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ix



x



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... ix
TABLE OF CONTENTS........................................................................................ xi
ABBREVIATIONS ................................................................................................. xiii
SUMMARY ............................................................................................................. xv
ÖZET .......................................................................................................................xvii
1. INTRODUCTION .............................................................................................. 1
2. PRELIMINARIES ........................................................................................... 5

2.1 Preliminaries in Differential Geometry ......................................................... 5
2.2 Preliminaries in Algebra................................................................................. 11

3. MANIFOLDS WITH G2 STRUCTURE .......................................................... 15
3.1 G2-Structures .................................................................................................. 15
3.2 Metric, Cross Product and the 3-form Identities ............................................ 19
3.3 Equalities Involving Contractions of ϕ and ψ ............................................... 25
3.4 Decomposition of

∧∗(M) Into Irreducible G2-Representations..................... 29
3.5 The Torsion Forms of a G2-Structure ............................................................. 35
3.6 Some Differential Operators on G2 Manifolds............................................... 41

4. AN APPLICATION IN STRING THEORY.................................................... 45
5. CONCLUSION ................................................................................................... 51
REFERENCES........................................................................................................ 53
APPENDICES......................................................................................................... 55

APPENDIX A.1 ................................................................................................... 57
CURRICULUM VITAE......................................................................................... 61

xi



xii



ABBREVIATIONS

M : Manifold
g : Metric tensor
Tp(M) : The vector space of all tangent vectors at p
TM : The tangent bundle of M
T ∗p (M) :The cotangent space at p
T ∗M : The cotangent bundle of M
∧k : The space of k-forms on M
T r

0 : r covariant tensor
δ : the coderivative
∇ : affine connection
Hol : the holonomy group of the connection
O : Octonions
H : Quaternions
ϕ : Three form
ψ : Four form associated to the three form
curl(X) : Curl of a vector field X
grad : Gradient
div : Divergent
∆ : Laplacian operator

xiii



xiv



G2 STRUCTURES WITH TORSION AND
SOME APPLICATIONS IN STRING THEORY

SUMMARY

A G2-structure can be defined on any seven dimensional smooth manifold M as a
reduction of the structure group of the frame bundle of M to the compact, exceptional
Lie group G2. The Lie group G2 can be described as the subgroup of the general linear
group GL(7,R) which preserves a positive 3-form ϕ , called the associative form. The
Hodge dual, ψ = ∗ϕ which is a 4-form, is called the coassociative form. ψ depends
on ϕ nonlinearly, as the metric with respect to which the Hodge duality is defined, is
also determined by the 3-form ϕ .

G2 manifolds are manifolds with G2 holonomy. This is a further differential geometric
condition imposed on the 3-form ϕ . More precisely ϕ has to be parallel with respect
to the Levi-Civita connection. It is known that if M is a G2-manifold, then M is a
Ricci-flat, orientable, spin manifold.

Manifolds with G2 holonomy are important in physics, especially in string theory.
Recently, manifolds with G2-structure, rather than G2-holonomy has found interesting
applications in string theory. In this case, the associative 3-form ϕ and its Hodge dual
ψ are not necessarily parallel. And the tool that measures how far they are from being
parallel is given by the torsion classes of the G2-structure.

The aim of this thesis is to study the differential geometric properties of manifolds with
G2-structure. We are particularly interested in the case when we have just G2-structure
rather than G2 holonomy. Hence, we study in detail the description of the torsion
classes of a given G2-structure. We also study an application in string theory.

The outline of this thesis is as follows. We start by a preliminary chapter in differential
geometry and algebra reviewing the topics which are essential for the rest of the
thesis. In the following chapter, we start describing the G2-structures. First, we
construct the associative 3-form via the octonions. Then, we consider the properties of
a G2-structure and a G2-manifold. After that, we see the relation between the metric,
cross product and the associative 3-form. Then, we describe the decomposition of each
space of k forms into irreducible G2 representations. Afterwards, we decompose dφ ,
d ∗ φ into irreducible G2 representations, which defines the torsion forms for us. By
considering these torsion forms we see their relation to the concept of being torsion
free φ . In the last chapter, we consider an application of G2-structures in string theory.
We start with a classical solution of ten dimensional supergravity of the form R2,1×Y7
where Y 7 is a G2 manifold. Then we ask if the metric of G2 holonomy can be modified
to compensate for quantum corrections, which are callled α ′ corrections. Equivalently
we ask, if there is a small deformation φ ′= φ +δφ of the associative 3-form φ such that
the corresponding metric g′ solves the α ′ corrected equations of the quantum theory.
This amounts to analyzing the existence of a coupled system of partial differential
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equations for φ ′, and its Hodge dual (with respect to g′) where the source terms are
determined by physics, and are related to the torsion forms of the G2 structure φ ′. We
show that such a solution always exists.
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BURULMALI G2 YAPILARI VE
BAZI SİCİM TEORİSİ UYGULAMALARI

ÖZET

G2-yapısı düzgün bir manifold üzerinde tanımlanabilir. Eğer M düzgün 7 boyutlu bir
manifold ise G2-yapısı, çerçeve demetinin yapı grubunun kompakt, istisnai Lie grubu
G2’ye indirgenmesidir. G2 grubu beş istisnai Lie grubundan biridir. Bununla birlikte,
oktanyonların otomorfizm grubu olarak ya da genel lineer grup GL(7,R)’nin pozitif
3-formu koruyan bir alt grubu olarak da tanımlanabilir. Bu 3-formun duali ψ = ∗ϕ
şeklinde olup, ϕ’ye nonlineer bir biçimde bağlıdır. Bir M manifoldunun G2 yapısına
sahip olmasının iki denk koşulu vardır. Birinci ve ikinci Stiefel–Whitney sınıflarının
sıfırlanması ya da buna denk olarak M manifoldunun yönlendirilebilir ve spin yapısına
sahip olması gerekir.

G2 manifoldları ise G2 holonomisi olan manifoldlardır. Bu, pozitif 3-form ϕ üzerine
diferansiyel geometrik bir koşuldur. Bu koşul, ϕ’nin Levi-Civita konneksiyonuna göre
paralel olmasıdır. Bunun için, ∇ϕ = 0 koşulu ancak ve ancak dϕ = d ∗ϕ = 0 olması ile
sağlanır. Metrik de bu G2 yapısıyla tanımlanmaktadır. M manifoldunun G2-manifoldu
olabilmesi için Ricci düz, yönlendirilebilir ve spin bir manifold olması gerekir [1].
G2 holonomisi olan manifoldlar ilk defa 1966 yılında Edmond Bonan tarafından
bulunmuştur. Paralel 3-form ve paralel 4-formu inşaa etmiş ve bu manifoldların Ricci
düz olduğunu göstermiştir [2]. G2 holonomisi olan 7 boyutlu tam ancak kompakt
olmayan manifoldlar ilk kez Robert Bryant ve Salamon tarafından 1989 yılında
bulunmuştur [3, 4]. G2 holonomisi olan 7 boyutlu kompakt manifoldlar ise ilk kez
Dominic Joyce tarafından 1994 yılında bulunmuştur [5]. Özellikle fizik literatüründe
kompakt G2 manifoldları Joyce manifoldları olarak da anılır.

G2 holonomisi olan manifoldlar fizikte özellikle sicim kuramında büyük bir öneme
sahiptir. Son zamanlarda, G2 holonomisinden ziyade G2 yapısı olan manifoldlar, sicim
kuramı uygulamalarında daha çok önem kazanmıştır. Bu durumda, pozitif 3-form ϕ

ve onun Hodge duali olan ψ paralel olmak zorunda değildir. Ve bunların paralellikten
ne kadar uzak olduklarını ölçen yapıya G2 yapısının burulma sınıfları adı verilir. Biz
bu burulma sınıflarının tanım ve özelliklerini inceleyecek ve sicim kuramındaki bir
uygulamasını çalışacağız.

Bu tez çalışmasının temel amacı, G2 yapısı olan manifoldların diferansiyel geometrik
özelliklerini incelemektir. Özellikle G2 holonomisinden ziyade G2 yapısı olan
manifoldları incelemektir. G2 yapısının burulma sınıfları üzerinde detaylıca durmak
ve bunların sicim kuramına uygulamalarını incelemeyi hedeflemekteyiz.

Bu tez 4 ayrı bölümden oluşmakta olup, birinci bölümde bu tez boyunca gerekli
olacak bazı cebirsel ve diferansiyel geometrik kavramların tanımları incelenmektedir.
İlk olarak, Diferansiyel Geometri alt bölümünde diferansiyel manifoldların genel
tanımı verildikten sonra tanjant ve kotanjant uzaylarının tanımları verilmiştir. Tanjant
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ve kotanjant demetinin tanımları ve r-kovaryant tensör vasıtasıyla dış çarpım cebiri
tanımlanmış olup bunların elemanlarının ise diferansiyel formlar olduğu belirtilmiştir.
Dış çarpımın bazı özellikleri verilmiştir. Diferansiyel formların lokal koordinatlarda
gösterimi verilmiştir. Riemann metriği tanımlandıktan sonra lokal koordinatlarda
yazılmıştır. Bu metrik yardımıyla M üzerindeki volüm formu ve Hodge yıldız
operatörü ∗ lokal olarak tanımlanmıştır. Affin konneksiyonun tanımı verilerek
bunun üzerinden paralel taşıma ve holonomi kavramları incelenmiştir. Kısıtlı
holonomi grubunun tanımı verilmiştir. Metrik uyumlu ve burulmasız olan yegane
affin konneksiyonu Levi-Civita konneksiyonu, Riemann eğriliği ile bu alt bölüm
sonlandırılmıştır. Cebirsel temel kavramların incelendiği ikinci alt bölüm, normlu
bölüm cebirlerinin ve vektör çarpımının tanımları ile başlamaktadır. Boyutları
sırasıyla 1, 2, 4, 8 olan R, C, H, O dışında normlu bölüm cebirlerinin olmadığı
vurgulanmıştır. Daha sonra R3’teki iki vektörün vektör çarpımı ile kuaterniyon
çarpımı ilişkilendirilmiştir. Aynı şekilde R7’de bu durumun oktanyon çarpımı ile
ilişkilendirildiği belirtilmiş olup bu çarpımların özellikleri incelenmiştir. Oktanyonlar
yardımıyla tanımlanan yeni vektör çarpımının aynı R3’teki vektör çarpımı gibi

u× v =−v×u, 〈u× v,u〉= 0, ||u× v||2 = ||u∧ v||2,

özelliklerine sahip olduğu görülmüştür. Ancak,

u× (v×w)+ 〈u,v〉w−〈u,w〉v

ifadesi R3’te olduğu gibi sıfırlanmamıştır. Bu, R7’de vektör çarpımının birleşme
özelliğine sahip olmadığını gösterir.

İkinci bölümde, G2 yapısı olan manifoldlar incelenmiştir. Öncelikle 3-form, volüm
form ve 4-formun oktanyonlar üzerinden Cayley-Dickson prosesi ile nasıl tanımlandığı
gösterilmiştir. Daha sonra G2 yapısının ve G2 grubunun tanımı verilmiştir. G2
yapısının genel özellikleri verilmiştir. G2 yapısı olan bir manifoldun metrik, vektör
çarpım ve 3-form arasındaki

ϕ(u,v,w) = 〈u× v,w〉.

ilişkiye sahip olduğu belirtilmiştir. Daha sonra (ϕ,g) G2 yapısının burulması
∇ϕ olarak tanımlanmış olup, bu yapının burulmasız olması için ∇ϕ = 0 olması
gerektiği belirtilmiştir. 7 boyutlu bir manifoldun G2 yapısına sahip olabilmesi
için yönlendirilebilir ve spin olması gerekiği buna denk olarak da birinci ve ikinci
Stiefel-Whitney sınıflarının sıfırlanması gerektiği vurgulanmıştır. Holonomi, G2
yapısın burulmasız olması ve 3-form ile 4-formun paralel olmasıyla ilgili ilişkiler
verilerek bu alt bölüm sonlandırılmıştır.

Sonraki alt bölümde ise metrik, 3-form ve vektör çarpım arasındaki ilişkiler
incelenmiştir. Bu tez boyunca kullanılacak olan bazı temel özellikler ve ilişkiler
verilmiş olup bunların yanısıra lokal koordinatlardaki gösterimleri de detaylıca
incelenmiştir. Vektör alanlarının dış çarpımı, vektör çarpımı ve 4-form arasındaki
ilişki verilmiştir. ϕ , g ve volüm form arasındaki genel ilişki incelenmiştir. Aynı ilişki
lokal koordinatlarda detaylıca incelenmiştir. Bu kavramların birlikte kullanıldığı diğer
eşitlikler ve ilişkiler incelenmiştir.

Bir sonraki alt bölümde 3-form ϕ ve onun duali olan 4-form ψ’nin birlikte
bulunduğu eşitlikler incelenmiştir. 3-form ϕ ve onun duali olan 4-form ψ lokal
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koordinatlarda gösterilmiştir. Metrik, vektör çarpım ve 3-form arasındaki ilişkilerden
ve kovaryant türevden yararlanılarak 3-form ve 4-form arasındaki ilişkiler ve özellikler
belirlenmiştir. Sadece 3-form ϕ ve metrik g içeren eşitlikler incelenmiştir. Son olarak
yalnızca 4-form ψ ve metrik g içeren eşitlikler üzerinde durulmuştur. Bunlar lokal
koordinatlarda detaylıca incelenmiştir. Bir sonraki adım olarak, 3-form ϕ , 4-form
ψ’nin kovaryant türevlerini içeren eşitlikler verilmiştir.

Sonraki alt bölümde k-formların uzayının indirgenemez ve ortogonal G2 tem-
sillemelerine ayrılması incelenmiştir. 2-formların uzayı 7 ve 14 boyutlu ortogonal
alt modüllere ayrılmıştır. Bunun Hodge duali olan 5-formların uzayı da aynı şekilde
7 ve 14 boyutlu alt modüllere ayrılmıştır. 3-formların uzayı ve onun Hodge duali
olan 4-formların uzayı ise 1, 7, 27 boyutlu alt modüllere ayrılmıştır. 3-form ϕ’nin
özelliklerinden ve daha önce hesaplanan G2 ilişkilerinden yararlanılarak her bir alt
modül ayrı ayrı tanımlanmıştır. Daha fazla özelliklerinin incelenmesi için 3-formların
uzayı kullanılarak simetrik bir tensör tanımlanmış ve bununla 3-formların uzayı
arasındaki ilişkiler irdelenmiştir. Böylece 3-formların uzayının 27 boyutlu alt modülü
için yeni bir tanım elde edilmiştir. Daha sonra, paralel olmayan 3-form ve onun Hodge
duali olan paralel olmayan 4-form alınmıştır. dϕ’nin 4 formların uzayına ve dψ’nin
5 formların uzayına ait olduğu ve bu uzayların alt modüllere ayrılması gibi dϕ ve
dψ’nin de alt modüllere ayrıştığı elde eldilmiştir. Bu ayrışma sonucu burulma sınıfları
elde edilmiştir.

dϕ = τ0 ψ +3τ1∧ϕ +∗τ3

dψ = 4τ1∧ψ +∗τ2

Burada dϕ ve dψ ifadelerinde adı geçen τ1’in aynı olduğu ispatlanmıştır. Burulma
sınıflarının genel özellikleri incelendikten sonra kovaryant türev yardımıyla tam
burulma tensörü tanımlanmıştır. Bu tensörün simetrik ve simetrik olmayan
kısımlarının sırasıyla τ0,τ3 ve τ1,τ2 cinsinden yazılabildiğini elde edilmiştir. Ayrıca
bu tensörün, burulma sınıfları cinsinden yazılması gibi her bir burulma sınıfının da
bu tensörün simetrik ya da simetrik olmayan bölümleri cinsinden yazıldığını elde
edilmiştir.

