 0.01542864 | dI=0.99
peak,
On peak

S6,S7 |2 Log Pt | LogDt, | 0.9014 | 1.6E- | 2.05360275 | 2.8021E-06 | *
Off 10 0.04670751 | 0.00279769 | d=1.61127
peak, -0.0528751 | 0.00175899 | du=1.79
Mid -0.0648154 | 0.01771372 | dI=0.99
peak,
On peak
Log Dt, | 0.903 | 1.6E- | 2.05360275 | 2.8021E-06 |*

S9 3 Log Pt | Off 10 0.04670751 | 0.00279769 | d=1.12769
peak, -0.0528751 | 0.00175899 | du=1.79
Mid -0.0648154 | 0.01771372 | dI=0.99
peak,
On peak

S16 4 Log Pt | LogDt, | 0.902 | 1.67E- | 1.05880037 |5.5381E-06 | *
Off 10 -0.0180840 | 0.04549675 | d=1.26035
peak, 0.01108163 | 0.00586719 | du=1.79
Mid 0.06440308 | 0.01034916 | dI=0.99
peak,
On peak

Clu. Type: cluster type

Reg. Model: regression model
Dep. Variable: dependent variable
Ind. Variable: independent variable
Sig.: significance level

B Coe.: B Coefficient

Adj. R Squ.: adjusted R square
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In regression models, the adjusted R-square value represents ae statistical measure
that reflects how much the independent variable in the defined regression model has
explained the variation in the dependent variable. It is also known as the coefficient
of determination for multiple regression. Usually, for multiple regression models the
F-test is used to check the overall significance level of the model instead of a t-test
that can evaluate only a single regression coefficient of an independent variable at a
time. Hence, for multiple regression, the most suitable test is the F-test to check the
significance of the model between the variables. On the other hand, the t-test is used
to evaluate the significance of the each independent variables’ regression coefficient
in the model. The p-value for every coefficient is the result of the null hypothesis that
shows whether the null hypothesis (i.e., the coefficient is not significantly different
than 0) can be rejected or not. If the p-value (<5%) then we can reject the null
hypothesis with 95% confidence level, because variation in the independent variable
is interconnected with the variation of the dependent variable. On the other hand, if
the p-value is higher than 5%, then this test recommends that the there is no
statistical evidence that links the variation in independent variable(s) to variation of

the dependent variable.

In Table 15 and Table 16, we have evaluated and presented different regression
models where all coefficients of independent variables are significant (non-
significant models or models with non-significant coefficients are not presented but
included in Appendix A and Appendix B).

In some of the models presented, the coefficient of the regression for “log Dt”
independent variable represents the “price elasticity of demand”, denoted by 3, when

the dependent variable is “log Pt” and can be computed as:

B=—-
b

In this equation, “b” represents the value of the coefficient of the regression for “log

Dt” independent variable.

In regression analysis, the Durbin-Watson test statistic is used to detect whether
autocorrelation exist or not. In other words, whether residuals from multiple linear

regression model are correlated or not. In Table 15 and Table 16, the column, (*)
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sign represents a positive correlation between the hourly price and load levels of
electricity in the regression model. In our case, price is directly proportional to
demand. If the demand for the electricity is increased then the price of the electricity
is increased as well. In all the cases, the d-value which depicts the Durbin-Watson
test statistic is between upper and lower limit values of the test which means that the
price and load are positively correlated.

4.3 Discussion of the Results of Multiple Linear Regression Analyses of Clusters

Table 16 and Table 17 represent the significance level, adjusted R-square and
Durbin-Watson test values. Note that all the regression coefficients in the models are
significant. It can be observed easily that the winter season cluster W1 has the
highest adjusted R-square value. The logarithmic model does not affect too much in
W1 case because we can see that there is only a slight R-square difference by using
the log. MAPE and change in revenue can be observed in section 3.4.5 and Table 7.
W1 cluster gives the lowest change in revenue and the lowest MAPE as compared to

all other winter season clusters.

