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LOAD ESTIMATION USING DIGITAL PARTICLE IMAGE 

VELOCIMETRY DATA FOR FLAPPING WING AERODYNAMICS 

SUMMARY 

The current study aims to develop an in-house code to estimate loads for a flapping 

wing using Digital Particle Image Velocimetry (DPIV) data. For the sake of simplicity, 

pure plunge motion is considered and experiments were performed using different 

space and time resolutions to assess the performance of the load estimation. Then, the 

developed code has been tested for different plunge motion cases. Although the study 

is focused on the load estimation, it make uses of a large quantity of DPIV and direct 

force measurement data. 

In order to calculate the force acting on the flapping airfoil, Reynolds Transport 

Theorem (RTT) can be utilized. As the velocity field is provided by the DPIV data in 

time, in order to compute the forces acting on the body, one has to obtain the pressure 

field around it. Present study includes the estimation of forces by using the pressure 

field which is obtained by the explicit integration of planar pressure gradients. The 

pressure gradients are obtained by the use of Navier-Stokes Equations in two-

dimensional form. In Navier-Stokes Equations, material derivative is required to 

compute the pressure gradients. In order to compute the material derivative, two 

methods are used succesively in this work, namely Eulerian and Lagrangian 

approaches. The thesis describes the algorithm in detail with its variations. As a result 

higher order differentiation and surface integral for unsteady term yielded a better 

performance in force prediction.  

According to the sensitivity analyses, a spatial resolution of 3% of the chord and a 

field of view covering all the amplitude of motion gave a satisfactory results with a 

temporal resolution expressed as 40 vector fields per cycle of motion. In terms of DPIV 

post-processing, average correlation was found to reduce the noise as it is expected. 

On the other hand, the estimated load matched better the direct measurement when it 

was phase averaged and filtered. It should be noted that the compared direct 

measurement results were also 1 Hz filtered.  

For all the investigated results, both for the sensitivity analyses and general plunge 

cases, lift coefficient variation was in general predicted well, in agreement with the 
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direct force measurements, however the estimated drag coefficient variation had a very 

large discrepancy with the direct force measurements. This might be due to the 

neglected viscous term. Consequently, the fact disabled thrust/drag analyses for plunge 

cases. Estimation of the lift force coefficient variation exhibited a nearly perfect match 

even on the instantaneous results when the plunge motion has the lowest frequency 

and the largest amplitude. 
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ÇIRPAN KANAT AERODİNAMİĞİ UYGULAMALARI İÇİN, PARÇACIK 

İZLEYEREK HIZ BELİRLEME YÖNTEMİ İLE ELDE EDİLEN 

VERİLERDEN KUVVET TAHMİNİ 

ÖZET 

Mevcut çalışmanın amacı, çırpma (düşey salınım) hareketi yapan bir kanadın üzerine 

etkiyen aerodinamik kuvvetlerin tahmini için bilgisayar programı geliştirmektir. 

Kuvvet tahmini için Dijital Parçacık Takip Ederek Hız Belirleme (DPIV - Digital 

Particle Image Velocimetry) yöntemiyle kanadın etrafındaki hız alanı elde edilmiştir. 

Basit olması amacıyla, kanada yalnızca düşey salınım hareketi yaptırılmıştır. Kuvvet 

tahmininin başarısını sınamak amacıyla farklı zaman ve mekan çözünürlüklerinde 

deneyler gerçekleştirilmiş ve kuvvet tahmininin bu çözünürlüklere hangi ölçüde bağlı 

olduğu belirlenerek hassasiyet analizi gerçekleştirilmiştir. Daha sonra hazırlanan 

yazılım farklı düşey salınım parametrelerine sahip olan kanat hareketleri için 

çalıştırılmıştır. Bu çalışma her ne kadar kuvvet tahminine odaklanmış olsa da büyük 

miktarda DPIV verileri ve kuvvet ölçüm sonuçlarını kullanmaktadır. 

 

Çırpan kanada etki eden aerodinamik kuvvetlerin hesaplanması için Reynolds Taşınım 

Teoremi (RTT – Reynolds Transport Theorem) kullanılabilir. RTT’nin 

kullanılabilmesi için hız alanı ve hız alanının zaman ve uzay türevleri ile basınç alanı 

(ayrıca sıkıştırılabilir durumda yoğunluk alanı) bilinmelidir. Hız alanı DPIV 

yöntemiyle elde edildiğine göre hız alanının zaman ve uzay türevleri de geometri ve 

zaman bilgileri sayesinde sayısal olarak elde edilebilir. Fakat basınç alanının elde 

edilmesi için daha uzun bir işlemler dizisi gereklidir. Mevcut çalışmada, basınç alanı 

hız alanı kullanılarak elde edilmiştir.  Bunun için önce hız alanında düzlemsel basınç 

gradyenleri bulunmuş daha sonra kapalı bir şekilde integre edilerek kuvet hesabı için 

gerekli basınç katkısı hesaplanmıştır. Bu düzlemsel basınç gradyenleri, Navier-Stokes 

Denklemleri kullanılarak elde edilmiştir. Navier-Stokes Denklemleri yardımıyla 

maddesel türev ve basınç gradyeni arasında ilişki kurulmuştur. Maddesel türev hesabı 

için Euler yaklaşımı ve Lagrange yaklaşımı art arda kullanılmıştır. Bu tezde, kuvvet 

hesabı algoritması tüm varyasyonlarıyla ayrıntılı bir şekilde anlatılmıştır. Sonuç olarak 

yukarda bahsedilen hız alanının sayısal türevi için yüksek mertebeli ve düşük 

mertebeli yaklaşımlar karşılaştırılmış ve yüksek mertebeli işlemin daha iyi sonuç 

verdiği görülmüştür. Ayrıca RTT içindeki zamana bağlı terimin yüzey integrali ve 
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çizgi integrali olarak hesaplanmaları karşılaştırılmış ve yüzey integralinin daha iyi 

sonuç verdiği görülmüştür. 

Kuvvet tahmini analizi önce bir test durumu için uygulanmıştır. Bu test durumu 

deneyleri FP7 Project 605151 - “Non-Intrusive Optical Pressure and Loads Extraction 

for Aerodynamic Analysis (NIOPLEX) - Aerodinamik Analizler için Akışa 

Müdahalesiz Optik Yöntemlerle Basınç ve Yük Çıkarımı” kapsamında İstanbul Teknik 

Üniversitesi (İTÜ) Trisonik Araştırma Laboratuvarı’ında (TAL) yapılmıştır. 

Hassasiyet analizi ile ilgili deneyler için NACA0012 kodlu simetrik ve %12 kalınlık 

oranına sahip kanat profili kullanılmıştır. Değişik zaman ve uzay çözünürlüklerinde 

gerçekleştirilen hassasiyet analizi sonuçlarına göre 8 Hz’lik bir veri alma frekansı 15 

Hz’lik durumdan daha iyi sonuç vermektedir. Öte yandan 80 Hz’lik zaman 

çözünürlüğü ise 8 Hz ve 15 Hz’lik durumlardan çok daha kötü bir sonuç vermiştir. 

Dolayısıyla 8 Hz’lik zaman çözünürlüğü tatmin edici bir doğrulukta kuvvet tahmini 

yapılabilmesi için yeterlidir. 8 Hz’lik data alma işlemi çırpma hareketinin bir 

periyodunun 40 vektör alanıyla ifade edilmesi anlamına gelmektedir. Uzay 

çözünürlüğünde ise veter uzunluğunun %3’ünün yeterli olduğu görülmüştür. Bununla 

beraber hız alanı olarak tüm çırpma hareketinin kapsanması ve bir periyodun 40 vektör 

alanıyla ifade edilmesi halinde kuvvet tahmini başarılı sonuç vermektedir. 

DPIV hız alanlarını kuvvet tahmini için daha da uygun hale getirmek üzere hız alanı 

elde edildikten sonra averaj korelasyon işlemi de uygulanmıştır. Ham veriye 

uygulanan bu işlem 80 Hz’lik durumda denenmiş ve averaj koralasyonun kuvvet 

tahmin sonuçarındaki gürültüyü oldukça azalttığı görülmüştür. Öte yandan tahmin 

edilen kuvvet sonuçlarının faz averajı alındığında ve sonrasında bir periyotluk veriye 

filtre uygulandığı zaman ölçülen kuvvetlere çok daha yakın sonuçlar verdiği 

görülmüştür. Ayrıca karşılaştırma amaçlı ölçülen kuvvetlerin de 1 Hz’lik filtreye tabi 

tutulduğu göz önüne alınmalıdır. 

Hasasiyet analizi deneyleri gibi değişik düşey salınım hareketi deneyleri de TAL’da 

yapılmıştır. Bu deneyler için hasasiyet analizi deneylerinden farklı olarak bir düz levha 

kullanılmıştır. Düz levha kullanılmasının sebebi zahiri kütle etkilerini analitik biçimde 

hesaplayabilmek ve böylece kanada etki eden net aerodinamik kuvveti 

belirleyebilmektir. Bu düz levhanın veter uzunluğu 30 cm ve kanat açıklığı 10 cm’dir. 

Tüm düşey salınım hareketi deneylerinde bir periyot 40 vektör alanıyla ifade edilmiş 
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ve toplamda her varyasyon için 30 periyot veri alınmıştır. Böylece gerçek zamanlı 

olarak toplam 1200 vektör alanı mevcuttur. Hem hassasiyet analizi deneyleri hem de 

daha sonraki düşey hareket deneylerinin kuvvet tahminleri incelendiğinde taşıma 

katsayısı tahmininin ölçülen değerlerle çok yakın sonuçlar verdiği görülmüştür. Fakat 

sürükleme katsayısı tahminlerinde ise ölçülen değerler ve tahmin sonucu arasında çok 

fazla fark olduğu gözlemlenmiştir. Bu durumun RTT’de ihmal edilen viskoz terime 

bağlı olabileceğinden düşünülmektedir. Sonuç olarak, sürükleme katsayısı tahminleri 

göz ardı edildiğinde taşıma katsayısı tahmininin gerçek zamanlı hız alanlarıyla 

hesaplandığında bile en düşük frekanslı ve en yüksek genlikli çırpma hareketi 

durumlarında neredeyse mükemmel bir biçimde ölçülen değerlerle eşleştiği 

görülmüştür. 
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1.  INTRODUCTION 

Biological inspiration is a recent interest to enhance the performance of the next 

generation of small-scale Micro Aerial Vehicles (MAVs) over existing fixed and 

rotary wing systems. Researchers aim to employ the unsteady mechanisms of moving, 

flapping and/or deforming, flexible wings to overcome the unfavorable aerodynamic 

conditions, therefore the unsteady flows in low Reynolds number regimes gain 

increasing attention in recent years. These phenomena are also highly relevant in more 

traditional fields; e.g the blades of helicopter or wind turbine rotors, or aircraft or 

marine propellers under unsteady conditions. In the aerodynamic analysis of the 

associated flow phenomena, the non-intrusive pressure and loads determination 

methods provide a convenient way to extract these data and relate them to the observed 

flow and wing-deformation phenomena. Currently, Particle Image Velocimetry (PIV) 

is the major diagnostic technique to obtain the mean flow field and turbulent 

fluctuations. In 2013, an FP7 project entitled “Non-intrusive Optical Pressure and 

Loads Extraction for Aerodynamic Analysis” and with an acronyme of NIOPLEX has 

been started with a workpackage dedicated to unsteady wing aerodynamics. The main 

objective and ambition for the work in the NIOPLEX project is to develop and assess 

flow-diagnostic techniques that enable a comprehensive aerodynamics analysis to be 

obtained, through the simultaneous measurement of the surface pressure, the flow field 

and the pressure distribution inside an unsteady flow (van Oudheusden, 2013). 

The current study aims to develop an in-house code to estimate loads for a flapping 

wing using Digital Particle Image Velocimetry (DPIV) data. For the sake of simplicity, 

pure plunge motion is considered and experiments were performed using different 

space and time resolutions to assess the performance of the load estimation. Then, the 

developped code has been tested for different plunge motion cases. Although the study 

is focused on the load estimation, it make uses of a large quantity of DPIV and direct 

force measurement data. 

The overall objectives of the study can be summarized as follows: 

- Develop an in-house code for load estimation of bodies in motion 
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- Determine the spatial and temporal resolutions needed for the DPIV 

experiments for an accurate load estimation 

- Compare force estimation results with direct force measurement data and 

determine the shortcomings of the estimation algorithm 

 

In order to compute the forces acting on the body, one has to obtain the pressure field 

around it. Present study includes the estimation of forces by using the pressure field 

which is obtained by the explicit integration of planar pressure gradients. The pressure 

gradients are obtained by the use of Navier-Stokes Equations in two-dimensional form. 

In Navier-Stokes Equations, material derivative is required to compute the pressure 

gradients. In order to compute the material derivative, two methods are used 

succesively in this work, namely Eulerian and Lagrangian approaches. The algorithm 

with its variations are presented in the third chapter after the second chapter devoted 

to the litterature review. The forth chapter presents the details of the experiments 

performed and it is followed by the sensitivty analysis results given in the fifth chapter. 

While Chapter 6 includes all the results covering load estimations for different plunge 

motion cases, Chapter 7 gives the concluding remarks and recommendations for 

further studies. 
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2.  LITERATURE REVIEW 

2.1 Load Estimation 

The fact that flapping foils could lend themselves to both thrust generation and energy 

extraction from the surrounding fluids significantly have drawn attention in the last 

decade. Although the basic mechanism of thrust generation is readily known (Jones et 

al., 1996), investigations for a complete understanding of the generated forces with the 

flapping motions are still required. One of the many possible ways to obtain the forces 

acting on a flapping wing is direct force measurements. However, unless otherwise 

identified by an encoder, the load cells measure the total of forces acting on the foil in 

the experimental medium. This results in a more important problem when an 

experiment is performed in a water channel, since the measured forces are constituted 

mainly of the non-circulatory forces due to the fact that medium in which the foil 

moves is water. In flapping foil research where the airfoil has large acceleration, the 

contribution of the effect of the added mass on the measured data might even be higher 

than the contribution of the circulatory forces of the airfoil (Rival et al., 2009). Hence 

the identification of the forces acting on flapping foils through non-intrusive methods 

is necessary. 

Particle Image Velocimetry has become an important non-intrusive flow measurement 

technique since late 1990’s. It has rapidly developed into a trusted and versatile 

technique for flow field measurement, capable of delivering a detailed experimental 

characterization of the flow in terms of (large) ensembles of instantaneous velocity 

fields (van Oudheusden, 2009). On the other hand, measuring the aerodynamic forces 

experienced by a body is of major interest when dealing with flow control applications 

and strain gauges are widely used for steady flow configurations whereas piezo-

electric devices appear as an alternative solution for unsteady flow configurations 

(David et al., 2009). As those techniques are limited to a specific range of loads, in 

parallel with the development of PIV, researchers started to estimate loads based on 

PIV data and using integration of flow variables inside and around a control volume 

surrounding the body (Noca et al., 1997, 1999; Unal et al., 1997). As this approach 

allows a direct link between flow behavior and force mechanisms, it is found to be 

particularly powerful besides the fact that the load characterization is performed in a 
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non-intrusive manner (Jardin et al., 2009). Further details on the development of load 

estimation can be found in the review paper of van Oudheusden (2013).  

