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LOCATION ESTIMATION OF BASE STATION OF MOBILE           
PHONES  USING ARTIFICIAL NEURAL NETWORKS 

 

 

Abstract 

 

Finding the location of the base station of mobile phones is a problem. There are 

different approaches and  methods for finding location  in the literature. A solution 

to this problem is using “supervised learning” method. Recently, supervised 

learning technology is used in solving problems. For example, computer is trained 

and fed by necessary data. This data includes input and ideal targets. After 

computer is trained properly, it can make estimations of new data and give 

reasonable results.  For the base station estimation program, mobile phone data(as 

input) of mobile phones and base station locations(as targets) are given to software. 

Software can estimate base location with input data, after training software 

Matlab is a good program for supervised learning methods and artificial neural 

networks. For finding the optimal neural network topology and optimal training 

methods, Matlab is used in this project. Experiments are made with different 

data,different neural networks  and different training methods. Results and outputs 

are observed. After finding best neural network topology, experiments are made 

with real data. Raw data are collected from mobile phones and after converting it 

into useful numbers and after normalizing these numbers, performance of the 

program is evaluated. Finally, this solution is implemented in Java platform.  

In this thesis, we present base location estimation program. This program takes as 

input a training data and test data. It uses training data to estimate the output of the 

test data. As output it creates a report that shows the estimated base station location. 
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MOBİL CİHAZLARIN BAZ İSTASYONLARININ YERİNİ SİNİR AĞLARI 
KULLANARAK BULMA 

 

 

Özet 

 

Mobil cihazların sinyal aldığı baz istasyonlarının yerini bulma bir 

problemdir.Literatürde yer bulma için çeşitli yaklaşımlar ve yöntemler vardır. Bu 

probleme yönelik bir çözüm de”gözetimli öğrenimdir”. Günümüzde “gözetimli 

öğrenim” birçok problemin çözümünde kullanılır. Örneğin,bilgisayar ilgili veri ile 

eğitilir. Bu veri giriş verisive hedef verisini içerir. Bilgisayar bu veri ile 

eğitilmesinin ardından bir dahaki sefere yeni giriş verisi geldiğinde mantıklı 

çıktılar(sonuçlar) verebilir. Baz istasyonu yeri tahmin programı için giriş verisi 

mobil kullanıcıdan alınan giriş verisi ve hedef verisi(baz istasyonları yeri) 

programa verilir. Eğitim sonrasında yeni gelen giriş verisi bilgisayara verildiğinde 

,bilgisayar baz istasyonu lokasyonu tahmini yapabilir.  

Bu tezde, Matlab uygulamasından faydalanılmıştır. Matlab gözetimli öğrenimin 

yapay sinir ağları üzerinde uygulanması için iyi bir programdır. En iyi yapay sinir 

ağları topolojisini bulmak, en iyi eğitim metodunu bulmak için bu projede Matlab 

kullanılmıştır. Farklı verilerle, farklı yapay ağlarla ve farklı eğitim metodlarıyla 

deneyler yapılmıştır. En iyi yapay ağ teknolojisi bulunduktan sonra yapay veriden 

gerçek verilerle deney yapılmaya geçilmiştir. Cep telefonlarından ham veri 

toplanmıştır. Bu veri gereksiz bilgilerden ayıklandıktan sonra, sadeleştirilerek ve 

özeti alınarak anlamlı veri haline getirilmiştir. Sonrasında bu veri normalize 

edilerek programın çalıştırabileceği hale ve kullanıcıya kolaylık sağlar hale 

getirilmiştir. Sonrasında bu programın performansı deneylerle ölçülmüştür. En 

sonunda program Java platformunda implement edilmiştir.                           
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Bu tezde baz istasyonu yeri tespit etme programı anlatılmıştır. Bu program girdi 

olarak eğitim ve test datası alır. Bu program eğitim verisini kullanır ve kendisine 

verilen test verisinin çıktılarını buna göre tahmin eder. Çıktı olarak baz istasyonu 

yerlerini gösteren bir rapor verir. 
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Chapter 1 

Introduction 

 

The problem is to find the base station of mobile devices by using  the most feasible 

methods. This problem, which we refer to as localization, is a challenging one, and 

yet extremely crucial for many applications of very large networks of devices[1]. 

There are some used methods in the literature. 

 A lot of related articles and presentations are read and  know-how is acquired.  

Some of them are angulation, cell of identity, lateration and received signal strength 

methods. The first step is to investigate and find which method will help us more 

in the process. The most widely known, using the internal hardware of the 

cellphone, is satellite positioning using GPS but WiFi, Bluetooth, and augmented 

sensor networks can also be employed [2], [3], [4]. The cost, the easiness to 

implement and the performance of the methods are examined and comparisons are 

discussed. 

The given input is the data of the mobile devices. The data gives the coordinates 

and received signal strength of the mobile devices. Boundary of the base station 

cell can be estimated by using this data . There are various methods for estimating 

the location of the base station. Firstly, location can be found by benefitting from 

the signal strength lines. Received signals can form a map in which various signal 

lines exist. Strong signal lines are closer to base station while weak signal lines are 

further to the base station. From this map the location of the base station can be 

approximated. In order to benefit from this data, data should be normalized. Then, 

it must be preprocessed. And after using the data, it should be post-processed. 

An improvement to the map model is to use artificial neural networks and learning 

methods. These methods help us predicting the values. This helps us make the 
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estimation process faster and more accurate. Moreover with these methods data can 

be visualized and controlled so good that data can be interpreted easier and better. 

These methods benefit from neural networks. 

 

As an input that comes from the mobile phone is the longitude, latitude, cell identity 

and rscp values of the phone are taken and as output the longitude and 

latitude(location) of the base station is estimated. Neural networks are very helpful 

in achieving this aim. Once appropriate neural network is fed by appropriate data, 

if new data comes to trained artificial neural network, it can estimate the desired 

results. In this study artificial neural networks and supervised learning methods are 

used to find base location of mobile phones.  

As the first step, a project planning is made. The steps that have to be taken are 

determined. Time planning is made. According to this plan, project progresses. 

Firstly, Matlab is used for the project with artificial data, then the project is realized 

by Java with real values. Raw data can't be used for the experiments on the neural 

networks. Some redundant data should be stripped from the main data. Furthermore 

data should be normalized. The normalization and cleansing of the data is one of 

the steps. By normalization,meaningful data is obtained. 

Finding the best method for training is also a step.Firstly, the most suitable neural 

network has to be determined. Secondly, the most suitable training method has to 

be determined. The number of neurons in the input, output and hidden layers are 

determined. The optimum neuron numbers in the hidden layer will give best results. 

The most suitable transfer function in the hidden layers is important 

 

Solution by Supervised Learning Method 

1. Obtain data and data cleansing 
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For three different cell regions(dense urban, urban and rural) obtain data for the 

neighbour 10-20 cell information. After that, redundant and unnecessary data must 

be cleansed and finally, necessary and helpful data will be obtained 

2. Data Preprocessing 

Before we use the data in the program, data must be preprocessed. After the data is 

preprocessed, we can get better results easier. 

• For every cell, record and base station data is normalized. There are 3 

different methods. 

• Normalize according to cell’s lower right corner. 

• Normalize based on cell’s geometrical middle point. 

• Normalize based on cell’s gravity center. 

• Grouping : Cells form  training, validation and test sets. 

3. Realize algorithm by using Matlab 

An algorithm must be made if we want to train data in Matlab. Matlab codes are 

used to realize the algorithm which trains data. 

 

 

 

 

 

4. Realize algorithm by using Java 
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An algorithm must be made if we want to train data in Java. Encog libray and Java 

codes are used to realize the algorithm which trains data. 

5.Training and Results 

Final project stage is training. After enough trainings are made, results of the 

trainings will be discussed. 

 Dense urban training, urban training and rural training 

 Utilization of various artificial neural network topology. ( Neuron numbers in  

the hidden layer, hidden layer neuron numbers). 

Objective: To find results for the test set using back-propagation training for data 

whose base station is known. 

Input: Normalized longitude,latitude values. 

-    Output: Denormalized longitude,latitude values 
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Chapter 2 

Literature Review                                                                                                      

Overview of Geolocation methods 

In this chapter, literature review about the geolocation methods will be explained. These 

methods are about locating a place on earth. They have already been used before.  Each 

method has its own way to calculate the position of a place on earth. Each of them uses 

separate parameters to find location. After explaining theory of these methods, 

implementations of these methods are discussed. 

An Analysis of Base Station Location Accuracy                                                 

within Mobile-Cellular Networks 

Received Signal Strength Indication (RSSI) measurements 

RSSI  beneftis from the received signal strength and its relation between the distance from the 

base stations(BS) to the mobile station. Due to the complex propagation mechanisms accuracy 

of this method is decreased. This problem, which we refer to as localization, is a challenging 

one, and yet extremely crucial for many applications of very large networks of devices. Radio 

propagation models [5] in various environments have been well researched and have 

traditionally focused on predicting the average received signal strength at a given distance from 

the transmitter (large scale propagation models), as well as the variability of the signal strength 

in close spatial proximity to a location (small scale or fading models). 

 

Angle-of-Arrival (AOA) 

It locates the mobile by using the angle-of-arrival(AOA) of a signal from many Base 

Stations(BSs) from the mobile. A line of bearing between the and mobile estimates the AOA 

distance.  When multiple LOBs intersect, mobile position is estimated. 
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GPS (Global Positioning System) 

The  most accurate locationing metheod is GPS. It uses satellite signals and it provides accurate 

estimation. GPS solves the problem of localization in outdoor environmentsfor PC class nodes. 

But when signals are prevented, for example in indoors setting, Assisted GPS method needs 

hardware development. In addition new algorithms have greatly improved the accuracy and 

efficiency with which a cellphone can calculate its position [6], [7]. 

 

 

Time-of-arrival (TOA) 

The fourth category determines mobile location by measuring the time-of-arrival (TOA) which 

provides the estimate of the distance between the BS and the mobile since electromagnetic 

waves propagate at the speed of light[8]. In this method, the mobile location is determined by 

measuring the time-of-arrival(TOA). The distance between the BS and the mobile is estimated 

by using electromagnetic wave propagation speed. When multiple TOAs intersect, mobile 

location is estimated. The most simple technic for GSM to measure the TOA is “ time 

advance”(TA). TA measures run-trip time between the BS and the mobile. 

TDOA(Time Difference of Arrival) 

TDOA(Time Difference of Arrival), is another technique based on propagation delay time. It 

calculates the differences in TOAs of a mobile signal at multiple pairs of BSs. Each TDOA 

forms a hyperbolic curve in which mobile may lie. 

UL-TOA (Uplink TOA) and E-OTD (Enhanced ObservedTime Difference) are standard 

TDOA techniques  for GSM networks. NLOS propagation and time synchronization between 

stations are potential disadvantages for propagation-time-based techniques. 

Most feasible methods for location estimation of a cellphone within a mobile-cellular networks 

depends on the location of base stations(BSs) as known reference points for calculating the 

estimated position of the cellphone. The other techniques are WiFi,Bluetooth and augmented 

sensor networks. The accuracy of techniques depend on the technology,line-of-sight(LOS), and 

sensor network coverage. Assisted-GPS(A-GPS) uses mobile network information in 

combination with internal hardware of the cellphone. A-GPS uses network resources in the case 
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of poor signal reception. Location methods based primarily on mobile-cellular network 

information is popular. 

 

 

Cell identification (Cell ID) 

Cell identification (Cell ID) is the simplest location estimation method available, but also the 

least accurate[9]. A wedge shaped area, comprising roughly a third of the cell(for three sectored 

sites) is at best estimated. But if omnidirectional antennas in low-density single sector cells are 

used, entire circular area for sites can be included. 

 

 Round Trip Time (RTT) 

Round Trip Time(RTT) is a measure of the distance. It measures the time taken by a radio 

signal to travel from the base station to cellphone and back. It reduces drastically the estimated 

location area compared to the Cell ID method for the same site. 

Cell ID and RTT combine methods to provide an location estimation where these areas overlap 

Location Accuracy 

In addition to accuracy degrading, these challenges can also increase the cost of location 

estimation. These challenges are non-line-ofsight and multi-path propagation of radio waves, 

base station density(or lack of) and accuracy of base station locations. 

The methods of location estimation consist of two groups. The first group doesn’t depend on 

base station location and aren’t affected by the accuracy with which these locations are known. 

These methods are A-GPS, probabilistic fingerprinting,bulk map-matching and centroid 

algoritm. The second group has methods that estimate location of the cellphone relative to the 

base station location and depend on the accuracy of network base station location. This group 

includes Cell-ID based methods,Cell ID and RTT,The time of arrival(TOA) and its 

enhancements.  
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Location Tracking Approaches(Implementations) 

Location tracking and positioning systems are classified by the measurement techniques. These 

techniques are used to find the mobile device location(localization). Real Time Location 

Systems (RTLS)  are grouped into four categories. They find the position on the basis of the 

following: 

1. Cell of origin(nearest cell) 

2. Distance(lateration) 

3. Angle(angulation) 

4. Location patterning(pattern recognition) 

A RTLS designer can choose to implement one or more of the above techniques. 

