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EXPLICIT SOLUTIONS OF TWO-VARIABLE SCATTERING EQUATIONS
AND BROADBAND MATCHING NETWORK DESIGN

ABSTRACT

Mixed lumped and distributed element network design has been a significant issue
for microwave engineers (Aksen, 1994). The interconnections of lumped elements
can be assumed to be transmission lines and used as circuit components. Also
the parasitic effects and discontinuities can be embedded in the design process by

utilizing these kinds of structures.

Since these networks have two different kinds of elements, their network functions
can be defined by using two variables; p = ¢ 4+ jw for lumped elements and A =
tanh(pt) for distributed elements, where 7 is the equal delay length of distributed
elements. In the earlier studies, since there is a hyperbolic dependence between p and
Atranscendental functions were used to express these kinds of network functions.
But then p and A were assumed as independent variables, the network functions

with two variables were used to describe two-port networks with mixed elements.

Although there are lots of studies in the literature about mixed element networks,
a general analytic procedure to solve transcendental or multivariable approximation
problems to design mixed element networks does not exist. But to describe lossless
two-ports with mixed elements, there is a semi-analytic technique (Aksen, 1994).
In this approach, two-variable scattering functions are used and practical solutions
are obtained. But it is applicable for the restricted circuit topologies; LC ladders

cascaded with commensurate transmission lines (Unit Elements).

In this thesis, the complete and explicit equations are derived for lossless low-pass
mixed-element topologies, and by using the equations solved without any restric-

tion,a broadband matching network design was made. The results were compared



with the results in the literature.

Keywords:  Broadband networks, Lossless networks, Mixed-element networks,

Two-port networks, Scattering parameters.
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IKI DEGISKENLI SACILMA DENKLEMLERININ ANALIZI VE GENISBANT
UYUMLASTIRICI TASARIMI

OZET

Karigik devre elemam (toplu ve dagitilmig eleman) igeren devreler mikrodalga miihendisligi
i¢in 6nemli bir konudur (Aksen, 1994). Toplu elemanlar arasindaki baglantilar, ile-
tim hatti olarak diigiiniiliip devre elemani olarak tasarim sirasinda denklemlere dahil
edilirse, devrenin performansini bozmalar1 engellendigi gibi ayni1 zamanda devrenin

istenen cevabi vermesi i¢in kullanilmig olurlar.

Bu tiir devrelerde, iki farkli tipte eleman bulundugundan, devre fonksiyonlar:1 iki
degigsken kullanilarak tanimlanir. Devrede yer alan toplu elemanlar i¢in p = o 4+ jw
klasik frekans degiskeni ve dagitilmig elemanlar i¢gin A = tanh(p7) Richards degiskeni
seklinde tanimlanir(burada 7 dagitilmig elemanlar igin gecikmedir). Dikkat edilirse
bu iki degisken arasinda hiperbolik bir bagimlilik vardir. Dolayisiyla bu tiir de-
vrelerin tamimlanmasinda transandantal fonksiyonlar kullanilabilir. Fakat p ve A
bagimsiz degiskenler olarak kabul edilirse karigik elemanli devreler iki-degiskenli

fonksiyonlar kullanarak tanimlanabilir.

Literatiirde bu tiir devreler iizerine bir¢cok ¢aligma bulunmasina ragmen, bu den-
klemlerin ¢oziimii i¢in genel bir analitik method heniiz bulunabilmis degildir. Fakat
yari-analitik bir yaklagim mevcuttur (Aksen, 1994). Bu yaklasimda, iki-degigkenli
sacilma denklemleri kullanilir ve sinirli devre topolojileri i¢in uygulanabilir durum-

dadir.

Literatiirde, bahsedilen yari-analitik yaklagim ile diisiik dereceli algak-geciren birim
elemanlarla ayrilmig LC merdiven devreler igin baz kisitlamalar altinda sagilma den-
klemlerinin ¢oziimleri verilmistir. Fakat bu tezde, hi¢ bir kisitlama olmadan ¢oziilen

denklemler kullanilarak, genigbant uyumlastirma devresi tasarimi yapilmig, elde

iii



edilen sonugclar literatiirde verilen denklemler kullanilarak tasarlanan uyumlastirma

devresi sonuglariyla karsilagtirilmigtir.

Anahtar Sozciikler: Sacilma denklemleri, Iki-kapili devreler, Genigbant devreleri,

Uyumlagtirma devreleri.

v



ACKNOWLEDGEMENTS

It has been a long way in my life. In this road, sometimes I had problems in my
personel life and I can not get permission to join the lecturers from my work place.
I was a soldier for a couple weeks. Therefore, in this long way I have a baby boy
and he always makes me happy and my wife always supports me. She is a wonderful
woman and mother.They make my feelings that all things are well and will be better
than now. Also, I'm so lucky to have a supervisor Prof. Metin Sengiil. He always
supports and teaches me in way of academically and personally. He is a great teacher
and father. All these things are so gratefully. I am so glad to have them and thank

you each of them for participation in that though road.



Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 5.1

LIST OF TABLES

Connection Order of the LPLU Topologies for one lumped ele-
ment and one UE . . . . . . ..o o000 13
Connection Order of the LPLU Topologies for two lumped ele-
ments and one UE . . . .. ... 16
Connection Order of the LPLU Topologies for one lumped ele-
ments and two UEs . . . . . ... ..o 20
Connection Order of the LPLU Topologies for two lumped ele-
ments and two UEs . . . . . .. ... ... L 25
Connection Order of the LPLU Topologies for three lumped ele-
ments and two UEs . . . . . ... ..o 29

Normalized Generator and Load Impedance Data . . . . . . . .. 38

vi



Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 5.1

Figure 5.2
Figure 5.3

LIST OF FIGURES

Two-Port Network . . . . . . . . . . . . . ... ... ... ... 2
Doubly terminated two-port . . . . . .. .. ... ... 4

Mixed element structure formed with one lumped element and

Mixed element structure formed with one lumped element and
two UEs . . . . . . o 17
Mixed element structure formed with two lumped elements and
two UEs . . . . . . . . 21
Mixed element structures formed with three lumped elements
and two UEs . . . . . . ... oo 25
Designed mixed-element double matching network . . . . . . .. 38
Performance of the matched system designed with mixed elements 39

Performance of the matched system with C =3 . .. ... ... 39

vil



1. INTRODUCTION

There is a significant advantage of microwave circuits according to univariate struc-
tures of mixed-element, two-variable structures. The analytical solution of the filters
having a mixed element structure and the broadband matching problem is not fully
achieved. There is a need for defining mixed-element structures in using two-variable
(rational form) functions. One of the methods to describe mixed lumped and dis-

tributed element two-port networks is to use two-variable scattering equations.

Since these networks have two different kinds of elements, their network functions
can be defined by using two variables; p = o0+ jw (the usual complex frequency vari-
able) for lumped elements and A = tanh(pr) (the Richard variable) for distributed

elements, where 7 is the equal delay length of distributed elements (Sengiil,2018).

In the earlier studies, since there is a hyperbolic dependence between p and A tran-
scendental functions were used to express these kinds of network functions. But
then p and )\ were assumed as independent variables, the network functions with

two variables were used to describe two-port networks with mixed elements.

Eventough there are lots of studies in the literature about mixed element networks,
a general analytic procedure to solve transcendental or multivariable approximation
problems to design mixed element networks does not exist. But to describe lossless

two-ports with mixed elements, there is a semi-analytic technique.

In this approach, two-variable scattering functions are used. But it is applicable for
the restricted circuit topologies Inductor-Capacitor ladders cascaded with commen-

surate transmission lines (Unit Elements, UEs).

viil



In this thesis, the complete and explicit equations are derived for lossless low-pass
mixed-element topologies, up to 4 elements, without any restrictions. The obtained

results were compared with the literature.



2. PROPERTIES OF LOSSLESS TWO PORTS

This chapter contains about basic definitions of transmission lines and scattering
parameter and matrix and canonical representation of them. Also fundamental

properties of lossless lumped and distributed networks are summarized.