Bu bölümün son kısmında ise sicim teorisi uygulamalarında kullanılmak üzere curl,
div, grad gibi bazı diferansiyel geometrik operatörler tanımlanmış olup G2 yapılı
manifoldlar üzerinde sağladığı bazı özellikleri verilmiştir.

Son bölümde ise G2-yapılarının sicim kuramına uygulanması incelenmiştir. Bunun
için, on boyutlu süper kütle çekimi denklemlerinin klasik bir çözümü ele
alınmıştır. Daha sonra, G2 holonomisinin metriğinin kuantum düzeltmelerini
sağlamak üzere değiştirilebilme durumu araştırılmıştır. Buna denk olarak, 3-form
ϕ’ye bir pertürbasyon uygulanarak elde edilen yeni metriğin, düzeltilmiş kuantum
denklemlerini çözebilme durumu araştırılmıştır. Bu da bizi yeni oluşturulmuş φ

′
ve

onun Hodge duali ψ
′

tarafından oluşturulan kısmi diferansiyel denklem sisteminin
varlığını araştırmaya yönlendirmiştir. Bu sistemin çözümünün, bazı şartlar altında her
zaman var olduğu gösterilmiştir.
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1. INTRODUCTION

A G2-structure can be defined on any seven dimensional smooth manifold M as a

reduction of the structure group of the frame bundle of M to the compact, exceptional

Lie group G2. The group G2 is one of the five exceptional Lie groups. It can

be described as the automorphism group of the octonions, or as the subgroup of

the general linear group GL(7,R) which preserves a positive 3-form ϕ , called the

associative form. The Hodge dual ψ = ∗ϕ which is a 4-form, is called the coassociative

form. M admits a G2-structure if and only if the first and second Stiefel-Whitney

classes of M vanish. Equivalently, M is orientable and admits a spin structure [1].

G2 manifolds are manifolds with G2 holonomy. This is a further differential geometric

condition imposed on the 3-form ϕ . More precisely ϕ has to be parallel with respect

to the Levi-Civita connection. The metric is also given via the G2-structure as will be

described in the main body of the thesis. It can be shown that ϕ is parallel, namely

∇ϕ = 0 if and only if dϕ = d ∗ϕ = 0. It is known that if M is a G2-manifold, then

M is a Ricci-flat, orientable, spin manifold [1]. Manifolds with G2 holonomy were

first introduced by Edmond Bonan in 1966 [2]. He constructed the parallel 3-form, the

parallel 4-form and showed that these manifolds are Ricci-flat. The first complete, but

noncompact 7-dimensional manifolds with G2 holonomy were constructed by Robert

Bryant and Salamon in 1989. The first compact 7-dimensional manifolds with G2

holonomy were constructed by Dominic Joyce in 1994 [5], and compact G2 manifolds

are sometimes known as "Joyce manifolds", especially in the physics literature.

Manifolds with G2 holonomy are important in physics, especially in string theory.

They break the original supersymmetry to 1
8 of the original amount. Also they

are models for the extra dimension in M-theory. They also play a role in particle

physics, especially the standard model of particle physics. Recently, manifolds with

G2-structure, rather than G2-holonomy has found interesting applications in string

theory. In this case, the associative 3-form ϕ and its Hodge dual ψ are not necessarily
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parallel. And the tool that measures how far they are from being parallel is given by

the torsion classes of the G2-structure.

The aim of this thesis is to study the differential geometric properties of manifolds of

G2-structure. We are particularly interested in the case when we have just G2-structure

rather than G2 holonomy. Hence, we study in detail the description of the torsion

classes of a given G2-structure. We also study an application in string theory.

The outline of this thesis is as follows. We start by a preliminary chapter in differential

geometry and algebra reviewing briefly the topics which are essential for the rest

of the thesis. Firstly, in the Differential Geometry section we review some basic

concepts such as a differentiable manifolds, Riemannian metric and then we write

differential forms, interior product, Hodge star operator and some useful concepts

in local coordinates. Secondly, in the Algebra section we start by the definition of

the normed division algebra. Using the quaternion multiplication we define the cross

product of two vectors in R3. We use this concept to generate cross product on R7

via octonions. Then, we state the properties of cross products on R3 and R7. We

also give the multiplication table of the octonion product. In chapter 2, we study

G2-structures. We construct the 3-form and its dual 4-form via the octonions. Then,

we state the relations between a metric, cross product and 3-form. We use the wedge

product, interior product and covariant derivate to get some useful relations. Secondly,

we consider the equalities involving contractions of ϕ and ψ . Then we study the

decomposition of the space of k-forms into irreducible G2 representations. For each

k, the space of k-forms decomposes as a direct sum of submodules, each of which

is invariant under the action of G2. Also, these submodules are orthogonal to each

other with respect to the metric determined by ϕ . Next, using the decomposition

of the spaces of differential forms we decompose dϕ and d ∗ϕ into irreducible G2

representations. Then, this defines the torsion forms. By considering these torsion

forms we see their relation to the concept of being torsion free ϕ . After that, we

define the full torsion tensor and we see some identities involving it. Lastly, in this

section we define some useful operators like curl, div, grad on G2-manifolds which

are useful in the application in string theory. In the last chapter, we consider an

application of G2-structures in string theory. We start with a classical solution of ten

dimensional supergravity of the form R2,1×Y7 where Y 7 is a G2 manifold. Then we ask

2



if the metric of G2 holonomy can be modified to compensate for quantum corrections,

which are callled α ′ corrections. Equivalently we ask, if there is a small deformation

φ ′ = φ + δφ of the associative 3-form φ such that the corresponding metric g′ solves

the α ′ corrected equations of the quantum theory. This amounts to analyzing the

existence of a coupled system of partial differential equations for φ ′, and its Hodge

dual (with respect to g′) where the source terms are determined by physics, and are

related to the torsion forms of the G2 structure φ ′. We show that such a solution always

exists.
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2. PRELIMINARIES

2.1 Preliminaries in Differential Geometry

In this section, we briefly review some basic concepts in differential geometry which

we will need in this thesis.

Definition 2.1.1 A differentiable manifold of dimension n is a set M and a family of

injective mappings

xα : Uα ⊂ Rn→M of open sets Uα of Rn into M such that:

1.
⋃

α xα(Uα) = M

2. for any pair α,β with xα(Uα)∩ xβ (Uβ ) = W 6= ∅, the sets x−1
α (W ) and x−1

β
(W )

are open sets in Rn and the mappings x−1
β
◦xα are differentiable.

3. The family {(Uα ,xα)} is maximal relative to the conditions above.

The pair (Uα ,xα) with p ∈ xα(Uα) is called a parametrization of M at p; xα(Uα)

is then called a coordinate neighborhood at p. A family {(Uα ,xα)} satisfying the

conditions is called a differentiable structure on M [6].

Definition 2.1.2 The tangent space Tp(M) at the point p is a vector space spanned by

the basis ei =
∂

∂xi .

A tangent vector v can be written as v= viei. A tangent vector at p is the tangent vector

at t = 0 of some curve α : (−ε,ε)→M with α(0) = p.

Definition 2.1.3 The cotangent space T ∗p (M) at the point p is a vector space of linear

maps

α : Tp(M)→ R v 7→ 〈α,v〉

spanned by the basis wi = dxi. This basis is dual to the basis ei in the sense that

〈ei,w j〉= δ
j

i .
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Definition 2.1.4 The tangent bundle T M is the disjoint union of the tangent spaces

Tp(M), for all p ∈M.

T M = {(p,v); p ∈M,v ∈ Tp(M)}

The cotangent bundle T ∗M is the disjoint union of the cotangent spaces T ∗p (M), for all

p ∈M.

T ∗M = {(p,w); p ∈M,w ∈ T ∗p (M)} (2.1)

The tangent bundle T M and the cotangent bundle T ∗M of a manifold M are also

manifolds.

Definition 2.1.5 Let T ∗p (M) be the cotangent space and φ ∈ T r
0 (T

∗
p (M)), where

T r
0 (T

∗
p (M)) is a collection of all tensors of covariant order r, namely φ : T ∗p (M)×

T ∗p (M)× ·· · × T ∗p (M) → R. φ ∈ T r
0 (T

∗
p (M)) is called r-covariant tensor. φ is

symmetric if φ(v1, . . . ,vr) = φ(vσ (1), . . . ,vσ (r) and is alternating if φ(v1, . . . ,vr) =

sign(σ)φ(vσ (1), . . . ,vσ (r)) for every v1, . . . ,vr and permutation σ . The alternating

tensors in T r
0 (T

∗
p (M)) form a subspace which we denote by ∧r(T ∗p (M)).

Definition 2.1.6 We define a linear transformation on the vector space T r
0 (T

∗
p (M));

alternating mapping A : T r
0 (T

∗
p (M))→∧r(T ∗p (M)) by

(Aφ)(v1, . . . ,vr) =
1
r!

Σσ sign(σ)φ(vσ (1), . . . ,vσ (r))

Definition 2.1.7 The mapping ∧r(T ∗p (M))×∧s(T ∗p (M))→∧r+s(T ∗p (M)) defined by

(A,B)→ (r+ s)!
r!s!

A(A⊗B)

is called the exterior product of A and B and is denoted by A∧B. The exterior product

is bilinear and associative. The space ∧r(T ∗p (M)) equipped with the exterior product

is an algebra. Elements of this algebra are called differential forms. Differential

one-forms are elements of T ∗M.

Here are some properties of a k-form, from [7].

The space of k-forms on M will be denoted by ∧k. It is the space of sections of the
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bundle Λk(T ∗M). A differential k-form α on M can be written as

α =
1
k!

αi1i2···ikdxi1 ∧dxi2 ∧·· ·∧dxik

in local coordinates (x1, . . . ,x7), where the sums are all from 1 to 7, and αi1i2···ik is

skew-symmetric in its indices. By this, α can also be written as

α = ∑
i1<i2<···<ik

αi1i2···ikdxi1 ∧dxi2 ∧·· ·∧dxik

We take the interior product ( ∂

∂xm ) α of the k-form α with a vector field ( ∂

∂xm ), we

obtain the (k−1)-form

(
∂

∂xm ) α =
1

(k−1)!
αmi1i2···ik−1dxi1 ∧dxi2 ∧·· ·∧dxik−1

Definition 2.1.8 (Riemannian Metric) A Riemannian metric on a differentiable

manifold M is a correspondence which associates to each point p of M an inner

product 〈 ,〉 (that is, a symmetric, bilinear, positive-definite form) on the tangent space

TpM which varies differentiably in the following sense:

If x : U ⊂ Rn→M is a system of coordinates around p, with

x(x1,x2, ...,xn) = q ∈ x(U)

and

∂

∂xi = dxq(0, ...,1, ...,0)

then 〈 ∂

∂xi (q), ∂

∂x j (q)〉= gi j(x1, ...,xn) is a differentiable function on U [6].

Definition 2.1.9 Let M be an n-dimensional smooth manifold. For any open set U ⊆

M, an n-tuple of vector fields (X1, . . . ,Xn) over U is called a frame over U if and only if

(X1(p), . . . ,Xn(p)) is a basis of the tangent space Tp(M), for every p ∈U. Over every

point p in M, the Riemannian metric determines the set of orthonormal frames, i.e., the

possible choices for an orthonormal basis for the tangent space Tp(M). The collection

of orthonormal frames is the frame bundle.

Here are the identities arise from the metric g, which follows from [7].
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Remark 2.1.10 Given a Riemannian metric g on M, it induces a metric on k-forms

which is defined on decomposable elements to be

g(dxi1 ∧·· ·∧dxik ,dx j1 ∧·· ·∧dx jk) = det
a,b=1,...,k

(g(dxia ,dx jb)) = det(gia jb)

= ∑
σ∈S7

sgn(σ)gi1 jσ(1)gi2 jσ(2) . . .gik jσ(k)

where gi j = g(dxi,dx j) is the induced metric on the cotangent bundle and gi j is

the inverse matrix of the matrix gi j. By this, the inner product of two k-forms

α = 1
k!αi1···ik dxi1 ∧·· ·∧dxik and β = 1

k!β j1··· jk dx j1 ∧·· ·∧dx jk is

g(α,β ) =
1
k!

αi1···ikβ j1··· jkgi1 j1 . . .gik jk (2.2)

The metric g determines a musical isomorphism between the tangent and cotangent

bundles of M. If v is a vector field, then the metric dual 1-form v[ is defined by v[(w) =

g(v,w) for all vector fields w. In local coordinates,
(
( ∂

∂xi )
)[

= gikdxk. Similarly a

1-form α has a metric dual vector field α] defined by β (α]) = g(α,β ) for all 1-forms

β , and
(
dxi)] = gik( ∂

∂xk ).

We denote the volume form on M associated to a metric g and an orientation by vol.

In local coordinates the volume form can be written as

vol =
√

det(g)dx1∧·· ·∧dxn

where det(g) is the determinant of the matrix gi j = g(( ∂

∂xi ),(
∂

∂x j )).

The metric and orientation together determine the Hodge star operator ∗ taking k-forms

to (n− k)-forms, denoted by the relation

α ∧∗β = g(α,β ) vol

on two k-forms α and β . Then,

∗α =

√
det(g)

k!(n− k)!
αi1···ik ε

i1···ik
jk+1··· jn dx jk+1 ∧·· ·∧dx jn

ε
i1···ik
jk+1··· jn = gi1 j1 . . .gik jkε j1··· jk jk+1··· jn

where ε jk··· jn = sgn(σ). Also we have, ∗1 =

√
det(g)
n! εµ1···µndxµ1 ∧·· ·∧dxµn

The operator δ can be written in terms of d and ∗ as

δ = (−1)nk+n+1 ∗d∗ (2.3)
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The exterior derivative dα of a k-form α can be written in terms of the covariant

derivative as

dα =
1
k!
(∇mαi1,i2,··· ,ik)dxm∧dxi1 ∧dxik

The coderivative δ can be written in terms of the metric g and the covariant derivative

∇ as follows:

δα =
1

(k−1)!
(δα)i1i2···ik−1 dxi1 ∧dxi2 ∧·· ·∧dxik−1

where (δα)i1i2···ik−1 = −glm
∇lαmi1···ik−1 (2.4)

Definition 2.1.11 Let (M,g) be a compact Riemannian manifold. The Laplacian ∆ is

a positive operator on M. It is defined by

∆ : ∧r(M)→∧r(M) (2.5)

∆ = dd† +d†d (2.6)

where d† =−∗d∗.