Cell of Origin 

This method indicates the cell with which the mobile device is registered so it finds the position 

of the mobile device. Cell origin doesn’t need any complicated algorithm and thus its 

positioning performance is rapid. All cellular-based RF systems and cell-based WLANs can be 

easily and cost-effectively adapted to cell of origin positioning. This approach’s coarse 

granularity is a drawback. Some users who want more precise results also implement 

lateration,pattern recognition and angulation besides this technique for better results. Cell of 

origin figure is shown at Figure 2.1. 



 

9 
 

 

Figure 2.1: Cell of Origin 

Distance-Based (Lateration) Techniques 

Time of Arrival(ToA) systems measure the arrival time of a signal transmitted from a mobile 

device to several receiving sensors. Signals travel with a known velocity(approximately the 

speed of the light.)The ToA requires that  all receving sensors and the mobile device are 

synchronized with a precise time source. Distance can be thought as a radius of a circle area 

estimates the mobile location. Three sensors are implemented in ToA tri-lateration and this 

increases mobile location estimation accuracy. Three circular area of sensors give the estimated 

location . Large amount of multipath, interference, or noise creates error in ToA implemented 

positioning systems. The Global Positioning System (GPS) is a kind of ToA system. Timing is 

provided by atomic clocks precisely which is necessary in ToA systems. Figure 2.2 shows the 

mechanism. 
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Figure 2.2: Time of Arrival 

 

Time Difference of Arrival (TDoA) 

TDoA benefit from relative time measurement for each receiving sensor. Therefore TDoA 

doesn’t require a synchronized time source at the point of transmission as in the ToA systems.In 

TDoA systems only receivers need synchronization. 

TDoA systems are implemented based on a mathematical concept known as hyperbolic 

lateration. In this method, at least three time-synchronized receiving sensors are needed. ToA 

and TDoA are similar. Both of these techniques proved to be successful for large-scale outdoor 

positioning systems. Figure 2.3 shows the hyperbols 

  

Figure 2.3: Time Difference of Arrival 
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Received Signal Strength (RSS) 

Lateration can also be realized by using received signal strength(RSS) in place of time. RSS is 

calculated by either the mobile device or the receiving sensor.  With this technique mobile 

device or receiving sensor measures the RSS. Transmitter output power, cable losses,antenna 

gains and path loss model allows to solve for the distance between two stations. 

  

PL=PL1Meter+10log(d^n)+s 

PL means path loss between the receiver and sender in dB 

o • PL1Meter means the reference path loss in dB for the desired frequency when the 

receiver-to-transmitter distance is 1 meter.  

• d means the distance between the transmitter and receiver in meters. 

• n means the path loss exponent for the environment. 

• S shows the standart deviation related with the degree of shadow fading in dB. 

• Path loss(PL) is the difference between the transmitted signal level and the received 

signal level. Path loss shows signal attenuation level present in the environment that is caused 

by free space propagation,reflection,diffraction and scattering. 

RSS lateration techniques have a cost advantage because they don’t require any specialized 

hardware at the mobile device or network infrastructure locations 
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Angle-Based (Angulation) Techniques 

Angle of Arrival (AoA) 

The Angle of Arrival is also called Direction of Arrival. This method benefits from the angle 

of incidence at which receiving sensor takes the signal. Geometric relationships are used to 

determine location by using the intersection of two lines of bearing(LoBs) which is formed by 

a radial line to each receiving sensor. At least two receiving sensors are necessary but three or 

more receiving sensors increase accuracy.  

Directional antennas deployed at the receiving sensors are adjusted to the signal with highest 

signal strength. The positioning of the antennas determine the LoBs and measure the angles of 

incidence. 

 Multiple tower sites obtain the AoA of the cellular user’s signal and  use this info to perform 

tri-angulation. This info is converted to user location and latitude and longitude coordinates by 

the switching processors AoA works well with direct line of sight but its accuracy and precision 

decreases when confronted with signal reflections from objects. In practice this method requires 

expensive antenna arrays, which limit its feasibility despite its potential for high accuracy [9]. 

Figure 2.4 shows the angles. 

 

Figure 2.4: Angle of Arrival 
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Location Patterning (Pattern Recognition) Techniques 

Location patterning basically samples and records radio signal behavior patterns in specific 

environments.  A location patterning solution doesn’t require specialized hardware. Location 

patterning can be implemented fully in software therefore it reduces cost and complexity 

comparing to angulation or lateration systems. 

Location patterning techniques require two fundamental conditions 

• Each potential device location possesses a distinct and unique RF “signature”. 

• Each floor or subsection has unique signal propagation features. 

Generally location patterning solution benefit from received signal strength(RSSI), pattern 

recognition may benefit from ToA,AoA or TDoA-based RF signatures as well. Patterning 

based positioning system consist of two phases: 

• Calibration phase 

• Operation phase 

During the calibration phase a database of RF signals are created. And during the operational 

phase the RF signature of the tracked device are matched with the database. The radio maps or 

calibration databases which is used by pattern recognition method are very specific to the areas 

used in their creation and it isn’t suitable for re-use. The radio maps or calibration databases 

which is used by pattern recognition method are very specific to the areas used in their creation 

and it isn’t suitable for re-use. 
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Okumura Model 

The Okumura model is generally used in Urban Areas. It is a Radio propagation model. It is 

used for signal prediction. Its frequency range is 200Mhz-1900Mhz. Its distance range is 1km-

100km. Antenna heights whose ranges 30m-300m is effective for base station. Okumura model 

has a 10-14db standard deviation. Its the deviation between the path loss model which is 

predicted by the model and the real measured path loss. Correlation factors related to terrain 

are calculated to improve the model accuracy. 

Hata Model 

The Hata model is an empirical formulation of data given by the Okumura. It is valid between 

150-1500MHz. Hata model simplifies the path loss calculation since it has a closed form 

formula. Besides it doesn’t use empirical curves for the different parameters. 

Hata model doesn’t use any specific path correlation factors. The Hata model gives more 

accurate results for distances d>1km. Hata models don’t capture indoor environments. Hata 

model is good at first generation cellular systems but it doesn’t model propagation well in new 

cellular systems with smaller sizes and high frequencies. 

Okumura-Hata model (OH) [13] : 

 path_loss=158.3-13.82log(HBT )+(44.9-6.55log(HBT))log(d) 

Where (H
BT) is BS antenna height. ∆Hb is difference between BS antenna height and MS height 

(1.5m) and (d) is the BS-MS distance[14]. 
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                                                            CHAPTER 3 

                                              Overview of Neural Networks     

In this chapter, artificial neural networks and training will be explained. This is the theory part 

of the project. Various neural network types are discussed. Besides, various learning methods 

are discussed. Furthermore,various training methods are discussed. The details of 

training,test,train validation sets and improving results are discussed for an optimal neural 

network training. 

 Artificial Neural Networks 

In computer science artificial neural networks are computational models that resemble animals’ 

biological central nervous system. Scientists who examined the central nervous systems 

inspired from them. Basically a class of statistical model which consist of set of adaptive 

weights, a learning algorithm with numerical parameters and which can approximate a function 

of their inputs can be called artificial neural network. Learning updates the weights.An 

activation function converts input to output. In artificial neural networks simple artificial nodes 

are called “neurons”,”units” or processing elements.The adaptive weights are used in training 

and prediction phases. They are connection strengths between neurons. 

 

 

Learning paradigms 

There are  three major learning paradigms. 

1-Supervised learning  

2-Unsupervised learning 

3-Reinforcement learning 
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Supervised learning 

In supervised learning we have to infer the mapping from a given function, using the implied 

data. 

As the name suggests, we have prior knowledge from the labeled data about the problem 

domain. 

Basically we have to find a function from a given set of example pairs(x,y) to find f:X-> Y 

matching examples. Difference between our mapping and the data gives us the cost function. 

Some of application areas of supervised learning are pattern recognition(classification) and 

regression(function approximation). We use previous solutions as feedback in supervised 

learning. 

.  

Training:Basically, neural network’s function is to predict an output pattern when an input 

pattern is given. After a neural network is trained, it is able to recognize similarities when it is 

presented with a new input pattern. Therefore it results in a predicted output pattern. 

Clustering:Clustering algorithm finds resemblances between patterns and puts similar patterns 

in its cluster. 

  Pattern recognition(Classification): When an input pattern is given, it is assigned to a class 

between some classes. This task is called pattern recognition. 

Function approximation:Function approximation creates an estimate of the unknown 

function f() subject to noise. 

Prediction/Dynamical Systems: When a time-sequenced data is given, some future values are 

estimated. This task is called prediction. Prediction is used widely in decision support systems 

and datawarehouses. The difference between prediction and function approximation is time 

factor. Prediction is a dynamical system and gives different results for the same input data but 

different system state(time). 

Learning rate: The learning rate is value between 0 and 1. Weight adjusments size is 

controlled by it. Learning process speed is affected by it. In addition, precision rate of network 

is affected by it. 
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Difference between supervised learning and unsupervised learning: In supervised training, 

inputs and outputs are given. The network uses the inputs and compares its results with the 

desired outputs. Errors are calculated and according to this, the system adjusts the weights 

which control the network. This process is repeated many times and weights are changed. 

In unsupervised training the inputs are given to the network but outputs aren’t given to the 

network. The system itself decides the features which is needed to group the input data. This is 

called self-organization(adaption). For example learning process is usually unsupervised. 

Supervised Learning 

In supervised learning a labeled training set is given. The class of inputs is provided and known. 

Unsupervised Learning 

In unsupervised learning a set of patterns are given from n-dimensional space. But no/little 

information about their classification and evaluation is given 

 

 

Tasks: 

Vector Quantization: N-dimensional space S is divided into a small set of regions.(It is also 

useful in clustering pattern sets.) 

Feature extraction: Feature extraction reduces the dimensionality of n-dimensional space S 

by removing unimportant features that don’t help clustering 

Bias: Two different kind of parameters are modified during ANN training, the weights and 
the t values.  “t” parameter is the amount of incoming pulses that is needed to activate a real 
neuron. This is not practical and it would be easier if only one parameter is modified. Bias 
neuron is invented to solve this problem. 

 

 

Perceptrons 
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Perceptron has many definitions but one of the simplest is this “A single layer 

network which produces a correct target vector when presented with the input 

vector.” [14]. This single layer does this training by changing the weights and biases 

of the network. 

The training technique for the perceptrons is perceptron learning rule. 

The perceptron contains a single layer. It is connected to R inputs with a set of 

weights. A perceptron is created with the newp function. net = newp(P,T) 

The network includes zero weights and biases. If you want different weights and 

biases with values other than zero, you have to create them with command 

manually. 

Set the two weights and the one bias to -1, 1, and 1 

net.IW{1,1}= [-1 1];     net.b{1} = [1]; 

Now use init to reset the weights and bias to their original values: 

net = init(net); 

A learning rule means a procedure to modify the weights and biases of a network. 

It is also called training. Learning rule is applied to network to do a specific task. 

If epochs is set to 1,  train goes through the input vectors  1 time. 

To set the parameter  

 time. net.trainParam.epochs = 1; 

net = train(net,p,t); 

The outputs aren’t equal to the targets yet, so the network needs to be trained for 

more than one pass. More epochs are needed to find more accurate results.  

net.trainParam.epochs = 1000; 

The default training function for networks created with newp is trainc. This fact can 

be verified by executing  net.trainFcn (Youcan find this by executing net.trainFcn.) 
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Perceptron networks are generally trained with adapt function. Adapt function 

presents the input vectors to the network one at a time. After that corrections and 

adjusments are made to the network by the result of each input vector prestentation. 

In this way, it is guaranteed that any linearly separable problem is solved in  finite 

steps training presentations.  

 

Backpropagation  

                 Back propagation is the most widely used algorithm for supervised learning with            
multi-layered feed-forward networks[15]. The basic idea of the back propagation learning 
algorithm [16] is the repeated application of the chain rule to compute the influence of each 
weight in the network with respect to an arbitrary error function E:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

𝜕𝜕𝑠𝑠𝑖𝑖
𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖

𝜕𝜕𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

 

  

 

wij represents the weight from neuron j to neuron i, s; is the output, and neti represents the 
weighted sum of the inputs of neuron i. 

 

 Once the partial derivative for each weight is known, the aim of minimizing the error function 
is achieved by performing a simple gradient descent: 

𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑡𝑡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑡𝑡) 

Backpropagation means backward propagation of errors. This is a training method used with 
gradient descent optimization method. The aim of the method is to calculate the gradient of a 
loss function according to the weights in the network. The gradient is used by the optimization 
method and optimization method uses it to update the weights. 