2.1 Defining the lossless two-port with scattering parameters

The behavior of lossless two-port circuits can be defined via matrices such as admit-
tance, impedance and chain matrix. However, these matrices are defined for short
or open circuit termination status. Using the concept of power in microwave circuit
theory is more suitable than current or voltage concept. The scattering matrix is a
very useful method to examine the power transfer characteristics of a circuit. Let
us examine the scattering matrix properties and basic definitions of the two-port

networks (Aksen,1994).

al az
1 - 4— 2
ry
11 12 4
N
V1 \)
Two-Port
Network
R1 4 —> 7
b1 b2 B

Figure 2.1 Two-Port Network

Scattering variables can be defined as follows ;



Vit R

i 2.1

a“= = (2.1)
' — R.IL

b; = M (2.2)

2VR;
a; and b; variables are linear function of voltage and current variables defined to the
same port (V;,I;). Normalized input wave is indicated by a;, normalized reflected
wave is indicated by b;. (2.1) and (2.2) can be written as inverse relationship function

as seen below equations :

Vi = (a; + ).V R (2.3)

(ai — bi)
=% 2% 2.4
VT, 24
Scattering matrix of two ports (N) is as follows :
b a S S
b=Sa b=| " a=| S= |1 7P (2.5)
b ao So1 Sa

Elements of the S matrix are called scattering parameters.The following statements
can be taken from the definitions in (2.5) for the physical interpretation of the

scattering parameters;

b b b b
Sy = — Sip = — Sy = — Say = —
1 (a2)=0 42 (a1)=0 1 1(az)=0 42 (a1)=0
(2.6)
(a; = 0) condition shows that the termination resistance of the port ”i” is equal to

the reference normalization value R; of the same port. Si1; and S show input and
output reflectance coefficients of the two-port. Ss; and Si5 show the forward and

reverse transmission coeflicients.

The meaning of the input reflection coefficient Sy; can be found from (2.6).7; is the
input impedance of the two- port in figure 2.2 and current-voltage relationship for
the first port is Vi=27.1; When terminating condition ay=0 is used ;

Zy — Ry

Sy =2
1 Z1+ Ry

(2.7)
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Figure 2.2 Doubly terminated two-port

(2.7) can be found.It shows the relationship between the input impedance and the

input reflection of the two-port. A similar relationship can be found for the forward

Ry Vs
So1 =24/ =—.=. 2.8
n =2/ (23

2.2 Relationship between scattering parameters and power

transmission coefficient (Say).

Scattering parameters are useful to identify power transfer from source to load in

losslessness two-port. Complex power in the first and second port will be as follows,
Wi =Vi(jw)l;(jw) (i =1,2) (2.9)

If equations (2.3) and (2.4) are substituted in (2.8) and the real part is taken then

the entering real power is found as ;
Pi=lal = b* (1=1,2) (2.10)

The net real power of the two- port is equal to the difference between the entering

power and reflected power.

2

2
Py = Z a;.a;" — Z b;.b;* (2.11)
=1

i=1
P, is the power given to the circuit from excitation source in 1* port and Py is

power distributed to 2"¢ port.

BRIl

Py =
AT 4R, B R,

(2.12)



After squaring the forward transmission coefficient (S51) and doing algebraic calcu-

lations, transfered power can be shown below :

itz

So|* = 2.13
1Sual” = 5 (213
and the distributed power from source is,
B
P prm— = — 2.14
2=l = (214

If the equations (2.5) and (2.10) combined and solved, expended power of two ports

can be shown scattering parameters as below,
Py=a".(I - S7S).a (2.15)

I represent unit matrix and *7 is transpose of a matrix.

2.3 Scattering Transfer Matrix

Scattering parameter (Fettweis, 1982) for the explanations of power transfer is prac-
tical and useful tool for networks working at high frequencies. This method is used
for finite values at output and input of the network. The tools use open circuits
to find values of voltage and current of the network. Another difference between
scattering parameter and others are structure of values in networks. In scattering
parameters, the waves of voltage and current are utilized to calculate the efficiency

of the network.

The waves are used to form for scattering parameters. The parameters a and b are
used for the definition of the scattering parameters. Scattering parameters are the

values of the scattering matrix of two port network as given below :

b a T, T
o | ’ o |t T (2.16)
ay by Tor T

T parameter relationship between scattering parameter can be defined as;

det(S) So9 St 1

T =— , = = =
1 So1 So1 Say Say




det(S) represent determinant of transfer scattering matrix and reciprocal scattering

matrix means that if S;5=3Ss1, detarminant of T will be det(T)=1.

2.4 Canonic Representation of Scattering Transfer Matrix

Representation of scattering matrix in canonic polynomials (f,g and h) is published
in the literature. The canonic forms of the scattering matrix and scattering transfer

matrix are shown in below:

1|h ofs
S=- f, T

g f —O'h* f Uh* g

_ Ljog. b (2.18)
S is representation of the scattering matrix and T is representation of scattering
transfer matrix. In addition, canonic polynomials have some properties. Firstly,the
polynomial f = f(p), g = g(p), and h = h(p) are real and they are in the complex
frequency p. g is the strictly Hurwitz polynomial means that if a single variable real
polynomial has no zero in the right half plane, it is called the Hurwitz polynomial
and in addition if there is no zero on the imaginary axis, it is the strictly Hurwitz

polynomial. Then f,g and h polynomials have the following relation :

99s = hh, + f f.. (2.19)

f is a polynomial whose highest coefficient is equal to 1.Also, it is a monic.c is a
constant form of unimodular. (o = +/ — 1) If two-port has reciprocity property,the
polynomial of f can be odd or even. Then if the ¢ = —1 polynomial of f is odd. If
the o = 41 polynomial of f is even. Therefore, 0 = f./f = +/ — 1 can be written

in the equation,if two-port has reciprocity property then,
9g. = hh, + o f>. (2.20)
From (2.19), the following relation are also valid,

gl = [hl, gl = If1, (2.21)

As mentioned above, it can imply follow degree relations, and ”deg” is representation

of degree of a polynomial.

deg(g) > deg(h) deg(g) > deg(f) (2.22)



The difference between deg(g) and deg(f) shows the number of transmission zeros

at infinity and deg(g) refers to the degree of the lossless two-port.



3. TWO-VARIABLE CHARACTERIZATION OF MIXED
ELEMENT STRUCTURES

Two-variable polynomials g, h, f, the scattering parameters for a two-port with
mixed lumped and distributed elements can be shown as follows (Aksen,1994) where

|| = 1 is a constant :

S(p,)\): Sll(p>/\) 812(]9’)‘) :L) h(pa)‘) ,Mf(_p;_/\) (31)

S21 (P> )\) 522(}9, )‘) g(p7 A h’(pa )‘) _:uh(p> )‘)

In above equation, p = 0 + jw and A = X+ 5 represent the Richards variable with

transmission lines and the complex frequency related with lumped elements.

(n, + ny)™ shows the degree of the scattering Hurwitz polynomial g(p, \) with real
coefficients. And it can be shown as g(p,\) = P"AgA = A"AI'P can be shown as

below :

Joo go1 do2 ... Gony
g10 g1 g1z ... J1ny

Ag = | 920 921 g2 ... 9on, (3-2)
............................... 93n,
gnPO ....................... gnpnA
pPT = [1 p P o p"l’} (3.3)
AT = [1 AN Aw] (3.4)

(np +mny)™ shows the degree of the polynomial h(p, \) with real coefficients. And it



can be shown as h(p, \) = PTA,\ = ATAL P can be shown as below :

hoo  hot  hor ... o,
hio g11 hia ... Rin,
A =1 hy  gn hoy ... Ron, (3.5)
............................... R,
B0 cveeeee e e .

f(p,\) is a real polynomial and it can be shown according to the tranmission zeros
of two-port as can be written as f(p,\) = fr(p)fp(N). and fr(p) and fp(A) can
be constructed by means of the transmission zeros of the transmission zeros of the
lumped and distributed elements.If the two-port network is lossless, the relation can

be written as S(p, A\)ST(—p, —A) = I and I represents the identify matrix.

