
 

 

 

 

 

KADİR HAS UNIVERSITY 

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING 

PROGRAM OF INDUSTRIAL ENGINEERING  

 

 

 

 

 

 

MULTI-OBJECTIVE DISASTER RELIEF LOGISTICS 
 

 

 

 

MAHDI M. SAMARAH 

 

 

 

 

 

 

MASTER’S THESIS 

 

 

 

 

 

 

ISTANBUL, AUGUST, 2018 

 

 



 

 

M
ahdi M

. Sam
arah 

 
 

 
 

M
.S. Thesis             

 
                                                        2018 

  

 
 

 
 

 
 

 
 

 
 

 
 

     
        

 
                      

 



3 

 

 

 

 

 

 

MULTI-OBJECTIVE DISASTER RELIEF LOGISTICS 
 

 

 

 

MAHDI M. SAMARAH 

 

 

 

 

 

MASTER’S THESIS 

 

 

 

 

 

 

Submitted to the Graduate School of Science and Engineering of Kadir Has University 

in partial fulfillment of the requirements for the degree of Master’s in the Program of 

Industrial Engineering 

 

 

 

 

ISTANBUL, AUGUST, 2018

 

 



DECLARATION OF RESEARCH ETHICS /  

METHODS OF DISSEMINATION 

I, MAHDI M. SAMARAH, hereby declare that; 

• this Master’s Thesis is my own original work and that due references have been 

appropriately provided on all supporting literature and resources; 

• this Master’s Thesis contains no material that has been submitted or accepted for a 

degree or diploma in any other educational institution; 

• I have followed “Kadir Has University Academic Ethics Principles” prepared in 

accordance with the “The Council of Higher Education’s Ethical Conduct Principles” 

In addition, I understand that any false claim in respect of this work will result in 

disciplinary action in accordance with University regulations. 

 

Furthermore, both printed and electronic copies of my work will be kept in Kadir Has 

Information Center under the following condition as indicated below: 

� the full content of my thesis/project will be accessible from everywhere by all means. 

 

 

MAHDI M. SAMARAH 

 

__________________________ 

 

13/08/2018



 
 

 

 



6 

 

TABLE OF CONTENTS 
 

ABSTRACT ...................................................................................................................... i 

ÖZET ................................................................................................................................ ii 

ACKNOWLEDGMENTS ............................................................................................. iii 

LIST OF TABLES .......................................................................................................... v 

LIST OF FIGURES ...................................................................................................... vii 

LIST OF ABBREVIATIONS ..................................................................................... viii 

1. INTRODUCTION ....................................................................................................... 1 

2. REVIEW OF RELATED LITERATURE ................................................................ 6 

2.1 Review Articles on OR/MS in DOM .................................................................... 11 

2.2 Relief Routing Literature ....................................................................................... 13 

2.3 Articles Related to DOM Stages ........................................................................... 17 

2.3.1 Mitigation Stage ......................................................................................... 18 

2.3.2 Preparedness Stage ..................................................................................... 20 

2.3.3 Response Stage ........................................................................................... 22 

2.3.4 Recovery Stage ........................................................................................... 24 

2.4 Articles Reviewed for Different Aspects of Disaster Management ...................... 24 

3. MATHEMATICAL MODEL DEVELOPMENT .................................................. 27 

4. MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY ............................. 34 

5. COMPUTATIONAL RESULTS ............................................................................. 38 

5.1 Case Study Parameters .......................................................................................... 38 

5.2 Computational Results for Demand-Distance Scenarios ...................................... 44 

5.2.1 Results for Scenario 1 ................................................................................ 45 

5.2.2 Results for Scenario 2 ................................................................................ 48 

5.2.3 Results of Scenario 3 .................................................................................. 49 

5.2.4 Results of Scenario 4 .................................................................................. 50 

5.2.5 Results of Scenario 5 .................................................................................. 52 

5.2.6 Results of Scenario 6 .................................................................................. 53 



7 

 

5.2.7 Results of Scenario 7 .................................................................................. 54 

5.2.8 Results of Scenario 8 .................................................................................. 56 

5.2.9 Results of Scenario 9 .................................................................................. 57 

5.3 Comparison of Scenario Results ........................................................................... 58 

5.4 Computational Results for Stochastic Outcomes .................................................. 63 

6. CONCLUSIONS ....................................................................................................... 64 

REFERENCES .............................................................................................................. 66 

APPENDIX A ................................................................................................................ 70 

A.1 GAMS file for Model 1 ........................................................................................ 70 

A.2 GAMS file for Model 2 ........................................................................................ 72 

A.3 GAMS file for Model 3 ........................................................................................ 74 

A.4 GAMS file for Model 4 ........................................................................................ 76 

APPENDIX B ................................................................................................................ 79 

B.1 Linear Combinations of Weights with GCM ........................................................ 79 

 

 



i 

 

MULTI-OBJECTIVE DISASTER RELIEF LOGISTICS 

 

 

ABSTRACT 

Disaster relief logistics is one of the major fields of operations research. Deciding the 

locations of depots before the disaster by minimizing total costs and total distances 

between nodes of demands and these depots is the main purpose of this study. The 

efficiency of disaster relief logistics is expressed in terms of the total transportation cost. 

The other objective function is considering minimizing total accumulated time to 

represent efficacy to supply different number of pallets which include basic materials and 

necessary types of foods. Equity is represented by minimizing the percentage of 

unsatisfied demand achieved by balancing the capability to serve demand nodes and the 

ability to diminish number of pallets that would not reach the nodes. Dealing with 

uncertainty in both demands and distances create different scenarios for our study, and 

the results explain how each objective function affects the logistics decisions for each 

scenario. 

 

Keywords: Disaster Management, Humanitarian Relief Logistics, Location Selection, 

Multi-Objective Programming, Efficacy, Equity, Demand and Distance Uncertainty. 
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ÇOK AMAÇLI AFET YARDIMI LOJİSTİĞİ 

 

 

ÖZET 

Afet yardım lojistiği, yöneylem araştırmasının başlıca alanlarından biridir. Bu çalışmanın 

temel amacı, toplam maliyetlerin en aza indirilmesi ve talep noktaları ile depolar 

arasındaki toplam mesafelerin en aza indirilmesi yoluyla, felaket öncesinde depoların 

bulunduğu yerlere karar verilmesidir. Afet yardım lojistik planının verimliliği, toplam 

ulaşım maliyeti şeklinde ifade edilmiştir. Diğer amaç fonksiyonu, çözümün verimliliğini 

temsil etmek için, temel malzeme ve gerekli gıda türlerini içeren farklı sayıda paletleri 

tedarik etmek için gereken toplam sürenin en aza indirilmesidir. Eşitlik, talep 

düğümlerine hizmet verebilme kapasitesinin dengelenmesi ve düğümlere ulaşmayacak 

palet sayısının azaltılması ile elde edilen tatminsiz talebin yüzdesinin en aza 

indirilmesiyle temsil edilmektedir. Hem talepler hem de mesafelerdeki belirsizliği ifade 

etmek için farklı senaryolar oluşturulmuş ve sonuçlara göre her bir hedefin her bir 

senaryo için lojistik kararları nasıl etkilediği açıklanmıştır. 

 

Anahtar Sözcükler: Afet Yönetimi, İnsani Yardım Lojistiği, Lokasyon Seçimi, Çok 

Amaçlı Programlama, Verimlilik, Eşitlik, Talep ve Mesafe Belirsizliği.  
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1. INTRODUCTION 

One of the most important difficulties that humanity faces is the different types of 

disasters, including two major groups. The first one is natural disasters like floods, 

hurricanes, earthquakes, and cyclones, and the other group is caused by human beings, 

like wars, famines, and epidemics. Earthquakes are a common natural disasters group that 

cause huge damage and a high number of life losses. For example, Shanxi earthquake, 

the deadliest earthquake in history, stroke China in 1556 and killed 830,000 people 

(Tzeng et al., 2007), Tsunami attacked Indonesia in 2004 and killed more than 165,000 

people. 

 

Recently another earthquake stroke Haiti in 2010 which is assumed to be the worst 

earthquake encountered by United Nations (UN). The problem of facing the earthquakes 

is related to the uncertainty of the time and the area that the earthquake will strike. Even 

the advanced technology, computers and seismographs cannot help the scientists to 

determine where and when the earthquake will attack. 
 

Table 1.1 shows the top 5 natural disasters within the period 1980-2010, and statistics of 

lives lost, the number of affected people, and damage in million dollars. 
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Table 1.1 Top five disasters within 1980-2010 (De La Torre et al., 2012) 

Disaster 

Type 

Number of 

disasters 

1980-2010 

Year Country Lost 

lives 

Affected 

population 

Economic 

damage 

(million $) 

Flood 3120 2004 Haiti 2665 31283 -- 

  1999 Venezuela 30000 483185 160 

  1998 China 3536 238973000 30000 

  1996 China 2775 154634000 12600 

  1980 China 6200 67000 160 

Cyclone 2516 2008 Myanmar 138366 2420000 1780 

  1999 India 9843 12628312 2500 

  1998 Honduras 14600 2112000 3794 

  1991 Bangladesh 138866 15438849 1780 

  1985 Bangladesh 15000 1810000 50 

Earthquake 786 2010 Haiti 222570 3700000 8000 

  2008 China 87476 45976596 85000 

  2005 Pakistan 73338 5128000 5200 

  2004 Indonesia 165708 532898 4452 

  1990 Iran 40000 710000 8000 

 

Earthquake scientists expect a disastrous earthquake that could strike Istanbul within the 

coming years, the magnitude on Richter scale is expected to be between 7 and 7.4, 

depending on the seismic site. Figure 1.1 shows the north and east Anatolia fault and 

specifically the epicenter of the earthquake in the red line. The north Anatolia fault line 

is a highly active tectonic fault line. This site shows hard subterranean movements, these 

movements create interlocking between earth plates, and that is increasing the tension in 

the ground and releasing this tension leads to new earthquakes. 

 

 



3 

 

 
Figure 1.1 North and East Anatolia fault (Weston, 2017) 

According to the scientists, the earthquake will occur in the eastern part of Marmara Sea, 

twenty kilometers south of Istanbul, where there has not been an earthquake since 1776. 

Figure 1.2 appoints the region from the Marmara Sea that will be affected by the 

earthquake and the plates that faced earthquake before. UN estimated the number of 

affected people to be between seventy thousand to ninety thousand and the economic 

losses to be around five hundred million dollar.   

 

The best way to decrease the consequences of the earthquake by preparing the community 

for a sudden attack and investment of sufficient budget in multiple kinds of research, 

including operations research and management sciences (OR/MS) in disaster operation 

management (DOM) to increase the efficiency of actions needed during the disaster. This 

area of research deals with decisions regarding the numbers of depots, vehicles, and 

shelters, the capacity of vehicles, relief demand, transportation cost and mode, in addition 

to the cost of materials. 
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Figure 1.2 Marmara Sea and historical earthquake in the region (Weston, 2017) 

DOM is a scientific approach to perform activities before, during, and after the disaster 

in order to diminish the losses in human life and economy and to revive the community 

to return to its normal situation.  

 

DOM has four main stages, starting with the mitigation stage. At this stage, the 

performance of all activities within the period of the disaster are measured. Then, there is 

the preparedness stage and response stage, ending with recovery stage. Using operations 

research in disaster management as a method to incorporate the braces of OR/MS (MS, 

MC, ME) to increase the effectivity of stages (mitigation, preparedness, response, 

recovery). 

 

In our research, we will consider uncertainty as an attempt to simulate the reality with the 

model applied within the work, since the deterministic case may result in infeasibilities if 

any condition changes unexpectedly.  

 

The stochastic model is the most familiar model used to deal with disaster operation 

management and the reason behind that is related to the ability of a stochastic model to 
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cope the uncertainty during the disaster.  

 

In general, the stochastic model is established in two stages, the first one depends on 

preparedness which is the second stage of disaster operation management, this stage 

considering any type of outfitting the society and environment before the occurrence of 

the disaster to increase the efficiency of response actions during the disaster, the second 

stage of the stochastic model relying on the response and recovery stages (third and fourth 

stages in disaster operation management).  

 

Response is defined as the actions applied during the disaster by the government and other 

non-governmental organizations (NGOs) to help affected population and to utilize the 

available resources in a suitable way, while the recovery is the short and long-term 

activities helped to revive the community and its functioning to the normal situation. 

 

In this model, the preparedness stage focusing on the locations that would be chosen to 

build depots and storages, where the uncertainty will be beneficiaries demand which 

changed because of moving between shelters and depots, in a trial to find a bigger relief 

and disease epidemics. 

 

The reaction stage considering the performance parameters efficiency, efficacy, and 

equality, the first parameter in terms of minimizing total cost, efficiency highlighted the 

quick and sufficient distribution, and equality comparing the variety of service stage 

through different sites. 

 

The thesis is organized as follows: In Chapter 2, the related literature is reviewed. In 

Chapter 3, the mathematical model development is presented. In Chapter 4, the 

methodology used for solving multi-objective disaster relief problem is explained. In 

Chapter 5, computational results of the mathematical model based on a case study is 

presented and analyzed. Finally, in Chapter 6, concluding remarks and future research 

directions are provided.
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2. REVIEW OF RELATED LITERATURE 

The challenges that create the barriers and difficulties for disaster operation field were 

built by destabilized infrastructure, duration and capacity needed to distribute relief 

materials and uncertainty in demand, these challenges have been discussed by De La 

Torre et al. (2012). The article explained how United Nations (UN) established Sphere 

handbook; the standard of minimum humanitarian relief materials like daily calories of 

food (2100 calorie per day per person) and amount of water (2.5 liters per day per person). 

This handbook expresses the collaborative effort between a large number of local and 

international non-governmental organizations. The article also used special software to 

generate damage scenarios for infrastructure modeling the Federal Emergency 

Management Agency’s (FEMA) HAZUS program, and defined the recovery stage as 

equality in delivery.  

 

Another important article comprises multi-objective optimal planning for relief system is 

Tzeng et al. (2007), where the key to reducing human losses and damage is the 

distribution of relief materials. The model has three objectives starting with minimizing 

total cost and total travel time (efficiency goals), and increasing the minimal satisfaction 

as the last objective function for fairness target. 

 

One of the popular and traditional locations problem is P-median location problem, P-

median has several properties which makes this kind of problems capable and useable 

even in the present time. P-median is focusing on minimizing total distances between 

candidate nodes to choose best locations for different facilities, another important 

property that P-median has the ability to deal with un-capacitated storages, and the 

primary principle for P-median is trying to get nearest nodes to chosen locations as a final 

result of the model. 

 



7 

 

Advanced approach was derived from P-median is P-center, this approach uses minimax 

objective function in order to decrease the maximum amount of distances between located 

facilities and nodes of demand. The difference between P-median and P-center is 

minimizing average distances for P-median problem, while minimizing maximum 

distances for P-center. 

 

In the model we used uncertainty in distances and demand as a basic concept, because of 

that for each scenario the located depots will change, and for demand we suggest upper 

and lower bounds, and P-median works with un-capacitated storages while we are limits 

our depots with six hundred pallets for each. The other properties of P-median has been 

used like the objective function for the first phase considers minimizing total distances 

between nodes of demand and depots. 

 

We can say that we used P-median and its properties with new practical application 

includes stochastic approach, and P-center gave us the way to define and solve the fourth 

objective function in our model by using minimax methodology to get the percentages of 

unmet demand for each demand node. 

 

Stochastic model has two different stages, preparedness stage and reaction stage, both of 

them considering uncertainty in multiple ways. While using OR/MS in DOM rises the 

possibility to incorporate the model with the reality. The different characteristics of 

assumptions will be available for the model, first type reasonable assumptions do not 

compromise the applicability of the study (finding space for improvement), second type 

is limited assumptions which specified to model inappropriate to others, non-realistic is 

the last type of assumptions, it doesn’t work with general settings but useful to diminish 

the complexity of the model.  

 

By Table 2.1 many classifications was created to compare between different studies that 

have been made between 1978 and 2018, these classifications related to the type of the 

objective function like minimizing total distances, total costs, total unsatisfied demand 

and total waiting time. Another characteristic have been taken which is the stochasticity 

of demand and distances, in addition to use multi commodity, multi depot, heterogeneous 
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vehicles, data of real disaster and review of the past works as additional criteria to 

discover more details about these articles. The arrangement of the table based on the 

arrangement of the articles through literature review. The flow of our literature review: 

2.1 General reviews for different articles in OR/MS in DOM, 2.2 Review for relief routing 

articles, and 2.3 Review for articles related to DOM levels: 2.3.1 mitigation, 2.3.2 

preparedness, 2.3.3 response, 2.3.4 recovery, and 2.4 Review different aspects of disaster 

management. 

