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ANALYSIS OF STRUCTURES FORMED WITH SHUNT CAPACITORS
SEPERATED BY TRANSMISSION LINES

ABSTRACT

There are many works in literature about ladder networks containing inductors and
capacitors. But usually it is not desired for the designed circuit to have inductors since
they are heavy, bulky and available only for a limited range of values and are difficult to
implement at microwave frequencies, they are approximated with distributed
components. Richard’s transformation is used to convert lumped elements to transmission

line sections.

Now consider a low-pass lumped ladder network. If the series inductors between the shunt
capacitors are replaced with equal length transmission lines, a practically important mixed
structure is obtained. Since the lengths of all the transmission lines are the same, these
lines are called commensurate lines or unit elements (UE). It is very practical to fabricate
this structure. If the transmission lines are quarter wavelength long, they are referred to
as admittance inverters. These structures are useful especially for narrowband (<10%)

bandpass and bandstop filters.

In this thesis, as opposed to the structures existing in the literature and explained above
briefly, it is not necessary to have quarter wavelength transmission lines. So it is possible
to design broadband circuits. Also the transmission lines separating the parallel capacitors
are not redundant elements, they are used as circuit elements effective for the desired
response. Additionaly if it is preferred not to have shunt capacitors, they can be replaced
with open-ended stubs via Richard’s transformation. So the resultant circuit is extremely

suitable for microstrip fabrication.

In this thesis, the analysis of the mentioned mixed structure has been performed first time
in the literature in the following manner. The description of the structure by means of two
frequency variables (one for shunt capacitors and one for transmission lines) has been



detailed. Then broadband matching networks for military and commercial applications
have been designed by using this practically important mixed structure via the algorithm
that has been developed. In the algorithm, the explicit expressions for the coefficients of
the descriptive two-variable polynomials in terms of the coefficients of the single variable
boundary polynomials have been derived for various numbers of elements. These
coefficient relations have been obtained first time in the literature. Since the lumped
section contains only shunt capacitors (a degenerate network), it is impossible to use the
two-variable polynomials to calculate the capacitor values. So a synthesis algorithm for
the structure has been developed to be able to get the capacitor values from the two
variable polynomials.

Normalized prototype circuits can be designed via the developed algorithm. So the
prototype circuit can be denormalized via the frequency and impedance normalization
numbers selected by the designer considering the interested frequency band and

impedance level.

Keywords: Ladder networks, Richards transformation, Lumped elements



ILETIM HATLARI iLE AYRILMIS PARALEL KONDANSATORLER iCEREN
YAPILARIN ANALIZI

OZET

Bobin ve kondansatorlerden olusan merdiven devreler hakkinda literatiirde birgok
calisma bulunmaktadir. Fakat genellikle, agir ve biiyiik olduklari icin, iretilebilecek
deger araliklariin simirli olmas1 ve mikrodalga frekanslardaki tiretim giigliiklerinden
dolayi, tasarlanan devrelerde bobin olmasi istenmez dagitilmis elemanlar (iletim hatlar)
ile yaklasik olarak ger¢eklenmeye galisilirlar. Toplu elemanlarin dagitilmis elemanlara

¢evrilmesinde Richards doniistimii kullanilir.

Paralel bagli kondansatorlerin arasindaki seri bobinleri, esit uzunlukta iletim hatlari ile
degistirelim. Bu iletim hatlar1 Birim Eleman (BE) olarak isimlendirilir. Eger hat
parcalarinin uzunlugu ¢eyrek dalga boyu olarak segilirse admitans inverterleri elde edilir.
Bu yapilar, 6zellikle dar bantli (<10%) band geciren ve band durduran filter olarak

kullanilmaktadir.

Bu tezde, yukarida kisaca agiklanan yapilardaki iletim hatlarinin, literatiirdekinin aksine,
¢eyrek dalga boyu uzunlugunda olma zorunlulugu yoktur. Bu sayede genis bantli devreler
tasarlanabilmektedir. Ayrica kondansatorler arasindaki iletim hatlar1 sadece
kondansatorleri ayiran, elemanlar olarak yer almayip, devrenin istenen cevabi vermesi
icin devre elemani olarak kullanilmaktadir. Eger devrede toplu eleman (paralel
kondansatdr) olmasi istenmezse, Richards doniisiimii kullanilarak agik-uclu hat pargalari
ile degistirilebilirler. Sonug olarak elde edilen devre mikrostrip liretimi i¢in son derece

elverisli bir yap1 olacaktir.

Bu tezde, yukarida agiklanan devre yapisinin literatiirdeki ilk analizi yapilmistir. Pratik
acidan ¢ok onemli bu yapimin iki-degiskenli tanimi detayli olarak verilmis, gelistirilen
algoritma ile bu yap1 kullanilarak bir ¢ok askeri ve ticari uygulamada yer alabilecek

genisbant empedans uyumlastirma devresi tasarimlar1 gergeklestirilmistir. Bu



tasarimlarin  yapilabilmesi icin, devreyi tamimlayan iki-degiskenli polinomlarin
katsayilari, tek-degiskenli sinir polinomlarinin katsayilar1 kullanilarak hesaplanmistir.
Tim bu katsay:r ifadeleri, devredeki eleman sayisina yani devre derecesine baghdir.
Devrede en fazla ii¢ kondansator ve iki hat parcas1 bulundugunda katsayi iligkileri elde
edilebilmistir. Literature bu katsay1 iliskileri kazandirilmistir. Toplu eleman igeren kisim
sadece paralel bagli kondansatorlerden olustugu i¢in (dejenere devre), algoritma
sonucunda elde edilen iki-degiskenli polinomlar kullanilarak, kondansator degerlerinin

hesaplanmasi icin yeni bir yaklagim gelistirilmistir.

Ayrica, gelistirilen algoritma ile normalize edilmis prototip uyumlastirma devresi
tasarimlar1 yapilmaktadir. Dolayisiyla, tasarimer tarafindan, uygulamanin gerektirdigi
frekans ve empedans degerlerine uygun normalizasyon sayilar1 segilerek tasarlanan
devrenin istenen frekans bolgesinde ve empedans seviyesinde ¢alismasi

saglanabilmektedir.

Anahtar Sozciikler: Merdiven devreler, Richards doniisiimii, Toplu elemanlar
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1. INTRODUCTION

The broadband matching problems are solved by using distributed elements in high
frequency applications instead of using lumped components. Because of the
implementation problems for lumped components in circuits, the distributed elements are
prefered for the circuit designs in microwave frequencies. The lumped elements are used
as the equivalence of the distributed components according to the physical size. To
receive better performance, ideal lumped and distributed components can be utilized
together to form a lossless matching networks with mixed, lumped and distributed
components by the help of the Richards transformation.

In this thesis, the research is based on the analysis of the lossless ladder circuits which
ones are formed with parallel capacitors separated with the unit elements. Inductors aren’t
used in this design because of the size and weight. This component causes implementation
problems in microwave filters or broadband matching networks. The restrictions about
bandwidth in microwave circuits design is another reason for the useless of the inductor.
In literature, there are lots of studies about the ladder networks which involve only
distributed components, lumped components or both of them. (Yarman, 2008) is a study
for ladder networks with only lumped elements. (Aksen, 1994) is a study for low-pass
ladder networks which contains inductor and capacitor as lumped elements and the
lumped elements are separated by Unit Elements. This study is based on the coefficients
of the variables up to 5 components. (Sertbas, 1997) is an analysis according to the high
pass, bandpass and stopband networks which contains distributed components. (Sengiil,
2006) is an examination to circuit design which are formed due to the structures and rules

of the other three researches.

(Sengiil, 2009) is about the mixed elements ladder networks which have the same

responses with the distributed components. In order to form mixed element networks,



Richards Transformation (A=tanh SI) is used to transform the lumped elements to the
distributed elements and with the help of the Kuroda identities (Kurokawa, 1965), the
way of placement of the transmission lines can be changed .

A low pass ladder network can be formed with the lumped elements and there are
transmission lines between these lumped elements. The transmission lines are replaced
with the inductors. The resistances can be the first element and the last of these circuits.
These transmission lines have quarter-wavelength long. These structures useful for
narrowband, bandpass and bandstop filters. In this thesis, all of the wavelengths are equal
and the value of the quarter wavelength length of the transmission line is not an
indispensable condition to develop wideband circuit designs. These transmission lines are
used like a circuit components to get requested response of the circuit. In addition of all
these option, the capacitor can be replaced with the open circuit transmission lines with

the help of the Richards transformation.

After explanation of the circuit structure, the analysis of these ladder networks with mixed
elements. The approach is to explain the mixed and distributed elements in lossless two
port network. With the help of the Richards transformation, the multivariable synthesis
procedure can be used to generalize the approach due to the mixed lumped and distributed
elements. The Richards variable X is identified for distributed elements and the frequency
variable p is identified for lumped elements. To get the values of capacitor and
transmission line, the coefficients of the two variable g(p,4) and h(p,A) polynomials must
be calculated with the restricted one variable polynomials g(p), h(p) and g(%), h(x). The
number of the components are started from the 2 and up to 5 in this thesis. The capacitor
is the only one to use in this design so there is a need to find a new way to calculate the
values of the capacitors. With the selection of proper value for normalization, the circuit

can be operated with desired value of frequency and impedance.



2. LUMPED AND DISTRIBUTED COMPONENTS

Growing needs of people causes important and significant developments in
communication and circuit technology, especially in MIC technology. Naturally this
development face with difficulties about design of networks by using lumped and
distributed components. Lumped and distributed components are utilized mostly in RF
and microwave engineering due to their frequency parameters. While engineers fabricate
these networks according to needs, their main wish is minimization of the loss power or
voltage through the transmission lines used as a way for conveying the voltage or powers
from the generator to the load components. As you can see, best transmission lines are

the lossless ones for designers.

2.1 Transmission Line Components

Lumped and distributed components are used for solving filter and broadband matching
distress in RF and microwave circuits. These lumped components are electrical
components acted as inductor, capacitor or resistor in low frequencies mostly in RF
designs. They use in low frequencies because of the restriction of the small dimension
(Lq). This dimension must be less than the ratio of wavelength (y") at specific frequency.
The wavelength (y) is calculated by dividing the speed of light to given frequency. There
is no general acceptance in literature so y720 or y710 can be accepted. The restriction is
that the Lq must be less than y/20or y710. If the circuit components respond this rules, the
network will be called lumped otherwise distributed network. The lumped elements are
used in RF owing to some advantages in low frequencies. Some have smaller sizes and

smaller coupling, amplitude, phase changes.

One of the transmission line components is the distributed components which are used in
high frequencies owing to implementation problem of lumped elements in high

frequencies. One of the problem is caused by inductor, inductors don’t allow the current



to pass through so it becomes an open-circuit in high frequency. The other one is
capacitor. The capacitor becomes a short-circuit so voltage can’t be measured on its part.
The situation is useless for matching and filter design in microwave circuits. According
this situation, distributed components are used instead of lumped elements with
transmission lines in distributed circuit. The inductor is converted to the short ended
transmission line and the capacitor is converted to open-ended transmission line. The
transmission line which one has impedance and delay of transmission line (t) is the last
member of the distributed elements. In Figure 2.1 show the transformation a lump circuit
to distributed one. By this way, designers don’t have to deal with the complex frequency.
The calculation can be done with using impedance, length of the circuit elements values

and the others.