If (3.1) is substituted in S(p, \)ST (—p, —A) = I, the following can be found G(p, \) =
g(=p,—Ng(p,\) = h(—=p, =N)h(p, ) + f(=p,—A)f(p,A). And this equation have
to factorized explicity in designin lossless two-port with mixed elements. And if the
coefficients of the similar powers of the complex frequency variable, the following

equations can be set and it called as fundamental equation set (FES) is can be

written :
k-1
Gok+2 Z(—l)kflgo,zgo,%fz = h§ 13 +2 Z(—l)kfl(ho,lho,qu+f0,zfo,2kfz) (3.6)
1=0 1=0
for k=0,1,...,ny
ik "
Z(—l) I i 1Gi ok Z VI hyahijon—1-1+ fiafiojon—1-1)
j=0 1=0 J=0 1=0
(3.7)
fori=1,3,..,2n, —1,k=0,1,...,n,
i k1
> D gikgi ik + 2D (=D 5006 5061) (3.8)
=0 1=0
i k1
= ( 1)Z ](hjkhz gk+f]kfz ]k+2z h]lhz —7,2k— 1+f]lfz —7,2k— 1)) (39)
j=0 =0



fori=2,4,..,2n, -2, k=0,1,...,n,

k-1 k-1
gip,k + Z(_l)k_lgnp,lgnp,%—l = h?zp,k + fgp,k + Z(—l)k_l (P Py 2k—1 + [ 1 frip 20—1)
1=0 1=0
(3.10)
k= 0, 1, N I5N

3.1 Explicit Formulas for Low-Order Mixed-Element Structures

In the literature, low-pass ladders connected (LPLU) structure which has fundamen-
tal equation set (FES) is formed by using by (Sertbag A,2001) and (Sertbag A,1997).
For a transformerless design, it is solved algebraically for the unknown coefficients.
In this design, coefficient of hy is restrictred as equal 0 and the explicit relations for
the entries of Ay, and A, matrices up to total degree n = n, 4+ ny = 5 are found in
(Aksen A, Yarman 2001). Otherwise, g1p equation depends on gog and goy equation
depends on g for n = 5 in (Aksen A, Yarman 2001). But in this thesis, the explicit
coefficient relations are obtained algebraically and will be given fromn =2 ton =4

without any restrictions.

The following procedure will be followed for n = 5; If h(p, 0) is initialized and f(p, 0)
is formed via f(p, A) = p*(1—A2)"™/2 then the strictly Hurwitz polynomial g(p, 0) can
be calculated via G(pv )‘) - g(_pa _)‘)g(p7 >‘) = h(_pv _)‘)h(p7 )‘) +f(_p7 _)‘)f(p7 )‘)

In the same way, if h(0, )\) is initialized then f(0,\) is formed via f(p, \) = p*(1 —
A2)™/2 and the strictly Hurwitz Polynomial g(0,)) can be found via G(p,\) =
g(=p, =N g(p,\) = h(=p,=AN)h(p,\) + f(=p, —=\) f(p, ). After that, fundamental
equation set is solved algebraically for the remaining unknown coefficients of A, and
A, matrices without any restrictions, the explicit equations for n = 5 > n,, + n, will

be showed in the thesis.

10



3.1.1 Mixed element structure formed with one lumped element and one

UE

The network that shown as below has one lumped element (n, = 1) and one unit

element (ny = 1).

— I S— —
Vi d 1 2 L
T TGl T T
s R — —

Figure 3.1 Mixed element structure formed with one lumped element and one UE

According to gg. = hh, + ff., two variable polynomials h(p, A) f(p, ) and g(p, \)

can be shown as below :

9(p: A) = goo + g A + giop + gi1pA (3.11)
h(p, A) = hoo + hotA + hiop + hi1pA (3.12)
f(p,A) = (1= X% (3.13)
Ay, is a 222 the matrix.
P L (3.14)
th hll

First column coefficients describe the lumped element section and the first row

coeflicients describe the distributed element section.

A, is a 222 the matrix.

goo Yo1 (3.15)

g0 911

11



First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.

The main goal is that G and H polynomials’ coefficients can be calculated from
algorithm formed by using Matlab. From the equation G(p, ) = g(—p, —A)g(p, )
= h(—=p, =N)h(p, \)+ f(—=p, —N) f(p, \), and g(—p, —A\)g(p, A) the following equation
will be obtained as follows, (goo + go1 A + g10P + g112A) (Goo — Go1 A — Grop + g11pA) =
(hoo + hor A + hiop + h11pA) (hoo — hot A — hagp + huipA) + (1 — A2)M2(1 — A2)1/2),

If the coefficients of the respective degrees are equal, the following equation set is

obtained. With the help of these equations unknown coefficients can be calculated.

goo® — hoo” =1 (3.16)
gor® — hot” =1 (3.17)
goog11 — Go1g10 — hoohi1 + horhig =0 (3.18)
g10° = hio* = 0 (3.19)
g’ —hi* =0 (3.20)

The unknown cofficients will be calculated with above equations. From the equation

(3.6)
goo = V' 1+ hoo? (3.21)
From the equation (3.7)

gor = V' 1+ hot? (3.22)

From the equation (3.8)

_ go1910 — ho1hio

3.23
goo — H2hoo ( )

g11

12



Table 3.1 Connection Order of the LPLU Topologies for one lumped element and

one UE
73 J75) First Element Second Element
+1 +1 Inductor Unit Element
+1 -1 Unit Element Inductor
-1 ] Unit Element Capacitor
-1 -1 Capacitor Unit Element

From the equation (3.9)

h
g0 = |hao| = = = (3.24)
g1o
From the equation (3.10)
hiy
gu = lhui| = po = — — hi1 = plagn (3.25)

g1

3.1.2 Mixed element structure formed with two lumped elements and

one UE

The network that shown as below has two lumped elements (n, = 2) and one unit

element (ny, =1).

Ay, is a 3x2 matrix and hgg,ho1, hig, hoo are independent coefficients and ho; = 0.

hoo  hor
Ap = hio  hi (3-26)
hayg O

First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.
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Figure 3.2 Mixed element structure formed with two lumped elements and one
UE

A, is a 322 matrix and go; = 0.

goo 9o1
Ag= g0 gn (3.27)
g20 0
First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.

The main goal is that G and H polynomials’ coefficients can be calculated from
algorithm formed by using Matlab. From the equation G(p, \) = g(—p, —A)g(p, )
= h(—p,=AN)h(p,\)+ f(=p, =) f(p, ), and g(—p, —A)g(p, A) the following equation
will be obtained as follows, (goo + go1 A + g1 + 9112A)(Goo — g1 A — Grop + guipA) =
(hoo + hoi A + higp + ha1pA) (hoo — hor A — haop + haipA) + (1 — A2)M/2(1 — A2)1/2).

If the coefficients of the respective degrees are equal, the following equation set is

obtained. With the help of these equations unknown coefficients can be calculated.

goo® = hoo* =1 (3.28)
gon® — ho® =1 (3.29)
900911 — go1g10 — hooha1 + horhig =0 (3.30)
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910> — h1o” — 2(googa0 — hoohao) = 0

911> = 11 + 2(go1g21 — horha) =0

911920 — gr0921 — hi1hao + highor =0
920" — hao” =0

gn? —hyn?=0

From the equation (3.18)

goo = V1 + hoo

From the equation (3.19)

Jo1 = V 1+ ho?

From the equation (3.20)

goog11 — 9go1910 — hoohi1 + horhig =0

goog11 = 9o1910 + hooh11 — horhio

_ 901910 + hooh11 — horhio
goo

g11

From the equation (3.21)

910°> — h1o> — 2(goog20 — hoohao) = 0

Jio = \/h102 + 2(g00g20 — hoohao

From the equation (3.22)

h
g11 = |h11‘ — U2 = 1
g11
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(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)



Table 3.2 Connection Order of the LPLU Topologies for two lumped elements

and one UE
73 J75) First Element Second Element
+1 +1 Inductor Unit Element
+1 -1 Unit Element Inductor
-1 ] Unit Element Capacitor
-1 -1 Capacitor Unit Element

From the equation (3.23)

911920 — 0 — h11hoyg +0=10

911920 — h11hoo =0

h
G20(g11 — hllﬁ) =0
920

gi11 = Mlhn

From the equation (3.24)

h
g20 = ‘h20| — U1 = ﬁ-
920

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

3.1.3 Mixed element structure formed with one lumped element and two

UEs

The network that shown as below has one lumped element (n, = 1) and two unit

elements (ny = 2).

Ay, is a 223 matrix and hgg,ho1, hio, hoe are independent coefficients.

16



Figure 3.3 Mixed element structure formed with one lumped element and two

UEs
hoo hor h
A, = 00 o1 No2 (3.49)
hio hii hio

First column coefficients describe the lumped element section and the first row

coeflicients describe the distributed element section.

A, is a 223 matrix.

A, = goo YGo1 Yoz (3.50)

gio 911 912

First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.

