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ABSTRACT 

 

DESIGN OF DEPLOYABLE STRUCTURES COMPRISING ALTMANN 

LINKAGES 

 

 The main objective of this thesis is to investigate possible mobile networks 

comprising modified Altmann linkages which can be used as deployable structures. 

Altmann linkage is an overconstrained single-loop linkage with six revolute joints. Within 

the scope of this thesis, first a modified version of the Altmann linkage is introduced. The 

modified version of the linkage allows more feasible solutions for constructional design 

compared to the original linkage. Then, the loop closure equations are written and 

input/output relationship of the linkage are obtained. Next, possible networks of modified 

Altman linkages are examined. The networks are obtained either by taking two common 

links between adjacent loops, or connecting adjacent loops with two new revolute joints 

without any common links. Also, mobility analysis is performed for each network. 

Finally, the deployment stages of obtained networks are modelled in a CAD software. 

Some of the derived networks are already noted in the literature, but several novel 

networks are introduced in this thesis.  
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ÖZET 

 

ALTMANN MEKANİZMALARI İÇEREN KATLANABİLİR 

YAPILARIN TASARIMI 

 

 Bu tezin temel amacı katlanabilir yapılarda kullanılabilecek modifiye edilmiş 

Altmann mekanizmalarından oluşan mekanizma ağlarını incelemektir. Altmann 

mekanizması, altı döner mafsal içeren fazla kısıtlı, tek devreli bir çubuk mekanizmasıdır. 

Tez kapsamında ilk olarak modifiye edilmiş Altmann mekanizması sunulmuştur. 

Modifiye edilmiş Altmann mekanizması, orijinal mekanizmaya göre daha basit 

konstrüksiyonel tasarıma elverişlidir. Mekanizmanın devre kapalılık denklemleri ile 

girdi/çıktı denklemleri çıkarılmıştır. Daha sonra, olası mekanizma ağları incelenmiştir. 

Mekanizma ağları iki şekilde elde edilmiştir: 1) iki komşu devrede iki ortak uzuv 

kullanılarak; 2) ortak uzuv olmaksızın iki komşu devre iki döner mafsalla bağlanarak. 

Ayrıca elde edilen her mekanizma ağının serbestlik derecesi belirlenmiş ve her bir ağ katı 

modelleme programında modellenerek hareketi incelenmiştir. Elde edilen mekanizma 

ağlarından bazıları literatürde mevcut olmakla birlikte bu tezde pek çok yeni mekanizma 

ağları sunulmuştur.
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CHAPTER 1  
 

 

INTRODUCTION 

A mechanism is a group of rigid bodies which are connected to each other by rigid 

joints in order to transmit movement and force. A mechanism may contain simple and/or 

more complex components such as screws, wheels, cranks, belts, cams, gears, linkages, 

springs, and clutches (Chen 2003; Söylemez 2011).  

A kinematic element is defined as the part of a rigid body that is used to connect 

it to a different rigid body so that the relative movement between the two rigid bodies can 

occur. A joint or in other words a kinematic pair is the joining of two kinematic elements. 

When a rigid body consists of more than two kinematic elements, a link can be obtained. 

Links are categorized in terms of the number of kinematic elements that they can contain, 

for instance binary, ternary, quaternary and so on (Söylemez 2011). 

Lower kinematic pairs are the ones with surface contact, whereas higher kinematic 

pairs are the ones with line or point contact. A linkage is a specific type of mechanism 

that is composed of only lower kinematic pairs (Söylemez 2011).  

Mobility analysis or determining the degree of freedom (DoF) is one of the most 

important stages in modelling a mechanism. Mobility is defined as the number of 

independent coordinates needed to identify the configuration of a mechanism (IFToMM 

Dictionaries Online 2014).  Mobility (M) is the main parameter to affirm the existence of 

a mobile mechanism, to specify the number of independent parameters in modelling and 

also to set the input numbers required to actuate the mechanism.  

There are lots of works in the literature on the mobility of mechanisms (Gogu 

2005). The first works date back to the nineteenth century. Until today, several 

approaches and formulae were derived. In spite of the intensive literature studies, mobility 

calculations still remain as a main subject in the theory of mechanisms. 

Among the formulae derived and presented in the literature, the most commonly 

used one is the one by Chebychev-Grubler-Kutzbach. According to this formulation, the 

mobility of a linkage can be calculated as follows (Hunt 1978):  

 

 1)6( fm n p= − − +   (1) 
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where m is the mobility of a linkage, n is the number of links, p is the number of joints, 

Σf is the sum of kinematic variables in the mechanism. 

For a closed loop linkage, the loop closure equations can be obtained by 

multiplying transformation matrices and equating the result to an identity matrix: 

 

        1 34 23 12...nT T T T I=  (2) 

 

where 
( 1)i iT +

    is the 4x4 homogeneous transformation matrix between the coordinate 

system of link (i −1)i and the coordinate system of link i(i +1) , which is defined according 

to the Denavit-Hartenberg parameters i, Ri, i(i+1), ai(i+1) presented in Figure 1.1 (Denavit 

and Hartenberg 1955).  
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 (3) 

 

where s and c are abbreviations for sine and cosine, respectively. When 1 ,  1+  +i n i  is 

replaced by 1. 

 

Figure 1.1 Denavit-Hartenberg patameters (Source: Chen 2003) 
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Note that the transformation matrix between the coordinate system of link i(i +1) and the 

coordinate system of link (i −1)i is the inverse of ( )1i i
T

+
 
 

, that is 

 

 
1 ( 1) ( 1) ( 1)
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T T

a s s c c s c

R s c

     

     

 

− + + +
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 
 

−
    = =     −
 

− −  

 (4) 

1.1. Overconstrained Linkages 

There are some linkages which do not obey the Chebyshev-Grubler-Kuttzbach 

mobility criterion. These linkages are generally known as overconstrained linkages which 

means their real mobility is greater than their theoretical mobility.  

Spatial overconstrained linkages are one of the types of overconstrained linkages. 

Philips (1984) states that the minimum number of links to construct a mobile loop with 

revolute joints is four. As a loop with three links and three revolute joints is either a rigid 

structure or an infinitesimal mechanism when all three revolute axes are coplanar and 

intersect at a single point. So, to construct a spatial overconstrained linkage at least four 

links are necessary in a mechanism.  

In the following section, information about some spatial over-constrained linkages 

are given. The first one is the Bennett linkage (Bennett 1903) which consists 4 revolute 

joints and 4 links and it is a single DoF overconstrained linkage. Myard and Golberg 

linkages are 5R (R: revolute joint) overcontrained linkages. There are several 

overconstrained 6R linkages noted in the literature, but Sarrus and Altmann linkages are 

presented in this thesis as examples. 