Table 2.1 Comparing different characteristics of disaster relief articles 
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Allahverdi et al. 

2018    × ×  × × ×   

Battara et al. 2018     ×     ×  

Besiou et al. 2018  ×          
Carracsco et al. 

2018    × ×  × × ×   

Ferrer et al. 2018 × × ×  ×  ×     

Franco et al. 2018 ×         ×  
Kirac and Milburn 

2018 
 ×        ×  

Moshtagh et al. 

2018  ×  ×        

Yucel et al. 2018          × × 

Bonmee et al. 2017 × ×    × × × ×   
Pradhananga et al. 

2016  × × ×  × ×   ×  
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Table 2.1 Comparing different characteristics of disaster relief articles (continued) 
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Das and Okumura 
2015   × × × ×      

Huang et al. 2015 × × × × × ×  ×    

Noyan et al. 2015  ×   ×  ×  ×   
Rodriguez-

Espindola et al. 

2015 
× ×    × ×     

Zhan et al. 2014  ×  ×  ×      

Balliue 2013          × × 

Davis et al. 2013    ×    ×  ×  

Galdino and Batta 
2013          × × 
Milburn and 

Rainwater 2013  ×     ×   ×  

Ortunu et al. 2013 ×         ×  

Rekik 2013       ×     
Anaya-Arenas et al. 

2012          × × 

Roy et al. 2012 × ×  × × × × ×  ×  
De La Torre et al. 

2012  ×  × ×  ×     
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Table 2.1 Comparing different characteristics of disaster relief articles (continued) 
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Han et al. 2011  ×  × ×       

Leiras at el. 2010  × × × ×  ×     
Mete and Zabinsky 

2010  × ×  × ×  × × ×  
Rawls and Turnquist 

2010  × ×  × ×   × ×  
Beamon and Balcik 

2008  ×   ×  ×     

Tzeng et al. 2007 × × ×   × × ×  ×  
Yi and Ozdamar 

2007   ×   × × ×  ×  
Altay and Green 

2006          × × 

Fiorucci et al. 2005     ×     ×  
Klose and Drexl 

2005 
         × × 

Barbarosoğlu and 

Arda 2004  ×   × ×    ×  

Denzel et al. 2003          × × 

Rand 1976  ×   ×  ×     

Our thesis × × × × ×  ×  ×  × 
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2.1 Review Articles on OR/MS in DOM  

Galindo and Batta (2013) reviewed main studies for operation research and management 

science in disaster operation management between 2005-2010, and through 155 article 

28.4% talked about preparedness stage, 33.5% focused on response stage, and 3.2% 

considered recovery stage, which means 36.7% for reaction stage in our stochastic model.  

 

Altay and Green (2006) reviewed OR/MS in DOM, between 1980 and 2004, out of 109 

articles, 21.1% related to preparedness stage, 23.9% for response stage, and 11% 

recovery. According to these reviews in Table 2.2, the proportion of articles and searches 

for the response and preparedness stages increased, because in these stages the successful 

of the models will be examined, if the decisions of preparedness stage has a high 

percentage of inaccurateness, the result will effect on the response stage then all stages of 

the model, at the end will lead to disastrous stochastic situation, on the other side the 

scientists concentrated on increasing the effectivity for these stages to catch higher 

possibility of success.   

Table 2.2 Percent of research articles in 4 DOM stages (Galindo and Batta, 2013) 

 Altay and Green Galindo and Batta 

No. of articles 109 155 

Mitigation 48 37 

Preparedness 23 44 

Response 26 52 

Recovery 12 5 

Multi-stages 0 17 

 

Other aspects of Altay and Green (2006) the most important review in the last decades, 

provide starting points for researches and scientists who interested in OR/MS in DOM 

field, highlighted the role of DOM stages within the disaster, providing different sectors 

for future work, surviving the OR/MS which is done until 2004, focusing on sociological 

and psychological impact on the community, and finally the review was not limited to 

specific kind of disaster management, it took all of the societies that related to 

international federation of red cross (IFRC). Through 109 article Figure 2.1 shows the 
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percentages and numbers of articles relying on DOM stages and classification 

frameworks, management engineering (ME), management consulting (MC), 

management science (MS). 

 

Figure 2.1 Distribution of DOM research type, ME, MS, MC. (Altay and Green, 2006) 

Denizel et al. (2003) discussed the limitations of operation research and management 

science these days, it is suffering from the low number of researchers developing 

conjunction with humanitarian organizations, low technology magnifies the gap between 

what we have and the demand, questions with answers of how service allocation for 

affected people models will contain critical factors. Research percentages decreased with 

time for recovery stage, the design of the infrastructure and community business has low 

number of articles and searches, lack of researchers considering socio-economic situation 

for displaced and affected families.  

  

Papers that highlighted response stage in disaster operation management with relief 

distribution network reviewed by Anaya-Arenas et al. (2012). The article examined 

different available studies in multiple criteria to specify the degree of advancement for 

actions needed within DOM and emphasize the most effective approaches and 

contributions in the literature, in addition to defining each stage of DOM (pre-disaster 

stages: mitigation and preparedness, post-disaster stages: response and recovery) and 

which articles presenting the suitable model and solutions for each stage. 

 

The study that reviewed models with decision support system (DSS) is Ortunu et al. 

(2013). This paper declared human-made and natural hazard effects as a threatening event 
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with a probability of a potential damage in specific region and specific period, the damage 

could be in health, different properties, infrastructure, human being, animal and plants 

life, the main objective for the article is incorporating humanitarian logistics models from 

different agencies into decision support system. This search try to define the fairness as 

the effective efforts to ensure and deliver each demand point with relief materials, the 

physical delivery consist three levels supply, transportation and demand, so the Ideal 

model driving for both effectiveness and fairness not for profit in business, which leads 

to find combinations of variables to decrease total travel time, size of vehicle fleet, fixed 

and variable costs. 

2.2 Relief Routing Literature 

An optimization stochastic model applied in Ethiopia-Africa by Leiras et al. (2010) for 

humanitarian supply to distribute of World food program (WFP). The model relies on two 

linear programming stages, the first one is the preparedness stage, and the second stage 

depends on recovery stage, uncertainty will appear through limited accessibility and 

warehouse capacities and will be calculated using two methodologies expected value of 

the perfect information (EVPI) and value of stochastic solution (VSS). Different kind of 

transportation affects distribution models, were characterized in primary transportation 

(PT) like air (high cost), railway (suffering from poor infrastructure and maintenance) 

and road (most used), secondary transportation is the transportation within two points 

from the same country. 

 

One of the researches that focused on modeling relief routing with the principles of 

efficiency in terms of transportations cost, efficacy as fast and accurate response and 

equity represented by the measurement of fairness between deviated recipients is Huang 

et al. (2010). This article avoided ad-hoc distribution decisions that create problems in 

response time, amount of deliveries and usefulness of resources, the study explains how 

the Split delivery vehicle routing problem (SDVRP) model that split the demand through 

the fleet to minimize fleet cost and travel cost can incorporate within last-mile delivery 

problem (LMDP). 
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Figure 2.2 below shows multiple solutions (different roads) produced by using SDVRP 

in last mile delivery problem: 

 

 
Figure 2.2 SDVRP solutions for LMPD (Huang et al., 2010) 

The important role of OR within the last decades were studied by Besiou et al. (2018) 

included how OR can effect on different aspects of humanitarian logistics. In the same 

field Ferrer et al. (2018) produced a new model with multi-objective function to schedule 

many trips for relief vehicles where the performance has measured by security, and 

Pakistani flood 2010 were the case study for the model. 

 

Ray and Albores (2012) develop logistical framework using the ability of last mile relief 

distribution (LMRD) then implementing the framework in optimization and humanitarian 

logistics model. Four main factors affects final decisions of the model are facility location 

(the location of most effectively inventory in relief network) , transportation mode(the 

most suitable mode of transportation with minimum travel cost and transportation cost), 

distribution decisions(fast and equity  distribution between affected population) and 

inventory management( arrange and design incoming and left relief materials).  

 

Allahverdi et al. (2018) have introduced a new algorithm with the name of ‘AA’, where 

the purpose from this algorithm to minimize total lateness of specific number of machines 

without wait flow-shop, and considering a maximum value of makespan as a limit for all 

machines. Another article has improved a new algorithm to build a specific schedule 

depending on total resource cost by Carrasco et al. (2018), the objective function of total 
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costs and total completion time were minimized in order to test the addition heuristics of 

the new algorithm an to know if we can apply it on real instances or not. 

 

Stochastic optimization model used for designing the last mile relief network, this study 

was applied by Noyan et al. (2015). The article established the model by determining 

capacities and locations for each relief distribution point through last mile network as a 

first step, the second one designing the distribution network, third step building stochastic 

model with two stages, focusing at the same time on equity and achieving high levels of 

accessibility. This model used Branch-and-cut algorithm based on Benders 

decomposition, the last step explaining the effectiveness of uncertainty method to build 

stochastic model demand and transportation stages.  

 

Figure 2.3 explains how local distribution center (LDC) deliver relief materials to points 

of Distribution (POD) which send the relief materials for demand points, these points 

serve different beneficiaries (like villages and neighborhoods) in the affected region: 

 

 
Figure 2.3 Last mile relief distribution (LMRD) (Noyan et al., 2015) 

Das and Okumura (2015) studied perishable kind of relief materials and how it effects on 

both declining urgency and distribution of the demand, this study used optimization 

dynamic programming model to determine the amount and the time for ordering 

perishable relief materials against demand and urgency, perishability influences service 

level of the system, so decision makers should balance between the efficiency of the 

system and wastage resulted from perishability. 
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Figure 2.4 declares trend of relief materials (bread and clothes) and a number of requests 

for the earthquake that stroke Japan 2011. We noticed here, the natural declining in 

demand with time, Das and Okumura (2015) tried to reach usefulness stage of 

perishability before the demand decreases until zero demand. 

 

 
Figure 2.4 Number of requests from the shelter in Japan (a) Bread requests, (b) Clothes 

requests (Das and Okumura, 2015) 

Another article that used relief resources allocation (RRA) principles to establish multi-

objective function model in order to improve the relation between equity and efficiency 

to reach most suitable decisions of fleet routing and allocation of primary relief materials.  

 

Zhan et al. (2014) tried to get most appropriate period before making critical decisions to 

response the consequences of the disaster. This article has defined RRA as an activities 

based on critical logistic orders which supplies different transportations with high security 

to deliver multiple relief materials (water, medications, different types of primary food 

and tents) from wide range resources (by sea, land and air) to act with the occurrence of 

any kind of disasters either natural or human-made, then the optimization model 

correlated OR with Bayesian analysis to get periodic results. 

 

A systematic review has been applied to disaster relief routing by Anaya-Arenas et al. 

(2012). The review has targeted three aspects at the beginning searching for latest articles 

where the model dealing with supplying of disaster materials by improving and 

optimizing it’s logistics, the second aspect is pursuing the number of challenges for these 
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kinds of models, and the mathematical methods to solve it, the third aspect shows the 

fields and the scientific gaps into the current models in order to create new paths and to 

discover advanced approaches for logistics and routing challenges. This article has 

ensured that the articles which the dynamic models were built on uncertainty and solved 

by stochastic principles still have very small number because it is very hard models and 

sophisticated, on the other hand, keep using of deterministic models lead to low 

performances and inaccurate results. 

2.3 Articles Related to DOM Stages 

Two types of decisions related to disaster management, long-term decision and short-term 

decision, Rekik (2013), applied short-term decision type for deterministic problem to 

build optimization model helping decision makers in the early moments after the disaster, 

and determining number of warehouses in addition to planning for relief materials sent 

towards affected population. This study explains decision support system (DSS) that 

relying on expert’s discussions in crisis management and resulted observations, then DSS 

should specify the most suitable approach form operation research field for each stage 

through the model.   

 

United Nations (UN) worked on a paper for sharing information in humanitarian 

emergencies, this paper recommended building systems instead of depending on 

information flow of individual within the disaster, the system will establish by 

collaboration between international humanitarian organizations. 

  

Its work starts from what happened through the disaster, what kind of actions had done 

to decrease the effect of the disaster, what kind of actions was necessary but none of the 

organizations applied it, what we can extract for better collaboration between 

governmental and non-governmental organization (office of the collaboration of 

humanitarian affairs OCHA), the scenario is chosen in the article was from the earthquake 

of Haiti 2010. 

 

Gate (1, q) an algorithm was created by Franco et al. (2018), where the algorithm has 
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tested a new approach to measure the distance between two nodes in tow separated areas, 

using straight line between the areas, than the algorithm compared with a famous 

algorithm to determine whether the performances have improved or not. 

2.3.1 Mitigation Stage 

Mitigation stage in DOM shares the principles of performance within different types of 

disaster and the necessity of modern approaches to improving actions performance, 

Beamon and Balcik (2008), framed new methodology to increase the efficiency of system 

performance in the relief aid field by comparing performance measurements in relief aid 

chains with performance measurements for commercial supply chains. New performance 

metrics will be produced to help relief professionals to achieve more targets in the models 

of mitigation stage and system performance. The paper also provide new ideas about how 

the performance of the system will get rid of negative and bottlenecks points if the 

collaboration between multiple chains reach maximum, limit and that will lead to saving 

more lives with decreasing amount of losses in different economy sectors. 

 

Integrated methodology with two main columns, optimal appointing of resources and 

modelling systems are built to evaluate decision support system (DSS) in mitigation stage 

and providing tools to ease forecasting procedures to decision makers, this study was 

presented by Fiorucci et al. (2005). The article worked on formalizing and describing real 

time risk management in two phases, real time phase, and pre-operative phase. The first 

one refers to the horizon time intervals which belong to uncertainty transit time with 

dummy nodes (null demand), the other phase used expected daily information for the 

disaster as a base input data to allocate available resources.  Three types of frameworks 

effect on second phase daily information, static hazard assessment represented by 

topographic and climate data, while dynamic hazard assessment based on model outputs 

and active hazard assessment related to semi-physical propagation model. 

Figure 2.5 declared how daily information can be generated and the conditions that play 

an important role to determine data kinds:  
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Figure 2.5 Representation of the various functions of the information flows (Fiorucci et 

al., 2005) 

Different types of models focusing on choosing depots locations, these types of studies 

have been introduced by Klose and Drexl (2005). The article has explained eight kinds of 

models considering optimization functions to discuss most appropriate locations for 

storages in relief operations. First kind of the models worked on finding depots and its 

locations based on geological maps and available roads, second kind helps decision 

makers to minimize distances between affected people and relief storages, and third kind 

deals with incapacitated storages to capture any size of demand under different scenarios. 

fourth type looking after supplying and logistics system for only a single stage model, 

fifth one has assumed all of the capacity, cost and demand for relief materials as a single 

aggregated unit, the sixth kind performing a special assumption under fixed and 

independent demand, seventh kind improves performance metrics within a single period, 

the last kind isolates every pair of depots and collection points to rising up the quality of 

relief materials allocation.      

   

Bonmee et al. (2017) have studied how decision makers can appoint different locations 

for relief storages relying on multiple kinds of problems with various types of models, at 

the same time concentrating on some factors according to location characteristics which 

play the main role in determining where will be collection points, medical centers, relief 

storages, and other important facilities. This paper also defined humanitarian logistics 

(HL) as an operational activities established to evacuate effected people from the affected 

region to secure shelters, and performing specific actions to control the capacity of depots 

and calculates total costs for performed actions, while accurate information about the 
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disaster, stricken region, affected people and accessible ways have been gathered by 

expert team, (HL) assumed distances as a constant (actual distances between pair of 

points) not as a function (Euclidean, square Euclidean and rectilinear). By HL definition 

many types of location problems can be solved such as minisum problem, where there is 

an ability to use as much as needed of depots and storages to minimize total distances 

between these depots and demand nodes, another type of problems is covering problem, 

in this problem the time is limited and demand should be satisfied within this time, Third 

type of problem is maximal problem, the target is maximizing total demand with limited 

number of kilometers that can be covered, minimax problem focusing on developing 

performance metrics for the whole supply chain, while dynamic problem searching for 

compromising between total costs and times spent, last type is robust problem where 

uncertainty factors probabilities determine the shape of the model with specific uniform 

scenarios. 

2.3.2 Preparedness Stage 

Preparedness stage in disaster operation management taking higher importance within the 

last two decades, Rodriguez-Espindola et al. (2015) create a combination between multi-

objective optimization which considers relief materials allocation and prepositioning of 

stocks. The other side of combination is geographical information system (GIS) to deal 

with appointing emergency facilities locations (demand points, distribution centers, and 

shelters), achieving preparedness depending on the coordination between different non-

governmental organizations, governmental organizations, and international agencies.  