The main goal is that G and H polynomials’ coefficients can be calculated from
algorithm formed by using Matlab. From the equation G(p, ) = g(—p, —A)g(p, )
= h(—=p, =N)h(p, \)+ f(—=p, =N f(p, ), and g(—p, —A\)g(p, A) the following equation
will be obtained as follows, (goo + go1A + g10P + 911P\)(goo — g1 A — g10P + G11PA) =
(hoo + hot A + hiop + hiipA) (hoo — hot A — haop + haipA) + (1 — A2)V2(1 — A2)1/2),

If the coefficients of the respective degrees are equal, the following equation set is

obtained. With the help of these equations unknown coefficients can be calculated.

goo® — hoo” = 1 (3.51)

17



go1 — hg1 — 2(go0goz — hoohoz) = 2
900911 — go1910 — hooha1 + horhig = 0
910> — hio° =0
911 — hiy — 2(g10912 — hiohi2) =0
g11902 — Jo1912 — hithoz + horhiz =0
go2®> — ho2” =1

912> — h1p® =0

From the equation (3.41)

goo = V' 1+ hgo?
From the equation (3.47)

go2 = V1 + hey”

From the equation (3.42)

Jor — hiy — 2(googoz — hoohoz) = 2

Jo1 = \/2 + h3; + 2(g00go2 — hooho2)

From the equation (3.44)

h
G10 = |hio| = 1 = 10
gio
From the equation (3.48)
h
J12 = ‘h12| — Ug = 2
g12
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(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)



From the equation (3.46)

911902 — hiihoz = go1g12 — horhaz

horhia
g12

911902 — hi1hoe = 912(901 -

911902 — hi1ho2 = 912(901 - h01,u2)

_ 911902 — hi1hoo
a

912 where o = go1 — hoijt2

From the equation (3.45) if put the g2 and hs in the equation

9%1 - h%l = 2(910912 i hmhlz)

(910911902 y gi0h11hoz B hi0g11 2902 n h10h11M2h02)

2 2
J11 _hn =2
o 6] Q o

2 2 910902 hiop2go2 g10ho2 hiopahoz
—ht =2 — —h +
911 11 [911( ) 11( )]

hoa

g
gt — hiy = 2[911(%(910 — higpa)) — hn(;(gm — hiopt2))]

9%1 - hi = 2[911(9025) - hn(hozg)]
24023 2hoo 3
9%1 - h%l = g1 o — hyy o )

Where ﬂ = gJi0 — hlolug and a = Jo1 — hm,ug,

_ 29023
g1 =
«
2h
oy, 2hof
«
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(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)



Table 3.3 Connection Order of the LPLU Topologies for one lumped elements

and two UEs
73 J75) First Element Second Element
+1 +1 Inductor Unit Element
+1 -1 Unit Element Inductor
-1 ] Unit Element Capacitor
-1 -1 Capacitor Unit Element

3.1.4 Mixed element structure formed with two lumped elements and

two UEs

The network that shown as below has two lumped element (n, = 2) and two unit

elements (ny = 2).

Ay, is 3x3 matrix and hgg,ho1,ho2, hig, hoo are independent coefficients and hyy = 0.

hOO hOl h02
Ah = hl() hll hlg (377)
hQO h21 0

First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.

Ay is a 3x3 matrix and goy = 0.

goo go1 Yoz
Ag=lgi0 911 912 (3.78)
G20 921 0
First column coefficients describe the lumped element section and the first row

coefficients describe the distributed element section.

The main goal is that G and H polynomials’ coefficients can be calculated from
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Figure 3.4 Mixed element structure formed with two lumped elements and two
UEs
algorithm formed by using Matlab. From the equation G(p, ) = g(—p, —A)g(p, )
= h(—p, =N)h(p, \)+ f(—=p, —N) f(p, ), and g(—p, —A\)g(p, A) the following equation
will be obtained as follows, (goo + go1A + g10P + g11PA) (goo — g1 A — Grop + g11pA) =
(hoo + hor A + haop + hipA) (hoo — hotA = hagp + hupA) + (1 — A2)V2(1 — 3%)1/2).

If the coefficients of the respective degrees are equal, the following equation set is

obtained. With the help of these equations unknown coefficients can be calculated.

goo” — hoo®> =1 (3.79)

9o — hgl — 2(g00902 — hoohoz2) = 2 (3.80)
9oog11 — go1g10 — hoohi1 + horhig =0 (3.81)
910" — h1o” — 2(goog20 — hoohao) = 0 (3.82)

9112 - h112 - 2(901921 — 902920 + 910912 — Jo0922 — ho1ha1 — ho2hao — hiohi2 + h00h22) =0
(3.83)
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911902 — Jo1912 — hirhoz + horhiz =0
go2” — hea® =1

g12° — hig” — 2(go2g22 — hozhas) = 0

911920 — G10921 — hithao + highar =0

911922 — 912921 — hithoy + highoy =0
g20° — hao” =0

921> — ha1® + 2(haohas — gaogaz) = 0

g22> —ha? =0

From the equation (3.69)

goo = V1 + hoo

From the equation (3.75)

go2 = V1 + hog”

From the equation (3.70)

Jo1 = \/2 —+ 2(g00g02 — hooho2 + h%l)

From the equation (3.79)

h
920 = |h20\ — U1 = =
920
From the equation (3.80)
ho1 o
go1 = |h21| — fg = —— — ho1 = pago
g21

22

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)



From the equation (3.76)

h
gi12 = ’hu‘ — U3 = -2 — hia = 3912
912

From the equation (3.78)
—g12921 + hi2hg1 =0

hoy 12

— = M2

= = W3 = p2 = U3
921 hia

From the equation (3.74)

911902 — ha1ho2 = —horhia + go1912

911902 — hi1hoe = 912(901 - h01—)
12

and (3.87) equation shows that % equal ps so that,

_ 911902 — hi1hoz
Q

912
where o = go1 — ho1ft2.
From the equation (3.77)

911920 — hi1hao = g10921 — hiohar

911920 — hi1hao = g21 (910 - Mzhlo)

911920 — hi1hao
go1 = 3

where 8 = g1 — p12h10-

From the equation (3.71)

goog11 — go1910 — hoohi1 + horhip =0

900911 = 9o1910 + hooli1 — hoihio

23

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)



_ 9o1910 t hooh11 — ho1hio

g = (3.108)
9oo
hooh
g = i (3.109)
9oo

where v = go1910 — ho1ho.

From the equation (3.73)

9112 - h112 - 2(901921 — 02920 + 910912 — Yoo g2 — hoirhor — hoghao — hiohia + hoohee = 0

(3.110)
B h20%+h02§— %(920%+902§)+%7 3111
11 — hgo ( . )
N
where v = go1910 — ho1ho.
From the equation (3.72)

g10% — P10 = 2(goog20 — hoohao) (3.112)
g0 = Ry + 2(goog20 — hoohao) (3.113)
g0 = \/h%o + 2(g00g20 — hoohao) (3.114)

3.1.5 Mixed element structure formed with three lumped elements and

two UEs

The network that shown as below has three lumped element (N, = 3) and two unit

elements (N = 2).

Ay, is a 423 matrix and hgg,ho1,ho2, h1o, hoo and hgg are independent coefficients and

h22 = h31 = h32 =0

hoo o1 ho2
hio hii R
A, = 10 in N2 (3.115)
hao hor 0
hso 0 0
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Table 3.4 Connection Order of the LPLU Topologies for two lumped elements

and two UEs
73 J75) First Element Second Element
+1 +1 Inductor Unit Element
+1 -1 Unit Element Inductor
-1 ] Unit Element Capacitor
-1 -1 Capacitor Unit Element
L.
N ] L
zi | L2
T | t
[ ] [ ]

Figure 3.5 Mixed element structures formed with three lumped elements and two

UEs

First column coefficients describe the lumped element section and the first row

coeflicients describe the distributed element section.

A, is a 423 matrix and go2 = g31 = g32 = 0.

goo go1
dio 911
g20 921

g0 0

Jo2

gi12
0

0

(3.116)

First column coefficients describe the lumped element section and the first row

coeflicients describe the distributed element section.

The main goal is that G and H polynomials’ coefficients can be calculated from

algorithm formed by using Matlab. From the equation G(p, \) = g(—p, —A)g(p, A)
= h(=p, =A)h(p, \)+ f(=p. =A) f(p, ), and g(—p, —A)g(p, A) the following equation
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will be obtained as follows, (goo + go1 A + g10p + g11PA) (Goo — g1 A — Grop + g11pA) =
(hoo + hot A + haop + ha1pA) (hoo — hor A — higp + hiapA) + (1 — )\2)1/2(1 - >\2)1/2)~

If the coefficients of the respective degrees are equal, the following equation set is

obtained. With the help of these equations unknown coefficients can be calculated.

goo” — hoo®> =1 (3.117)

961 — hiy — 2(googoz — hoohoz) = 2 (3.118)
goog11 — Jo1910 — hoohr + horhig =0 (3.119)
g10” — h10” — 2(goog20 — hoohao) = 0 (3.120)

9112 — h112 - 2(901921 — §02920 + 910912 — 900922 — ho1ha1 — ho2hoo — Righio + h00h22) =0

(3.121)

911902 — Go1912 — harhoz + horhia =0 (3.122)
go2® — hea® =1 (3.123)

G122 — hio® — 2(go2922 — hozhaa) =0 (3.124)

911920 — 910921 — 901930 + googs1 — hi11hao + hioho1 + horhso — hoohs1 = 0 (3.125)

911922 — G12921 — 901932 + Go2931 — Ri1hos + hishor + hothsa — hoohsr =0 (3.126)

9202 - h202 - 2(910930 - h10h30) =0 (3-127)

9212 - h212 - 2(910932 + g12930 — 920922 + hiohsa + highso — h20h22) =0 (3-128)
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922 — hao® — 2(g12932 — hizhss) = 0

920931 — 921930 — hoohs1 + ha1hzo = 0

922931 — g21932 — haohsy + hathsy = 0
930" — h3o” =0

9312 — ha1? — 2(g30g32 — hsohsz) = 0

9322 — h322 =0

From the equation (3.107)

goo = V' 1+ hoo?