An r-form ω is called harmonic if ∆ω = 0 and closed if dω = 0. It is coclosed if

d†ω = 0 [8].

The following theorem is a direct consequence.

Theorem 2.1.12 An r-form ω is harmonic if and only if ω is closed and coclosed. We

denote the set of harmonic r-forms on M by Harmr(M) [8].

Theorem 2.1.13 (Hodge Decomposition Theorem) Let (M,g) be a compact Rieman-

nian manifold without a boundary. Then ∧r(M) is uniquely decomposed as

∧r(M) = d∧r−1 (M)⊕d†∧r+1 (M)⊕Harmr(M) (2.7)

That is any r-form ωr is written globally as

ωr = dαr−1 +d†
βr+1 + γr (2.8)

where αr−1 ∈ ∧r−1(M) , βr+1 ∈ ∧r+1(M) and γr ∈ Harmr(M) [8].
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Remark 2.1.14 If ω ∈ ∧r(M) is such that ω = ∆β for some β ∈ ∧r(M), then we have

that (ω,γ) = 0 for all γ ∈Harmr(M), with respect to the L2 inner product on M which

is given by

(α,β ) =
∫

M
g(α,β )dvol

The next definition follows from [6].

Definition 2.1.15 Let M be a smooth manifold and C∞(M,T M) be the space of vector

fields on M, that is, the space of smooth sections of the tangent bundle T M. Then an

affine connection on M is a bilinear map

∇ : C∞(M,T M)×C∞(M,T M)→C∞(M,T M)

such that for all smooth functions f ,g ∈C∞(M,R) and all vector fields X ,Y on M,

1. ∇ f X+gY Z = f ∇X Z +g∇Y Z

2. ∇X(Y +Z) = ∇XY +∇X Z

3. ∇X( fY ) = d f (X)Y + f ∇XY that is ∇ satisfies the Leibniz rule in the second

variable

Definition 2.1.16 Let ∇ be an affine connection on T M. Let γ : [0,1]→M be a closed

curve at p in M, namely γ(0) = γ(1) = p. Parallel transport along γ is the map

Pγ : TpM → TpM,

Pγ(v) = σ(1)

where σ is the (unique) parallel section of γ∗T M such that σ(0) = v.

Definition 2.1.17 Let p ∈M. The holonomy group of the connection ∇ is the group of

transformations of TpM given as parallel translations along piecewise smooth curves

based at p. The group is denoted Hol(∇, p).

Definition 2.1.18 The restricted holonomy group is

Hol0
p(∇) = {Pγ : γ is null-homotopic loop based at p}

A loop γ based at p is null-homotopic if it can be deformed to the constant loop at p.
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The next definitions follow from [6].

Definition 2.1.19 (Levi-Civita connection) Given a Riemannian metric 〈·, ·〉, there

exists a unique affine connection ∇ on M. If M is endowed with a Riemannian metric

g, then there is a unique connection ∇ that satisfies

• ∇XY −∇Y X = [X ,Y ]. ∇ is torsion free

• X〈 Y,Z〉= 〈∇XY,Z〉+ 〈Y,∇X Z〉 X ,Y,Z ∈ X(M)

that is ∇ is metric compatible.

Definition 2.1.20 (Curvature) The curvature R of a Riemannian manifold M is a

correspondence that associates every pair X ,Y ∈ X(M) a mapping

R(X ,Y ) : X(M)→ X(M)

is given by R(X ,Y )Z = ∇Y ∇X Z − ∇X ∇Y Z + ∇[X ,Y ]Z , Z ∈ X(M) where ∇ is the

Riemannian connection of M.

2.2 Preliminaries in Algebra

In this section, we briefly review some basic concepts in algebra which will be needed

in this thesis.

We start with defining the normed division algebra.

Definition 2.2.1 Let A be a finite dimensional vector space with a norm |.| we say A

is a normed division algebra if it has the structure of an (not necessarily associative)

algebra with identity such that |ab| = |a|.|b| where a,b ∈ A. Further, the norm is

connected to the inner product by the relation |a|= 〈a,a〉 for all a ∈ A.

Remark 2.2.2 Up to isomorphism, there are only four normed division algebras real

numbers R, complex numbers C, quaternions H and octonions O of dimension 1,

2, 4 and 8, respectively. Also H is noncommutative and O is noncommutative and

nonassociative. It is known that O octonions are called the exceptional normed

division algebra.
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In 1898, Hurwitz proved that fact.

Definition 2.2.3 (Cross Product) A bilinear map

x : Im(A)× Im(A)→ Im(A)

is defined by a×b = Im(ab) =−(b×a), where Im(A) is the imaginary part of A.

Here are the properties of cross product on R3 and R7, which follows from [1, 9].

The cross product of two vectors in R3 is the pure part of the quaternion product of

two pure quaternions, that is, a× b = Im(ab) for a,b ∈ R3 ⊂ H. The cross product

of two vectors in R7 can be defined in terms of an orthonormal basis e1, . . . ,e7 by

antisymmetry, ei× e j = −e j× ei and in the form ei× ei+1 = ei+3 , where the indices

are permuted cyclically and translated modulo 7.

The octonions come equipped with a positive definite inner product. The span of the

identity element 1 is called the real octonions. Its orthogonal complement is called the

imaginary octonions Im(O)∼= R7. This is analogous to the quaternions H, except the

non-associativity. We define a cross product on R7 as follows. Let u,v ∈ R7 ∼= Im(O)

and define u× v = Im(uv), where uv denotes the octonion product. The real part of uv

is equal to −〈u,v〉, just as it is for quaternions, where 〈·, ·〉 denotes the Euclidean inner

product. This cross product satisfies the following relations:

u× v =−v×u, 〈u× v,u〉= 0, ||u× v||2 = ||u∧ v||2,

exactly like the cross product on R3 ∼= Im(H). However, there is a difference. Unlike

the cross product in R3, the following expression is not zero:

u× (v×w)+ 〈u,v〉w−〈u,w〉v

but is a measure of being nonassociativity: (uv)w−u(vw) 6= 0.

Denote the product of a,b ∈O by a◦b. Let 1,e1,e2, . . . ,e7 be a basis of O. Define the

product in terms of the basis by ei ◦ ei = −1 , ei ◦ e j = −e j ◦ ei for i 6= j in the form

ei ◦ ei+1 = ei+3 , where the indices are permuted cyclically and translated modulo 7.

This can be shown by the multiplication table, taken from [9].

e1 ◦ e2 = e4 e2 ◦ e4 = e1 e4 ◦ e1 = e2

e2 ◦ e3 = e5 e3 ◦ e5 = e2 e5 ◦ e2 = e3
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e3 ◦ e4 = e6 e4 ◦ e6 = e3 e6 ◦ e3 = e4

e4 ◦ e5 = e7 e5 ◦ e7 = e4 e7 ◦ e4 = e5

e5 ◦ e6 = e1 e6 ◦ e1 = e5 e1 ◦ e5 = e6

e6 ◦ e7 = e2 e7 ◦ e2 = e6 e2 ◦ e6 = e7

e7 ◦ e1 = e3 e1 ◦ e3 = e7 e3 ◦ e7 = e1

Similarly a seven dimensional cross product of the octonion product of two pure

octonions, that is, a× b = 〈a ◦ b〉1 . The octonion algebra O is a normed division

algebra with unity 1. The vector part R7 in O = R7⊕R is also an algebra with cross

product, that is, a×b = 1
2(a◦b−b◦a) for a,b ∈ R7 ⊂O = R7⊕R. The octonion

product is given by a◦b = αβ +αb+aβ −a.b+a×b for a = α +a and b = β +b

in R7⊕R [9].
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3. MANIFOLDS WITH G2 STRUCTURE

A G2-manifold is a Riemannian manifold whose holonomy group is contained in the

exceptional Lie group G2. For the purposes of this thesis, the importance of the group

G2 does not arise from the fact that it is one of the five exceptional Lie groups, but

rather than that it is the automorphism group of the octonions O. A manifold has a

G2-structure if there is an isomorphism between its tangent spaces and the imaginary

octonions Im(O)∼= R7 [1].

3.1 G2-Structures

In this section, we review the construction and properties of G2-structures. We define

the multiplication on the octonions O=H⊕He =R8 via the Cayley-Dickson process

[10], we have

(a+be) · (c+de) = (ac− d̄b)+(da+bc̄)e a,b,c,d ∈H

in terms of quaternion multiplication, where c̄ is the conjugate of c. Let 〈·, ·〉 denote

the standard Euclidean inner product on R8. Imaginary octonions can be considered as

R7, Im(O) = R7 we define the 3-form ϕ by

ϕ(x,y,z) = 〈x,yz〉 x,y,z ∈ Im(O),

and its dual 4-form ψ by

ψ(x,y,z,w) =
1
2
〈x, [y,z,w]〉 x,y,z,w ∈ Im(O),

where [x,y,z] = (xy)z− x(yz) is the associator.

In terms of the standard basis for R8 = O we have the coordinates x0,x1,x2,x3,

y0,y1,y2,y3 where the xi’s are coordinates on H and the y j’s are coordinates on He [10].

We take the orientation given by the volume form

vol8 = dx0123∧dy0123.
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where dxi jkl = dxi∧dx j ∧dxk∧dxl . The induced orientation on R7 = Im(O) is given

by

vol7 = dx123∧dy0123.

With respect to this orientation, the 4-form ψ is the Hodge dual (on R7) of ϕ:

ψ = ∗7ϕ.

In these coordinates, from [10] the forms ϕ and ψ can be written as

ϕ = dx123−dx1∧dy23−dy1∧dx2∧dy3−dy12∧dx3

−dy0∧dx1∧dy1−dy0∧dx2∧dy2−dy0∧dx3∧dy3,
(3.1)

and

ψ = dy0123−dy01∧dx23−dy0∧dx1∧dy2∧dx3−dy0∧dx12∧dy3

−dx2∧dy2∧dx3∧dy3−dx3∧dy3∧dx1∧dy1−dx1∧dy1∧dx2∧dy2.
(3.2)

It can be seen that ϕ ∧ψ = 7vol7.

We have the following equivalent definitions of G2. The next definition follows from

[11].

Definition 3.1.1 We can define G2 as the group of automorphisms of octonions as in

G2 = Aut(O) = {g ∈ GL(O);g(xy) = g(x)g(y) for all x,y ∈O} (3.3)

Instead of this definition, we prefer to use the following definition of G2, taken from

[12, 13], which is more useful in differential geometric point of view. It can be shown

that these definitions are equivalent.

Definition 3.1.2 Let x1, . . . ,x7 be coordinates on R7. Write

dxi jk = dxi∧dx j∧dxk on R7. Define a 3-form ϕ0 on R7 by

ϕ0 = dx123−dx167−dx527−dx563 +dx415 +dx426 +dx437 (3.4)

The subgroup of GL(7,R) preserving ϕ0 is the exceptional Lie group G2. That is given

by

G2 = {A ∈ GL(7,R);A∗(ϕ0) = ϕ0}
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It is compact, connected, simply-connected, semisimple and 14-dimensional, and it

also fixes the 4-form, the Hodge star dual ∗ϕ0 of ϕ0.

∗ϕ0 = dx4567−dx4523−dx4163−dx4127 +dx2637 +dx1537 +dx1526 (3.5)

the standard Euclidean metric

g =
7

∑
k=1

dxk⊗dxk

and the orientation on R7.

The proof can be found in R.L. Bryant [3]. We have the following definition

Definition 3.1.3 A smooth 7 dimensional manifold M has a G2-structure if its tangent

frame bundle reduces to a G2 bundle. It is equivalent to saying that M has a

G2-structure if there exists a 3-form ϕ ∈ ∧3R7 such that at each p ∈M, (Tp(M),ϕp)

is isomorphic to (T0(R7),ϕ0), pointwise. We call (M,ϕ) a manifold with G2-structure

[13].

A G2-structure ϕ determines a metric g and a cross product × on the tangent bundle

of M. The next relation follows from [13].

(u ϕ)∧ (v ϕ)∧ϕ = −6g(u,v)vol

g(u× v,w) = ϕ(u,v,w)

The proof of the first identity can be found in Lemma 3.2.2.

By using that relation one can derive the following expression, from [14], that shows

the relation between the metric and the 3-form as follows:

Theorem 3.1.4 Let v be a tangent vector at a point p and let e1,e2, . . . ,e7 be any basis

for TpM. Then the length |v| of v is given by

|v|2 = 6
2
9

((v ϕ)∧ (v ϕ)∧ϕ)(e1,e2, . . . ,e7)(
det
((
(ei ϕ)∧ (e j ϕ)∧ϕ

)
(e1,e2, . . . ,e7)

)) 1
9

(3.6)

The detailed proof can be found in S. Karigiannis [14].

We have the next definition follows from [14].
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Definition 3.1.5 Let u and v be vector fields on M. The cross product, u× v is a

vector field on M whose associated 1-form under the metric isomorphism satisfies the

relations as follows:

(u× v)[ = v u ϕ

g(u× v,w) = (u× v)[(w) = w v u ϕ = ϕ(u,v,w)

The proof can be found in Appendix A.1., Lemma 1.0.3.

Because G2, by definition, preserves ϕ , it also preserves the metric, the cross product

and the volume form determined by the 3-form. Hence, an equivalent (but redundant)

definition of G2 is the following

G2 = {A ∈ GL(7,R), u,v ∈ Im(O); A∗ϕ0 = ϕ0, A∗(g) = g, detA = 1,

A∗u×A∗v = A∗(u× v)}

For this reason G2 is a subgroup of SO(7).

Now, we consider some important facts, from [12], for defining a G2-manifold.

Definition 3.1.6 Let M be a 7-manifold, (ϕ,g) a G2-structure on M, and ∇ the

Levi-Civita connection of g. We call ∇ϕ the torsion of (ϕ,g). If ∇ϕ = 0 then (ϕ,g) is

called torsion-free.

Definition 3.1.7 We define a G2-manifold to be a triple (M,ϕ,g) where M is a

7-manifold and (ϕ,g) a torsion-free G2-structure on M.

By [1], the existence of a G2-structure is given by the following.

Remark 3.1.8 Let us consider a 7-manifold with a G2-structure ϕ . This structure

exists if and only if M is orientable and spin, which is equivalent to the vanishing of

the fist and second Stiefel-Whitney classes w1(M) = w2(M) = 0.