 

One of the most important relief materials is dedication materials, medical supply needs 

unique conditions to avoid any kind of spoilage, Mete and Zabinsky (2010) suggests 

stochastic optimization model in preparedness and response stage to assign warehouses 

points with inventory available capacity for each type of medications and drugs. The 

paper tried to balance between various percentages risks and uncertainty of events, also 

gives procedures to reach best ways to deliver medications, taking into account particular 

medical supplies as a priority for the hospitals. The model based on two stages, the first 

stage to determine warehouses areas with its stages, second one focusing on the amount 
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supplied to hospitals, the amount for each scenario equals aggregated stage which changes 

to number of vehicles, its capacity and the suitable routing, the different earthquake 

scenarios applied to Seattle state in the United States of America.  

 

Yucel et al. (2018) have discussed the methodology of strengthening the roads before the 

disaster, for the first step they built a random model (randomness in roads), then they 

have calculated each road probability by Bayesian, after that they have worked on 

strengthen the weak links using stochastic model programming, so as a result the weak 

road’s probabilities has been diminished. 

 

Social cost was the objective function of a three-echelon model introduced by 

Pradhananga et al. (2016) to build a critical planes for preparedness stage and response 

stage. Social cost was calculated using both of logistics cost and deprivation cost, where 

these costs increase exponentially with deprivation time. This study also shows how 

propositioning and purchasing decisions with multiple resources can reduce the shortage 

in the amount of relief materials and decrease the total cost. The network has a set of 

supply points (a large facilities near from the disaster) at the highest echelon to serve a 

large region which stroke by a disaster, assuming the type of shipping in this model is 

direct and flexible from these points to the victims and the affected areas. 

  

Prepositioning of various supplies has a probability to rise the efficiency of preparedness 

stage, the results reflects on the actions of response stage after the disaster, finding the 

preposition stages for different kinds of equipment’s and emergency relief materials was 

the target of Rawls and Turnquist (2010) using two stages mixed integer program (SMIP), 

uncertainty in the model appears through demand and transportation availability, the 

study solved the model by decomposing the problem into series of sub-problems to make 

it easier to calculate, then finding total expected total cost as a first stochastic level and 

specifying suitable prepositioning level for the second stochastic level. 

 

Using earthquake sciences and variety approaches for forecasting was made by Battara et 

al. (2018) to specify the amount of needs before the disaster and they have used in the 

article different scenarios of demands reflect with uncertainty, this study was suggested 
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to use upon preparedness stage to judge the level of prepositioning level of the relief 

materials.   

 

Discussing different characteristics and criteria's to determine most suitable choices of 

relief storages location were performed by Rand (1976), the study suggested seven main 

aspects that should be satisfied in order to take right decisions for depots and storages 

locations. The first aspect is questioning about which is more important between 

minimizing total costs or applying performance metrics principles, second aspect 

wondering if the number of locations is limited or not, third one about the type of 

methodology which used in the model is optimizing or in heuristic way, the fourth point 

considering the periods is it in months, years or decades, in single period or not, fifth 

aspect is wondering if the current sites are included in the model, sixth aspect about limit 

capacity storages or incapacitated relief storages, seventh aspect comprise total supplying 

costs if it will be calculated related to fleet scheduling or information analysis, finally this  

paper suggest an algorithm to build a model by:  

1) Determine the number of storages and depots 

2) Allocate them randomly to suggest regions 

3) Serve effected people by these regions 

4) By minimizing total distances choose best regions 

5) Do not continue if there are no better regions 

6) Otherwise go back to step 3 

2.3.3 Response Stage 

The evaluation of first two stages of disaster operation management, mitigation, and 

preparedness stages, occurred in response stage, Milburn and Rainwater (2013), 

presented how we can build disaster response model, starting with determining 

distribution points after the disaster occurrence, ending with the advancement of the 

infrastructure, and preparing actions to face the consequences of the disaster, the scenario 

of the disaster in this paper had taken from New Madrid Seismic Zone (NMSZ) to test 

the results of the response model. 
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With eighty percent of total disaster relief operations, logistics considered as the most 

important stage for relief aid, Balliue (2013) characterized logistics as on-going process 

and explained its role in saving lives within and after the disaster, also the importance of 

logistics in emergency plans for response stage and how collaboration between supply 

chains provide the most effective possible aid for shelters, demand and distribution points, 

and finally affected population. 

 

Two stages model for logistical relief aid to effected region in the response stage was 

established by Barbarosoğlu and Arda (2004), they explained the flow of materials over 

modern types of transportation through multi-objective model network, uncertainty in the 

model represented by variety of supply and capacities amounts which resulted from 

affected infrastructure. To solve uncertainty and variety in the linear programming model 

they used different scenarios for demand, supply flow, and capacities, and dealing with 

two stages needs a model with multi-commodity and network flow, then first stochastic 

stage is a structural component with free uncertainty and fixed variables, while control 

components the second stage is affected by uncertainty in input data, the article studied 

Avcilar region in Istanbul with different earthquakes scenario to find the most effective 

stochastic model. 

 

Multi-objective function model was developed by Huang et al. (2015), in this model three 

objective functions have been integrated and improved under two important terms 

emergency distribution and resource allocation. The paper suggests multiple time 

horizons to consider latest updates of information and to modify the wrong logistics 

decisions. Lifesaving utility is the first objective function which has the highest 

importance between other objective functions, delay cost was assumed as the second 

objective function and it was offered to show how postponing relief materials maximize 

the suffering of the victims, and to show the importance of time urgency and how to deal 

with it, last objective function is fairness, it was defined by the degree of the equality and 

the priority through the affected region. 

 

Highly important operations applied through disaster response stage, evacuation and 

logistical support, Yi and Ozdamar (2007) built a model with integrated distribution-
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location, the target of the model is reaching accurate results for logistical plans, depots, 

and distribution locations, establishing emergency and shelters regions within affected 

zone and relief materials delivery, like medications, food, water, tents, and rescue 

equipment's, then to obtain vehicles numbers, capacities, and routs. The article will 

consider mixed-integer network flow multi-commodity model, finally the study 

characterizes relief materials and affected population into hierarchy priorities, that means 

the vehicles will serve higher priorities locations, this approach achieving minimum delay 

in supplying time. 

2.3.4 Recovery Stage 

Recovery stage did not take the same importance of other stages, related to low number 

of articles and studied performed at this stage, but one of the recent papers explained 

recovery stage in stochastic model which is Van Hentenryck et al. (2010). The paper 

focused on Single Commodity Allocation Problem (SCAP) as the main stage for 

stochastic optimization model to obtain series of depots and fleet routing, also to 

minimize inefficiency in resource allocation and supplying time. The scenario generated 

by Los Alamos Library for expected hurricane that will strike USA, and uncertainty in 

this paper is the outcome of hurricane effected people lives and infrastructure 

2.4   Articles Reviewed for Different Aspects of Disaster Management    

Volunteer management one of the aspects in humanitarian relief has not a high 

concentration, this aspect could improve the actions in response level but it is depending 

on the way that the organizations and agencies will manage the volunteers and the field 

experiences. Falasca and Zobel (2012) examined a model with multi-criteria to find a 

systematic approach to assign volunteers and different tasks in addition to labor 

scheduling this assignment related to volunteers experience and field skills for each of 

them. This approach will help decision makers to reach the best choices in the early period 

after occurrence of disaster consequences.  
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An interesting paper shows the effect of the social media on response stage was discussed 

by Kirac and Milburn (2018). The writers have viewed how awareness level will be 

changed significantly after using social media through the disaster, and the way that 

affected people can use mobile app to finally determine total needs into the affected area, 

and providing valuable information’s about the disaster. 

 

Health sector were studied in term of performance metrics, many of these studies 

explained different methods to improve delivery services. Davis et al. (2013) built a 

model depending on equity, efficiency, and effectiveness to rank 35 general service 

hospitals in New Zealand between 2001 and 2009. The study applied for more than 500 

admissions per year, where the total number of admissions in that period around 4 million 

admission, each performance metric relied on two measurements. For equity as a first 

metric both of level of ethnic and the variation through socio-economic for the hospitals 

considered as variables to calculate equity, the correlation between pooled data variation 

and inter hospital variation for first metric is 0.41 which is moderate correlation. The 

second performance the efficiency measured by patient stay and number of surgeries for 

each day, the correlation of variances for this metric is 0.2 that means low correlation. 

Effectiveness as a last metric related to morality of period before disaster and unplanned 

readmission, for the last metric the correlation is low and equals 0.2.   

 

To highlight the importance of queue problems, Moshtagh et al. (2018) have been 

published to illustrate the different situations of the roads through the disaster and which 

one of them has a huge effect on the evacuation operations, and developed a model with 

travel time and total costs as an objective functions. 

 

Our model has common aspects shared with relevant articles, but the distinguishable 

points in our research are: 

- Uncertainty in demand and supply. 

- Simultaneous optimization of performance parameters. 

- Multi-objective function model, the first objective function is determining 

depots locations, while other objective functions related to performance 

parameters (efficiency, efficacy, and equity). 



26 

 

 

The closest parameters for our research are Huang et al. (2010) who worked on optimizing 

performance parameters, and Klose and Drexl (2005), they built a model to obtain best 

possible locations for depots and storages. 
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3. MATHEMATICAL MODEL DEVELOPMENT 

Disaster operations management has four stages, each stage considers a specific time 

(before or after the disaster) that will effect on the final results of any model. To 

incorporate the science with the reality in terms of the existence of inaccurate data and 

uncertainty in details, the stochastic model of two stages can create the perfect 

environment to solve the uncertainty problem. Two stage stochastic model are applied 

with different cases through different scenarios, starting with the first stage that deal with 

preparedness (first stage of DOM), where the target is selecting the locations of different 

depots, in the model it was represented as a minimization function for total distance to 

demand nodes and it takes (𝑍𝑍1) symbol, the decisions of this stage are applied before the 

disaster. 

 

Response (second stage of DOM) represented by performance metrics as a second stage 

of the stochastic model, in this stage the decisions are made after the disaster.  

Performance metrics starts with efficiency (𝑍𝑍2), it is focusing on minimizing total 

transportation cost by minimizing both amount of pallets delivered and the distance 

between depot and demand node. Second performance metric is the efficacy, this metric 

can be evaluated by using total accumulated waiting time (𝑍𝑍3). Last performance metric 

related to equity the one with many approaches to be calculated, and it does not have a 

direct way to solve like other performance metrics but in our study unmet demand and 

it’s percentage is the key to find the value of equity metric as (𝑍𝑍4) function, the following 

Figure 3.1 shows how each stage connect to different objective functions. 
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Figure 3.1 Model framework 

In this study the model has some similarities and differences with P-median, as one of the 

famous approaches to solve locations selection problems. P-median works with un-

capacitated storages while we are limits our depots with a specific number of pallets, and 

we have used the principle of uncertainty in the distances between demand nodes and the 

multiple location of depots. The other properties of P-median has been used within the 

model like the common objective function which considers minimizing total distances 

between nodes of demand and depots. We can say that we used P-median and its 

properties with new practical application includes stochastic approach, and P-center gave 

us the way to define and solve the fourth objective function in our model by using 

minimax methodology to get the percentages of unmet demand for each demand node. 

 

In Figure 3.2 which refers to the sample network that the case study in Chapter 5 is based 

on, we can find the following: 

• Demand nodes in  twelve blue points, 

• 7 different alternative locations depot in orange color to choose 4 or less from, 

• The distances between all depots and demand nodes in kilometers, 

• Two different collection points, shown as black squares. 
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Figure 3.1 Sample network 

The assumptions of the proposed model are as follows: 

1. The total storage capacity of the depots is greater than or equal to the total demand. 

2. A specific number of locations will be chosen out of the total number of available 

locations. 

3. A specific average speed of trucks and a predetermined unit cost have been 

assigned for different objective functions.  

4. Each depot can send relief aid to a specific number of demand nodes based on the 

number of available vehicles for that depot. 

5. The unit transportation cost is a constant that does not depend on the depot-

demand node pair. 

6. Percent of unmet demand for each demand node is assumed as the equity measure. 

7. Loading time and unloading time for a truck are assumed to be equal. 

8. There is no vehicle restriction, i.e., there are enough number of trucks available at 

time zero such that all demand can be loaded starting at the same time and 

delivered immediately. 
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The notation used in the model is defined as follows. 

Sets: 

𝑺𝑺  : set of alternative depot nodes, 𝑈𝑈 = 1, 2, … , 𝑆𝑆 

𝑫𝑫 : set of demand nodes, 𝑗𝑗 = 1, 2, … ,𝐷𝐷 

𝑲𝑲𝒊𝒊 : set of available vehicles (trucks) at depot 𝑈𝑈, 𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑁𝑁𝑖𝑖  

𝛀𝛀  : set of disaster scenarios, 𝜔𝜔 = 1, 2, … ,Ω 

 

Parameters: 

𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖  : Capacity of depot 𝑈𝑈 in number of pallets 

𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖  : Demand of node 𝑗𝑗 in number of pallets 

𝑑𝑑𝑖𝑖𝑖𝑖 : Distance between depot 𝑈𝑈 and demand node 𝑗𝑗 in kilometers 

𝑡𝑡𝑐𝑐 : Unit transportation cost per kilometer in dollars 

𝑀𝑀𝐷𝐷 : Maximum number of depots that can be opened 

𝑁𝑁𝑁𝑁i : Number of vehicles available at each depot at time zero 

𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝 : Capacity of a truck in number of pallets 

𝐿𝐿𝐿𝐿 : Loading time for a truck in minutes 

𝑈𝑈𝐿𝐿 : Unloading time for a truck in minutes 

𝑆𝑆𝑆𝑆  : Average speed of trucks (km/hour) 

𝑈𝑈𝑖𝑖𝑖𝑖 : Fuel cost for the trip between 𝑈𝑈 and 𝑗𝑗 in dollars 

𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 : Distribution cost between demand nodes and depots in dollars 

𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖 : Worker’s cost in dollars 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖 : Accumulated waiting time in minutes 

 

Decision variables: 

𝑥𝑥𝑖𝑖𝑖𝑖 : Number of pallets delivered from depot 𝑈𝑈 to demand node 𝑗𝑗 

𝑤𝑤𝑖𝑖𝑖𝑖 = �1, depot 𝑈𝑈 serves node 𝑗𝑗
0, otherwise  

𝑦𝑦𝑖𝑖 = �1, if depot location 𝑈𝑈 is selected
0, otherwise  

 

Before applying the model we should calculate the parameters 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖, 𝑈𝑈𝑖𝑖𝑖𝑖, 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖, and 

𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖. Accumulated waiting time parameter 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖 is the sum of loading time, unloading 
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time, and the time needed to reach demand nodes. Fuel cost parameter 𝑈𝑈𝑖𝑖𝑖𝑖 equals the 

product of the unit fuel cost ($ per km) and the distance between depots and demand 

nodes. The distribution cost parameter 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 has different levels based on the quality of 

service of each depot. In our case study, based on sample network in Figure 3.2, we will 

define three levels of distribution cost such that depot 1 has the lowest cost, depots 2, 3 

and 4 have an average cost, and depots 5, 6 and 7 have the highest cost. Worker cost 

parameter 𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖 is the product of the number of workers at a depot and the wage of each 

worker for that depot.  

 

In our study, we define certain scenarios based on the level of demand and the impact of 

the disaster on the transportation network. We will be using scenario-dependent 

parameter values for demand, where 𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖
𝑠𝑠 is the demand of node 𝑗𝑗 in number of pallets 

under scenario 𝐷𝐷 ∈ Ω, and distances, where 𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠  is the distance between depot 𝑈𝑈 and 

demand node 𝑗𝑗 under scenario 𝐷𝐷. Accordingly, the decision variables in each scenario will 

be defined as 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 , 𝑤𝑤𝑖𝑖𝑖𝑖
𝑠𝑠 , and 𝑦𝑦𝑖𝑖𝑠𝑠. The description of the demand and distance scenarios and 

the corresponding numerical results will be provided in Chapter 5. 

 

The mathematical model for the preparedness stage problem is given as Model 1 below. 