From the equation (3.108)

Jo1 = \/2 + h3; + 2(g00go2 — hooho2)

From the equation (3.109)

goog11 — go1910 — hoohi1 + horhip = 0

goog11 = goi1gio + hoohi1 — horhag

_ Y0910 + hoohi1 — ho1hio
doo

g11

hoohi1 +
9oo

g1 =

where v = go1910 — ho1h1o.

From the equation (3.110)

9102 - h102 = 2(900920 - h00h20)
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(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)



g%o = h%o + 2(900920 - hOOhQO)

g0 = \/h%o + 2(g00g20 — hoohao)

From the equation (3.112)
g11902 — hithoe = —ho1his + go1912

h
911902 — hi1hoe = 912(901 - h01g—12)
12

and (3.116) equation shows that % equals py so that,

911902 — h11hog
g12 = o

where a = go1 — ho1ft2.

From the equation (3.113)

go2 = V 1+ hoo?
From the equation (3.115)

911920 — hi1hao = g10921 — hioha

and (3.116) equation shows that 4 equals i so that,

911920 — hi1hoy = 921(910 - M2h10)

911920 — hithao
g21 = 3

where 8 = g1 — p12h10-
From the equation (3.116)
g12921 = hizhay

ha _ g1z _ g _ han

g12 B hia B ho1 921 —
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(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)

(3.152)



Table 3.5 Connection Order of the LPLU Topologies for three lumped elements

and two UEs
73 J75) First Element Second Element
+1 +1 Inductor Unit Element
+1 -1 Unit Element Inductor
-1 ] Unit Element Capacitor
-1 -1 Capacitor Unit Element
From the equation (3.117)
920 = \/h%o + 2(g10930 — h1ohso) (3.153)
From the equation (3.120)
921930 — harhgo = 0 (3.154)
9g30(g21 — h21@) =0 (3.155)
930

The connection order of the LPLU topologies for three lumped elements and two

UEs table will be given below :

From the equation (3.111)

9112 - hn2 - 2(901921 — 902920 + g10912 — Goo G2 — hoi1ho1 — hoahao — hiohi2 + hoohm) =0

(3.156)
haoG + hozg — Bo0 (450 % + 9025) + Loy
Iy = — o 7 %00 (3.157)
-3
900
where v = go1g10 — ho1h1o-
From the equation (3.122)
_ ~ hso
g30 = |hso| = ps = — (3.158)

g30
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4. BROADBAND MATCHING METHODS

4.1 Real Frequency Matching with Scattering Parameters

The matching problem is formulated by scattering parameters of the lossless equal-
izer network. That frequency scattering approach is Simplified Real Frequency Tech-
nique (SRFT) (Yarman, 1985). Matching network which is a lossless identified with

the scattering parameters are formed with canonic polynomials f,g,h.

The canonic polynomials are represented with Belevitch representation.

_ hlp) _p) _f) _ ) f)
ME=re TR TPTy) 2T T e

In the above equations, o is a constant (+1 or -1), f(p) is a real monic polynomial
and ¢g(p) is a Hurtwitz polynomial. When the two port N is reciprocal, then f is

either odd or even.

Relation in terms of degree between f(p), g(p) and h(p) polynomials is that g(p)
polynomial can be bigger or equal than degree of f(p) and h(p) polynomials.

The relation f(p), g(p) and h(p) can be seen below:

9g()g(—=p) = h(p)h(—p) + f(p)f(—p) (4.2)

f(p) and h(p) polynomials are the parameters of Hurwitz polynomial g(p).The net-
work’s definitions can be shown with f(p) and h(p) polynomials. f(p) polynomial
is the zeros of transmission of the matching two port network and it is depending

on the distributed elements numbers and chosed lumped elements by the designer.

Numbers of the components and the equalizer network type of components can be
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determined. Also, f(p) will be calculated with degree of n because of those selections.
Then, the cofficients of h(p) can be initialized and g(p) can be calculated via (4.2).
Polynomials’ calculations can be used to calculate the value of scattering parameters

in the equation (4.1).

Transducer power gain can be shown as below :

(1 = [Sin|?)[Sa1>(1 — |SL?)
TPG(w) = 4.
G(w> |1 — S115m|2|1 - SoutSL|2 ( 3)

S;n represent of input reflection coefficient and it is terminated Z;. S; shows the
load reflection coefficient. S,,; represents the output reflection cofficient and also
it is terminated Z;,.S22 shows the reflection coeffient of port 2 and S;; shows the

reflection coeffient of port 1.

For the calculations of the transducer power gain, the real coefficients are needed
to be initialized (Sengiil and Cakmak,2018). Then, f(p)’s polynomial form should
be selected and the degree have to equal or less than g(p). After that, calculating
ggx via ffx+hhx and finding roots of G(p) = ggx. With the known parameters
of f(p) and h(p) polynomials, the scattering parameters can be calculated via (4.1)
and reflection coefficients can be calculated to find TPG in the equation (4.3).

4.2 Parametric Representation of Brune Functions

Brune functions which the method is proposed for single matching problems are de-
velop by Fettweis (Fettweis, 1979) and it is depended the parametric representation
of the positive real impedance Z,,;(p) of a lossless network. Z,,; is the positive real
impedance. And it is identification of impedance while looking from the 2.port to
the generator. It can be solved in a partial fraction expansion. Furthermore, the
parameters can be used to identify the poles of Z,,; to optimizate gain performance

of the system for matching load network.

Zout Tepresents a positive real function and it has simple poles. It can be assumed
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that it shows minimum reactance function so it is identified from its even part. That
means, Zy, equals Z,,:(p) = odd(p) + even(p) and e(p) equals R,y (p). The equal
equation shows that R, (p) is Hilbert transformation of the Z,,(p) (Sengiil and
Cakmak,2018).

The positive real impedance function Z,,;(p) as shown below :

k C
Zou = Co+ Y _ — (4.4)
=1

— P —Pi

Cy represents real constant. Complex constant is p which is the distinct poles of

Zouw With Re(pi) < 0.

Zout(P) + Zow(p) _ f(p)f(=P)
2 n(p)n(=p)

f(p) and Z,,:(p) represent real polynomial and n(p) is the Hurtwitz denominator of

Zout(Even) = (4.5)

these polynomials. In lossless reciprocal two-ports, it can be odd or even polynomial.
Whether Z,,;is a minimum reactance function, the poles are located in the left half

of the complex p plane.

d(p) which is the Hurtwitz denominator polynomial can be shown as below and Dy,

represents non-zero conctant :

d(p) = Dy H(p — i) (4.6)

If combine the equations (4.5) and (4.6), getting the below formula :

0 ) f(-p)
00+i2:l:p—pi o 0

If combine the equations (4.6) and (4.7), getting the below formula,

f (piZf (=pi) (4.8)
1D} [ Tis (97 — p7)

)
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When f(p) polynomial’s degree is smaller than &k, Cj equals to 0. When f(p) poly-
nomial’s degree equals to k, Cy equals . In the equation (4.28), Z,,; can be shown

depends on f(p) and d(p).

The monic polynomial can be represented as below :

ko
=ph Z bip* (4.9)
i=0

If the ky and k; show nonnegative integers, b; will be equaled an arbitrary real
coefficients. When f(p) polynomial’s zeros are located on the real frequency axis of
the p plane, and f(p) can be represented as:

ko

f) =" T - a}) (4.10)

=0

When the number of poles equals odd, the poles should be chosen real. Otherwise,

the number of poles are even, the poles can be thought as conjugate pairs.

As mentioned above, the output impedance parameters can be shown as :

zpz
Rou Ci 4.11
t = Z 0 t =3 wQ _’_pl ( )

k
Kou Z p" (4.12)
=1

'L

4.3 Line Segment Technique for a Single Matching Problem

The network has a resistance at input port and a complex load at output port
(Sengiil and Cakmak,2018). To calculate a transducer power gain, the equalizer

network have to be calculated.