Next, we compare the results for the summer season. S6, S7, S9, and S16 clusters
have R-square value very close to each other. Change in revenue and MAPE can be
observed from Table 7 and Table 13 in section 3.4.5 and section 3.4.8. Hence, S6, S7
and S9 clusters give the lowest MAPE as compared to the S16, but S9 cluster also

gives the lowest change in revenue as compared to all other summer season clusters.
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Chapter 5: Summary and Future Research

5.1 Summary

This thesis presents a novel methodology to determine the block of hours and prices
for TOU pricing scheme using different clustering methods, namely agglomerative
hierarchical and k-means algorithms. We have illustrated our approach using 2014-
2015 winter and summer seasons’ hourly electricity prices and demands from the
PJM market. Based on our detailed descriptive analyses and observations, we
propose three clusters (off-peak, mid-peak and on-peak) for TOU pricing scheme.
The median of RTPs in the same cluster for off-peak, mid-peak and on-peak hours
determines the TOU pricing scheme (hours in each cluster and price for it). We have
also compared the performance of TOU pricing schemes from the clustering
algorithms by several measures, MAPE and change in overall revenue in comparison
to RTP scheme.

Furthermore, we have analysed the strength of the relationship among price and
demand variables for different TOU pricing clusters. For this purpose, we have
performed multiple regression analyses, where dependent variable is the mean of
RTPs within the TOU block of hours and independent variables are mean load of the
TOU block of hours, as well as categorical variables for off-peak, mid-peak and on-
peak hours for each TOU scheme. Using Minitab software, different regression
models (using logarithms and lag of prices and demands) are built. Adjusted
coefficient of determination (adjusted R?), significance of coefficients and the
overall model are reported. The significant models (with 95% confidence) are
reported and the ones with higher adjusted R? values are offered for TOU pricing
schemes. Moreover, for auto-correlation, Durbin-Watson statistics are calculated and

positive correlation among dependent and independent variables are reported.

Different clustering methods (by observation, hierarchical and k-means) are applied

to cluster hours for winter and summer seasons based on prices and loads. By

observing the results of the winter and summer seasons, it is verified that clustering

by observation is better than the other clustering techniques. In winter season, W1
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cluster gives the best results because it has the highest R? value, lowest percent error
if the pricing scheme is shifted from RTP to TOU pricing scheme. For summer

season, it is the S6, S7 and S9 clusters that are more suitable.

It is necessary to ensure that the customers are showing much more knowledge about
and response to their electricity bills before considering shifting to a TOU pricing
scheme. Smart meters and connected power utilities have the potential to provide
contribution to this serious problem, but on the other hand education will be critical
to ensure customers can switch to the beneficial pricing schemes for them. TOU
pricing is progressively seen as a viable DSM alternative by policy-makers and
particularly, in those countries where the implementation of smart metering
technologies has arrived (or will reach in the forthcoming years) double-digit
penetration (Torriti et al., 2010).

5.2 Future Research

There are several ways in which this research can be extended to conduct a more
thorough investigation of the hourly electricity price and demand levels. An outlier
analysis can be performed to eliminate the adverse effects of the outliers in the data
and to avoid the sparsity within the statistics or in the boxplots (Ratcliff, 1993). We
can also include additional independent variables (e.g., other factors as dummy
variables such as temperature, humidity and precipitation forecast) in the multiple
regression analyses. Moreover, an autoregressive moving average (ARMA) or
autoregressive integrated moving average (ARIMA) models can be used to avoid the
adverse effects of autocorrelation among the different variables (Chujai et al., 2013).
Furthermore, other clustering method such as expectation-maximization algorithms
or fuzzy c-means clustering (Hathaway and Bezdek, 2001) can be employed to

investigate other possible clusters for TOU pricing schemes.
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Appendices

All the regression model results for winter season used for the analysis in this thesis

are provided in the appendices in tabular form. Moreover, the R scripts used to

analyse the data are also provided.