1.1.1. 4R Bennett Linkage 

4R loops can be categorized according to how the joint axes are located. If all joint 

axes are parallel, they are called planar 4R linkages. If they all intersect at the same point, 

they are called as spherical 4R linkages. Any arrangement of axes other than these two 
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particular arrangements is generally completely rigid and therefore provides no 

mechanism.  But there is an exception, which is the Bennett linkage (Bennett 1903). 

The Bennet linkage is an exception because it is a linkage which consists of four 

links that have the axes of revolute joints neither concurrent, nor parallel. A Bennett 

linkage is illustrated in Figure 1.2. The lengths of the links are given alongside the links, 

and the twist angles are indicated at each joint. Bennett (1914) identified the conditions 

for the linkage to have a single degree of freedom. 

 

 

Figure 1.2. Schematic diagram of the Bennett linkage (Source: Chen, 2003) 

 

For a Bennett linkage, two opposite links have the same length and the same twist 

angle: 

 

 
12 34a a a= =  (5) 

 
23 41a a b= =  (6) 

 
12 34  = =  (7) 

 
23 41  = =  (8) 
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Furthermore, the link lengths and twist angles should satisfy the following 

condition: 

 

 
sin sin

a b

 
=  (9) 

 

Joint offsets are all zero: 

 

 0 ( 1,2,3,4)iR i= =  (10) 

 

The values of the revolute joint variables, θ1, θ2, θ3 and θ4, vary when the linkage 

moves according to 

 

 
1 3

2 4

2

2

  

  

+ =

+ =
 (11) 

 

and 

 

 
( )

( )

23 12
1 2

23 12

1
sin

2tan tan
12 2

sin
2

 
 

 

+

=

−

 (12) 

 

These three closure equations ensure that only one of the joint angles is independent, so 

the linkage has a single degree of Freedom (Baker 1978). Bennett (1914) also identified 

some special cases: 

 

(a) An equilateral linkage is obtained if α + β = π and a = b. Eq. (12) then becomes 

 

 1 2 1
tan tan

2 2 cos
=

 


 (13) 

 

(b)  If α = β and a = b, the four links are congruent. The motion is discontinuous:       

1 =  allows any value for 2 and 2 =  allows any value for . 
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(c) If α = β = 0, the linkage is a planar crossed parallelogram linkage. 

(d) If α = 0 and β = π, the linkage becomes a planar parallelogram linkage. 

(e) If a = b = 0, the linkage is a spherical 4R linkage (Phillips 1990). 

 

Since the Bennett linkage consists of minimum number of links, a lot of studies 

have been conducted on it. Most of these studies focus on the mathematical representation 

and the kinematic analysis of the linkage. There are some studies based on building 5R 

or 6R spatial linkages using the Bennett linkage. In the next sub-section, information 

about some of these linkages are given. Baker and Hu tried to connect two Bennett 

linkages, but it was an unsuccessful attempt (Baker and Hu 1986). Chen (2003) provided 

several deployable networks comprising Bennett loops, where adjacent loops are 

connected to each other with two additional revolute joints. Isaak (2006), Kiper and 

Söylemez (2009), Tian and Chen (2010), Guo and You (2012), Yang et al. (2015) also 

presented some assemblies of Bennett linkages. 

 

 

Figure 1.3. Bennet Network of Chen (Source: Chen 2003) 

 

1.1.2. 5R Linkages 

Goldberg (1943) and Myard (1931) linkages are the 5R linkages reported in the 

literature. A Goldberg 5R linkage is actually combination of a pair of Bennett linkages. 

This combination can be obtained by removing a link common to both of the Bennett 

linkages and by rigidly attaching a pair of adjacent links to each other. The method 

developed by Goldberg can be summarized as addition of two Bennett loops in order to 

obtain a 5R linkage, as shown in Figure 1.4 (Goldberg 1943).  
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                  (a)  (b) 

Figure 1.4. Goldberg (a) 5R Linkage, (b) 6R Linkage (Source: Goldberg 1943) 

 

Before Goldberg, Myard (1931) developed an overconstrained 5R linkage which 

is shown in Figure 1.5. This linkage has later been re-categorized as a particular case of 

the Goldberg 5R linkage.  

 

 

Figure 1.5. Myard linkage (Source: Kiper 2018) 

 

Myard linkage is constructed by combining two mirror-symmetrical Bennett 4R 

loops with two common links and common joints in mirror symmetrical position and 

removing the common links and one of the common joints (Baker 1979).The conditions 

on its Denavit-Hartenberg parameters are as follows: 
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34 12 51 23 45

23 45 51 12 34 12

1 2 3 4 5

0, ,

, , 2
2

0

= = =

= = = − = −

= = = = =

a a a a a

R R R R R


         (14) 

 

Myard linkage has been used as a module in deployable structures by Briand and 

You Z (2007), Liu and Chen (2009), Qi et al. (2011). 

1.1.3. 6R Linkages 

Many 6R linkages are presented in the literature. In the following subsections, 

information about two of them, Sarrus and Altmman linkages, is given. 

1.1.3.1. Sarrus Linkage 

The first published spatial overconstrained linkage is the Sarrus linkage (Sarrus 

1853). Bennett (1905) built a model of this linkage as presented in Figure 1.6(a), along 

with a schematic chart in Figure 1.6(b). The A, R, S, and B links are consequentially 

combined by three parallel horizontal joints, as also the A, T, U and B links are. These 

two sets of joints are different from each other in terms of their directions. According to 

this arrangement A link can move vertically up and down with respect to B link.  

 

 

                                  (a)          (b) 

Figure 1.6. Sarrus linkage, (a) Bennet's Model, (b) schematic diagram (Source: Chen 

2003) 
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 In deployable structures, the Sarrus linkage frequently appears as a connecting 

loop when two or more planar scissor linkages in different planes are to be connected to 

each other. Kiper and Söylemez (2010) and Bouten (2015) have presented some 

assemblies of Sarrus loops as deployable structures. 

1.1.3.2. Altmann Linkage 

Altmann (1954) introduced a 6R linkage as presented in Figure 1.7, which is a 

special case of a Bricard line-symmetric linkage. The dimensional conditions of the 

linkage can be listed as follows: 

 

 

( )

12 45 23 56 34 61

12 45 23 56 34 61

, 0,

3
, ,

2 2 2

0   1,  2,  ...,  6

= = = = = =

= = = = = =

= =i

a a a a a a a b

R i

  
       (15) 

 

 

Figure 1.7. Altmann linkage (modified from (Baker, 1993)) 

 

The pair of joints 2-3 and 5-6 are perpendicularly intersecting each other, hence 

they can be considered as universal (U) joints. In this perspective, the Altmann linkage 

can be considered as a line-symmetric RURU linkage. 

In the literature, there are only a few number of studies related with the analysis 

of the Altmann linkage. Baker (1993) intended to algebraically analyze the Altmann 

linkage in order to obtain a direct solution. By using screw algebra, the specific 

configurations, angular velocities and relative motion is investigated. Song et al. (2016) 

worked on the feasibility of the constructing of a large deployable network by using 
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Altmann linkages. Using Altmann linkages as modules, they constructed deployable 

networks with the overlapping-unit method under appropriate connections (Figure 1.8). 