Zp, represents the load impedance and Z,,; represents output impedance as shown

below :
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Z(jw) = Rr(w) + j X1, (4.13)

Zout(jw) - Rout + onut (414)
Zout(jw) - ZL(]w)

Sou = - . 4.15

! Zout(.]w) - ZL(]w) ( )

TPG(w) =1 — |Sou? (4.16)

TPG can be obtained with the imaginary and real parts of load Z1,(jw) and Z,,:(jw)

is the output impedance. And transducer power gain can be written as ;

4RzntRzn . 4RoutRL
(Rint + R'm)2 + (th + in)z B (Rout + RL)2 + (Xout + XL>2

TPG(w) = (4.17)

R, and X,,; are parameters of output impedances and they can be calculated for
maximum transducer power gain. The real frequency approach (Carlin and Yarman,

1983) can be showed to get these Z,,; value.

Zout has the unknown real parts and it represented a number of line segments R,

(Carlin, 1977).

Rouw = ko + > _ bj(w)k, (4.18)
j=1

b;(w) represents identification in Ry, via to the sampling frequency (w;,j =1,2,3,4, ...

Output impedance has the imaginary part and it can be calculated with Hilbert
transformation (Carlin, 1977). X, can be identified using the same line segments
representation as shown below :
Xow = Y _ ci(w)ky (4.19)
j=1
And then ¢j(w) can be calculated via Hilberts transformation technique as show

below :

cj(w) = ——— I (w) (4.20)



I(w) can be calculated as below :

e Y+ w
1 = 1 d 4.21
w = [ iy (4.21)

The tranducer power gain equation (4.17) can be found after the calculation un-
known output impedance. To minimize the difference between the actual power

gain and the target, the least square method can be used as below :
Ny
E= (T(w;, k) - T,)’ (4.22)
j=1

T, represents the target value of TPG. E equals the difference of the actual and

desired one. Number of sampling frequency representing by N,,.

4.4 Direct Computational Technique for Double Matching Problems

Direct computational technique is developed by Carlin and Yarman (Carlin and
Yarman, 1983). It can be used for solving double matching problems. The method
includes that the real part is simplified a real even rational function with the un-
known coefficients to optimize the characteristic of the gain over a specified pass-

band.

The technique is included the output impedance that is unknown parameter. Trans-
ducer power gain will be showed and S5;, represents the complex normalized input
reflection coefficient and it can be used for transducer power gain. As follows below,
Sint can be seen and Z;, represents generator impedance at port one, Z;,; shows the
input impedance, Z;, represents the load impedance and Z,,; represents the output

impedance in the network.

Zimt - Zz
Sint = ———— 4.23
! Zint + Zm ( )

Sin which represents the reflection coefficient of the generator can be shown as :
Lin — 1

Sin = 4.24
Z 71 (4.24)

Sine which represents the reflection coefficient of the port one can be shown as :
Zint —1

S, = 2int 4.95
YTz 1 (4.25)
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TPG can be shown below in terms of \S;, and S;,,; :

1— S |*) (X — |Siml?)
’1 - ‘Svins’imt’2

TPG(w) = (

(4.26)

The aim is that to identify .S;, in terms of a function of the impedance Z5.Also, S;,;

can be identified in terms of the scattering parameters as below :

SthSL  —StQ+ Su

Sint = S+ 77 5225,  1—S.5%

where Q = 51152 — S%,. And the below equation can be found :

S Sip

=5 " %

Combine the equations, S;,; can be represented as :

S12(SLS22%) Sy — Zout — 1

n
Sin - = Zou = 7
¢ 521 X (1 —5 SLSQQ) Zout + 1 t d

Thanks to the equation (4.29), the even part of the Z,,; can be seen as :

1 n nx *
eU(Zout) = §(Zout -+ Zout*) = Ea = HH S H = %

As mentioned above, S;,; can be shown as :

H o ZL - Zout*

Sint = —— = 2ot
YU Hx  Zp+ Zow

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

And below equation means that Z,,; impact to calculate the ratio of TPG with Z,

and Zzn
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5. BROADBAND MATCHING NETWORK DESIGN
VIA EXPLICIT SOLUTIONS OF TWO VARIABLE
SCATTERING EQUATIONS

In this chapter, we will present broadband double matching network design.

5.1 Broadband Double Matching Network Design

In this example, LPLU network which has four elements is employed to match the
load and generator impedances. For this LPLU network, n, = 2,n, = 2 and the
frequency band is 1 > w > 0. The broadband double matching network which
improved (Aksen and Yarman,2001) will be compared with the low-pass mixed el-
ement broadband matching network (two lumped and two unit elements) has been

designed by using the equations given the third part in the thesis.

T represents the delay length which is chosen as the unknown coefficients and also
the coefficicients ( hgo,ho1,h02,h10,h20) are chosen as the unknown coefficients. o
is the constat for defining as —1. Another constant p; will be obtained at the end
of the optimization process by using the sign of hoy. If hog is negative, uy equals
—1 and if hgy equals positive, 11 equals +1. The unknown coefficients of A\; and A,
matrices can be calculated by means of the explicit equations given the third part

in the thesis.

The purpose is that trying an efficient network for transfer power via equalized net-
work. And the network has a parallel inductor and a load capacitor. The normalized

generator and load impedance datas are given below :
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Table 5.1 Normalized Generator and Load Impedance Data
W RG XG RL XL

0.0 10000 0_0000 10000 0_0000
0.1 1.0000 0.1000 0.5901 0.1010
02 10000 02000 09615 02077
0.3 1.0000 0.3000 0.9174 0.3248
0.4 1 0000 0_4000 08621 04552
0.5 1.0000 0.5000 0.8000 0.6000
0.6 10000 06000 0.7333 07588
0.7 1.0000 07000 0.6711 0.2302
0.8 1 0000 0_8000 06098 1.1122
0.9 1.0000 0.2000 0.5525 1.3028
1.0 10000 10000 05000 15000

1 1 L 1
I "™ N S [ o i

1n:
C %
E ‘ ' C |

Figure 5.1 Designed mixed-element double matching network

2
TN,
1

—— |1

4
41

Then completed the optimization process, the coefficient matrices which are showed
below that completely describe the scattering parameters of the matching network

under consideration are obtained :

—0.1076 —3.4667 —2.7720 1.0058 4.3988 2.9468
Ar =1 0.3723 —5.6308 —11.6498], Ag = [1.6225 8.9814 11.6498
1.1199 —8.2039 0 1.1199 8.2039 0
(5.1)

The designed network with the normalized element values and the gain performance

of the system are shown below :

Proposed Values: L = 1.7916,C = 1.392, 7, = 0.137, Z5 = 0.701, 7 = 0.2 n = 0.8982
Following reference values are taken from the (Aksen and Yarman,2001). Reference

Values: L = 2.126,C = 0.751, Z; = 0.161, Z, = 0.341, 7 = 0.21
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Figure 5.2 Performance of the matched system designed with mixed elements
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Figure 5.3 Performance of the matched system with C' = 3
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In the design, an ideal transformer is used which simply scales current and voltage.
It does not have any inductance or frequency dependency. So DC passes through
like all other frequencies. Then ideally there will be a power transfer at DC. But

practically a transformer will not transfer any power at DC.

If the normalized capacitor value in the load is increased to 3, then the maximum
available flat gain level equals about 0.8 (Fano,1950) (Youla,1964). But the trans-
ferred gain at DC will be unity. Then the gain will reduce dramatically to 0.8
levels in the passband as seen in the figure. On the other hand,a more flat trans-
ducer power gain curve fluctuating around 0.8 is obtained by means of the derived

equations.

There is no transformer in (Aksen and Yarman,2001) (hoo is restricted and hgg
equals 0),the low pass network is designed and the generator and load resistors are
equal, the transferred gain is unity at DC. After that, the gain level reduces to
approximately 0.95 (Fano,1950) (Youla,1964). For the maximum available gain for

the selected load is ideally close to unity,this gain drop is not noticeable.
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6. CONCLUSIONS

Mixed element networks are included different elements. The network which has
mixed element structures can be defined by two variables which one of them is
lumped element and the other is distributed element and were assumed as indepented
variables. In this thesis, the complete and explicit equations are derived for lossless
low-pass mixed-element topologies, and by using the equations solved without any

restrictions, a broadband matching network design was made.