The metric g and orientation determine a Hodge star operator ∗, and we have the

associated dual 4-form ψ = ∗ϕ . The metric also determines the Levi-Civita connection

∇, and the manifold (M,ϕ) is called a G2 manifold if ∇ϕ = 0. We note that this

is a nonlinear partial differential equation for ϕ . Such manifolds have Riemannian

holonomy Holg(M) contained in the exceptional Lie group G2 ⊂ SO(7) [1]. It is given

by the following proposition, taken from [12].
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Proposition 3.1.9 Let M be a 7-manifold and (ϕ,g) a G2-structure on M. Then the

following are equivalent:

(i) Hol(g)⊆ G2, and ϕ is the induced 3-form,

(ii) ∇ϕ = 0 on M, where ∇ is the Levi-Civita connection of g, and

(iii) dϕ = d∗ϕ = 0 on M.

Equivalence of the conditions (i) and (ii) was first proved by Fernandez and Gray [15].

We will study the proof of this theorem in section 3.5.

The following remark gives the definition of a positive 3-form that arises from G2

structures [12, 14].

Remark 3.1.10 Let M be an oriented 7-manifold. The 3-forms on M that arise from a

G2-structure are called positive 3-forms. For each p ∈M, define P3
pM to be the subset

of 3-forms ϕ ∈ ∧3T ∗p (M) for which there exists an oriented isomorphism between

Tp(M) and R7 identifying ϕ and the associative 3-form ϕ0. A form α ∈∧3R7 is said to

be positive if and only if α ∈ P3
pM. A positive 3-form α is of the form g∗(ϕ) for some

g ∈ GL(7,R) and uniquely determines an associated positive definite inner product

and orientation. Then P3
pM is isomorphic to GL(7,R)/G2 which naturally imbeds in

∧3R7 as P3
pM, since ϕ0 has symmetry group G2. It can be seen that both GL(7,R)/G2

and ∧3R7 are 35 dimensional.

Before we close this section, we would like to emphasize that we do not study the

representation theory of G2 as a Lie group. Information in this direction can be found

in [2].

3.2 Metric, Cross Product and the 3-form Identities

In this section, we state the relations between the Riemannian metric g, cross product

and the 3-form ϕ . Also we state the basic and useful properties which will be essential

for the rest of the thesis. We start with the next corollary follows from [7].

Corollary 3.2.1 Let a,b,c,d be vector fields. Then we have

g(a×b,c×d) = g(a∧b,c∧d)−ψ(a,b,c,d) (3.7)
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Proof. According to [7], we compute

g(a×b,c×d) = ϕ(a,b,c×d) (3.8)

= −ϕ(a,c×d,b)

= −g(a× (c×d),b)

= −g(−g(a,c)d +g(a,d)c− (a c d ψ)],b)

= g(a,c)g(b,d)−g(a,d)g(b,c)+ψ(d,c,a,b)

We have the relation involving the metric, 3-form and metric dual 1-forms, which

follows from [7].

Lemma 3.2.2 Let u, v, and w be vector fields on M. Let u[, v[, and w[ denote their

dual 1-forms with respect to the metric g. Then we have the following identity:

∗((u ϕ)∧ (v ϕ)∧ (w ϕ)) =−2g(u,v)w[−2g(u,w)v[−2g(v,w)u[

Proof. According to [7], we begin with the relation between ϕ , g, and the volume form

(u ϕ)∧ (v ϕ)∧ϕ =−6g(u,v)vol

First, we should prove

(v ϕ)∧ (v ϕ)∧ϕ = 6|v|2 vol (3.9)

From Lemma 1.0.1 and Proposition 1.0.2 we have

v ϕ = ∗(v[∧∗ϕ)

and

(v ϕ)∧ϕ = 2(v[∧∗ϕ)

Thus we obtain

(v ϕ)∧ (v ϕ)∧ϕ = 2|v[∧∗ϕ|2 vol = 6|v|2 vol

By polarizing (3.9) in v, we have the following the relation:

(v ϕ)∧ (w ϕ)∧ϕ = 6〈v,w〉vol
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Taking the interior product of this equation with w and using w vol = ∗w[, we obtain

−6g(u,v)∗w[ = (w u ϕ)∧ (v ϕ)∧ϕ +(u ϕ)∧ (w v ϕ)∧ϕ

+(u ϕ)∧ (v ϕ)∧ (w ϕ)

= −2(u×w)[∧∗(v ϕ)−2(v×w)[∧∗(u ϕ)

+(u ϕ)∧ (v ϕ)∧ (w ϕ)

where we have used equation (A.8) and the relation (v ϕ)∧ϕ = −2 ∗ (v ϕ) from

Proposition 1.0.2. We rearrange this equation and use ∗(v ϕ) = v[∧ψ to obtain

(u ϕ)∧ (v ϕ)∧ (w ϕ) = −6g(u,v)∗w[−2v[∧ (u×w)[∧ψ

−2u[∧ (v×w)[∧ψ

We now use (A.8) and (A.9), and take ∗ of both sides to get

∗((u ϕ)∧ (v ϕ)∧ (w ϕ))

=−6g(u,v)w[−2(v× (u×w))[−2(u× (v×w))[

=−6g(u,v)w[−2
(
−g(u,v)w[+g(v,w)u[− (v u w ψ)]

)
−2
(
−g(u,v)w[+g(u,w)v[− (u v w ψ)]

)
=−2g(u,v)w[−2g(u,w)v[−2g(v,w)u[

and the proof is complete.

Now, we denote the previous lemma in local coordinates, which follows from [7].

Remark 3.2.3 Let u = ∂

∂xi , v = ∂

∂x j , and w = ∂

∂xl be vector fields, then our identity

becomes

∗
(
(

∂

∂xi ϕ)∧ ( ∂

∂x j ϕ)∧ ( ∂

∂xl ϕ)

)
=−2

(
gi jglm +gilg jm +g jlgim

)
dxm

If we take ∗ of both sides of this equation, and wedge both sides with an arbitrary

1-form α = αkdxk, we get

α ∧
(
(

∂

∂xi ϕ)∧ ( ∂

∂x j ϕ)∧ ( ∂

∂xl ϕ)

)
=−2

(
gi jglm +gilg jm +g jlgim

)
αkdxk∧∗dxm

1
8

αs7ϕis1s2ϕ js3s4ϕls5s6dxs1 ∧ . . .∧dxs7 =−2
(
gi jglm +gilg jm +g jlgim

)
αkgkm vol

and hence

1
8 ∑

σ∈S7

sgn(σ)ϕiσ(1)σ(2)ϕ jσ(3)σ(4)ϕlσ(5)σ(6)ασ(7) dx1∧ . . .∧dx7

=−2
(
gi jαl +gilα j +g jlαi

)√
det(g)dx1∧ . . .∧dx7
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Thus, we get the following relation.

∑
σ∈S7

sgn(σ)ϕiσ(1)σ(2)ϕ jσ(3)σ(4)ϕlσ(5)σ(6)ασ(7) = −16
(
gi jαl +gilα j +g jlαi

)
√

det(g) (3.10)

Similarly, we have the following corollary that can be derived from the Lemma 3.2.2,

which also follows from [7].

Corollary 3.2.4 Let u, v, and w be vector fields on M. Then the following holds:

∗((v w ϕ)∧ (u ϕ)∧ϕ) = 2g(u,v)w[−2g(u,w)v[+2∗ (u v w ψ)]

We can denote the previous corollary in local coordinates by [7].

Remark 3.2.5 Let v = ∂

∂xl , w = ∂

∂xi , and u = ∂

∂x j be vector fields, then our identity

becomes

∗
(
(

∂

∂xl
∂

∂xi ϕ)∧ ( ∂

∂x j ϕ)∧ϕ

)
= 2(gl jgim−g jiglm +ψil jm)dxm

If we take ∗ of both sides of this equation, and wedge both sides with an arbitrary

1-form α = αkdxk, according to [7] we have

α ∧
(
(

∂

∂xl
∂

∂xi ϕ)∧ ( ∂

∂x j ϕ)∧ϕ

)
= 2(gl jgim−g jiglm +ψil jm)αkdxk∧∗dxm

1
12

αs1ϕils2ϕ js3s4ϕs5s6s7dxs1 ∧ . . .∧dxs7 = 2(gl jgim−g jiglm +ψil jm)αkgkm vol

and hence

1
12 ∑

σ∈S7

sgn(σ)ασ(1)ϕilσ(2)ϕ jσ(3)σ(4)ϕσ(5)σ(6)σ(7) dx1∧ . . .∧dx7

= 2
(

gl jαi−g jiαl +ψil jmgkm
αk

)√
det(g)dx1∧ . . .∧dx7

Thus, we get the following useful relation.

∑
σ∈S7

sgn(σ)ασ(1)ϕilσ(2)ϕ jσ(3)σ(4)ϕσ(5)σ(6)σ(7) = 24
(

gl jαi−g jiαl +ψil jmgkm
αk

)
√

det(g) (3.11)

According to [7], we have the following proposition, its proof and local coordinate

representation.
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Proposition 3.2.6 Let u, v, and w be vector fields on M. Then, the following holds:

(u v ψ)∧ (w ϕ)∧ϕ = (v ψ)∧ (u w ϕ)∧ϕ

Proof. We begin with the 8-form which vanishes on a 7-manifold M.

(v ψ)∧ (w ϕ)∧ϕ = 0

and take the interior product with u. This gives

(u v ψ)∧ (w ϕ)∧ϕ = (v ψ)∧ (u w ϕ)∧ϕ +(v ψ)∧ (w ϕ)∧ (u ϕ)

We use the fact that (v ψ)∧(w ϕ)∧(u ϕ) = 0 for any u,v,w which is proved in [14],

Theorem 2.4.7, we have the desired result.

Remark 3.2.7 If we put u = ∂

∂xi , w = ∂

∂x j , and v = ∂

∂xl , this identity becomes

(
∂

∂xi
∂

∂xl ψ)∧ ( ∂

∂x j ϕ)∧ϕ = (
∂

∂xl ψ)∧ ( ∂

∂xi
∂

∂x j ϕ)∧ϕ

According to [7], in local coordinates this becomes

1
24

ψlis1s2ϕ js3s4ϕs5s6s7dxs1 ∧ . . .∧dxs7 = (
∂

∂xl ψ)∧ ( ∂

∂xi
∂

∂x j ϕ)∧ϕ

and hence

∑
σ∈S7

sgn(σ)ψliσ(1)σ(2)ϕ jσ(3)σ(4)ϕσ(5)σ(6)σ(7) is skew-symmetric in i, j. (3.12)

We also note that the identity (v ψ)∧ (w ϕ)∧ (u ϕ) = 0 in local coordinates we can

denote it as

∑
σ∈S7

sgn(σ)ϕiσ(1)σ(2)ϕ jσ(3)σ(4)ψlσ(5)σ(6)σ(7) = 0 (3.13)

Now, we give the identities involving the 3-form, Hodge dual 4-form, metric and the

metric dual 1-forms, which follows from [7].

Proposition 3.2.8 Let v,w,a,b,c,d be vector fields on M. We have the followings:

a[∧b[∧ c[∧ψ = ϕ(a,b,c)vol

a[∧b[∧ c[∧d[∧ϕ = ψ(a,b,c,d)vol

a[∧b[∧ c[∧w[∧ (v ψ) = (g(v,w)ϕ(a,b,c)−g(a,v)ϕ(w,b,c)

− g(b,v)ϕ(a,w,c)−g(c,v)ϕ(a,b,w))vol

a[∧b[∧ c[∧d[∧w[∧ (v ϕ) = (g(v,w)ψ(a,b,c,d)−g(a,v)ψ(w,b,c,d)

− g(b,v)ψ(a,w,c,d)−g(c,v)ψ(a,b,w,d)

− g(d,v)ψ(a,b,c,w))vol
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Proof. According to [7], the first two equations follow from Lemma 1.0.1.

a[∧b[∧ c[∧ψ = ∗(a b c ϕ)

= ∗ϕ(a,b,c)

= ϕ(a,b,c)
√

det(g)e1∧ . . .∧ e7 = ϕ(a,b,c)vol

a[∧b[∧ c[∧d[∧ϕ = ∗(a b c d ψ) = ψ(a,b,c,d)vol

To prove the third, we begin with the 8-form which vanishes

a[∧b[∧ c[∧w[∧ψ = 0

and take the interior product with v, we get

(v a[)∧b[∧ c[∧w[∧ψ−a[∧ (v b[)∧ c[∧w[∧ψ−a[∧b[∧ (v c[)∧w[∧ψ

−a[∧b[∧ c[∧ (v w[)∧ψ−a[∧b[∧ c[∧w[∧ (v ψ) = 0

After rearranging terms, we have the following.

a[∧b[∧ c[∧w[∧ (v ψ) = (g(v,w)ϕ(a,b,c)−g(a,v)ϕ(w,b,c)

− g(b,v)ϕ(a,w,c)−g(c,v)ϕ(a,b,w))vol

We have the following identity involving the 3-form, Hodge dual 4-form, metric,

volume form and the metric dual 1-forms, which also follows from [7]

Proposition 3.2.9 Let a,b,c,d be vector fields on M. The following relation holds:

a[∧b[∧ (c ϕ)∧ (d ψ) = (2g(a∧b,c∧d)+ψ(a,b,c,d))vol .

Proof. We begin with the relation ψ ∧ (c[ ϕ) = 3 ∗ c[ from Proposition 1.0.2. Then,

we take the interior product with d, also use Lemma 1.0.3. According to [7], after

rearranging we get the following

(c ϕ)∧ (d ψ) = 3∗ (c[∧d[)− (c×d)[∧ψ

We take the wedge product with a[∧b[,

a[∧b[∧ (c ϕ)∧ (d ψ) = 3(a[∧b[)∧∗(c[∧d[)−a[∧b[∧ (c×d)[∧ψ

= 3g(a∧b,c∧d)vol−ϕ(a,b,c×d)vol

= 3g(a∧b,c∧d)vol−g(a×b,c×d)vol

= (2g(a∧b,c∧d)+ψ(a,b,c,d))vol .
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In the second equality, we used u[∧v[∧w[∧ψ = ϕ(u,v,w)vol from Proposition 3.2.8,

in the third equality we used ϕ(u,v,w) = g(u× v,w), and in the final equality we used

Corollary 3.2.1.

3.3 Equalities Involving Contractions of ϕ and ψ

We consider some identities consisting of ϕ , ψ , and their derivatives. We also denote

them in local coordinates, which follows from [7].