Load estimation by utilizing the velocity field which is obtained by DPIV method has 

drawn so much attention in recent years (Violato et. al, 2011; Mohebbian and Rival, 

2012; Tronchin et al., 2015). Since all the numerical computations somewhat impair 

the accuracy of the procedure by truncation errors, there is a significant endeavour 

present in literature to minimize these errors with different methods. These errors 

should be taken into account both in the calculation of material derivative and in the 

integration of the information about the pressure, whether it is an explicit or implicit 

integration. The most prominent method is to apply the Eulerian and Lagrangian 

approaches succesively for attaining the material derivative by using the former as an 

initial information for the computation of the latter. If we overview the research topic 

in the past decade: 

Liu and Katz (2006) used a two camera and four-exposure PIV system to obtain the 

instantaneous pressure fields and material accelerations. They applied the Eulerian and 

Lagrangian methods for a synthetic flow case that was generated using MATLAB. The 

synthetic PIV images had 2048 pixels × 2048 pixels resolution and 32 pixels × 32 

pixels interrogation window. They proposed an omni-directional integration method 

for getting pressure field from planar pressure gradient. 

Kurtuluş et al. (2006) investigated the flow around a square cylinder with TR-PIV in 

order to estimate the unsteady forces acting on it. They presented the terms in the force 

equation, namely unsteady, flux and pressure and emphasized which term is dominant 

in which component of the force exerted on the cylinder. It was stated that the 

convective term is more significant than the others in lift coefficient and the pressure 

term in the drag coefficient. 

van Oudheusden et al. (2007) calculated the integral forces around various geometries 

using PIV velocity data. They addressed the calculation of time-mean pressure data 

and the evaluation of forces using velocity ensemble data.   

de Kat et al. (2008) performed the instantaneous pressure field determination with the 

same Eulerian and Lagrangian approach and compared the computation with the 

measured pressure information that they acquired using microphones. 
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Violato et al. (2010) applied Eulerian and Lagrangian approximations for he 

computation of pressure field around a rod-airfoil geometry using the 3D velociy field 

that they acquired using TR-TOMO PIV with a temporal separation of 5 kHz and 

showed that when in need of a relative precision error of maximum 10% the Eulerian 

method requires a better temporal separation than the Lagrangian method. 

de Kat and van Oudheusden (2011) presented the fundamentals for performing the 

Eulerian and Lagrangian considerations and tested with a synthetic flow case. They 

proposed that the interrogation windows must set to be 5 times smaller than the 

turbulent flow structures and the temporal separation must be 10 times higher than the 

flow frequency. They also performed stereoscopic and tomographic PIV experiments 

around a square cylinder.  

All of the aforementioned studies apply the Eulerian and Lagrangian approximations 

succesively. The Eulerian method requires the calculation of convective and local 

derivatives. The convective derivatives are calculated using the velocity infomation in 

adjacent time steps. The local contribution is calculated within every time step at the 

spatial nodes. However, for the Lagrangian perspective these stuides track the same 

group of particles and calculate the velocity difference of the same group of fluid 

particles by using the Taylor Series. The Eulerian calculation is used as an input for 

the Lagrangian method. The second approach to calculate the material derivative is to 

track the same group of particles by estimating a path for those particles. There are 

also a number of studies conducted with this approach.  

In 2012, Novara and Scarano presented their work based on the combination of PIV 

and 3D Particle Tracking Velocimetry (3D-PTV) for a better accuracy (Novara and 

Scarano, 2012). This investigation showed that the reconstruction of particles paths is 

favorable for the reduction of errors. They implemented this procedure on the synthetic 

vortex-ring field.  

Lynch and Scarano (2013) proposed the Fluid Trajectory Correlation (FTC). In FTC 

method, the temporal derivative is calculated using the polynomial path that is fitted 

for the fluid particles. In 2014, the same authors compared Eulerian and Lagrangian 

consecutive calculation with the FTC using four-pulse TOMO-PIV data and showed 
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that the latter technique is more accurate regarding the errors (Lynch and Scarano, 

2014).  

Recently, Tronchin et al. (2015) studied loads and pressure fields calculated using 

velocity fields obtained with a scanning tomography PIV. The experiments were 

performed to investigate the flow around a NACA0012 airfoil for a flapping motion 

in a water tank at a Reynolds number of 1000.  

2.2 Plunge Motion 

Due to the simplicity of the motion, the earliest theories concerning flapping wing 

flight are related to purely heaving airfoils. The theory of thrust generation using 

flapping foils was first proposed by Knoller (1909) and Betz (1912) and then 

experimentally confirmed by Katzmayer (1922). The Knoller-Betz theory states that a 

harmonically plunging wing in a freestream flow results in generation of an effective 

angle of attack and when the airfoil is oscillated at sufficiently high amplitude and 

frequency, the downstream velocity distribution becomes jet-like and thus is indicative 

of a net thrust on the airfoil.  

Jones et al. (1998) demonstrated the Knoller-Betz effect by performing flow 

visualization experiments in the wake of a purely plunging airfoil model and according 

to positions of shed vortices, they classified their results as drag producing, neutral, 

thrust producing and dual-mode thrust producing categories. They defined the non-

dimensional plunge velocity by the multiplication of the reduced frequency (k) and the 

non-dimensional plunging amplitude (h) which essentially has the same meaning as 

Strouhal number in characterizing the type of vortex shedding in the wake of a flapping 

airfoil. As given in Figure 1, plunge amplitude times reduced frequency value is 

plotted as a constant dividing line between the drag producing and thrust producing 

parameters for a single plunging airfoil. 
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Figure 2.1:  Drag/Thrust as a function of h and k (Jones et al. 1996) 

 

In a previous study, Fenercioglu and Cetiner (2012) also observed similar occurrence 

for the threshold of thrust producing wake. They categorized the flow structures 

around and in the near wake of the airfoil based on different independent parameters, 

obtained from quantitative flow field measurements using DPIV (Digital Particle 

Image Velocimetry) method in a water channel for a pitching and plunging airfoil in a 

range applicable to Micro Air Vehicles (MAVs). In the preceding study, average thrust 

force and efficiency estimate from the DPIV velocity data by simply using the wake 

excess velocity and the momentum theorem expressed for a control volume bounded 

by a control surface, using the steps provided by Anderson et al. (1998) (Fenercioglu 

[2010]). The same water channel facility and the same airfoil kinematics were used in 

recent studies by Karakas et al. (2014) and Caylan et al. (2014) where simultaneous 

direct force acquisitions were performed in addition to DPIV measurements. One of 

the major problems encountered in direct force acquisition in water channels is the 

added mass effect and the ratio of this added mass force to the total measured force 

needs to be revealed in order to comment on the net force acting on a flapping airfoil, 

therefore the efficiency of flapping. In the aforementioned previous studies, the added 

mass effect was prevailing particularly for the cases with higher thrust production and 
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lessens for the cases with lower thrust and higher efficiency values. In those studies 

the airfoil’s combined flapping motion was dominated by the plunging component, as 

also given in Fenercioglu and Cetiner (2014), thus the focus of the the experiments run 

for laod estimation is on simple plunging motion to take into account the contribution 

of the added mass in the direct force measurements. 
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3 FORCE ESTIMATION ALGORITHM 

3.1 Theoretical Considerations 

In order to calculate the force acting on the flapping airfoil, Reynolds Transport 

Theorem (RTT) can be utilized: 

𝐹⃗(𝑡) = −𝜌 ∭
𝜕𝑉⃗⃗

𝜕𝑡
𝑑𝑉

𝑉

− 𝜌 ∬(𝑉⃗⃗. 𝑛⃗⃗)𝑉⃗⃗𝑑𝑆
𝑆

− ∬𝑝𝑛⃗⃗𝑉⃗⃗𝑑𝑆
𝑆

+ ∬𝜏̿𝑛⃗⃗𝑑𝑆
𝑆

                      (𝟑. 𝟏) 

RTT must be applied for a fixed control volume that encompasses the body. Control 

volume selection is very important for the calculation of unsteady force term. In DPIV 

procedure the regions that are close to the edges of the images may produce bad 

vectors, thus the control volume should not be selected too close to the edges. On the 

other hand, the control surface should be far enough from the airfoil so that it is not 

interrupted by the geometry. The control volume is selected regarding these points. A 

sample control volume is sketched in Figure 3.1. 

 

Figure 3.1: Control Volume Representation 
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After applying Equation 3.1 to a control volume around the flapping wing the the RTT 

is rewritten. Unsteady forces acting on the body are given by Kurtuluş et al. (2006): 

[
𝐷
𝐿

] = −𝜌 ∬ [

𝜕𝑢

𝜕𝑡
𝑑𝑥𝑑𝑦

𝜕𝑣

𝜕𝑡
𝑑𝑥𝑑𝑦

]

𝑉

+ 𝜌 ∯ [
−𝑢2𝑑𝑦 + 𝑢𝑣𝑑𝑥

−𝑢𝑣𝑑𝑦 + 𝑣2𝑑𝑥
] + ∮ [

−𝑝𝑑𝑦
𝑝𝑑𝑥

]                          (𝟑. 𝟐)

𝑆𝑆

 

In Equation 3.2, unsteady drag and lift forces are given for a two dimensional case. In 

the following subchapters, the terms on the right hand side are explained in more detail. 

3.1.1 Unsteady Term 

In Equation 3.2, the first term on the right hand side is unsteady term which can be 

calculated with the velocity field provided by DPIV experiments. As can be seen in 

Equation 3.2 the unsteady term is a surface integral, however, it can be rewritten as a 

line integral through the control surfaces as given by Mohebbian and Rival (2012): 

∭
𝜕𝑉⃗⃗

𝜕𝑡
𝑑𝑉

𝑉

=
𝜕

𝜕𝑡
∬𝑟(𝑉⃗⃗. 𝑛⃗⃗)𝑑𝑆

𝑆

                                                                                       (𝟑. 𝟑) 

Both line integration and surface integration are calculated in this study for 

comparison. As described in the next chapter, higher and lower order differentiations 

are aslo compared. So, with two different unsteady term calculation methods and two 

different numerical differentiation orders there are 4 different calculation procedures 

for each case. 

For this purpose, the velocities at different time steps are used for the derivation in 

time. The numerical schemes are given in the following chapters. The numerical 

differentiation introduces some truncation errors. The integral is calculated within the 

control volume at each cell surface. 

3.1.2 Flux Term 

The second term on the right hand side is the flux term which can also be calculated 

using the velocity field. For this calculation the velocities at the vicinage grids at each 

time step are used. The flux term is calculated on the control surfaces. The integration 
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is carried out by in counter-clockwise direction. Also, the normal vectors on the edges 

are taken into account. 

3.1.3 Pressure Term 

Finally, the last term is the pressure term and since the pressure field is not provided 

by DPIV it takes a long procedure to calculate the last term. The pressure field must 

be calculated form the velocity field information using the flow constituent equations, 

namely momentum equations (Navier-Stokes). The momentum equation, with 

neglecting the gravitational term, can be given as follows in vectoral form: 

𝛻⃗⃗𝑝 = −𝜌
𝐷𝑉⃗⃗

𝐷𝑡
+ µ𝛻2𝑉⃗⃗                                                                                                        (𝟑. 𝟒) 

where  is pressure,  is velocity vector,  is density and  is dynamic viscosity.  

and  are gradient and curl operators respectively. 

The explicit form of the momentum equation in x-direction: 

𝜕𝑝

𝜕𝑥
= −𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) + µ (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                                                     (𝟑. 𝟓) 

The explicit form of the momentum equation in y-direction: 

𝜕𝑝

𝜕𝑦
= −𝜌 (

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) + µ (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                                                      (𝟑. 𝟔) 

In the explicit form of these equations the first term on the right hand side in 

paranthesis are convective derivatives and the other three terms are local derivatives. 

The term on the left hand side is the pressure gradient which constitues the main goal 

of this study. The first term on the right hand side is the material derivative and the 

last term is the viscous term. The viscous term is neglected as stated by Violato et al. 

(2010) when Re > 1000. The Eulerian approach to material derivative in vectoral form 

is: 

𝐷𝑉⃗⃗

𝐷𝑡
=

𝜕𝑉⃗⃗

𝜕𝑡
+ (𝑉.⃗⃗⃗⃗ 𝛻⃗⃗)𝑉⃗⃗                                                                                                           (𝟑. 𝟕) 
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The explicit form of the material derivative in x-direction: 

𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
                                                                                                  (𝟑. 𝟖) 

The explicit form of the material derivative in y-direction: 

𝐷𝑣

𝐷𝑡
=

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
                                                                                                   (𝟑. 𝟗) 

The Eulerian deriatives can be computed with the velocities at the predefined nodes 

which are provided by DPIV measurements. Numerical schemes are used for the 

derivatives. The details of the numerical work is given in the next section. 

For the Lagrangian approach the velocities of the same group of particles are needed 

in a certain timespan: 

𝐷𝑉⃗⃗

𝐷𝑡
|

𝑥

=
𝑉⃗⃗(𝒙𝒕+𝜟𝒕, 𝑡 + 𝛥𝑡) − 𝑉⃗⃗(𝒙𝒕−𝜟𝒕, 𝑡 − 𝛥𝑡)

2𝛥𝑡
                                                          (𝟑. 𝟏𝟎) 

where the  is the position vector of the fluid particles. At each time step the velocities 

and spatial coordinates are known at certain grid points. The spatial positions of each 

fluid particle can be found by using Taylor Series. Since the Taylor Series is invoked 

in locating the coordinates it will be highly unlikely for the fluid particles to end up at 

regular predefined grid points. Once the positions of the fluid particles are known at 

adjacent temporal separations the velocities of the particles at those new positions can 

be interpolated by using the velocities and coordinates at the regular grid points. The 

Taylor Series for the positions of the particles: 

𝒙𝒕+𝜟𝒕 = 𝒙𝒕 + 𝒙𝒕̇𝛥𝑡 +
1

2
𝒙𝒕̈𝛥𝑡2 + 𝑂(𝛥𝑡3)                                                                    (𝟑. 𝟏𝟏) 

𝒙𝒕−𝜟𝒕 = 𝒙𝒕 − 𝒙𝒕̇𝛥𝑡 +
1

2
𝒙𝒕̈𝛥𝑡2 − 𝑂(𝛥𝑡3)                                                                    (𝟑. 𝟏𝟐) 

The Taylor Series expansion is used with forward and backward time steps for using 

a central numerical differentiation scheme. In the above expansions the first derivative 

of the position with respect to time is velocity whereas the second derivative is the 

acceleration. As mentioned before the Eulerian acceleration is used as an input for the 
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Lagrangian acceleration computation. After the first iteration for calculating the 

Lagrangian derivative using Eulerian derivative as an input for the Taylor Series, the 

iterative procedure is resumed by the output of the first iteration. So, for the second 

iteration the Lagrangian derivative is used for the Lagrangian calculation. The number 

of iteration is limited in each case due to high CPU-time. 