Explicit design equations have been solved up to four elements for LPLU without
any restrictions. In case of five-element, it is obtained that the first row and column
coefficients of the two-variable polynomial ¢, explicit equations are found for the
unknown coefficients of A, and Aj; matrices without any restrictions. Then, the
broadband matching network design was created. The results were compared with

the results in the literature.

The utilization of the given explicit equations is demonstrated via a broadband
double matching example. It is expected that the proposed equations will be used
to design two-variable networks such as broadband matching networks, microwave

amplifiers.

41



APPENDIX A: Matlab Codes

A.1 Matlab Codes for Main Program

cle

tic

clear

syms L fr

global m2 dist lump w SG SL TO ZG ZL f_p mu

Y%oxx*xxxsource and load impedance, souce and
%load relection coefficient calculation ssxxx
w=0:0.1:1;

z=1.%fr . *«24+(1/(1+ixfr«1));

Zl=subs(z, fr ,w);

ril=1;

r33=i.xfr.x1;

z11=r114r33;

zll=simple (z11);

ZG=subs (z11, fr ,w);

% ZG=ones (1,length (w));

SG=(ZG—-1)./(ZG+1);

SL=(ZL—-1)./(ZL+1);

%*******************************>|<*************************

42



Toxrrrk INTETal  VALUeS #kokskook sk ok ook sk ok ok ook ok Kok ok ok o6 K %ok ok ok o6 K Kok ok ok o6 K %ok ook o %
hOoi=[1 —1 1]; %dist

hjo=[-1 1]; %lumped

T0=0.99; %gain

thau=0.2; %delay

%*******>|<**************************************************

Yoxxxxx Optimisation vector CONSETUCTTION sskskskoskok sk ks sk sk skt ok sk sk ok ok skt ok Kk ok ok ok ok
dist=length (h0i)—1;
lump=length (hj0);

dimension=dist+lump;

if dist=lump
m2=input (’Enter m2 value (+1/—1):"); % ORNEK GIR

end

for a=1:dist+1;
v(a)=h0i(a);

end

for a=1:lump;
v(dist+1+a)=hj0(a);

end

v(dimension+2)=thau;

T o ko ko ok o o ok ok KR R Kok R K K R KR KR R K R K R KR KR K
f p=(1-L"2)"(dist /2);

mu=1;
Doxskxx OPLIMISATION  PATT s sk sk sk sk sk ok sk ok sk sk 3 ok ok 3k sk ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok Kk %

const=length (v);
LB=[ones (1,const —1).x(—Inf) 0.2];
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UB=ones (1, const ).* Inf;

OPTIONS=optimset (’MaxFunEvals’ 1000,  MaxIter ’,2500, TolCon’ ,1e—32,
"TolX’ ,1e—32,"TolFun’ ;1e—32);
v_new=fmincon ( Qerror_srft ,v,[] ,[],[],[] ,LB,UB,[] ,OPTIONS);

%*******>|<**************************************************

Yoxxxxx Gettin h0i, hjO and thau after optimisation sk ks ks kkkx
for a=1:dist+1;

hOi(a)=v_new(a);
end ;

h0i;

for a=1:lump;

hjOo (a)=v_new (dist+1+a);
end ;
hjO (lump+1)=h0i(length (h0i));
hjo;

thau=v_new (dist+ump+2);

if hjo(1)>0
ml=1;

else
ml=—1;

end

%*******************************>|<************************
Y%oxxxxx Calculation of optimised h and g matrices sk kkskokkkokkx

if dist==1 & lump==1;
[Ah,Ag]=hglin(hOi,hjO0 ,ml,m2,f p);
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elseif dist==1 & lump==2;

m2=ml ;

[Ah,Ag]=hg12n(h0i,hjO0 ,ml,m2,f p);
elseif dist==2 & lump==1;

if ml==1
m2=—1;
else
m2=1;
end

[Ah,Ag]=hg21n(h0i,hjO0 ,ml,m2,f p);
elseif dist==2 & lump==2;

[Ah,Ag]=hg22n (h0i,hjO0 ,ml,m2,f_p);
elseif dist==2 & lump==3;

m2=ml;

[Ah,Ag]=hg23n (h0i,hjO0 ,ml,m2,f p);

end

Ah
Ag
thau

%*********>I<>I<>I<>I<>I<>I<>I<***********************************>I<>I<>I<>I<>I<>I<*>k>k>l<>l<

%x*xxx Calculation of load and source impedances,

% source and load reflection coefficients over new frequency rangesxsx
w=0:0.01:2;

Zl=subs(z, fr ,w);

ZG=subs (z11,fr ,w);

% ZG=ones (1,length (w));

SG=(2G—-1)./(ZG+1);

SL=(ZL—-1)./(ZL+1);
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%***************************************************************

Y%oxxxxx According to optimised h and g matrices, getting the values
% of h, hpara, g, gpara and fs*s**x
for a=1:length (w);
d=istan (w(a)*thau);
hv (a)=0;
for b=1:lump+1;
for c=1:dist+1;
hv(a)=hv(a)+Ah(b,c)*((i*xw(a))" (b—1))*(d) (c—1);
end
end

end

for a=1:length (w);
—ixtan(w(a)xthau);
hpv (a)=0;
for b=1:lump+1;
for c=1:dist+1;
hpv (a)=hpv (a)+Ah (b, ¢)«((—isw(a))” (b—1))x(d)" (c—1);
end
end

end

for a=1:length(w);
d=ixtan(w(a)*thau);
gv(a)=0;
for b=1:lump+1;
for c=1:dist+1;
gv(a)=gv(a)+Ag(b,c)*((ixw(a)) (b=1))(d)" (c—1);

end
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end

end

for a=1:length(w);
——ixtan(w(a)xthau);
gpv (a)=0;
for b=1:lump+1;
for c=1:dist+1;
gpv (a)=gpv (a)+Ag(b,c)*((—ixw(a)) (b—1))*(d)" (c—1);
end
end

end

%*******>|<>|<>|<>|<***********************************************
fv=subs(f_p ,L,i.*xtan(w.xthau));
fpv=conj (fv);

Y%oxxxxx Calculation of tpg over the frequency range sk kskskkkokkx
S22=mu.*hpv./gv;

S12=mu.x*fpv./gv;

S21=fv./gv;

Sll=hv./gv;

SL=(ZL—1)./(ZL+1);
S1=S11+(S12.%S21.%SL)./(1—-S22.%SL);
Z11=(1+S1)./(1-S1);

rl=(Z11-conj (ZG))./(Z11+ZG);
SG=(ZG—1)./(ZG+1);
S2=S22+(S12.%S21.%SG)./(1 —S11.xSG);
722=(1+52)./(1—S2);

47



tpg=(4.xreal (ZL).xreal (Z22))./((real (ZL)4+real (Z22))." 24 (imag(ZL)
+imag(Z22))."2);

%**********************************************************

YoxxxxxPlotting the result sss*x

hold on

renk=(round (rand (3,1)))’;

div=(round(rand (3,1))) +1;

color=[renk (1)/div (1) renk(2)/div(2) renk(3)/div(3)];

plot (w,TO, v’ ,w,tpg,’ color
axis ([0 2 0 1])

,color)

%***********************************************************

toc
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A.2 Matlab Codes for Error Calculation

function eps=error_srft(v)

syms L fr

global m2 dist lump w SG SL TO ZG ZL f_p mu

Yoxkxxxerror sub—program sk

Y%ox*xxxx calculation of hOi, hjO and thau from optimisation vector sk

dimension=dist+lump;

for a=1:dist+1;
hoi(a)=v(a);

end

for a=1:lump;
hjo (a)=v(dist+l+a);
end

hjO (lump+1)=h0i(length (h0i));

thau=v (dist+lump+2);
0 % s sk ok ok ok ok ok ok ok ok ok K ok ok kKK ok K ok K kK K oK ok K kKK oK K ok K kKK oK Kk K K KK oK Kk Kk KK K K
if hjo(1)>0
ml=1;
else
ml=-—1;
end