Typically  a network is given input and output. This way network learns . And if a new input is 
given it will produce output that is similar to the learnt correct output. 

Neurons use a differentiable transfer function f to generate their output. Firstly, a feedforward 
network is created. . The third argument is an array containing the sizes of each hidden layer. 

In matlab net = newff(houseInputs,houseTargets,20); does this job. 
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While two-layer feed-forward networks can be trained and can learn  almost any input-output 
relationship, feed-forward networks with more layers might learn complex relationships more 
quickly. 

The weights and biases of the network are adjusted so that the error is minimized. This 
performance error function is net.performFcn in matlab. If any performance function isn’t 
specified, default function for it is mean square error(The average squared error between the 
network outputs a and the target outputs t) “mse” in matlab 

During training the weights and biases of the network are iteratively adjusted to minimize the 
network performance function net.performFcn. The default performance function for 
feedforward networks is mean square error mse—the average squared error between the 
network outputs a and the target outputs t. net = newff(p,t,3,{},'traingd'); 

More optional arguments can be provided for the feedforward backpropagation method in the 
matlab. For instance, the fourth argument represents a cell array which contains the names of 
the transfer functions to be used in each layer. The fifth argument represents the name of the 

 training function to be used. If only three arguments are supplied, the default transfer function 
of  hidden layers is tansig and the default for the output layer is purelin. The default training 
function is trainlm. 

net = newff(p,t,3,{},'trainrp'); 

net = newff(houseInputs,houseTargets,20); 

net = train(net,p,t);  

 

 

 

 

Training,Validation,Test Datasets 

In multilayer networks, firstly the data is divided into three subsets. The first subset 

is training subset. In training subset the gradient is computed and the network 

weights and biases are updated.  

The second subset is the validation subset. The error on the validation set decreases 

during training phase with training set error. When network overfits the data, 
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validation set error starts to rise. At minimum validation set error the network 

weights and biases are saved. 

The test set error is used for comparing different models. It is used when plotting 

the test set error during training. 

In matlab four functions are used to divide data into training,validation and test sets. 

These are dividerand(the default),divideblock,divideint and divideind. 

Training Set 

The training dataset  trains or builds a model. For instance, in a linear regression 

model the training dataset fits the linear regression model. Besides it is used to 

obtain regression coefficients. The training dataset finds the network weights in a 

neural network model. 

Validation Set 

After a model is built based on the training data,  the accuracy of the model on 

unseen data is needed. Therefore data needs to be used on a dataset that wasn't used 

in the training process(This dataset has the actual value of the target variable) The 

small difference between the actual value and the predicted value of the target 

variable is the error in prediction. Some form of average error(for example MSE ) 

measures the overall accuracy. 

 

The training data itself can't be used to compute the accuracy of model fit becuase 

model fit process ensures the training data is very accurate and therefore very 

optimistic estimates are obtained.So a part of the original data needs to be 

partitioned for realistic estimate with unseen data. This dataset is called validation 

dataset. After the model is fit on the traing dataset, its performance on the validation 

dataset is measured. 

 

Test Set 
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The validation dataset is used in fine-tuning of models. It can be used in various 

architectures. When finally a model is chosen after comparisons of architectures it 

may still give optimistic estimates because the final model is winner among the 

other models based on the validation dataset accuracy. 

A portion of the original data that is neither used in training nor in the validation 

phase is set aside. This dataset is called test dataset. 

The most realistic performance estimate of the model on completely unseen data is 

on the test data set. 

Improving Results 

After training the network, if it isn't accurate enough, the network can be initialized 

and it can be trained again. Each time a feedforward network is initialized, the 

network parameters change and it may produce different solutions. 

This can be done in matlab by using init command. 

net = init(net); 

net = train(net,houseInputs,houseTargets); 

Secondly ,the hidden neuron number can be increased above 20. Larger neuron 

number gives the network more flexibility. Because the network can optimize more 

parameters. However too large hidden layers can optimize more parameters than 

data vectors which constrain these parameters. 

Thirdly, a different training function can be used. For example Bayesian 

regularization training with trainbr sometimes produces better results than early 

stopping. 

Eventually, using additional training data is good for better training. Feeding 

network with additional data produces a network that generalizes better to new 

data.[17] 

 

Posttraining Analysis (regression)  
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The R value indicates the relationship between the outputs and targets. If R=1, this 

is the indication that outputs and targets have exact linear relationships. If R is close 

to zero this means there is no linear relationships between outputs and targets. 

After training the network the performance  can be measured by the errors on the 

training, validation and test sets. However sometimes investigating the network 

response in more detail is needed. A good approach is a regression analysis between 

the network outputs and the corresponding targets. The regression method is 

designed to perform this analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Training Algorithm   Problem Solution Class Network Size 

Levenberg-Marquardt trainlm function approximation 
medium 
networks 
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BFGS Quasi-Newton trainbfg function approximation 
medium 
networks 

Resilient Backpropagation trainrp pattern recognition 
large 
networks 

Scaled Conjugate Gradient trainscg 

pattern 
recognition,function 
approximation 

large 
networks 

Conjugate Gradient with 
Powell/Beale Restarts traincgb 

pattern 
recognition,function 
approximation 

large 
networks 

Fletcher-Powell Conjugate 
Gradient traincgf 

pattern 
recognition,function 
approximation 

large 
networks 

Polak-Ribiére Conjugate 
Gradient traincgp 

pattern 
recognition,function 
approximation 

large 
networks 

One Step Secant trainoss function approximation 
large 
networks 

Variable Learning Rate 
Backpropagation traingdx 

pattern 
recognition,function 
approximation 

medium 
networks 

Table 3.1: Training algorithms comparison  

Table 3.1 compares various training algorithms. Each training algorithm is good at 

solving its specific problem type or types. Besides, abbreviations of training 

algorithms are given. Furthermore, each training algorithm is good at specific 

network size. These attributes are listed and compared at the table. 

 

 

 

 

 Training Algorithm   Performance Storage Computation Special 
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Levenberg-Marquardt trainlm Very High High Cheap 

Jacobian 
matrix(easier than 
Hessian) 

BFGS Quasi-Newton trainbfg High High Expensive 

Second 
derivative(Hessian 
matrix) 

Resilient 
Backpropagation trainrp Medium Medium   

weights change 
by derivative sign 

Scaled Conjugate 
Gradient trainscg High Low Cheap No line search 

Conjugate Gradient 
with Powell/Beale 
Restarts traincgb High Medium Medium 

Less reset points 
for the direction 
of gradient 

Fletcher-Powell 
Conjugate Gradient traincgf High Low Medium 

conjugate search 
direction  

Polak-Ribiére 
Conjugate Gradient traincgp High Low Medium 

conjugate search 
direction  

One Step Secant trainoss Medium Medium Medium 

Compromise 
function between 
BFSG and 
conjugate 
gradient  

Variable Learning Rate 
Backpropagation traingdx Medium Medium Cheap 

adaptive learning 
rate 

Table 3.2: Training algorithms performances   

Table 3.2 lists and compares various training algorithms according to their 

performance, storage, computation and its special training method. Besides, 

abbreviations of training algorithms are given. Performance, storage and 

computation are important attributes in training. A training algorithm can be good 

in one attribute but it can be medium or poor in other attributes. User can decide a 

training algorithm according to his needs. “Special” column is specific method to 

related training algorithm.  
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CHAPTER 4 

DATA COLLECTION 

In the project, firstly raw data was studied. This raw data contained a lot of 

redundant information. Meaningful patterns had to be specified and an algorithm 

for this data had to be made. This algorithm aims to extract meaningful information 

from raw data. After that java parser code implements and realizes this solution. 

After that this meaningful data is analyzed in excel and access. Necessary 

normalizations are made and a training data is created. 

Secondly, artificial data was studied. Artificial data is created by Dr. Selçuk 

Öğrenci. Real data is simulated and noise is added therefore artificial data is created. 

This simulated data was similar to real data. This data contains user location 

coordinates and rscp values. Rscp values indicate the signal strength between phone 

and base station. Experiments are made with this data on Matlab program and java 

encog library. Encog library is an open source machine learning library that 

contains training methods. 

Finally, real data that comes from user mobile phones was studied. This data is 

collected by a mobile program. This program starts to collect user data as user 

presses “start” button. It finishes collecting data when the user presses “finish” 

button. A person has to go around certain locations to collect the user data at this 

location. This data was gathered by Dr. Selçuk Öğrenci. He wandered around 

certain locations with mobile phone and gathered user data. Later, programmer 

Ramazan Cengiz gathered user data by going around certain locations for additional 

data. This is real data and outputs    are real values and locations. Experiments were 

made with this data on Matlab and Encog. This data contained data from 60-70 base 

stations. It contained tens of thousands of lines of data. Data was reduced to 20-30 

base stations and data lines were reduced to hundreds of lines. This was realized by 

queries and analysis on excel and access. Finally, 21 training and 5 test sets were 

created.  
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Database code 

In  the project information for each cell was required. This information was 

concerned about cell normalization. This info has to show the estimated cell identity 

according to three normalization types(Gravity center coordinate,Geometric center 

coordinate, Minimum left point coordinate). In addition normalized 

coordinates(latitude,longitude values) has to be shown in the information 

document. 

 In the gravity center normalization gravity center of the cell is accepted as cell 

center  and other points’ relative distance to center is calculated as its normalized 

value. In the geometric center normalization, geometric center of the cell is accepted 

as base station and other points’ relative distance to center is calculated as its 

normalized value. In the min normalization, minimum coordinates of the cell is 

accepted as base station and other points’ relative distance to center is calculated as 

its normalize value. 

So, a cell id and all coordinate points belonging to this cell id needs to be collected. 

After these values are collected, gravity center of it is calculated,then geometric 

point of the cell and min,max points of the cell are calculated. After that process 

each cell id(base staion) has its own geometric center,gravity center and min,max 

points. Later on, the coordinates(longitude,latitude values) that belong to specific 

cells are normalized(the distance to center is calculated) so that they have new 

normalized values. This process makes the job easier in the training process.   

 

 

 

 

 

ALGORITHM  
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1- Main data table named “tabela” is imported into Access database. This table 

contains “OMA specified longitude,latitude values” and their distances in km to 

(0,0)point in the map. X distances, Y distances and direct distances are held in this 

table. 

 

2- By running query1 on table “tabela” ,a table named “QTABLO1” is formed. 

This table contains detailed data. Each cell’s longitude and latitude values are held 

in this table. 

 

3- By running query2 on table “tabela” ,a table named “QTABLO2” is formed. 

This table contains summary main data. Each cell’s avg,min,max,geo values are 

held in this table 

 

4- By running NormalizeQuery each longitude,latitude with its normalized 

values are obtained. This query includes a relationship between QTABLO1 and 

QTABLO2. By using inner join ” FROM QTABLO22 INNER JOIN QTABLO11 

ON  QTABLO22.UC=QTABLO11.UC;”   Foreign key,primary key relationship is 

done. 
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NormalizeQuery 
SELECT QTABLO22.UC AS QTABLO22_UC, 
 QTABLO11.LATIY AS LATI, 
 LATI-QTABLO22.avglat AS ["normlatavg"],  
LATI-QTABLO22.geolat AS ["normlatgeo"], 
 LATI-QTABLO22.minlat AS ["normlatmin"], 
 QTABLO22.minlat, QTABLO22.avglat,  
QTABLO22.geolat, QTABLO22.maxlat, 
 QTABLO11.LONGIX AS LONGI,  
LONGI-QTABLO22.avglon AS ["normlonavg"], 
 LONGI-QTABLO22.geolon AS ["normlongeo"],  
LONGI-QTABLO22.minlon AS ["normlntmin"], 
 QTABLO22.minlon,  
QTABLO22.avglon, 
 QTABLO22.geolon,  
QTABLO22.maxlon 
FROM QTABLO22 INNER JOIN QTABLO11 ON QTABLO22.UC=QTABLO11.UC; 