Model 1: 

Minimize   𝑍𝑍1 =  ∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖  ×  𝑑𝑑𝑖𝑖𝑖𝑖 � 
𝑖𝑖⋿D

 
𝑖𝑖⋿S   (3.1) 

Subject to:   
∑  𝑥𝑥𝑖𝑖𝑖𝑖  ≤  𝐶𝐶𝑐𝑐𝑝𝑝𝑖𝑖 × 𝑦𝑦𝑖𝑖  
𝑖𝑖∈D   ∀𝑈𝑈 ∈ 𝑆𝑆 (3.2) 

∑  𝑥𝑥𝑖𝑖𝑖𝑖 
𝑖𝑖∈S  ≥  𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖  ∀𝑗𝑗 ∈ 𝐷𝐷 (3.3) 

∑ 𝑦𝑦𝑖𝑖 
𝑖𝑖∈S ≤ 𝑀𝑀𝐷𝐷   (3.4) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, integer  ∀𝑈𝑈 ∈ 𝑆𝑆,∀𝑗𝑗 ∈ 𝐷𝐷 (3.5) 
𝑦𝑦𝑖𝑖 ∈  {0,1}  ∀𝑈𝑈 ∈ 𝑆𝑆 (3.6) 

 
The objective function 𝑍𝑍1 in (3.1) minimizes the total distance between the demand nodes 

and the depot locations selected. Constraint (3.2) declares that for each delivery, the 

storage capacity of depots should not be exceeded. Constraint (3.3) ensures the amount 

of relief materials will satisfy the demand for each node. Constraint (3.4) ensures that the 
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number of selected depot locations does not exceed the maximum number of depots 

required. Constraint (3.5) is the non-negativity constraint for the integer 𝑥𝑥𝑖𝑖𝑖𝑖variables and 

constraint (3.6) defines the binary 𝑦𝑦𝑖𝑖 variables. 

 

The mathematical models for the response stage problems are given as Models 2, 3, and 

4 below. 

Model 2: 

Minimize   𝑍𝑍2 =  ∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 ×  �𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖�� 
𝑖𝑖∈D   

𝑖𝑖∈S  (3.7) 

Subject to: (3.2)-(3.6)   
 

The objective function 𝑍𝑍2 in (3.7) minimizes the total transportation cost that consists of 

fuel cost, distribution cost, and worker cost. 

 

Model 3: 

Minimize   𝑍𝑍3 =  ∑ ∑   
𝑖𝑖∈D (𝑥𝑥𝑖𝑖𝑖𝑖 × 𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖) 

𝑖𝑖∈S  (3.8) 

Subject to:  (3.2)-(3.6)   
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝 × 𝑁𝑁𝑁𝑁𝑖𝑖 
𝑖𝑖∈D   ∀𝑈𝑈 ∈ 𝑆𝑆 (3.9) 

𝑥𝑥𝑖𝑖𝑖𝑖  ≤  𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝 ×  𝑤𝑤𝑖𝑖𝑖𝑖 ∀𝑈𝑈 ∈ 𝑆𝑆,∀𝑗𝑗 ∈ 𝐷𝐷 (3.10) 

∑ 𝑤𝑤𝑖𝑖𝑖𝑖  ≤  𝑁𝑁𝑁𝑁𝑖𝑖  ×  𝑦𝑦𝑖𝑖 
𝑖𝑖∈D   ∀𝑈𝑈 ∈ 𝑆𝑆 (3.11) 

𝑤𝑤𝑖𝑖𝑖𝑖 ∈  {0,1} ∀𝑈𝑈 ∈ 𝑆𝑆,∀𝑗𝑗 ∈ 𝐷𝐷 (3.12) 
 

The objective function 𝑍𝑍3 in (3.8) minimizes the total accumulated waiting time for the 

demand nodes to receive relief items. In addition to constraints (3.2)-(3.6), constraint (3.9) 

limits delivered pallets with the number of vehicles. Constraint (3.10) ensures the number 

of delivered pallets is at most as much as the capacity of vehicles for each trip. Constraint 

(3.11) limits the number of demand nodes that can be served by a depot with the number 

of available vehicles at that depot. Constraint (3.12) defines the binary 𝑤𝑤𝑖𝑖𝑖𝑖 variables. 
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Model 4:                                                   

Minimize   𝑍𝑍4 

Subject to: (3.2), (3.4)-(3.6), (3.9)-(3.12) 
(3.13) 

 

Z4  ≥  
𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖  −  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 𝑖𝑖∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖
 ∀𝑗𝑗 ∈ 𝐷𝐷 (3.14) 

∑  𝑥𝑥𝑖𝑖𝑖𝑖 
𝑖𝑖∈S  ≤  𝑑𝑑𝑑𝑑𝑈𝑈𝑖𝑖  ∀𝑗𝑗 ∈ 𝐷𝐷 (3.15) 

𝑍𝑍𝑤𝑤 ≤�𝑐𝑐𝑓𝑓𝑍𝑍𝑓𝑓∗
3

𝑓𝑓=1

  (3.16) 

𝑍𝑍𝑤𝑤 ≥ 0  (3.17) 

 

The objective function 𝑍𝑍4 in (3.13) minimizes the maximum percent of unmet demand 

defined by constraint (3.14). In order to allow for unmet demand, constraint (3.3) is 

modified as constraint (3.15). Also, a target performance measure is defined as the 

weighted sum of the optimal objective functions of Models 1-3 (𝑍𝑍𝑤𝑤) in constraint (3.16), 

where 𝑐𝑐𝑓𝑓 is the weight of objective function of Model 𝑈𝑈 and 𝑍𝑍𝑓𝑓∗ is the optimal objective 

function value for Model 𝑈𝑈. The weighted sum variable is defined to be non-negative in 

constraint (3.17). 

 

The disaster relief logistics optimization models defined above are related to decision 

making in the preparedness stage (𝑍𝑍1) and the response stage (𝑍𝑍2,𝑍𝑍3,𝑍𝑍4). These decisions 

are based on different performance metrics, which requires a multi-objective decision 

making approach. In the next chapter, the methodology used for solving the multi-

objective optimization problem is described. 
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4. MULTI-OBJECTIVE OPTIMIZATION METHODOLOGY 

The relief distribution problem introduced in the previous chapter has multiple objective 

functions. When multi-objective optimization problems are solved, there usually is a 

trade-off between various objectives. Different studies have offered many approaches to 

model the trade-off between multiple objective functions from the decision maker’s 

perspective. Chiandussi et al. (2012) characterized the most popular techniques within 

three major groups as shown in Figure 4.1: a priori preference articulation (decide → 

search), a posteriori preference articulation (search → decide), and progressive preference 

articulation (decide ↔ search). This paper explains and compares four multi-objective 

optimization techniques: global criterion method, linear combination of weights, 𝜀𝜀-

contraint method, and multi-objective genetic algorithm (MOGA). 

 
Figure 4.1 Multi-objective optimization methods (based on Chiandussi et al. (2012) and 

Cui et al. (2017)) 
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According to Chiandussi et al. (2012), a priori preference articulation assumes that the 

decision maker can pre-order the objectives before making the search for the solution. 

The Global Criterion Method (GCM) is one of the a priori preference articulation 

methods. The target of GCM is to know how close the model is to the ideal solution or 

ideal vector (the vector of optimal solutions for every objective function separately, while 

achieving all of the objective functions at the same point). The GCM is applied using 

equation (4.1): 

𝐿𝐿𝑝𝑝 = ��𝑊𝑊𝑧𝑧
𝑝𝑝 × �

𝑈𝑈𝑧𝑧 − 𝑈𝑈𝑧𝑧0

𝑈𝑈𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑈𝑈𝑧𝑧0
�
𝑝𝑝𝑍𝑍

𝑧𝑧=1

�

1/𝑝𝑝

 (4.1) 

where 𝑊𝑊𝑧𝑧
𝑝𝑝 is the weight of objective function 𝑧𝑧, 𝑈𝑈𝑧𝑧  is the implemented function value, 𝑈𝑈𝑧𝑧0 

is the ideal function value, 𝑈𝑈𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value of objective function 𝑧𝑧, and 𝐿𝐿𝑝𝑝 is 

the closeness percentage. The choice of exponent 𝑝𝑝 affects the results significantly and 

Boychuk and Ovichinnikov (1973) assumed a 𝑝𝑝 value of 1, because the GCM became 

more complicated when 𝑝𝑝 takes higher values. Table 4.1 points the most important 

advantages and disadvantages of GCM. 

 

Table 4.1  Advantages and disadvantages of GCM 

Advantages Disadvantages 

Simple to apply Difficulty in definition of optimized 

functions Effectiveness in results  

Don not need any ranking procedures Need extra computational effort 

 

The second methodology, linear combination of weights, is of the a posteriori preference 

articulation type according to Chiandussi et al. (2012). However, Cui et al. (2017) classify 

this method as an a priori method. We observe that linear combination of weights or the 

weighted sum method is an a priori method, because the objective functions in this 

technique also have predetermined weights which are linearly combined based on 

equation (4.2): 
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min�𝛼𝛼𝑧𝑧 ×  𝑈𝑈𝑧𝑧

𝑍𝑍

𝑧𝑧=1

 (4.2) 

where 𝛼𝛼𝑧𝑧 is the weight of objective function 𝑧𝑧 and 𝑈𝑈𝑧𝑧 is the implemented function value. 

Table 4.2 shows the advantages and disadvantages of using linear combinations of 

weights. 

 

Table 4.2 Advantages and disadvantages of linear combination of weights 

Advantages Disadvantages 

Simplicity in implementation Some applications are very difficult to 

determine the weights of functions Effectiveness in computation 

 

The third methodology is 𝜀𝜀-constraint method, another a posteriori preference 

articulation according to Chiandussi et al. (2012). However, Cui et al. (2017) classify this 

method as an a priori method. We observe that the 𝜀𝜀-constraint method is an a priori 

method, because the upper bounds on the objective functions are determined before the 

search for the solution. The 𝜀𝜀-constraint method is introduced by Haimes et al. (1971). 

This technique optimizes one objective function subject to other objective functions 

defined as constrains with specific limits, 𝜀𝜀𝑧𝑧, as shown in equations (4.3)-(4.4): 

Min 𝑈𝑈𝑢𝑢 (4.3) 

Subject to:  𝑈𝑈𝑧𝑧 ≤  𝜀𝜀𝑧𝑧, 𝑧𝑧 = 1, … ,𝑍𝑍, 𝑧𝑧 ≠ 𝐴𝐴 (4.4) 

where 𝑈𝑈𝑢𝑢 is the optimized function and 𝑈𝑈𝑧𝑧’s are the other functions that are represented as 

constraints. Table 4.3 explains advantages and disadvantages of 𝜀𝜀-constraint method. 

 

Table 4.3 Advantages and disadvantages of 𝜀𝜀-constraint method 

Advantages Disadvantages 

No mixing among objectives and they keep 

their identity 

High computational cost 

Guarantees ideal values of the objective 

function with consideration of 𝑧𝑧 − 1 

objectives 

Encoding objective functions is extremely 

difficult in some  industrial applications 
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The fourth method is the evolutionary algorithm which is based on Darwin’s theory 

(survival of the fittest) with three steps to apply:  

1. Starting with random population  

2. Sequence of generation  

3. Choosing best solutions (lowest values of the objective functions)  

Examples of evolutionary algorithms are MOGA and SOGA (single-objective genetic 

algorithm). The main advantage of this method is being able to obtain multiple solutions 

in a single application. Its main disadvantage is related to high computation cost. 

 

Another important study reviews all the available methods that are used in multi-objective 

optimization (Cui et al., 2017). This review demonstrates 13 different techniques in four 

major groups, which are a priori methods, interactive methods, Pareto-dominated 

methods, and new dominance methods. 

 

Through this study both the linear combination of weights and GCM are used to choose 

the best option of weights out of possible sets of weights for the objective functions as 

presented in the next chapter. 
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5. COMPUTATIONAL RESULTS 

In this chapter, we first define the case study parameters used in computational 

experiments, followed by the results of models with different objective functions 

introduced in Chapter 3. 

5.1 Case Study Parameters 

The case study is defined on a sample network that is already provided in Figure 3.2. In 

this network, there are 12 demand nodes (blue nodes) and 7 alternative depot locations 

(orange triangular nodes). In this case study, at most 4 depot locations can be selected out 

of 7 to open depots at (𝑀𝑀𝐷𝐷 = 4). The capacity of each depot is 600 pallets (𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖 =

600,∀𝑈𝑈 ∈ 𝑆𝑆). 

 

The vehicles used for transportation are trucks with a capacity of 160 pallets (𝑁𝑁𝑐𝑐𝑐𝑐𝑝𝑝 =

160). The unit transportation cost is $2.5 per kilometer (𝑡𝑡𝑐𝑐 = $2.5). The average truck 

speed is assumed to be 45 kilometers per hour (𝑆𝑆𝑆𝑆 = 45 𝑘𝑘𝑈𝑈/ℎ𝑈𝑈). The total loading and 

unloading time is assumed to be 40 minutes (𝐿𝐿𝐿𝐿 + 𝑈𝑈𝐿𝐿 = 40 𝑈𝑈𝑈𝑈𝑈𝑈). It is assumed that 5 

workers and 5 vehicles are available at each depot (𝑁𝑁𝑁𝑁𝑖𝑖 = 5). Since the number of 

vehicles available at each depot is 5 and we assume that each vehicle is sent to one 

demand node, each depot can serve at most 5 demand nodes. 

 

There are two collection points (black squares) in the network that will be used when the 

direct access from depots to demand nodes is limited because of the disaster impact. In 

those scenarios, the relief items will be sent from depots to the available collection point 

and then sent to the demand nodes, which will increase the distances to be travelled. These 

scenarios will be explained in detail below. 
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The relief items are stored on pallets at depots. The types of items that should be stored 

on a pallet are determined based on Tzeng et al. (2006) and the quantities of items per 

pallet are determined so as to provide relief aid for four people. The value or cost of items 

on a pallet are estimated by online search for these types of relief aid items. The number 

of items of each type and their costs are shown in Table 5.1. 

 

Table 5.1 Pallet contents 

Relief Materials Amount Volume (cm3) Volume (unit) Price ($) 

Sleeping bag 4 
45×25×11= 

12375 
1 7.5 

Tent 1 27300 2.21 50 

Box of mineral water 1 28080 2.27 18 

Rice (5kg) 2 5225 0.42 10 

Box of instant noodles 1 21199 1.71 12 

Box of dry food 2 18468 1.49 15 

Box of canned food 2 3532 0.29 36 

           

Total transportation cost is defined as the summation of fuel cost, distribution cost, and 

worker cost, where fuel cost 𝑈𝑈𝑖𝑖𝑖𝑖 is calculated by multiplying the distances between 

demand nodes and depots by $2.5. Distribution cost 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 is related to shipping taxes, 

truck driver cost, and maintenance cost. We assume that there are three levels of 

distribution costs (low, medium, and high) that depends on the location of depot as shown 

in Table 5.2. Worker cost 𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖 is equal to the number of workers multiplied by the cost 

of each worker which also depends on the type of depot. So for the fourth and seventh 

depots have the highest cost (Grade A) with $40 paid for each worker, while depots 2 and 

5 with moderate cost (Grade B) as $30 paid for each worker, the others 1, 3 and 6 have 

the lowest cost (Grade C) with $20 paid to workers. These worker costs are also given in 

Table 5.2. The distribution and worker cost parameters are not assumed to be dependent 

on the demand nodes in this case study, but this assumption can be easily changed. 
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Table 5.2 Distribution and worker costs 

 Depots (𝑈𝑈) 
Distribution Cost 

(𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖) ($) 
 Depots (𝑈𝑈) 

Worker Cost 

(𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖) ($) 

Low 1 120 Grade A 4, 7 40 

Medium 2, 3, 4 140 Grade B 2, 5 30 

High 5, 6, 7 160 Grade C 1, 3, 6 20 

 

In this study, we consider the demand and distances to be the random parameters. We use 

a set of scenarios, Ω, to represent uncertainty regarding demand and distance in the model. 

The probability of each scenario is 𝑆𝑆𝑠𝑠, 𝐷𝐷 ∈ Ω, where 𝑆𝑆𝑠𝑠 ∈ [0, 1] and ∑ 𝑆𝑆𝑠𝑠𝑠𝑠∈Ω = 1. In this 

case study, the demand is random between 100 and 150 pallets for each demand node. As 

shown in Table 5.3, we define three demand scenarios: high demand scenario with 30% 

probability, medium demand scenario with 45% probability, and low demand scenario 

with 25% probability.  A set of demand values are generated from the Uniform 

distribution between 100 and 150 pallets for the medium demand case. Then, 125% of the 

medium demand is taken as the high demand case and 75% of the medium demand is 

taken as the low demand case. The fractional values are rounded up to obtain integer 

numbers. The randomly generated demand values are shown in Table 5.4.  

 

Table 5.3 Scenario probabilities 

 Demand 
Low 

(25%) 
Medium 
(45%) 

High 
(30%) 

D
is

ta
nc

es
 

Direct transportation 
(40%) 

10% 
S1 

18% 
S2 

12% 
S3 

Limited accessibility 
(collection point 1) 

(35%) 

8.75% 
S4 

15.75% 
S5 

10.5% 
S6 

Highly affected network 
(collection point 2) 

(25%) 

6.25% 
S7 

11.25% 
S8 

7.5% 
S9 

 

The other random factor is the condition of the transportation network. The distances to 

be traveled depend on how much the roads are affected by the disaster encountered. We 

define three distance scenarios: normal transportation conditions scenario with 40% 
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probability (transportation is possible directly from depots to demand nodes), limited 

accessibility of demand nodes with 35% probability (direct transportation is not possible, 

collection point 1 in Figure 3.2 must be used), and highly affected transportation rate 

scenario with 25% probability (direct transportation or using collection point 1 is not 

possible, collection point 2 in Figure 3.2 must be used). The scenario numbers are also 

provided in each cell of Table 5.3, therefore, S1 is the best-case scenario in terms of low 

demand and short distances to be travelled, whereas S9 is the worst-case scenario with 

high demand and long distances to be travelled. 