Open ended TL

O ——

Zo T

~—

C=1/Zo Z=Zo coth(p, 1)

Figure 2.1 Capacitor and transmission line equivalent

Short ended TL

~

L=Zo Z=Zotanh(p, 1)

Figure 2.2 Inductor and transmission line equivalent



p is the complex frequency.
p=o+jw (2.1)

T is the delay of transmission line. Z is the impedance. Zois the characteristic impedance.

y'is the wavelength. a is the attenuation constant.

Although, there is a solution for the calculations in design circuits at high frequencies by
the help of the distributed components. The shunt capacitor causes problems in circuits.
Because of this problems, Richards transformation (Richards, 1948) approach is used for
transforming transcendental functions of the distributed networks to rational functions.
By the help of the Richards transformation (A= tanh(pt)), the mixed lumped and
distributed networks become very important for the development in microwave
technology. Richards approach provides multivariable synthesis process where the
Richard value A for the distributed elements and frequency variable p for the lumped

elements.

Rin

\/ Network RL
Zo,T

~_ ~

«———
L Zout

Zint —— Ly

Figure 2.3 Two-port network

Zint 1S the input impedance. Zout is the output impedance. Lq is the length of transmission
unit. Zo is the characteristic impedance of transmission line. V represents the source of

voltage. Rin is the generater resistance. R is the load resistance in the load of the network.



The input impedance is calculated like this according to the wave which is provided from
the source, follows the transmission line to the load. By using these parameters, the input

impedance can be calculated.

A=tanh(pt) (2.2)
7. =7 L% 2.3
207 IR, (2.3)
Ry +tanh(pt) Z
7, 7,201 (pv) Zo (2.4)
Zy, +tanh(pt) Ry
The output impedance can be calculated.
R;, +tanh (pt) Z,
Zoui=ZL 2.5
out™=0 7 +tanh (pr) Ry, (2:5)
or
R, L Z
Z 2 a (2.6)

:Z —
out 0 ZO +7\4Rm
The open circuit TL is formulated in condition of the value of the terminated impedance
(Zv) is infinity. The formulation shows the calculation:

) Zy tNZ,
Lin= zlle Z Zo Z; =Z,

(2.7)
The short circuit TL is formulated with the condition of the value of the terminated
impedance (Zv) is zero. The formulation shows the calculation:

Z; A Z
Zint: Iim ZO L 0_

—=)\Z 2.8
7150 ZO +7\'ZL 0 ( )

2.2 Transmission Line as a Circuit Elements

Transmission line can be explained in electrical parameter. These electrical parameters
are characteristic impedance (Z,), phase constant (B), attenuation constant (a), physical
length (Lq) and propagation value (¥). By the help of these parameters, parameters can be

calculated to use in Richard domain and calculation of efficiency of the networks.



f is the operation frequency in circuits. y'is the wavelength of the transmission line.
A transmission line analysis can be done with calculating the impedance of a circuit which
one is formed with resistance, inductor in serial and admittance and capacitor in parallel

like in Figure 2.4.

For a lossy transmission line, the formulation of characteristic impedance of line will be;

7 _ R+wL (2.9)
0" |GHwC '

> —>
— ] R L
+ +
ZoLd
Vv or Vv G C
Zo,T
—
Transmission line Lumped element representation

Figure 2.4 Lumped element representation of a transmission line

The calculation of the propagation constant is for lossy transmission line.

The phase constant is represented with p. G is the conductance. Lq is the physical length

of the transmission line. Py is the phase velocity. ¢ is the phase delay measured in radians.

¥ = /(RHWL)(GH+wC) (2.10)
or
Y=0+jp (2.11)

For a lossless transmission line, R and G are 0 and the formulation of characteristic

impedance of line will be:



L
Zy= |= 2.12
0= |2 (212)

The propagation constant is formulated as:

¥=VLC (2.13)

2.3 The Utilization of Transmission Lines in Two Port Networks

Impedance and admittance methods are used to calculate the efficiency of gain power
transmissions of circuits in low frequencies. These parameters are not useful for high
frequencies because they require voltage and current which ones are calculated with the
open — short methods (like Thevenin). In high frequencies, these methods are impractical
S0 a new approach is required like scattering parameters. The scattering parameters are
calculated according to the flowed waves with forward and backward directions in

transmission lines.

The sign of the applied wave to the network show as a and the reflected wave show as b
in input and output port of circuits like in Figure 2.5. If Zg (the characteristic impedance
of transmission line ) is equal to the R ( the load resistance ), the reflection is not occured
from the load resistance. That means the applied power from the source is entirely
dissipated in Rc. In the condition of Z¢#RL, the some amount of the power will dissipate
in transmission line or the reflecion wave is occured from the R.. The efficiency of gain

power transmission is not provided as desired.

As seen in Figure 2.5, the normalized applied voltage wave (incident wave) is az in
forward direction at the first port and the reflected volage wave b; is backward direciton
in the first port. The a2 is the normalized applied voltage wave and the b is the reflected

voltage at the secound port of the network.



b2

_—
Rin
—_— t T e
ai az

Network
V1 ZO T V2

o e

RL

Zint

Zout

1=0 1=z

Figure 2.5 Two — port network with waves

The calculations of the normalized incident and reflected waves are a and

output ports. They are defined as:

_ (Vl +Rin Iint)

2R,

a4

b= (Va-RipLine)

_ (ViR L)

Ay 2\/R_L

b= ————
2R,
The value of the total voltage Vy and total curent I, are defined in two-port
the port number.

Vi=(a;*+b;)y/Riy

b in input and

(2.14)

(2.15)

(2.16)

(2.17)

. N representes

(2.18)



I,= (2.19)
Rin

Voy=(aytby)|/R. (2.20)

Due to these waves parameters, the reflection parameters of input, outport ports and

load can be calculated
a,-b
12: 2-V2
vRL

Sint represents the input reflection coefficient.

(2.21)

by Zi-Ry,
S, i=—=—"7— (2.22)

Sout represents the output reflection coefficient.

% _ Zout'ZL
2%) Zout+ZL

(2.23)

Sout:
St represents the load reflection coefficient.

ZL 'Zout

S =
t ZLdl_Zout

(2.24)

Sin representes the reflection coefficient from the generater:

o L]

= 2.25
m Zm-‘rl ( )

The reflected power can be calculated by taking square of the reflection coefficient. The
reflected power is defined as Py.
Pr=b" (2.26)

The incident power can be calculated with taking square of the incident coefficient.

The incident power is defined as P;.
Pi=a2 (227)

The total power in ports can be calculated with difference of the power incident wave

and power reflected wave. P; is representation of the power in port 1.

10



P,=P,-Pr=a’-b] (2.28)
P, is the total power in port 2.
P, = P;-Pg=a}-b; (2.29)

The total power of the system is calculated with the summation of the dissipated total

powers in two ports. Pt represents the total power of the network.
Pr=P1+P> (2.30)
Transducer power gain of the two port is defined as:

TPG=1-|S.]? (2.31)

2.4 The Definition of Scattering Parameters and Scattering Matrix

Scattering parameter (Fettweis, 1982) for the explanations of power transfer is pratical
and useful tool for networks work at high frequecies. This method is used for finite
values at output and input of the network. The tools use open circuits to find values of
voltage and current of the network. Another difference between scattering parameter
and others are structure of values in networks. In scattering parameters, the waves of

voltage and current are utilized to calculate the efficiency of the network.

Previous Seciton 2.3 is about the structure of waves. In this sections, these waves are
used to form scattering parameters. In Figure 2.5, the parameters a and b are used for the
definition of the scattering parameters. Scattering parameters are the values of the

scattering matrix for two port network as:
_[bi] 1311 «_[Su 512]
b= [bz] & [az] 5= [521 Sx» (2.32)
S represent the scattering matrix, Sjj represent the values of the scattering parameter, i is

for the number of the matrix raw, j is for the number of the coloumn of the matrix.

The relations between the scattering matrix and waves are defined as in below.

11



If a2 is 0, there is no reflection wave from the terminated load resistance (Z.) because of
the equal match between Z_ and Zout.

Input reflection is:

S =— (2.33)

Sy=— (2.34)

If a1 is O, there is an equal match between Zintand Rint.

Output reflection is:

by
822:_ (235)
a

Transducer power gain in reverse direction is:

812:_2 (2.36)

The formula of dissipated power in two port is written in equation (2.37). This formula
can be written with the scattering parameter like:

P,=ala(I-SiS) (2.37)

| represent the identity matrix, * is the transposed conjugate of a matrix. If scattering

matrix is unitary means, Pqis always greater or equal to the zero.

For lossless network,
[-S1S=0 SiS=I (2.38)
The equation (2.32) is a link for scattering parameters with each other.

S]l*sll+821*821:1 (239)

822*822+812*812=1 (240)

12



Slz*sll+82lszz* =0 (241)

821*822+812811:O (242)

If the network is reciprocal, scattering matrix is symmetrical. Symmetrical means the
transposed of a network is equal to its own matrix. For a lossless network, the

transmittance of forward and reverse direction are equal each other

ST=s (2.43)

8212812 (244)

Scattering transfer matrix (T) is used for cascade connections instead of only scattering
matrix (Fetweis, 1970). The relations of normalized waves with the trasfer matrix
parameters according this formula:

bl 1271 ~_[Ti le]
al]_T[bz]’T_ Ty To (2.45)

The transfer scattering parameters are:
(2.46)

Reciprocal scattering matrix causes the result of determinant of transfer scattering matrix
to be 1 (det T =1).

2.5 Canonic Representation of Scattering and Scattering Transfer Matrix

f, g and h are three canonic polynomials and these parameters are for the explanation of
the scattering matrix parameters and the scattering transfer matrix. As seen in the

formulas of scattering matrix and transfer matrix:

hof] og, h

_le ¢ N

S=lr -Gh*j T I(Sh* g (2.47)
g g f f

f«means f(-p) where p is the complex frequency (p=o-+jp). These are the properties of the

parameters of the 3 canonic polynomials.
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f(p), h(p) and g(p) are real polynomials in complex frequency p. g is strictly Hurwitz
polynomial (Fettweis, 1982). f, g and h parameters have a relation according to this

formula;

g g,~hh.+{fx (2.48)

o is the constant 1 or -1.

Supposing the two-port network is resiprocal, the value of the f polynomial can be even
or odd. This situation effects the value of ¢ canstant 1 or -1 with f is even and f is odd.
With this properties the formula of (2.48) can be changed to this:

gg.=hh.+of’ (2.49)

According to another role, degree of g polynomial is equal or larger than the degree of h
polynomial and the degree of polynomial f. The transmission zeros at infinity is
calculated with taking difference of the degree of polynomial g and the degree of
polynomial f.. The directions are Sz1 and Si2 scattering parameters and the calculation
will be done with 3 canonic polynomials (f, g, h). Due to the (2.49) formula, S12 is equal
to f/g and S»1 is equal to f+/g. With the (2.49), this formula can be written:

ff g8 -hh

g’ g’

(2.50)

If ff«isa real even polynomial, locations of zeros are symmetry with the jw axis. By the
help of the g’s strictly Hurwits property, any cancellation can not be occured in ff=in the
closed right half plane. Real part of p is equal to zero or a possitive number. Due to the
these conditions, the number of finite transmission zeros can be received from the degree
of f and the infinity transmission zeros can be received with difference of deg g and deg
f. Number of the finite and infinity transmission zeros are determined from the degree of

g polynomial on condition of 0 < Re(p).