QUERY1(Detail table) 
SELECT tabela.UC,  
tabela.LATIY, 
 tabela.LONGIX,  
Count(tabela.UC) AS totalcell, 
 Min(tabela.LATIY) AS minlat, 
 Avg(tabela.LATIY) AS avglat,  
(minlat+maxlat)/2 AS geolat, 
 Max(tabela.LATIY) AS maxlat,  
Min(tabela.LONGIX) AS minlon,  
Avg(tabela.LONGIX) AS avglon, 
 ((minlon+maxlon)/2) AS geolon, 
 Max(tabela.LONGIX) AS maxlon INTO QTABLO11 
FROM tabela 
WHERE (((tabela.UC) Is Not Null) AND ((tabela.LATITUDE) Is Not Null) AND ((tabela.LATITUDE) Is Not Null)) 
GROUP BY tabela.UC, tabela.LATIY, tabela.LONGIX; 
QUERY2(Main table) 
SELECT tabela.UC, Count(tabela.UC) AS totalcell,  
Min(tabela.LATIY) AS minlat, 
 Round(Avg(tabela.LATIY),2) AS avglat, 
 (minlat+maxlat)/2 AS geolat,  
Max(tabela.LATIY) AS maxlat,  
Min(tabela.LONGIX) AS minlon,  
Round(Avg(tabela.LONGIX),2) AS avglon, 
 ((minlon+maxlon)/2) AS geolon, 
 Max(tabela.LONGIX) AS maxlon INTO QTABLO22 
FROM tabela 
WHERE (((tabela.UC) Is Not Null) AND ((tabela.LATITUDE) Is Not Null) AND ((tabela.LONGITUDE) Is Not Null)) 
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Figure 4.1 : Database queries of data 
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MOBILE PHONE DATA COLLECT SOURCE CODE 

  

 

 

public void run()     //Create TelephonyManager Object 
     //GsmCellLocation gsmLoc = (GsmCellLocation) 
tm.getCellLocation(); 
     //Log.d("ramco", gsmLoc.getCid() + ""); 
 List<CellInfo> gcis = tm.getAllCellInfo(); 
  File dir = Environment.getExternalStorageDirectory(); 
  Calendar calendar = Calendar.getInstance(); 
  SimpleDateFormat sdf = new SimpleDateFormat("dd-MM-yyyy"); 
    if(gcis != null){ 
    for(CellInfo ci : gcis){ 
     String logStr = ""; 
  if(ci instanceof CellInfoGsm){ 
  //Log.d("GSM", "GSM_INFO"); 
 //Log to GSM file 
 fileName = "gsmData_"+sdf.format(calendar.getTime())+".csv"; 
   File logFile = new File(dir, fileName); 
    CellInfoGsm cgi = (CellInfoGsm)ci; 
     int rssi = cgi.getCellSignalStrength().getDbm(); 
     long timestamp = cgi.getTimeStamp(); 
      int lac = cgi.getCellIdentity().getLac(); 
      int cid = cgi.getCellIdentity().getCid(); 
     int mnc = cgi.getCellIdentity().getMnc(); 
     int mcc = cgi.getCellIdentity().getMcc(); 
Above, mobile phone method code can be seen. Its "run" method is seen. Using the related 
library, cgi object is created. In cgi object, all necessary info about cell location is stored. These 
info is extracted and put into variables by using related methods such as 
getMNC,getCid,getMCC. 
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super.onCreate(savedInstanceState); 
  setContentView(R.layout.activity_main); 
  //initialize & instantiate objects 
  state = false; 
  startBtn = (Button) findViewById(R.id.startBtn); 
  stopBtn = (Button) findViewById(R.id.stopBtn); 
  secText = (EditText) findViewById(R.id.sec); 
  
  locationManager = (LocationManager)getSystemService(LOCATION_SERVICE); 
  locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, this); 
 
  tm = (TelephonyManager)getSystemService(TELEPHONY_SERVICE); 
  startBtn.setOnClickListener(new OnClickListener() { 
   
   @Override 
   public void onClick(View arg0) { 
    int ms; 
    timer = new Timer(); 
    if(secText.getText() == null || 
secText.getText().toString().equalsIgnoreCase("")) 
     ms = 3000; 
 

 

Above, mobile phone code is seen. In this method GUI of the program is designed. GUI 
items, buttons and texts are assigned to program variables. Besides a timer object is created to 
specify the data collection time. 
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Raw Data 

 Figure 4.2: Raw data 

This raw data is unprocessed data that is collected by the mobile phone. It is shown at figure 
4.2.This data needs to be adjusted in order to be used by the program. Redundant data should 
be eliminated. Besides, necessary base locations need to be added for training. And 
normalized values have to be computed . 
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Processed Data 

 

Figure 4.3: Processed data 

This data is intermediate processed data. It is shown at figure 4.3. Average user x and average 
user y locations need to be found. According to these average values, normalization is made. 
This normalized values are small and more suitable for training. In addition, base x and base y 
locations need to be found. This is necessary for supervised learning and training data. 
Interval x and interval y helps us to eliminate redundant and repeated data. 0 means the 
distance values are the same and redundant and isn't needed for training. 
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Final Train Data 

  

Figure 4.4: Final Train Data 

This is final train data. Only useful data is stored in the file. It is shown at figure 4.4. This 
final data is ready for use for the program. The values found in the processed data are divided 
by 1000 to evaluate in km and to be run in java.Normalized x and y distances of the users are 
found. Average x and average y data is used to find denormalized locations.  
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User Locations and Base Stations Distributions 

Below, there are tables. These tables show the cell area and shape. Information about user x 
coordinates distribution, user y distribution, cell type(small or large) and the ratio of x and y 
are shown.  The Cellids are also listed. There are 4 cell types. Their distribution determines 
their type. If distribution is in a small area, it is small, if user coordinates are distributed 
around a large area its type is large and so on.  

 

Cells   CellId dx dy alan tip dx/dy 
Cell21 40143 0,21 0,13 0,0273 small 1,6 
Cell26 53665 0,17 0,18 0,0306 small 0,9 
Cell14 25627 0,27 0,13 0,0351 small 2,1 
Cell6 29515 0,29 0,15 0,0435 small 1,9 
Cell10 35610 0,29 0,16 0,0464 small 1,8 
Cell15 29554 0,3 0,16 0,048 small 1,9 
Cell23 40149 0,24 0,21 0,0504 small 1,1 
Cell11 37442 0,78 0,07 0,0546 thin 11,1 
Cell1 6700 0,21 0,33 0,0693 small 0,6 
Cell7 32430 0,21 0,33 0,0693 small 0,6 
Cell22 40144 0,29 0,25 0,0725 small 1,2 
Cell8 32571 0,42 0,21 0,0882 small 2,0 
Cell17 32431 0,98 0,09 0,0882 thin 10,9 
Cell5 26297 0,37 0,27 0,0999 small 1,4 

 

Cell25 43079 0,34 0,47 0,1598 mid 0,7 
Cell19 37443 0,52 0,32 0,1664 mid 1,6 
Cell13 25625 0,58 0,34 0,1972 mid 1,7 
Cell12 6701 0,5 0,41 0,205 mid 1,2 
Cell16 29555 0,47 0,57 0,2679 mid 0,8 
Cell3 17611 1,1 0,27 0,297 large 4,1 
Cell4 25617 0,86 0,37 0,3182 large 2,3 
Cell24 43078 0,7 0,46 0,322 large 1,5 
Cell2 11749 1,11 0,42 0,4662 large 2,6 
Cell18 35053 0,86 0,7 0,602 large 1,2 
Cell9 35050 0,84 0,94 0,7896 large 0,9 
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Figure 4.5:Cell 6700 map

Figure 4.6:Cell 29515 map

Figure 4.7:Cell 40143 map

Figure 4.8: Cell 37442 map
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Figure 4.9: Cell 53665 map

Figure 4.10: Cell 35610 map

Figure 4.11: Cell 43078 map 

 

Above in 4.5 - 4.11 figures user x-y and base station x-y distributions are listed and shown on 
the map. Red rectangle sign shows base station and kites are distributed user locations. 
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CHAPTER 5 

Algorithms and Source Code 

Project Flowchart 

 

 

Figure 5.1: Flowchart for two outputs 



 

40 
 

               

Figure 5.2: Neural network topology for two outputs 

 

 

Figure 5.3: Flowchart for one output 
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Figure 5.4:  Neural network topology for one output 

    

   Flowcharts and neural network topology of the project is shown in the figures 

above. These figures explain the project flowchart simply and visually. 

 Figure 5.1 explains the flowchart for the 3 input 2 output network topology. It 

explains which methods will run if the user chooses 3 input 2 output network 

topology in its order.  Neural network topology is represented in figure 5.2 

visually. It briefly shows what inputs, hidden layer and outputs are taken. 

Figure 5.1 explains the flowchart for the 3 input 2 output network topology. It 

explains which methods will run if the user chooses 3 input 2 output network 

topology in its order.  Neural network topology is represented in figure 5.2 

visually. It briefly shows what inputs, hidden layer and outputs are taken. 

Below methods of the project are explained. These methods are in the flowcharts. 

These methods benefit from open source library "Encog Library". Encog is a jar file 

that contains machine learning methods. Encog library is included in the java 

project to use its methods in source code. For example, if we want to create a 

network, we can call it by typing network1 = new BasicNetwork();.eThis creates a 

ready network from encog library. Furthermore, if we want to use a training method 
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it is enough to type LevenbergMarquardtTraining train = new 

LevenbergMarquardtTraining(network1, trainingSet);  

 

 

 

 

 

 

 

 

 

 

Dosyeokuma Project 

Readdgertrain method 

This method’s function is to take raw data and transform it into processed data. This 

raw data contains cellid,userx,usery,rscp,srcm,basex and basey. Basex and basey 

are prepared by user in excel or other programs. This raw data is prepared by user 

from cellphone data in excel other programs. After being prepared as comma 

seperated file. Program takes values from the file using comma as delimiter. 

valus=line.split(","); 

    for(int i=0; i<valus.length; i++){ 

        cellId=valus[0]; 

        outputx=valus[1]; 
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        outputy=valus[2]; 

        rscp=valus[3]; 

        srcm=valus[4]; 

        basex=valus[5]; 

        basey=valus[6]; 

    } 

 This processed data is put into a multidimensional array. Raw data contains 

longitude and latitude values in degree values. But we need meter values in order 

to train it. Therefore program makes a calculation and gives the point’s distance to 

(0,0) point at ecuador.  Program parses the data and turns into numeric values in 

order to use the data. 

longi= ((Double.parseDouble(outputx))) ; 

    late=((Double.parseDouble(outputy))) ; 

    baseym=(Double.parseDouble(basey)); 

    baseym2=baseym*111; 

    basexm=(Double.parseDouble(basex));   

          latee=(late*111); 

          longii=longi*111.195; 

          basexm2=basexm*111.195; 

Program puts data into multidimensional array 

xl1[ind][0]= Double.valueOf(cellId); 

                    xl1[ind][1]  = longii; 

                    xl1[ind][2]= latee; 

                    xl1[ind][3]= Double.valueOf(rscp); 
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                    xl1[ind][4]=Double.valueOf(outputx); 

                    xl1[ind][5]=Double.valueOf(outputy); 

                    xl1[ind][6]=Double.valueOf(srcm); 

                    xl1[ind][7]=basexm2; 

                    xl1[ind][8]=baseym2; 

 

 

 

Arfillgertrain method 

This method’s function is to create an ordered multidimensional array. It continues 

the work that readdgertrain method started. It takes the array that readdgertrain 

method created and as output it makes it ordered according to cellids. And when 

doing this job it benefits from a basic algorithm. If it takes a cellid value, it scans 

the multidimensional array from beginning to end and signs them as false so that it 

doesn’t put it into unique cellid array. At the same time multidimensional array 

becomes ordered. 

for (int i = 0; i < xl1.length; i++) { 

                  

              flag= xl1[i][0];  

               

              if(barray[i]==true){ 

              z1[unind]=xl1[i][0]; 

              unind++; 

              } 
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//A cell-id value is read from the array and it is compared with other values 

//in the array. If it matches,this values are put into another array 

// In addition boarray with this index is marked as false 

//Two for loops are used to go through arrays 

//An array is required for unique cell ids               

              for (int j = 0; j < xl1.length; j++) { 

                  if(flag==xl1[j][0]&&barray[j]!=false){ 

                      yl1[indx][0]=xl1[j][0]; 

                      yl1[indx][1]=xl1[j][1]; 

                      yl1[indx][2]=xl1[j][2]; 

                      yl1[indx][3]=xl1[j][3]; 

                      yl1[indx][4]=xl1[j][4]; 

                      yl1[indx][5]=xl1[j][5]; 

                      yl1[indx][6]=xl1[j][6]; 

                      yl1[indx][7]=xl1[j][7]; 

                      yl1[indx][8]=xl1[j][8]; 

                      barray[j]=false; 

                   indx++;    

                  } 

              } 

               

               

             } 
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Objefillgertrain method 

This method’s function is to create cell objects. These cell objects each have an 

unique cell id and in addition it has its own cell’s user longitude,latitude and rscp 

values. In short it has everthing necessary and important for the cell. It makes this 

according to a basic algorithm. It takes the unique cellid array and ordered 

multidimensional array. It traverses multidimensional array by cellids and takes all 

data related to that cell. Then it puts this data to a cell object. All necessary and 

important data is stored in that cell object. After an object is finished, it goes to next 

cell object that is in the object array. 

  for (int i = 0; i < xl1.length; i++) { 

               myindex=0; 

                

               while(xl1[i]==yl1[index][0]&&xl1[i]!=0){ 

                    

                   obje1[i].cellId=yl1[index][0]; 

                   obje1[i].longitude[myindex]=yl1[index][1]; 
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                   obje1[i].latitude[myindex]=yl1[index][2]; 

                   obje1[i].rscp[myindex]=yl1[index][3]; 

                   obje1[i].longer[myindex]=yl1[index][4]; 

                    obje1[i].latger[myindex]=yl1[index][5]; 

                   obje1[i].Scrm[myindex]=yl1[index][6]; 

                   obje1[i].basex[myindex]=yl1[index][7]; 

                   obje1[i].basey[myindex]=yl1[index][8]; 

                   myindex++; 

                   index++; 

                   if(xl1[i]==0) 

                       break; 

                   if(myindex>obje1[i].longitude.length) 

                       break; 

                   if(index>yl1.length) 

                  break;  

               } } 

               

 

Pretare method 

    public static void  pretare (String path,double[][]input,double[][]target,double[]cellIdar,            

double[]lngavg, double[]latavg)  

Pretare method takes 6 parameters as input. “String path” variable takes the file path of the 
file which is read.”double[][]input” is entered by program as a blank array. After the function 
processes this array, it is filled with x,y and rscp values.” double[][]target “variable is entered 
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by program as a blank array. After the function processes this array, it is filled with base x and 
base y values. “double[]cellIdar” variable is entered by program as a blank array. After the 
function processes this array, it is filled with cell-id list.” double[]lngavg” is a blank array 
entered by program. After the function processes this array, it is filled average longitude value 
of a specific cell.” double[]latavg” is a blank array entered by program. After the function 
processes this array, it is filled average latitude value of a specific cell.Algorithm logic is 
similar in pretare1inp method. 