Appendix A

Table A.1 with log model of energy price of winter season (2014-2015)

Reg. | Dep. | Ind. Adj. B P Durbin
Mod | Var. Var. R Sig. Coe. Value Watson
Squ. Test
1 Log Pt-1 0.8234 | 6.18E-07 | 0.00191457
Pt Off peak -0.2586918
Mid peak -0.2078586
On peak -0.0632317
2 Log Dt-1 0.8368 | 2.97E-07 | 6.01816E-06
Pt Off peak -0.243886896
Mid peak -0.266416202
On peak -0.111676763
3 Log Dt 0.901 4.73E-10 | 1.23287E-05 | 5.36584E-05 | *
Pt Off peak -0.098301896 | 0.042862741
Mid peak -0.205086078 | 1.10882E-05
On peak -0.117800746 | 0.008901584
4 Log Log Pt-1 | 0.828 4.85E-07 | 0.25043769
Pt Off peak -0.2516725
Mid peak -0.2078034
On peak -0.0631536
5 Log Log Dt-1 | 0.8346 | 3.36E-07 | 1.40347549
Pt Off peak -0.2411887
Mid peak -0.26553973
On peak -0.10936173
6 Log Log Dt 0.919 4.99E-10 | 2.899442482 | 5.67486E-05 | *
Pt Off peak -0.09117969 | 0.039197151
Mid peak -0.204255225 | 1.20811E-05
On peak -0.111766962 | 0.011694975
7 Log Pt-1 0.8385 | 1.46E-06 | 0.000678798
Pt Dt-1 4.99885E-06
Off peak -0.243238914
Mid peak -0.257755324
On peak -0.109886093
8 Log Pt-1 0.9179 | 3.71E-09 | 9.46517E-05
Pt Dt 1.2221E-05
Off peak -0.099010688
Mid peak -0.205386618
On peak -0.118733388
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9 Log Pt-1 0.8487 | 8.21E-07 | -0.019371801
Pt Log Pt-1 2.540304185
Off peak -0.204101265
Mid peak -0.200681561
On peak -0.028675317
10 Log Pt-1 0.837 1.58E-06 | 0.000798584
Pt Log Dt-1 1.123502867
Off peak -0.240971761
Mid peak -0.255510779
On peak -0.107698367
11 Log Pt-1 0.9176 | 3.85E-09 | 0.000183069
Pt Log Dt 2.852245969
Off peak -0.092554345
Mid peak -0.204852573
On peak -0.113725432
12 Log Dt-1 0.9183 | 3.58E-09 | -7.69796E-07
Pt Dt 1.2841E-05
Off peak -0.095002696
Mid peak -0.196894294
On peak -0.110879867
13 Log Dt-1 0.8399 | 1.35E-06 | 4.55519E-06
Pt Log Pt-1 0.1109524
Off peak -0.240968815
Mid peak -0.253514374
On peak -0.106791852
14 Log Dt-1 0.8442 | 1.06E-06 | 4.81682E-05
Pt Log Dt-1 -10.18227016
Off peak -0.271462911
Mid peak -0.25635736
On peak -0.107597979
15 Log Dt-1 0.9176 | 3.87E-09 | -4.59582E-07
Pt Log Dt 2.969532734
Off peak -0.089150307
Mid peak -0.199341956
On peak -0.107432671
16 Log Dt 0.9182 | 3.59E-09 | 1.20132E-05
Pt Log Pt-1 0.0320082
Off peak -0.099767214
Mid peak -0.205844002
On peak -0.119935379
17 Log Dt 0.9184 | 3.54E-09 | 1.2906E-05
Pt Log Dt-1 -0.212748567
Off peak -0.095230706
Mid peak -0.195501238
On peak -0.109733813
18 Log Dt 0.9179 | 3.73E-09 | 1.3564E-05
Pt Log Dt -0.291581763
Off peak -0.099084541
Mid peak -0.205168129
On peak -0.118374145
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19 Log LogPt-1 | 0.8388 | 1.45E-06 | 0.124900507
Pt Log Dt-1 1.018172237
Off peak -0.238672689
Mid peak -0.251198909
On peak -0.104424919
20 Log Log Pt-1 | 0.918 3.68E-09 | 0.04175268
Pt Log Dt 2.805959988
Off peak -0.093118631
Mid peak -0.205275252
On peak -0.114847612
21 Log LogDt-1 |0.9176 | 3.87E-09 | -4.59582E-07
Pt Log Dt 2.969532734
Off peak -0.089150307
Mid peak -0.199341956
On peak -0.107432671
22 Log Pt-1 0.9186 | 2.36E-08 | 0.000308254
Pt Dt-1 -1.19762E-06
Dt 1.27747E-05
Off peak -0.095477438
Mid peak -0.193320333
On peak -0.11007081
23 Log Pt-1 0.8534 | 3.08E-06 | -0.016422956
Pt Dt-1 2.98615E-06
Log Pt-1 2.100293097
Off peak -0.204325945
Mid peak -0.231731443
On peak -0.062530734
24 Log Pt-1 0.8444 | 5.02E-06 | 0.00021792
Pt Dt-1 4.56307E-05
Log Dt-1 -9.648330134
Off peak -0.269808847
Mid peak -0.254104357
On peak -0.10723699
25 Log Pt-1 0.918 2.5E-08 | 0.00036028
Pt Dt-1 -9.66687E-07
Log Dt 2.953987754
Off peak -0.089616402
Mid peak -0.195096213
On peak -0.106504468
26 Log Pt-1 0.9309 | 6.02E-09 | -0.015195554
Pt Dt 1.15261E-05
Log Pt-1 1.837073977