 

Table 5.4 Randomly generated demands (in pallets) according to 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈[100, 150] 

distribution 

Demand 

Scenario 

Demand Nodes (𝒋𝒋) Total 

Demand 1 2 3 4 5 6 7 8 9 10 11 12 

Low 81 76 81 85 80 90 79 75 87 87 80 86 987 

Medium 107 101 108 113 106 120 105 100 116 116 106 114 1312 

High 134 127 135 142 133 150 132 125 145 148 133 143 1647 

 

Total transportation cost (𝑈𝑈𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖) and total accumulated time (𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑖𝑖𝑖𝑖) 

depend on the distances between depot locations and demand nodes. In this case study, 

three different matrices for distances, total transportation cost, and total accumulated time 

is pre-calculated for each of the three distance scenarios as shown in Tables 5.5-5.13. 

 

Table 5.5 Distance matrix for scenarios S1, S2, S3 (in km) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 10 11 11 10 11 11 10 18 11 10 11 11 
2 7 5 5 7 11 15 16 18 18 16 15 11 
3 11 10 7 5 7 10 11 14 16 15 16 14 
4 16 15 11 7 5 5 7 11 15 16 18 18 
5 7 11 15 16 18 18 16 15 11 7 5 5 
6 11 14 16 15 16 14 11 10 7 5 7 10 
7 16 18 18 16 15 11 7 5 5 7 11 15 
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Table 5.6 Total transportation cost matrix for scenarios S1, S2, S3 (in $) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 245 248 248 245 248 248 245 265 248 245 248 248 
2 308 303 303 308 318 328 330 335 335 330 328 318 
3 268 265 258 253 258 265 268 275 280 278 280 275 
4 380 378 368 358 353 353 358 368 378 380 385 385 
5 328 338 348 350 355 355 350 348 338 328 323 323 
6 288 295 300 298 300 295 288 285 278 273 278 285 
7 400 405 405 400 398 388 378 373 373 378 388 398 

 

Table 5.7 Total accumulated waiting time matrix for scenarios S1, S2, S3 (in minutes) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 54 55 55 54 55 55 54 64 55 54 55 55 
2 50 47 47 50 55 60 62 64 64 62 60 55 
3 55 54 50 47 50 54 55 59 62 60 62 59 
4 62 60 55 50 47 47 50 55 60 62 64 64 
5 50 55 60 62 64 64 62 60 55 50 47 47 
6 55 59 62 60 62 59 55 54 50 47 50 54 
7 62 64 64 62 60 55 50 47 47 50 55 60 

 

Table 5.8 Distance matrix for scenarios S4, S5, S6 (in km) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 10 12 15 16 19 21 20 21 19 16 15 12 
2 10 12 15 16 19 21 20 21 19 16 15 12 
3 12 14 17 18 21 23 22 23 21 18 17 14 
4 16 18 21 22 25 27 26 27 25 22 21 18 
5 10 12 15 16 19 21 20 21 19 16 15 12 
6 12 14 17 18 21 23 22 23 21 18 17 14 
7 16 18 21 22 25 27 26 27 25 22 21 18 
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Table 5.9 Total transportation cost matrix for scenarios S4, S5, S6 (in $) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 245 250 258 260 268 273 270 273 268 260 258 250 
2 315 320 328 330 338 343 340 343 338 330 328 320 
3 270 275 283 285 293 298 295 298 293 285 283 275 
4 380 385 393 395 403 408 405 408 403 395 393 385 
5 335 340 348 350 358 363 360 363 358 350 348 340 
6 290 295 303 305 313 318 315 318 313 305 303 295 
7 400 405 413 415 423 428 425 428 423 415 413 405 

 

Table 5.10 Total accumulated waiting time matrix for scenarios S4, S5, S6 (in minutes) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 54 56 60 62 66 68 67 68 66 62 60 56 
2 54 56 60 62 66 68 67 68 66 62 60 56 
3 56 59 63 64 68 71 70 71 68 64 63 59 
4 62 64 68 70 74 76 75 76 74 70 68 64 
5 54 56 60 62 66 68 67 68 66 62 60 56 
6 56 59 63 64 68 71 70 71 68 64 63 59 
7 62 64 68 70 74 76 75 76 74 70 68 64 

 

Table 5.11 Distance matrix for scenarios S7, S8, S9 (in km) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 20 21 19 16 15 12 10 12 15 16 19 21 
2 26 27 25 22 21 18 16 18 21 22 25 27 
3 22 23 21 18 17 14 12 14 17 18 21 23 
4 20 21 19 16 15 12 10 12 15 16 19 21 
5 26 27 25 22 21 18 16 18 21 22 25 27 
6 22 23 21 18 17 14 12 14 17 18 21 23 
7 20 21 19 16 15 12 10 12 15 16 19 21 
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Table 5.12 Total transportation cost matrix for scenarios S7, S8, S9 (in $) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 270 273 268 260 258 250 245 250 258 260 268 273 
2 355 358 353 345 343 335 330 335 343 345 353 358 
3 295 298 293 285 283 275 270 275 283 285 293 298 
4 390 393 388 380 378 370 365 370 378 380 388 393 
5 375 378 373 365 363 355 350 355 363 365 373 378 
6 315 318 313 305 303 295 290 295 303 305 313 318 
7 410 413 408 400 398 390 385 390 398 400 408 413 

 

Table 5.13 Total accumulated waiting time matrix for scenarios S7, S8, S9 (in minutes) 

Depot 
(𝒊𝒊) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 67 68 66 62 60 56 54 56 60 62 66 68 
2 75 76 74 70 68 64 62 64 68 70 74 76 
3 70 71 68 64 63 59 56 59 63 64 68 71 
4 67 68 66 62 60 56 54 56 60 62 66 68 
5 75 76 74 70 68 64 62 64 68 70 74 76 
6 70 71 68 64 63 59 56 59 63 64 68 71 
7 67 68 66 62 60 56 54 56 60 62 66 68 

5.2 Computational Results for Demand-Distance Scenarios 

The case study problem is solved for Model 1-4 under scenarios S1-S9. In the following 

nine subsections, the computational results for the nine demand-distance scenarios are 

shown. First, Model 1-4 are separately solved for each scenario and the optimal solutions 

are discussed. Then, in order to find a solution that combines the four objective functions, 

a linear combination of weights method is used. For the multi-objective optimization 

using linear combination of weights, the weights of objective functions must be 

determined. Let 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4be the weights of the four objective functions 𝑍𝑍1, 𝑍𝑍2, 𝑍𝑍3, 

and 𝑍𝑍4. To decide which weights will be given for every objective function, we have 

experimented with all the possible combinations of weights between 0.1 and 0.7. 

Appendix B.1 shows how the combinations and the results were used, and how the 

objective functions react through these linear combinations of weights in addition to using 
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the global criterion method (GCM) to measure which one of these combinations is the 

closest to the ideal model. It can be noticed from the Appendix B.1 that the most suitable 

weights for objective functions are 𝑐𝑐2 = 0.1 and 𝑐𝑐1=𝑐𝑐3= 𝑐𝑐4= 0.3, because of the 

summation of the total percentages of differences for these weights is the lowest among 

84 combinations. GCM supports this result because it gives also the nearest value from 

the ideal model. The results shown here are obtained using GAMS 24.6.1 software with 

CPLEX 12.6.3 solver on a computer with 1.50 GHz CPU AMD processor and 4 GB RAM 

(64 bit Windows operating system). 

5.2.1 Results for Scenario 1 

Scenario 1 is the best-case scenario with low demand and short distances. The optimal 

solutions for Model 1, Model 2, Model 3, and Model 4 under Scenario 1 are provided in 

Table 5.14 below. When we compare Model 1 and Model 2, we can notice the change in 

selected depots and 𝑥𝑥𝑖𝑖𝑖𝑖 values (number of delivered pallets), because the target of Model 

1 is minimizing the total distance whereas the target of Model 2 is minimizing the total 

transportation cost. 

 

In Model 4, the percent of unmet demand ranges from 5.6 to 6.7 and there is an equitable 

distribution of pallets to demand nodes as we aimed. We note that Model 4, minimizing 

the maximum unmet demand, gives the same optimal solution in scenarios S1, S4, and 

S7, because we assume there is no vehicle restriction, i.e., there are enough number of 

trucks available at time zero such that all demand can be loaded starting at the same time 

and delivered immediately. Therefore, we report the different values just for scenarios 

with low, medium, and high demand at S1, S2, and S3. 

 

The optimal solution for minimizing the weighted sum of the four objective functions is 

given in Table 5.15, where the weights are 𝑐𝑐2 = 0.1 and 𝑐𝑐1=𝑐𝑐3= 𝑐𝑐4= 0.3 (𝑐𝑐 = [0.3, 0.1, 

0.3, 0.3]) as explained above. The target of the weighted sum model is to minimize total 

distances between depots and demand nodes while maintaining service level by 

minimizing transportation cost, accumulated waiting time, and percent of unsatisfied 

demand. 
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We also compare Model 1 and Model 2 that differ only in the objective function 

coefficients. Table 5.16 shows the differences in results between assigning the total 

distances as the primary objective function (Model 1) and assigning total transportation 

cost with giving higher weights to distribution cost and worker cost (Model 2). It is clear 

from results that the weights of 𝑊𝑊𝑈𝑈𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑈𝑈𝐷𝐷𝑡𝑡𝑖𝑖𝑖𝑖 are higher than the weight of fuel cost 

through calculating total transportation cost, and if fuel cost gets higher, then the supply 

decisions would be the same with the first objective function of minimizing the total 

distance. When we compare the objective function values for the two models, 𝑍𝑍1 value is 

71.72% more than its optimal value when 𝑍𝑍2 is minimized (5,599 versus 9,615), whereas 

𝑍𝑍2 value is 32.24% more than its optimal value when 𝑍𝑍1 is minimized (249,220 versus 

329,571). This is due to the fact that the transportation cost parameters are not directly 

proportional to the distances and significantly longer distances may be travelled while 

minimizing the transportation cost which is a combination of fuel cost, distribution cost, 

and worker cost. The summary of the results for Scenario 1 is given in Table 5.17. 

 

Table 5.14 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 1 

S1 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 5,599 9,615 8,875 7,778 
𝑍𝑍2 329,571 𝑍𝑍2∗ = 249,220 347,402 240,821 
𝑍𝑍3 47,385 52,787 𝑍𝑍3∗ = 47,385 47,934 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 6.7% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 2 4 5 7 1 3 2 4 5 7 1 3 6 
1 81 0 0 0 81 0 0 0 81 0 71 5 0 

2 76 0 0 0 10 66 76 0 0 0 71 0 0 

3 81 0 0 0 0 81 81 0 0 0 0 76 0 

4 85 0 0 0 0 85 0 85 0 0 0 80 0 

5 0 80 0 0 0 80 0 80 0 0 0 75 0 

6 0 90 0 0 90 0 0 90 0 0 85 0 0 

7 0 79 0 0 79 0 0 0 0 79 74 0 0 

8 0 0 0 75 0 75 0 0 0 75 0 0 70 

9 0 0 0 87 87 0 0 0 0 87 0 0 82 

10 0 0 87 0 87 0 0 0 87 0 0 0 82 

11 0 0 80 0 80 0 0 0 80 0 0 0 75 

12 0 0 86 0 86 0 0 0 86 0 81 0 0 
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Table 5.15 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 1 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 44,135 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 81 76 81 85 80 90 79 0 0 0 0 28 
6 0 0 0 0 0 0 0 75 87 87 80 58 

 

Table 5.16 Comparison of Model 1 and Model 2 results for Scenario 1 

S1 
𝒙𝒙𝒊𝒊𝒋𝒋∗  

Model 1 Model 2 
𝑍𝑍1∗ = 5,599 𝑍𝑍1 = 9,615 
𝑍𝑍2 = 329,571 𝑍𝑍2∗ = 249,220 

Selected Depots (𝒊𝒊) 
Demand 
Node (𝒋𝒋) 2 4 5 7 1 3 

1 81 0 0 0 81 0 
2 76 0 0 0 10 66 
3 81 0 0 0 0 81 
4 85 0 0 0 0 85 
5 0 80 0 0 0 80 
6 0 90 0 0 90 0 
7 0 79 0 0 79 0 
8 0 0 0 75 0 75 
9 0 0 0 87 87 0 
10 0 0 87 0 87 0 
11 0 0 80 0 80 0 
12 0 0 86 0 86 0 

Total 323 249 253 162 600 387 
 

Table 5.17 Scenario 1 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 5,599 2, 4, 5, 7 
𝑍𝑍2 249,220 1, 3 
𝑍𝑍3 47,385 2, 4, 5, 7 
𝑍𝑍4 6.7% 1, 3, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 44,135 1, 6 
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5.2.2 Results for Scenario 2 

In Scenario 2, demand is medium-level and distances are short. The optimal solutions for 

Model 1, Model 2, Model 3, and Model 4 under Scenario 2 are provided in Table 5.18 

below. We note that Model 4, minimizing the maximum unmet demand, gives the same 

optimal solution as in Scenario 1. The weighted sum minimization solution is presented 

in Table 5.19. The summary of the results for Scenario 2 is given in Table 5.20. 

Table 5.18 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 2 

S2 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 7,442 12,137 7,442 10,797 

𝑍𝑍2 438,131 𝑍𝑍2∗ = 
335,830 440,230 321,230 

𝑍𝑍3 62,987 69,349 𝑍𝑍3∗ = 62,987 64,439 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 6.2% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 2 4 5 7 1 3 6 2 4 5 7 1 2 3 6 
1 107 0 0 0 107 0 0 107 0 0 0 100 1 0 0 

2 101 0 0 0 0 101 0 101 0 0 0 95 0 0 0 

3 108 0 0 0 0 108 0 108 0 0 0 0 2 100 0 

4 113 0 0 0 0 113 0 113 0 0 0 0 6 100 0 

5 0 106 0 0 0 106 0 0 106 0 0 0 0 100 0 

6 0 120 0 0 0 120 0 0 120 0 0 0 13 100 0 

7 0 105 0 0 105 0 0 0 0 0 105 99 0 0 0 

8 0 0 0 100 0 52 48 0 0 0 100 0 0 0 94 

9 0 0 0 116 116 0 0 0 0 0 116 100 0 0 9 

10 0 0 116 0 52 0 64 0 0 116 0 0 0 0 100 

11 0 0 106 0 106 0 0 0 0 106 0 0 0 0 100 

12 0 0 114 0 114 0 0 0 0 114 0 100 0 0 7 
 

Table 5.19 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 2 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 57,728 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 107 101 0 0 0 120 105 0 0 0 0 0 
3 0 0 108 113 106 0 0 0 0 0 53 114 
6 0 0 0 0 0 0 0 100 116 116 53 0 
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Table 5.20 Scenario 2 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 7,442 2, 4, 5, 7 
𝑍𝑍2 335,830 1, 3, 6 
𝑍𝑍3 62,987 2, 4, 5, 7 
𝑍𝑍4 6.2% 1, 2, 3, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 57,728 1, 3, 6 

5.2.3  Results of Scenario 3 

In Scenario 3, demand is high and distances are short. The optimal solutions for Model 1, 

Model 2, Model 3, and Model 4 under Scenario 3 are provided in Table 5.21 below. We 

note that Model 4, minimizing the maximum unmet demand, gives the same optimal 

solution as in Scenario 1. The weighted sum minimization solution is presented in Table 

5.22. 

Table 5.21 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 3 

S3 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 9,347 14,028 𝑍𝑍1∗ = 9,347 13,875 
𝑍𝑍2 549,950 𝑍𝑍2∗ = 427,823 559,730 415,841 
𝑍𝑍3 𝑍𝑍3∗ = 79,077 85,474 𝑍𝑍3∗ = 79,077 78,409 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 24.8% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 2 4 5 7 1 3 6 2 4 5 7 1 3 4 6 
1 134 0 0 0 134 0 0 0 0 134 0 100 0 34 0 

2 127 0 0 0 87 40 0 127 0 0 0 100 0 0 0 

3 135 0 0 0 0 135 0 135 0 0 0 2 100 0 0 

4 142 0 0 0 0 142 0 0 142 0 0 0 100 42 0 

5 0 133 0 0 0 133 0 0 133 0 0 0 100 0 0 

6 0 150 0 0 0 150 0 0 150 0 0 100 0 50 0 

7 0 132 0 0 132 0 0 0 132 0 0 100 0 0 0 

8 0 0 0 125 0 0 125 0 0 0 125 0 0 0 95 

9 0 0 0 145 0 0 145 0 0 0 145 0 0 100 45 

10 0 0 148 0 0 0 148 0 0 148 0 0 48 0 100 

11 0 0 133 0 104 0 29 0 0 133 0 0 0 21 100 

12 0 0 143 0 143 0 0 0 0 143 0 0 43 0 100 
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Table 5.22 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 3 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 72,571 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 134 41 0 0 0 150 132 0 0 0 0 143 
3 0 86 135 142 133 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 125 145 148 133 0 

 

The summary of the results for the third scenario is given in Table 5.23. 