The input impedance of Figure 2.3 with output is terminated with a resistance (Zo)

can be calculated with polynomials.

L= ="7=3 (2.51)
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By calculating the even part of the Zin, all of the transmission zeros can be identified.

Even part of the Zintis calculated as:

2

n I’l*) 1 (nd*+n*d) i

1 1
7. =—(Z: A7 )=—|=+— = 2.52
int 2 ( nt nt ) 2 (d d* dd* (g-h)(g*+h*) ( )

Because of the numerator and denominator terms in last part of the formula, the jw
zeros are eliminated. The 0.5(nd=+n=d) is equal to the ff+ and the finite transmission
zeros can be found in this part. Under this situation, all of the transmission zeros can be

determined by equation (3.4).
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3.TWO VARIABLE CHARACTERIZATION OF MIXED
STRUCTURES

For implementation of the lumped and distributed components together in cascaded
lossless two port (Sengiil, 2010), the two variable characterization method is needed. By
the help of the Richard’s transformation, one of the variable is Richards variable A and
the other one is the complex frequency variable p. Lumped sections can be formed
according to the p and the distributed sections can be formed due to Richards variable. If
these two variable are assumed indipendent variable with each other, the implementation
of the lumped and distributed components can be achieved by the using multivariable
methods (Sengiil, 2009).

The relation between the f, g, h two variable polynomials with scatter parameters is shown

as.

_ 1 th(p,h) of(p,A)
Sk g(p.A) Lf(p,A)  -oh(p,A) G-

hph) . _oftph) . _fpd) . _-oh(p,h)
g0’ 7 g T g TP g

Scatttering parameters in (3.1) are formed with one variable scattering parameters s(p)

SH: (32)

and s(L). S(p) and S(A) are the explanation of the scattering parameters of lumped (p) and
distributed (A) sections. In a project, the number of the components are the determination

of transmission zeros in networks.
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g(p,\) is a scattering Hurtwitz polynomial with two variable. The formula of g(p,A) is
formed with the coefficients:

Ny, Np
g(p.h)= z 2 g.p'W (3.3)

i=0 =0

Variable p is for the lumped and A is for the distributed sections. Ny is the number of the
the distributed elements (Unit Element) and N is the number of the lumped elements in

cascaded network.

Another representation of the g(p,A) is for the thesis which has the first row for the
distributed coefficients and the last column is for the coefficients of lumped. The others
are unknown coefficients whichs are solved with the algorithm improved in this thesis to
find accurate values of capacitors and impedance of UEs:

g(p,M)=p M A (3.4)
oo T 8ony

M| P (3.5)
gn 0 T BN

In (2.49) formula, G(p,A)=gg=means multiplication of the g function with pozitif variable
(p,A) and the same function with negative variable (-p,-A). The degree of result function

can be used to identify the finite and infinity transmission zeros of the network.

g(p,\) is one of the polynomial used in equation (3.4). The first row is for the distributed
coefficients and the last column is for the coefficients of the lumped elements. These are
the known coefficients in this thesis. There are other known coefficients whichs values
are zero in matrix. All accept these known coefficients are the unkown coefficients and

can be calculated with using algorithm identificated in this thesis.

The formulation of the zeros coefficients:

h(p,\)=p ™ML (3.6)

17



hgg -+ hONx
M= ¢ : (3.7)
tho thN;L
In (2.48) formula, H(p,A)=hh~means multiplication of the h function with pozitif variable

(p,A) and the same function with negative variable (-p,-1).

h(p,A) is one of the polynomial used in equation (2.48). The first row is for the distributed
coefficients and the last column is for the coefficients of the lumped elements. These are
the known coefficients in this thesis. There are other known coefficients whichs values
are zero in matrix. Accept these known coefficients, the others are the unknown

coefficients calculated by using algorithm identificated in this thesis.

If a two-port network has UEs in cascaded mode, the f(p,A) is defined as:

f(p,))=p"! (l—xz)u/ 2 (3.8)

In formula (3.8), k1 is the number of transmission zeros at dc and it is equal 0 in this
thesis because there is no serial capacitor and paralel inductor components in network. U
represents the number of cascaded UEs in networks.

For k1 =0,

f(pa)=p*! (1-42) “2=H(p)fh) (3.9)

In this thesis, goo=1, hoo=0 and foo=1 are chosen for the same input and output
normilization for foo=0%?(1-0%)"2 no matter value of the u in this condition, the answer is

always 1.
In (2.48) formula, F(p,A)=ffx means multiplication of the f function with pozitif variable
f(p,A) and the same function with negative variable f(-p,-A). F function is used for the

identification of the finite transmission zeros in network.

In low pass ladder, the number of k1 is equal zero at infinity because there are no

capacitior in series and inductor in paralel at the circuits.
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3.1 Analysis of Mixed Element Structures

In this thesis, the low pass ladders have paralel capacitors separated with unit elements.
The capacitors are the lumped components (p) and the unit elements (L) with impedance

(Zo) and transmission delay (1) are distributed elements. The aim of this algorithm to find
the unknown coefficients in My and My. By using G(p,f) and H(p,f), the proper value of

capacitors and unit elements can be calculated for broadband matching examples. The

total degree (Np+N,) of the networks are 2 to 5 in this thesis.

3.1.1 Mixed element structures formed with one capacitor and one UE

Zin Z; Zin Zy

% T cl—I Z fv —Icl

Z

Figure 3.1 Mixed element structures formed with one capacitor and one unit element

This network has one capacitor (Np=1) and one unit element (N;=1). According to

equation (2.48), two variable functions f, g, h are shown as:

For u=1 and f(p)=1,

fp)=p*! (1-42) 2=p? (1-x2)]/ 2 (3.10)
For (3.10),

F(p,\)= f(p,\)f(-p,-A)= (1-1?) (3.11)

H(p, M)=h(p, M)h(-p,-)) (3.12)

h(p, 7\.)=0+h017\.+h10p+h11p }\. (313)
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The matrix of My has 2x2 dimensions and heo is 0. According to the equation (3.8), the

matrix is:

Mh=

hgo hm] (3.14)

th hll

The known parameters are hgg, hy;, hy; and the unknown coefficient is h;y. The

boundaries are the last column for distributed and the first row for lumped elements.
G(p, M=g(p, Mg(-p,-A) (3.15)

The matrix of Mg has 2x2 dimensions and goo is 1. According to the equation (3.5), the

matrix is:

€00 gm] (3.16)

M- |
¢ (810 &

The known parameters are g, g,,, g;, and the unknown coefficient is g,,. The

boundaries are the last column for distributed and the first row for lumped elements.
G(p, M=H(p, M)+ F(p,1) (3.17)

According to these properties and explanation about F, G, H polynomials. The unknown
coefficients of G and H can be calculated by algorithm which one is the main goal of the
thesis.

G(p, A) - H(p, A) - F(p,A)=0 (3.18)

The equations are formed with using Matlab according to the result of equation (3.18).
The result is the main equation which has parameters like powered A and p (disjoint p,A
and adjacents pA onces) and powered coefficients. This equation is needed to be
paranthesized due to the same powered A for getting new equations which ones have only
parameters contains powered p and powered coefficients. Finally, this equation is
paranthesized according to the same powered p and get equations containing powered

coefficients or parameters of My, and M. These last equations are all equal to zero. By

the help of these equations, the unknown coefficients can be calculated.

The equations are provided with using Matlab. These equations are:

g - hi;=0 (3.19)
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g2 - hg; =0 (3.20)

gll'g10g01+h01h10=0 (321)

g2,- hio=0 (3.22)

The unknown coefficients gio and hio are calculated with these equations.

From the equation (3.22),

hyo
g,o=Ihiol— m;=— (3.23)
10
From the equation (3.19),
hll
g, =lhy|—> my=— (3.24)
g1
From the equation (3.21),
811
g .= (3.25)
10 go]'thI

If m, is equal to 1, the first component is capacitor. If m, is equal to -1, the first component

is unit element. The constant value of my is -1.

3.1.2 Mixed element structures formed with two capacitors and one UE

This network has two capacitors (Np=2) and one unit element (N;=1). The matrix of Mn

has 3x2 dimensions and hoo is 0. According to the equation (3.7), the matrix is:

0 hy
M- lhm h 1] (3.26)
0 hy

The known parameters are hy, hgy, h;y, hy;, hyo and the unknown coefficient is h;,. The

boundaries are the last column for distributed and the first raw for lumped elements.
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The matrix of Mghas 3x2 dimensions and g2o is 0 and goo is1.

gy
M,- |10 &1 (3.27)
0 g,

The known parameters are g, g,,, £,,> &, and the unknown coefficient is g, . The

boundaries are the last column for distributed and the first raw for lumped elements.

Zin Z;

LI
+ 1 ZL
— C
B —[ | —[CZ

Figure 3.2 Mixed element structures formed with two capacitors and one UE

According to these properties and explanation about F, G, H polynomials.The unknown

coefficients of G and H can be calculated with algorithm.

The equations are formed with using matlab according to the resut of this equation (3.18).
The result is the main equation which has parameters like powered A and p ( disjoint p,
A and adjacents pA onces) and powered coefficients. This equation is needed to be
paranthesized due to the same powered A for getting new equations which ones have only
parameters contains powered p and powered coefficients. Finally, this equation is

paranthesized according to the same powered p and get equations contain powered
coefficients or parameters of M and M. These last equations are all equal to zero. By

the help of these equations, the unknown coefficients can be calculated.

These equations are provided with using matlab. These equations are:

g2 —hy =1 (3.28)

g2, —h; =0 (3.29)
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2,180 — hithy — g,48,, + hiohy=0

11~ 8108 + hOlhIOZO

The unknown parameters gio and hyo are calculated with these equations.

For this structure, mi= -1, my=-1.

From the equation (3.31):

_hy
g0 |h10|_’m1__
10
From the equation (3.29):
h21
g21:|h21 |_) my=—
21
From the equation (3.34):
g1
g o e— e
10 o1 — m; hy,
From the equation (3.31):
m;=m;
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3.1.3 Mixed element structures formed with one capacitor and two UEs

VJ; cll - DZL

Figure 3.3 Mixed element structures formed with one capacitor and two UEs

This network has one capacitor (Np=1) and two Unit Elements (N;=2). The matrix of M
has 2x3 dimensions and hoo is 0. According to the equation (3.12), the matrix is:

hy; hoz]

0
M=[ 3.39
' lhyy by hp (3-39)

The known parameters are h, hgy, hg, hj,, and the unknown coefficients are hyg, hy;.

The boundaries are the last column for distributed and the first row for lumped elements.

The matrix of Mg has 3x2 dimensions and goo is 1.