Off peak -0.068611445
Mid peak -0.20033697
On peak -0.090587526
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27 Log Pt-1 0.9188 | 2.32E-08 | 0.00031632
Pt Dt 1.28161E-05
Log Dt-1 -0.312392937
Off peak -0.096161001
Mid peak -0.192016405
On peak -0.109072362
28 Log Pt-1 0.9179 | 2.52E-08 | 9.43748E-05
Pt Dt 1.22622E-05
Log Dt -0.009665195
Off peak -0.099034557
Mid peak -0.205388459
On peak -0.118749666
29 Log Pt-1 0.8525 | 3.23E-06 | -0.01668881
Pt Log Pt-1 2.144329613
Log Dt-1 0.639339979
Off peak -0.202526917
Mid peak -0.228917237
On peak -0.059366024
30 Log Pt-1 0.93 6.69E-09 | -0.014811878
Pt Log Pt-1 1.801663136
Log Dt 2.6842069
Off peak -0.063624975
Mid peak -0.199939519
On peak -0.086242126
31 Log Pt-1 0.9182 | 2.46E-08 | 0.000377353
Pt Log Dt-1 -0.266506704
Log Dt 2.968277528
Off peak -0.089999121
Mid peak -0.19342668
On peak -0.105231601
32 Log Dt-1 0.9194 | 2.17E-08 | -1.61081E-06
Pt Dt 1.2727E-05
Log Pt-1 0.068356085
Off peak -0.094527596
Mid peak -0.189563305
On peak -0.107877427
33 Log Dt-1 0.9197 | 2.1E-08 | 1.85452E-05
Pt Dt 1.25447E-05
Log Dt-1 -4.628126802
Off peak -0.110972582
Mid peak -0.193926632
On peak -0.109044335
34 Log Dt-1 0.9183 | 2.42E-08 | -8.91348E-07
Pt Dt 1.86807E-05
Log Dt -1.35940573
Off peak -0.098130577
Mid peak -0.195983337
On peak -0.112460341
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35 Log Dt-1 0.845 4.86E-06 | 4.25345E-05
Pt Log Pt-1 0.058659446
Log Dt-1 -9.008158925
Off peak -0.266740377
Mid peak -0.250696168
On peak -0.105485696
36 Log Dt-1 0.9189 | 2.29E-08 | -1.37449E-06
Pt Log Pt-1 0.07354509
Log Dt 2.944399951
Off peak -0.08852567
Mid peak -0.191357631
On peak -0.104230615
37 Log Dt 0.9196 | 2.13E-08 | 1.27518E-05
Pt Log Pt-1 0.068474409
Log Dt-1 -0.404678376
Off peak -0.095594772
Mid peak -0.188475744
On peak -0.107022852
38 Log Dt 0.9196 | 2.13E-08 | 1.27518E-05
Pt Log Pt-1 0.068474409
Log Dt -0.404678376
Off peak -0.095594772
Mid peak -0.188475744
On peak -0.107022852
39 Log Dt 0.9185 | 2.39E-08 | 1.86874E-05
Pt Log Dt-1 -0.238220741
Log Dt -1.348427363
Off peak -0.098482357
Mid peak -0.194733103
On peak -0.111419669
40 Log Log Pt-1 | 0.9182 | 2.44E-08 | 9.86727E-06
Pt Log Dt-1 0.033633774
Log Dt 0.502789307
Off peak -0.098492077
Mid peak -0.205741009
On peak -0.119055046
41 Log Pt-1 0.9191 | 2.24E-08 | 0.074826086
Pt Dt-1 -0.358286436
Dt 2.955237792
Log Pt-1 -0.089258048
Off peak -0.189870232
Mid peak -0.103074704
On peak
42 Log Pt-1 0.9358 | 2.22E-08 | -0.018084827
Pt Dt-1 -3.45323E-06
Dt 1.29635E-05
Log Dt-1 2.258210306
Off peak -0.051454862
Mid peak -0.16438746
On peak -0.059157618
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43 Log Pt-1 0.9198 | 1.27E-07 | 0.000106347
Pt Dt-1 1.7322E-05
Dt 1.25383E-05
Log Dt -4.370382909
Off peak -0.110246992
Mid peak -0.19285889
On peak -0.108867433
44 Log Dt-1 0.9186 | 1.41E-07 | 0.000292631
Pt Dt -1.25868E-06
Log Pt-1 1.6753E-05
Log Dt-1 -0.925315492
Off peak -0.097582453
Mid peak -0.192881393
On peak -0.111187604
45 Log Dt-1 0.9202 | 1.21E-07 | 1.40136E-05
Pt Dt 1.25257E-05
Log Dt-1 0.047650938
Log Dt -3.682768611
Off peak -0.107379323
Mid peak -0.189422395
On peak -0.107326271
46 Log Dt 0.9194 | 1.31E-07 | -1.6583E-06
Pt Log Pt-1 1.56982E-05
Log Dt-1 0.067193048
Log Dt -0.691224629
Off peak -0.096126131
Mid peak -0.189224838
On peak -0.108732144
47 Log Pt-1 0.9196 | 1.29E-07 | 1.50085E-05
Pt Dt-1 0.067397541
Dt -0.411591738
Log Pt-1 -0.525760379
Log Dt-1 -0.096856886
Off peak -0.18828673
Mid peak -0.107722812
On peak
48 Log Pt-1 0.9368 | 1.2E-07 | -0.018206643
Pt Dt 1.4012E-05
Log Pt-1 1.274E-05
Log Dt-1 2.249799695
Log Dt -4.119580133
Off peak -0.065540798
Mid peak -0.164060257
On peak -0.058212924