 

 

(a)                                               (b) 

Figure 1.8.(a) Schematic of an Altmann Linkage, (b) A deployable network constructed 

by Altmann linkages (Source: Song et al. 2016) 

 

 Atarer et al. (2017) studied on the design alternatives of network constructed by 

Altmann linkages. In the study, the authors focused on a modified version (Figure 1.9) of 

the Altmann linkage and they investigated the possibility of building network of single 

DoF deployable structures by using modified Altmann linkages as modules. In addition 

to that, they focused on the probability of assembly alternatives with only revolute joints. 

Two alternative ways of connections to build the network are proposed: with common 

links and joints and with new joints. By using common links and joints, they obtained 

three different networks of Altmann linkages: the scissor, arch and dome versions. By 

using new joints, they obtained two different networks of Altmann linkages: the Altmann 

loop and parallelogram loop versions. These assemblies are evaluated in detail in Chapter 

3. 

 

 

Figure 1.9. Model of a modified Altmann linkage (Source: Atarer, Korkmaz, and Kiper 

2017) 
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1.2. Aim and Scope 

A modified version of the Altmann linkage is proposed in (Atarer, Korkmaz, and 

Kiper 2017) , but there is no study related with the kinematic analysis of this linkage in 

the literature. His study is intended to perform modelling and analyzing of modified 

version of Altmann linkage. Within the scope of the study, modified Altmann linkage is 

described, kinematic analysis of the linkage is derived in Chapter 2. Possible networks 

comprising modified Altmann linkages are obtained in Chapter 3. Conclusions are 

presented in Chapter 4. 
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CHAPTER 2  
 

 

MODIFIED ALTMANN LINKAGE 

In the original Altmann linkage, all joint offsets are zero (Figure 1.7) and this 

complicates the constructional design of a real model. As a solution for this complication, 

the modified Altmann linkage is proposed in (Atarer, Korkmaz, and Kiper 2017) such 

that four of the joint offsets are nonzero.  Thanks to these nonzero joint offsets (d), it is 

possible to introduce two links with square cross-section at the U joints as depicted in 

Figure 2.1. 

 

 

Figure 2.1. Schematic representation of the modified Altmann linkage 

 

The Denavit-Hartenberg parameters to represent relative positions of joint axes 

and links of a linkage are 

 

• i: measured about zi-axis from xi-1-axis to xi-axis according to right hand rule  



13 

 

• di: measured along zi-axis from xi-1-axis to xi-axis (|di| = shortest distance from xi-

1-axis to xi-axis; di may be negative)  

• ij: measured about xi-axis from zi-axis to zj-axis (j = i + 1) according to right 

hand rule  

• aij: shortest distance (always nonnegative) between zi-axis and zj-axis 

zi-axes are positioned along the joint axes and xi-axes are positioned along the common 

perpendiculars between consecutive joint axes (Figure 2.2). In Table 2.1, the Denavit-

Hartenberg parameters for the modified Altmann linkage are listed. 

 

 

Figure 2.2. Attached reference frames to the modified Altmann linkage 

 

Table 2.1. Denavit-Hartenberg parameters of the modified Altmann linkage 

Frame i di aij ij 

1  d b  

2  0 a  

3  -d 0  

4  d b  

5  0 a  

6  -d 0  
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The following transformation matrices are used for writing the loop closure 

equations: 

 

 

ij

ij ij

ij ij

1 0 0 a

0 cos sin 0
X

0 sin cos 0

0 0 0 1

 
 

 − 
 =
  
 
 

     

ij ij

ij ij

ij

cos sin 0 0

sin cos 0 0
Z

0 0 1 d

0 0 0 1

 −  
 

 
 =
 
 
 

 (16) 

 

The loop closure equations read ([I] is a 4x4 identity matrix).  

 

 1 1 12 12 2 2 56 56 6 6 61 61[Z( ,d )][X( ,a )][Z( ,d )] [X( ,a )][Z( ,d )][X( ,a )] [I]      =  (17) 

 

In order to verify Eq.(17), a 3D model of the modified Altmann linkage is modeled in a 

CAD program and the joint angles are measured as depicted in Figure 2.3.  

 

 

Figure 2.3. Modified Altmann linkage 

 

The link lengths used in the CAD model are as follows: a = 265, b = 165, d = 10. The 

joint angle values measured from the CAD model are as follows: 2 = 3 = 5 = 6 = /2, 

1 = 4 = –/2. 



15 

 

4x4 homogeneous transformation matrix calculation for the modified Altmann 

linkage with given parameters is as follows: 

 

 

3 3
[D] [Z( ,40)][X( ,165)][Z( ,0)][X( ,265)][Z( , 40)][X( ,0)]

2 2 2 2 2 2

3 3
         [Z( ,40)][X( ,165)][Z( ,0)][X( ,265)][Z( , 40)][X( ,0)]

2 2 2 2 2 2

     
= −

     
−

  (18) 

 

 When the matrices in Eq. (18) are written in full form and the multiplications are 

performed, it is seen that the matrix [D] is a 4x4 identity matrix. Eq. (17) has been verified 

with different set of joint angle values as well. 

 

For the kinematic analysis of a general modified Altmann linkage: 

 

 
1 2 3

4 5 6

3
[I] [Z( ,d)][X( ,b)][Z( ,0)][X( ,a)][Z( , d)][X( ,0)]

2 2 2

3
         [Z( ,d)][X( ,b)][Z( ,0)][X( ,a)][Z( , d)][X( ,0)]

2 2 2

  
=    −

  
   −

  (19) 

Post-multiplying Eq. (19) with the inverse of the multiplication of the last nine matrices: 

 

 

6 5 4

3 1 2

3
[X( ,0)][Z( ,d)][X( , a)][Z( ,0)][X( , b)][Z( , d)]

2 2 2

3
[X( ,0)][Z( ,d)][X( , a)] [Z( ,d)][X( ,b)][Z( ,0)]

2 2 2

         

  
− − − − − − − − −

  
− − − − =     (20) 

Writing all matricies in full form in Eq. (20): 

 

6 6 5 5 4 4

6 6 5 5 4 4

1 0 0 0 c s 0 0 1 0 0 a c s 0 0 1 0 0 b c s 0 0

0 0 1 0 s c 0 0 0 0 1 0 s c 0 0 0 0 1 0 s c 0 0

0 1 0 0 0 0 1 d 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 d

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0

0 0 1 0

0 1

− −           
           

− − − −
           
           − − −
           
           

−

3 3 1 1 2 2

3 3 1 1 2 2

c s 0 0 1 0 0 a c s 0 0 1 0 0 b c s 0 0

s c 0 0 0 0 1 0 s c 0 0 0 0 1 0 s c 0 0

0 0 0 0 1 d 0 1 0 0 0 0 1 d 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

− − −           
           

−
           =
           − −
           
           

  (21) 
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where ci and si are abbreviations for cosine(i) and sine(i), respectively for i = 1, …, 6. 