For the intepolation purpose 4 closest nodes in the vicinity of the final destination of 

the fluid particles are used. As can be seen In  Figure 3.2 the corresponding areas are 

calculated and the reciprocal of these areas are used as the weighting parameter for 

each node, so that the closest node has the biggest weight and the furthest node has the 

smallest contribution in the weighted averaging. 

 

 

Figure 3.2: Interpolation grid for velocity 

If the final spatial coordinate of the tracked particle is outside of the flow domain this 

approach is not applicable hence, in such cases the Eulerian acceleration is used instead 

of the Lagrangian one. 
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After obtaining the material derivative in Lagrangian form, the pressure gradients can 

be computed easily. As it can be seen in Equation 3.4 the pressure gradient is equal to 

the sum of material derivative and viscous term. The viscous term in the right hand 

side of the Equation 3.5 and Equation 3.6 can be computed easily by numerical 

differentiation on regular nodes in hand. The viscous term in pressure gradient 

calculation is taken into account whereas the viscous term in the RTT is omitted. 

At this stage the pressure gradients in each direction on the 2D plane are known. There 

are several ways to integrate these pressure gradients. In this study an explicit scheme 

is used. Since the pressure gradient is known at each node the pressure of an arbitrary 

grid point 𝑃𝑖𝑗 can be obtained by the four different nodes that lie in upstream of the 

𝑃𝑖𝑗. These nodes are skecthed in Figure 3.3 

 

  

Figure 3.3: Pressure gradient integration grid 

In order to take advantage of the four different pressure information in the upstream 

of the 𝑃𝑖𝑗 these contributions are averaged and thus the pressure at 𝑃𝑖𝑗 is calculated. 
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The contributions of the nodes 4 already calculated nodes are given as follows by Baur 

and Kongeter (1998): 

∆𝑝 = ∫ 𝑑𝑝 = ∫ [
𝜕𝑝(𝑥, 𝑦)

𝜕𝑥
𝑑𝑥 +

𝜕𝑝(𝑥, 𝑦)

𝜕𝑦
𝑑𝑦]                                                         (𝟑. 𝟏𝟑) 

∆𝑃𝑖,𝑗 = [
𝜕𝑃

𝜕𝑥
|

𝑖,𝑗
∆𝑥 +

𝜕𝑃

𝜕𝑦
|

𝑖,𝑗

∆𝑦]                                                                                    (𝟑. 𝟏𝟒) 

𝑃𝑖,𝑗 =
1

4
[(𝑃1 + ∆𝑃1) + (𝑃2 + ∆𝑃2) + (𝑃3 + ∆𝑃3) + (𝑃4 + ∆𝑃4)]                         (𝟑. 𝟏𝟓) 

In this case  and  are spatial resoultions in x and y directions respectively. Since 

the meshspace is equidistant in this study  and  are equal.  

After the integration of the pressure gradients the forces acting on the airfoil can be 

computed as it was given in Equation 3.2  

3.2 Numerical Considerations 

As stated before, the force estimation procedure requires the calculation of the 

derivatives in spatial and temporal directions. These are done by truncating Taylor 

Series. In current study, the affects of the order of numerical derivation is investigated 

with different cases. There are two group of force prediction implementation.One of 

them is higher order (HO) case and the other is the lower order (LO) case. The 

altercation of numerical order is also reflected to the Lagrangian calculation, so in 

higher order case the Lagrangian approach is performed with more points that are 

tracked in time. In both cases there are two alternative sets of derivations in case of 

lack of grid points both in time and space. 

The lower order formulae, forward, backward and central, are given as follows: 

𝑓𝑖
′ =

𝑓𝑖+1 − 𝑓𝑖

ℎ
                                                                                                                   (𝟑. 𝟏𝟔) 

𝑓𝑖
′ =

𝑓𝑖 − 𝑓𝑖−1

ℎ
                                                                                                                   (𝟑. 𝟏𝟕) 



16 

𝑓𝑖
′ =

𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
                                                                                                              (𝟑. 𝟏𝟖) 

The higher order formulae, forward, backward and central are given as follows: 

𝑓𝑖
′ =

−𝑓𝑖+2 + 2𝑓𝑖+1 − 3𝑓𝑖

2ℎ
                                                                                             (𝟑. 𝟏𝟗) 

𝑓𝑖
′ =

𝑓𝑖−2 − 2𝑓𝑖−1 + 3𝑓𝑖

2ℎ
                                                                                                 (𝟑. 𝟐𝟎) 

𝑓𝑖
′ =

−𝑓𝑖−3 + 9𝑓𝑖−2 − 45𝑓𝑖−1 + 45𝑓𝑖+1 − 9𝑓𝑖+2 + 𝑓𝑖+3

60ℎ
                                         (𝟑. 𝟐𝟏) 

If there is available data for 𝑓𝑖−3 and 𝑓𝑖+3 the Equation 3.21 is used, otherwise the order 

is dropped by one and Equation 3.22 is used: 

𝑓𝑖
′ =

𝑓𝑖−2 − 8𝑓𝑖−1 + 8𝑓𝑖+1 − 𝑓𝑖+2

12ℎ
                                                                                (𝟑. 𝟐𝟐) 

For the HO case, the Lagrangian procedure is carried out for more further points in 

time: 

𝒙𝒕+𝜟𝒕 = 𝒙𝒕 + 𝒙𝒕̇𝛥𝑡 +
1

2
𝒙𝒕̈𝛥𝑡2 + 𝑂(𝛥𝑡3)                                                                    (𝟑. 𝟐𝟑) 

𝒙𝒕+𝟐𝜟𝒕 = 𝒙𝒕 + 𝒙𝒕2̇ 𝛥𝑡 + 2𝒙𝒕̈𝛥𝑡2 + 𝑂(𝛥𝑡3)                                                                (𝟑. 𝟐𝟒) 

𝒙𝒕+𝟑𝜟𝒕 = 𝒙𝒕 + 𝒙𝒕3̇ 𝛥𝑡 + 4𝒙𝒕̈𝛥𝑡2 + 𝑂(𝛥𝑡3)                                                                (𝟑. 𝟐𝟓) 

𝒙𝒕−𝜟𝒕 = 𝒙𝒕 − 𝒙𝒕̇𝛥𝑡 +
1

2
𝒙𝒕̈𝛥𝑡2 − 𝑂(𝛥𝑡3)                                                                    (𝟑. 𝟐𝟔) 

𝒙𝒕−𝟐𝜟𝒕 = 𝒙𝒕 − 𝒙𝒕2̇ 𝛥𝑡 + 2𝒙𝒕̈𝛥𝑡2 − 𝑂(𝛥𝑡3)                                                                (𝟑. 𝟐𝟕) 

𝒙𝒕−𝟑𝜟𝒕 = 𝒙𝒕 − 𝒙𝒕3̇ 𝛥𝑡 + 4𝒙𝒕̈𝛥𝑡2 − 𝑂(𝛥𝑡3)                                                                (𝟑. 𝟐𝟖) 

For the LO case, the Lagrangian trackings are done as it is given in Equation 3.11 and 

Equation 3.12. 
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3.3 Details of the Code 

In this section, the details about the algorithm are presented. The whole script can be 

found in Appendix A. These points are important to comprehend how the code works: 

 In the first part flow, airfoil and experimental parameters must be invoked as 

user defined inputs, such as Reynolds Number, chord length, sampling 

frequency and the name of the case. 

 After the input section the dataset can be loaded into the procedure from the 

textfiles. In order to take the data in a user defined MATLAB function that is 

called “PIVdata_readin” is used. This function reads the dataset succesively 

from the folders that should be choosen by the user. 

 “X”, “Y”, “U”, “V” and “Vort” variables are the grid coordinates, velocities 

and the vorticity. 

 “airpos” variable is a matrix that marks the position of the airfoil. The nodes 

with zero velocities shows the airfoil position. These nodes are flagged by not-

a-number (NaN) property of the MATLAB. 

 “dx” and “dy” are mesh spaces in x and y directions. 

 Control volume is selected in the flow domain. “LoEdge”, “UpEdge”, 

“LeEdge” and “RiEdge” are the lower, upper, leftmost and the rightmost 

boundaries of the control volume. 

 The next section is the implementation of the Eulerian calculation with 

numerical derivatives. 

 “grads” is the user defined function for higher order Eulerian calculation. 

 “grads2” is the user defined function for lower order Eulerian calculation. 

 “EulerAccX” and “EulerAccY”are higher order Eulerian Accelerations in x and 

y directions. 

 “EulerAccX2” and “EulerAccY2”are lower order Eulerian Accelerations in x 

and y directions. 

 After the calculation of the Eulerian acceleration the next step is to calculate 

the Lagrangian acceleration. 

 “LagrangeAcceleration” is the user defined function for higher order 

Lagrangian calculation. 
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 “LagrangeAcceleration2” is the user defined function for lower order 

Lagrangian calculation. 

 “LagrangeAccX” and “LagrangeAccY”are lower order Lagrangian 

Accelerations in x and y directions. 

 “LagrangeAccX2” and “LagrangeAccY2”are lower order Lagrangian 

Accelerations in x and y directions. 

 When the material derivative is present pressure gradients are computed easily 

by summing the material accelerations with the viscous contribution. Then the 

pressure gradients are integrated by the user-defined function called 

“PressGradInteg”.  

  “UnsteadyTermX” and “UnsteadyTermY” are unsteady terms in the Equation 

3.2 in x and y directions. 

 “FluxTermX” and “FluxTermY” are flux terms in the Equation 3.2 in x and y 

directions. 

 “PresTermX” and “PresTermY” are pressure terms in the Equation 3.2 in x 

and y directions. 

 Calculated forces are non-dimensionalized by , because the calculated 

pressure was already divided by density. 

 There are four different sets of aerodynamic coefficients calculated. 

 “cL” and “cD” are obtained by surface unsteady term integration and 

higher order calculation.  

 “cL2” and “cD2” are obtained by line unsteady term integration and 

higher order calculation.  

 “cL3” and “cD3” are obtained by surface unsteady term integration and 

lower order calculation.  

 “cL4” and “cD4” are obtained by line unsteady term integration and 

lower order calculation.  

 

 

  



19 

4 DETAILS OF THE EXPERIMENTAL DATA UNDERTAKEN 

4.1 General Information About the Flow and Motion System 

There are two sets of experimental cases to be investigated in the current study both of 

which are conducted at the free surface water channel in Trisonic Laboratory of 

Istanbul Technical University, Faculty of Aeronautics and Astronautics The dimesions 

of the test section of the channel are 1010 mm (width) and 790 mm (height). The 

facility can provide a uniform freestream with low turbulent intensity within a range 

of 5 mm/s to 14 mm/s.  

A NACA0012 and a flat plate model are used and manufactured from PlexiGlass 

material. They are mounted in a cantilevered arrangement inside the water channel 

between two end plates to reduce the free surface and end effects. The mounting beam 

is connected to a pitch motor which itself is connected to a linear table which allows 

for the plunging motion. The models have a chord (c) of 10cm and span (s) of 30cm. 

The experimental setup is shown in Figure 4.1. 

 

Figure 4.1: Experimental setup 

The flow is illuminated by  a  dual  cavity  Nd:Yag  laser  (max. 120mJ/pulse) and the 

water is seeded with silver coated hollow  glass  spheres  with  a  mean  diameter  of  

10  µm. The velocity fields around and in the near wake of the models are obtained 

using two 10-bit cameras with 1600 × 1200 pixels resolution, positioned underneath 

the water channel. Recorded images are stitched using an in-house code and then 
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interrogated using a double frame, cross-correlation technique with a window size of 

64 × 64 pixels and 50% overlapping in each direction.  

Force and moments acting on the plunging flat plate are measured using a six-

component ATI NANO-17 IP68 Force/Torque (F/T) sensor. The sensor is attached to 

the vertical cantilevered mounting beam of the test model, oriented with its cylindrical 

z-axis normal to the pitch-plunge plane. The plunge motion of the models is 

accomplished with Kollmorgen/Danaher Motion AKM54K servo motor which was 

connected to a computer via ServoSTAR S700 digital servo amplifier. Motor motion 

profiles are generated by a signal generator Labview VI (Virtual Instrument) for the 

given amplitude and frequency. The same VI triggered the PIV system at the beginning 

of the third motion cycle of the airfoil and synchronization is achieved using a National 

Instruments PCI-6601 timer device. Another Labview VI is used simultaneously to 

acquire force/moment data with a sampling frequency of 1000 Hz. The sinusoidal 

plunging motion of the airfoil is given as; 

h(t) = hamp cos(2ft) 

where h(t) is the linear plunge motion, transverse to the freestream velocity, hamp is 

the plunge amplitude, f is the plunging frequency.  

The reduced frequency (k) and the Strouhal number (St) are defined as: 

𝒌 =
𝝅𝒇𝒄

𝑼∞
 

𝑺𝒕 =
𝟐𝒇𝒉𝒂𝒎𝒑

𝑼∞
 

where U∞  is the freestream velocity. 

4.2 Sensitivity Analysis Cases 

These experiments are conducted within the context of the FP7 Project 605151 - “Non-

Intrusive Optical Pressure and Loads Extraction for Aerodynamic Analysis 

(NIOPLEX)” to investigate the effects of temporal and spatial resolution for pressure 

and force estimation from PIV measurments. In these cases plunge motion of a 

NACA0012 is investigated with different spatial and temporal resolutions. 
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The parameters of the sinusoidal plunge motion are as follows: 

hamp = 0.25c 

f = 0.2Hz 

The reduced frequencies, St and Re numbers are: 

 

 

In terms of temporal resolution, the PIV sampling rate is chosen to be either 8 Hz or 

15 Hz. 

The motion of the airfoil (airfoil represented in a 50% scale) and the instants the 

velocity fields are acquired are shown in Figure 4.2 for the PIV sampling frequency of 

8Hz. 

 

Figure 4.2: The motion of the airfoil and the instants the velocity fields are acquired 

In order to accomplish the sensitivity analysis, the experiments are performed in two 

stages. The details are given as follows: 

The flow field around the airfoil can be captured with a single CCD camera using a 

60mm lens. The raw PIV image given in Figure 4.3 is obtained when the airfoil is at 

the maximum of its plunge motion (Position numbered as 11 in Figure 4.2).   