76




49 Log Dt-1 0.9368 | 1.2E-07 | -0.018206643
Pt Dt 1.4012E-05
Log Pt-1 1.274E-05
Log Dt-1 2.249799695
Log Dt -4.119580133
Off peak -0.065540798
Mid peak -0.164060257
On peak -0.058212924
50 Log Pt-1 0.9375 | 6.22E-07 | -0.019270067
Pt Dt-1 5.75813E-06
Dt 3.36281E-05
Log Pt-1 2.380790528
Log Dt-1 -2.277905696
Log Dt -4.832629461
Off peak -0.067757156
Mid peak -0.160283972
On peak -0.061599394

Note: “*” represents the significant models where price and demand variables are

positively correlated.
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Appendix B

Table B.1 without log model of energy price of winter season (2014-2015)

Reg. | Dep. | Ind. Adj. B P Durbin
Mod | Var. | Var. R Sig. Coe. Value Watson
Squ. Test
1 Pt Pt-1 0.8448 | 1.86E-07 | 0.172096356
Off peak -31.29563235
Mid peak -26.24966911
On peak -7.408873602
2 Pt Dt-1 0.857 8.66E-08 | 0.000593879
Off peak -29.68482142
Mid peak -32.08790733
On peak -12.49409922
3 Pt Dt 0.9188 | 4.26E-10 | 0.001243234 | 0.0002 *
Off peak -14.9352274 | 0.01794515
Mid peak -26.04445367 | 3.38413E-06
On peak -13.29103952 | 0.010539473
4 Pt Log Pt-1 | 0.848 1.53E-07 | 22.87317935
Off peak -30.62991781
Mid peak -26.25444189
On peak -7.451791113
5 Pt Log Dt-1 | 0.8556 | 9.48E-08 | 139.0801207
Off peak -29.4042029
Mid peak -32.02822309
On peak -12.299233
6 Pt Log Dt 0.9178 | 4.78E-10 | 291.3013609 | 0.000273607 | *
Off peak -14.28571858 | 0.026037751
Mid peak -25.95948414 | 3.82595E-06
On peak -12.65162997 | 0.013716094
7 Pt Pt-1 0.8574 | 4.89E-07 | 0.817117073
Dt-1 0.222608375
Off peak 9.82798E-05
Mid peak 0.0002454
On peak 0.111728776
8 Pt Pt-1 0.9189 | 3.35E-09 | -0.015706737
Dt 0.001261121
Off peak -14.81760874
Mid peak -25.99458126
On peak -13.13627458
9 Pt Pt-1 0.8653 | 2.97E-07 | -2.060588535
Log Pt-1 266.4474642
Off peak -25.56974172
Mid peak -25.496888
On peak -3.784320138
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10 Pt Pt-1 0.8563 | 5.23E-07 | 0.052085379
Log Dt-1 120.8197035
Off peak -29.39005003
Mid peak -31.37411262
On peak -12.19074479
11 Pt Pt-1 0.9178 | 3.76E-09 | -0.005622349
Log Dt 292.7508443
Off peak -14.24350065
Mid peak -25.94113857
On peak -12.59148209
12 Pt Dt-1 0.9192 | 3.23E-09 | -9.76725E-05
Dt 0.001308234
Off peak -14.51662194
Mid peak -25.0050726
On peak -12.4129121
13 Pt Dt-1 0.8581 | 4.69E-07 | 0.000490209
Log Pt-1 7.862416766
Off peak -29.47803751
Mid peak -31.17364542
On peak -12.1479399
14 Pt Dt-1 0.861 | 3.92E-07 | 0.004194976
Log Dt-1 -869.9242654
Off peak -32.04078375
Mid peak -31.22852811
On peak -12.1456275
15 Pt Dt-1 0.918 | 3.69E-09 | -6.22885E-05
Log Dt 300.8008955
Off peak -14.01067044
Mid peak -25.29357459
On peak -12.06419094
16 Pt Dt 0.9188 | 3.38E-09 | 0.001240013