GUI class or main class that called myproject class’ pretare method uses static arrays for use 
in method. These filled in static arrays are then used for other methods. Pretare method takes 
three arrays and one string as arguments. String path specifies the location of the file that will 
be read.  A line is read,then it is divided into pieces by a delimiter. Zero index piece becomes 
the cell id of the data,first will be x coordinate of user, second will be y coordinate of user, 
third will be rscp value of the user gsm.  Fourth will be the x coordinate of the base station 
and fifth will be the y coordinate of the base station. 

valus=line.split(";"); 

    for(int i=0; i<valus.length; i++){ 

        

     cell=valus[0]; 

        outputx=valus[1]; 

        outputy=valus[2]; 

        rscp=valus[3]; 

        desiredx=valus[4]; 

        desiredy=valus[5]; 

    } 

 

Zero index data piece will be put into cellid array. This cellid array will not be used for 

training but will be used for report later. First, second and third values will be put into 

multidimensional input array. Fourth and fifth data pieces will be used for multidimensional 

target array. Input and target arrays will be used for training and testing. They are also 

needed in reports as well. Pieces are strings. By DoubleValueOf method they’re converted 

to double values. There is an algorithm that distinguishes distinct cellid values.  
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If the cellid value is same with the previous value,it doesn’t fill in the array with the same 

cellid values. 

if(ind>0&&cellIdar[ind]!=cellIdar[ind-1]) 

                    cellIdar[ind]=Double.valueOf(cell);//Check if the previous cellid is 

same 

Pretare1inp method 

            public static  void pretare1inp(String path,double[][]xl1,double[][]yl1) 

Pretare1inp method takes 3 parameters as input. “String path” variable takes the file path of 

the file which is read.”double[][]xl1” is entered by program as a blank array. After the 

function processes this array, it is filled with x,y and rscp values.” double[][]yl1 “variable is 

entered by program as a blank array. After the function processes this array, it is filled with 

base x and base y values. 

Train and Test program methods 

Treynger method 

public static void treynger(double[][]traininput, 
double[][]traintarget,double[][]testinput,double[][]testtarget,int 
hlayerneur,double[]cellIdar,double[]lngavg,double[]latavg,double[]celltrainIdar) 

Treynger method takes 9 parameters as input.” double[][]traininput” variable is an array that 
pretare method prepared for treynger method. This array contains values for the training input. 
“double[][]traintarget” variable is an array that pretare method prepared for treynger method. 
This array contains values for the training target.” double[][]testinput” is an array that pretare 
method prepared for treynger method. This array contains values for test input. 
“double[][]testtarget” is an array that pretare method prepared for treynger method. This array 
contains values for test target. In fact test target can be entered as “0” by user. But when 
measuring performance of the program it is needed. “int hlayerneur” variable is entered by user 
in the GUI interface. It represents the hidden layer neuron number.” double[]cellIdar “ variable 
is an array that pretare method prepared for treynger method. This array contains cell-id list of 
test arrays. ”double[]celltrainIdar” variable is an array that pretare method prepared for treynger 
method. This array contains cell-id list of train arrays.” double[]lngavg” variable is an array 
that pretare method prepared for treynger method. This array contains average longitude of 
arrays. This value is used to convert normalized x values to denormalized real longitude values. 
.” double[]latavg” variable is an array that pretare method prepared for treynger method. This 
array contains average latitude of arrays. This value is used to convert normalized y values to 
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denormalized real longitude values. Algorithm logic is similar in treyngerrp,treyngersc 
methods. 

 

Treynger method’s objective is to take arrays as input and write a log file as output. It firstly 
creates name of the report files. The date of current time is the name of the file. One report 
shows the whole predictions and the other report show the statistics of  predictions. To create a 
network, encog machine learning library is implemented. Input and output layers are specified. 
In addition, hidden layer neuron numbers and activation function is determined.  

network1 = new BasicNetwork(); 

  network1.addLayer(new BasicLayer(3)); 

  network1.addLayer(new BasicLayer(new 

ActivationTANH(),true,hlayerneur)); 

  network1.addLayer(new BasicLayer(2)); 

           

      network1.getStructure().finalizeStructure(); 

  network1.reset(); 

Training sets are taken from the arguments of the function. Two arrays are provided 

as input and target of trainset function. 

MLDataSet trainingSet = new BasicMLDataSet(traininput, traintarget); 

Then, training algorithm and training sets train the network that we want to be 

trained 

LevenbergMarquardtTraining train = new 

LevenbergMarquardtTraining(network1, trainingSet);  

Iteration method specifies how many iterations will network take to approximate 

the ideal results. At certain number ,the results become constant so it is important 

to obtain this number.   

train.iteration(epoch); 
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At the end of training, trained network can be saved in a location that the user 

wishes. So that when user wishes to use the network it doesn’t need to train it again. 

User just retrieves and loads the trained network. 

EncogDirectoryPersistence.saveObject(new File(FILENAME), network1); 

For test sets the same method that was used in training sets are used. 

A dataset is created. As arguments,this dataset takes test arrays instead of train 

arrays this time. 

MLDataSet testSet = new BasicMLDataSet(testinput, 

testtarget);//testinput,testtarget are test arrays 

This method’s other function is to write reports. To realize this task, test set is 

iterated and in a loop each  input data’s output is predicted by encog library’s 

BasisNetwork.compute method 

for(MLDataPair pair: trainingSet2 ) { 

                    count++; 

                    sayac++; 

   final MLData output = network1.compute(pair.getInput()); 

Output is of type MLData. Each prediction is predicted from output’s get data 

method. These predictions are base station location’s x and y coordinates. They are 

written on a string called line .Later, they’re written on BufferedWriter’s class’ 

writer object. 

 

myLine3=format2.format(output.getData(0))+";"+format2.format(output.getData

(1))+";"+ 

                           

format2.format(pair.getIdeal().getData(0))+";"+format2.format(pair.getIdeal().g

etData(1)); 
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object.  This method also creates a log file that calculates each cell’s statistics. To 

realize this task, a carefully designed algorithm is needed. To distinguish at which 

cell iterator is iterating, flags are used. If these flag values are the same with 

previous values, nothing happens. However if they arent same with previous values 

a chunk of code is executed. This code prepares the content of second report. Each 

cell’s average prediction values are calculated. This average value can determine 

the correctness of the program. After that the total variables and counter variable 

sayac are changed as 0. Because for new cell everything must be new. 

 

Average predicted x and average predicted y values are put into corresponding 

arrays.  Also the ideal targets are put into corresponding arrays. Later these values 

are written into a string to be put in a write file.  

if(flag!=pair.getIdeal().getData(0)&&flag2!=pair.getIdeal().getData(1))//flag2 

koy 

                         { 

                            indek++; 

                            xide[indek]=pair.getIdeal().getData(0); 

                            yide[indek]=pair.getIdeal().getData(1); 

                            myx[indek]=totalx/sayac; 

                           myy[indek]=totaly/sayac; 

                            System.out.println("My Average"+indek+"= "+myx[indek]); 

                            totalx=0; 

                            totaly=0; 

                            sayac=0; 

                        }     
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These values are put into some calculations to calculate the distance between 

predicted and real values. 

myLine2="Cell"+(i+1)+";"+"CellId"+cellIdar[i]+";"+format.format(xide[i])+"

;"+format.format(yide[i])+";"+format.format(myx[i+1])+";"+format.format(myy

[i+1])+";" //Comparison of predictions and desired targets 

 

Math.sqrt((Math.pow((Math.abs(xide[i]-

myx[i+1])*1000),2))+(Math.pow((Math.abs(yide[i]-

myy[i+1])*1000),2))))//Distance calculation 

 

values. Function ends by closing the bufferedwriter objects. This is essential to 

release resources for other code pieces. 

writer.close(); 

                writer2.close(); 

Treynlm1inpmethod 

. public static void treynlm1inp(double[][]traininput, 

           double[][]traintarget,double[][]xl2,double[][]yl2,int hlayerneur,double[]cellIdar) 

Treynlm1inp method takes 6 parameters as input.” double[][]traininput” variable is an array 
that pretareinp1 method prepared for treynlm1inp method. This array contains values for the 
training input. “double[][]traintarget” variable is an array that pretareinp1 method prepared for 
treynlm1inp method. This array contains values for the training target.” double[][]xl2” is an 
array that pretareinp1 method prepared for treynlm1inp method. This array contains values for 
test input. “double[][]yl2” is an array that pretareinp1 method prepared for treynlm1inp method. 
This array contains values for test target. In fact test target can be entered as “0” by user. But 
when measuring performance of the program it is needed. “int hlayerneur” variable is entered 
by user in the GUI interface. It represents the hidden layer neuron number.” double[]cellIdar “ 
variable is an array that pretare method prepared for treynlm1inp method. This array contains 
cell-id list of test arrays. Algorithm logic is similar in treynlm1inp,treynrp1inp,treynscg1inp 
methods.  
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Figure 5.5: BrowseTrain Button 

BrowseTrain Button: When this button is clicked as shown in figure 5.5, user is 

prompted to select a file from the file browser window. This file that user selected 

, as the button’s name indicates, is the training file. This training file should be a 

text file. This text file should contain data that is seperated by comma or semicolon. 

One row should contain five columns each seperated by semicolon or comma. 

These columns form the input and target of the training program. The first three 

columns: user x,user y and rscp form the input of the training. The last two columns 

form the target of the training. Once the network is trained, its network file is saved. 
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In addition the trained network is ready to be tested with the test file that comes 

from browsetest label and button. 

 

 

 

 

 

 

 

 

Figure 5.6: BrowseTest Button 

BrowseTest Button: When this button (as shown in figure 5.6) is clicked, user 

is prompted to select a file from the file browser window. This file that user selected 

, as the button’s name indicates, is the test file. This test file should be a text file. 

This text file should contain data that is seperated by comma or semicolon. One row 

should contain five columns each seperated by semicolon or comma. These 

columns form the input and target of the training program. The first three columns: 

user x,user y and rscp form the input of the text. The last two columns aren’t needed 

for test. But for the sake of easiness, training files can also be used as test files, five 

column test file can be used. In practice the last two columns are never used in the 
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program. But every training file that is prepared can also be used as test file as well. 

When LoadNetwork and Test button or Train and Test button is clicked this selected 

file will be used as test file. As output, program will give us the computer’s 

predictions.Once these buttons are 

 

clicked a prediction report will be created. On this report there will be predicted 

results and ideal targets. Therefore we will be able to measure the accuracy of 

predictions. 

 

 

 

 

 

 

 

 

Figure 5.7: LoadNetwork Button 

LoadNetwork Button: When this button(as shown in figure 5.7) is clicked user 

is prompted to select a file from the file browser window. This file that user selected 

, as the button’s name indicates, is the saved network file. This file should be a file 
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that has the records of the saved network. When file is selected, its name is put into 

text input file. And when LoadNetwork and Test button is clicked, filename that is 

in the text input file that LoadNetwork Button selected is used for the needed 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: TrainandTest Button 

TrainandTest Button: When this button(as shown in figure 5.8) is clicked, the 

computer takes the train filename that is in the train text input file and the test 



 

58 
 

filename that is in the test text input file. Program firstly trains the network with the 

provided train file. Later, it tests this trained network with the provided test file. 