In local coordinates x1,x2, . . . ,x7, the 3-form ϕ and the dual 4-form ψ can be written

as

ϕ =
1
6

ϕi jk dxi∧dx j∧dxk

ψ =
1

24
ψi jkl dxi∧dx j∧dxk∧dxl

ϕi jk and ψi jkl are skew-symmetric in their indices. The metric can be written as

gi j = g( ∂

∂xi ,
∂

∂x j ) . The cross product is a (2,1) tensor which can be written as

∂

∂xi ×
∂

∂x j = Pk
i j

∂

∂xk (3.14)

where Pk
i j =−Pk

ji . Therefore,

ϕi jk = gklPl
i j Pl

i j = gkl
ϕi jk (3.15)

If we set u = ∂

∂xi , v = ∂

∂x j and w = ∂

∂xk in

∂

∂xi ×
(

∂

∂x j ×
∂

∂xk

)
=−gi j

∂

∂xk +gik
∂

∂x j +ψi jkl(
∂

∂xl )
]

Pm
il Pl

jk
∂

∂xm =−gi j
∂

∂xk +gik
∂

∂x j +ψi jklglm ∂

∂xm (3.16)

We have the following identities and the proof by [7].

Lemma 3.3.1 Let the tensors g, ϕ , ψ , and P be as given above. Then the following

identities hold:

Pk
ilP

l
jk = −6gi j

ϕi jkϕabcgiag jbgkc = 42

ϕi jkϕabcg jbgkc = 6gia

ϕi jkϕabcgkc = giag jb−gibg ja−ψi jab
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Proof. We first prove the last equation. The other identities follow by contraction with

gi j and using (3.15). To obtain the last equation, we take the inner product of (3.16)

with ∂

∂x :

Pm
il Pl

jkgmn = −gi jgkn +gikg jn +ψi jkn

ϕilagam
ϕ jkbgblgmn = −gi jgkn +gikg jn +ψin jk

ϕilnϕ jkbgbl = −gi jgkn +gikg jn +ψin jk

since ϕiln =−ϕinl , we get the desired equation.

For the third equation, we contract the last equation by g jb,

ϕi jkϕabcgkcg jb = giag jbg jb−gibg jag jb−ψi jabg jb = 6gia (3.17)

For the second, we contract the third equation by gia,

ϕi jkϕabcg jbgkcgia = 6giagia = 6.7 = 42 (3.18)

We also note that the second identity is just the pointwise norm |ϕ|2 of ϕ is 7.

For the first equation, we use the equation (3) of Proposition 1.0.2 and (3.15).

The next identities, from [7], involves contractions of ϕ with ψ .

Lemma 3.3.2 Let the tensors g, ϕ , and ψ be as given above. Then the following

identities hold:

ϕi jkψabcdgibg jcgkd = 0

ϕi jkψabcdg jcgkd = −4ϕiab

ϕi jkψabcdgkd = giaϕ jbc +gibϕa jc +gicϕab j

−ga jϕibc−gb jϕaic−gc jϕabi

Proof. According to [7], the first two follow from the last. To prove the third, we take

the inner product of (A.9) with (3.14):

g
(

∂

∂xa ×
∂

∂xb ,
∂

∂xi ×
(

∂

∂x j ×
∂

∂xk

))
= gaiϕ jkb−gibϕ jka−ψabilPl

jk
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Here we used g(a× b,c× d) = g(a,c)g(b,d)− g(a,d)g(b,c)+ψ(d,c,a,b). But this

also equals

= g
(

Pl
ab

∂

∂xl ,−gi j
∂

∂xk +gik
∂

∂x j +ψi jkngnm ∂

∂xm

)
= −gi jglkPl

ab +gikgl jPl
ab +Pl

abgnmglmψi jkn

= −gi jϕabk +gikϕab j +Pl
abψi jkl

We use these two equations and rearrange them. Then, we have the following

giaϕ jkb−gibϕ jka +gi jϕabk−gikϕab j−ϕ jkcψabilgcl−ϕabcψi jklgcl = 0

We denote this expression by Ai jkab. Then it can be seen that

Ai jkab +Aa jkbi +Abi jka−Aki jab−A jkabi = 0

By this, we get desired expression. For the second equation we start contracting the

last equation with g jc, we have

ϕi jkψabcdgkdg jc = giag jc
ϕ jbc+gibg jc

ϕa jc+gicg jc
ϕab j−ga jg jc

ϕibc−gb jg jc
ϕaic−gc jg jc

ϕabi

becomes

ϕi jkψabcdgkdg jc = ϕiab−ϕiab +ϕiab +ϕiab +ϕiab−7ϕiab =−4ϕiab

by using the fact that | ϕ |2= 7. Also, for the first equation we contact the second with

gib.

Now we contract ψ with itself, which follows from [7].

Lemma 3.3.3 Let the tensors g, ϕ , and ψ be as given above. Then the following

identities hold:

ψi jklψabcdgiag jbgkcgld = 168

ψi jklψabcdg jbgkcgld = 24gia

ψi jklψabcdgkcgld = 4giag jb−4gibg ja−2ψi jab

ψi jklψabcdgld = −ϕa jkϕibc−ϕiakϕ jbc−ϕi jaϕkbc

+giag jbgkc +gibg jcgka +gicg jagkb

−giag jcgkb−gibg jagkc−gicg jbgka

−giaψ jkbc−g jaψkibc−gkaψi jbc

+gabψi jkc−gacψi jkb
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Next, we consider identities involving the covariant derivatives of ϕ and ψ , which are

given by [7].

Proposition 3.3.4 Let the tensors g, ϕ , and ψ be as given above. Then the following

identities hold:

(∇mϕi jk)ϕabcgiag jbgkc = 0

(∇mψi jkl)ψabcdgiag jbgkcgld = 0

(∇mϕi jk)ψabcdgibg jcgkd = −ϕi jk(∇mψabcd)gibg jcgkd

(∇mϕi jk)ϕabcg jbgkc = −ϕi jk(∇mϕabc)g jbgkc

(∇mψi jkl)ψabcdg jbgkcgld = −ψi jkl(∇mψabcd)g jbgkcgld

(∇mϕi jk)ψabcdg jcgkd = −ϕi jk(∇mψabcd)g jcgkd−4∇mϕiab

and also

∇mψabcd =−(∇mϕab j)ϕcdkg jk−ϕab j(∇mϕcdk)g jk (3.19)

Proposition 3.3.5 The following relation holds between ∇ϕ and ∇ψ:

(∇mψi jkl)ψabcdg jbgkcgld = 3(∇mϕi jk)ϕabcg jbgkc

Proof According to [7], we substitute (3.19) into the left hand side above, and use

Lemma 3.3.2. Then,

−
(
(∇mϕi jp)ϕklqgpq +ϕi jp(∇mϕklq)gpq)

ψabcdg jbgkcgld

= −(∇mϕi jp)gpqg jb(ϕqklψabcdgkcgld)− (∇mϕklq)gpqgkcgld(ϕpi jψcdabg jb)

= − (∇mϕi jp)gpqg jb(−4ϕqab)

− (∇mϕklq)gpqgkcgld(gpcϕida +gpdϕcia +gpaϕcdi−gicϕpda−gidϕcpa−giaϕcd p)

= 4(∇mϕi jp)ϕabqgpqg jb +0+0

− (∇mϕklq)(δ
q
a gkcgld

ϕcdi−δ
k
i gpqgld

ϕpda−δ
l
i gpqgkc

ϕcpa−giagpqgkcgld
ϕcd p)

= 4(∇mϕi jk)ϕabcg jbgkc− (∇mϕkla)ϕcdigkcgld +(∇mϕilq)ϕpdagpqgld

+(∇mϕkiq)ϕcpagpqgkc +(∇aϕklq)ϕcd pgpqgkcgldgia

Using Proposition 3.3.4 on the second and final terms, the final term vanishes and the

remaining terms become

3(∇mϕi jk)ϕabcg jbgkc
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and the proof is complete.

3.4 Decomposition of
∧∗(M) Into Irreducible G2-Representations

The group G2 acts on R7, and hence acts on the spaces ∧∗ of differential forms on M.

Let A ∈ GL(7,R), and we have

A ·ϕ =
1
6

ϕi jk (A∗dxi)∧ (A∗dx j)∧ (A∗dxk)

One can decompose each space ∧k into irreducible G2-representations. This is

analogous to the decomposition of the space of k-forms to the space of differential

forms of type (p,q) on a complex manifold. The results of this decomposition are

presented below.

Proposition 3.4.1 Let M be a 7-manifold and (ϕ,g) a G2-structure on M. Then

∧kT ∗M splits orthogonally into components as follows, where ∧k
l corresponds to an

irreducible representation of G2 of dimension l:

1. ∧1T ∗M = ∧1
7

2. ∧2T ∗M = ∧2
7⊕∧2

14

3. ∧3T ∗M = ∧3
1⊕∧3

7⊕∧3
27

4. ∧4T ∗M = ∧4
1⊕∧4

7⊕∧4
27

5. ∧5T ∗M = ∧5
7⊕∧5

14

6. ∧6T ∗M = ∧6
7

The Hodge star ∗ gives an isometry between ∧k
l and ∧7−k

l . Note also that ∧3
1 = 〈ϕ〉 and

∧4
1 = 〈∗ϕ〉, and that the spaces ∧k

7 for k = 1,2, . . . ,6 are canonically isomorphic [12].

Proposition 3.4.2 The map α 7→ ϕ ∧ α is an isomorphism between the following

spaces:

∧0
1
∼= ∧3

1 ∧1
7
∼= ∧4

7

∧2
7
∼= ∧5

7 ∧2
14
∼= ∧5

14

∧3
7
∼= ∧6

7 ∧4
1
∼= ∧7

1
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The map α 7→ ∗ϕ ∧α is an isomorphism between the following spaces:

∧0
1
∼= ∧4

1 ∧1
7
∼= ∧5

7

∧2
7
∼= ∧6

7 ∧3
1
∼= ∧7

1

In addition, if α is a 1-form, we have the following identities from [14] :

∗(ϕ ∧∗(ϕ ∧α)) = −4α (3.20)

∗ϕ ∧∗(ϕ ∧α) = 0

∗(∗ϕ ∧∗(∗ϕ ∧α)) = 3α (3.21)

ϕ ∧∗(∗ϕ ∧α) = 2(∗ϕ ∧α) (3.22)

We now describe the decomposition, from [14], starting with

The case k = 2,5

∧2
7 = {w ϕ;w ∈ Γ(T (M))} (3.23)

= {β ∈ ∧2;∗(ϕ ∧β ) = 2β}

Here for (3.23) we used the (11) equation of Proposition 1.0.2. Also using the (6)

equation we can write

∧2
7 = {β ∈ ∧2;∗(∗ϕ ∧ (∗(∗ϕ ∧β ))) = 3β}

∧2
14 = {β ∈ ∧2;∗ϕ ∧β = 0} (3.24)

= {β ∈ ∧2;∗(ϕ ∧β ) =−β}

For (3.24), by Proposition 3.4.2 we know that there exists a linear map

L : ∧2→∧6 = ∧6
7 ' ∧2

7

L : α 7→ ψ ∧α

Now, let V ∈ ∧2 then V = Im(L)⊕Ker(L).

Thus ∧2
14 = Ker(L) = ψ ∧α = 0

The decomposition of ∧5

∧5 = ∧5
7⊕∧5

14 is obtained by taking the Hodge star of the decompositions of ∧2.
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∧5
7 = {α ∧∗ϕ;α ∈ ∧1

7} (3.25)

= {γ ∈ ∧5;ϕ ∧∗γ = 2γ}

= {γ ∈ ∧5;∗ϕ ∧ (∗(∗ϕ ∧∗γ)) = 3γ}

For (3.25) we used the Proposition 1.0.2, equations (8) and (6). Similarly, we get

∧5
14 = {γ ∈ ∧5;ϕ ∧∗γ =−γ} (3.26)

= {γ ∈ ∧5;∗ϕ ∧∗γ = 0}

The decompositions for k = 3,4

∧3
1 = { f ϕ; f ∈C∞(M)} (3.27)

= {η ∈ ∧3;ϕ ∧ (∗(∗ϕ ∧η)) = 7η}

For (3.27) we write η = f ϕ

ϕ ∧ (∗(∗ϕ ∧ f ϕ)) = ϕ ∧ (∗( f ∗ϕ ∧ϕ))

= 7ϕ f = 7η

∧3
7 = {∗(ϕ ∧α);α ∈ ∧1

7} (3.28)

= {w ∗ϕ;w ∈ Γ(T (M))}

= {η ∈ ∧3;∗(ϕ ∧∗(ϕ ∧η)) =−4η}

For (3.28) we use the Proposition 1.0.2 in Appendix A.1. equation (5).

Finally, for ∧3
27 we define

L : ∧3→∧6
7⊕∧7

1 ' ∧3
7⊕∧3

1

L : α 7→ ψ ∧α +ϕ ∧α

If ψ ∧α = 0 then α ∈ (∧3
7)
⊥.

If ϕ ∧α = 0 then α ∈ (∧3
1)
⊥. Ker(L) = ψ ∧α +ϕ ∧α = 0 if and only if ψ ∧α = 0

and ϕ ∧α = 0, since they belong to the orthogonal modules of the decomposition of

3-forms. We have

∧3
27 = {η ∈ ∧3;ϕ ∧η = 0 and ∗ϕ ∧η = 0} (3.29)
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The decomposition of ∧4

Similarly we use the fact that the decomposition of ∧4 is obtained by taking the Hodge

star of the decomposition of ∧3 to get the following expressions.

∧4
1 = { f ∗ϕ; f ∈C∞(M)} (3.30)

= {σ ∈ ∧4;∗ϕ ∧ (∗(ϕ ∧σ)) = 7σ}

∧4
7 = {ϕ ∧α;α ∈ ∧1

7} (3.31)

= {σ ∈ ∧4;(ϕ ∧∗(ϕ ∧∗σ)) =−4σ}

∧4
27 = {σ ∈ ∧4;ϕ ∧σ = 0 and ϕ ∧∗σ = 0} (3.32)

By using the definitions above, we can define the following expressions, from [14], for

β ∈ ∧2

∗(ϕ ∧β ) = ∗(ϕ ∧ (π7(β )+π14(β ))

= ∗(ϕ ∧ (π7(β ))+∗(ϕ ∧π14(β ))

= 2π7(β )−π14(β )

β = π7(β )+π14(β )

π7(β ) =
β +∗(ϕ ∧β )

3
(3.33)

π14(β ) =
2β −∗(ϕ ∧β )

3
(3.34)

and for γ ∈ ∧5 using (3.25) and (3.26)

ϕ ∧∗γ = (ϕ ∧ (π7(∗γ))+(ϕ ∧π14(∗γ))

= 2π7(γ)−π14(γ)

γ = π7(γ)+π14(γ)

π7(γ) =
γ +ϕ ∧∗γ

3
(3.35)

π14(γ) =
2γ−ϕ ∧∗γ

3
(3.36)

where π7,π14 are projections of ∧2 to ∧2
7 and ∧2

14, respectively.