Table 5.23 Scenario 3 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 9,347 2, 4, 5, 7 
𝑍𝑍2 427,820 1, 3, 6 
𝑍𝑍3 86,313 4, 5, 6, 7 
𝑍𝑍4 24.8% 1, 3, 4, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 72,571 1, 3, 6 

5.2.4 Results of Scenario 4 

In Scenario 4, demand is low and distances are medium length. The optimal solutions for 

Model 1, Model 2, Model 3, and Model 4 under Scenario 4 are provided in Table 5.24 

below. The weighted sum minimization solution is presented in Table 5.25. The summary 

of the results for Scenario 4 is given in Table 5.26. 
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Table 5.24 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 4 

S4 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 16,139 16,913 16,139 16,745 
𝑍𝑍2 334,560 𝑍𝑍2∗ = 267,410 323,740 266,622 
𝑍𝑍3 61,305 62,236 𝑍𝑍3∗ = 61,305 60,885 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 3.5% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 2 5 1 3 1 2 5 1 3 6 
1 0 81 0 81 0 0 81 0 79 0 
2 0 76 0 76 0 76 0 0 0 74 
3 0 81 0 81 0 0 81 79 0 0 
4 0 85 0 85 0 0 85 0 82 0 
5 16 64 16 64 0 0 80 0 78 0 
6 90 0 90 0 0 90 0 87 0 0 
7 79 0 79 0 0 79 0 0 77 0 
8 75 0 75 0 75 0 0 0 0 73 
9 87 0 87 0 87 0 0 84 0 0 
10 87 0 87 0 0 87 0 84 0 0 
11 80 0 80 0 0 80 0 0 78 0 
12 86 0 86 0 0 0 86 83 0 0 

 

Table 5.25 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 4 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 53,624 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

3 0 0 0 0 16 90 79 75 87 87 80 86 
6 81 76 81 85 64 0 0 0 0 0 0 0 

 

Table 5.26 Scenario 4 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 16,139 2, 5 
𝑍𝑍2 267,410 1, 3 
𝑍𝑍3 61,305 1, 2, 5 
𝑍𝑍4 3.5% 1, 3, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 53,624 3, 6 
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5.2.5 Results of Scenario 5 

In Scenario 5, demand is medium-level and distances are medium length. The optimal 

solutions for Model 1, Model 2, Model 3, and Model 4 under Scenario 5 are provided in 

Table 5.27 below. The weighted sum minimization solution is presented in Table 5.28. 

The summary of the results for Scenario 5 is given in Table 5.29. 

Table 5.27 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 5 

S5 Model 1 Model 2 Model 3 Model 4 

𝑍𝑍1 𝑍𝑍1∗ = 21,462 22,886 21,462 22,322 
𝑍𝑍2 394,700 𝑍𝑍2∗ = 362,660 440,230 360,640 
𝑍𝑍3 81,503 83,313 𝑍𝑍3∗ = 81,503 80,940 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 5.7% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 2 4 5 1 3 6 1 2 5 1 3 5 6 
1 0 0 107 0 0 107 0 0 107 0 100 5 0 

2 0 96 5 0 96 5 0 101 0 0 0 0 96 

3 0 108 0 0 108 0 0 0 108 100 0 0 8 

4 0 113 0 0 113 0 0 0 113 0 0 13 100 

5 0 106 0 0 106 0 0 0 106 0 100 0 0 

6 0 120 0 0 120 0 0 120 0 100 0 0 17 

7 48 57 0 48 57 0 0 105 0 100 0 0 0 

8 100 0 0 100 0 0 100 0 0 0 92 0 8 

9 116 0 0 116 0 0 116 0 0 0 100 13 0 

10 116 0 0 116 0 0 0 116 0 100 0 0 0 

11 106 0 0 106 0 0 0 106 0 100 0 0 0 

12 114 0 0 114 0 0 0 0 114 100 0 0 11 

 

Table 5.28 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 5 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 68,078 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0 0 55 0 0 120 105 100 0 0 106 114 
3 0 96 53 113 106 0 0 0 116 116 0 0 
6 107 5 0 0 0 0 0 0 0 0 0 0 
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Table 5.29 Scenario 5 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 21,462 2, 4, 5 
𝑍𝑍2 362,660 1, 3, 6 
𝑍𝑍3 81,503 1, 2, 5 
𝑍𝑍4 5.7% 1, 3, 5, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 68,078 1, 3, 6 

5.2.6 Results of Scenario 6 

In Scenario 6, demand is high and distances are medium length. The optimal solutions 

for Model 1, Model 2, and Model 3 under Scenario 6 are provided in Table 5.30 below. 

The weighted sum minimization solution is presented in Table 5.31. The summary of the 

results for Scenario 6 is given in Table 5.32. 

Table 5.30 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 6 

S6 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 26,937 29,031 26,937 25,572 
𝑍𝑍2 512,320 𝑍𝑍2∗ = 465,210 526,090 423,890 
𝑍𝑍3 102,310 105,040 𝑍𝑍3∗ = 102,308 93,501 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ = 24.8% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 1 2 5 1 3 6 1 2 5 1 2 3 6 
1 0 0 134 0 0 134 0 0 134 100 34 0 0 

2 0 0 127 0 0 127 0 71 56 100 0 0 0 

3 0 0 135 0 0 135 0 0 135 100 0 0 35 

4 0 91 51 0 91 51 0 0 142 0 28 100 10 

5 0 133 0 0 133 0 0 0 133 0 0 0 100 

6 0 150 0 0 150 0 0 150 0 0 0 100 46 

7 0 132 0 0 132 0 132 0 0 100 0 0 0 

8 31 94 0 31 94 0 125 0 0 100 41 100 0 

9 145 0 0 145 0 0 145 0 0 0 44 100 0 

10 148 0 0 148 0 0 0 148 0 0 0 100 0 

11 133 0 0 133 0 0 45 88 0 0 39 0 0 

12 143 0 0 143 0 0 0 143 0 0 0 0 100 
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Table 5.31 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 6 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 86,678 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0 0 0 0 0 67 132 125 0 0 133 143 
3 0 0 0 91 133 83 0 0 145 148 0 0 
6 134 127 135 51 0 0 0 0 0 0 0 0 

 

Table 5.32 Scenario 6 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 26,937 1, 2, 5 
𝑍𝑍2 465,210 1, 3, 6 
𝑍𝑍3 102,308 1, 2, 5 
𝑍𝑍4 24.8% 1, 2, 3, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 86,678 1, 3, 6 

5.2.7 Results of Scenario 7 

In Scenario 7, demand is low and distances are high. The optimal solutions for Model 1, 

Model 2, Model 3, and Model 4 under Scenario 7 are provided in Table 5.33 below. The 

weighted sum minimization solution is presented in Table 5.34. The summary of the 

results for Scenario 7 is given in Table 5.35. 
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Table 5.33 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 7 

S7 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 16,108 16,882 16,108 16,718 
𝑍𝑍2 383,830 𝑍𝑍2∗ = 267,330 364,910 266,553 
𝑍𝑍3 61,259 62,254 𝑍𝑍3∗ = 61,259 60,768 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ =3.5% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 4 7 1 3 1 4 7 1 3 6 
1 0 81 0 81 0 0 81 79 0 0 
2 0 76 0 76 0 76 0 0 0 74 
3 0 81 0 81 0 0 81 0 79 0 
4 0 85 0 85 0 0 85 0 82 0 
5 16 64 16 64 0 0 80 0 78 0 
6 90 0 90 0 0 90 0 87 0 0 
7 79 0 79 0 0 79 0 0 77 0 
8 75 0 75 0 75 0 0 9 0 73 
9 87 0 87 0 87 0 0 84 0 0 
10 87 0 87 0 0 87 0 84 0 0 
11 80 0 80 0 0 80 0 0 78 0 
12 86 0 86 0 0 0 86 83 0 0 

 

Table 5.34 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 7 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 50,429 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 

Demand Node (𝒋𝒋) 
1 2 3 4 5 6 7 8 9 10 11 12 

1 81 76 0 0 80 90 0 75 87 0 25 0 
3 0 0 81 85 0 0 79 0 0 87 55 86 

 

Table 5.35 Scenario 7 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 16,108 4, 7 
𝑍𝑍2 267,330 1, 3 
𝑍𝑍3 61,259 1, 4, 7 
𝑍𝑍4 3.5% 1, 3 ,6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 50,429 1, 3 
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5.2.8 Results of Scenario 8 

In Scenario 8, demand is medium-level and distances are high. The optimal solutions for 

Model 1, Model 2, Model 3, and Model 4 under Scenario 8 are provided in Table 5.36 

below. The weighted sum minimization solution is presented in Table 5.37. The summary 

of the results for Scenario 8 is given in Table 5.38. 

 

Table 5.36 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 8 

S8 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 21,405 22,829 21,405 21,869 
𝑍𝑍2 430,160 𝑍𝑍2∗ = 362,520 484,960 366,600 
𝑍𝑍3 81,421 83,279 𝑍𝑍3∗ = 81,421 79,496 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ =5.7% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 1 4 7 1 3 6 1 4 7 1 3 4 6 
1 0 0 107 0 0 107 0 0 107 4 0 97 0 

2 0 96 5 0 96 5 0 101 0 96 0 0 0 

3 0 108 0 0 108 0 0 0 108 0 100 0 2 

4 0 113 0 0 113 0 0 0 113 0 99 8 0 

5 0 106 0 0 106 0 0 0 106 100 0 0 0 

6 0 120 0 0 120 0 0 120 0 0 0 14 100 

7 48 57 0 48 57 0 0 105 0 0 100 0 0 

8 100 0 0 100 0 0 100 0 0 0 0 0 95 

9 116 0 0 116 0 0 116 0 0 0 99 0 11 

10 116 0 0 116 0 0 0 116 0 99 0 16 0 

11 106 0 0 106 0 0 0 106 0 0 100 0 1 

12 114 0 0 114 0 0 0 0 114 100 0 12 0 

 

Table 5.37 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 8 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 68,024 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0 0 0 0 0 0 48 100 116 116 106 114 
3 0 96 108 113 106 120 57 0 0 0 0 0 
6 107 5 0 0 0 0 0 0 0 0 0 0 
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Table 5.38 Scenario 8 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 21,405 1, 4, 7 
𝑍𝑍2 362,520 1, 3, 6 
𝑍𝑍3 81,421 1, 4, 7 
𝑍𝑍4 5.7% 1, 3, 4, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 68,024 1, 3, 6 

5.2.9 Results of Scenario 9 

In Scenario 9, demand is high and distances are high. The optimal solutions for Model 1, 

Model 2, Model 3, and Model 4 under Scenario 9 are provided in Table 5.39 below. The 

weighted sum minimization solution is presented in Table 5.40. The summary of the 

results for Scenario 9 is given in Table 5.41. 

 

Table 5.39 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of four models separately for Scenario 9 

S9 Model 1 Model 2 Model 3 Model 4 
𝑍𝑍1 𝑍𝑍1∗ = 26,872 28,966 26,872 25,820 
𝑍𝑍2 564,510 𝑍𝑍2∗ = 465,040 585,930 461,020 
𝑍𝑍3 102,210 104,950 𝑍𝑍3∗ = 102,210 93,739 
𝑍𝑍4 0% 0% 0% 𝑍𝑍4∗ =24.8% 
𝒙𝒙𝒊𝒊𝒋𝒋∗  Selected Depots (𝒊𝒊) 
𝒋𝒋 1 4 7 1 3 6 1 4 7 1 3 4 6 
1 0 0 134 0 0 134 0 0 134 95 0 0 39 
2 0 0 127 0 0 127 0 71 56 100 0 20 0 
3 0 0 135 0 0 135 0 0 135 0 0 99 36 
4 0 91 51 0 91 51 0 0 142 98 44 0 0 
5 0 133 0 0 133 0 0 0 133 0 0 0 100 
6 0 150 0 0 150 0 0 150 0 0 50 100 0 
7 0 132 0 0 132 0 132 0 0 0 100 0 0 
8 31 94 0 31 94 0 125 0 0 0 0 94 0 
9 145 0 0 145 0 0 145 0 0 10 100 0 0 
10 148 0 0 148 0 0 0 148 0 0 48 0 100 
11 133 0 0 133 0 0 45 88 0 0 0 0 100 
12 143 0 0 143 0 0 0 143 0 43 0 100 0 
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Table 5.40 Optimal solutions (𝑥𝑥𝑖𝑖𝑖𝑖∗ ) of 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 for Scenario 9 

Selected 
Depots 

(𝒊𝒊) 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 = 86,615 (𝑐𝑐 = [0.3, 0.1, 0.3, 0.3]) 
Demand Node (𝒋𝒋) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 0 0 0 0 37 150 0 125 145 0 0 143 
3 0 0 0 91 96 0 132 0 0 148 133 0 
6 134 127 135 51 0 0 0 0 0 0 0 0 

 

Table 5.41 Scenario 9 summary 

Objective Function Value Selected Depots (𝒊𝒊) 
𝑍𝑍1 26,872 1, 4, 7 
𝑍𝑍2 465,040 1, 3, 6 
𝑍𝑍3 102,210 1, 4, 7 
𝑍𝑍4 24.8% 1, 3, 4, 6 

𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 86,615 1, 3, 6 

5.3  Comparison of Scenario Results 

We provide summary tables of optimal objective function values and selected depot 

locations for Models 1-4 in Table 5.42 and Table 5.43 to analyze the solutions for the 

case study under nine demand-distance scenarios. 

 

Table 5.42 Summary of optimal objective function values 

Scenario 𝑍𝑍1∗ 𝑍𝑍2∗ 𝑍𝑍3∗ 𝑍𝑍4∗ 
S1 5,599 249,220 47,385 0.067 
S2 7,442 335,830 62,987 0.062 
S3 9,347 427,823 79,077 0.248 
S4 16,139 267,410 61,305 0.035 
S5 21,462 362,660 81,503 0.057 
S6 26,937 465,210 102,308 0.248 
S7 16,108 267,330 61,259 0.035 
S8 21,405 362,520 81,421 0.057 
S9 26,872 465,040 102,210 0.248 
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Table 5.43 Summary of optimal depot locations 

Scenario Model 1 Model 2 Model 3 Model 4 
S1 2, 4, 5, 7 1, 3 2, 4, 5, 7 1, 3, 6 
S2 2, 4, 5, 7 1, 3, 6 2, 4, 5, 7 1, 2, 3, 6 
S3 2, 4, 5, 7 1, 3, 6 2, 4, 5, 7 1, 3, 4, 6 
S4 2, 5 1, 3 1, 2, 5 1, 3, 6 
S5 1, 2, 5 1, 3, 6 1, 2, 5 1, 3, 5, 6 
S6 1, 2, 5 1, 3, 6 1, 2, 5 1, 2, 3, 6 
S7 4, 7 1, 3 1, 4, 7 1, 3, 6 
S8 1, 4, 7 1, 3, 6 1, 4, 7 1, 3, 4, 6 
S9 1, 4, 7 1, 3, 6 1, 4, 7 1, 3, 4, 6 

 

We have deduced the following observations from these results. 

1. Given a certain distance scenario, 𝑍𝑍1∗, 𝑍𝑍2∗, and 𝑍𝑍3∗ values decrease as the demand 

is decreased. These objective function values are at their lowest level (best value) 

for the low demand scenarios (S1, S4, S7). 

2. Given a certain demand scenario, 𝑍𝑍1∗, 𝑍𝑍2∗, and 𝑍𝑍3∗ values are at their lowest level 

(best value) for the low demand scenarios (S1, S4, S7) and at their highest level 

(worst value) for the medium demand scenarios (S2, S5, S8). These objective 

functions have slightly better (lower) values for the high demand scenarios (S3, 

S6, S9) than for the medium demand scenarios.  

3. In all the models, depot location decisions do not change significantly depending 

on the level of demand. There are exceptions only in the form of selecting a subset 

of the depots when the demand is lower, such as in S4 and S7 for Model 1 and S1, 

S4, and S7 in Model 2. 