Finally, it creates a prediction report file. On this report  there are outputs of given 

test file for every inputs. For every user x (user location x),user y(user location y) 

and rscp inputs computer estimates a base location x and base location y. Program 

realizes this task according to its biases and weights. These are calculated in the 

training phase. Network trains itself with user location inputs and ideal base 

location targets. 
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Figure 5.9: LoadandTest Button 

LoadandTest Button:  When this button(as shown in figure 5.9) is clicked, the 

computer takes the network filename that is in the loadnetwork text input file and 

the test filename that is in the test text input file. Program takes the network with 

the provided network file. This network is trained with given inputs earlier and 

saved somewhere in the computer. Program takes the test file that is in the testfile 

filepath. This way, it gives the test input to saved network and as output takes a 

prediction report. On this report  there are outputs of given test file for every inputs. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Levenberg-Marquard radio button 
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Levenberg-Marquard radio button: This radio(as shown in figure 5.10) 

button determines the training method of the train file as Levenberg-Marquard. This 

training method gives one of the best results for the base location estimation 

problem.Network is trained by Levenberg-Marquard method.Training method is 

one of the parameters of the training.  In the program user can either choose 

Levenberg-Marquard training method or Resilient Propagation training method. 

When TrainandTest or LoadandTest button is clicked,it is used as the training 

method of the training 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Resilient Propagation radio button 
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Resilient Propagation radio button: This radio button(as shown in figure 

5.11) determines the training method of the train file as Resilient Propagation. 

Network is trained by Resilient Propagation method. Training method is one of the 

parameters of the training. This training method gives one of the best results for the 

base location estimation problem. In the program user can either choose Levenberg-

Marquard training method or Resilient Propagation training method. When 

TrainandTest or LoadandTest button is clicked,it is used as the training method of 

the training 

 

 

 

 

 

 

 

 

 

Figure 5.12: Hidden Layer Neuron InputText 
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Hidden Layer Neuron InputText: This inputtext(as shown in figure 5.12) 

determines the hidden layer neuron number of the training. User enters the hidden 

layer number and when TrainTest or LoadandTest button is clicked,it is used as the 

hidden layer neuron number of the training. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Output Neurons InputText 

Output Neurons InputText: This inputtext(as shown in figure 5.13) determines 

the output layer neuron number of the training. User enters theoutput  layer neuron 

number and when TrainTest or LoadandTest button is clicked,it is used as the output 

layer neuron number of the training. For the base location problem output must be 
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2 or 1. If you enter output as 1 x or y of the base location is trained and predicted or 

if you enter output as 2 x and y of the base location together is trained and predicted 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

TESTS AND RESULTS 

In this section, train and test of the networks with related training methods are discussed. 
Firstly, Matlab program is used for training and results are obtained and reported. Training 
sets and tests are created for this process. Built-in functions of Matlab are used for Matlab 
source code of project. 

Secondly,Encog(open source machine learning library) supported Java program is used for 
training and testing. 21 training sets and 5 test sets are created for various training and testing. 
The aim is to get good results with a good training and test sets. 

In the Matlab reports, training set cells and test set cells can be seen. In each row, the results 
of each cells can be seen. Furthermore, ideal base location x and ideal base location y can be 
seen. These values are in meters. These values are compared with the values that software 
evaluated and distance x and distance y values are calculated. From these distance x and 
distance y values, distance between real base location and predicted base location is 
calculated. 

After Matlab trainings and testings, trainings and testings are done in Java program. Same 
calculations in the Matlab are done. Ideal base location and predicted base location are 
computed and distance between them are calculated. In each row, the results of each cells can 
be seen. 
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MATLAB RESULTS 

Sample1 
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  X error Y error DISTANCE 
AVERAGE 165,749 95,25884 212,7552 

 

Table 6.1: Matlab test sample 1 

 

 

Sample2 

myx basex myy basey distancex distancey distance cell-Id
Cell1 376,4003 549,4513 109,5495 122,8933 173,0509 13,34384 173,5646 17611
Cell2 423,5533 553,5277 94,31267 143,6853 129,9743 49,37263 139,0359 11749
Cell3 -268,325 -304,629 -131,191 -124,302 36,30359 6,888846 36,95141 25617
Cell4 -187,343 -108,446 -78,4281 20,60549 78,89679 99,03354 126,6189 26297
Cell5 122,1103 309,6725 -611,819 -514,29 187,5622 97,52901 211,4036 35050
Cell6 -88,1455 -48,9495 -63,8627 -97,9007 39,19606 34,03796 51,91256 35610
Cell7 -177,956 -362,987 -55,7186 63,99094 185,0316 119,7095 220,3794 37442
Cell8 -357,42 -464,227 -111,674 -137,575 106,8074 25,90108 109,903 32430
Cell9 -358,485 -387,169 -96,1191 -91,9491 28,68406 4,170023 28,98559 32431
Cell10 -12,3413 -32,4406 -927,114 -962,383 20,09931 35,26964 40,5947 35223
Cell11 140,1116 304,9106 -614,284 -563,841 164,799 50,44288 172,3461 35053
Cell12 -159,523 -153,48 -78,9241 -113,822 6,043442 34,89755 35,41698 25625
Cell13 -8,43157 107,5322 -72,0504 -60,7636 115,9638 11,28675 116,5118 25627
Cell14 -345,153 -471,929 -1084,57 -1346,23 126,7759 261,6568 290,7514 52461
Cell15 -134,056 42,24743 -82,4176 -52,7713 176,303 29,64638 178,7783 40143
Cell16 -38,6841 91,45344 -87,1988 -162,955 130,1375 75,75606 150,5814 40149
Cell17 -164,384 -375,655 -313,023 -210,934 211,2706 102,0889 234,6432 6700
Cell18 39,76581 -107,614 -65,7477 122,0404 147,38 187,7881 238,7158 29515
Cell19 -136,885 -138,987 -80,7944 70,92234 2,10191 151,7168 151,7313 32571
Cell20 -20,7369 -10,9377 -859,494 -956,273 9,799174 96,77926 97,2741 35222
Cell21 -133,271 -476,085 -115,646 -236,75 342,8144 121,104 363,5765 6701
Cell22 -1,33027 -83,5411 -86,0604 117,1974 82,21078 203,2578 219,2541 29554
Cell23 191,8905 225,1869 -446,524 -230,808 33,29641 215,716 218,2706 29555
Cell24 -39,0825 -159,122 -331,818 -138,682 120,0392 193,1359 227,4003 32570
Cell25 -174,511 55,73872 -62,8981 98,88657 230,2501 161,7847 281,4061 32572
Cell26 49,60828 87,21747 -68,5608 -47,8443 37,60918 20,71644 42,93741 25619
Cell27 -231,233 -1043,4 -35,496 -10,6871 812,1632 24,8089 812,542 37440
Cell28 -233,374 -1021,4 -35,9086 -4,19469 788,0275 31,71392 788,6654 37441
Cell29 -113,431 232,8673 -225,027 -73,3233 346,2988 151,7039 378,07 37443
Cell30 -70,0526 -292,045 -224,443 -241,895 221,9921 17,45158 222,677 43078
Cell31 -6,07185 -292,435 -364,597 -109,584 286,3632 255,013 383,4521 43079
Celll32 -123,357 -143,156 -87,9157 -121,937 19,79881 34,0217 39,3633 53665
Cell33 -246,766 -174,093 -101,466 124,332 72,67263 225,7984 237,2051 40141
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  X error Y error Distance 
Average 140,7246 91,33715 181,499 

 

 
Table 6.2: Matlab test sample 2 

 

 

 

myx myy basex basey distancex distancey distance Celllist
Cell1 402,6432 118,6238 549,4513 122,8933 146,8081 4,269506 146,8701 17611
Cell2 423,7697 100,5036 553,5277 143,6853 129,758 43,18174 136,7545 11749
Cell3 -266,284 -42,2915 -304,629 -124,302 38,34453 82,01015 90,53158 25617
Cell4 -229,775 -25,7939 -108,446 20,60549 121,3287 46,39942 129,8982 26297
Cell5 268,1377 -450,14 309,6725 -514,29 41,53479 64,14939 76,42174 35050
Cell6 -251,929 -20,8428 -48,9495 -97,9007 202,9795 77,05787 217,1142 35610
Cell7 -206,747 -8,96602 -362,987 63,99094 156,2404 72,95697 172,4349 37442
Cell8 -409,704 -104,06 -464,227 -137,575 54,52295 33,5153 64,00022 32430
Cell9 -131,078 -26,9142 -375,655 -210,934 244,5771 184,0196 306,0738 6700
Cell10 -46,7106 19,98059 -107,614 122,0404 60,90362 102,0598 118,8505 29515
Cell11 -250,547 -30,5028 -138,987 70,92234 111,5601 101,4252 150,7738 32571
Cell12 234,1402 -246,782 304,9106 -563,841 70,77038 317,0593 324,8616 35053
Cell13 -247,05 -27,1673 -153,48 -113,822 93,57064 86,6543 127,5321 25625
Cell14 -160,974 6,943711 107,5322 -60,7636 268,5066 67,70733 276,9117 25627
Cell15 -233,238 -42,9784 42,24743 -52,7713 275,4853 9,792831 275,6593 40143
Cell16 -143,249 6,180941 91,45344 -162,955 234,7023 169,1358 289,2959 40149

testlist trainlist
17611 17611
11749 11749
25617 25617
26297 26297
35050 35050
35610 35610
37442 37442
32430 32430

6700
29515
32571
35053
25625
25627
40143
40149
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ENCOG RESULTS 

Sample result1 

 

 

Table 6.3: Encog test sample 1 

 

 

 

 

Cells  Basex Basey Myx Myy Distance  Mylon Mylat
Cell1 6700 -0,46 -0,14 -0,338 -0,047 153.485 29.046 41.118
Cell2 11749 0,55 0,14 -0,097 -0,129 700.266 28.963 41.024
Cell3 17611 0,55 0,12 -0,14 -0,032 706.715 28.963 41.025
Cell4 25617 -0,3 -0,12 -0,211 -0,013 139.411 28.991 41.076
Cell5 26297 -0,11 0,02 -0,08 -0,111 134.434 28.998 41.077
Cell6 29515 -0,11 0,12 -0,167 -0,001 133.467 28.968 41.017
Cell7 32430 -0,46 -0,14 -0,34 -0,047 152.069 29.051 41.126
Cell8 32571 -0,14 0,07 -0,163 0,001 72.965 29.052 41.128
Cell9 35050 0,31 -0,51 0,249 -0,437 95.042 29.053 41.118
Cell10 35610 -0,05 -0,1 -0,157 0,002 147.851 28.959 41.024
Cell11 37442 -0,36 0,06 -0,232 -0,018 150.015 29.032 41.128
Cell12 6701 -0,48 -0,24 -0,143 0 413.905 29.048 41.119
Cell13 25625 -0,15 -0,11 -0,212 -0,012 115.572 28.961 41.023
Cell14 25627 0,11 -0,06 -0,176 -0,003 292.019 28.959 41.022
Cell15 29554 -0,08 0,12 -0,19 -0,007 168.016 28.968 41.017
Cell16 29555 0,23 -0,23 0,107 -0,341 165.665 28.968 41.018
Cell17 32431 -0,36 0,1 -0,187 -0,019 209.664 29.052 41.125
Cell18 35053 0,3 -0,56 0,243 -0,45 124.086 29.053 41.119
Cell19 37443 0,23 -0,07 -0,06 -0,118 294.396 29.028 41.128
Cell20 37444 -0,36 0,1 -0,185 -0,012 207.420 29.032 41.128
Cell21 40143 0,04 -0,05 -0,143 0,006 191.574 28.957 41.025
Cell22 40144 -0,14 0,07 -0,12 -0,02 92.025 28.959 41.024
Cell23 40149 0,09 -0,16 -0,099 -0,027 231.266 28.957 41.026
Cell24 43078 -0,29 -0,24 -0,131 0,009 295.863 28.965 41.022
Cell25 43079 -0,29 -0,11 0,049 -0,21 353.524 28.966 41.019
Cell26 53665 -0,14 -0,12 -0,143 0,005 125.461 29.024 41.130

 Training set arrays
29515 x error y error distance
32430 average 0,159 0,113 0,195317
32571
35050
35610
37442
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Sample Result2 

 

 
Table 6.4: Encog test sample 2 

 

 

 

 

 

 