1 

41 

11 

31 

21 U∞ 
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Figure 4.3: The raw PIV image obtained when the airfoil is at the maximum of its 

plunge motion (low spatial resolution) 

With the use of a 60mm lens, the field of view covers all the plunge motion of the 

airfoil and includes 3-5 grid points below and above for the extreme positions of the 

plunge motion. The resulting vector field resolution is 3.4 mm × 3.4 mm. At this spatial 

resolution the PIV data is acquired at two different sapmling frequency, i.e, 8Hz 

(Δt=0.125s) and 15Hz (Δt=0.067s). The lower one allows capturing the flow at 

interested position of the sinusoidal motion, the larger one is the maximum frequency 

that the PIV system allows. For 8 Hz sampling frequency, 200 velocity fields are 

acquired for 5 periods of motion and for 15 Hz sampling frequency 225 velocity fields 

are acquired for 3 periods of motion. 

In order to increase the spatial resolution, two 10-bit cameras with 1600×1200 pixels 

resolution are positioned underneath the water channel and two 105mm lenses are 

used. Two images from the two cameras are stitched before interrogation using two 

marker points in the illumination plane. The flow field is focused on the upper portion 

of the plunge motion as seen in Figure 4.4 where a raw PIV image is given for the 

maximum of the airfoil’s plunge motion (Position numbered as 11 in Figure 4.2). The 

final grid resolution of velocity vectors is 1.6 mm × 1.6 mm in the plane of the flow. 
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In this setup, in order to observe the effect of temporal resolution, first, a sampling 

frequency of 8Hz is used and 200 velocity fields are acquired for 5 periods of motion. 

Then with a same sampling frequency of 4Hz, running 20 sets of experiments, the PIV 

synchronization is shifted using t = 2T + n × 0.0125s (n=1,2, ..., 20) and in total 4000 

velocity fields are acquired with a temporal resolution of Δt=0.0125s (corresponding 

to a sampling frequency of 80Hz). 

 

Figure 4.4: The raw PIV image obtained when the airfoil is at the maximum of its 

plunge motion (high spatial resolution) 

4.3 Different Plunge Motion Cases 

In this set of experiemnts, a flat plate is used in order to determine the value of the 

added mass contribution in the total force measurements to reveal the net force acting 

on a flapping foil.  

The occurrence of Drag and Thrust producing wake for a plunging airfoil as a function 

of the plunging amplitude and the reduced frequency is re-illustrated in Figure 4.5 

based on the data by Jones et al. (1996). The test case points for the present study are 

also marked with triangular symbols on the same plot.  
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Figure 4.5: Investigated test cases  

 

The investigated points as given in the plot include both drag cases and thrust cases 

placed on both sides of the dividing hk constant line as well as cases of interest to the 

EU-FP7 project NIOPLEX. The plunge-only equivalent cases of the initially pitching 

and plunging airfoil as tested in Fenercioglu and Cetiner [2012] were also included. 

The tests were also repeated without the free-stream velocity, those special cases lie k 

= 1/(h/c) constant line. The test case parameters are given in Table 4.1. 
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Table 4.1: Experimental Parameters for Added Mass Case 

Case # Re f [Hz] k hamp/c St 

1 1250 0.1 5.01 0.50 0.8 

2 2500 0.2 5.01 0.25 0.4 

3 3125 0.05 1.00 1.00 0.3 

4 5000 0.1 1.25 0.50 0.2 

5 5000 0.2 2.50 0.25 0.2 

6 10000 0.1 0.63 0.50 0.1 

7 10000 0.2 1.25 0.25 0.1 

8 12500 0.05 0.25 1.00 0.1 

9 3129 0.05 1.00 1.00 0.2 

10 3129 0.1 2.00 0.50 0.3 

11 3129 0.2 4.00 0.25 0.3 

 

For each case a total of 1200 velocity fields have been acquired during 30 cycles of 

plunge motion. Therefore, for each cycle of motion, 40 velocity fields are used to 

estimate the loads.  
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5 RESULTS OF SENSITIVITY ANALYSIS 

5.1 Selection of Run Variations 

The developed code has been tested in two cases to identify the effect of using high 

order terms in the integration and using surface or line integration for the unsteady 

term. Figures 5.1, 5.2 and 5.3 show the difference in using high or low order terms in 

the integration for the cases where surface integration is adopted for unsteady term. 

Figure 5.1 includes the results obtained from instantaneous PIV data acquired for 

Re=5000 and with a sampling frequency of 8 Hz. Although the estimation results are 

highly noisy, the periodicity is well captured. Five period estimation results are then 

phase averaged and represented in Figure 5.2.  It is seen that some of the noise 

characteristics are repeated periodically. The data fits better to the measurement results 

when the later is filtered using a 3 point moving average (see Figure 5.3).  

 

 

Figure 5.1: H.O. vs. L.O. Unst. Surf. Instantaneous Results for Re 5000 freq 8 Hz 
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Figure 5.2: H.O. vs. L.O. Unst. Surf. Phase Averaged Results for Re 5000 freq 8 Hz 

 

Figure 5.3: H.O. vs. L.O. Unst. Surf. Moving Ave. Results for Re 5000 freq 8 Hz 

 

The same comparison procedure has been done for line integration of the unsteady 

term. Figures 5.4, 5.5 and 5.6 show the difference in using high or low order terms in 

the integration for the cases where line integration is adopted for unsteady term.  

Although the phase averaged and filtered results do not clearly show the difference 

between the use of high or low order terms in the integration, the fluctuations in the 

instantaneous load estimation is higher when low order terms are used. Therefore for 

the analyses of different plunge motions, high order terms will be used in the 

integration. 
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Figure 5.4: H.O. vs. L.O. Unst Line Instantaneous Results for Re 5000 freq 8 Hz 

 

Figure 5.5: H.O. vs. L.O. Unst Line Phase Ave. Results for Re 5000 freq 8 Hz 

 

Figure 5.6: H.O. vs. L.O. Unst Line Moving Ave. Results for Re 5000 freq 8 Hz 
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The effect of using either surface or line integration for the unsteady term has been 

visualized in the graphics below. Figures 5.7, 5.8 and 5.9 have higher order integration 

schemes. Whereas Figures 5.10, 5.11 and 5.12 have lower order integration schemes. 

Figures 5.7 and 5.10 present the instantaneous estimation results, Figures 5.8 and 5.11 

show the phase average results using 5 periods of information and finally, Figures 5.9 

and 5.12 are for the filtered results.  

 

Figure 5.7: Unst Line vs. Unst Surf H.O. Inst. Results for Re 5000 freq 8 Hz 

 

Figure 5.8: Unst Line vs. Unst Surf H.O. Phase Ave. Results for Re 5000 freq 8 Hz 
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Figure 5.9: Unst Line vs. Unst Surf H.O. Moving Ave Results for Re 5000 freq 8 Hz 

 

Figure 5.10: Unst Line vs. Unst Surf L.O. Inst. Results for Re 5000 freq 8 Hz 

 

Figure 5.11: Unst Line vs. Unst Surf L.O. Phase Ave. Results for Re 5000 freq 8 Hz 
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Figure 5.12: Unst Line vs Unst Surf LO Moving Ave Results for Re 5000 freq 8 Hz 

 

As can be seen in Figure 5.7 to Figure 5.12 the surface integration for unsteady term 

results better compared to the line integration. Although not presented here, it is also 

seen that the line integration is more sensitive to control volume selection. 

Thus, higher order integration and surface integration for unsteady term is selected 

for force prediction. 

  

5.2 Spatial and Temporal Resolution 

In order to determine the spatial and temporal resolution to be used in DPIV 

measurements, two cases defined in §4.2 have been studied for different DPIV image 

acquisition/post-processing settings given in Table 5.1. 

The last column in Table 5.1 indicates cases where an average correlation algorithm is 

used when processing DPIV data. Average correlation is mainly used to reduce the 

noise in the correlation, the cross-correlation planes belonging to the same instant in a 

periodic motion are summed up to obtain a single velocity field instead of obtaining 

the instantaneous velocity fields and averaging those.   
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Table 5.1: Sensitivity Analysis Cases Work 

Freq, f Spat. Res. Instantaneous Ave Corr. 

8 Hz [200 Imgs 

5 Periods] 

3.32 mm × 3.32 mm 200/200 X 

15 Hz [225 Imgs 

3 Periods] 

3.32 mm × 3.32 mm 225/225 X 

80 Hz [4000 

Imgs 10 Periods] 

1.60 mm × 1.60 mm 400/4000 400/400 

 

In Table 5.1 the green cells represents that the force prediction procedure is carried 

out for both Re=5000 and Re=10000. The red cells shows that the work is done for 

only Re=5000. The black cells represent that no work is available for those 

configurations. 

In this case, the vector field averaging have been also tested to enhance the 

performance of the force prediction. It is compared with the phase averaging over the 

calculated force coefficients and it is seen that there is not a considerable difference 

between averaging the predicted coefficients and vector field averaged calculations, 

therefore the vector field averaging cases are not presented herein. 

Figures 5.13 to 5.20 show the results for 8Hz and 15Hz sampling frequencies for two 

cases, Re=5000 and Re=10000 respectively. The results are shown as both 

instantaneous load estimations and phase averaged load estimations on available 

periods of motion. 
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Figure 5.13: Re 5000 freq 8 Hz Instantaneous 

 

Figure 5.14: Re 10000 freq 8 Hz Instantaneous 

 

Figure 5.15: Re 5000 freq 8 Hz Period Averaged 
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Figure 5.16: Re 10000 freq 8 Hz Period Averaged 

 

Figure 5.17: Re 5000 freq 15 Hz Instantaneous 

 

Figure 5.18: Re 10000 freq 15 Hz Instantaneous 
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Figure 5.19: Re 5000 freq 15 Hz Period Averaged 

 

Figure 5.20: Re 10000 freq 15 Hz Period Averaged 

 

In all cases, for instantaneous load estimations, there is a remarkable discrepancy at 

the begining and at the end of the process. This is due to the lack of temporal 

information at the following or preceeding time steps. It is clear that phase averaging 

decreases the fluctuation level for both cases regardless of the sampling frequency. A 

sampling frequency of 8 Hz yields better results compared to that of 15 Hz. A much 

higher sampling frequency results are shown in Figure 5.21 and Figure 5.22. As the 

frequency of motion is low, higher sampling frequencies introduces more 

fluctuations/noise.  
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Figure 5.21: Re 5000 freq 80 Hz Instantaneous 

 

Figure 5.22: Re 5000 freq 80 Hz Ave Correlation 

 

Figure 5.22 shows the load estimation results when average correlation is used in the 

post-processing of DPIV data. It is clear that average correlation decreases the 

fluctuations considerably. In any case, a sampling frequency of 80 Hz does not yield 

an acceptable force prediction results compared to the sampling frequency of 8 Hz and 

15 Hz. Therefore, increasing temporal and spatial resolutions dramataically do not 

necessarily give better performance. A spatial resolution of 3% of the chord and a field 

of view covering all the amplitude of motion give a satisfactory results with a temporal 

resolution expressed as 40 vector fields per cycle of motion. 
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6.  RESULTS FOR DIFFERENT PLUNGE CASES 

Load estimation code is used to generate lift and drag coefficient variation for the 

general plunge cases which were described in §4.3. CL and CD are given for 11 

different cases. Instantaneous results are given from Figure 6.1 through Figure 6.22. 

Case-1: 

The kinematics of this case is adopted from Fenercioğlu (2010) and is the same as A1 

flow categorization, except for the existence of pitch motion that is found to be 

insignificant. The average velocity and vorticity fields, not presented herein, indicate 

jet like flow, which is indicative of thrust, in accordance with the highest thrust 

obtained in this case. However, the value of the lift coefficient is misleading since the 

fluctuation amplitude around zero is very high due to the high acceleration, therefore 

added-mass effect. The free-stream velocity is also the lowest one in all cases, which 

amplifies the measurement error associated. Although the estimated lift periodicity is 

in accordance with the measurement, the apparent amplitude is slightly lower than the 

measured. Estimated drag has a very large amplitude and even the average is not 

meaningful as it indicates drag instead of thrust. 

 

Figure 6.1: CL for Case 1 [k=5.01 Re=1250 f=0.1 hamp/c=0.50] 
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Figure 6.2: CD for Case 1 [k=5.01 Re=1250 f=0.1 hamp/c=0.50] 

Case-2: 

The kinematics of this case is adopted from Fenercioğlu (2010) and is the same as B2 

flow categorization, except for the existence of pitch motion that is found to be 

insignificant. The average velocity and vorticity fields, not presented herein, indicate 

jet like flow, which is indicative of thrust, the jet width is narrower in accordance with 

the smaller plunge amplitude. The thrust is also less than that of the Case-1. Similar to 

the results obtained for Case-1, although the estimated lift periodicity is in accordance 

with the measurement, the apparent amplitude is slightly lower than the measured. 

Estimated drag has again a very large amplitude and even the average is not 

meaningful as it indicates drag instead of thrust.  

 

Figure 6.3: CL for Case 2 [k=5.01 Re=2500 f=0.2 hamp/c=0.25] 
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Figure 6.4: CD for Case 2 [k=5.01 Re=2500 f=0.2 hamp/c=0.25] 

Case-3: 

The kinematics of this case is selected to be in thrust production side of the kh=const. 

line for the lowest plunge frequency investigated. The case is significant as it has an 

equivalent no flow counterpart. The average velocity and vorticity fields, not presented 

herein, indicate a less intense jet like flow, however the jet width is wider compared 

to that of the Case-2. As a result, this plunge motion yields a similar thrust coefficient 

as in the Case-2. Although there are still some fluctuations, the estimated lift variation 

is very successful, the amplitude is also in agreement with the measurement. slightly 

lower than the measured. However, there is not an improvement in the drag estimation, 

it has a very large amplitude.  

 

Figure 6.5: CL for Case 3 [k=1.00 Re=3125 f=0.05 hamp/c=1.00] 
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Figure 6.6: CD for Case 3 [k=1.00 Re=3125 f=0.05 hamp/c=1.00] 

Case-4: 

The kinematics of this case is selected to be in thrust production side of the kh=const. 

line to be able to compare with the case on the other side of the kh=const line, which 

has the same kinematics of Category E of Fenercioğlu (2010) except for the existence 

of pitch motion. The averaged  velocity field, not presented herein, indicate a jet like 

flow in the wake. The thrust coefficient is relatively low, in accordance with the 

expectations as the case is very close to the thrust-drag switch line. Estimated lift 

coefficient has a comparable amplitude as the measured one, however there is some 

disagreement in the periodicity which cannot be regarded as fluctuations. 