Performing the matrix multiplications: 

 

 

( ) ( )

( ) ( )

4 5 6 4 6 3 3 5 6 4 5 6 4 6 4 5 6 4 6 3 3 5 6 x

3 4 5 3 5 4 5 3 4 5 3 5 y

4 5 6 4 6 3 3 5 6 4 5 6 4 6 4 5 6 4 6 3 3 5 6 z

1 2 1 2 1 1

1 2 1 2 1 1

2 2

c c c s s c s s c s c c c s c c c s s s c s c t

c c s s c s s s c s c c t
  

c c s s c c s s s s c s c c c c s s c s c s s t

0 0 0 1

c c c s s c b

s c s s c s b

s c 0 d

0 0 0 1

 − − − − − + 
 

− − − 
 + − − + + +
 
 

− −


−
=

− −






 
 
 



 (22) 

 

where ( ) ( )x 4 5 6 4 6 3 3 5 6 4 5 6 4 6 5 6 5 6 6t c c c s s c s s c a s c c c s d s c d c c b c a= − − − + + + − −   , 

( )y 3 4 5 3 5 4 5 5 5t c c s s c a s s d c d s b d= − + + − − +  and

( ) ( )z 4 5 6 4 6 3 3 5 6 4 5 6 4 6 5 6 5 6 6t c c s s c c s s s a s c c c c d s s d c s b s a= − + − + − + − −   . 

 

Equating the rightmost columns of Eq. (22): 

 

 ( ) ( )1 4 5 6 4 6 3 3 5 6 4 5 6 4 6 5 6 5 6 6c b  c c c s s c s s c a s c c c s d s c d c c b c a= − − − + + + − −    (23) 

 

 ( )1 3 4 5 3 5 4 5 5 5s b c c s s c a s s d c d s b d= − + + − − +  (24) 

 

 ( ) ( )4 5 6 4 6 3 3 5 6 4 5 6 4 6 5 6 5 6 6d c c s s c c s s s a s c c c c d s s d c s b s a= − + − + − + − −    (25) 

 

Rearranging Eqs. (23)-(25): 

 

 ( ) ( )1 2 2 6 5 5c b c a s d c s d c b a+ − = − −   (26) 

 

 ( ) ( )1 2 2 5 5s b c a s d c d s b d+ − = − + −   (27) 

 

 ( ) ( )2 2 6 5 5d s a c d s s d c b a− − = − −  (28) 



17 

 

Taking squares and summing Eq. (26)-(28) results as following:  

 

 ( ) ( ) ( ) ( )2 2

2 2 5 5c ab d s db ad c ab d s db ad− − − = − − −   (29) 

 

c2 = c5 and s2 = s5 implies that 5 = 2. Equating the second row and second column 

elements of Eq. (22) shows that s1 = s4, so 4 = 1. Equating (3,1) and (3,3) elements of 

the rotation matrix and using equalities given above: 

 

 
( )

( )

1 2 6 1 6 3 2 3 6 2

1 2 6 1 6 3 2 3 6

c c s s c c s s s s

c c s s c s s c s 0

+ − = −

+ + =
 (30) 

 

Rearranging Eq. (30): 

 

 

3 3 1 2 6 1 6 2

3 3 2 6

1 2 6 1 6 3 3 3 22

2 6 3 3 2 3

c s c c s s c s

s c s s 0

c c s s c c s c ss

s s s c s s0

− + −     
=      

    

+ −−      
= =      −       

 (31) 

 

From the last row of Eq. (31), s3 = s6. Equating (1,1), (1,3) elements of the rotation matrix 

and using equalities given above: 

 

 
( )

( )

1 2 6 1 6 3 2 6 3 1 2

1 2 6 1 6 3 2 6 3 1

c c c s s c s c s c c

c c c s s s s c c s

− − =

− + = −
 (32) 

 

Rearranging Eq. (32): 

 

 

3 3 1 2 6 1 6 1 2

3 3 2 6 1

1 2 6 1 6 3 3 1 2 3 1 31 2

2 6 3 3 1 2 3 1 31

c s c c c s s c c

s c s c s

c c c s s c s c c c s sc c

s c s c c c s s cs

− −     
=      

−    

− −      
= =      

− − −−      

 (33) 
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From the last row of Eq. (33), c3 = c6. Therefore, 6 = 3. Rewriting Eq. (22): 

 

 

( ) ( )

( ) ( )

2

1 2 3 1 3 3 2 3 3 1 2 3 1 3 1 2 3 1 3 3 2 3 x

1 2 3 2 3 1 2 1 2 3 2 3 y

2

1 2 3 1 3 3 2 3 1 2 3 1 3 1 2 3 1 3 3 2 3 3 z

1 2 1 2 1 1

1 2 1 2 1 1

2 2

c c c s s c s c s s c c c s c c c s s s s c t

c s c c s s s c s s c c t
 

c c s s c c s s s c s c c c c s s c s s s c t

0 0 0 1

c c c s s c b

s c s s c s b

s c 0 d

0 0 0 1

 − − − − − +
 

+ − − 
 + − − + + +
 
 

− −


−
=
 − −










 (34) 

 

Equating (1,1), (1,2), (2,1), (3,1), (3,2) elements of the rotation matrix: 

 

 

( )

( )

1 2 3 1 3 3 2 3 3 1 2

1 2 3 1 3 1 2

1 2 3 2 3 1 2

2

1 2 3 1 3 3 2 3 2

1 2 3 1 3 2

c c c s s c s c s c c

s c c c s c s

c s c c s s c

c c s s c c s s s

s c s c c c

− − =

+ =

+ =

+ − = −

− =

  (35) 

 

Equating the rightmost columns of Eq. (34): 

 

 ( ) ( )1 1 2 3 1 3 3 3 2 3 1 2 3 1 3 2 3 2 3 3c b  c c c s s c s s c a s c c c s d s c d c c b c a= − − − + + + − −     (36) 

 

 ( )1 3 1 2 3 2 1 2 2 2s b c c s s c a s s d c d s b d= − + + − − +    (37) 

 

 ( ) ( )2

1 2 3 1 3 3 2 3 1 2 3 1 3 2 3 2 3 3d c c s s c c s s a s c c c c d s s d c s b s a = − + − + − + − −    (38) 

 

Substituting Eq. (35) in Eqs. (36)-(38): 

 

 ( ) ( )1 2 2 3 2 2c b c a s d c s d c b a+ − = − −   (39) 

 

 ( ) ( )1 2 2 2 2s b c a s d s b 1 c d+ − = − + −   (40) 

 

 ( ) ( )2 2 3 2 2s a 1 c d s s d c b a− + − = − −   (41) 
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 Using Eq. (40) with a given input angle 2, 1 can be found from  

 

 
( )2 2

1

2 2

s b 1 c d
s

b c a s d

− + −
=

+ −
  (42) 

 

Using Eq. (41) with a given input angle 2, 3 can be found from 

 

 
( )2 2

3

2 2

s a c 1 d
s

a c b s d

+ −
=

+ −
  (43) 

 

For a = b Eqs. (42)-(43) become 

 

 2 2
1 3s tan      and     s tan

2 2

 
= − =   (44) 

 

This means that when a = b, the relationship between the joint angles does not 

depend on any link lengths. All equilateral linkages (a = b) have the same behavior no 

matter what d is. Eq. (44) also holds for an Altmann linkage (d = 0) with equal link lengths 

(a = b). Furthermore, 3 = 1 +  when a = b. 