∧3
27 = {hi jg jldxi∧

(
∂

∂xl ϕ

)
;hi j = h ji,Trg(hi j) = gi jhi j = 0} (3.37)
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For β = 1
2 βi jdxi∧dx j is a 2-form, according to [14], we have

π7(β ) =
1
2

(
1
3

βab +
1
6

βi jgilg jm
ψlmab

)
dxa∧dxb (3.38)

π14(β ) =
1
2

(
2
3

βab−
1
6

βi jgilg jm
ψlmab

)
dxa∧dxb (3.39)

Now, we give a summary

∧2
7 = {w ϕ;w ∈ Γ(T (M))}

= {β ∈ ∧2;∗(ϕ ∧β ) = 2β}

= {β ∈ ∧2;∗(∗ϕ ∧ (∗(∗ϕ ∧β ))) = 3β}

∧2
14 = {β ∈ ∧2;∗ϕ ∧β = 0}

= {β ∈ ∧2;∗(ϕ ∧β ) =−β}

= {∑ai jei∧ e j;(ai j) ∈ g2}

∧5
7 = {α ∧∗ϕ;α ∈ ∧1

7}

= {γ ∈ ∧5;ϕ ∧∗γ = 2γ}

= {γ ∈ ∧5;∗ϕ ∧ (∗(∗ϕ ∧∗γ)) = 3γ}

∧5
14 = {γ ∈ ∧5;ϕ ∧∗γ =−γ}

= {γ ∈ ∧5;∗ϕ ∧∗γ = 0}

∧3
1 = { f ϕ; f ∈C∞(M)}

= {η ∈ ∧3;ϕ ∧ (∗(∗ϕ ∧η)) = 7η}

∧3
7 = {∗(ϕ ∧α);α ∈ ∧1

7}

= {w ∗ϕ;w ∈ Γ(T (M))}

= {η ∈ ∧3;∗(ϕ ∧∗(ϕ ∧η)) =−4η}

∧3
27 = {η ∈ ∧3;ϕ ∧η = 0 and ∗ϕ ∧η = 0}
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∧4
1 = { f ∗ϕ; f ∈C∞(M)}

= {σ ∈ ∧4;∗ϕ ∧ (∗(ϕ ∧σ)) = 7σ}

∧4
7 = {ϕ ∧α;α ∈ ∧1

7}

= {σ ∈ ∧4;(ϕ ∧∗(ϕ ∧∗σ)) =−4σ}

∧4
27 = {σ ∈ ∧4;ϕ ∧σ = 0 and ϕ ∧∗σ = 0}

We derive some further properties of the representation modules ∧k
l , that we will need

in this thesis, which follows from [7]. For this, we define maps i : S2(T )→ ∧3 and

j : ∧3→ S2(T ) as follows:

i(hi j) = hi jg jl ∂

∂xi ∧
(

∂

∂xl ϕ

)
=

1
2

hl
iϕl jk dxi∧dx j∧dxk (3.40)

( j(η))(v,w) = ∗((v ϕ)∧ (w ϕ)∧η) (3.41)

Now, on a manifold with G2-structure we have the relation between a symmetric

2-tensor, its trace, an arbitrary 3-form and its Hodge dual, which also follows from [7].

Proposition 3.4.3 Suppose that hi j is a symmetric tensor. It corresponds to the form

η = i(hi j) in ∧3, given by

η = hi jg jl dxi∧
(

∂

∂xl ϕ

)
=

1
2

hl
iϕl jk dxi∧dx j∧dxk

Then the Hodge star ∗η of η is

∗η =

(
1
4

Trg(h)gi j−hi j

)
g jldxi∧

(
∂

∂xl ψ

)
where Trg(h) = gi jhi j.

We can also see the relation which is given by [7].

Proposition 3.4.4 The map j : ∧3→ S2(T ) is an isomorphism between ∧3
1⊕∧3

27 and

S2(T ). ∧3
7 is the kernel of j. Explicitly, we have

If η = hi jg jl dxi∧
(

∂

∂xl ϕ

)
+(X ψ) = i(h)+(X ψ)

then j(η) =−2Trg(h)gi j−4hi j
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To summarize, we have seen that an arbitrary 3-form η on a manifold M with

G2-structure ϕ consists of a vector field X and a symmetric 2-tensor h [7]. We have

η = hi jg jl dxi∧
(

∂

∂xl ϕ

)
+X l ∂

∂xl ψ

=
1
2

hl
iϕl jk dxi∧dx j∧dxk +

1
6

X l
ψli jk dxi∧dx j∧dxk

Lastly, we have the useful relation between traceless, tracefull part of a symmetric

2-tensor and the submodules of space of 3-forms, which follows from [7]

Remark 3.4.5 Note that the symmetric 2-tensor hi j decomposes as hi j =
1
7 Trg(h)gi j+

h0
i j where h0

i j is the traceless part of hi j. Hence the first term in the above expression

can be written as
3
7

hϕ +
1
2
(h0)l

iϕl jk dxi∧dx j∧dxk

which is exactly the ∧3
1 and ∧3

27 components.

3.5 The Torsion Forms of a G2-Structure

Using the decomposition of the spaces of differential forms on M determined by ϕ

given in Section 3.4, we can decompose dϕ and dψ into irreducible G2 representations.

This defines the torsion forms of the G2-structure [7]. According to [7], we have

Definition 3.5.1 There are four independent torsion forms corresponding to a

G2-structure ϕ .

τ0 ∈ ∧0
1 τ1 ∈ ∧1

7

τ2 ∈ ∧2
14 τ3 ∈ ∧3

27

They are defined by the equations

dϕ = τ0 ψ +3τ1∧ϕ +∗τ3 (3.42)

dψ = 4τ1∧ψ +∗τ2

dϕ ∈ ∧4 and dψ ∈ ∧5.

Remark 3.5.2 We call τ0 the scalar torsion, τ1 the vector torsion, τ2 the Lie algebra

torsion, and τ3 the symmetric traceless torsion [7].
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Theorem 3.5.3 In the expressions dϕ and dψ , the same one-form τ1 appears [7].

Proof. We begin by not assuming that the two τ1’s are the same. Let dϕ = τ0 ψ +

3τ1∧ϕ +∗τ3 and dψ = 4τ̃1∧ψ +∗τ2. We must show that τ̃1 = τ1. Then, we have

dϕ = τ0 ψ +3τ1∧ϕ +∗τ3 dψ = 4τ̃1∧ψ +∗τ2

∗(dϕ) = τ0 ϕ +3∗ (τ1∧ϕ)+ τ3 ∗(dψ) = 4∗ (τ̃1∧ψ)+ τ2

ϕ ∧∗(dϕ) = 0−3ϕ ∧∗(ϕ ∧ τ1)+0 ψ ∧∗(dψ) = 4ψ ∧∗(ψ ∧ τ̃1)+0

ϕ ∧∗(dϕ) = 12∗ τ1 ψ ∧∗(dψ) = 12∗ τ̃1

Therefore, we see that

τ1 = τ̃1 ⇔ ϕ ∧∗(dϕ) = ψ ∧∗(dψ)

⇔ dxp∧ϕ ∧∗(dϕ) = dxp∧ψ ∧∗(dψ) for all p

⇔ g(dϕ,dxp∧ϕ) = g(dψ,dxp∧ψ) for all p

Let X = Xidxi be an arbitrary one-form. Then, we have

X ∧ϕ =
1
6

Xqϕi jk dxq∧dxi∧dx j∧dxk

=
1

24
(
Xqϕi jk−Xiϕq jk−X jϕiqk−Xkϕi jq

)
dxq∧dxi∧dx j∧dxk

=
1

24
Aqi jk dxq∧dxi∧dx j∧dxk

where we have skew-symmetrized the coefficients [7].

Similarly we have

dϕ =
1
6
(∇mϕabc−∇aϕmbc−∇bϕamc−∇cϕabm) dxm∧dxa∧dxb∧dxc

=
1

24
Bmabc dxm∧dxa∧dxb∧dxc

Now using (2.2), we have

g(X ∧ϕ,dϕ) =
1

24
Aqi jkBmabcgqmgiag jbgkc

=
1
6
(
Xqϕi jk−Xiϕq jk−X jϕiqk−Xkϕi jq

)
(∇mϕabc)gqmgiag jbgkc

Let X = dxp, so that Xi = δ
p
i , and this expression becomes

g(dxp∧ϕ,dϕ) =
1
6

(
δ

p
q ϕi jk−δ

p
i ϕq jk−δ

p
j ϕiqk−δ

p
k ϕi jq

)
(∇mϕabc)gqmgiag jbgkc

=
1
6

ϕi jk (∇mϕabc)gpmgiag jbgkc− 1
2

ϕq jk (∇mϕabc)gqmgpag jbgkc
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By Proposition 3.3.4, the first term vanishes, and the second term becomes

g(dxp∧ϕ,dϕ) =
1
2
(∇mϕi jk)ϕabcgimgpag jbgkc (3.43)

By an analogous calculation, we have the following expression

g(dxp∧ψ,dψ) =
1
6
(∇mψi jkl)ψabcdgimgpag jbgkcgld (3.44)

X ∧ψ =
1

24
Xqψi jkl dxq∧dxi∧dx j∧dxk∧dxl

=
1

120
(
Xqψi jkl−Xiψq jkl−X jψiqkl−Xkψi jql−Xlψi jkq

)
dxq∧dxi∧dx j∧dxk∧dxl

=
1

120
Aqi jkl dxq∧dxi∧dx j∧dxk∧dxl

where we have skew-symmetrized the coefficients [7].

Similarly, we have

dψ =
1

24
(∇mψabcd−∇aψmbcd−∇bψamcd−∇cψabmd−∇dψabcm)

dxm∧dxa∧dxb∧dxc∧dxd

=
1

120
Bmabcd dxm∧dxa∧dxb∧dxc∧dxd

Now using (2.2), we have

g(X ∧ψ,dψ) =
1

120
Aqi jklBmabcdgqmgiag jbgkcgld

=
1

24
(
Xqψi jkl−Xiψq jkl−X jψiqkl−Xkψi jql−Xlψi jkq

)
(∇mψabcd)gqmgiag jbgkcgld

Let X = dxp, so that Xi = δ
p
i , and this expression becomes

g(dxp∧ψ,dψ) =
1

24

(
δ

p
q ψi jkl−δ

p
i ψq jkl−δ

p
j ψiqkl−δ

p
k ψi jql−δ

p
l ψi jkq

)
(∇mψabcd)gqmgiag jbgkcgld

By Proposition 3.3.4, the first term vanishes, and the remaining terms become

g(dxp∧ψ,dψ) =
1
6
(∇mψi jkl)ψabcdgimgpag jbgkcgld (3.45)
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Combining the two expressions, g(dxp∧ϕ,dϕ) = g(dxp∧ψ,dψ) if and only if

(∇mψi jkl)ψabcdgimg jbgkcgld = 3(∇mϕi jk)ϕabcgimg jbgkc

But this is the Proposition 3.3.5, after contracting with gim.

We state the reason of considering torsion forms, which follows from [7].

Remark 3.5.4 We consider the torsion forms of a G2-structure ϕ because ϕ is

torsion-free if and only if all four torsion forms vanish, and these forms are

independent. This is because the decomposition of ∧k into G2-representations is

orthogonal, and because the maps α 7→ ϕ ∧α from ∧1
7 → ∧4

7 and α 7→ ψ ∧α from

∧1
7→∧5

7 are isomorphisms.

Lemma 3.5.5 For any vector field X, the 3-form ∇X ϕ lies in the subspace ∧3
7 of ∧3.

Therefore, the covariant derivative ∇ϕ lies in the space ∧1
7⊗∧3

7, a 49-dimensional

space (pointwise) [7].

Proof. Let X = ∂

∂xl , and consider the 3-form ∇lϕ . According to [7], η of ∧3
1⊕∧3

27 can

be written in terms of a symmetric tensor hi j as follows:

η =
1
2

hm
i ϕm jk dxi∧dx j∧dxk =

1
6
(
hm

i ϕm jk +hm
j ϕimk +hm

k ϕi jm
)

dxi∧dx j∧dxk

Using (2.2), the inner product of η with ∇lϕ = 1
6 ∇lϕabc dxa∧dxb∧dxc is

g(∇lϕ,η) =
1
6
(∇lϕabc)

(
hm

i ϕm jk +hm
j ϕimk +hm

k ϕi jm
)

gaigb jgck

=
1
2
(∇lϕabc)hm

i ϕm jkgaigb jgck =
1
2
(∇lϕabc)hma

ϕm jkgb jgck

which vanishes since the third equation of Proposition 3.3.4 says that

(∇lϕabc)ϕm jkgb jgck is skew-symmetric in a and m. Since g(∇lϕ,η) = 0 for all

η ∈ ∧3
1⊕∧3

27, we have that ∇lϕ ∈ ∧3
7 for all l = 1, . . . ,7.

We have the following theorems from [7].

Theorem 3.5.6 The covariant derivative ∇ϕ of the 3-form ϕ can be written as

∇lϕabc = Tlmgmn
ψnabc

where the full torsion tensor Tlm is

Tlm =
τ0

4
glm− (τ3)lm +(τ1)lm−

1
2
(τ2)lm
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Proof. According to [7], we start to write the full torsion tensor as Tlm = Slm +

Clm, where Slm = 1
2(Tlm + Tml) and Clm = 1

2(Tlm − Tml) are the symmetric and

skew-symmetric parts of Tlm, from [7]. Thus, we have that

∇lϕabc = (Slm +Clm)gmn
ψnabc (3.46)

Since dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗τ3, the ∧3
1 ⊕ ∧3

27 component of ∗dϕ is τ0ϕ + τ3,

we can write it as 3
7

(7
3τ0
)

ϕ + τ3. By Remark 3.4.5, this is fi jg jldxi ∧
(

∂

∂xl ϕ

)
,

where fi j =
1
7

(7
3τ0
)

gi j + (τ3)i j. Therefore, by Proposition 3.4.3, we have that the

∧4
1⊕∧4

7 component of dϕ = ∗(∗dϕ) is
(1

4 Trg( f )gi j− fi j
)

g jldxi∧
(

∂

∂xl ψ

)
. However,

Trg( f ) = 7
3τ0, so

1
4

Trg( f )gi j− fi j =
7

12
τ0 gi j−

4
12

τ0 gi j− (τ3)i j =
1
4

τ0 gi j− (τ3)i j (3.47)

Now, we can also write dϕ = 1
6 ∇lϕabc dxl ∧dxa∧dxb∧dxc, by (3.46) we have that

dϕ =
1
6
(Slm +Clm)gmn

ψnabc dxl ∧dxa∧dxb∧dxc

= Slmgmndxl ∧
(

∂

∂xn ψ

)
+Clmgmndxl ∧

(
∂

∂xn ψ

)
The second term belongs to ∧4

7. Therefore, if we compare the ∧4
1⊕∧4

27 term of dϕ and

by (3.47), we see that

Slm =
τ0

4
glm− (τ3)lm

Secondly, we write δϕ = −∗ d ∗ϕ in two different ways. First, since dψ = 4τ1 ∧

ψ +∗τ2, we have δϕ = −∗dψ = −4(τ1
] ϕ)− τ2, using Lemma 1.0.3. in Appendix

A.1.Therefore, we have

δϕ =−4
1
2
(τ1)abdxa∧dxb− 1

2
(τ2)abdxa∧dxb (3.48)

From (2.4), we also have δϕ =−1
2 glk∇lϕkab dxa∧dxb. Using (3.46), this is

δϕ =−1
2

glk (Slm +Clm)gmn
ψnkab dxa∧dxb

The first term vanishes since Slm is symmetric and ψnkab is skew-symmetric. Now we

decompose Clm = (C7)lm +(C14)lm into ∧2
7⊕∧2

14 components and we interchange n

and k. Thus,we see that

δϕ =
1
2

glk ((C7)lm +(C14)lm)gmn
ψknab dxa∧dxb

=
1
2
(−4(C7)ab +2(C14)ab) dxa∧dxb
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By comparing this to (3.48), we see that (C7)ab = (τ1)ab and (C14)ab = −1
2(τ2)ab,

hence

Clm = (τ1)lm−
1
2
(τ2)lm

and the proof is complete.