1 g, ¢
M =[ 01 02] 3.40
£ 180 &1 8 (340)

The known parameters are g, g,, y,+ &;, and the unknown coefficients are g, , g ;-

The boundaries are the last column for distributed and the first row for lumped elements.

According to these properties and explanation about F, G, H polynomials. The unknown

coefficients of G and H can be calculated with algorithm.

The equations are formed with using Matlab according to the resut of this equation (3.18).
The result is the main equation which has parameters like powered A and p (disjoint p,A
and adjacents pA onces) and powered coefficients. This equation is needed to be
paranthesized due to the same powered A for getting new equations which ones have only
parameters contains powered p and powered coefficients. Finally, this equation is

paranthesized according to the same powered p and get equations contain powered
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coefficients or coefficients of M, and My . These last equations are all equal to zero. By

the help of these equations, the unknown coefficients can be calculated.

These equations are provided by using Matlab. These equations are:

g?z - h%2: 0

g(2)2 - thZO

2,180, — hithey — gy,8,, + hgth;2=0

g% - h%l - 2(g12g10 r hthlO): 0

g1 — hoy — 2g),=2

11~ &1080; + hOlhIO:O

g%() - h%OZO

For this structure, mi= -1, my= +1.

The unknown parameters g, ,, g,, 11 and hio are calculated by these equations.

From the equation (3.47):

hyo
g]() | 0| 20

From the equation (3.41),
hy,

g12:|h12|_>m2:_
12
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(3.46)
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From the equation (3.46),

811
= (3.50
510 g()l'mlhOl )

From the equation (3.43),
h“: g]] goz' g()] g12+ hOl h12 (351)
hg,

From the equation (3.44) with using (3.51),

g11:g02(g01g12 - h01h12) - th g12_ m1h12 (352)
go1- m, hy,

3.1.4 Mixed element structures formed with two capacitors and two UEs

Zip Z1 Z; Zin Zy Z;

¥ C1 c I I
Lty I I Y Tcl TCZ D

Figure 3.4 Mixed element structures formed with two capacitors and two UEs

This network has two capacitors (Np=2) and two unit elements (N;=2). The matrix of My,

has 3x3 dimensions and hoo is 0. According to the equation (3.8), the matrix is:
0 h01 h02
My = [hyp hyp by (3.53)
0 h21 h22

The known parameters are hy, hy;, hgy, hyo, hyy, hyg and the unknown coefficients are
h;o, hyy, hy;. The boundaries are the last column for distributed and the first row for

lumped elements.

The matrix of Mg has 3x3 dimensions and g, is 0 and g, is 1.

g gy
Mg: g10 g]] g12 (354)
0 g &y
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The known parameters are g, 2,1 0, &5 »&5y» &y, and the unknown coefficients are
€,0- &1 &, The boundaries are the last column for distributed and the first row for

lumped elements.

According to these properties and explanation about F, G, H polynomials. The unknown

coefficients of G and H can be calculated with algorithm.

The equations are formed with using Matlab according to the resut of this equation (3.18).
The result is the main equation which has parameters like powered A and p (disjoint p, A
and adjacents pA onces) and powered coefficients. This equation is needed to be
paranthesized due to the same powered A for getting new equations which ones have only
parameters contains powered p and powered coefficients. Finally, this equation is
paranthesized according to the same powered p and get equations contain powered

coefficients or coefficients of Mr and Mg. These last equations are all equal to zero. By

the help of these equations, the unknown coefficients can be calculated.

These equations are provided by using Matlab. These equations are:

g2, — hip=0 (3.55)

g11 ~ 81080; + hOlth:0 (356)

2,180 —hathyp =0 (3.57)

2 _hl - 20 =2 3.58

go] 01 goz ( . )

2 ~hip-2( - g -hpohy ot - hg1hyy)=0 3.59
g11 11 g12g10 g22 121110 g01g21 014121 ( . )
g2, —h3=0 (3.60)
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£1180p0 — hllhOZ ~ 201812 + h01h12=0 (361)

818, —hithy — g, 8, + hyh;=0 (3.62)
g, — hjp=1 (3.63)
g%z — hi, - 2(g02g22 — hgyhy)=0 (3.64)
g, = h3,=0 (3.65)

The unknown parameters g, . g ,g, and hyy, h;;, hy; are calculated with these

equations.

From the equation (3.55),

hyo
g,o=Ihiol>m=— (3.66)
10
From the equation (3.65),
h22
g,,=Iho[>my=— (3.67)
22
From the equation (3.60),
h21
g, =Ihay|>my=— (3.68)
21
From the equation (3.57),
m; = mj (369)
From the equation (3.56),
11
= 3.70
810 g01'm1h01 ( )
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From the equation (3.61),

_ g]] g()z' g01 g12+ hOl h12

h 71
Y ™ (3.71)
From the equation (3.56),
g]] g22 - hll h22
= 3.72
21 gir- mihy; ( )
From the equation (3.59) with using (3.72),
g02h22
_ -myho ) (=" g,,)
g m1h12 (g()l myng; h )
_ —heihes) - B2, 212 2 02 7
g11 gOZ(gOIgIZ 01 12) 02 gm-m1h01 02 g,,- m1h12 (3 3)

For this structure, m; = —1.

If m, isequal to -1, the first component is capacitor.

If m, isequal to 1, the first component is Unit Element.

3.1.5 Mixed element structures formed with three capacitors and two UEs

This network has three capacitors (N,=3) and two unit elements (N;=2). The matrix of

M has 4x3 dimensions and hoo is 0. According to the equation (3.12), the matrix is:

0 hy hy

_ | hy hy hp
M= 0 hy hy (3.74)

0 0 hs,

The known parameters are hgg, hyy, hoy, hy, hay, hyg, hsy, hsg, hy; and the unknown
coefficients are h;(, hy;, hy;. The boundaries are the last column for distributed and the

first row for lumped elements.
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Figure 3.5 Low order structure formed with three capacitors and two UEs

The matrix of Mg has 4x3 dimensions and g, g,,. g, are 0 and g is 1.

[ 1 % 8]

_| &0 &1 812
Mg= 3.75
10 g gy (3.79)

Lo o g32J

According to these properties and explanation about F, G, H polynomials. The unknown

coefficients of G and H can be calculated by algorithm.

The equations are formed with using Matlab according to the resut of this equation (3.18).
The result is the main equation which has parameters like powered A and p (disjoint p, A
and adjacents pA onces) and powered coefficients. This equation is needed to be
paranthesized due to the same powered A for getting new equations which ones have only
parameters contains powered p and powered coefficients. Finally, this equation is
paranthesized according to the same powered p and get equations contain powered
coefficients or parameters of My, and M. These last equations are all equal to zero. By

the help of these equations, the unknown coefficients can be calculated.

These equations are provided with using Matlab. These equations are:

g2, —h3,=0 (3.76)
g%z_h%Z — 2(812832 — hyzh3) =0 (3.77)
g%z_hiz — 2(802822 — hoohzz) = 0 (3.78)
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2118» — hllh22 — 20183 + h01h32 — 2,8 + h12h21:0

g, - hi) + 2(g22 — g1280 thizhio — g8, + ho;hy;)=0

ggz - thZI

183, — h21h32 =0

2,180, — hithey — gy,8,, + hoth;2=0

g51—h3; + 2(g10832 — hjohsy) =0

ggl —hjy — 28,72

gzlglo - h21th =0

211 7 810801 + hOlth:0

2
g%o - thZO

For this situation, m; = =1 and m, = —1.

From the equation (3.88):

From the equation (3.89):

g™ M |h10|_>m1:_

h10: m; g]()
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(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)



From the equation (3.76):

g32=lh3z|—>rnz=}E (3.91)
832
From the equation (3.91):
hy=m, g, (3.92)
From the equation (3.86):
g21=!h21\—>m1=@ (3.93)
&1
From the equation (3.93):
hy;=m; g,, (3.94)
From the equation (3.80-86):
m; = m, (3.95)
From the equation (3.87):
B0 _ggllhm (3.96)

From the equation (3.82):

_ 81180 & 81" hy; hy,

h 3.
1 hyp (3.97)
From the equation (3.81):
g, = gll g22 - hll h22 - g01g32 + h01h32 (398)
g, —mihp
From the equation (3.84, 3.97, 3.98):
gyl
) g12 — m1h12 5 (gm - mlhOI)((ﬁT - gzz)
gn:goz(gmglz - hmhlz) — hy, +hoy (3.99)

o1 — m; hy;

0 g~ m;h,

The order of the components are parallel capacitor, unit element, parallel capacitor, unit

element and parallel capacitor, unit element in networks.
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3.2 Characteristic Impedance and Capacitance Calculations

After the calculation of the unknown coefficients of g and h polynomials, the value of the
cascaded lossless commensurate lines (Sengiil, 2008) and the value of the capacitors are

calculated due to the scattering transfer parameters.

3.2.1 Characteristic impedance calculations of unit elements

The realization problem of the lumped components in circuits with using microwave
frequencies cause needs to use another approach. Distributed components are the solution
for this problem. With the Richards transformation, distributed components can be seen
like lumped element networks. The formulation of A is in equation (2.2). p=c+jw is the

complex frequency.

In this thesis, the networks are assumed as lossless, reciprocal two ports. Definition of
these networks are provided of using f, g, h polynomials in Belevitch form. The scattering
transfer matrix (T) is formed according to a cascaded two networks (N1 and N2) and the

formula of the scattering transfer matrix is in equation (2.46).

The formation of the T with N1 transfer matrix T1 and N2 scattering transfer matrix T are

represented as:

T:Tl XT2 (3100)
The matrix formation of (3.74) is:
1 [mg,. b 1 [myg,, hy
T,==— =— 3.101
A [mlhl* g > f, | myhys g, ( )

The properties of f, g, h polynomials in (T, Ty, T2) are same and the properties must be
proper for the Feldtkeller equation. According the equations (3.100) and (3.101), the
relation of the g, f, h polynomials in (T, T1, T2) can be showed with these equations.

g
?= glg2+m1h1*h2 (3102)
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h
¥= m;myh hy+m; g g, (3.103)

f:fl f2 (3 . 104)

m=m;m, (3.105)

With using these 4 equations and T.=T; 1T , the f, g, h polynomials coefficients of the
second cascaded network (N2) can be calculated. With these results, the impedance of the

N can be calculated.

hg] _ghl gl*g_hhl*
= =— 3.106
2 mlflfl* 92 flfl* ( )

In Figure 3.1, the calculation of the impedances of unit element Z; in network Nz is:

gD+ (D) 14853
9.0 —hy (1) 1S,

Z> is the impedance of second network N». For the calculation, g,(A)and h,(})

(3.107)

polynomials whichs are the polynomials of the two variable polynomials g,(p,A) and

h,(p,7) are needed. The formula is:

g, (DHhy(1)

=2y m (3.108)

N, is the number of cascaded Unit Elements in two-port network.