 

Figure 6.7: CL for Case 4 [k=1.25 Re=5000 f=0.10 hamp/c=0.50] 
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Figure 6.8: CD for Case 4 [k=1.25 Re=5000 f=0.10 hamp/c=0.50] 

Case-5: 

The kinematics of this case is adopted from Fenercioğlu (2010) and is the same as D 

flow categorization, except for the existence of pitch motion that is found to be 

insignificant. In line with the wide and less intense jet like velocity formation, not 

presented herein, the thrust is comparable with that of the Case-4. Estimated lift 

coefficient totally disagree with the measurement, there is no apparent periodicity. On 

the other hand, although the estimated drag preserves its disagreement with the 

measurement as in the previous cases, the average value, by chance, is the closest to 

the measured among all the cases, in terms of both absolute value and sign. 

 

Figure 6.9: CL for Case 5 [k=2.50 Re=5000 f=0.20 hamp/c=0.25] 
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Figure 6.10: CD for Case 5 [k=2.50 Re=5000 f=0.20 hamp/c=0.25] 

Case-6: 

The kinematics of this case is adopted from Fenercioğlu (2010) and is the same as E 

flow categorization, except for the existence of pitch motion that is found to be 

insignificant. Although the averaged velocity in the wake, not presented herein, does 

not show any jet-like formation, the average of the measured force coefficient in the 

free-stream is positive with a low value. It should be noted that force measurement 

results involve large errors for small values. The estimated lift coefficient variation is 

mostly following the periodicity of the measurement results with high fluctuations 

especially around the peak values. Although the fluctuations in drag estimation are 

high, for the first time, the apparent amplitude and periodicity with a phase of π are in 

agreement with the measurement.   

 

Figure 6.11: CL for Case 6 [k=0.63 Re=10000 f=0.10 hamp/c=0.50] 



45 

 

Figure 6.12: CD for Case 6 [k=0.63 Re=10000 f=0.10 hamp/c=0.50] 

Case-7: 

The kinematics of this case is adopted from NIOPLEX, and it is in drag occurrence 

side of the kh=const. line to be able to compare with the case on the other side of the 

kh=const line, which has the same kinematics of Category D of Fenercioğlu (2010) 

except for the existence of pitch motion. The averaged velocity field, not presented 

herein, does not show a jet-like formation in the wake. The force measurement results 

indicate a comparable value as in the Case-6. Although there are high fluctuations, the 

estimated lift coefficient variation agrees with the measurement to some degree as the 

apparent amplitude is similar and the periodicity is present with a phase of π with 

respect to the measured variation. Although the average values are considered to be 

close, the estimated drag coefficient variation is not successful as in many cases. 

 

Figure 6.13: CL for Case 7 [k=1.25 Re=10000 f=0.20 hamp/c=0.25] 
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Figure 6.14: CD for Case 7 [k=1.25 Re=10000 f=0.20 hamp/c=0.25] 

Case-8: 

The kinematics of this case is selected to be in drag occurance side of the kh=const. 

line for the lowest plunge frequency investigated. The averaged velocity field, not 

presented herein, does not show a jet-like formation in the wake. The force 

measurement results indicate a comparable value as in the two previous cases. The 

estimated lift coefficient variation is considered to be very successful except a couple 

of instants in a period in terms of both amplitude and periodicity. The estimated 

variation of drag coefficient still does not match at all the measurement results.  

 

Figure 6.15: CL for Case 8 [k=1.25 Re=12500 f=0.05 hamp/c=1.00] 
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Figure 6.16: CD for Case 8 [k=1.25 Re=12500 f=0.05 hamp/c=1.00] 

Case-9: 

Case-9 has the same kinematics as Case-3; however, the flat plate plunges in a stagnant 

fluid (water). The averaged velocity field, not presented herein, does not indicate a jet-

like formation. According to the measurements, the averaged force coefficient also 

indicates drag occurrence. The estimated lift coefficient variation is considered to be 

very successful in terms of both amplitude and periodicity. The estimated variation of 

drag coefficient still does not match at all the measurement results. 

 

Figure 6.17: CL for Case 9 [k=1.00 Re=3129 f=0.05 hamp/c=1.00] 
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Figure 6.18: CD for Case 9 [k=1.00 Re=3129 f=0.05 hamp/c=1.00] 

Case-10: 

Case-10 is also performed in stagnant fluid (water), it is located on k-h plot in the thrust 

production side for f=0.1 Hz. The averaged velocity field, not presented herein, 

indicates thrust production with the occurrence of jet-like formation. The estimated lift 

coefficient variation is considered to be very successful in terms of both amplitude and 

periodicity. The estimated variation of drag coefficient still does not match at all the 

measurement results. 

 

Figure 6.19: CL for Case 10 [k=1.00 Re=3129 f=0.10 hamp/c=0.50] 
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Figure 6.20: CD for Case 10 [k=1.00 Re=3129 f=0.10 hamp/c=0.50] 

Case-11: 

Case-11 is also performed in stagnant fluid (water), it is located on k-h plot in the thrust 

production side for the highest frequency. The averaged velocity field, not presented 

herein, indicates thrust production with the occurrence of jet-like formation. The jet-

like formation has a narrower width and higher intensity in comparison with the 

previous case in accordance with the increase in the measured thrust force coefficient. 

Although the estimated lift coefficient variation is not as successful as in the previous 

two cases, it follows the periodicity of the measurement, undershooting the amplitude 

especially for the positive peak and presenting a phase lag in the descending part of 

the sinus. The estimated variation of drag coefficient still does not match at all the 

measurement results. 

 

Figure 6.21: CL for Case 11 [k=4.00 Re=3129 f=0.20 hamp/c=0.25] 
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Figure 6.22: CD for Case 11 [k=4.00 Re=3129 f=0.20 hamp/c=0.25] 

 

Overall, CL prediction has an acceptable accuracy whereas, there are very large 

fluctuations with respect to the measurement and therefore a total disagreement in CD 

prediction. 

Through Figure 6.1 to Figure 6.22, it is clear that CD predictions show a remarkable 

discrepancy with the measured values. However, in order to check the agreement 

between the average values and comment on drag/thrust occurence if possible, the 

obtained values are reported in Table 6.1.  

Table 6.1 also includes a grading to show how successful is the CL prediction. The 

accuracy of CL is graded in a scale from 1 to 3. The grading is done according to 

following principles: 

 If the magnitude of prediction is accurate 1 point is given. 

 If the first half of the sine wave is accurate 1 point is given and 0.5 point is 

given if there is partial accuracy. 

 If the second half of the sine wave is accurate 1 point is given and 0.5 point is 

given if there is partial accuracy. 
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Table 6.2 : Trends of CD and CL accuracy 

Case # Re f [Hz] k hamp/c CDave meas CDave pred CL acc 

1 1250 0.1 5.01 0.50 2.07541 -7.01852 1 

2 2500 0.2 5.01 0.25 0.65392 -0.97113 1.5 

3 3125 0.05 1.00 1.00 0.56296 -0.56464 3 

4 5000 0.1 1.25 0.50 0.15225 -0.3951 2 

5 5000 0.2 2.50 0.25 0.14796 0.17444 1 

6 10000 0.1 0.63 0.50 -0.00108 -0.24018 1.5 

7 10000 0.2 1.25 0.25 0.10279 0.19979 1 

8 12500 0.05 0.25 1.00 0.08381 -0.06449 3 

9 3129 0.05 1.00 1.00 -0.01385 -1.26764 3 

10 3129 0.1 2.00 0.50 0.09859 6.72167 3 

11 3129 0.2 4.00 0.25 0.18095 -0.01324 1.5 

 

According to the grading, the best performance is obtained when the motion has the 

lowest frequency and the largest amplitude.  
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Although Case-5 and Case-7 are identical to the cases performed for sensitivity 

analysis, satisfactory results could not be obtained and the fact requires further 

investigation especially on the experimental data in terms of both PIV and direct force 

measurement comparisons. 
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7.  CONCLUSION 

The current study gives the details of the development of an in-house code to estimate 

loads for a flapping wing using Digital Particle Image Velocimetry (DPIV) data. For 

the sake of simplicity, pure plunge motion is considered and experiments were 

performed using different space and time resolutions to assess the performance of the 

load estimation. Then, the developped code has been tested for different plunge motion 

cases.  

7.1 Concluding Remarks 

As presented in Chapter 5.1, the higher order differentiation and surface integral for 

unsteady term yields a better performance in force prediction. Also, sensitivity 

analyses shows that a sampling frequency of 8 Hz gives better results than a sampling 

frequency of 15 Hz, whereas a sampling frequency of 80 Hz gives worse, noisest 

results compared to lower sampling frequencies used. As a result of the sensitivity 

analyses, a sampling frequency of 8 Hz is found to be satisfactory which corresponds 

to 40 vector fields per cycle of motion. A spatial resolution of 3% of the chord and a 

field of view covering all the amplitude of motion give a satisfactory results with a 

temporal resolution expressed as 40 vector fields per cycle of motion. In terms of DPIV 

post-processing, average correlation is found to reduce the noise as it is expected. On 

the other hand, the estimated load matches better the direct measurement when it is 

phase averaged and filtered. It should be noted that the compared direct measurement 

results are also 1 Hz filtered.  

For all the investigated results, both for the sensitivity analyses and general plunge 

cases, lift coefficient variation is in general predicted well, in agreement with the direct 

force measurements, however the estimated drag coefficient variation has a very large 

discrepancy with the direct force measurements. This may be due to the neglected 

viscous term. Consequently, the fact disabled thrust/drag analyses for plunge cases. 

Estimation of the lift force coefficient variation exhibits a nearly perfect match even 
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on the instantaneous results when the plunge motion has the lowest frequency and the 

largest amplitude.  

7.2 Recommendations for Further Studies  

For further studies, the effect of the viscous term should be considered, the term can 

be calculated on the control surfaces which may be optimized by a more careful 

selection of  the control volume. Since the line integration of the unsteady term is also 

sensitive to the control volume selection, it will be possible to obtain a better result in 

line integration for the unsteady term.  

In this study, the pressure field is obtained by the explicit integration of planar pressure 

gradients. An implicit integration could give better results in pressure field calculation. 

Fianlly, in higher order schemes used in this study, the spatial differentiation is one 

order higher than its temporal counterpart. This could be altered by increasing the 

temporal differentiation order. 
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APPENDICES 

APPENDIX A.1: MATLAB Script 

 
%Main Body----------------------------------------------------------------- 

clc; clear all; close all; 

tStart=tic; 

%Parameters---------------------------------------------------------------- 

vel_length='m'; 

grid_length='mm'; 

des_length='m'; 

CaseName='E_Case7'; 

wrtename='E_Case7.mat'; 

ReyNu=10000; 

FreeS=ReyNu/100000; 

SampFreq=8; 

  

LE_coordline=5; 

dt=1/SampFreq; 

chord=0.1; 

nu=(FreeS*chord)/ReyNu; 

%PIV data Input------------------------------------------------------------ 

[FileName,PathName,FilterIndex]=uigetfile('*.TEC','MultiSelect','on'); 

addpath(PathName); 

tReadIn=tic; 

t_count=length(FileName); 

for t=1:t_count 

    [X,Y,U(:,:,t),V(:,:,t),Vort(:,:,t),x_count,y_count,... 

        airpos(:,:,t),origin_x(t),origin_y(t),geom(:,:,t)] ... 

        = PIVdata_readin(FileName{t},grid_length,... 

        vel_length,des_length,LE_coordline);t 

end 

dx=X(2)-X(1); dy=Y(2)-Y(1); 

  

min_i=zeros(t_count,1); max_i=zeros(t_count,1); 

min_j=zeros(t_count,1); max_j=zeros(t_count,1); 

for t=1:t_count 

    [i_wing,j_wing]=find(isnan(airpos(:,:,t))); 

    i_wing=unique(i_wing); j_wing=unique(j_wing); 

    min_i(t)=min(i_wing); max_i(t)=max(i_wing); 

    min_j(t)=min(j_wing); max_j(t)=max(j_wing); 

end 

min_i=unique(min_i); max_i=unique(max_i); 

min_j=unique(min_j); max_j=unique(max_j); 

min_i=min(min_i); max_i=max(max_i); 

min_j=min(min_j); max_j=max(max_j); 

  

LoEdge=min_i-10; UpEdge=max_i+10; 

LeEdge=min_j-10; RiEdge=max_j+10; 

  

while LoEdge<=3 

    LoEdge=LoEdge+1; 

end 

while LeEdge<=3 

    LeEdge=LeEdge+1; 

end 

while UpEdge>=y_count-2 

    UpEdge=UpEdge-1; 

end 

while RiEdge>=x_count-2 

    RiEdge=RiEdge-1; 

end 

CtrlVolume=[LoEdge UpEdge LeEdge RiEdge]; 

tReadIn=toc(tReadIn) 

%Eulerian Material Acceleration Computation-------------------------------- 

tEuler=tic; 

[dudx,dvdx,dudy,dvdy,dudt,dvdt] = grads(U,V,airpos,dx,dy,dt); 

[dudx2,dvdx2,dudy2,dvdy2,dudt2,dvdt2] = grads2(U,V,dx,dy,dt); 

EulerAccX=dudt+U.*dudx+V.*dudy; 

EulerAccY=dvdt+U.*dvdx+V.*dvdy; 

EulerAccX2=dudt2+U.*dudx2+V.*dudy2; 

EulerAccY2=dvdt2+U.*dvdx2+V.*dvdy2; 

tEuler=toc(tEuler) 
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tLagrange=tic; 

%Lagrangian Material Acceleration Computation------------------------------ 

[LagrangeAccX,LagrangeAccY] = 

LagrangeAcceleration(EulerAccX,EulerAccY,U,V,airpos,X,Y,dt,10^-5,25); 

[LagrangeAccX2,LagrangeAccY2] = 

LagrangeAcceleration2(EulerAccX2,EulerAccY2,U,V,airpos,X,Y,dt,10^-5,25); 

toc(tLagrange) 

  

tPres=tic; 

%Pressure Gradient and Poisson Eq. Computation----------------------------- 

dpdx=zeros(y_count,x_count,t_count); 

dpdy=zeros(y_count,x_count,t_count); 

Pressure=zeros(y_count,x_count,t_count); 

dpdx2=zeros(y_count,x_count,t_count); 

dpdy2=zeros(y_count,x_count,t_count); 

Pressure2=zeros(y_count,x_count,t_count); 

  

for t=1:t_count 

    dpdx(LoEdge:UpEdge,LeEdge:RiEdge,t)=-

LagrangeAccX(LoEdge:UpEdge,LeEdge:RiEdge,t)+4*nu.*del2(U(LoEdge:UpEdge,LeEdge:RiEdge,

t),dx,dy); 

    dpdy(LoEdge:UpEdge,LeEdge:RiEdge,t)=-

LagrangeAccY(LoEdge:UpEdge,LeEdge:RiEdge,t)+4*nu.*del2(V(LoEdge:UpEdge,LeEdge:RiEdge,

t),dx,dy); 

    dpdx2(LoEdge:UpEdge,LeEdge:RiEdge,t)=-

LagrangeAccX2(LoEdge:UpEdge,LeEdge:RiEdge,t)+4*nu.*del2(U(LoEdge:UpEdge,LeEdge:RiEdge