4. Depot location decisions in Model 1,  Model 3, and Model 4 change as the 

matrices of distance, total transportation cost, and total accumulated waiting time 

are changed, i.e., as the distances change. We can see this behavior for Model 1: 

In S4 and S7 two depot locations are selected as opposed to four locations in S1. 

Also, in S5 (or S6) and S8 (or S9) three depot locations are selected as opposed 

to four locations in S2 (or S3). Model 3 results also show a similar pattern. 

However, Model 2 depot location decisions are not affected by the changing 

distances and this is due to the fact that the objective function cost coefficients are 
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proportionally increasing as the distances increase. Therefore, the optimal 

solutions for S4 and S7 are the same for Model 2 and the optimal solution for S1 

is slightly different in terms of only 6 𝑥𝑥𝑖𝑖𝑖𝑖∗  values. 

5. The optimal Model 4 objective function values (𝑍𝑍4∗) are the same in S3, S6, S9, in 

which cases the demand is high. So, no matter what the distance scenario is, the 

best possible maximum percent of unmet demand is 24.8% for this case study. 

The 𝑍𝑍4∗ values for S4 and S7 are equal, the 𝑍𝑍4∗ values of S5 and S8 are equal, as 

well. 

6. We can also see from the results of Model 4 that the equity of percent of unmet 

demand gets worse as the demand gets higher. The percent of unmet demand for 

each demand node in each scenario are provided in Table 5.44. The standard 

deviation of percent of unmet demand among demand nodes in S3, S6, and S9 are 

significantly higher than other scenarios. 

7. It is clear from the results that the first model can also present the optimal values 

not just for 𝑍𝑍1∗ also it gives the optimal vales for 𝑍𝑍3∗. 

 

Figures 5.1-5.4 below display the optimal values for each objective function in each 

scenario. 

 
Figure 5.1 Model 1 optimal objective function values for all scenarios 
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Figure 5.2 Model 2 optimal objective function values for all scenarios 

 

 
Figure 5.3 Model 3 optimal objective function values for all scenarios 
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Figure 5.4 Model 4 optimal objective function values for all scenarios 

 

Table 5.44 Percent of unmet demand for each demand node based on Model 4 results in 

each scenario 

𝒋𝒋 S1 S2 S3 S4 S5 S6 S7 S8 S9 
1 6.7 5.6 0.0 2.5 1.9 0.0 2.5 5.6 0.0 
2 6.2 5.9 21.3 2.6 5.0 21.3 2.6 5.0 5.5 
3 6.6 5.6 24.4 2.5 0.0 0.0 2.5 5.6 0.0 
4 6.2 6.2 0.0 3.5 0.0 0.0 3.5 5.3 0.0 
5 5.9 5.7 24.8 2.5 5.7 24.8 2.5 5.7 24.8 
6 6.2 5.8 0.0 3.3 2.5 0.0 3.3 5.0 0.0 
7 5.6 5.7 24.2 2.5 4.8 24.2 2.5 4.8 24.2 
8 6.3 6.0 24.0 2.7 0.0 20.0 2.7 5.0 24.8 
9 6.7 6.0 0.0 3.4 2.6 0.0 3.4 5.2 24.1 
10 5.7 6.0 0.0 3.4 2.6 0.0 3.4 0.9 0.0 
11 6.2 5.7 9.0 2.5 5.7 24.8 2.5 4.7 24.8 
12 5.8 6.1 0.0 3.5 2.6 0.0 3.5 1.8 0.0 

Standard 
Deviation 0.372 0.202 11.862 0.458 2.136 11.929 0.458 1.548 12.340 

 

We also compare the results of minimizing the linear combination of weights for the four 

objective functions in Figure 5.5. The weights of 𝑐𝑐 = [0.3, 0.1, 0.3, 0.3] are used in 

computations after comparing the performance of various weight combinations. The 

weighted sum of four objective functions increases as the demand gets higher given any 
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distance scenario. The 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 value also increases in the second and third distance 

scenarios compared to the normal traffic conditions scenario. 

 
Figure 5.5 Optimal 𝑍𝑍𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 values for all scenarios 

5.4 Computational Results for Stochastic Outcomes 

The demand and distance scenarios are defined to have certain probabilities and the 

scenario probabilities are provided in Table 5.3. Based on these probabilities, we compute 

the expected objective function values (𝐸𝐸[𝑍𝑍] = ∑ 𝑧𝑧∗𝑆𝑆𝑠𝑠𝑠𝑠∈Ω , where 𝑆𝑆𝑠𝑠 is the probability of 

scenario 𝐷𝐷) as shown in Table 5.45 below. These expected costs can help decision makers 

in planning for disaster relief logistics operations depending on the expected scenarios. 

Table 5.45 Expected values of the objective values 

 Model 1 Model 2 Model 3 Model 4 𝐦𝐦𝐦𝐦𝐦𝐦𝒛𝒛𝒘𝒘𝒘𝒘𝒊𝒊𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
Scenarios 𝑷𝑷𝒔𝒔𝒛𝒛𝟏𝟏∗  𝑷𝑷𝒔𝒔𝒛𝒛𝟐𝟐∗  𝑷𝑷𝒔𝒔𝒛𝒛𝟑𝟑∗  𝑷𝑷𝒔𝒔𝒛𝒛𝟒𝟒∗  𝑷𝑷𝒔𝒔𝒛𝒛𝒘𝒘∗  

S1 559.900 24,922.000 4,738.500 0.0067 4,413.500 
S2 1,339.560 60,449.400 11,337.660 0.0112 10,391.040 
S3 1,121.640 51,338.760 9,489.240 0.0298 8,708.520 
S4 1,412.162 23,398.375 5,364.187 0.0031 4,692.100 
S5 3,380.265 57,118.950 12,836.722 0.0090 10,722.285 
S6 2,828.385 48,847.050 10,742.340 0.0260 9,101.190 
S7 1,006.750 16,708.125 3,828.687 0.0022 3,151.812 
S8 2,408.062 40,783.500 9,159.862 0.0064 7,652.700 
S9 2,015.400 34,878.000 7,665.750 0.0186 6,496.125 
𝑬𝑬[𝒁𝒁] 16,072.125 358,444.160 75,162.950 0.1129 65,329.273 
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6. CONCLUSIONS 

This study focuses on disaster relief logistics where the locations for depots are 

determined and the distribution of relief items is planned. Different performance 

measures are defined as the objective functions for determining the number of pallets that 

should be supplied from each depot to demand nodes. These objective functions helped 

in choosing suitable depots among several options. 

 

Based on the comparison of results for different objective functions and different 

scenarios, we can identify the characteristics of the decisions made in each case. We have 

deduced the following observations from the computational results for the case study. 

Given a certain distance scenario, total distance (𝑍𝑍1∗), total transportation cost (𝑍𝑍2∗), and 

accumulated waiting time (𝑍𝑍3∗) values decrease as the demand is decreased. These 

objective function values are at their lowest level (best value) for the low demand 

scenarios (S1, S4, S7). Given a certain demand scenario, these three objective function 

values are at their lowest level (best value) for the low demand scenarios (S1, S4, S7) and 

at their highest level (worst value) for the medium demand scenarios (S2, S5, S8).  We 

also observed that depot location decisions do not change significantly depending on the 

level of demand. There are exceptions only in the form of selecting a subset of the depots 

when the demand is lower. Depot location decisions in Model 1,  Model 3, and Model 4 

change as the matrices of distance, total transportation cost, and total accumulated waiting 

time are changed, i.e., as the distances change. However, Model 2 depot location 

decisions are not affected by the changing distances and this is due to the fact that the 

objective function cost coefficients are proportionally increasing as the distances 

increase. The optimal Model 4 objective function values (𝑍𝑍4∗) are the same in S3, S6, S9, 

in which cases the demand is high. So, no matter what the distance scenario is, the best 

possible maximum percent of unmet demand is the same. We can also see from the results 

of Model 4 that the equity of percent of unmet demand gets worse as the demand gets 
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higher. The standard deviation of percent of unmet demand among demand nodes in S3, 

S6, and S9 are significantly higher than other scenarios. It is clear from the results that 

Model 1 can produce the optimal values not only for 𝑍𝑍1 but also for 𝑍𝑍3. 

 

As a future research direction, the assumption that there are enough vehicles to deliver 

relief aid can be modified such that not all the demanded pallets can be loaded starting at 

time zero. In this case, either additional vehicles must be waited or the initial vehicles 

must be waited to return from the demand nodes after delivery. Then, the model for 

minimizing the accumulated waiting time would be a more realistic representation of the 

actual problem. Another future research direction would be application of the proposed 

models based on real data for a central region of a city where the population that can be 

affected by a disaster is dense. 

 

Uncertainty in distances and demand creates different scenarios for disaster relief 

logistics. Every scenario represents a unique situation where the different disaster 

conditions are reflected on the parameter values. These types of stochastic scenarios give 

us a good opportunity to connect with the reality and to ensure that there is a chance to 

improve these kinds of models in the future in order to protect the lives of the people and 

to decrease the huge amount of losses due to different types of disasters. 
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APPENDIX A 

A.1 GAMS file for Model 1 

 
sets 

J demand nodes /j1*j12/ 

I depots /i1*i7/; 

parameters 

cap(i) capacity of depot i 

/ i1=   600 

  i2=   600 

  i3=   600 

  i4=   600 

  i5=   600 

  i6=   600 

  i7=   600 / 

dem(j) demand in pallets at demand node j 

/ j1 =       81 

  j2 =       76 

  j3 =       81 

  j4 =       85 

  j5 =       80 

  j6 =       90 

  j7 =       79 

  j8 =       75 

  j9 =       87 

  j10=        87 

  j11=        80 

  j12=        86 / 

table d(i,j) distance in km 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  10   11   11   10   11   11   10   18   11   10    11    11 

i2   7    5    5    7   11   15   16   18   18   16    15    11 

i3  11   10    7    5    7   10   11   14   16   15    16    14 

i4  16   15   11    7    5    5    7   11   15   16    18    18 

i5   7   11   15   16   18   18   16   15   11    7     5     5 

i6  11   14   16   15   16   14   11   10    7    5     7    10 

i7  16   18   18   16   15   11    7    5    5    7    11    15 
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variables 

x(i,j) number of pallets delivered to demand nodes 

z1 total distance in km; 

integer variable x; 

binary variable y(i)  if depot i were chosen or not ; 

 

equations 

obj1 minimizing total distances to demand nodes 

capacity(i) observe capacity limit at depot i 

limitation (j) limits the demand with the capacity 

numberofdepot(j) limits number of depots to 4; 

 

obj1.. z1 =e= sum((i,j),x(i,j)*d(i,j)  )    ; 

capacity(i).. sum(j,x(i,j)) =l= cap(i)*y(i); 

limitation(j)..  sum (i,x(i,j)) =g= dem(j); 

numberofdepot(j).. sum (i,y(i)) =l= 4; 

 

model location /all/; 

Option optcr = 0.00; 

solve location using mip minimizing z1; 

display  x.l; 
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A.2 GAMS file for Model 2 

 
sets 

J demand nodes /j1*j12/ 

I depots /i1*i7/; 

 

parameters 

cap(i) capacity of depot i 

/ i1=   600 

  i2=   600 

  i3=   600 

  i4=   600 

  i5=   600 

  i6=   600 

  i7=   600 / 

dem(j) demand in pallets at demand node j 

/ j1=        81 

  j2=        76 

  j3=        81 

  j4=        85 

  j5=        80 

  j6=        90 

  j7=        79 

  j8=        75 

  j9=        87 

  j10=        87 

  j11=        80 

  j12=        86 / 

table tot(i,j) percentage of distribution cost of each pair of depots 

and nodes 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  245  248  248  245  248  248  245  265  248  245   248   248 

i2  308  303  303  308  318  328  330  335  335  330   328   318 

i3  268  265  258  253  258  265  268  275  280  278   280   275 

i4  380  378  368  358  353  353  358  368  378  380   385   385 

i5  328  338  348  350  355  355  350  348  338  328   323   323 

i6  288  295  300  298  300  295  288  285  278  273   278   285 

i7  400  405  405  400  398  388  378  373  373  378   388   398 
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variables 

x(i,j) number of pallets delivered to demand nodes 

z2 total transportation cost in $; 

integer variable x; 

binary variable y(i)  if depot i were chosen or not ; 

 

equations 

obj2 minimizing total distribution cost 

capacity(i) observe capacity limit at depot i 

limitation(j) limits the demand with the capacity 

numberofdepot(j) limits number of depots to 4; 

 

obj2.. z2 =e= sum ((i,j),(x(i,j)*(tot(i,j)))) ; 

capacity(i).. sum(j,x(i,j)) =l= cap(i)*y(i); 

limitation(j)..  sum (i,x(i,j)) =g= dem(j); 

numberofdepot(j).. sum (i,y(i)) =l= 4; 

 

model location /all/; 

Option optcr = 0.00; 

solve location using mip minimizing z2; 

display  x.l ; 
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A.3 GAMS file for Model 3 

 
sets 

J demand nodes /j1*j12/ 

I depots /i1*i7/; 

 

parameters 

nv(i) num of vehicles at each depot 

/ i1=        5 

  i2=        5 

  i3=        5 

  i4=        5 

  i5=        5 

  i6=        5 

  i7=        5 / 

vcap vehicle capacity 

/160/ 

cap(i) capacity of depot i 

/ i1=   600 

  i2=   600 

  i3=   600 

  i4=   600 

  i5=   600 

  i6=   600 

  i7=   600 / 

dem(j) demand in pallets at demand node j 

/ j1=        81 

  j2=        76 

  j3=        81 

  j4=        85 

  j5=        80 

  j6=        90 

  j7=        79 

  j8=        75 

  j9=        87 

  j10=        87 

  j11=        80 

  j12=        86 / 
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table acc(i,j) accumulated waiting time (transportation 

time+loading+unloading) 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  54   55   55   54   55   55   54   64   55   54    55    55 

i2  50   47   47   50   55   60   62   64   64   62    60    55 

i3  55   54   50   47   50   54   55   59   62   60    62    59 

i4  62   60   55   50   47   47   50   55   60   62    64    64 

i5  50   55   60   62   64   64   62   60   55   50    47    47 

i6  55   59   62   60   62   59   55   54   50   47    50    54 

i7  62   64   64   62   60   55   50   47   47   50    55    60 

variables 

x(i,j) number of pallets delivered to demand nodes 

z3 total accumulated waiting time; 

integer variable x; 

binary variable 

w(i,j) depot i services demand node j 

y(i)  if depot i were chosen or not ; 

equations 

obj3 minimizing total accumulated waiting time 

capacity(i) observe capacity limit at depot i 

capa(i) limits supplied pallets to nv * vc 

cap2(i,j) limits supplied pallets to # of vehicles which is equal # of 

served nodes 

limitation (j) limits the demand with the capacity 

numberofdepot(j) limits number of depots to 4 

serving(i) every depot will serve just 5 nodes; 

obj3.. z3 =e= sum((i,j), acc(i,j)*x(i,j)); 

capacity(i).. sum(j,x(i,j)) =l= cap(i)*y(i); 

capa(i).. sum(j,x(i,j)) =l= vcap*nv(i); 

cap2(i,j)..  x(i,j) =l= vcap*w(i,j)  ; 

limitation(j)..  sum(i,x(i,j)) =g= dem(j); 

numberofdepot(j).. sum(i,y(i)) =l= 4; 

serving(i).. sum (j, w(i,j)) =l= nv(i)*y(i) ; 

 

model location /all/; 

Option optcr = 0.00; 

solve location using mip minimizing z3; 

display  x.l , y.l , w.l; 
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A.4 GAMS file for Model 4 

 
sets 

J demand nodes /j1*j12/ 

I depots /i1*i7/; 