Now, we will prove the fact that we mention before in Section 3.1.

Corollary 3.5.7 The 3-form ϕ is parallel if and only if it is both closed and co-closed

[12].

Proof. According to [7], a parallel form is always closed and co-closed, since the

exterior derivative d and the coderivative δ can both be written in terms of the covariant

derivative ∇, which is the Levi-Civita connection and remember that it is torsion-free.

Conversely, from Theorem 3.5.6, dϕ = 0 and δϕ = 0 hold if and only if all four torsion

forms vanish, thus Tlm = 0 and then ∇lϕabc = 0.

We have another definition of full torsion tensor in terms torsion, metric and Hodge

dual 4-form, which follows from [7].

Lemma 3.5.8 The full torsion tensor Tlm is

Tlm =
1

24
(∇lϕabc)ψmi jkgiag jbgkc (3.49)

Proof. [7] We begin with ∇lϕabc = Tlkgknψnabc and use Lemma 3.3.3 to get the

following:

∇lϕabcψni jkgiag jbgkc = Tlkgkn
ψnabcψmi jkgiag jbgkc

= Tlkgkn(24gnm) = 24Tlm

Proposition 3.5.9 The four torsion forms can be written in terms of Tpq = Spq +Cpq

as follows:

τ0 =
4
7

gpqSpq

(τ3)pq =
1
4

τ0 gpq−Spq

(τ1)pq =
1
3

Cpq−
1
6

Ci jgiag jb
ψabpq

(τ2)pq = −4
3

Cpq−
1
3

Ci jgiag jb
ψabpq
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Hence, we can write all independent four torsion forms in terms of the symmetric or

anti-symmetric part of the full torsion tensor by [7].

3.6 Some Differential Operators on G2 Manifolds

In this section, we will consider some necessary definitions and properties that will be

useful for the application in String Theory. The next definition follows from [16].

Definition 3.6.1 We define the curl of a vector field X to be the vector field curlX,

given by

curlX = ∗(dX ∧ψ) (3.50)

Here we denote the vector field X and its metric dual 1-form by the same notation. In

local coordinates we have

(curlX)k = gpigq j(∇pXq)ϕi jk. (3.51)

divX = −d†X [ = ∗d ∗X [, (3.52)

where d† is the adjoint to the exterior derivative d. The identity d† =−∗d∗ is true for

1-forms, since our manifolds is an odd-dimensional manifold [16].

We have the following definition

grad f = (d f )]. (3.53)

There are various relations between the operators grad, div, and curl on a manifold M

with a torsion-free G2 structure. First, we recall some identities that are satisfied for

torsion-free G2 structures. Let Xkdxk be a 1-form on M. The Ricci identities say that

∇i∇ jXk−∇ j∇iXk = −Ri jklglmXm, (3.54)

where Ri jkl is the Riemann curvature tensor [16]. If we contract (3.54) with g jk, we get

(graddivX)[ = ∇i(g jk
∇ jXk) = g jk

∇ j∇iXk−Ri jklg jkglmXm = g jk
∇ j∇iXk, (3.55)

here we have used the fact that Ri jklg jk = Ril is the Ricci tensor, which vanishes

for a torsion-free G2 structure. The Ricci-flatness of the metric also implies that the
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Laplacian agrees with the Hodge Laplacian ∆d = dd† +d†d on 1-forms. In particular

by [16], if X = Xk ∂

∂xk is a vector field on M, then

gi j
∇i∇ jXk = −∆dX [ = −(dd† +d†d)X [. (3.56)

Because ϕ is torsion-free, the Riemann curvature tensor Ri jkl lies in Sym2(∧2
14) says

that

Ri jklgiag jb
ψabcd = 2Rcdkl.

Contracting it with gkc gives the following equation, which follows from [16].

Ri jklgiag jbgkc
ψabcd = 2Rcdklgkc = −2Rdl = 0. (3.57)

Now according to [16], we have the following relations between grad, div, and curl

on a G2 manifold

Proposition 3.6.2 Let f be any function and X be any vector field on a manifold M

with a torsion-free G2 structure. The following relations hold:

curl(grad f ) = 0, (3.58)

div(curlX) = 0, (3.59)

curl(curlX) = −dd†X +∆X =−d†dX (3.60)

Proof. To establish (3.58), we note that, from [16], equations (3.51) and (3.53) show

that

∗(curl(grad f ))[ = d(d f )∧ψ,

which vanishes since d(d f ) = 0. To establish (3.59), we note that equations (3.52)

and (3.51) show that

div(curlX) = ∗d ∗ (∗(dX [∧ψ)) = ∗d(dX [∧ψ) = 0,

using the facts that ∗2 = 1, d(dX [) = 0, and dψ = 0. Note that (3.59) does not

necessarily requires the G2 structure to be parallel but dψ = 0. Finally, we prove (3.60),

using local coordinates, and the full torsion-free hypothesis. Using (3.51), we compute:

(curlcurlX))k = ∇p(curlX)q gpagqb
ϕabk

= ∇p

(
∇αXβ gαigβ j

ϕi jq

)
gpagqb

ϕabk

= (∇p∇αXβ )g
αigβ jgpa(ϕi jqϕkabgqb)

= (∇p∇αXβ )g
αigβ jgpa(gikg ja−giag jk−ψi jka),
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where we have used Lemma 3.3.1. This expression becomes

(curl(curlX))k = gβ p(∇p∇kXβ )−gα p(∇p∇αXk)− (∇p∇αXβ )gαigβ jgpaψi jka

= (grad(divX))k +(∆dX [)k +(∇p∇αXβ )gpagαigβ jψai jk,

using (3.55) and (3.56). Thus to prove (3.60) the only thing we have to show that

the last term vanishes. By the skew-symmetry of ψai jk, we can write the last term as

follows:

(∇p∇αXβ )g
pagαigβ j

ψai jk = 1
2(∇p∇αXβ −∇α∇pXβ )gpagαigβ jψai jk

= −1
2RpαβmgmnXngpagαigβ jψai jk = 0,

using (3.54) and (3.57).

We have the next lemma that states the relation between the projections of space of

3-forms into submodules and curl, which follows from [16].

Lemma 3.6.3 Let X be a vector field, and consider the form X ϕ ∈ ∧2
7. Then

π1
(
d(X ϕ)

)
=−3

7
(d∗X)ϕ, π7

(
d(X ϕ)

)
=

1
2
∗
(
(curlX)∧ϕ

)
. (3.61)

Proof. According to [16], we have

π1(d(X ϕ)) = hϕ for some h ∈ ∧0
1.

Using the fact that ∧3
7⊕∧3

27 lies in the kernel of wedge product with ψ , we compute

d((X ϕ)∧ψ) = d(X ϕ)∧ψ = π1(d(X ϕ))∧ψ = hϕ ∧ψ = 7hvol .

Hence, we find that

d(3∗X) = d((X ϕ)∧ψ) = 7hvol,

and then h = 3
7 ∗d(∗X) =−3

7d∗X . Similarly, we have

π7(d(X ϕ)) = ∗(Y ∧ϕ) for some Y ∈ ∧1
7.

Using the fact that ∧3
1⊕∧3

27 lies in the kernel of wedge product with ϕ , we compute

d((X ϕ)∧ϕ) = d(X ϕ)∧ϕ = π7(d(X ϕ))∧ϕ = ∗(Y ∧ϕ)∧ϕ = −4∗Y.

Hence, we find that

−4∗Y = d((X ϕ)∧ϕ) = d(−2∗ (X ϕ)) = −2d(X ∧ψ) = −2(dX)∧ψ,
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and thus Y = 1
2 ∗ ((dX)∧ψ) = 1

2curlX [16].

We now consider the relation involving the 2-form dX , its projection onto the

7-dimensional submodule of the space of 2-forms and curl, which follows from [16].

Lemma 3.6.4 Consider the vector field X as a 1-form using the metric. Then dX ∈

∧2 = ∧2
7⊕∧2

14. The ∧2
7 component of dX is given by

π7(dX) =
1
3
(curlX) ϕ =

1
3
∗
(
(curlX)∧ψ

)
. (3.62)

Proof. According to [16], we have that π7(dX) =W ϕ for some vector field W . Then

by using the definition ∧2
7 and the curl, we have the following

curlX = ∗(dX ∧ψ)

= ∗(π7(dX)∧ψ)

= ∗((W ϕ)∧ψ)

= ∗(3∗W ) = 3W
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4. AN APPLICATION IN STRING THEORY

String theory is a theory of quantum gravity, which unifies quantum field theory with

Einstein’s theory of general relativity. The low energy limit of string theory is ten

dimensional supergravity theory, which is a supersymmetric theory of gravity. A

variant of string theory is M-theory, whose low energy limit is eleven dimensional

supergravity theory. As we live in a four dimensional space-time, one has to assume

that the extra seven dimensions are small and belong to a compact internal manifold.

Indeed, eleven dimensional supergravity has classical solutions of the form

M4×Y7

where M4 is four dimensional Minkowski space-time that we observe and Y7 is a

compact manifold. Related to this (type II) string theory has solutions of the form

R2,1×Y7. To have only one unbroken supersymmetry in four dimension requires that

the seven dimensional manifold Y7 must be of G2 holonomy. This follows from the

requirement of the existence of a parallel spinor field η , which plays the role of

generating supersymmetry transformations. Then one can construct a parallel 3-form

field out of this spinor field, as a spinor bilinear ϕabc = ηT Γabcη 1 and this 3-form field

indeed defines a G2 structure. From the fact that the 3-form field is parallel, it follows

that the internal manifold should have G2 holonomy.

These low energy, supergravity solutions acquire corrections from the quantum theory,

which we call α ′ corrections, for reasons which are not relevant to this thesis. All

we have to know is that these corrections imply that the spinor field, which generates

the supersymmetry transformations is not covariantly constant, any more. This in turn

means that the 3-form field constructed out of this spinor field is not parallel and hence

the internal manifold is not of G2 holonomy. Then it is natural to ask whether the

classical metric of G2 holonomy can be modified to compensate for these corrections.

In other words, is there a small deformation of the G2 metric, and hence of the G2

3-form, such that the deformed metric solves the equations to all orders in α ′? In this
1Γabc are products of Dirac matrices, which are the generators of an appropriate Clifford algebra.
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part of the thesis we will only consider α ′ corrections to first order and we follow

closely the paper [17].

Our goal is to find a globally-defined G2 structure φ ′ which is close to φ ,

φ
′ = φ +δφ (4.1)

where φ is the torsionless G2-structure, corresponding to the Ricci-flat metric that

solves the supergravity equations. The deformed metric g′, associated to the 3-form φ ′

is to solve the α ′-corrected equations of motion. The following theorem assures that

such a small perturbation of the original 3-form φ defining the G2 structure also yields

a G2-structure, which is given by Joyce [5]:

Theorem 4.1 Let ε1 > 0 be a universal constant such that whenever {φ ,g} is a

G2-structure on a 7 dimensional manifold.

If φ ′ ∈C∞(∧3T ∗M) and ‖φ ′−φ‖C0 ≤ ε1 then φ ′ ∈C∞(P3M).

So, φ ′ defines a G2-structure {φ ′,g′}.

We assume δφ is such that

‖φ ′−φ‖C0 = ‖δφ‖C0 ≤ ε1 (4.2)

We define the norm ‖ · ‖C0 on C0(M) by ‖ f‖C0 = supM | f |.

It can be shown that the equations for supersymmetry can be converted to the following

equations for φ ′ and its Hodge dual ψ ′ with respect to the deformed metric:

dφ
′ = α (4.3)

dψ
′ = β (4.4)

Here α = dχ and β = dξ can be calculated from physics and it can be shown that

they are exact forms, which is obviously a necessary condition for the existence of a

solution the the above system of partial differential equations. The aim of this section

is to show that this condition is sufficient and such a solution always exists.

We have the solution of the first equation

φ
′ = φ +χ +db (4.5)

where b is a two form.

For the second equation we have for the dual four form ψ ′ = ∗′φ ′

dψ
′ = d ∗ (4

3
π1 +π7−π27(χ +db) (4.6)
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Here π1,π7,π27 are the projections of three forms onto ∧3
1,∧3

7,∧3
27 We have that

∗′φ ′ ' ∗(4
3

π1 +π7−π27)(χ +db)

Then we have

∗(d ∗ (4
3

π1 +π7−π27)(χ +db)) = ∗dξ (4.7)

This is the linearization, from [12], of the ∗′ operator as can be seen from the following

Proposition 4.2 Let ε1 be as in the Theorem 4.1. Then there exists constants ε2,ε3 > 0

such that whenever M is a 7-manifold and (ϕ,g) a G2-structure on M with dϕ = 0 then

the following is true. Suppose χ ∈C∞(∧3T ∗M) and |χ| ≤ ε1. Then ϕ +χ ∈C∞(P3M)

and θ(ϕ,χ) is given by

θ(ϕ,χ) = ∗ϕ +
4
3
∗π1(χ)+∗π7(χ)−∗π27(χ)−F(χ)

= ∗ϕ +
7
3
∗π1(χ)+2∗π7(χ)−∗χ−F(χ)

where F is a smooth function from the closed ball of radius ε1 in ∧3T ∗M to ∧4T ∗M

with F(0) = 0.