The definition of the g, (%) and h,(A) are;

Ny,
gW)= Z M (3.109)
k=1

N,
h(x)zz N k! (3.110)
k=1
The coefficients are formed with these equations.
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Mk=2(-1)S/N*yS G.111)

Nk=zxs (3.112)

and,

xs=h_ g(1) —g_,h(1) (3.113)

ys:gs_lg(l) _hs-lh(l) (3114)

3.2.2 Capacitance calculations

In this section, the values of shunt capacitors are calculated with synthesis algorithm
explained in (Sengiil, 2018). Shunt capacitors are the only components from the lumped
sections because they offer low rate for range and difficulty for utilization at microwave

frequencies.

For low order networks, inductors can be only located in serial to the capacitor. In this
network, transmission lines (unit elements) which have the same length, are used instead
of the inductors. Unit elements are practical to receive the wanted response with shunt
capacitor. Without the unit elements, there will be no filter or matching networks because
the capacitors will be parallel to the source and the terminated impedance. In that
situation, the gain of transmitted power will not depend on the frequency anymore.

The lumped elements are defined in the last column of My and M as seen in equations
(3.4) and (3.6). The scattering transfer matrix T in equation (2.46) contained two-variable
functions f, g, h is the definition to use for calculating the value of the capacitors. These
variables are p (p=o+jw) for capacitors and A for the unit elements. The polynomial g(p,\)

IS a scattering Hurwitz real coefficients polynomial.
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The formation of the scattering transfer matrix of mixed elements is:

T(p) is the scattering transfer matrix identification of the shunt capacitor and Tr(p, A) is
the transfer matrix identification of the remaining matrix without the extraction of the
shunt capacitor identification. Remaining transfer scattering network can be calculated
with getting inverse of the transfer matrix of shunt capacitor and multiply with the transfer

matrix of the all network.

Tr(PpV)=T" (P)T(p,V) (3.116)

T(p) is formed with h(p), g(p), f(p) functions. These functions are identify as:

C; @
hi(P)=-=p, g®E>=7p+L, fi(p)=1 (3.117)

The utilization of only capacitor in lumped sections, the circuit become a degenerated
network. Because of this, the use of the first column is impractical to get all values of
capacitors. Only the sum of the capacitors’ values can be calculated. To find the each of

the capacitors’ values, the last column of the Mgand M are used in this thesis.

The formulation of the total capacitors’ value with using the first column of My and My,
is:
glO + mhlo

c=2l0 T 10 (3.118)
' oo — thO

First value of i is zero, before the calculation of capacitor is initialized.

First step, a = Np-i, b=Np-(i+1) and c= Ny. Np is the number of capacitors and Ny is the
number of Unit Elements in two-port network. The formulation (3.119) shows the first

value of capacitor in two-port network.

For i=i+1,

_ 8 + mh,,

G
8. — mhbc

(3.119)
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_ B

m=; = (3.120)

Second step, with the calculation of C1, T(p) can be constituted according to equation
(3.117).

mg(-p)  h(p)

| W
T~ |ty s (3.121)

flp)y  flp)
The next step, Tr is calculated due to equation (3.116) and we get Mrg and Mrn due to
equation (3.116).
gz (0:M)=p ML, hg(p,M)=p'Mgpk (3.122)
Final step, if the value of the last capacitor is Cz, Cz is calculated with the coefficients of

Mgrgand Mrn Which are formed in equation (3.117).

+ mgh
¢ =Sl T TRTI0 (3.123)
90 — Mrhy,

Third step, the capacitor is calculated as equation (3.124) a= Np-i, b=Np-(i+1), c= N,..

+ mh
ciﬂ:M (3.124)
e — mhy,
gac
=—= 3.125
m= (3.125)
A new scattering transfer matrix Ti+1(p) is formed with equation (3.121).
G G
hiy1(P)=- =7p, g, (P==ptL, fira(p)=1 (3.126)

The T+1)(p) is used in equation (3.126) to form a new remaining scattering transfer matrix

Tr+1)(p,A) as:

Treir1) (PN =T1) () Tie1) (D) (3.127)

If Np—1i =1, the last capacitor will be calculated.

37



glO + mRhIO

C=2t0— 10 (3.128)
" gy — mrhy,
mp= 10 (3.129)
hyg

Otherwise, the third step is used again until the Np — i =1.
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4. BROADBAND MATCHING NETWORKS

The aim of the broadband matching is to design an equalizer network to get equal
impedance between generated (Zin) and input (Zin) or load (Z.) and output (Zout)
(Bowik, Byler and Ajluni, 2008). These equivalence is used to get maximum power gain
which is the ratio of power transferred to the load and the power constituted at the
generator due to the specified frequency band.

In ideal matching, the ratio is one without reflections and dissipated power in equalizer

network between the generator and load impedance.

There are three classifications in broadband matching problems (Yarman, 1985) due to
the difference of passive elements at input and output ports. These classifications are
single, double matching and active two port problems. If there is a purely resistance in
input port and a complex load in output port, the matching problem will be classified as
single matching problem. If the generator is the complex instead of a purely resistance,
the matching problem will be classified as double matching. If the equalizer network
consists active elements with complex in generator and load, the problem is classified as

active two-port.

The lossless network in matching is provided with perfect match impedance of generator
resistance and input impedance or the load impedance and output impedance. That means,
the reflection parameters in port 1 (Sin) and port 2 (Sout) are equal to zero according to
equations (2.22) and (2.23). That results are valid for complex load, output impedance or
generator impedance and input impedance. The transducer power gain is calculated with

these equations (2.22) and (2.23) and get this equation:

TPC}(VV)Zl'lSintlzzl'lsoutl2 (41)
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For a lossless network, Sinand Sout are zero and TPG(w) is 1. The main goal of broadband
matching is to be received maximum transducer power gain from the network in a
frequency band. As seen in equation (4.1), the minimization value of reflections

parameters effects the value of transducer power gain.

After these explanations, the next sections are about the techniques for simple and double

matching problems.

4.1 Line Segment Technique for a Single Matching Problem

In a single matching problem, the circuit has a resistance at input port and a complex load

at output port. To get a transducer power gain, an equalizer network must be calculated.

The representation of load impedance (Z.) and output impedance (Zout) are:

ZL (]W) :RL (W)+ jXL’ Zout (]W) :Rout+j Xout (42)

_ Zouw(W)Z1 (W)
ot ZoutGW)'ZLGW)

As seen in equation (4.4), transducer power gain is obtained with the real and imaginary

S TPG(W)=1-|Soy|? (4.3)

parts of load Z(jw) and the output impedance Zout(jw).

4 RinRin 4 R Rp

TPG(w)= =
(RineRin)+KintXin)?  (RoytRy ) +(XoutX1)?

(4.4)

As seen in equation (4.4), the parameters of output impedances (Rout, Xout) Should be
calculated properly to get maximum TPG value. The real frequency approach (Carlin and

Yarman, 1983) approach can be used to get those Zout value.

To find the Rout, the unknown real parts of Zoyt is represented as a number of line segments
(Carlin, 1977). The formulation is:

R, =ko+ 2 by (w)k; 4.5)
=
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bj(w) can be identified in Rout according to the sampling frequency (wj, j=1,2,.....n).For
w 2 wj, bj(w) is equal to zero. For wj.1 < w < w;, bj(w) is equal to (W - wj-1)/(wi - Wj-1).

For w < wj.1, bj(w) is equal to zero.

After calculation of Rou, the imaginary part of the out impedance is calculated with
Hilbert transformation (Carlin, 1977). The same line segments representation is used to
identify the Xout.

n

X o= z ¢(W)k (4.6)

=1

cj(w) is calculated due to Hilberts transformation technique as:

1
Cj (W):WI(W) (47)

I(w) is calculated as:

I(W)ZJWj In ij—W| dy (4.8)
wi YW

After the calculation of the unknown output impedance, the transducer power gain
equation (4.4) can be calculated. The actual result may not be desired one. The least
square method can be utilized to minimize the difference between the target and actual
power gain. The target value of transducer power gain is represented with Tq. E is the

difference of the actual and desired one. Nw is the number of sampling frequencies.

Ny
=Y (T(wik) - Ty)’ (4.9)
2

4.2 Solution for Double Matching Problems

Direct computational technique (Carlin and Yarman, 1983) can be solution for double
matching problem. In this method, the real part is identified as a real even rational
function with the unknown coefficients to optimize the gain characteristic over a specified

passband.
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The direct computational technique is used with the output impedance which is unknown
parameter. The TPG equation is shown in equation (4.13) and the complex normalized

input reflection coefficient (Sin) is used for the TPG.

Sint IS showed as:

S _Zint —Zi, (4 10)
i Zint + Zin ‘
In these equation, Zin is the input impedance and Zin is the generator impedance at port

one. Z is the load impedance and Zoy is the output impedance in network.

The real normalized reflection coefficient of the generator (Sin) is show as:

g = Zin’l 411
ln_Zln+1 ( M )

The real normalized reflection coefficient of the port 1 is showed as:

_ Zint'1
Sin= m (4.12)

Transducer power gain is shown as with Si, and Sint:

(1-ISil?)(1-S, .

TPG(w)=
|1'SinSint|2

(4.13)

The goal is identication of Sint as a function of the impedance Z». Sint is identified due to

the scattering parameters of scattering matrix as:

ShSL  Si-Sik

Sin=S11+ k=S1S2-S1> (4.14)

With the help of the equations of (2.39-42), it can be showed that:

SlZ S22
k=—2=22 (4.15)
S21 Sll

Using this identification, Sin is:

5SS
™S 1-81.85,

(4.16)
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- n
Sor=o—— Zow™ a 4.17)

With the help of the equation (4.17), the even part of the Zout is

1 nnx fx
eV(Zout)= 5 (Zout+Zout*)=aa=HH* H= E (418)
With using equations (2.40), (4.17) and (4.18), this equation can be written:
2 (Zout+zout* ) 4HH*
S S *:1-8 S *= = 419
S ) et D) Lo D Zge D) 19
With this equation, Si2 is equal to this equation:
Sip= s’ (4.20)
y (Zout+1)(zout*+1) .
Finally, Sint is equalt to:
H 7y —Zgy
S~ "2 77 (4.21)
. _f(-_]W) _ rmj@g (w) _ . .
H(]W)_g(j_w)_“/Route VO @ (w)=arg f(-jw) - arg d(Gw) (4.22)
. 7y — Zyy*
_ —armj@u(w) ZL  “out® 4.9
Sin=e T (4.23)

The equation (4.23) shows that Zout has an effect to determine the ratio of transducer

power gain with Zinand Zy.

4.3 Parametric Representation of Brune Functions

Brune functions are developed by Fettweis (Fettweis, 1979). This method is essentially
proposed for single matching problems, and is depended on the parametric representation
of the positive real impedance Zout(p) of a lossless network. The positive real impedance
Zout Which is identification of impedance when looked from the second port to the
generator, can be explained in a partial fraction expansion. Moreover the parameters
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which ones are used to identify the the poles of Zou: are based on the optimizaiton of the

gain performance of the system for wanted matching load.

Zout(p) is a positive real functions which has simple poles and it is assumed that it is a
minimum reactance function because of it, it can be identify from its even part. In other
words, the Zou(p) is equal to Zout(p)=even(p)+odd(p) and even(p) is equal to Rou(p). For
even(p)=Rout(p), the Rout(p) is Hilbert transformation of the Zou(p).