Toxxxxx Calculation of h and @ MabrTices sk sk skskok ok sk ok ok koK ok ko ok ok ok ok ok ok ko ok
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if dist==1 & lump==1;
[Ah,Ag]=hglln(hOi,hjOo ,ml,m2,f p);
elseif dist==1 & lump==2;
m2=ml ;
[Ah,Ag]=hg12n(h0i,hjO0 ,ml,m2,f _p);
elseif dist==2 & lump==1;
if ml==
m2=—1;
else
m2=1;
end
[Ah,Ag]=hg21n(h0i,hjO0 ,ml,m2,f _p);
elseif dist==2 & lump==2;
[Ah,Ag]=hg22n (h0i,hjO0 ,ml,m2,f p);
elseif dist==2 & lump==3;
m2=ml ;
[Ah,Ag]=hg23n (h0i,hjO0 , ml,m2,f p);

end

%************>I<>I<>I<>I<>I<>I<>I<>I<*>|<>|<>|<>|<>|<>I<**************************************

Y%oxxxxxcalculation of h, hpara, g, gpara and f values stk
for a=1:length(w);

d=ixtan(w(a)*thau);

hv (a)=0;
for b=1:lump+1;

for c=1:dist+1;

hv(a)=hv(a)+Ah(b,c)*((i*xw(a))" (b—1))*(d) (c—1);
end

end

end
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for a=1:length (w);
—ixtan(w(a)xthau);
hpv (a)=0;
for b=1:lump+1;
for c=1:dist+1;
hpv (a)=hpv (a)+Ah (b, ¢)«((—isw(a))” (b—1))x(d)" (c—1);
end
end

end

for a=1:length(w);

d=ixtan(w(a)*thau);

gv(a)=0;

for b=1:lump+1;
for c=1:dist+1;

gv(a)=gv(a)+Ag(b,c)*((ixw(a)) (b—1))(d) (c—1);

end

end

end

for a=1:length (w);
=—ixtan(w(a)xthau);
gpv (a)=0;
for b=1:lump-+1;
for c=1:dist+1;
gpv (a)=gpv (a)+Ag(b,c)*((—ixw(a)) (b—1))*(d)" (c—1);
end
end

end

fv=subs (f_p ,L,i.xtan(w.xthau));

o1



fpv=conj (fv);

%************>I<************>I<***************************************

Toskxxrxcalculation OF TP g sk kokokok ok ok ok ok ok kK Kk Kk ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok
S22=mu.*hpv./gv;

S12=mu.x*fpv./gv;

S21=fv./gv;

Sll=hv./gv;

SL=(ZL—1)./(ZL+1);
S1=S11+(S12.%S21.%SL)./(1—-S22.%SL);
Z11=(1+S1)./(1—S1);

rl=(Z11-conj (ZG))./(Z11+ZG);
SG=(ZG—1)./(ZG+1);
S2=522+(S12.%S21.%SG)./(1 —S11.xSG);
722=(1+52)./(1—S2);

tpg=(4.xreal (ZL).*xreal (Z22))./((real (ZL)+real (Z22))."2 +
(imag (ZL)+imag(Z22))."2);

%*****************************************************************

eps=sum (((tpg—T0)./tpg)."2)
O s sk 3k sk 3k % ok ok ok o ok 3k ok 3k ok ok ok ok o ok 3k oKk oK ok oK ok 3 ok Sk oK Sk oK ok K ok K ok Sk oKk K ok K ok 3 oK Sk oK ok K ok K ok K oK K oKk K ok ok K K

return
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A.3 Matlab Codes for Mixed Element Structure Formed with One Lumped
Element and One UE

function [Ah,Ag]=hglln(h0i,hj0 ,ml,m2,f p);

Y%oxxxxxhgll sub—program s x*x*

gjO=LLEL(hj0 ,[zeros (1,length (hj0)—1) 1]); %lumped
g0i=LLELd(hOi, f_p); %dist

)

h00=h0i
h01=h0i

I

g11=(g10%g01—h10xh01)/(g00—m2%h00 );
h11=m2x*gll;

Ah=[h00 hO01;h10 hi11];
Ag=[g00 g01;g10 gl1];

%******************>I<>I<>I<>I<>I<>I<>l<>l<***************************************

return
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A.4 Matlab Codes for Mixed Element Structure Formed with Two Lumped
Elements and One UE

function [Ah,Ag]=hgl2n(h0i,hj0 ,ml,m2,f p)

Yoxxxxxhgl2 sub—program s x*x*

gjO=LLEL(hj0 ,[zeros (1,length (hj0)—1) 1]); %lumped
g0i=LLELd(hOi, f_p); %dist

h00=h0i (
h01=h0i (
h10=hj0 (
h20=hj0 (
(
(
(

™
)
)
)i
g00=g0i (2);
g01=g0i (1);
g10=gj0 (2);
820=gj0 (1);
gl1=(gl0%g01—h10%xh01)/(g00—m2xh00 );
h11l=m2xgl1;
h21=0;
g21=0;

I
I

’

2
1
2
1
2
1
2
1

Ah=[h00 h01:;h10 h11;h20 h21];
Ag=[g00 g01;g10 gl1;g20 g21];

%*****************************************************************

return

o4



A.5 Matlab Codes for Mixed Element Structure Formed with One Lumped
Element and Two UEs

function [Ah,Ag]=hg21 (h0i,hj0 ,ml,m2,f p)

Yoxxxxxhg21 sub—program ##x*x*

gjO=LLEL(hj0 ,[zeros (1,length (hj0)—1) 1]); %lumped
g0i=LLELd(hOi, f_p); %dist

h00=h0i (3)
h01=h0i (2)
h02=h0i (1);
h10=hj0 (1);
(3)
(2)
(1)

)

I

g00=g0i
g01=g01
g02=g01i
g10=gj0 (1);
alfa=g01-m2+h01;
beta=gl0—m2xh10;
gl1=2xg02«beta/alfa;
h11=2«h02xbeta/alfa ;
g12=(gll%g02—h11xh02)/alfa ;
h12=m2xgl2;

I

I

?

Ah=[h00 h01 h02;h10 L1l h12];
Ag=[g00 g01 g02;g10 gll1 gl2];

%************>I<>I<*>I<>I<********>|<>I<*************>I<************************

return
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A.6 Matlab Codes for Mixed Element Structure Formed with Two Lumped
Elements and Two UEs

function [Ah,Ag]=hg22n (h0i,hj0 ,ml,m2,f p)

Yoxxxxxhg22 sub—program ##x*x*

I

h00=h0i (3)

h01=h0i (2);

h02=h0i (1);
(2);
(1)

h10=hj0
h20=hj0

)

I

g00=sqrt (1+h00"2);

14+h02 " 2);

g01=sqrt (2+h01"2+2%(g00xg02—h00*xh02));
g20=abs (h20);

g10=sqrt (h10"2+2%(g00%xg20—h00*h20 ) );
gama=g01xgl0—h01xh10;

alfa=g01-m2+h01;

(
(

g02=sqrt

beta=gl0—m2+h10;

h11=(h20xalfa /betat+h02«beta/alfa —(h00xg00)x(g20*alfa /betat+
g02xbeta/alfa)+gamaxh00/g00"2)/(1—(h00"2/g00"2));
gll=(gama+h00xh11)/g00;

g21=(gl1%g20—h11%h20)/beta;

h21=m2xg21;

g12=(gll%g02—h11xh02)/alfa;

h12=m2xgl2;

h22=0;

g22=0;
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Ah=[h00 hO1l hO02;h10 h11l h12;h20 h21 h22];
Ag=[g00 g01 g02;g10 gll gl2;g20 g21 g22];

return
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A.7 Matlab Codes for Mixed Element Structure Formed with Three

Lumped Elements and Two UEs

function [Ah,Ag]=hg23n(h0i,hj0 ,ml,m2,f p)

Yoxxxxxhg23 sub—program ##x*x*

gjO=LLEL(hj0 ,[zeros (1,length (hj0)—1) 1]); %lumped
g0i=LLELd(hOi, f_p); %dist

h00=h0i (3)
h01=h0i (2)
h02=h0i (1)
h10=hj0 (3)
h20=hj0 (2);
h30=hj0 (1);
(3)
(2)
(1)
(3)
(2)

)
I

I

)

g00=g0i
g01=g01
g02=g01

?

I

I

g10=gj0 ;

I

g20=gj0
g30=gj0 (1);

gama=gl0xg01—-h10xh01;

alfa=g01-m2+h01;

beta=gl0—m2xh10;

h11=(h20*alfa /beta+h02xbeta/alfa —(h00/g00)*(g20xalfa /beta+
g02xbeta/alfa)+h00xgama/g00"2)/(1—-h00"2/g00 "2);
gll=(gama+h00xh11)/g00;

gl2=(1/alfa )*(gllxg02—h11xh02);

h12=m2xgl12;

g21=(1/beta)*(gll*xg20—h11%h20—g01%g30+h01xh30);

?

o8



h21=m2xg21;
h22=0;
g22=0;
h31=0;
g31=0;
h32=0;
g32=0;

Ah=[h00 hO1l h02;h10 h11l h12;h20 h21 h22;h30 h31 h32];
Ag=[g00 g01 g02;g10 gll1 gl2;g20 g21 g22;¢g30 g31 g32];

%*****************************************************************

return
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