Since ( ) ( )sin sin =  − , there are two different assembly modes of the modified 

Altmann linkage, which is illustrated in Figure 2.4.  

 

 

Figure 2.4. Assembly modes of a modified Altmann linkage 
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A simple calculation can be done to verify these two modes of the modified 

Altmann linkage. Using the link lengths a = 265, b = 165, d = 40, Eqs. (42)-(43) with a 

given input angle of 2, the joint angle values listed in Table 2.2 can be obtained. These 

calculated values are verified with a CAD model (Figure 2.5). 

 

Table 2.2. Assembly Mode Angle Calculation 

2 (deg) 2 (rad) 1 (deg) 1 (rad) 3 (deg) 3 (rad) 

85 1.48353 -59.5939 -1.04011 108.2549 1.252189 

  -120.406  71.74513  

 

 

Figure 2.5. Output angle verification of assembly modes of a modified Altmann linkage 

 

Further study has been done to find the relationship between input and output 

angles for different link length proportions. 3 different link length ratios (a/b) and 3 

different joint offset values (d) are used during the examination. Link length ratios are 

taken as, a = b, a = 1.5b and a = 2b. Joint offset values are taken as d = a/10, d = 2a/10 

and d = 4a/10.  

1. a = b case: For this case, it is numerically verified that the input/output 

relationship does not depend on link lengths and that 1 = 3 +  (Figure 2.6-2.7). 
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Figure 2.6. Input (2)/output (1) relationship when a = b 

 

 

Figure 2.7. Input (2)/output (3) relationship when a = b 

 

2. a = 1.5b case: As it can be seen from Figure 2.8-Figure 2.9, change of the joint 

offset value slightly affects the output angle in this case. 
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Figure 2.8. Input (2)/output (1) relationship when a = 1.5b 

 

 

Figure 2.9. Input (2)/output (3) relationship when a = 1.5b 

 

3. a = 2b case: As it can be seen from Figure 2.10-Figure 2.11, change of the joint 

offset value slightly affects the output angle in this case, but the difference is 

more compared to the a = 1.5b case. 
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Figure 2.10. Input (2)/output (1) relationship when a = 2b 

 

 

 

Figure 2.11. Input (2)/output (3) relationship when a = 2b 
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CHAPTER 3  
 

 

DEPLOYABLE STRUCTURES COMPRISING MODIFIED 

ALTMANN LINKAGES 

Most deployable structures are assemblies or networks of certain basic elements. 

Obtaining new deployable networks by connecting equivalent or similar copies of a 

selected single-loop module is a well known methodology in the literature (such as (Chen 

2003), (Bouten 2015)).  

While building the networks of loops, two alternative methods of connections can 

be considered. The first method is connecting adjacent loops with common links and 

joints and the second method is connection with new joints without any common links or 

joints. In the second method a new loop is obtained in addition to the two original 

connected loops. In this Chapter, different deployable networks of modified Altmann 

linkages are derived and analyzed. Some of the obtained linkages are already published 

in (Atarer, Korkmaz, and Kiper 2017). 

In the following section to construct a network at least two modified Altmann 

linkages have been used and the mobility of the networks is calculated by using the multi-

loop mechanism mobility formula of Alizade (2010): 

 

 
1 1= =

= − + 
j L

i k

i k

M f q  (45) 

 

where j represents the number of joints in the mechanism, fi represents DoF of the i
th 

joint, 

L represents the number of independent loops, λk is the DoF of space in which loop k 

operates (λ = 2, 3, etc.) and q is the number of excessive elements (links, joints or loops). 

3.1. Network of Modified Altmann Linkages with Common Links or 

Joints 

 

 

Advantage of having a common link or joint is that this common member can  
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reduce the total number of joints and links in the network. In order to obtain a single DoF 

network by combining single DoF loops, each pair of adjacent loops should have two 

common links. If the common links are directly connected each other, then the connecting 

joint will be common in both loops as well. In order to generalize the total number of the 

joints and links in a network which is constructed by this method, the following 

formulations can be used: 

Total number of links in a network of n loops: 

 

 6 2( 1) 4 2n n n− − = +  (46) 

 

Total number of joints in a network of n loops, if there is a common joint: 

 

 ( )6 1 5 1n n n− − = +  (47) 

 

Total number of joints is simply 6n if there are no common joints. In the following 

subsections, deployable networks obtained by connecting loops with common links are 

presented. 

3.1.1. Common Bar & Hub Case (Arch Version) 

Arch version (Atarer, Korkmaz, and Kiper 2017) can be derived with the 

combination of two modified Altmann loops with a bar and a hub as two common links 

and a common joint. As illustrated in Figure 3.1, common links are shown with blue and 

red colors. In order to calculate the total number of links and joints in the shown network, 

Eqs. (46)-(47) can be used. For a network of 4 modified Altmann loops (Figure 3.2-Figure 

3.3), i.e. n = 4, total number of links: 

 

 4 4 2 4 4 2 16n n=  + =  + =  (48) 

 

total number of joints: 

 

 4 5 1 5 4 1 21n n x=  + = + =  (49) 
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The DoF of the network can be calculated according to Eq. (45) with q = 0 as 

 

 
1 1

21 5 4 1
= =

= − + = − = 
j L

i k

i k

M f q x  (50) 

 

 

Figure 3.1. Schematic diagram of arch version 

 

 

Figure 3.2. Deployed stage of arch version 

 

 

 

Figure 3.3. Semi-deployed and folded stages of arch version 
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3.1.2. Common Two Bars Case (Scissor-like Version) 

When two bars and a revolute joint is common in adjacent modified Altmann 

loops, the two bars construct a scissor-like element, hence this network is called as 

scissor-like version (Atarer, Korkmaz, and Kiper 2017). There are four possible 

alternatives to construct scissors-like Altmann networks which can be listed as follows: 

• Connection of long link to short link 

• Connection of short link to short link (or long link to long link) 

• Connection of long link to short link with a kink angle 

• Connection of short link to short link with a kink angle  

The possible networks are is illustrated in Figure 3.4, Figure 3.7, Figure 3.10 and 

Figure 3.13. In the figures common links are shown with blue and red colors. In order to 

calculate the total number of links and joints in these networks Eqs. (46)-(47) are used. 