Cells  Basex Basey Myx Myy Distance  Mylon Mylat
Cell1 6700 -0,46 -0,14 -0,138 -0,007 347.826 29.047 41.119
Cell2 11749 0,55 0,14 0,276 0,074 281.580 28.967 41.025
Cell3 17611 0,55 0,12 0,22 0,062 334.511 28.966 41.025
Cell4 25617 -0,3 -0,12 -0,048 0,01 283.472 28.993 41.076
Cell5 26297 -0,11 0,02 -0,072 0,005 40.510 28.998 41.078
Cell6 29515 -0,11 0,12 -0,118 -0,004 123.903 28.969 41.017
Cell7 32430 -0,46 -0,14 -0,144 -0,008 342.050 29.053 41.126
Cell8 32571 -0,14 0,07 -0,087 0,002 86.056 29.052 41.128
Cell9 35050 0,31 -0,51 0,096 0,038 587.895 29.051 41.123
Cell10 35610 -0,05 -0,1 -0,123 -0,005 120.287 28.959 41.024
Cell11 37442 -0,36 0,06 -0,106 -0,001 261.352 29.033 41.128
Cell12 6701 -0,48 -0,24 -0,02 0,015 525.618 29.049 41.119
Cell13 25625 -0,15 -0,11 -0,12 -0,004 110.261 28.962 41.023
Cell14 25627 0,11 -0,06 -0,135 -0,007 250.475 28.959 41.022
Cell15 29554 -0,08 0,12 -0,135 -0,007 138.416 28.968 41.017
Cell16 29555 0,23 -0,23 -0,001 0,019 339.450 28.967 41.021
Cell17 32431 -0,36 0,1 -0,039 0,012 332.968 29.053 41.126
Cell18 35053 0,3 -0,56 0,256 0,069 630.145 29.053 41.123
Cell19 37443 0,23 -0,07 -0,079 0,004 317.776 29.028 41.129
Cell20 37444 -0,36 0,1 -0,031 0,013 340.654 29.034 41.128
Cell21 40143 0,04 -0,05 -0,138 -0,007 183.062 28.957 41.025
Cell22 40144 -0,14 0,07 -0,119 -0,004 76.679 28.959 41.024
Cell23 40149 0,09 -0,16 -0,096 0 245.945 28.957 41.026
Cell24 43078 -0,29 -0,24 -0,073 0,005 326.973 28.965 41.022
Cell25 43079 -0,29 -0,11 -0,137 -0,007 183.981 28.964 41.021
Cell26 53665 -0,14 -0,12 -0,144 -0,009 111.395 29.024 41.130

 Training set arrays
6700 x error y error distance

11749 average 0,189 0,147 0,239811
17611
25617
26297
29515
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Base stations estimations on map 

 

Figure 6.1: Base locations on map 
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Sample Result 3 

 

  Table 6.5: Encog test sample 3 

 

 

 

Cells  Basex Basey Myx Myy Distance  Myxlon Myxlat
Cell1 6700.0 -0.460 -0.140 -0.050 -0.004 431.554 29.048 41.119
Cell2 11749.0 0.550 0.140 -0.254 0.067 807.125 28.962 41.025
Cell3 17611.0 0.550 0.120 -0.247 0.079 798.384 28.962 41.026
Cell4 25617.0 -0.300 -0.120 -0.154 0.093 258.518 28.992 41.076
Cell5 26297.0 -0.110 0.020 0.101 -0.103 244.499 29.000 41.077
Cell6 29515.0 -0.110 0.120 -0.169 0.059 84.403 28.968 41.018
Cell7 32430.0 -0.460 -0.140 -0.047 -0.005 434.507 29.053 41.127
Cell8 32571.0 -0.140 0.070 -0.164 0.053 29.271 29.052 41.128
Cell9 35050.0 0.310 -0.510 0.178 -0.265 278.314 29.052 41.120
Cell10 35610.0 -0.050 -0.100 -0.183 0.067 213.674 28.958 41.025
Cell11 37442.0 -0.360 0.060 -0.188 0.059 171.950 29.032 41.129
Cell12 6701.0 -0.480 -0.240 -0.043 -0.005 496.191 29.049 41.119
Cell13 25625.0 -0.150 -0.110 -0.101 0.026 144.892 28.962 41.023
Cell14 25627.0 0.110 -0.060 -0.186 0.067 322.746 28.959 41.023
Cell15 29554.0 -0.080 0.120 -0.177 0.063 112.681 28.968 41.018
Cell16 29555.0 0.230 -0.230 0.165 -0.212 67.090 28.968 41.019
Cell17 32431.0 -0.360 0.100 -0.241 0.082 120.104 29.051 41.126
Cell18 35053.0 0.300 -0.560 0.264 -0.407 157.385 29.053 41.119
Cell19 37443.0 0.230 -0.070 0.193 -0.145 83.480 29.030 41.128
Cell20 37444.0 -0.360 0.100 -0.241 0.080 120.293 29.032 41.129
Cell21 40143.0 0.040 -0.050 -0.144 0.049 208.426 28.957 41.025
Cell22 40144.0 -0.140 0.070 -0.074 0.001 95.905 28.959 41.024
Cell23 40149.0 0.090 -0.160 -0.065 -0.003 220.626 28.957 41.026
Cell24 43078.0 -0.290 -0.240 -0.075 0.053 363.335 28.965 41.023
Cell25 43079.0 -0.290 -0.110 0.240 -0.159 532.234 28.968 41.020
Cell26 53665.0 -0.140 -0.120 -0.152 0.052 172.441 29.024 41.130

 Training set arrays
29554
29555
32431
35053
37443
37444

x error y  error distance
                  average 0,2199 0,111154 268,078
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Sample Result 4 

 

 Table 6.6: Encog test sample 4 

 

Sample Result 5 

Cells  Basex Basey Myx Myy Distance  Mylon Mylat
Cell1 6700.0 -0.460 -0.140 -0.300 -0.054 181.761 29.046 41.118
Cell2 11749.0 0.550 0.140 0.453 0.118 99.887 28.968 41.026
Cell3 17611.0 0.550 0.120 0.373 0.103 177.607 28.967 41.026
Cell4 25617.0 -0.300 -0.120 -0.176 -0.022 158.190 28.991 41.075
Cell5 26297.0 -0.110 0.020 -0.113 0.003 17.605 28.998 41.078
Cell6 29515.0 -0.110 0.120 -0.115 -0.007 127.224 28.969 41.017
Cell7 32430.0 -0.460 -0.140 -0.306 -0.055 176.058 29.051 41.126
Cell8 32571.0 -0.140 0.070 -0.096 -0.003 85.388 29.052 41.128
Cell9 35050.0 0.310 -0.510 -0.270 0.002 773.640 29.048 41.122
Cell10 35610.0 -0.050 -0.100 -0.116 -0.006 114.916 28.959 41.024
Cell11 37442.0 -0.360 0.060 -0.132 -0.012 239.352 29.033 41.128
Cell12 6701.0 -0.480 -0.240 0.024 0.026 570.169 29.050 41.119
Cell13 25625.0 -0.150 -0.110 -0.239 -0.036 115.855 28.961 41.022
Cell14 25627.0 0.110 -0.060 -0.162 -0.020 275.410 28.959 41.022
Cell15 29554.0 -0.080 0.120 -0.208 -0.031 198.065 28.968 41.017
Cell16 29555.0 0.230 -0.230 -0.211 0.005 499.944 28.965 41.021
Cell17 32431.0 -0.360 0.100 -0.106 -0.008 275.744 29.052 41.125
Cell18 35053.0 0.300 -0.560 -0.022 0.052 690.974 29.050 41.123
Cell19 37443.0 0.230 -0.070 -0.025 0.020 270.853 29.028 41.130
Cell20 37444.0 -0.360 0.100 -0.093 -0.006 287.353 29.033 41.128
Cell21 40143.0 0.040 -0.050 -0.169 -0.020 210.811 28.957 41.025
Cell22 40144.0 -0.140 0.070 -0.118 -0.001 74.301 28.959 41.024
Cell23 40149.0 0.090 -0.160 -0.018 0.021 211.205 28.958 41.026
Cell24 43078.0 -0.290 -0.240 -0.157 -0.007 268.448 28.964 41.022
Cell25 43079.0 -0.290 -0.110 -0.265 -0.006 106.926 28.963 41.021
Cell26 53665.0 -0.140 -0.120 -0.210 -0.029 114.757 29.023 41.130

 Training set arrays
6700.0
11749.0
17611.0
25617.0
26297.0
29515.0

x error y error distance
                     average 0,1822 0,13827 0,2287



 

72 
 

 

 
Table 6.7: Encog test sample 5 

 

 

 

Training  Samples and Graphics 

Matlab Samples 

Cells  Basex Basey Myx Myy Distance  Mylon Mylat
Cell1 6700.0 -0.460 -0.140 -0.027 -0.068 438.444 29.048 41.118
Cell2 11749.0 0.550 0.140 -0.044 -0.073 631.199 28.964 41.024
Cell3 17611.0 0.550 0.120 -0.088 -0.089 670.914 28.963 41.024
Cell4 25617.0 -0.300 -0.120 -0.037 -0.072 267.585 28.993 41.075
Cell5 26297.0 -0.110 0.020 -0.098 -0.093 113.480 28.998 41.077
Cell6 29515.0 -0.110 0.120 -0.052 -0.077 205.125 28.969 41.017
Cell7 32430.0 -0.460 -0.140 -0.027 -0.068 439.128 29.054 41.126
Cell8 32571.0 -0.140 0.070 -0.090 -0.090 167.898 29.052 41.127
Cell9 35050.0 0.310 -0.510 -0.226 -0.139 651.825 29.048 41.121
Cell10 35610.0 -0.050 -0.100 -0.123 -0.102 73.031 28.959 41.023
Cell11 37442.0 -0.360 0.060 -0.044 -0.074 342.977 29.033 41.127
Cell12 6701.0 -0.480 -0.240 -0.089 -0.089 419.435 29.049 41.118
Cell13 25625.0 -0.150 -0.110 -0.090 -0.090 63.153 28.962 41.022
Cell14 25627.0 0.110 -0.060 -0.114 -0.099 227.590 28.960 41.021
Cell15 29554.0 -0.080 0.120 -0.092 -0.091 211.452 28.969 41.017
Cell16 29555.0 0.230 -0.230 -0.155 -0.114 402.383 28.965 41.020
Cell17 32431.0 -0.360 0.100 -0.103 -0.095 322.687 29.052 41.125
Cell18 35053.0 0.300 -0.560 -0.293 -0.163 713.198 29.048 41.121
Cell19 37443.0 0.230 -0.070 -0.136 -0.106 367.763 29.027 41.128
Cell20 37444.0 -0.360 0.100 -0.093 -0.092 328.277 29.033 41.127
Cell21 40143.0 0.040 -0.050 -0.048 -0.075 91.495 28.958 41.024
Cell22 40144.0 -0.140 0.070 -0.118 -0.100 171.576 28.959 41.023
Cell23 40149.0 0.090 -0.160 -0.100 -0.093 201.171 28.957 41.025
Cell24 43078.0 -0.290 -0.240 -0.189 -0.126 152.184 28.964 41.021
Cell25 43079.0 -0.290 -0.110 -0.174 -0.120 116.442 28.964 41.020
Cell26 53665.0 -0.140 -0.120 -0.103 -0.094 45.066 29.024 41.129

 Training set arrays
40143
40144
40149
43078
43079
53665

x error y error distance
               average 0,2506 0,129 0,28194
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Above we have seen the results of the training. However, it is important to see the results 
visually. We can see the user locations on the Excel graphic. They are coordinates of the user 
mobile phone signals. Besides,  we can see the coordinates of the base station location. 
Furthermore, we can see the prediction of the base station that program made. With these 
information,analysis can be made. The distance between the real base station location and the 
estimated base station location can be seen on the graphic. Moreover, the user location 
disttribution area can be seen. The user distribution and the distance error of base station can 
give an idea about the performance of the program. Below are some estimations made by matlab 
and java encog program. 