,t),dx,dy); 

    dpdy2(LoEdge:UpEdge,LeEdge:RiEdge,t)=-

LagrangeAccY2(LoEdge:UpEdge,LeEdge:RiEdge,t)+4*nu.*del2(V(LoEdge:UpEdge,LeEdge:RiEdge

,t),dx,dy); 

    sprintf('Grad %d',t) 

end 

  

for t=1:t_count 

    

Pressure(:,:,t)=PressGradInteg(Pressure(:,:,t),dpdx(:,:,t),dpdy(:,:,t),dx,dy,airpos(:

,:,t),CtrlVolume); 

    

Pressure2(:,:,t)=PressGradInteg(Pressure2(:,:,t),dpdx2(:,:,t),dpdy2(:,:,t),dx,dy,airp

os(:,:,t),CtrlVolume); 

    sprintf('Pres %d',t) 

end 

  

tPres=toc(tPres) 

%Calculate Reynolds Transport Theorem Terms-------------------------------- 

tForce=tic; 

FluxTermX=zeros(t_count,1); 

FluxTermY=zeros(t_count,1); 

PresTermX=zeros(t_count,1); 

PresTermY=zeros(t_count,1); 

PresTermX2=zeros(t_count,1); 

PresTermY2=zeros(t_count,1); 

UnsteadyTermX=zeros(t_count,1); 

UnsteadyTermY=zeros(t_count,1); 

UnsteadyTermX2=zeros(t_count,1); 

UnsteadyTermY2=zeros(t_count,1); 

  

for t=1:t_count 

    for i=LoEdge:UpEdge-1 

        for j=LeEdge:RiEdge-1 

            if ~isnan(dudt(i,j,t)) 

                UnsteadyTermX(t)=UnsteadyTermX(t)+dudt(i,j,t)*dx*dy; 

            end 

            if ~isnan(dvdt(i,j,t)) 

                UnsteadyTermY(t)=UnsteadyTermY(t)+dvdt(i,j,t)*dx*dy; 

            end 

        end 

    end 

end 

  

for t=1:t_count 

    %Left Edge---Upper to Lower 

    for i=UpEdge:-1:LoEdge-1 

        FluxTermX(t)=FluxTermX(t)-U(i,LeEdge,t)*U(i,LeEdge,t)*dy; 

        FluxTermY(t)=FluxTermY(t)-V(i,LeEdge,t)*U(i,LeEdge,t)*dy; 

        PresTermX(t)=PresTermX(t)-Pressure(i,LeEdge,t)*dy; 
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        PresTermX2(t)=PresTermX2(t)-Pressure2(i,LeEdge,t)*dy; 

        UnsteadyTermX2(t)=UnsteadyTermX2(t)-X(LeEdge)*U(i,LeEdge,t)*dy; 

        UnsteadyTermY2(t)=UnsteadyTermY2(t)-0.5*Y(i)*U(i,LeEdge,t)*dy; 

    end 

%     Lower Edge---Left to Right 

    for j=LeEdge:RiEdge-1 

        FluxTermX(t)=FluxTermX(t)-U(LoEdge,j,t)*V(LoEdge,j,t)*dx; 

        FluxTermY(t)=FluxTermY(t)-V(LoEdge,j,t)*V(LoEdge,j,t)*dx; 

        PresTermY(t)=PresTermY(t)-Pressure(LoEdge,j,t)*dx; 

        PresTermY2(t)=PresTermY2(t)-Pressure2(LoEdge,j,t)*dx; 

        UnsteadyTermX2(t)=UnsteadyTermX2(t)-X(j)*V(LoEdge,j,t)*dx; 

        UnsteadyTermY2(t)=UnsteadyTermY2(t)-Y(LoEdge)*V(LoEdge,j,t)*dx; 

    end 

%     Right Edge---Lower to Upper 

    for i=LoEdge:UpEdge-1 

        FluxTermX(t)=FluxTermX(t)+U(i,RiEdge,t)*U(i,RiEdge,t)*dy; 

        FluxTermY(t)=FluxTermY(t)+V(i,RiEdge,t)*U(i,RiEdge,t)*dy; 

        PresTermX(t)=PresTermX(t)+Pressure(i,RiEdge,t)*dy; 

        PresTermX2(t)=PresTermX2(t)+Pressure2(i,RiEdge,t)*dy; 

        UnsteadyTermX2(t)=UnsteadyTermX2(t)+X(RiEdge)*U(i,RiEdge,t)*dy; 

        UnsteadyTermY2(t)=UnsteadyTermY2(t)+Y(i)*U(i,RiEdge,t)*dy; 

    end 

%     Upper Edge---Right to Left 

    for j=RiEdge:-1:LeEdge-1 

        FluxTermX(t)=FluxTermX(t)+U(UpEdge,j,t)*V(UpEdge,j,t)*dx; 

        FluxTermY(t)=FluxTermY(t)+V(UpEdge,j,t)*V(UpEdge,j,t)*dx; 

        PresTermY(t)=PresTermY(t)+Pressure(UpEdge,j,t)*dx; 

        PresTermY2(t)=PresTermY2(t)+Pressure2(UpEdge,j,t)*dx; 

        UnsteadyTermX2(t)=UnsteadyTermX2(t)+X(j)*V(UpEdge,j,t)*dx; 

        UnsteadyTermY2(t)=UnsteadyTermY2(t)+Y(UpEdge)*V(UpEdge,j,t)*dx; 

    end 

end 

  

UnsteadyTermX2=gradient(UnsteadyTermX2,dt); 

UnsteadyTermY2=gradient(UnsteadyTermY2,dt); 

  

cL=zeros(t_count,1); 

cD=zeros(t_count,1); 

cL2=zeros(t_count,1); 

cD2=zeros(t_count,1); 

cL3=zeros(t_count,1); 

cD3=zeros(t_count,1); 

cL4=zeros(t_count,1); 

cD4=zeros(t_count,1); 

for t=1:t_count 

    cD(t)=2*(-UnsteadyTermX(t)-FluxTermX(t)-PresTermX(t))/(chord*FreeS^2); 

    cL(t)=2*(-UnsteadyTermY(t)-FluxTermY(t)-PresTermY(t))/(chord*FreeS^2); 

     

    cD2(t)=2*(-UnsteadyTermX2(t)-FluxTermX(t)-PresTermX(t))/(chord*FreeS^2); 

    cL2(t)=2*(-UnsteadyTermY2(t)-FluxTermY(t)-PresTermY(t))/(chord*FreeS^2); 

     

    cD3(t)=2*(-UnsteadyTermX(t)-FluxTermX(t)-PresTermX2(t))/(chord*FreeS^2); 

    cL3(t)=2*(-UnsteadyTermY(t)-FluxTermY(t)-PresTermY2(t))/(chord*FreeS^2); 

     

    cD4(t)=2*(-UnsteadyTermX2(t)-FluxTermX(t)-PresTermX2(t))/(chord*FreeS^2); 

    cL4(t)=2*(-UnsteadyTermY2(t)-FluxTermY(t)-PresTermY2(t))/(chord*FreeS^2); 

end 

tStart=toc(tStart) 

  

[cL_r, ~]=size(cL); 

if cL_r~=t_count 

    cL=cL.'; cD=cD.'; 

end 

clear cL_r 

  

save(wrtename); 

figure(1);plot(cL,'r');hold on;plot(cL3); 

figure(2);plot(cL3,'r');hold on;plot(cL4); 
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%LagrangeAcceleration Function-------------------------------------- 

function [LagrangeAccX,LagrangeAccY,errx,erry,iterLag] = 

LagrangeAcceleration(EulerAccX,EulerAccY,U,V,airpos,X,Y,dt,tol,max_iter) 

  

[y_count,x_count,t_count]=size(U); 

  

LagrangeAccX=zeros(y_count,x_count,t_count); 

LagrangeAccY=zeros(y_count,x_count,t_count); 

  

x_final=zeros(y_count,x_count,t_count); 

y_final=zeros(y_count,x_count,t_count); 

x_intal=zeros(y_count,x_count,t_count); 

y_intal=zeros(y_count,x_count,t_count); 

  

x_final2=zeros(y_count,x_count,t_count); 

y_final2=zeros(y_count,x_count,t_count); 

x_intal2=zeros(y_count,x_count,t_count); 

y_intal2=zeros(y_count,x_count,t_count); 

  

x_final3=zeros(y_count,x_count,t_count); 

y_final3=zeros(y_count,x_count,t_count); 

x_intal3=zeros(y_count,x_count,t_count); 

y_intal3=zeros(y_count,x_count,t_count); 

  

U_final=zeros(y_count,x_count,t_count); 

V_final=zeros(y_count,x_count,t_count); 

U_intal=zeros(y_count,x_count,t_count); 

V_intal=zeros(y_count,x_count,t_count); 

  

U_final2=zeros(y_count,x_count,t_count); 

V_final2=zeros(y_count,x_count,t_count); 

U_intal2=zeros(y_count,x_count,t_count); 

V_intal2=zeros(y_count,x_count,t_count); 

  

U_final3=zeros(y_count,x_count,t_count); 

V_final3=zeros(y_count,x_count,t_count); 

U_intal3=zeros(y_count,x_count,t_count); 

V_intal3=zeros(y_count,x_count,t_count); 

  

AccX=EulerAccX; AccY=EulerAccY; 

errx=ones(y_count,x_count,t_count); 

erry=ones(y_count,x_count,t_count); 

iterLag=zeros(y_count,x_count,t_count); 

  

for t=1:t_count 

        for i=2:y_count-1 

            for j=2:x_count-1 

                if isnan(airpos(i,j,t)) 

                    LagrangeAccX(i,j,t)=NaN; 

                    LagrangeAccY(i,j,t)=NaN; 

                    continue 

                end 

                while errx(i,j,t)>tol && erry(i,j,t)>tol && iterLag(i,j,t)<max_iter 

                     

                     

                    if t==1 

                    x_final(i,j,t)=X(j)+U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                    y_final(i,j,t)=Y(i)+V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                     

                    [U_final(i,j,t),V_final(i,j,t)]=... 

                        

CloudInCell(x_final(i,j,t),y_final(i,j,t),X,Y,U(:,:,t+1),V(:,:,t+1)); 

                     

                    LagrangeAccX(i,j,t)=(U_final(i,j,t)-U(i,j,t))/dt; 

                    LagrangeAccY(i,j,t)=(V_final(i,j,t)-V(i,j,t))/dt; 

                     

                    else if t==t_count 

                            x_intal(i,j,t)=X(j)-U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                            y_intal(i,j,t)=Y(i)-V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                             

                            [U_intal(i,j,t),V_intal(i,j,t)]=... 

                                

CloudInCell(x_intal(i,j,t),y_intal(i,j,t),X,Y,U(:,:,t-1),V(:,:,t-1)); 

                            LagrangeAccX(i,j,t)=(U(i,j,t)-U_intal(i,j,t))/dt; 

                            LagrangeAccY(i,j,t)=(V(i,j,t)-V_intal(i,j,t))/dt; 

                         

                        else if t==2 || t==3 || t==t_count-2 || t==t_count-1 
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x_final(i,j,t)=X(j)+U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                                

y_final(i,j,t)=Y(i)+V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                                x_intal(i,j,t)=X(j)-

U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                                y_intal(i,j,t)=Y(i)-

V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                                 

                                [U_final(i,j,t),V_final(i,j,t)]=... 

                                    

CloudInCell(x_final(i,j,t),y_final(i,j,t),X,Y,U(:,:,t+1),V(:,:,t+1)); 

                                 

                                [U_intal(i,j,t),V_intal(i,j,t)]=... 

                                    

CloudInCell(x_intal(i,j,t),y_intal(i,j,t),X,Y,U(:,:,t-1),V(:,:,t-1)); 

                                 

                                LagrangeAccX(i,j,t)=(U_final(i,j,t)-

U_intal(i,j,t))/(2*dt); 

                                LagrangeAccY(i,j,t)=(V_final(i,j,t)-

V_intal(i,j,t))/(2*dt); 

                            else 

                                

x_final(i,j,t)=X(j)+U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                                

y_final(i,j,t)=Y(i)+V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                                x_intal(i,j,t)=X(j)-

U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                                y_intal(i,j,t)=Y(i)-

V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                             

                                

x_final2(i,j,t)=X(j)+U(i,j,t)*(2*dt)+2*AccX(i,j,t)*(dt^2); 

                                

y_final2(i,j,t)=Y(i)+V(i,j,t)*(2*dt)+2*AccY(i,j,t)*(dt^2); 

                                x_intal2(i,j,t)=X(j)-

U(i,j,t)*(2*dt)+2*AccX(i,j,t)*(dt^2); 

                                y_intal2(i,j,t)=Y(i)-

V(i,j,t)*(2*dt)+2*AccY(i,j,t)*(dt^2); 

                             

                                

x_final3(i,j,t)=X(j)+U(i,j,t)*(3*dt)+4*AccX(i,j,t)*(dt^2); 

                                

y_final3(i,j,t)=Y(i)+V(i,j,t)*(3*dt)+4*AccY(i,j,t)*(dt^2); 

                                x_intal3(i,j,t)=X(j)-

U(i,j,t)*(3*dt)+4*AccX(i,j,t)*(dt^2); 

                                y_intal3(i,j,t)=Y(i)-

V(i,j,t)*(3*dt)+4*AccY(i,j,t)*(dt^2); 

                             

                                [U_final(i,j,t),V_final(i,j,t)]=... 

                                    

CloudInCell(x_final(i,j,t),y_final(i,j,t),X,Y,U(:,:,t+1),V(:,:,t+1)); 

                                [U_intal(i,j,t),V_intal(i,j,t)]=... 

                                    

CloudInCell(x_intal(i,j,t),y_intal(i,j,t),X,Y,U(:,:,t-1),V(:,:,t-1)); 

                             

                                [U_final2(i,j,t),V_final2(i,j,t)]=... 

                                    

CloudInCell(x_final2(i,j,t),y_final2(i,j,t),X,Y,U(:,:,t+2),V(:,:,t+2)); 

                                [U_intal2(i,j,t),V_intal2(i,j,t)]=... 

                                    

CloudInCell(x_intal2(i,j,t),y_intal2(i,j,t),X,Y,U(:,:,t-2),V(:,:,t-2)); 

                             

                                [U_final3(i,j,t),V_final3(i,j,t)]=... 

                                    

CloudInCell(x_final3(i,j,t),y_final3(i,j,t),X,Y,U(:,:,t+3),V(:,:,t+3)); 

                                [U_intal3(i,j,t),V_intal3(i,j,t)]=... 