The representation of the pozitif real impedance function Zouw(p) is :
k
Zoui=Co+ 2 pTlpi (4.24)
p is the complex constant which is the distinct poles of Zout(p) with Re(pi) < 0 and B is

the complex residues, Co is a real constant.

Even Zout: Zout(p)+zout(p) b f(p)f( - p) ( 42 5)

2 n(p)n(—p)

n(p) is the hurtwitz denominator of Zou(p) and f(p) is a real polynomial. It can be even
or odd polynomial for lossless reciprocal two-ports. If the Zoyt is @ minimum reactance
function, its poles are located in the left half of the complex p plane. The Hurwitz

denominator polynomial d(p) can be identified as:
k
a@-Dc| [0 -p) (426)
=1
Dk is a real nonzero constant.

The equations (4.24) and (4.25) are used to get this formula:

k
C0+Z G f(Pf(—p 427)

Lip—p; n(p)n(-p)

With using equations (4.26) and (4.27), the Ci can be calculated with this formula:

f(pi)f(_pi)

C P DRI (p2 - p?)

(4.28)
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If degree of the f polynomial is smaller than k, Co is equal to 0. If the degree of the

polynomial f is equal to k, the value of Co is 1/ DZ.

With this equation (4.28), the definition of the Zoy can be written with terms of the
polynomial f(p) and the roots of d(p).

The monic poynomial can be written as:

ky
() =p" ) bip? (429)
i=0

The k1 and k> are nonnegative integers, bi is an arbitrary real coefficients. If the zeros of

f(p) is located on the real frequency axis of the p plane, f can be identified as:

k2
f)=p | [ +e2) (430)
i=0

If the number of poles is even, the poles can be assumed as conjugate pairs. If the number

of poles is odd, the pole can be chosen as real.

Fori=1...... num,pi= -aitjPi, pi= -ai — jBi. If the number of poles are even, the num is equal
half of number of holes for a is bigger than zero. If the number of poles are odd, num is

equal to (n-1)/2 for a is bigger than zero.

According to these explanations, the parameters of output impedance can be written as:

K
piC;

Rpwe = — Y ———
out _1W2+pi2

k
C;
' + CO Xout(w) = —Wzl M/Z—-I-plz (431)
L=

l

4.4 Real Frequency Matching with Scattering Parameters

The matching problem can be formulated in terms of scattering parameters of the lossless
equalizer network. The name of this frequency scattering approach is Simplified Real
Frequency Technique (SRFT) (Yarman, 1985). A lossless matching network is identified
with the scattering parameters which ones are formed with canonic polynomials f, g, h.
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The canonic polynomials are identified with the Belevitch representation.

he) o fp) _fo) _-ohGp)  _fp)
g TP e e TP g f(-p)

In equation (4.32), g(p) is a Hurwitz polynomial, f(p) is a real monic polynomial and o is

S

(4.32)

a constant (o= -1 or +1). If the two port N is reciprocal as well, then f is either even or
odd.

The relation of g, f, h polynomial with each other is:

g(p)g(-p)=h(p)h(-p)+f(p)f(-p) (4.33)

The degree relation of g, f, h polynomial, degree of g polynomial can be equal or bigger

than degree of h and f.

As seen in these properties, f and h polynomials are the parameters of Hurwitz polynomial
g. The definition of a network can be done with h(p) and f(p) polynomials. f(p) is the
zeros of transmission of the matching two-port network and depend on the number of
distributed elements and lumped elements which are chosen by the designer.

As the equalizer network type of components and numbers of the components are
determined, f(p) can be calculated with the degree n due to those selections. After the
coefficients of h(p) are initialized, g(p) can be calculated according to equation (4.33).
The calculations of the polynomials are used to calculate the value of scattering
parameters as in equation (4.32). With these scattering parameters, the input and output

reflections can be calculated also to get the transducer power gain in equation (4.1).

TPG can also be shown with combination of the equations (4.13) and (4.14).

(1-1Si D181 1*(A-ISLI?)

TPG(w)=
11-S11Sinl*|1-SouSL

(4.34)

Sin is the input reflection coefficient and terminated in Z,.. S_ is the load reflection
coefficient. Sout is the output reflection coefficient and terminated in Zin. Si1 is the
reflection coefficient of port one. Sy, is the reflection coefficient of the port 2.
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To calculate the transducer power gain, these are the needs and orders. Firstly, the real
coefficients are needed to be initialized. Secondly, selection of the polynomial form of
f(p) and its degree must equal or less than the degree of g(p). Thirdly, calculation of gg«
according to ff=+hh+« and the find the roots of G(p)=gg-. Fourthly, the location of LPH of
roots are chosen and g(p) is formed with them. Finally, with the known parameters of f,
g and h polynomials, the scattering parameters in equation (4.32) and reflection

coefficients are calculated to use them to find transducer power gain in equation (4.34).
The transducer power gain is become more efficient with less value of scattering

parameter of input, output and resistance in port one and load and increasing value of

forward gain (S21) according to the equation (4.34).
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5. EXAMPLES

5.1 Broadband Matching Network Formed with Mixed Element Structure

To design two-port broadband matching networks with lumped elements and distributed
elements, two variable functions are needed to generalize the method. This method
consists of Richards variable A for distributed sections and frequency variable p for
lumped sections. The purpose of the broadband matching is to get efficient design for the
power transfer from the source to the load resistance. The efficiency can be measured in
a specific frequency range with the transducer power gain which is the ratio of the power
at the load to the available power at the source.

The description of the transducer power gain is as:

4 RiRjp 4 RyuRyr,

TPG(w)= 5 5= 5 5
(Rint+Rin) +(Xint+Xin) (Rout+RL) +(Xout+XL)

(5.1)

The input impedance is represented in terms of Zi = Ri+ X, the load impedance is
represented with Zo=Ro+jXo, source impedance is represented as Zs=Rs+jXs and the

output impedance is formulated as Zout=Rout*+]Xout as seen equation (5.1).

As seen in equation (5.1), to calculate the transducer power gain, the value of the input
and output impedance of the network are needed. First, the scattering parameters in
equation (3.2) are needed to calculate the reflection coefficients from the load impedance.

7
Loz +1

(5.2)

Then, with the reflection coefficients, the input reflection coefficient can be identified

with these coefficients and the scattering parameters as in equation (3.2).
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SIZSZI SL
S=S 11 H——— 53

The output reflection coefficient is terminated at Zin (the generator impedance in port 1).

SIZSZISin
So=Spt—— 5.

With the scattering parameters, transducer power gain can be calculated with these

formula;

1S217 (1S, )

TPG=(1-[S;|? 5.5
s, S P15, 2
Finally, the input and output impedances are shown as:
1+S;
Zintzl__si (5.6)
1+S,
out™ 7.q_ S, (5.7)

The example is about getting an efficient network for transfer power by calculating
equalized network. The efficiency is measured by getting the objective Transducer power
gain TPG(w)=0.98 in this example.

The circuit has a serial inductor (L.=2) to a parallel combination of resistance (R=1) and

capacitor (C.=1) at load. The normalized load and generator impedance values are shown
in Table 5.1.
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Table 5.1 Given Normalized Load and Generator Impedance Data

w RL XL Rin Xin
0.0 1.0000 0.0000 1.0000 0.0000
0.1 0.9901 0.1010 1.0000 0.1000
0.2 0.9615 0.2077 1.0000 0.2000
0.3 0.9174 0.3248 1.0000 0.3000
0.4 0.8621 0.4552 1.0000 0.4000
0.5 0.8000 0.6000 1.0000 0.5000
0.6 0.7353 0.7588 1.0000 0.6000
0.7 0.6711 0.9302 1.0000 0.7000
0.8 0.6098 1.1122 1.0000 0.8000
0.9 0.5525 1.3028 1.0000 0.9000
1.0 0.5000 1.5000 1.0000 1.0000

The circuit has three capacitors and two unit elements. The capacitors are defined in last
column of Mgand My matrices. The unit elements are defined in first row of Mg and Mh

matrices.

The last column and the first row coefficients of My matrix are h(p)=p3-p?>+p+1 and h(L)=
-A respectively. The coefficients of the h and g functions due to distributed and lumped
elements are chosen in random 1 or -1. After the choose of the coefficients value, the G(p)

is formed as:

G(p)=g(p)e(-p) (5.8)

The LPH roots of the G(p) is g(p) part. After the chose of the LPH roots, the initial
parameters will be ready. With these parameters, the calculation of the unknown
parameters of f(p,\) and g(p,A) which are described in third section are calculated (Mgand
Mp) due to the algorithm is developed in this thesis. After the scattering parameters, input
reflection coefficient (Si) and output reflection coefficient (So) are calculated, the input
and output impedances are calculated. Later, these parameters are used in equation (5.1)
to calculate TPG. The result is named as actual transducer power gain and represented as
T. In this example, the desired transducer power gain is represented as Tq. This process
is repeated until getting the targeted min error calculated in least square equation (4.9) or
end of given optimization number (in these example 4000). In the end, the process is
finished with reaching maximum optimization number (4000). The elapsed time is 155.4
seconds.
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0 0.8982 -0.0991
_|-1.4657 -0.0830 -0.1066

M 0  -3.0708 -0.0164 59
0 0  -1.0855
1 2.1947 1.0049
{14657 45333 20281
M= 0 30708 20425 (5-10)
0 0  1.0855

After getting Mg and My, the value of capacitors are calculated according to section
(3.2.2). These parallel capacitor normalized values are C1=1.0715, C,=0.80556, Cs
=1.0543. The values of the unit elements are calculated with synthesis approach proposed
in section (3.2.1). These values are Z1=1.47, Z,=1.6229, 1=1.8059.

The transducer power gain curve of the designed mixed element broadband matching

network is given in Figure 5.2.

.......................................................

Rin  Lin Zi Z Lo

it ot |«

.......................................................

Figure 5.1 Designed broadband matching network
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Figure 5.2 Performance of the designed mixed element matching network

5.2 Capacitance Value Calculations

It is about the calculation of values of capacitors in a network as seen in Figure 3.4. The
identification of Mgand My, are represented in equations (3.54) and (3.53), respectively.

These value are needed to be calculated the values as explained in section (3.2.2).

The initial parameters are the first raw and the last column of Mg and My, respectively.
The first row is represented the distributed components with two elements. The last
column is the lumped components with two elements for this example. The equations in
section (3.1.4) are used to calculate gi1, gio, 21 and hii, hio, hza coefficients. The f
polynomial is calculated according to f(p,A)=p*(1-A?)""? and for this example
f(p,A)=p°(1-A?)™. The calculated coefficients are shown as (Sengiil and Cakmak, 2018):

1172 55 63/2 -1172 41 2172

1 110/21 29/21 0 100/21 20/21
0 63 189 0 -63 -189

In these network, there are also two transmission lines to separate two capacitors.

From equation (3.118), the total value of two capacitors is calculated.

_gptmhyy  11/2+(-1)(-11/2)
" g,,-mhyg 1-(-1)0

(5.11)

Where m=22=_1,
hio
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After this process, the following parameters can be formed via equation (3.117).