Applying (4.7) we have

∗(d ∗ (4
3

π1 +π7−π27))db = ∗dξ −∗d ∗ (4
3

π1 +π7−π27)χ

−d†(
4
3

π1 +π7−π27)db = d†(−∗ξ +(
4
3

π1 +π7−π27)χ)

Thus, we have an equation for b

d†(π27−π7−
4
3

π1)db = d†
ρ, ρ =−∗ξ − (π27−π7−

4
3

π1)χ (4.8)

Here d† =−∗d∗.

We want to understand whether this equation has a solution for b or not. Our aim is to

convert this equation to a Laplacian equation for b.

∆b = d†ρ under the assumption that d†b = 0 where ∆ = dd† +d†d.

Putting the equation in that form ensures that we can always solve for b. A coexact

form is orthogonal to all harmonic forms by Hodge decomposition theorem. Our claim

is that

d†(π27−π7−
4
3

π1)db = d†(π27 +π7 +π1)db = d†db = ∆b (4.9)

In order to show it, first we prove
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• b ∈ ∧2
14

• π7(db) = 0

• π1(db) = 0

First, let ϕ be a torsion-free G2-structure and define η = d(X ϕ), by using the

definition of ∧2
7, for some vector field X . We claim that

d(∗(4
3

π1η +π7η−π27η)) = 0

From Lemma 3.6.3 we find

4
3
∗π1η +∗π7η−∗π27η =

7
3
∗π1η +2∗π7η−∗η (4.10)

= −(d∗X)ψ +(curlX)∧ϕ−∗η . (4.11)

Hence we have

d(∗(4
3

π1η +π7η−π27η)) =−(dd∗X)∧ψ +(dcurlX)∧ϕ−d ∗η . (4.12)

and we use Definition 3.6.1, the third term above can be rewritten as

−d ∗η =−d ∗d(X ϕ) = −d ∗d ∗ (X ∧ψ)

= dd∗(X ∧ψ)

= (∆−d∗d)(X ∧ψ)

= (∆X)∧ψ−d∗
(
(dX)∧ψ

)
= (∆X)∧ψ−d∗(∗curlX)

= (∆X)∧ψ−∗(dcurlX).

Substituting the above into (4.12) and using the definitions of ∧2
7 and ∧2

14, we obtain

d(∗(4
3

π1η +π7η−π27η)) = −(dd∗X)∧ψ +
(
−2∗π7(dcurlX)+∗π14(dcurlX)

)
+(∆X)∧ψ−

(
∗π7(dcurlX)+∗π14(dcurlX)

)
= (d∗dX)∧ψ−3∗π7(dcurlX).

Applying Lemma 3.6.4 to the last equation (for the vector field curlX), we obtain

d(∗(4
3

π1η +π7η−π27η)) = (d∗dX)∧ψ− (curlcurlX)∧ψ.
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The right hand side above vanishes by curl(curlX) = d∗dX for any vextor field X by

Proposition 3.6.2. It means that b ∈ ∧2
14.

Now, we will show that π1(db) = 0 if b ∈ ∧2
14.

Since b ∈ ∧2
14, then ∗ϕ ∧b = 0. Taking derivative of boths sides we get

d(∗ϕ ∧b) = d ∗ϕ ∧b+∗ϕ ∧db = 0

Since ϕ is a G2 structure then d ∗ϕ = 0. Then ∗ϕ ∧db = 0

Since db is a 3-form, we have

∗ϕ ∧ (π1(db)+π7(db)+π27(db)) = 0 (4.13)

∗ϕ ∧π1(db)+∗ϕ ∧π7(db)+∗ϕ ∧π27(db) = 0 (4.14)

Now ,we know that π7(db) = ∗(ϕ ∧α) where α ∈ ∧1
7. Also,

∗ϕ ∧π7(db) = ∗ϕ ∧∗(ϕ ∧α) = 0 (4.15)

by (3.21)

Also ∗ϕ ∧π27(db) = 0 by the definiton of ∧3
27. Thus,

∗ϕ ∧π1(db) = 0 (4.16)

by the definition of ∧3
1 we write π1(db) = f ϕ where f ∈C∞(M)). f ∗ϕ ∧ϕ = 0 then

f vol = 0⇔ f = 0. Thus, π1(db) = 0, as claimed.

Now, we will show that π7(db) = 0 because d†b = 0.

Since b ∈ ∧2
14, then ∗ϕ ∧ b = 0.We have ∗ϕ ∧ db = 0 as above. Also, b ∈ ∧2

14, then

∗(ϕ ∧b) =−b. Taking d† of both sides we have

d†(∗(ϕ ∧b)) =−d†b = 0 by the assumption d†b = 0.

−∗d ∗2 (ϕ ∧b) = ∗d(ϕ ∧b) = ∗(dϕ ∧b)+∗(ϕ ∧db) = 0 (4.17)

by using dϕ = 0 we have ∗(ϕ ∧db) = 0. Also (ϕ ∧db) = 0.

Using the facts that ∗ϕ ∧ db = 0 and (ϕ ∧ db) = 0 we conclude that db ∈ ∧3
27. Then,

π7(db) = 0.

Then we have showed that the equation (4.9) for b takes the simple form d†db = ∆b =

d†ρ which always has a solution by Hodge decomposition theorem.

The above analysis shows that the system of equations (4.3) and (4.4) always has a
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solution, for given exact forms α and β , determined by physics. This in turn proves

our claim: the G2 holonomy metric of the supergravity solution can be corrected to a

metric of G2 structure, which solves the α
′
corrected equations of motion of the string

theory.
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5. CONCLUSION

The purpose of this thesis is to study the differential geometric properties of manifolds

with G2-structure, with a special emphasis on the torsion forms.

Firstly, we studied various equivalent definitions of G2. We investigate conditions for

the existence of a G2-structure. Also, we consider the properties of a G2-structure and

a G2-manifold. Then, we described the decomposition of each space of k forms into

irreducible G2 representations. Afterwards, using the decomposition of the spaces of

differential forms we decompose dφ , d ∗ φ into irreducible G2 representations. This

led us to introducing the torsion forms for G2 structures. As we studied in detail in

the thesis, a G2 structure is parallel if and only if all the torsion forms vanish. Hence,

torsion forms are an important tool in studying manifolds with G2 structure, but not

of G2 holonomy. Since our aim is to study such manifolds, we studied in detail some

important properties satisfied by the torsion forms.

Recently, manifolds of G2 structure, rather than G2 holonomy, has found important

applications in string theory. As one such application, we investigated if a metric of G2

holonomy can be modified to compensate for α ′ corrections or equivalently if there is

a perturbation of the associative 3-form φ such that the corresponding metric g′ solves

the α ′ corrected equations of the quantum theory. This led us to the investigation of

the existence of a coupled system of partial differential equations for φ ′, and its Hodge

dual (with respect to g′) where the source terms are determined by physics, and are

related to the torsion forms of the G2 structure φ ′. Then, by analyzing this system of

equations, we showed that the G2 holonomy metric of the supergravity solution can

be corrected to a metric of G2 structure, which solves the α
′

corrected equations of

motion of the string theory.
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APPENDIX A.1

We have the following Lemma that gives the relations between the contractions and
the wedge product.
By [14], we have that

∗2 = (−1)k(n−k) (A.1)

on k-forms. We also have ∗2 = 1. Suppose v is a vector field and α is a k-form.

Lemma 1.0.1 According to [14], we have the following four identities :

∗(w α) = (−1)k+1(w[∧∗α) (A.2)

(w α) = (−1)nk+n ∗ (w[∧∗α) (A.3)

∗(w ∗α) = (−1)nk+n+1(w[∧α) (A.4)

(w ∗α) = (−1)k ∗ (w[∧α) (A.5)

and when α = vol, the special case

w vol = ∗w[ (A.6)

Proof. According to [14], we have

〈β ,w α〉vol = β ∧∗(w α)

= (w α)(β ])vol
= α(w∧β

])vol

=
〈

α,w[∧β

〉
vol

= (w[∧β )∧∗α
= (−1)k−1

β ∧ (w[∧α)

Since β is arbitrary, (A.2) follows. Substituting ∗α for α and using (A.1), we obtain
(A.4). The other two are obtained by taking ∗ of both sides of the first two identities.

We have the following relations involving the 3-form, its Hodge dual 4-form, metric
dual 1-forms and Hodge star, which follows from [7],

Proposition 1.0.2 Let α be a 1-form on M, let w be a vector field on M, and
w[ be the 1-form dual to w. Then the following relations hold:

1. |ϕ|2 = 7

2. |ψ|2 = 7

3. |ϕ ∧α|2 = 4|α|2

4. |ψ ∧α|2 = 3|α|2
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5. ∗(ϕ ∧∗(ϕ ∧α)) =−4α

6. ∗(ψ ∧∗(ψ ∧α)) = 3α

7. ψ ∧∗(ϕ ∧α) = 0

8. ϕ ∧∗(ψ ∧α) =−2ψ ∧α

9. ∗(ϕ ∧w[) = w ψ

10. ∗(ψ ∧w[) = w ϕ

11. ϕ ∧ (w ϕ) =−2∗ (w ϕ)

12. ψ ∧ (w ϕ) = 3∗w[

13. ϕ ∧ (w ψ) =−4∗w[

14. ψ ∧ (w ψ) = 0

Proof. According to [14], for (1), using (A.4) and (A.5) we start by necessarily zero
eight form

0 = w[∧α ∧∗α = w (w[∧α ∧∗α)

= |w|2α ∧∗α−w[∧ (w α)∧∗α +(−1)k+1w[∧α ∧ (w ∗α)

= |w|2|α|2vol− (w α)∧∗(w α)− (w ∗α)∧∗(w ∗α)

= |w|2|α|2vol−|w α|2vol−|w ∗α|2vol

We have |w|2|α|2 = |w α|2 + |w ∗α|2.
Now, we write

|ϕ|2|α|2 = |ψ α|2 + |ϕ α|2 = 3|α|2 +4|α|2 = 7|α|2

|ϕ|2 = 7

Similarly, for (2) we write

|ψ|2|α|2 = |ψ α|2 + |ϕ α|2 = 4|α|2 +3|α|2 = 7|α|2

|ψ|2 = 7

For (5), let α = α1dx1 be a one form.

ϕ ∧α = α1(−dx5271−dx5631 +dx4261 +dx4371)

∗(ϕ ∧α) = α1(−dx364−dx274 +dx375 +dx265)

ϕ ∧∗(ϕ ∧α) = α1(−dx527364−dx563274 +dx426375 +dx437265)

∗(ϕ ∧∗(ϕ ∧α)) = 4α1dx1 = 4α

For (7), ∗ϕ ∧∗(ϕ ∧α) = α10 = 0

For (8),

∗ϕ ∧α = α1(dx45671−dx45231 +dx26371)

∗(∗ϕ ∧α) = −α1(dx23−dx67 +dx45)

ϕ ∧∗(∗ϕ ∧α) = −2α1(dx26371−dx45231 +dx45671) =−2(ψ ∧α)
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For (3), we have from (5) (ϕ ∧∗(ϕ ∧α)) =−4∗α

(ϕ ∧α)∧∗(ϕ ∧α) = −4α ∧∗α
= −|ϕ ∧α|2vol
= −4|α|2vol

Therefore, |ϕ ∧α|2 = 4|α|2.

For (6),

∗(ψ ∧∗(ψ ∧α)) = ∗(α1(dx456723 +dx452367 +dx263745))

= α1(dx1 +dx1 +dx1) = 3α

For (4), we have from (6) ψ ∧∗(ψ ∧α) = 3∗α

α ∧ψ ∧∗(ψ ∧α) = 3α ∧∗α
|ψ ∧α|2vol = 3|α|2vol

Therefore, |ψ ∧α|2 = 3|α|2. For (9), we have from (A.5)

w ψ =−∗ (w[∧ϕ) = ∗(ϕ ∧w[)

Thus, w ψ = ∗(ϕ ∧w[).

For (10), by using (A.3), we have ∗(ψ ∧w[) = w ϕ .

For (12), from (6) we have ψ ∧∗(ψ ∧α) = 3 ∗α If we set α = w[, then by (10) we
have ∗(ψ ∧α) = w ϕ . Plugging into the first equation we have

ψ ∧ (w ϕ) = 3∗w[

For (14), from (7) we have ψ ∧∗(ϕ ∧α) = 0. But here
∗(ϕ ∧α) = ∗(ϕ ∧w[) = w ψ from (9). Thus ψ ∧ (w ψ) = 0.

For (11), from (8) we have ϕ ∧∗(ψ ∧w[) =−2ψ ∧w[.
Also by (10) we have,

∗(ψ ∧w[) = w ϕ

So, −2∗ (ψ ϕ) = ϕ ∧ (w ϕ).

Finally, for (13) we use (5) (ϕ ∧∗(ϕ ∧w[)) =−4∗w[ and (A.5)

ϕ ∧ (w ψ) =−4∗w[

We have the next lemma of the G2-structure, which follows from [7].

Lemma 1.0.3 The metric g, cross product ×, and 3-form ϕ satisfy the following
relations:

g(u× v,w) = ϕ(u,v,w) (A.7)

(u× v)[ = v u ϕ = ∗(u[∧ v[∧ψ) (A.8)

u× (v×w) = −g(u,v)w+g(u,w)v− (u v w ψ)] (A.9)
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where u,v,w are vector fields and v[ denotes the 1-form which is metric dual to v.

Proof. Let u and v be vector fields on M. According to [14], the cross product u× v
is a vector field on M whose associated 1-form under the metric isomorphism satisfies
the following:

(u× v)[ = v u ϕ (A.10)

From this, we have the relation between ×, ϕ , and the metric g:

g(u× v,w) = (u× v)[(w) = w v u ϕ = ϕ(u,v,w). (A.11)

Another characterization of the cross product can be obtained from this one using
Lemma 1.0.1:

(u× v)[ = v u ϕ (A.12)

= −∗ (v[∧∗(u ϕ))

= −∗ (v[∧u[∧∗ϕ)
= ∗(u[∧ v[∧∗ϕ)

For the last one, from (A.12), we have

(u× (v×w))[ = ∗
(

u[∧∗
(

v[∧w[∧∗ϕ
)
∧∗ϕ

)
Now since β ∧ ∗ϕ = 0 for β ∈ ∧2

14, we can replace v[ ∧ w[ by π7(v[ ∧ w[) =
1
3

(
v[∧w[−∗

(
ϕ ∧ v[∧w[

))
. Then using (3.37), we have

∗
(

π7(v[∧w[)∧∗ϕ
)
∧∗ϕ = 3∗π7(v[∧w[)

= ∗
(

v[∧w[−∗
(

ϕ ∧ v[∧w[
))

= ∗
(

v[∧w[+ v w ∗ϕ
)

which we substitute back to obtain

(u× (v×w))[ = ∗
(

u[∧∗
(

v[∧w[+ v w ∗ϕ
))

= −u
(

v[∧w[+ v w ∗ϕ
)

= −g(u,v)w[+g(u,w)v[−u v w ∗ϕ
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