Log Pt-1 0.326790292
Off peak -14.95018768
Mid peak -26.05219175
On peak -13.31283323
17 Pt Dt 0.9193 |3.2E-09 | 0.0013115
Log Dt-1 -25.15965535
Off peak -14.57202833
Mid peak -24.91095009
On peak -12.33704374
18 Pt Dt 0.9192 | 3.23E-09 | 0.002719477
Log Dt -348.4759151
Off peak -15.87058395
Mid peak -26.14251492
On peak -13.97632244
19 Pt Log Pt-1 | 0.8572 | 4.96E-07 | 9.239283615
Log Dt-1 110.5780258
Off peak -29.2180815
Mid peak -30.96738667
On peak -11.93404141
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20 Pt LogPt-1 | 0.9179 | 3.75E-09 | 1.449935672
Log Dt 288.0550159
Off peak -14.35305173
Mid peak -25.99490641
On peak -12.75861098
21 Pt Log Dt-1 | 0.918 3.69E-09 | -6.22885E-05
Log Dt 300.8008955
Off peak -14.01067044
Mid peak -25.29357459
On peak -12.06419094
22 Pt Pt-1 0.9179 | 3.75E-09 | 1.449935672
Dt-1 288.0550159
Dt -14.35305173
Off peak -25.99490641
Mid peak -12.75861098
On peak
23 Pt Pt-1 0.9192 | 2.21E-08 | 0.002277322
Dt-1 -0.000100833
Log Pt-1 0.001307744
Off peak -14.52012924
Mid peak -24.97866881
On peak -12.40693493
24 Pt Pt-1 0.8693 | 1.2E-06 | -1.740735281
Dt-1 0.0003239
Log Dt-1 218.7206495
Off peak -25.5941122
Mid peak -28.86478485
On peak -7.456525794
25 Pt Pt-1 0.861 1.99E-06 | -0.001522557
Dt-1 0.004212705
Log Dt -873.6547806
Off peak -32.05234031
Mid peak -31.24426932
On peak -12.14814964
26 Pt Pt-1 0.9295 | 7.1E-09 | -1.630231607
Dt 0.00118775
Log Pt-1 193.9804904
Off peak -11.60768899
Mid peak -25.46137832
On peak -10.1642941
27 Pt Pt-1 0.9193 | 2.2E-08 | 0.002763909
Dt 0.001310715
Log Dt-1 -26.03031767
Off peak -14.58015697
Mid peak -24.88050067
On peak -32.40177918
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28 Pt Pt-1 0.9195 | 2.16E-08 | -0.028095765
Dt 0.003107014
Log Dt -432.4036646
Off peak -15.8854645
Mid peak -26.07692188
On peak -13.86452844
29 Pt Pt-1 0.8687 | 1.25E-06 | -1.764647368
Log Pt-1 222.7704004
Log Dt-1 70.52092502
Off peak -25.39608692
Mid peak -28.61135923
On peak -7.169587906
30 Pt Pt-1 0.9281 | 8.41E-09 | -1.5934931
Log Pt-1 190.7848157
Log Dt 274.9565618
Off peak -11.18006195
Mid peak -25.42087689
On peak -9.681172489
31 Pt Pt-1 0.9181 | 2.49E-08 | 0.00927797
Log Dt-1 -20.43931683
Log Dt 301.6497041
Off peak -14.04753172
Mid peak -25.06484743
On peak -11.94006089
32 Pt Dt-1 0.918 | 2.51E-08 | 0.007811957
Dt -7.3284E-05
Log Pt-1 300.4638337
Off peak -14.02077677
Mid peak -25.20151416
On peak -12.04406472
33 Pt Dt-1 0.9194 | 2.16E-08 | -0.000140776
Dt 0.001302387
Log Dt-1 3.503409123
Off peak -14.49227195
Mid peak -24.62934231
On peak -12.25903004
34 Pt Dt-1 0.9197 | 2.11E-08 | 0.001150957
Dt 0.001289077
Log Dt -299.1876175
Off peak -15.54900334
Mid peak -24.81322658
On peak -12.29425323
35 Pt Dt-1 0.8611 | 1.97E-06 | 0.003889353