For a network of 4 modified Altmann loops, i.e. n = 4, total number of links: 

 

 4 4 2 4 4 2 18n n=  + =  + =  (51) 

 

total number of joints: 

 

 4 5 1 5 4 1 21n n x=  + = + =  (52) 

 

DoF of these networks does not depend the type of the connection and their 

mobility can be calculated according to Eq. (45) as 

 

 
1 1

21 5 4 1
= =

= − + = − = 
j L

i k

i k

M f q x  (53) 

 

The DoF of the network remains 1 with addition of new modules. 

3.1.2.1. Connection of Long Link to Short Link 

 

 

The schematic diagram, deployed, semi-deployed and folded stages of long link 
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to short link connection type network are respectively illustrated in Figure 3.4-Figure 3.6. 

 

 

Figure 3.4. Schematic diagram of long link to short link connection 

 

 

Figure 3.5. Deployed stage of long link to short link connection 

 

 

Figure 3.6. Semi-deployed and folded stages of long link to short link connection 
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3.1.2.2. Connection of Short Link to Short Link (or Long Link to Long 

Link) 

The schematic diagram, deployed, semi-deployed and folded stages of short link 

to short link connection type network are respectively illustrated in Figure 3.7-Figure 3.9. 

 

 

Figure 3.7. Schematic diagram of short link to short link connection 

 

 

Figure 3.8. Deployed stage of short link to short link connection 

 

 

Figure 3.9. Semi-deployed and folded stages of short link to short link connection 



30 

 

3.1.2.3. Connection of Long Link to Short Link with a Kink Angle 

The schematic diagram, deployed and semi-deployed stages of long link to short 

link with a kink angle connection type network are respectively illustrated in Figure 3.10-

Figure 3.12. 

 

 

Figure 3.10. Schematic diagram of long link to short link connection with a kink angle 

 

 

Figure 3.11. Deployed stage of long link to short link connection with a kink angle 

 

 

Figure 3.12. Semi-deployed stage of long link to short link connection with a kink angle 
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3.1.2.4. Connection of Short Link to Short Link (or Long Link to Long 

Link) with a Kink Angle 

The schematic diagram, deployed and semi-deployed stages of short link to short 

link with a kink angle connection type network are respectively illustrated in Figure 3.13-

Figure 3.15. There are two types of networks: 1) with equivalent angulated elements 

(Figure 3.14), 2) with mirror-image angulated elements in alternating order (Figure 3.15). 

 

Figure 3.13. Schematic diagram of short link to short link connection with a kink angle 

 

 

 

Figure 3.14. Deployed and semi deployed stages of short link to short link connection 

with a kink angle - with equivalent angulated elements 
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Figure 3.15. Deployed and semi-deployed stages of short link to short link connection 

with a kink angle - with mirror-image angulated elements   

3.1.3. One Common Bar & One Common Hub – New Version 

Apart from the arch version, there exists another way to obtain networks with a 

common bar and a common link. The schematic diagrams of these new networks are 

illustrated in Figure 3.16 and Figure 3.21. As shown in these figures, common bars are 

shown with blue color and common hubs are shown in red color. Eqs. (46)-(47) are used 

to calculate the total number of links and joints in these networks. For a network of 4 

modified Altmann loops, i.e. n = 4, total number of links: 

 

 4 4 2 4 4 2 18n n=  + =  + =  (54) 

 

total number of joints: 

 

 4 5 1 5 4 1 21n n x=  + = + =  (55) 

 

The DoF of these networks does not depend the type of the connection and their 

mobility can be calculated according to the Eq. (45) as 

 

 
1 1

21 5 4 1
= =

= − + = − = 
j L

i k

i k

M f q x  (56) 
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The DoF of the network remains 1 with addition of new modules. 

3.1.3.1. Common Long Link and Hub 

The schematic diagram, deployed, semi-deployed and folded stages of common 

long link and hub connection type network are respectively illustrated in Figure 3.16-

Figure 3.20. 

 

 

Figure 3.16. Schematic diagram of common long link and hub version 

 

 

Figure 3.17. Deployed stage of common long link and hub version  

 

 

Figure 3.18. Semi-deployed stage of common long link and hub version  
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Figure 3.19. Front view of folded stage of common long link and hub version  

 

 

Figure 3.20. Top view of folded stage of common long link and a hub version  

3.1.3.2. Common Short Link and Hub 

The schematic diagram, deployed, semi-deployed and folded stages of common 

short link and hub connection type network are respectively illustrated in Figure 3.21-

Figure 3.25. 

 

 

Figure 3.21. Schematic diagram of common short common link and hub version 

 

 

Figure 3.22. Deployed stage of common short common link and hub version  
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Figure 3.23. Semi-deployed stage of common short common link and hub version  

 

 

Figure 3.24. Front view of folded stage of common short common link and hub version  

 

 

Figure 3.25. Top view of folded stage of common short common link and hub version  

3.1.4. Four Loops with a Common Hub (Dome version) 

In order to obtain the dome version (Atarer, Korkmaz, and Kiper 2017), four 

modified Altmann loops should be lapped over by using a common hub, as presented in 

Figure 3.26. In this case, four loops share a common hub and also adjacent loops share a 

bar. In this case total number of links and joints differ from the general case, because 

there is a loop of loops. Total number of links in this network is l = 17 and total number 

of joints is j = 20. In the previous cases, it was possible to indefinitely add new loops to 

the network. In this case, only four loops can be connected to each other, so it is a finite 

network.  

While calculating the DoF of this type of network, unlike the previous versions, q 

is not equal to zero. According to Euler’s equation for polyhedra, there are L = j – l – 1 = 

20 – 17 – 1 = 4 independent loops. According to Eq. (45) 

 

 
1 1

20 5 4 1 1
= =

= − + = − + = 
j L

i k

i k

M f q x  (57) 

 

The deployed, semi-deployed and folded stages of the dome version are 

respectively illustrated in Figure 3.27-Figure 3.28. 
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Figure 3.26. Schematic diagram of dome version 

 

 

Figure 3.27. Deployed stage of dome version 

 

 

Figure 3.28. Semi-deployed and folded stages of dome version 
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Kiper (2016) points out that modular deployable structure can be obtained by 

using dome version and its mirror image, as illustrated in Figure 3.29. The invention can 

be used to make surfaces composed of planar, spherical, cylindrical or a combination of 

these geometries, by attaching modules to each other with proper connections. In Figure 

3.30, deployed and folded stages of a cylindrical unit is shown. 