                                    

CloudInCell(x_intal3(i,j,t),y_intal3(i,j,t),X,Y,U(:,:,t-3),V(:,:,t-3)); 

                                 

                                LagrangeAccX(i,j,t)=(U_final(i,j,t)-

U_intal(i,j,t))/(2*dt); 

                                LagrangeAccY(i,j,t)=(V_final(i,j,t)-

V_intal(i,j,t))/(2*dt); 
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                                if all(~isnan([U_intal3(i,j,t) U_intal2(i,j,t) 

U_intal(i,j,t) U_final(i,j,t) U_final2(i,j,t) U_final3(i,j,t)])) 

                                    LagrangeAccX(i,j,t)=(-

U_intal3(i,j,t)+9*U_intal2(i,j,t)-45*U_intal(i,j,t)... 

                                        +45*U_final(i,j,t)-

9*U_final2(i,j,t)+U_final3(i,j,t))/(60*dt); 

                                else if all(~isnan([U_intal2(i,j,t) U_intal(i,j,t) 

U_final(i,j,t) U_final2(i,j,t)])) 

                                        LagrangeAccX(i,j,t)=(U_intal2(i,j,t)-

8*U_intal(i,j,t)+8*U_final(i,j,t)-U_final2(i,j,t))/(12*dt); 

                                    else if all(~isnan([U_intal(i,j,t) 

U_final(i,j,t)])) 

                                            LagrangeAccX(i,j,t)=(U_final(i,j,t)-

U_intal(i,j,t))/(2*dt); 

                                        else if all(~isnan([U_intal3(i,j,t) 

U_intal2(i,j,t) U_intal(i,j,t)])) 

                                                LagrangeAccX(i,j,t)=(-

2*U_intal3(i,j,t)+9*U_intal2(i,j,t)-18*U_intal(i,j,t)+11*U(i,j,t))/(6*dt); 

                                            else if all(~isnan([U_intal2(i,j,t) 

U_intal(i,j,t)])) 

                                                    

LagrangeAccX(i,j,t)=(U_intal2(i,j,t)-4*U_intal(i,j,t)+3*U(i,j,t))/(2*dt); 

                                                else if all(~isnan([U_final3(i,j,t) 

U_final2(i,j,t) U_final(i,j,t)])) 

                                                        

LagrangeAccX(i,j,t)=(2*U_final3(i,j,t)-9*U_final2(i,j,t)+18*U_final(i,j,t)-

11*U(i,j,t))/(6*dt); 

                                                    else if 

all(~isnan([U_final2(i,j,t) U_final(i,j,t)])) 

                                                            LagrangeAccX(i,j,t)=(-

U_final2(i,j,t)+4*U_final(i,j,t)-3*U(i,j,t))/(2*dt); 

                                                        end 

                                                    end 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 

                                 

                                if all(~isnan([V_intal3(i,j,t) V_intal2(i,j,t) 

V_intal(i,j,t) V_final(i,j,t) V_final2(i,j,t) V_final3(i,j,t)])) 

                                    LagrangeAccY(i,j,t)=(-

V_intal3(i,j,t)+9*V_intal2(i,j,t)-45*V_intal(i,j,t)... 

                                        +45*V_final(i,j,t)-

9*V_final2(i,j,t)+V_final3(i,j,t))/(60*dt); 

                                else if all(~isnan([V_intal2(i,j,t) V_intal(i,j,t) 

V_final(i,j,t) V_final2(i,j,t)])) 

                                        LagrangeAccY(i,j,t)=(V_intal2(i,j,t)-

8*V_intal(i,j,t)+8*V_final(i,j,t)-V_final2(i,j,t))/(12*dt); 

                                    else if all(~isnan([V_intal(i,j,t) 

V_final(i,j,t)])) 

                                            LagrangeAccY(i,j,t)=(V_final(i,j,t)-

V_intal(i,j,t))/(2*dt); 

                                        else if all(~isnan([V_intal3(i,j,t) 

V_intal2(i,j,t) V_intal(i,j,t)])) 

                                                LagrangeAccY(i,j,t)=(-

2*V_intal3(i,j,t)+9*V_intal2(i,j,t)-18*V_intal(i,j,t)+11*V(i,j,t))/(6*dt); 

                                            else if all(~isnan([V_intal2(i,j,t) 

V_intal(i,j,t)])) 

                                                    

LagrangeAccY(i,j,t)=(V_intal2(i,j,t)-4*V_intal(i,j,t)+3*V(i,j,t))/(2*dt); 

                                                else if all(~isnan([V_final3(i,j,t) 

V_final2(i,j,t) V_final(i,j,t)])) 

                                                        

LagrangeAccY(i,j,t)=(2*V_final3(i,j,t)-9*V_final2(i,j,t)+18*V_final(i,j,t)-

11*V(i,j,t))/(6*dt); 

                                                    else if 

all(~isnan([V_final2(i,j,t) V_final(i,j,t)])) 

                                                            LagrangeAccY(i,j,t)=(-

V_final2(i,j,t)+4*V_final(i,j,t)-3*V(i,j,t))/(2*dt); 

                                                        end 

                                                    end 

                                                end 

                                            end 

                                        end 

                                    end 

                                end 
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                            end 

                        end 

                    end 

                     

                    errx(i,j,t)=abs(LagrangeAccX(i,j,t)/AccX(i,j,t)-1); 

                    erry(i,j,t)=abs(LagrangeAccY(i,j,t)/AccY(i,j,t)-1); 

                    AccX(i,j,t)=LagrangeAccX(i,j,t); 

                    AccY(i,j,t)=LagrangeAccY(i,j,t); 

                    iterLag(i,j,t)=iterLag(i,j,t)+1; 

                 

                end 

            end 

        end 

        sprintf('Lagr1 %d',t) 

end 

  

for t=1:t_count 

    for i=2:y_count-1 

        for j=2:x_count-1 

                 

            if isnan(airpos(i,j,t)) 

                continue 

            end 

            if isnan(LagrangeAccX(i,j,t)) 

                LagrangeAccX(i,j,t)=EulerAccX(i,j,t); 

            end 

            if isnan(LagrangeAccY(i,j,t)) 

                LagrangeAccY(i,j,t)=EulerAccY(i,j,t); 

            end 

             

        end 

    end 

end 

  

  

end 
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%LagrangeAcceleration2 Function------------------------------------------------------ 

function [LagrangeAccX,LagrangeAccY,errx,erry,iterLag] = 

LagrangeAcceleration2(EulerAccX,EulerAccY,U,V,airpos,X,Y,dt,tol,max_iter) 

  

[y_count,x_count,t_count]=size(U); 

  

LagrangeAccX=zeros(y_count,x_count,t_count); 

LagrangeAccY=zeros(y_count,x_count,t_count); 

  

x_final=zeros(y_count,x_count,t_count); 

y_final=zeros(y_count,x_count,t_count); 

x_intal=zeros(y_count,x_count,t_count); 

y_intal=zeros(y_count,x_count,t_count); 

  

U_final=zeros(y_count,x_count,t_count); 

V_final=zeros(y_count,x_count,t_count); 

U_intal=zeros(y_count,x_count,t_count); 

V_intal=zeros(y_count,x_count,t_count); 

  

AccX=EulerAccX; AccY=EulerAccY; 

errx=ones(y_count,x_count,t_count); 

erry=ones(y_count,x_count,t_count); 

iterLag=zeros(y_count,x_count,t_count); 

  

for t=1:t_count 

    for i=2:y_count-1 

        for j=2:x_count-1 

            if isnan(airpos(i,j,t)) 

                LagrangeAccX(i,j,t)=NaN; 

                LagrangeAccY(i,j,t)=NaN; 

                continue 

            end 

            while errx(i,j,t)>tol && erry(i,j,t)>tol && iterLag(i,j,t)<max_iter 

                if t==1 

                    x_final(i,j,t)=X(j)+U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                    y_final(i,j,t)=Y(i)+V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                     

                    [U_final(i,j,t),V_final(i,j,t)]=... 

                        

CloudInCell(x_final(i,j,t),y_final(i,j,t),X,Y,U(:,:,t+1),V(:,:,t+1)); 

                     

                    LagrangeAccX(i,j,t)=(U_final(i,j,t)-U(i,j,t))/dt; 

                    LagrangeAccY(i,j,t)=(V_final(i,j,t)-V(i,j,t))/dt; 

                else if t==t_count 

                        x_intal(i,j,t)=X(j)-U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                        y_intal(i,j,t)=Y(i)-V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                         

                        [U_intal(i,j,t),V_intal(i,j,t)]=... 

                            CloudInCell(x_intal(i,j,t),y_intal(i,j,t),X,Y,U(:,:,t-

1),V(:,:,t-1)); 

                         

                        LagrangeAccX(i,j,t)=(U(i,j,t)-U_intal(i,j,t))/dt; 

                        LagrangeAccY(i,j,t)=(V(i,j,t)-V_intal(i,j,t))/dt; 

                    else 

                        x_final(i,j,t)=X(j)+U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                        y_final(i,j,t)=Y(i)+V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                        x_intal(i,j,t)=X(j)-U(i,j,t)*dt+0.5*AccX(i,j,t)*(dt^2); 

                        y_intal(i,j,t)=Y(i)-V(i,j,t)*dt+0.5*AccY(i,j,t)*(dt^2); 

                         

                        [U_final(i,j,t),V_final(i,j,t)]=... 

                            

CloudInCell(x_final(i,j,t),y_final(i,j,t),X,Y,U(:,:,t+1),V(:,:,t+1)); 

                        [U_intal(i,j,t),V_intal(i,j,t)]=... 

                            CloudInCell(x_intal(i,j,t),y_intal(i,j,t),X,Y,U(:,:,t-

1),V(:,:,t-1)); 

                         

                        if ~isnan(U_final(i,j,t)) && ~isnan(U_intal(i,j,t)) 

                            LagrangeAccX(i,j,t)=(U_final(i,j,t)-

U_intal(i,j,t))/(2*dt); 

                        else if isnan(U_final(i,j,t)) 

                                LagrangeAccX(i,j,t)=(U(i,j,t)-U_intal(i,j,t))/dt; 

                            else 

                                LagrangeAccX(i,j,t)=(U_final(i,j,t)-U(i,j,t))/dt; 

                            end 

                        end 

                         

                        if ~isnan(V_final(i,j,t)) && ~isnan(V_intal(i,j,t)) 
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                            LagrangeAccY(i,j,t)=(V_final(i,j,t)-

V_intal(i,j,t))/(2*dt); 

                        else if isnan(V_final(i,j,t)) 

                                LagrangeAccY(i,j,t)=(V(i,j,t)-V_intal(i,j,t))/dt; 

                            else 

                                LagrangeAccY(i,j,t)=(V_final(i,j,t)-V(i,j,t))/dt; 

                            end 

                        end 

                         

                    end 

                end 

                errx(i,j,t)=abs(LagrangeAccX(i,j,t)/AccX(i,j,t)-1); 

                erry(i,j,t)=abs(LagrangeAccY(i,j,t)/AccY(i,j,t)-1); 

                AccX(i,j,t)=LagrangeAccX(i,j,t); 

                AccY(i,j,t)=LagrangeAccY(i,j,t); 

                iterLag(i,j,t)=iterLag(i,j,t)+1; 

            end 

        end 

    end 

    sprintf('Lagr2 %d',t) 

end 

  

end 

                 

  

 

  



68 

%grads Function---------------------------------------------------------------------- 

function [dudx,dvdx,dudy,dvdy,dudt,dvdt] = grads(U,V,airpos,dx,dy,dt) 

  

[y_count,x_count,t_count]=size(U); 

  

dudx=zeros(y_count,x_count,t_count); 

dudy=zeros(y_count,x_count,t_count); 

dvdx=zeros(y_count,x_count,t_count); 

dvdy=zeros(y_count,x_count,t_count); 

dudt=zeros(y_count,x_count,t_count); 

dvdt=zeros(y_count,x_count,t_count); 

  

for t=1:t_count 

    for i=3:y_count-2 

        for j=3:x_count-2 

             

             

            if isnan(airpos(i,j,t)) 

                dudx(i,j,t)=NaN; 

                dvdx(i,j,t)=NaN; 

                dudy(i,j,t)=NaN; 

                dvdy(i,j,t)=NaN; 

                continue 

            else 

                n=isnan([airpos(i,j-2,t) airpos(i,j-1,t) airpos(i,j+1,t) 

airpos(i,j+2,t)]); 

                if all(~n) 

                    dudx(i,j,t)=(U(i,j-2,t)-8*U(i,j-1,t)+8*U(i,j+1,t)-

U(i,j+2,t))/(12*dx); 

                    dvdx(i,j,t)=(V(i,j-2,t)-8*V(i,j-1,t)+8*V(i,j+1,t)-

V(i,j+2,t))/(12*dx); 

                else if sum(~n)==3 

                        dudx(i,j,t)=(U(i,j+1,t)-U(i,j-1,t))/(2*dx); 

                        dvdx(i,j,t)=(V(i,j+1,t)-V(i,j-1,t))/(2*dx); 

                    else if all(n==[0 0 1 1]) 

                            dudx(i,j,t)=(U(i,j-2,t)-2*U(i,j-1,t)+3*U(i,j,t))/(2*dx); 

                            dvdx(i,j,t)=(V(i,j-2,t)-2*V(i,j-1,t)+3*V(i,j,t))/(2*dx); 

                        else if all(n==[1 1 0 0]) 

                                dudx(i,j,t)=(-U(i,j+2,t)+2*U(i,j+1,t)-

3*U(i,j,t))/(2*dx); 

                                dvdx(i,j,t)=(-V(i,j+2,t)+2*V(i,j+1,t)-

3*V(i,j,t))/(2*dx); 

                            end 

                        end 

                    end 

                end 

                n=isnan([airpos(i-2,j,t) airpos(i-1,j,t) airpos(i+1,j,t) 

airpos(i+2,j,t)]); 

                if all(~n) 

                    dudy(i,j,t)=(U(i-2,j,t)-8*U(i-1,j,t)+8*U(i+1,j,t)-

U(i+2,j,t))/(12*dy); 

                    dvdy(i,j,t)=(V(i-2,j,t)-8*V(i-1,j,t)+8*V(i+1,j,t)-

V(i+2,j,t))/(12*dy); 

                else if sum(~n) 

                        dudy(i,j,t)=(U(i+1,j,t)-U(i-1,j,t))/(2*dy); 

                        dvdy(i,j,t)=(V(i+1,j,t)-V(i-1,j,t))/(2*dy); 

                    else if all(n==[0 0 1 1]) 

                            dudy(i,j,t)=(U(i-2,j,t)-2*U(i-1,j,t)+3*U(i,j,t))/(2*dy); 

                            dvdy(i,j,t)=(V(i-2,j,t)-2*V(i-1,j,t)+3*V(i,j,t))/(2*dy); 

                        else if all(n==[1 1 0 0]) 

                                dudy(i,j,t)=(-U(i+2,j,t)+2*U(i+1,j,t)-

3*U(i,j,t))/(2*dy); 