 

parameters 

nv(i) num of vehicles at each depot 

/ i1=        5 

  i2=        5 

  i3=        5 

  i4=        5 

  i5=        5 

  i6=        5 

  i7=        5 / 

vcap vehicle capacity 

/160/ 

cap(i) capacity of depot i 

/ i1=   600 

  i2=   600 

  i3=   600 

  i4=   600 

  i5=   600 

  i6=   600 

  i7=   600 / 

dem(j) demand in pallets at demand node j 

/ j1=        81 

  j2=        76 

  j3=        81 

  j4=        85 

  j5=        80 

  j6=        90 

  j7=        79 

  j8=        75 

  j9=        87 

  j10=        87 

  j11=        80 

  j12=        86 / 
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table d(i,j) distance in km 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  10   11   11   10   11   11   10   18   11   10    11    11 

i2   7    5    5    7   11   15   16   18   18   16    15    11 

i3  11   10    7    5    7   10   11   14   16   15    16    14 

i4  16   15   11    7    5    5    7   11   15   16    18    18 

i5   7   11   15   16   18   18   16   15   11    7     5     5 

i6  11   14   16   15   16   14   11   10    7    5     7    10 

i7  16   18   18   16   15   11    7    5    5    7    11    15 

 

table tot(i,j) percentage of distribution cost of each pair of depots 

and nodes 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  245  248  248  245  248  248  245  265  248  245   248   248 

i2  308  303  303  308  318  328  330  335  335  330   328   318 

i3  268  265  258  253  258  265  268  275  280  278   280   275 

i4  380  378  368  358  353  353  358  368  378  380   385   385 

i5  328  338  348  350  355  355  350  348  338  328   323   323 

i6  288  295  300  298  300  295  288  285  278  273   278   285 

i7  400  405  405  400  398  388  378  373  373  378   388   398 

 

table acc(i,j) accumulated waiting time (transportation 

time+loading+unloading) 

    j1   j2   j3   j4   j5   j6   j7   j8   j9   j10   j11   j12 

i1  54   55   55   54   55   55   54   64   55   54    55    55 

i2  50   47   47   50   55   60   62   64   64   62    60    55 

i3  55   54   50   47   50   54   55   59   62   60    62    59 

i4  62   60   55   50   47   47   50   55   60   62    64    64 

i5  50   55   60   62   64   64   62   60   55   50    47    47 

i6  55   59   62   60   62   59   55   54   50   47    50    54 

i7  62   64   64   62   60   55   50   47   47   50    55    60 

 

variables 

x(i,j) number of pallets delivered to demand nodes 

z4,z percent of unsatisfied demand; 

integer variable x; 

binary variable 

w(i,j) depot i services demand node j 

y(i)  if depot i were chosen or not 
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zw; 

equations 

obj  minimizing max unsatisfied demand 

obj4(j) max unsatisfied demand 

capacity(i) observe capacity limit at depot i 

capa(i) limits supplied pallets to nv * vc 

cap2(i,j) limits supplied pallets to # of vehicles which is equal # of 

served nodes 

limitation(j) limits the demand with the capacity 

numberofdepot(j) limits number of depots to 4 

serving(i) every depot will serve just 5 nodes 

zwvalue 

zwupper; 

 

obj.. z =e= z4; 

obj4(j).. z4 =g= (dem(j)- sum(i,x(i,j)))/dem(j); 

capacity(i).. sum(j,x(i,j)) =l= cap(i)*y(i); 

capa(i).. sum(j,x(i,j)) =l= vcap * nv(i); 

cap2(i,j)..  x(i,j) =l=  vcap* w(i,j)  ; 

limitation(j)..  sum(i,x(i,j)) =l= dem(j); 

numberofdepot(j).. sum(i,y(i)) =e= 4; 

serving(i).. sum (j, w(i,j)) =l= nv(i)*y(i); 

zwvalue.. zw =e= (0.3* sum((i,j), x(i,j)*d(i,j))) + (0.1*sum((i,j), 

x(i,j)*tot(i,j))) + (0.3*sum((i,j), acc(i,j)*x(i,j))); 

zwupper.. zw =l= 40817; 

 

model location /all/; 

Option optcr = 0.00; 

solve location using minlp minimizing z; 

display  x.l , y.l , w.l; 
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APPENDIX B 

B.1 Linear Combinations of Weights with GCM 
Weights 

Combinations Values  

Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 
Location 
Depots ΔZ1%  ΔZ2%  ΔZ3% ΔZ4%  

Total Δ 
% GCM % 

0.1 0.3 0.3 0.3 979 66482 12943 0.09 1,3,4,6 14.5% 200.0% 200.0% 200% 614.5% 25.679% 

0.3 0.1 0.3 0.3 2936 22161 12943 0.03 1,3,4,6 243.4% 0.0% 200.0% 0% 443.4% 25.960% 

0.2 0.3 0.2 0.3 1957 66284 8629 0.09 1,3,4,6 128.9% 199.1% 100.0% 200% 628.0% 26.915% 

0.2 0.2 0.3 0.3 1957 44321 17257 0.09 1,3,4,6 128.9% 100.0% 300.0% 200% 728.9% 30.272% 

0.1 0.2 0.3 0.4 979 44321 12943 0.12 1,3,4,6 14.5% 100.0% 200.0% 300% 614.5% 30.392% 

0.1 0.3 0.2 0.4 979 66482 8629 0.12 1,3,4,6 14.5% 200.0% 100.0% 300% 614.5% 30.760% 

0.4 0.2 0.2 0.2 2408 71695 10251 0.06 2,4,5,7 181.6% 223.5% 137.6% 100% 642.8% 31.115% 

0.4 0.1 0.3 0.2 2408 35847 15377 0.06 2,4,5,7 181.6% 61.8% 256.4% 100% 599.8% 32.099% 

0.4 0.1 0.2 0.3 2408 35847 10251 0.09 2,4,5,7 181.6% 61.8% 137.6% 200% 581.0% 32.689% 

0.3 0.2 0.2 0.3 2936 44321 8629 0.09 1,3,4,6 243.4% 100.0% 100.0% 200% 643.4% 33.684% 

0.4 0.2 0.3 0.1 2408 71695 15377 0.03 2,4,5,7 181.6% 223.5% 256.4% 0% 661.6% 33.858% 

0.2 0.2 0.2 0.4 1957 44321 12943 0.12 1,3,4,6 128.9% 100.0% 200.0% 300% 728.9% 34.123% 

0.2 0.3 0.1 0.4 1957 66284 4314 0.12 1,3,4,6 128.9% 199.1% 0.0% 300% 628.0% 34.455% 

0.4 0.2 0.1 0.3 2408 71695 5126 0.09 2,4,5,7 181.6% 223.5% 18.8% 200% 624.0% 34.629% 

0.1 0.1 0.4 0.4 979 22161 17257 0.12 1,3,4,6 14.5% 0.0% 300.0% 300% 614.5% 35.127% 

0.1 0.3 0.4 0.2 855 102231 16885 0.09 1,2,5 0.0% 361.3% 291.4% 200% 852.7% 35.329% 

0.1 0.4 0.1 0.4 979 88643 4314 0.12 1,3,4,6 14.5% 300.0% 0.0% 300% 614.5% 36.231% 

0.3 0.3 0.1 0.3 2936 66482 4314 0.09 1,3,4,6 243.4% 200.0% 0.0% 200% 643.4% 36.511% 

0.2 0.3 0.3 0.2 1710 102231 16885 0.09 1,2,5 100.0% 361.3% 291.4% 200% 952.7% 36.835% 

0.3 0.3 0.2 0.2 2213 81348 11588 0.12 1.2 158.8% 267.1% 168.6% 300% 894.5% 36.863% 

0.4 0.3 0.2 0.1 2408 107543 10251 0.03 2,4,5,7 181.6% 385.3% 137.6% 0% 704.5% 37.151% 

0.1 0.2 0.4 0.3 855 68154 16885 0.135 1,2,5 0.0% 207.5% 291.4% 350% 848.9% 37.321% 

0.4 0.3 0.1 0.2 2408 107543 5126 0.06 2,4,5,7 181.6% 385.3% 18.8% 100% 685.7% 37.331% 

0.2 0.1 0.3 0.4 1957 22161 17257 0.12 1,3,4,6 128.9% 0.0% 300.0% 300% 728.9% 37.628% 

0.2 0.1 0.4 0.3 1710 34077 16885 0.135 1,2,5 100.0% 53.8% 291.4% 350% 795.2% 37.634% 

0.2 0.2 0.4 0.2 1710 68154 22514 0.09 1,2,5 100.0% 207.5% 421.9% 200% 929.4% 37.995% 

0.3 0.2 0.3 0.2 2565 68154 16885 0.09 1,2,5 200.0% 207.5% 291.4% 200% 898.9% 38.172% 

0.3 0.4 0.2 0.1 2213 108464 11588 0.06 1.2 158.8% 389.4% 168.6% 100% 816.9% 38.530% 

0.1 0.2 0.2 0.5 979 44321 8629 0.15 1,3,4,6 14.5% 100.0% 100.0% 400% 614.5% 38.806% 

0.5 0.1 0.2 0.2 3010 35847 10251 0.06 2,4,5,7 252.0% 61.8% 137.6% 100% 551.4% 39.603% 

0.2 0.3 0.4 0.1 1710 102231 22514 0.045 1,2,5 100.0% 361.3% 421.9% 50% 933.2% 41.003% 

0.3 0.1 0.2 0.4 2936 22161 8629 0.12 1,3,4,6 243.4% 0.0% 100.0% 300% 643.4% 41.040% 

0.1 0.1 0.3 0.5 979 22161 12943 0.15 1,3,4,6 14.5% 0.0% 200.0% 400% 614.5% 41.082% 

0.3 0.3 0.3 0.1 2565 102231 16885 0.045 1,2,5 200.0% 361.3% 291.4% 50% 902.7% 41.180% 
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Linear Combinations of Weights with GCM (continued) 

0.3 0.2 0.1 0.4 2936 44321 4314 0.12 1,3,4,6 243.4% 100.0% 0.0% 300% 643.4% 41.224% 

0.5 0.2 0.2 0.1 3010 71695 10251 0.03 2,4,5,7 252.0% 223.5% 137.6% 0% 613.2% 41.362% 

0.2 0.4 0.3 0.1 2213 108464 17382 0.06 1.2 158.8% 389.4% 302.9% 100% 951.2% 41.517% 

0.5 0.2 0.1 0.2 3010 71695 5126 0.06 2,4,5,7 252.0% 223.5% 18.8% 100% 594.4% 41.542% 

0.1 0.3 0.1 0.5 979 66482 4314 0.15 1,3,4,6 14.5% 200.0% 0.0% 400% 614.5% 41.633% 

0.5 0.1 0.3 0.1 3010 35847 15377 0.03 2,4,5,7 252.0% 61.8% 256.4% 0% 570.2% 42.346% 

0.3 0.2 0.4 0.1 2565 68514 22514 0.045 1,2,5 200.0% 209.2% 421.9% 50% 881.0% 42.383% 

0.1 0.4 0.4 0.1 855 136308 16885 0.045 1,2,5 0.0% 515.1% 291.4% 50% 856.5% 42.402% 

0.1 0.4 0.3 0.2 1107 108464 17382 0.12 1.2 29.5% 389.4% 302.9% 300% 1021.8% 42.517% 

0.2 0.4 0.2 0.2 2213 108464 11588 0.12 1.2 158.8% 389.4% 168.6% 300% 1016.9% 42.822% 

0.5 0.1 0.1 0.3 3010 35847 5126 0.09 2,4,5,7 252.0% 61.8% 18.8% 200% 532.6% 43.116% 

0.3 0.4 0.1 0.2 2213 108464 5794 0.12 1.2 158.8% 389.4% 34.3% 300% 882.6% 43.138% 

0.3 0.1 0.4 0.2 2565 34077 22514 0.09 1,2,5 200.0% 53.8% 421.9% 200% 875.7% 43.398% 

0.2 0.2 0.1 0.5 1957 44321 8629 0.15 1,3,4,6 128.9% 100.0% 100.0% 400% 728.9% 43.766% 

0.2 0.1 0.2 0.5 1957 22161 12943 0.15 1,3,4,6 128.9% 0.0% 200.0% 400% 728.9% 44.812% 

0.2 0.2 0.5 0.1 1710 68154 28142 0.045 1,2,5 100.0% 207.5% 552.3% 50% 909.9% 45.372% 

0.1 0.2 0.5 0.2 855 68154 28142 0.09 1,2,5 0.0% 207.5% 552.3% 200% 959.9% 46.116% 

0.2 0.1 0.5 0.2 1710 34077 28142 0.09 1,2,5 100.0% 53.8% 552.3% 200% 906.1% 46.429% 

0.1 0.5 0.3 0.1 1107 135580 17382 0.06 1.2 29.5% 511.8% 302.9% 100% 944.2% 47.418% 

0.5 0.3 0.1 0.1 3010 107543 5126 0.03 2,4,5,7 252.0% 385.3% 18.8% 0% 656.1% 47.578% 

0.2 0.5 0.2 0.1 2213 135580 11588 0.06 1.2 158.8% 511.8% 168.6% 100% 939.2% 47.723% 

0.3 0.5 0.1 0.1 2213 135580 5974 0.06 1.2 158.8% 511.8% 38.5% 100% 809.1% 48.091% 

0.1 0.5 0.2 0.2 1107 135580 11588 0.12 1.2 29.5% 511.8% 168.6% 300% 1009.9% 48.723% 

0.1 0.3 0.5 0.1 855 102231 28142 0.045 1,2,5 0.0% 361.3% 552.3% 50% 963.7% 49.124% 

0.1 0.4 0.2 0.3 1107 108464 11588 0.18 1.2 29.5% 389.4% 168.6% 500% 1087.5% 50.488% 

0.3 0.1 0.5 0.1 2565 34077 28142 0.045 1,2,5 200.0% 53.8% 552.3% 50% 856.1% 50.774% 

0.3 0.1 0.1 0.5 2936 22161 4314 0.15 1,3,4,6 243.4% 0.0% 0.0% 400% 643.4% 51.914% 

0.1 0.1 0.5 0.3 855 34077 28142 0.135 1,2,5 0.0% 53.8% 552.3% 350% 956.1% 52.173% 

0.2 0.5 0.1 0.2 2213 135580 5794 0.12 1.2 158.8% 511.8% 34.3% 300% 1004.9% 52.331% 

0.1 0.1 0.2 0.6 979 22161 8629 0.18 1,3,4,6 14.5% 0.0% 100.0% 500% 614.5% 52.829% 

0.4 0.1 0.4 0.1 3420 34077 22514 0.045 1,2,5 300.0% 53.8% 421.9% 50% 825.7% 52.832% 

0.1 0.2 0.1 0.6 979 44321 4314 0.18 1,3,4,6 14.5% 100.0% 0.0% 500% 614.5% 53.013% 

0.6 0.1 0.2 0.1 3613 35847 10251 0.03 2,4,5,7 322.6% 61.8% 137.6% 0% 522.0% 53.451% 

0.6 0.1 0.1 0.2 3613 35847 5126 0.06 2,4,5,7 322.6% 61.8% 18.8% 100% 503.2% 53.631% 

0.2 0.4 0.1 0.3 2213 108464 5794 0.18 1.2 158.8% 389.4% 34.3% 500% 1082.6% 54.096% 

0.4 0.4 0.1 0.1 3010 143391 5126 0.03 2,4,5,7 252.0% 547.0% 18.8% 0% 817.9% 54.811% 

0.6 0.2 0.1 0.1 3613 71695 5126 0.03 2,4,5,7 322.6% 223.5% 18.8% 0% 564.9% 55.391% 

0.4 0.1 0.1 0.4 3915 22161 4314 0.12 1,3,4,6 357.9% 0.0% 0.0% 300% 657.9% 56.429% 

0.1 0.2 0.6 0.1 855 68154 33770 0.045 1,2,5 0.0% 207.5% 682.8% 50% 940.3% 56.701% 

0.1 0.6 0.2 0.1 1107 162692 11588 0.06 1.2 29.5% 634.1% 168.6% 100% 932.2% 56.858% 

0.2 0.1 0.6 0.1 1710 34077 33770 0.045 1,2,5 100.0% 53.8% 682.8% 50% 886.6% 57.014% 
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Linear Combinations of Weights with GCM (continued) 

0.1 0.1 0.6 0.2 855 34077 33770 0.09 1,2,5 0.0% 53.8% 682.8% 200% 936.6% 57.758% 

0.2 0.1 0.1 0.6 1957 22161 8629 0.18 1,3,4,6 128.9% 0.0% 100.0% 500% 728.9% 57.790% 

0.1 0.5 0.1 0.3 1107 135580 5794 0.18 1.2 29.5% 511.8% 34.3% 500% 1075.6% 59.998% 

0.2 0.6 0.1 0.1 2213 162692 5794 0.06 1.2 158.8% 634.1% 34.3% 100% 927.3% 60.466% 

0.1 0.6 0.1 0.2 1107 162692 5794 0.12 1.2 29.5% 634.1% 34.3% 300% 997.9% 61.466% 

0.1 0.1 0.1 0.7 979 22161 4314 0.21 1,3,4,6 14.5% 0.0% 0.0% 600% 614.5% 70.369% 

0.7 0.1 0.1 0.1 4215 35847 5126 0.03 2,4,5,7 393.0% 61.8% 18.8% 0% 473.6% 71.048% 

0.1 0.1 0.7 0.1 855 34077 39399 0.045 1,2,5 0.0% 53.8% 813.3% 50% 917.1% 71.554% 

0.1 0.7 0.1 0.1 1107 189812 5794 0.06 1.2 29.5% 756.5% 34.3% 100% 920.3% 72.839% 
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