 

 

Figure 3.29. Double layer grid unit’s deployment stages (Source: Kiper 2016) 

 

 

Figure 3.30. Cylindrical unit’s deployment stages (Source: Kiper 2016) 

3.2. Network of Altmann Linkages with Two New Joints 

Three different types of networks are presented in this category. Constructing a 

new Altmann loop when combining two loops is the first type. Second type is generated 

by constructing a parallelogram when combining two loops and the third one is 

combining four loops which constructs two new Altmann and parallelogram loops.  
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Independent from the network type, while constructing these loops the total 

number of links in the network of n loops is 6n.  Total number of joints in the first two 

type of networks can be calculated as 

 

 ( )6 2 1 8 2n n n+ − = −  (58) 

 

In the case of serial connection of loops total number of independent loops in the 

network can be found as 

 

 ( )1 2 1n n n+ − = −  (59) 

 

If the loops are connected to construct a loop of loops, the number of independent 

loops should be obtained using the number of links and joints. 

3.2.1. Altmann Loop Version 

As illustrated in Figure 3.31-Figure 3.32, when two modified Altmann loops 

(loops 1 and 3) are connected in the vicinity of U joints with two new revolute joints, a 

new Altmann loop (loop 2) is generated. For n = 4, total number of links: 

 

 4 6 24n n=  =  (60) 

 

total number of joints: 

 

 4 8 2 30n n=  − =  (61) 

 

Adding a new Altmann linkage adds q = 2(n – 1) excessive elements to the system, 

and mobility of the network can be calculated according to the Eq. (45) as 

 

 
1 1

30 5 7 2 (4 1) 1
= =

= − + = − + − = 
j L

i k

i k

M f q x x  (62) 
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 Networks with new Altmann loops can be generated by connecting a short link to 

a long link (Figure 3.31) and a long link to a short link (Figure 3.32). 

 

 

Figure 3.31. Schematic diagram of short link to short link connection 

 

 

Figure 3.32. Schematic diagram of long link to short link connection 

 

When the dimensions of the links are different (a ≠ b), the assembly is immobile, 

because the newly generated Altmann loop cannot be made similar to the original two 

loops. However, when equilateral Altmann loops (a = b) are connected to generate a new 

equilateral Altmann loop, the network is mobile. This situation is also verified with a 

CAD model as presented in Figure 3.33-Figure 3.35. 



40 

 

 

Figure 3.33. Deployed stage of Altmann loop version 

 

 

Figure 3.34. Semi-deployed stage of Altmann loop version 

 

 

Figure 3.35. Folded stage of Altmann loop version 

3.2.2. Parallelogram Loop Version 

As presented in Figure 3.36 and Figure 3.39, a parallelogram loop is introduced 

when two modified Altmann loops are connected to each other in the vicinity of a revolute 

joint which connects two bars. For n = 4, total number of links: 

 

 4 6 24n n=  =  (63) 

 

total number of joints: 

 

 4 8 2 30n n=  − =  (64) 

 

The DoF can be calculated according to Eq. (45): 
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1 1

30 5 4 3 3 1
= =

= − + = − − = 
j L

i k

i k

M f q x x  (65) 

 

 Modified Altmann loops can be connected with new revolute joints connecting a 

short link of one loop to a long link of the other loop, or with revolute joints connecting 

short links (or long links) of the two loops. These two cases are examined in the following 

two sub-sections. 

3.2.2.1. Connection of Long Link to Short Link  

The schematic diagram, deployed, semi-deployed and folded stages of 

parallelogram loop version with long link to short link connection type network are 

respectively illustrated in Figure 3.36-Figure 3.38. 

 

 

Figure 3.36. Schematic diagram of parallelogram loop version with long link to short 

link connection 

 

 

Figure 3.37. Deployed stage of parallelogram loop version with long link to short link 

connection 
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Figure 3.38. Semi-deployed and folded stages of parallelogram loop version with long 

link to short link connection 

3.2.2.2. Connection of Short Link to Short Link 

The schematic diagram, deployed, semi-deployed and folded stages of 

parallelogram loop version with short link to short link connection type network are 

respectively illustrated in Figure 3.39-Figure 3.41. Figure 3.42-Figure 3.43 illustrates the 

case with equilateral modified Altmann loops (a = b). 

 

 

Figure 3.39. Schematic diagram of short link to short link connection  
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Figure 3.40. Deployed stage of parallelogram loop version with short link to short link 

connection 

              

Figure 3.41. Semi-deployed and folded stages of parallelogram loop version with short 

link to short link connection 

 

 

Figure 3.42. Deployed stage of parallelogram loop version when links lengths are equal 
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Figure 3.43. Semi-deployed and folded stages of parallelogram loop version when links 

lengths are equal 

3.2.3. 4-Loop Version 

In this version four modified Altmann linkages are connected to each other with 

four pairs of new revolute joints. It is important to notice that if the first connection 

generates a new Altmann loop, the next loop should be connected to generate a 

parallelogram loop. Two new Altmann loops and two new parallelogram loops are 

generated by connecting four modified Altmann loops to obtain a loop of loops (Figure 

3.44). This version of network is mobile for equilateral Altmann loops only. For n = 4, 

total number of links: 

 

 4 6 24n n=  =  (66) 

 

Total number of joints in this type of network differs from previous two types. In 

order to close the loop, 2 extra joints should be added to the network. Therefore, total 

number of joints in this type of network is 

 

 4 8 2 2 8 32n n n=  − + = =  (67) 

 

Due to the loop of loops, q = 8 in this case and the DoF can be calculated according 

to Eq. (45) as 
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1 1

32 5 6 3 3 8 1
= =

= − + = − − + = 
j L

i k

i k

M f q x x  (68) 

 

 

Figure 3.44. Schematic diagram of 4-loop Altmann network 

 

 

Figure 3.45. Deployed and semi-deployed stages of 4-loop Altmann network 

 

 

Figure 3.46. Folded stage of 4-loop Altmann network 
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CHAPTER 4  
 

 

CONCLUSION 

The aim of this thesis study is to perform the kinematic analysis of a modified 

version of the Altmann linkage and examine possible deployable structures comprising 

these modified Altmann loops.  

The mathematical model of the original Altmann linkage has already been worked 

out by other researchers. However, the modified version of the Altmann linkage has not 

been investigated. Within the scope of this thesis, at first the kinematic analysis of 

modified Altmann linkage is performed to find the relationship between the input and the 

output parameters of the linkage. Theoretically found results were verified by means of 

CAD models.  

Then, possible alternatives of modified Altmann linkage networks are examined. 

Some of these networks are already presented in Atarer et al. (2017). In addition to their 

study, besides equilateral Altmann loops, non-equilateral Altmann loops are also used to 

construct deployable networks. According to the type of the network, total number of 

links and joints have been formulated.   

When the obtained networks are compared with the networks that have been 

derived by other researchers, in this thesis, new networks are derived by using different 

link lengths. These new networks are obtained by combining links that have 

different/same lengths together and by combining links with kink angles. For the 

networks that are generated with common links or joints, one new type is obtained, which 

comprises a common hub and a common bar type of connection. 

For the networks that are generated with two new joints, new networks are 

developed by using different link lengths for the parallelogram loop version. However, 

Altmann loop version is mobile only for equilateral Altmann loops. Finally, a new type 

is obtained, which is the 4-loop connection. Whether it is possible to extend this last type 

of connection to an infinitely large surface is a subject for further studies. 