 

 

Figure 6.2: Cell 6700 matlab estimation map 

User location is distributed in a 600x400 m2 square area where the distance error between the 
real base station and predicted base station is around 234 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 
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Figure 6.3: Cell 11749 matlab estimation map 

User location is distributed in a 800x300 m2 square area where the distance error between the 
real base station and predicted base station is around 139 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 

 

Figure 6.4: Cell 29515 matlab estimation map 

User location is distributed in a 200x150 m2 square area where the distance error between the 
real base station and predicted base station is around 238m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 
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Figure 6.5: Cell 32571 matlab estimation map 

User location is distributed in a 300x150 m2 square area where the distance error between the 
real base station and predicted base station is around 151 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 
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Java Encog Samples and Graphics 

 

Figure 6.6: Cell 29554 encog estimation map 

User location is distributed in a 150x300 m2 square area where the distance error between the 
real base station and predicted base station is around 198 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 

 

Figure 6.7: Cell 25625 encog estimation map 

User location is distributed in a 400x200 m2 square area where the distance error between the 
real base station and predicted base station is around 115 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 
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Figure 6.8: Cell 32430 encog estimation map 

User location is distributed in a 600x350 m2 square area where the distance error between the 
real base station and predicted base station is around 176 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 

 

Figure 6.9: Cell 35610 encog estimation map 

User location is distributed in a 300x120 m2 square area where the distance error between the 
real base station and predicted base station is around 114 m. Base station is represented by a 
square, predicted base station is represented by a triangle and user locations are represented by 
kites. 
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Comparisons 

Levenberg-Marquardt Algorithm 

Levenberg–Marquardt algorithm (LMA), is also named as damped least-squares(DLS). LMA 
solves non-linear least squares problems. Least squares curve fitting problems especially 
contain minimization problems. LMA is used in programs  for solving curve fitting problems. 
The LMA is an intermediate method. It uses both the Gauss-Newton algorithm(GNA) and the 
method of gradient descent. LMA algorithm is used as a backpropagation algorithm in 
training feedforward neural networks. LMA uses SSE(Sum of squared error) for error 
method. 

Resilient Propagation Algorithm 

Resilient Propagation also known as Rprop is a heuristic and it is used in feedforward neural 
networks as a supervised learning method. Sign of the partial derivative is used in Rprop and 
it acts  on each weight separately. For each weight, if  a sign change is detected compared to 
previous iteration in the partial derivative of error function, the update value for that weight is 
multiplied by a number smaller than 1. If there is no sign change than the update value is 
multiplied by a number greater than 1. This way total error function is minimised by changing 
update values opposite direction of that weight’s partial derivative. Rprop uses MSE(Mean 
squared errors) for error method 

Similarity between two algorithms 

Rprop algorithm is one of the fastest backpropagation training algorithm besides Levenberg-
Marquardt algorithm . 

Differences between two algorithms 

1. Two algorithms have different error calculation methods. LMA uses SSE(Sum of 
Squares of Error) method whereas Rprop uses MSE(Mean Squares of Error). 

2. Two algorithms have different way of updating weights. Resilient propagation updates 
weights with partial derivative sign change whereas Levenberg-Marquardt updates 
weights with gradient descent method when parameters are far from their optimal 
value and Gauss-Newton method when parameters are close to their optimal value. 

3. Levenberg-Marquard is best at small neural networks in non-linear least square 
problems whereas Rprop is good at large  neural networks. 
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Comparisons 

Resilient Propagation  

Below training samples are discussed. CellIds are listed and each distance of cellids can be 
seen. Distance is the difference between the program's base location estimation and real base 
station location. The lesser the distance, the better results we have.  These trainings are made 
with Resilient Propagation method. These trainings are made with 5,8 and 10 hidden layer 
neurons respectively. Neural networks are trained with 29515, 32430, 32571, 35050,35610, 
37442 cells in Encog. 

 

 

Table 6.8: Resilient Propagation Comparisons 

 

 

 

 

 

 

 

Resilient Propagation Distance Resilient Propagation Distance
CellId 5neuron 8neuron  10neuron CellId 5neuron 8neuron  10neuron
11749.0 646.830 727.242 751.102 32431.0 189.223 202.224 196.074
17611.0 677.471 709.811 759.606 35053.0 129.918 133.493 121.079
25617.0 149.162 148.954 133.816 37443.0 320.016 282.368 341.025
26297.0 173.407 171.807 127.780 37444.0 181.784 196.035 185.371
29515.0 143.812 133.540 129.843 40143.0 220.881 201.960 189.910
32430.0 210.135 147.016 191.045 40144.0 160.150 157.807 109.273
32571.0 87.049 79.695 77.967 40149.0 239.575 230.527 252.602
35050.0 112.905 115.539 68.401 43078.0 248.512 274.387 287.779
35610.0 152.743 146.711 159.518 43079.0 462.663 484.238 341.168
37442.0 146.785 164.185 126.584 53665.0 122.564 126.714 125.731
6701.0 383.410 410.115 398.323 40141.0 95.493 94.117 97.800
25625.0 107.390 96.993 123.112 40142.0 229.393 225.245 235.019
25627.0 330.377 307.877 314.423 52121.0 233.967 201.758 213.381
29554.0 195.717 177.657 179.324 52123.0 318.984 296.866 296.148
29555.0 176.086 165.437 155.173 55073.0 105.477 74.738 82.481

5neuron 8neuron  10neuron
Average Distance 231 229 225
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Levenberg Marquard 

 

Below training samples are discussed. CellIds are listed and each distance of cellids can be 
seen. Distance is the difference between the program's base location estimation and real base 
station location. The lesser the distance, the better results we have.  These trainings are made 
with Levenberg Marquard method. These trainings are made with 5,8 and 10 hidden layer 
neurons respectively. Neural networks are trained with 29515, 32430, 32571, 35050,35610, 
37442 cells. 

 

 
Table 6.9: Levenberg Marquard Comparisons 

 

 

 

 

Levenberg Marquard Distance Levenberg Marquard Distance
CellId 5 neuron 8 neuron 10 neuron CellId 5 neuron 8 neuron 10 neuron
6700.0 281.373 153.485 281.372 32431.0 201.893 209.664 201.893
11749.0 693.250 700.266 693.243 35053.0 121.622 123.962 121.767
17611.0 746.051 706.715 746.048 37443.0 324.930 294.396 324.920
25617.0 140.976 139.411 140.976 37444.0 194.747 207.420 194.740
26297.0 136.876 134.434 136.886 40143.0 252.341 191.574 252.343
29515.0 165.230 133.467 165.230 40144.0 115.357 92.025 115.358
32430.0 281.373 152.069 281.372 40149.0 286.409 231.266 286.406
32571.0 107.420 72.965 107.421 43078.0 241.860 295.863 241.861
35050.0 100.751 95.042 100.752 43079.0 318.715 353.524 318.413
35610.0 182.153 147.851 182.155 53665.0 128.452 125.600 128.454
37442.0 166.853 150.015 166.851 40141.0 132.815 89.175 132.817
6701.0 354.675 413.905 354.675 40142.0 281.275 230.300 281.277
25625.0 114.672 115.572 114.674 52121.0 228.807 188.398 228.808
25627.0 323.049 292.019 323.051 52123.0 330.185 280.154 330.187
29554.0 184.847 168.016 184.847 55073.0 113.343 64.176 113.343
29555.0 146.743 165.665 146.739

5 neuron 8 neuron 10 neuron
average distance 238 216 238
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Resilient Propagation comparisons 

 

Figure 6.2:Distance-Hidden Layer Comparisons in Resilient Propagation 

As the figure shows, as hidden layer neurons increase, distance decreases in the Resilient 
Propagation method. 

 

 

 

 

 

 

 

 

 



 

82 
 

Levenberg Marquard comparisons 

 

Figure 6.3:Distance-Hidden Layer Comparisons in Levenberg Marquard 

 

As the figure shows, as hidden layer neurons increasefrom 5 to 8, distance decreases. However, 
if neurons increase from 8 to 10 distance increases in the Resilient Propagation method. 

 

 

 

Comparison Conclusion 

Comparisons are made with same training and test sets with Resilient Propagation and 
Levenberg-Marquard methods. As a conclusion, Resilient Propagation is better than 
Levenberg-Marquard training slightly. And optimal hidden layer neuron number is 8 in 
Levenberg-Marquard but 10 in Resilient Propagation. This shows Levenberg-Marquard is good 
at less neurons and Resilient Propagation is good at more hidden layer neurons. 
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Conclusion 

In this thesis, location estimation of base station is explained. This is realized by using 
artificial neural networks and machine learning methods(self learning,training). 

Firstly, former related works are investigated. Geolocation techniques are examined. The 
theory of geolocation is studied. Different technologies are examined. After that various 
implementations are examined. 

After that, machine learning theories are examined. This involves training methods. 
Supervised and unsupervised learning are examined. Supervised backpropagation methods are 
examined. Performance and usage area of methods are discussed. 

Then, algorithm of the base estimation is discussed. Plan of the project is discussed. 

Data collection is discussed next. This is a difficult job. This is realized by java parser 
program. Later data is made neat by database applications. The source code of program is also 
discussed. 

Later, java implementation of the program is explained. The algorithm and source code of the 
program is discussed. The manual of the program is discussed. 

Finally,tests and results are discussed. A lot of tests are made in the production of the 
program. Best results are discussed. Tests in matlab and java are discussed. Performance and 
results of the test are discussed. 

As a conclusion, the program estimates the locations successfully and consistently. The 
estimated locations are close to the real locations. Program gives more accurate results when 
inputs are similar to training sets. Though matlab estimations are slightly better than the 
program. Results accuracy is  based on the training sets. Better training sets  give better and 
more accurate resuls. Results are also optimal with a good training algorithm and a good 
artificial neural network topology. 

 

 

 

 

 

 

 



 

84 
 

 

 

 

 

 

References 

1] Bulusu, Nirupama, John Heidemann, and Deborah Estrin. "GPS-less low-
cost outdoor localization for very small devices." Personal Communications, 
IEEE 7.5 (2000): 28-34. 

2] V. Zeimpekis, G.M. Giaglis, and G. Lekakos, “A Taxonomy of Indoor and 
Outdoor Positioning Techniques for Mobile Location Services,” SIGecomExch., 
vol. 3, no. 4, pp. 19–27, 2003. 

3] M. Hazas, J. Scott, and J. Krumm, “Location-Aware Computing Comes of 
Age,” Comput., vol. 37, no. 2, pp. 95–97, 2004. 

4] A. Kupper, ¨ Location-Based Services: Fundamentals and 
Operation.Chichester: Wiley, 2005. 

5] 7T. S. Rappaport, Wireless Communications - Principles and 
Practice,Prentice Hall PTR, 1996. 

6] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning 
System: Theory and Practice, Fourth Edition, SpringerVerlag,1997. 

[7] M. Ibrahim and M. Youssef, “A Hidden Markov Model for Localization 
Using Low-End GSM Cell Phones,” in Proc. 2011 IEEE Int. Conf. on 
Communications (ICC), Cairo, Egypt, 2011, pp. 1–5. 

[8] J. Paek, K. Kim, J.P. Singh, and R. Govindan, “Energy-Efficient Positioning 
for Smartphones using Cell-ID Sequence Matching,” in Proc. 9th Int. Conf. on 
Mobile Systems, Applications, and Services, Maryland, USA,2011, pp. 293–
306. 

9] Mobile Location Estimation Based on Differences of Signal Attenuations for 
GSM Systems/ Ding-Bing Lin ; Inst. of Comput. & Commun., Nat. Taipei Univ. 



 

85 
 

of Technol., Taiwan ; Juang, R.-T./ Vehicular Technology, IEEE Transactions on  
(Volume:54 ,  Issue: 4 ) 

10] An Analysis of Base Station Location Accuracy within Mobile-Cellular 
Networks, Liam Smit , Adrie Stander , Jacques Ophoff, International Journal of 
Cyber-Security and Digital Forensics (IJCSDF) 1(4): 272-279 /The Society of 
Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-
0012) 

11]  J. Borkowski, “Performance of Cell ID+RTT Hybrid Positioning Methodfor 
UMTS,” M. Sc. thesis, Tampere University of Technology, Finland,2004. 

12] H. Holma and A. Toskala “WCDMA for UMTS: Radio Access for Third 
Generation 

13] Farhad . E .Mahmood,Ahmad M. A. Salama," Mobile Positioning System 
using Signal Strength Measurement for WCDMA System",Al-Rafidain 
Engineering Vol.19 No.1 February 2011. 

14]Neural Networks User's Toolbox User's Guide 6/Howard Demuth ,Mark 
Beale ,Martin Hagan 

15]A Direct Adaptive Method for Faster Backpropagation Learning:  The 
RPROP Algorithm        Riedmiller, M. Braun, H.   Neural Networks, 1993., IEEE 
International Conference on  (28 Mar 1993-01 Apr 1993) 

 [16] D. E. Rumelhart and J. McClelland. Parallel Distributed Processing. 1986. 

17] http://www.mathworks.com 

 

 

 

 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Riedmiller,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Braun,%20H..QT.&newsearch=true


 

86 
 

 

Curriculum Vitae 

Ramazan Cengiz was born on 17 May 1986, in Istanbul. He received his BS degree 

in Computer Engineering in 2012 from Kadir Has University. He worked as a 

research assistant at the department of Computer Engineering of Kadir Has 

University between 2012 – 2013. Then he has been working as a Software Engineer 

at Kadir Has University/Vodafone project since 2014. During his master education, 

he has been affiliated with the Artificial Neural Networks. His research interests 

include data mining, relational databases and java technologies. 

 

 

 

 

 

 

 