11 11
h;(p)= 5P, gi(p)=7p+1, fi(p)=1 (5.12)

With using the last column instead of first one, the capacitor can be calculated via
equation (3.119).

+mhy,  189+(-1)(-189
Cl—gzz 22 _ (-1)( ) _ m=@=_ (5.13)
g,-mhyy  63/2-(-1)(21/2) hy,

With using equation (3.117) and the value Cy, parameters of T(p) can be written as:

9 9
h(p)=-5p, gP)=5p+L, f(p)=1 (5.14)
Next step is the formation of remaining scattering transfer matrix via equation (3.116).

Tr(D=T" () T(p,) (5.15)

(-9p/2)+1  -9p/27"
TR(p,x)zl ool 92_p+1] <T(p,\) (5.16)

The value of Mrgand M are parameters of Tr(p,\) calculation according to the equation
(5.14) with f(p,\)=f(p)f(L)=1(1-A?). The results are:

111021 29/21 _[0 100/21 20/21
Mg, [1 10 21 ]MRh [-1 4 21 ]

With using first column of these matrices, the last capacitor value can be calculated
because the lumped section is not a degenerate network anymore.

giptmhio _ 1+(-1)(-1)

C,= =2, m= hyy=-1 5.17
2 g, -mhge  1-(1)0 ,m=g,/hjg (5.17)

The characteristic impedance value of transmission lines are Z;=7 and Z»=3 via (Sengiil,
2008). The details are as:

110 29, 100 20 _,
g(k)=l+ H)ﬁ‘ i 7\, and h()h)=0+ j}ﬁ‘i }\, (518)
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For A=1, the first impedance in network is calculated as:

_g(D)+h(1) :280/21 _
g(D-h(1) 40/,

| 7 (5.19)

The calculation of the second impedance is according to equations (3.107-114).

x1=hog(1)-g,h(1)= 0x7.61-1x5.71= -5.71 (5.20)
x2=h; g(1)-g, h(1)=4.76x7.61-5.23x5.71=6.36 (5.21)
x3=h,g(1) -g,h(1)= 0.95%7.61-1.38x5.71= -0.65 (5.22)
y1=g,g(1)-hoh(1)=1x7.61-0x5.71=7.61 (5.23)
y2=g,&(1)-h;h(1)=5.23%7.61-4.76x5.71=12.62 (5.24)
y3=g,8(1)-hyh(1)=1.38%7.61-0.95%5.71=5.07 (5.25)
N;=x;=-5.71 (5.26)
N,=x;+x,=0.65 (5.27)
N3=x;+x,+x3=0 (5.28)
D;=y,=7.6l1 (5.29)
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D,=y,-y,=5.01 (5.30)

D3;=y;-y,ty,=0.06 (5.31)
g2(\)=D;+D,A + D;1* =12.68 (5.32)
h2(W)=N;+N,A + N32? = -5.06 (5.33)

PPy 762
L e@()-n®P(1) 1774

) (5.34)

All of the impedance values are calculated.
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6. CONCLUSION

In this thesis, the analysis of the mixed element structure formed with shunt capacitors
separated by equal length transmission lines has been performed first time in the
literature. The description of the structure by means of two frequency variables (one for
shunt capacitors and one for transmission lines) has been given. Then broadband
matching networks for many applications have been designed by using this practically
important mixed structure via the algorithm that has been developed. In the algorithm,
the explicit coefficient relations of the descriptive two-variable polynomials in terms of
the coefficients of the single variable boundary polynomials have been derived for various
numbers of elements. These coefficient relations have been obtained first time in the
literature. Since the lumped section is a degenerate network, it is impossible to use the
two-variable polynomials to calculate the capacitor values. So a synthesis algorithm for
the structure has been developed to be able to calculate the capacitor values from the two

variable polynomials.
If it is preferred not to have shunt capacitors, they can be replaced with open-ended stubs

via Richard’s transformation and the resultant circuit will be extremely suitable for

microstrip fabrication.
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APPENDIX B

B.1 Matlab Codes Main Program

clc

tic

clear

syms L fr

global m2 dist lump w mu SG SL TO ZG ZL f poly f p nC nUE

g*****source and load impedance, souce and load relection coefficient
calculation****x*
w=0:0.1:1;

z=(1.*fr.*2)+1/ (1+i*fr*1);
ZL=subs (z, fr,w) ;

rll=1;

r33=i.*fr.*1;

z11=r11+r33;
z1ll=simplify(z1ll);
72G=subs (z11, fr,w) ;

% ZG=ones (1, length(w));
SG=(2G-1) ./ (Z2G+1) ;
SL=(ZL-1) ./ (ZL+1);

%*****************************************************************

%*****Initial values**********************************************

[}

nC=input ('Enter number of Cs:'); % Ornek icin 3
nUE=input ('Enter number of UEs:'); %0rnek ic¢in 2
if nUE>1
hjO=[-1 1 -1 1]; %lumped, son kolon elemanlary
hO0i=[-1]; %dist, i1lk satyr elemanlary (en dipiik ve en yiksek
dereceli girilmiyor)
else
hjO0=[1 1 -1]; %lumped, son kolon elemanlary
end
T0=0.98; %gain
thau=0.6; %delay

%*****************************************************************
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%*****Optimisation Vector construction****************************
dist=nUE;
lump=nC;

dimension=dist+lump;

if dist==lump
m2=input ('Enter m2 value (+1/-1):'); %0rnek icin +1 gir

end

for a=1:lump+l;
v (a)=hj0(a);
end
if nUE>1
for a=l:dist-1;
v (lump+1l+a)=h01i (a) ;
end
v (dimension+2)=thau;
else
v (dimension+1l)=thau;
end
%*****************************************************************
f p=(1-1L"2)"(dist/2);
mu=1;
%*****Optimisation part*******************************************
const=length (v) ;
LB=[ones (1,const-1) .*(-Inf) 0];

UB=ones (1,const) .*Inf;

OPTIONS=optimset ('MaxFunEvals',1000, 'MaxIter',4000);

v_new = lsgnonlin('error find',v, [], [],OPTIONS)

%*****************************************************************

Fr****Gettin hOi, hjO and thau after optimisation****xkxkxkxkxkxkx
for a=1:lump+l;

hj0 (a)=v_new(a);
end

if nUE>1
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h0i(1)=hjO0(length(hj0));
for a=l:dist;
h0i (a+1)=v_new (lump+l+a);

end

hOi(dist+1)=0;

thau=v_new (dist+lump+2) ;

else

h0i(1)=hj0 (length (hj0));

hOi (dist+1)=0;

thau=v_new (dist+lump+l) ;

end

%*****************************************************************

gj0=LLEL (hj0, [zeros (1, length (hj0)-1) 1]); %lumped
g0i=LLELd (hOi, f p); %dist

g*¥****Calculation of optimised h and g matrices****x*xkkkkkxkxkxkx

if dist==1 & lump==1;

[Ah,Ag]=hglln (h0i,hjO,ml,f p);
elseif dist==1 & lump==2;

ml=-1;

m2=-1;

[Ah,Ag]=hgl2n (h0i, hjO,ml,f p);
elseif dist==2 & lump==1;

ml=-1;

[Ah,Ag]=hg21ln (h0i,hjO,ml, f p);
elseif dist==2 & lump==2;

ml=-1;

[Ah,Ag]=hg22n (h0i,hj0,ml,m2, £ p);
elseif dist== & lump==3;

ml=-1;

[Ah,Ag]=hg23n (h0i,hjO,ml, f p);

end

Ah
Ag
thau

%*****************************************************************
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$****Calculation of load and source impedances, source and load
reflection coefficients over new frequency range***x*
w=0:0.1:2;

ZL=subs (z, fr,w);

Z2G=subs (z1l1l, fr,w);

% ZG=ones (1, length(w));

SG=(2G-1) ./ (2G+1) ;

SL=(ZL-1) ./ (ZL+1);

%*****************************************************************

*****According to optimised h and g matrices, getting the values of
h, hpara, g, gpara and f*x*x**x*
for a=l:1length(w);
d=i*tan (w(a) *thau) ;
hv (a)=0;
for b=1:lump+l;
for c=1l:dist+1;
hv (a)=hv(a)+Ah(b,c)* ((i*w(a)) " (b-1))*(d) " (c-1);
end
end

end

for a=l:length(w);
d=-i*tan (w(a) *thau);
hpv (a)=0;
for b=1:lump+l;
for c=1l:dist+1;
hpv (a)=hpv (a)+Ah(b,c) * ((-1i*w(a)) "~ (b-1))*(d) "~ (c-1);
end
end

end

for a=1l:1length(w);
d=i*tan(w(a) *thau) ;
gv(a)=0;
for b=1:1lump+l;
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for c=1l:dist+1;
gv (a)=gv(a)+Ag (b,c) * ((i*w(a)) " (b-1))*(d) "~ (c-1);
end
end

end

for a=l:length(w);
d=-i*tan (w(a) *thau) ;
gpv (a)=0;
for b=1:1lump+l;
for c=1l:dist+1;
gpv (a)=gpv (a) +tAg (b, c) * ((-1i*w(a)) " (b-1)) * (d) * (c-1);
end
end

end

%*****************************************************************
fv=subs(f p,L,i.*tan(w.*thau));

fpv=conj (fv) ;

S*x****Calculation of tpg over the frequency range***xxxkkxrkkdxxkrk
S22=-mu.*hpv./gv;

S12=mu.*fpv./gv;

S21=fv./gv;

Sll=hv./gv;

SL=(zL-1) ./ (ZL+1) ;
S1=811+(S12.*S21.*SL) ./ (1-S22.*SL) ;
7Z11=(1+S1)./(1-S1);
rl=(Z11l-conj (Z2G)) ./ (211+72G) ;
SG=(2G-1) ./ (ZG+1) ;
S2=822+(S12.*S21.*3G) ./ (1-S11.*SG) ;
722=(1+S2)./(1-S2);

tpg=(4.*real (ZL) .*real (Z222)) ./ ((real (ZL)+real (222)) .2+ (imag (ZL) +imag (
222)) ."2);

%*****************************************************************
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F¥****Plotting the result**x***

hold on

renk= (round (rand(3,1)))"';

div=(round(rand(3,1))) '+1;

color=[renk(l)/div(l) renk(2)/div(2) renk(3)/div(3)];
plot (w,TO, 'r*',w,tpg, 'color',color)

axis ([0 2 0 11)

%*****************************************************************

toc

% %**************************************************************

B.2 Matlab Codes Error Calculation

function eps=error(v,m2,dist, lump,w,mu, SG, SL,T0, 2G, 2L, f poly,f p)
gx****error sub-program*****

syms L fr

global m2 dist lump w mu SG SL TO ZG ZL f poly f p nC nUE

Sx*xx**calculation of hOi, hj0 and thau from optimisation vector***+**

dimension=dist+lump;

for a=1:lump+l;
hj0(a)=v(a);
end
if nUE>1
h0i (1)=h3j0 (length (hj0));
for a=1l:dist;
h0i(a+l)=v (lump+l+a);
end
hOi (dist+1)=0;
thau=v (dist+lump+2) ;
else
h0i(1)=hj0(length(hj0));
hOi (dist+1)=0;
thau=v (dist+lump+l) ;

end

%*****************************************************************
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%*****Calculation Of h and g matrices*****************************

if dist==1 & lump==1;