Altmann linkage is a special type of a Bricard general line-symmetric linkage. The 

modified Altmann linkage issued in this thesis has 4 non-zero joint offsets as opposed to 

the original Altmann linkage. As further studies, a further modified version with 6 non-
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zero joint offsets and link lengths may be investigated. This type of further generalization 

may lead to easier constructional design for some of the networks presented in this thesis. 

The networks presented in Chapter 3 may be used to design canopies, tents, roofs, stands, 

or sunblinds (Atarer et al. 2020). Detailed constructional design, building prototypes and 

testing the networks obtained in this thesis are further studies that can be conducted. 



48 

 

REFERENCES 

Alizade, R. 2010. “Structural synthesis of robot manipulators”. Proceedings of the 

International Symposium of Mechanism and Machine Science. 

Altmann, F. G. 1954. “Über raümliche sechsgliedrige Koppelgetriebe,” Sonderdruck aus 

der Zeifschrift des Vereines Deutscher Ingenieure  96(8): 245–249. 

Atarer, F. 2019. “Design Alternatives of Network of Altmann Linkages.” Third PhD 

Thesis Monitoring Report, İzmir Institute of Technology. 

Atarer, F., K. Korkmaz, and G. Kiper. 2017. “Design Alternatives of Network of Altmann 

Linkages.” International Journal of Computational Methods and Experimental 

Measurements 5(4): 495–503. 

Atarer, F., Z .T. Kazanasmaz, K. Korkmaz, and G. Kiper. 2020. “The Architectural 

Application of Altmann Linkage as a Light Shelf.” Architecture, Technology and 

Innovation 2020. İzmir: Yaşar Üniversitesi. 

Baker, J. E. 1978. “Overconstrained 5-bars with Parallel Adjacent Joint Axes - II The 

Linkages.” Mechanism and Machine Theory 13(2): 219-233. 

Baker, J. E. 1979. “The Bennett, Goldberg and Myard linkages - in Perspective.” 

Mechanim and Machine Theory 14(4): 239–253. 

Baker, J. E. 1993. “A Geometrico-Algebraic Exploration of Altmann’s Linkage.” 

Mechanism and Machine Theory 28(2): 249–260. 

Baker, J. E., and M. Hu. 1986. “On Spatial Networks of Overconstrained Linkages.” 

Mechanism and Machine Theory 21(5): 427-437. 

Beggs, J. S. 1966. Advanced Mechanism. New York: Macmillan Company. 

Bennett, G. T. 1903. “A New Mechanism.” Enginnering 76: 777–778. 

Bennett, G. T. 1905. “The Parallel Motion of Sarrus and Some Allied Mechanisms.” 

Philosophy Magazine 54: 803–810. 

Bennett, G. T. 1914. “The Skew Isogram Mechanism.” Proceedings of the London 

Mathematical Society 2-13(1): 151–173. 



49 

 

Bouten, S. 2015. “Transformable Structures and their Architectural Application.” MSc 

Thesis, Universiteit Gent. 

Briand, S., and Z. You. 2007. “New Deployable Mechanisms.” Report 2293/07, 

University of Oxford. 

Chen, Y. 2003. “Design of Structural Mechanisms.” PhD Thesis, University of Oxford. 

Denavit, J., and R. S. Hartenberg. 1955. “A Kinematic Notation for Lower Pair 

Mechanisms Based on Matrices.” ASME Journal of Applied Mechanics 6: 215-221. 

Gogu, G. 2005. “Mobility of Mechanisms: A Critical Review.” Mechanism and Machine 

Theory 40 (9). Elsevier Ltd: 1068–97. 

Goldberg, M. 1943. “New Five-Bar and Six-Bar Linkages in Three Dimensions.” 

Transactions of ASME 65: 649–661. 

Guo, H., and Z. You. 2012. “Deployable Masts Based on the Bennett Linkage.” Advances 

in Reconfigurable Mechanisms and Robots I, 739–747 

Hunt, K. H. 1978. Kinematic Geometry of Mechanisms. Oxford: Oxford University Press. 

IFToMM Dictionaries Online 2014. http://www.iftomm-terminology.antonkb.nl/, access 

date: December 14, 2020. 

Isaak, R. 2006. “A Study of Overconstrained Linkage Networks.” MSc Thesis, Idaho 

State University. 

Kiper, G. 2016. Katlanabilir Kafes Yapı. Patent No: TR201619595. 

Kiper, G. 2018. “ME 573-Deployable Structures.” Lecture note, İzmir Institute of 

Technology, Izmir, Turkey. 

Kiper, G., and E. Söylemez. 2009. “Regular Polygonal and Regular Spherical Polyhedral 

Linkages Comprising Bennett Loops.” Proceedings of the 5th International 

Workshop on Computational Kinematics, 249–256 

Kiper, G., and E. Söylemez. 2010. “Obtaining New Linkages From Jitterbug-Like 

Polyhedral Linkages.” AzCIFToMM 2010 - International Symposium of Mechanism 

and Machine Science, 137-143. 

Liu, S. Y., and Y. Chen. 2009. “Myard Linkage and İts Mobile Assemblies.” Mechanism 



50 

 

and Machine Theory 44(10): 1950-1963. 

Myard, F. E. 1931. “Contribution à La Géométrie Des Systèmes Articulés.” Bulletin de 

La Société Mathématique de France 59: 183–210. 

Phillips, J. 1984. Freedom in Machinery (Volume I). Cambridge: Cambridge University 

Press. 

Phillips, J. 1990. Freedom in Machinery (Volume II). Cambridge: Cambridge University 

Press. 

Qi, X. Z., Z. Q. Deng, B. Y. Ma, B. Li, and R. Q. Liu. 2011. “Design of Large Deployable 

Networks Constructed by Myard Linkages.” Key Engineering Materials 486: 291-

296. 

Sarrus, P. T. 1853. “Note Sur La Transformation Des Mouvements Rectilignes 

Alternatifs, En Mouvements Circulaires, et Reciproquement.” Comptes Rendus des 

Séances de l'Académie des Sciences de Paris 36: 1036. 

Song, X., H. Guo, B. Li, R. Liu, and Z. Deng. 2016. “Large Deployable Network 

Constructed by Altmann Linkages.” Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical Engineering Science 231(2): 341–355. 

Söylemez, E. 2011. Mechanisms. 4th ed. Middle East Technical University. 

Tian, P., and Y. Chen. 2010. “Design of a Foldable Shelter.” In: Proc. AzCIFToMM 2010 

International Symposium of Mechanism and Machine Science, İzmir, Turkey: 102-

106. 

Yang, F., J. Li, Y. Chen and Z. You. 2015. “A Deployable Bennett Network in Saddle 

Surface.” 2015 IFToMM World Congress Proceedings, IFToMM 2015 