Log Pt-1 3.182197054
Log Dt-1 -806.2302904
Off peak -31.78459254
Mid peak -30.921416
On peak -12.03103897
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36 Pt Dt-1 0.9183 | 2.44E-08 | -0.000112777
Log Pt-1 4.058493537
Log Dt 299.4139744
Off peak -13.97620062
Mid peak -24.85296964
On peak -11.88748948
37 Pt Dt-1 0.9183 | 2.44E-08 | -0.000112777
Log Dt-1 4.058493537
Log Dt 299.4139744
Off peak -13.97620062
Mid peak -24.85296964
On peak -11.88748948
38 Pt Dt 0.9201 | 2.03E-08 | -0.000144287
Log Pt-1 0.003547759
Log Dt-1 -521.3304969
Off peak -15.71616055
Mid peak -24.65572165
On peak -13.01902218
39 Pt Dt 0.9195 | 2.14E-08 | 0.001303686
Log Pt-1 3.470549624
Log Dt -34.88740524
Off peak -14.59048062
Mid peak -24.55487067
On peak -12.19964165
40 Pt Dt 0.9201 | 2.02E-08 | 0.003464615
Log Dt-1 -34.64597287
Log Dt -502.1797609
Off peak -15.78300451
Mid peak -24.62488201
On peak -12.96488832
41 Pt Log Pt-1 | 0.9192 | 2.21E-08 | 0.002814659
Log Dt-1 -0.865999581
Log Dt -368.9293144
Off peak -15.88583866
Mid peak -26.12776446
On peak -13.95879066
42 Pt Pt-1 0.9184 | 2.41E-08 | 4.151762549
Dt-1 -29.26907271
Dt 300.2497921
Log Pt-1 -14.03767365
Off peak -24.73644219
Mid peak -11.79686066
On peak
43 Pt Pt-1 0.9329 | 3.13E-08 | -1.91090047
Dt-1 -0.000335453
Dt 0.001327382
Log Dt-1 234.8903839
Off peak -9.941069655
Mid peak -21.96918223
On peak -7.111139823
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44 Pt Pt-1 0.9197 | 1.27E-07 | -0.013000407
Dt-1 0.001300495
Dt 0.001289857
Log Dt -330.6955051
Off peak -15.63770302
Mid peak -24.94375264
On peak -12.31587857
45 Pt Dt-1 0.9201 | 1.23E-07 | -0.006691962
Dt -0.000135887
Log Pt-1 0.003591843
Log Dt-1 -531.2573745
Off peak -15.72869519
Mid peak -24.72665763
On peak -13.04812743
46 Pt Dt-1 0.9197 | 1.27E-07 | 0.000956003
Dt 0.00128826
Log Dt-1 2.049979611
Log Dt -258.5175887
Off peak -15.3944186
Mid peak -24.61945088
On peak -12.22034079
47 Pt Dt 0.9202 | 1.22E-07 | 0.0033279
Log Pt-1 2.504596494
Log Dt-1 -41.08870634
Log Dt -471.6081879
Off peak -15.72259949
Mid peak -24.38532485
On peak -12.8275074
48 Pt Pt-1 0.9202 | 6.61E-07 | 0.000197867
Dt-1 0.003205755
Dt 2.267340805
Log Pt-1 -87.00967684
Log Dt-1 -443.8943438
Off peak -15.82246441
Mid peak -24.40865449
On peak -12.79489531
49 Pt Pt-1 0.9364 | 1.53E-05 | -2.167778958
Dt -0.000437929
Log Pt-1 0.006104294
Log Dt-1 264.1267837
Log Dt -1110.49091
Off peak -11.89739567
Mid peak -21.06781595
On peak -7.792270412
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50 | Pt Pt-1 0.9364 | 6.97E-07 | -2.185320586
Dt-1 -0.001104196
Dt 0.006524184
Log Pt-1 266.9617596
Log Dt-1 155.07265
Log Dt -1206.146819
Off peak -11.53567599
Mid peak -21.00249053
On peak -7.886502872