[Ah,Ag]=hglln (h0i, hjO,ml,f p);
elseif dist==1 & lump==2;

ml=-1;

m2=-1;

[Ah,Ag]=hgl2n (h0i,hjO,ml,f p);
elseif dist==2 & lump==1;

ml=-1;

[Ah,Ag]=hg21n (h0i, hjO,ml, f p);
elseif dist==2 & lump==2;

ml=-1;

[Ah,Ag]=hg22n (h0i, hj0,ml,m2, f p);
elseif dist== & lump==3;

ml=-1;

[Ah,Ag]=hg23n (h0i,hjO,ml,f p);

end

%*****************************************************************

g*****calculation of h, hpara, g, gpara and f values*****xxkxkxkxix
for a=l:length(w);

d=i*tan (w(a) *thau) ;

for b=1:lump+l;
for c=1l:dist+1;
hv(a)=hv(a)+Ah(b,c)* ((1*w(a)) " (b=-1))*(d) " (c-1);
end
end

end

for a=l:length(w);
d=-i*tan (w(a) *thau) ;
hpv (a)=0;
for b=1:1lump+l;
for c=1:dist+1l;
hpv (a) =hpv (a) +Ah (b, c) * ((-1*w(a) )~ (b=-1)) * (d) "~ (c-1);

end
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end

end

for a=1l:1length(w);
d=i*tan (w(a) *thau);
gv(a)=0;
for b=1:1lump+l;

for c=1l:dist+1;

gv(a)=gv(a)+tAg (b, c) * ((1*w(a)) " (b-1))*(d) " (c-1);

end
end

end

for a=l:1length(w);
d=-i*tan (w(a) *thau) ;
gpv (a)=0;
for b=1:1lump+l;

for c=1l:dist+1;

gpv (a) =gpv (a) +Ag (b, c) * ((-1*w(a)) " (b-1)) *(d) * (c-1);

end
end

end

fv=subs(f p,L,i.*tan(w.*thau));

fpv=conj (fv) ;

%*****************************************************************

%*****calculation Of tpg******************************************

S22=-mu.*hpv./gv;
S12=mu.*fpv./gv;
S21=fv./gv;
Sll=hv./gv;

SL=(2L-1)./(Z2L+1) ;

S1=511+(S12.*S21.*3L) ./ (1-S22.*SL) ;

Z11=(1+S1)./(1-81);
rl=(Z11-conj (2G)) ./ (211+72G) ;
SG=(2G-1) ./ (Z2G+1) ;
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S2=S522+(S12.*%S21.*SG) ./ (1-S11.*SG) ;
Z22=(1+S2)./(1-S2);

tpg=(4.*real (ZL) .*real (Z222)) ./ ((real (ZL)+real (222)) .2+ (imag (ZL) +imag (
222)) .72);

%*****************************************************************

eps=double (sum( ( (tpg-TO) ./tpg) ."2))

%*****************************************************************

return

B.3 Matlab Codes Last Column of g Matrix

function gj0=gj0find (hjo0) ;
H S=hjo0;

boy=length (H_S);
Fara=zeros (1, (boy-1));
Fara(l,boy)=1;

F S=Fara;
HS=paraconjugate (H_S);
FS=paraconjugate (F_S);

% Constructing the even polynomial

G = conv(H_ S , HS);
F conv (F_S,FS);

G S =G+ F;
RO = roots(G_S);
s = length (RO) ;
for h =1 : s
if real (RO(h)) < O
rootlhp (h)= RO (h);
else
rootlhp (h)= 0;
end
end
[k , 1, m ] = find(rootlhp);
g s = poly (m);

gliara=g_s;
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b=length (g s);
for a=1l:b;

g s(a)=g _s(a)/g0iara(b);
end

gj0=g_s;

B.4 Matlab Codes First Row of g Matrix

%*********************************************************

o°

% g_Lambda
% the arguments are passed from the main code

function for calculating the Hurwitz polynomial

*

*

*

*

*

*

%*********************************************************

function g0i=g0ifind (h01i)
%$h0i=[-0.824 -4.325 0];
h Lambda=h0i;
n Lambda=length (h0i)-1;
F temp=[-1 0 1];
F Lambda=[-1 0 1];
for i=1:(n_Lambda - 1)

F Lambda = conv (F_Lambda,F temp);
end
HP Lambda = paraconjugate (h Lambda) ;
% Constructing the even polynomial
G = conv(h Lambda , HP_ Lambda);
GP Lambda = G + F Lambda;
RO = roots (GP_Lambda) ;
s = length (RO);
for h =1 : s

if real (RO(h)) < O

rootlhp (h)= RO (h);
else
rootlhp (h)= 0;

end

end

[k , 1, m ] = find(rootlhp);
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g _Lambda = poly (m);
g Lambda = g _Lambda./g Lambda (length (g Lambda)) ;
g0i=g_ Lambda;

B.5 Matlab Codes Paraconjugate Calculations

%*********************************************************

$function for calculating paraconjugate polynomial *
%$the arguments are passed from the main code *
% *

$this function finds the paraconjugate of PS polynomial *

%*********************************************************

function P_S=paraconjugate (PS)
c = length (PS)-1;
for k = 0:c

if rem(k , 2)== 0
P S(c-k+1) = (+1)*PS(c-k+1);
else
P S(c-k+1) = (-1)*PS(c-k+1);
end
end
return

B.6 Matlab Codes One Capacitor and One UE

function [Ah,Ag]=hglln(h0i,hj0,ml,f p);

Gr****hgll sub-program*****

*¥****calculation of h and g matrices of the networks contains one
distributed and lumped elements*****

gj0=LLEL (hj0, [zeros (1,1length (hj0)-1) 1]); %lumped
g0i=LLELd (hOi, f p); %dist

h00=h01 (2) ;
h01=h01i (1) ;
g00=g01i (2) ;
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g01=g0i (1) ;
h11=hj0 (1) ;
gll=gjo0(1);

alfa=g0l-m1*h01;
glO=gll/alfa;
h10=ml*gl0;

Ah=[h00 h01;h10 hl1l];
Ag=[g00 g01;gl1l0 gll];

%*****************************************************************

return

B.7 Matlab Codes Two Capacitors and One UE

function [Ah,Ag]l=hgl2n(h0i,hj0,ml, f p)

Gx**x**hgl2 sub-program*****

g ****calculation of h and g matrices of the networks contains one
distributed and two lumped elements*****

gj0=LLEL (hj0, [zeros (1,1length (hj0)-1) 1]1); %lumped
g0i=LLELd (hOi, f p); %dist

h00=h0i (2) ;
h01=h01i (1) ;
h11=hj0(2);
h21=hjo0 (1) ;
g00=g01 (2) ;
g01=g0i (1) ;
gll=gj0(2);
921=gj0(1);
alfa=g0l-m1*h01;
glO=gll/alfa;
h10=ml*gl0;
h20=0;

g20=0;
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Ah=[h00 h01;h10 h11;h20 h21];
Ag=[g00 g01;g910 gll;g20 g21];

%*****************************************************************

Return

B.8 Matlab Codes One Capacitor and Two UEs

function [Ah,Ag]l=hg21ln(h0i,hj0,ml,f p)

Frr*x*x*hg2l sub-program*****

g*¥****calculation of h and g matrices of the networks contains two
distributed and one lumped elements*****

gjO0=LLEL (hj0, [zeros (1, length (hj0)-1) 1]); %lumped
g0i=LLELd (hOi, f p); %dist

h00=h01i (3) ;

h01=h0i (2);

h02=h0i (1) ;

h12=hjo0 (1) ;

g00=g01 (3);

g01=g01i (2);

g02=g01i (1) ;

gl2=gjo0(1);

alfa=g0l-m1*h01;

beta=gl2-ml1*hl2;

gll=g02* (g01*gl2-h01*h12)-h02"2* (beta/alfa);
glO=gll/alfa;
hl1l=(gll1*g02-g01*gl12+h01*h12)/ (h02);
h10=ml*gl0;

Ah=[h00 h01 h02;h10 hll h12];
Ag=[g00 g01 g02;gl0 gll gl2];

%*****************************************************************

return
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B.9 Matlab Codes Two Capacitors and Two UESs

function [Ah,Ag]l=hg22n(h0i,hj0,ml,m2,f p)

GFXXXING22 sub-program*x*r*

*¥****calculation of h and g matrices of the networks contains two
distributed and two lumped elements*****

gjO0=LLEL (hjO0, [zeros (1, length (hj0)-1) 1]1); %lumped
g0i=LLELd (hOi, f p); %dist

h00=h0i (3) ;
h01=h0i (2) ;

h02=h0i (1) ;

h12=hj0(2);

h22=hj0 (1) ;

g00=g01(3);

g01=g01i (2);

g02=g01i(1);

gl2=gj0(2);

g22=g30(1);

alfa=g0l-m1*h01;

beta=gl2-ml1*hl2;

gll=g02* (g01*gl2-h01*h12) -

h0272* (beta/alfa)+h02”2* ((alfa* ((g02*h22/h02) -g22)) /beta) ;
glO0=gll/alfa;
h1l=(gl1*g02-g01*g12+h01*h12)/ (h02) ;
g21=(gll*g22-h11*h22) /beta;
h10=ml*glO0;

h22=m2*g22;

h21=ml*g2l;

h20=0;

g20=0;

Ah=[h00 hOl h02;h10 hll hl2;h20 h21 h22];

Ag=[g00 g01 g02;gl1l0 gll gl2;g20 g21 g22];

return
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B.10 Matlab Codes Three Capacitors and Two UEs

function [Ah,Ag]l=hg23n(h0i,hj0,ml,f p)

GF*F**XFNG23 sub-program***r*

*¥****calculation of h and g matrices of the networks contains two
distributed and three lumped elements*****

gjO0=LLEL (hjO0, [zeros (1, length (hj0)-1) 1]1); %lumped
g0i=LLELd (hOi, f p); %dist

h00=h0i (3) ;
h01=h01i(2) ;
h02=h0i (1) ;
h12=hj0(3);
h22=hj0(2) ;
h32=hj0 (1) ;
g00=g01i (3) ;
g01=g01i (2);
g02=g01i (1) ;
gl2=g30(3);
g22=9g30(2);
g32=g3j0(1);

alfa=g0l-m1*h01;

beta=gl2-ml1*hl2;

gll=g02* (g01l*gl2-h01*h12) -

h0272* (beta/alfa)+h0272* ((alfa* ((g02*h22/h02) -g22) ) /beta) ;
glO0=gll/alfa;
hll=(gll*g02-g01*gl2+h01*h12)/ (h02);
g2l=(gll*g22-hl11*h22-g01*g32+h01*h32) /beta;
h10=ml*glO0;

h21=ml*g21;

h20=0;

g20=0;

h30=0;

g30=0;

h31=0;

g31=0;
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Ah=[h00 h0l h02;h10 h1ll h12;h20 h21 h22;h30 h31 h32];
Ag=[g00 g01 g02;g10 gll gl2;920 g21 g22;930 g31 g32];

%*****************************************************************

return
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