                                dvdy(i,j,t)=(-V(i+2,j,t)+2*V(i+1,j,t)-

3*V(i,j,t))/(2*dy); 

                            end 

                        end 

                    end 

                end 

            end 

             

             

        end 

    end 

end 

       

  

for t=1:t_count 
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    for i=3:y_count-2 

        for j=3:x_count-2 

            if isnan(airpos(i,j,t)) 

                dudt(i,j,t)=NaN; 

                dvdt(i,j,t)=NaN; 

                continue 

            else 

                if t==1 

                    if ~isnan(airpos(i,j,t+1)) && ~isnan(airpos(i,j,t+2)) 

                        dudt(i,j,t)=(-U(i,j,t+2)+2*U(i,j,t+1)-3*U(i,j,t))/(2*dt); 

                        dvdt(i,j,t)=(-V(i,j,t+2)+2*V(i,j,t+1)-3*V(i,j,t))/(2*dt); 

                    else if ~isnan(airpos(i,j,t+1)) 

                        dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t))/dt; 

                        dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t))/dt; 

                        else 

                            dudt(i,j,t)=NaN; 

                            dvdt(i,j,t)=NaN; 

                            continue 

                        end 

                    end 

                else if t==t_count 

                        if ~isnan(airpos(i,j,t-1)) && ~isnan(airpos(i,j,t-2)) 

                            dudt(i,j,t)=(U(i,j,t-2)-2*U(i,j,t-1)+3*U(i,j,t))/(2*dt); 

                            dvdt(i,j,t)=(V(i,j,t-2)-2*V(i,j,t-1)+3*V(i,j,t))/(2*dt); 

                        else if ~isnan(airpos(i,j,t-1)) 

                                dudt(i,j,t)=(U(i,j,t-1)-U(i,j,t))/dt; 

                                dvdt(i,j,t)=(V(i,j,t-1)-V(i,j,t))/dt; 

                            else 

                                dudt(i,j,t)=NaN; 

                                dvdt(i,j,t)=NaN; 

                                continue 

                            end 

                        end 

                    else if t==2 || t==t_count-1 

                            if all(~isnan([U(i,j,t-1) U(i,j,t+1)])) 

                                dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t-1))/(2*dt); 

                                dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t-1))/(2*dt); 

                            else if isnan(U(i,j,t-1)) && ~isnan(U(i,j,t+1))  

                                    dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t))/dt; 

                                    dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t))/dt; 

                                else if isnan(U(i,j,t+1)) && ~isnan(U(i,j,t-1))  

                                        dudt(i,j,t)=(U(i,j,t)-U(i,j,t-1))/dt; 

                                        dvdt(i,j,t)=(V(i,j,t)-V(i,j,t-1))/dt; 

                                    else 

                                        dudt(i,j,t)=NaN; 

                                        dvdt(i,j,t)=NaN; 

                                        continue 

                                    end 

                                end 

                            end 

                        else 

                            n=isnan([airpos(i,j,t-2) airpos(i,j,t-1) airpos(i,j,t+1) 

airpos(i,j,t+2)]); 

                            if all(~n) 

                                dudt(i,j,t)=(U(i,j,t-2)-8*U(i,j,t-1)+8*U(i,j,t+1)-

U(i,j,t+2))/(12*dt); 

                                dvdt(i,j,t)=(V(i,j,t-2)-8*V(i,j,t-1)+8*V(i,j,t+1)-

V(i,j,t+2))/(12*dt); 

                            end 

                            if n(1)==1 || n(4)==1 

                                if n(2)==0 && n(3)==0 

                                    dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t-1))/(2*dt); 

                                    dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t-1))/(2*dt); 

                                end 

                            end 

                            if all(n==[0 0 1 1]); 

                                dudt(i,j,t)=(U(i,j,t-2)-2*U(i,j,t-

1)+3*U(i,j,t))/(2*dt); 

                                dvdt(i,j,t)=(V(i,j,t-2)-2*V(i,j,t-

1)+3*V(i,j,t))/(2*dt); 

                            end 

                            if all(n==[1 1 0 0]); 

                                dudt(i,j,t)=(-U(i,j,t+2)+2*U(i,j,t+1)-

3*U(i,j,t))/(2*dt); 

                                dvdt(i,j,t)=(-V(i,j,t+2)+2*V(i,j,t+1)-

3*V(i,j,t))/(2*dt); 

                            end 



70 

                            if sum(~n)==1 

                                if n(2)==1 

                                    dudt(i,j,t)=(U(i,j,t)-U(i,j,t-1))/dt; 

                                    dvdt(i,j,t)=(V(i,j,t)-V(i,j,t-1))/dt; 

                                else if n(3)==1 

                                        dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t))/dt; 

                                        dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t))/dt; 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

  

end 
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%grads2 Function--------------------------------------------------------------------- 

function [dudx,dvdx,dudy,dvdy,dudt,dvdt] = grads2(U,V,dx,dy,dt) 

  

[y_count,x_count,t_count]=size(U); 

  

dudx=zeros(y_count,x_count,t_count); 

dudy=zeros(y_count,x_count,t_count); 

dvdx=zeros(y_count,x_count,t_count); 

dvdy=zeros(y_count,x_count,t_count); 

dudt=zeros(y_count,x_count,t_count); 

dvdt=zeros(y_count,x_count,t_count); 

  

for t=3:t_count-2 

    for i=3:y_count-2 

        for j=3:x_count-2 

            dudx(i,j,t)=(U(i,j+1,t)-U(i,j-1,t))/(2*dx); 

            dvdx(i,j,t)=(V(i,j+1,t)-V(i,j-1,t))/(2*dx); 

            dudy(i,j,t)=(U(i+1,j,t)-U(i-1,j,t))/(2*dy); 

            dvdy(i,j,t)=(V(i+1,j,t)-V(i-1,j,t))/(2*dy); 

        end 

    end 

end 

             

  

for t=3:t_count-2 

    for i=3:y_count-2 

        for j=3:x_count-2 

            dudt(i,j,t)=(U(i,j,t+1)-U(i,j,t-1))/(2*dt); 

            dvdt(i,j,t)=(V(i,j,t+1)-V(i,j,t-1))/(2*dt); 

        end 

    end 

end 

  

end 
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%PIVdata_readin Function------------------------------------------------------------- 

function [X,Y,U,V,Vort,x_count,y_count,airpos,origin_x,origin_y,geom] ... 

    = PIVdata_readin(FileName,grid_length,vel_length,des_length,LE_coordline) 

%Reads in PIV data set 

  

%Akış Alanı Verisinin Alınması----------------------------------------- 

fid=fopen(FileName,'r'); 

data=textscan(fid,'%n %n %n','headerlines',2); 

col1=data{1}; 

col2=data{2}; 

col3=data{3}; 

fclose(fid); 

j=1; 

for i=1:length(col3); 

    if isnan(col3(i))==0 

        u(j,1)=col3(i); 

        j=j+1; 

    end 

end 

for i=0:length(col1)/2-1 

    x(i+1,1)=col1(2*i+1); 

    y(i+1,1)=col2(2*i+1); 

end 

vort=zeros(length(col1)/2,1); 

v=zeros(length(col1)/2,1); 

for i=1:length(col1)/2 

    v(i,1)=col1(2*i); 

    vort(i,1)=col2(2*i); 

end 

X=unique(x); X=X.'; 

Y=unique(y); Y=Y.'; 

U=reshape(u,length(X),length(Y)); U=U.';                

V=reshape(v,length(X),length(Y)); V=V.';                

Vort=reshape(vort,length(X),length(Y)); Vort=Vort.';    

x_count=length(X); col_size=x_count; 

y_count=length(Y); row_size=y_count; 

%---------------------------------------------------------------------- 

%Plaka Geometrisi Bilgisinin Alınması---------------------------------- 

fid=fopen(FileName,'r'); 

data=textscan(fid,'%n %n','headerlines',x_count*y_count*2+3); 

fclose(fid); 

col4=data{1}; 

col5=data{2}; 

  

geom(:,1)=col4(3:end,:); 

geom(:,2)=col5(3:end,:); 

  

  

if isfloat(LE_coordline) && LE_coordline <= length(col4) && LE_coordline > 0 

    origin_x=col4(LE_coordline); 

    origin_y=col5(LE_coordline); 

else 

    origin_x=NaN; 

    origin_y=NaN; 

end 

  

airpos=zeros(y_count,x_count); 

for j=1:x_count 

    for i=1:y_count 

        if U(i,j)==0 && V(i,j)==0 

            airpos(i,j)=NaN; 

        else 

            airpos(i,j)=1; 

        end 

    end 

end 

  

if ~strcmp(des_length,grid_length) 

    if strcmp(des_length,'m') 

        X=X*10^-3; 

        Y=Y*10^-3; 

        origin_x=origin_x*10^-3; 

        origin_y=origin_y*10^-3; 

        geom=geom*10^-3; 

        Vort=Vort*10^3; 

    else if strcmp(des_length,'mm') 

            X=X*10^3; 
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            Y=Y*10^3; 

            origin_x=origin_x*10^3; 

            origin_y=origin_y*10^3; 

            geom=geom*10^3; 

            Vort=Vort*10^-3; 

        end 

    end 

end 

  

if ~strcmp(des_length,vel_length) 

    if strcmp(des_length,'m') 

        U=U*10^-3; 

        V=V*10^-3; 

        Vort=Vort*10^-3; 

    else if strcmp(des_length,'mm') 

            U=U*10^3; 

            V=V*10^3; 

            Vort=Vort*10^3; 

        end 

    end 

end 

  

  

end 
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%PressGradInteg Function------------------------------------------------------------- 

function [Pressure] = PressGradInteg(Pressure,dpdx,dpdy,dx,dy,airpos,CtrlVolume) 

  

LoEdge=CtrlVolume(1); 

UpEdge=CtrlVolume(2); 

LeEdge=CtrlVolume(3); 

RiEdge=CtrlVolume(4); 

flag=0; 

for i=LoEdge:UpEdge 

    for j=LeEdge:RiEdge 

         

        if i==LoEdge && j==LeEdge 

            continue 

        end 

         

        if isnan(airpos(i,j)) 

            continue 

        end 

         

        delp=zeros(1,4); press=0; contr=0; 

        adjc=[i-1,j-1;i-1,j;i-1,j+1;i,j-1]; 

         

        for k=1:4 

            delp(k)=deltaP(dpdx,dpdy,CtrlVolume,airpos,Pressure,adjc(k,:),i,j,dx,dy); 

        end 

  

        press=nansum(delp); 

        contr=sum(~isnan(delp)); 

         

        if contr~=0 

            Pressure(i,j)=press/contr; 

        else 

                 

                i_idx=i; flag=1; 

                for i=i_idx:UpEdge-1 

                    Pressure(i+1,1)=dpdy(i,1)*dy+Pressure(i,1); 

                end 

                for j=1:RiEdge-1 

                    Pressure(UpEdge,j+1)=dpdx(UpEdge,j)*dx+Pressure(UpEdge,j); 

                end 

                 

                for i=UpEdge:-1:i_idx 

                    for j=RiEdge:-1:LeEdge 

                         

                        if i==UpEdge && j==RiEdge 

                            continue 

                        end 

                        if isnan(airpos(i,j)) 

                            continue 

                        end 

                         

  

                        delp=zeros(1,4); press=0; contr=0; 

                        adjc=[i+1,j-1;i+1,j;i+1,j+1;i,j+1]; 

                         

                        for k=1:4 

                            

delp(k)=deltaP(dpdx,dpdy,CtrlVolume,airpos,Pressure,adjc(k,:),i,j,dx,dy); 

                        end 

  

                        press=nansum(delp); 

                        contr=sum(~isnan(delp)); 

                        Pressure(i,j)=press/contr;  

                         

                    end 

                end 

        end 

    end 

end 

  

if flag==1 

    

Pressure=integforward(i_idx,UpEdge,LeEdge,RiEdge,CtrlVolume,dpdx,dpdy,airpos,Pressure

,dx,dy); 

    

Pressure=integbackward(i_idx,UpEdge,LeEdge,RiEdge,CtrlVolume,dpdx,dpdy,airpos,Pressur

e,dx,dy); 
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else 

    

Pressure=integbackward(LoEdge,UpEdge,LeEdge,RiEdge,CtrlVolume,dpdx,dpdy,airpos,Pressu

re,dx,dy); 

end 

  

  

  

end 
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%integbackward Function-------------------------------------------------------------- 

function [Pressure,iidx,jidx,flag] = 

integbackward(i1,i2,j1,j2,CtrlVolume,dpdx,dpdy,airpos,Pressure,dx,dy) 

flag=0; iidx=0; jidx=0; 

LoEdge=CtrlVolume(1); 

UpEdge=CtrlVolume(2); 

LeEdge=CtrlVolume(3); 

RiEdge=CtrlVolume(4); 

for i=i2:-1:i1 

    for j=j2:-1:j1 

         

        if i==i2 && j==j2 

            continue 

        end 

         

        if isnan(airpos(i,j)) 

            continue 

        end 

         

        delp=zeros(1,4);  

        adjc=[i+1,j-1;i+1,j;i+1,j+1;i,j+1]; 

         

        for k=1:4 

            delp(k)=deltaP(dpdx,dpdy,CtrlVolume,airpos,Pressure,adjc(k,:),i,j,dx,dy); 

        end 

         

        press=nansum(delp); 

        contr=sum(~isnan(delp)); 

         

        if contr~=0 

            Pressure(i,j)=press/contr; 

        else 

            iidx=i; jidx=j; flag=1; 

            break 

        end 

    end 

     

    if flag==1 

        break 

    end 

end 

  

  

end 

 

%integforward Function--------------------------------------------------------------- 

function [Pressure,iidx,jidx,flag] = 

integforward(i1,i2,j1,j2,CtrlVolume,dpdx,dpdy,airpos,Pressure,dx,dy) 

flag=0; iidx=0; jidx=0; 

LoEdge=CtrlVolume(1); 

UpEdge=CtrlVolume(2); 

LeEdge=CtrlVolume(3); 

RiEdge=CtrlVolume(4); 

for i=i1:i2 

    for j=j1:j2 

         

        if i==i1 && j==j1 

            continue 

        end 

         

        if isnan(airpos(i,j)) 

            continue 

        end 

         

        delp=zeros(1,4);  

        adjc=[i-1,j-1;i-1,j;i-1,j+1;i,j-1]; 

         

        for k=1:4 

            delp(k)=deltaP(dpdx,dpdy,CtrlVolume,airpos,Pressure,adjc(k,:),i,j,dx,dy); 

        end 

         

        press=nansum(delp); 

        contr=sum(~isnan(delp)); 

         

        if contr~=0 

            Pressure(i,j)=press/contr; 

        else 
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            iidx=i; jidx=j; flag=1; 

            break 

        end 

    end 

     

    if flag==1 

        break 

    end 

end 

  

  

end 
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