e Clu. Type: cluster type

e Reg. Model: regression model

e Dep. Variable: dependent variable
e Ind. Variable: independent variable
e Sig.: significance level

e B Coe.: B Coefficient

e Adj. R Squ.: adjusted R square

Note: “*” represents the significant models where price and demand variables are

positively correlated.
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Appendix C

Price<-read.table
("C:\\Users\\Hussain\\Desktop\\Price.csv", header=T, sep="",
")

boxplot (Price$hl,Price$h2,Price$h3, Price$hd, Price$h5,Pric
eSh6,Price$h7,Price$h8,Price$h9, Price$hl0, Price$hll, Price
$hl2,Price$hl3,Price$hld,Price$Shl5, Price$hl6, Price$Shl7, Pr
iceS$hl8,PriceS$hl9, PriceSh20,PriceS$Sh21,Price$Sh22,PriceS$h23
,Price$h24, vylab='Price', main = 'Boxplot of Winter

Season (Prices)', xlab='Hours')
hclust.fitl <- hclust(d, method="Single")

Plot (hclust.fitl, main="Agglomerative hierarchical

Clustering",xlab="") # display dendrogram

groupsl <- cutree(hclust.fitl, k=3) # cut tree into 3

clusters

# draw dendrogram with red borders around the 3 clusters
rect.hclust (hclust.fitl, k=3, border="red")

fperform K-means clustering with K=3

fitl <- kmeans (data,3) # 3 cluster solution

# get cluster means

Aggregate (Price,by=list(fitlScluster), FUN=mean)

#for visualization

par (mfrow=c(1,2))

clusplot (data,groupsl, color=TRUE, shade=TRUE,

labels=0.1, lines=0, main="Agglomerative

clustering by Ward's method")
clusplot (data, fitlS$cluster, color=TRUE, shade=TRUE,

labels=0.1, lines=0, main="K-means clustering")
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