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G, STRUCTURES WITH TORSION AND
SOME APPLICATIONS IN STRING THEORY

SUMMARY

A Gy-structure can be defined on any seven dimensional smooth manifold M as a
reduction of the structure group of the frame bundle of M to the compact, exceptional
Lie group G;. The Lie group G, can be described as the subgroup of the general linear
group GL(7,R) which preserves a positive 3-form ¢, called the associative form. The
Hodge dual, y = ¢ which is a 4-form, is called the coassociative form. y depends
on ¢ nonlinearly, as the metric with respect to which the Hodge duality is defined, is
also determined by the 3-form ¢.

G, manifolds are manifolds with G, holonomy. This is a further differential geometric
condition imposed on the 3-form ¢. More precisely ¢ has to be parallel with respect
to the Levi-Civita connection. It is known that if M is a G;-manifold, then M is a
Ricci-flat, orientable, spin manifold.

Manifolds with G, holonomy are important in physics, especially in string theory.
Recently, manifolds with G,-structure, rather than G,-holonomy has found interesting
applications in string theory. In this case, the associative 3-form ¢ and its Hodge dual
v are not necessarily parallel. And the tool that measures how far they are from being
parallel is given by the torsion classes of the G,-structure.

The aim of this thesis is to study the differential geometric properties of manifolds with
G,-structure. We are particularly interested in the case when we have just G,-structure
rather than G, holonomy. Hence, we study in detail the description of the torsion
classes of a given G,-structure. We also study an application in string theory.

The outline of this thesis is as follows. We start by a preliminary chapter in differential
geometry and algebra reviewing the topics which are essential for the rest of the
thesis. In the following chapter, we start describing the G,-structures. First, we
construct the associative 3-form via the octonions. Then, we consider the properties of
a Gh-structure and a Gp-manifold. After that, we see the relation between the metric,
cross product and the associative 3-form. Then, we describe the decomposition of each
space of k forms into irreducible G; representations. Afterwards, we decompose d¢@,
d x ¢ into irreducible G, representations, which defines the torsion forms for us. By
considering these torsion forms we see their relation to the concept of being torsion
free ¢. In the last chapter, we consider an application of G;-structures in string theory.
We start with a classical solution of ten dimensional supergravity of the form R, | x Y7
where Y7 is a G, manifold. Then we ask if the metric of G, holonomy can be modified
to compensate for quantum corrections, which are callled o corrections. Equivalently
we ask, if there is a small deformation ¢’ = ¢ + 8 ¢ of the associative 3-form ¢ such that
the corresponding metric g’ solves the o corrected equations of the quantum theory.
This amounts to analyzing the existence of a coupled system of partial differential
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equations for ¢, and its Hodge dual (with respect to g’) where the source terms are
determined by physics, and are related to the torsion forms of the G, structure ¢'. We
show that such a solution always exists.
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BURULMALI G, YAPILARI VE
BAZI SICIM TEORIiSI UYGULAMALARI

OZET

G»-yapist diizgiin bir manifold iizerinde tamimlanabilir. Eger M diizgiin 7 boyutlu bir
manifold ise G;-yapisi, ¢cerceve demetinin yap1 grubunun kompakt, istisnai Lie grubu
G, ye indirgenmesidir. G, grubu bes istisnai Lie grubundan biridir. Bununla birlikte,
oktanyonlarin otomorfizm grubu olarak ya da genel lineer grup GL(7,R)’ nin pozitif
3-formu koruyan bir alt grubu olarak da tanimlanabilir. Bu 3-formun duali y = ¢
seklinde olup, ¢’ye nonlineer bir bicimde baglidir. Bir M manifoldunun G, yapisina
sahip olmasinin iki denk kosulu vardir. Birinci ve ikinci Stiefel-Whitney siniflarinin
sifirlanmasi ya da buna denk olarak M manifoldunun yonlendirilebilir ve spin yapisina
sahip olmasi gerekir.

G, manifoldlar1 ise G, holonomisi olan manifoldlardir. Bu, pozitif 3-form ¢ iizerine
diferansiyel geometrik bir kosuldur. Bu kosul, @’nin Levi-Civita konneksiyonuna gore
paralel olmasidir. Bunun i¢in, V@ = 0 kosulu ancak ve ancak d¢ = d * ¢ = 0 olmasi ile
saglanir. Metrik de bu G, yapistyla tammmlanmaktadir. M manifoldunun G;-manifoldu
olabilmesi i¢in Ricci diiz, yonlendirilebilir ve spin bir manifold olmas1 gerekir [1].
G, holonomisi olan manifoldlar ilk defa 1966 yilinda Edmond Bonan tarafindan
bulunmustur. Paralel 3-form ve paralel 4-formu ingaa etmis ve bu manifoldlarin Ricci
diiz oldugunu gostermistir [2]. G, holonomisi olan 7 boyutlu tam ancak kompakt
olmayan manifoldlar ilk kez Robert Bryant ve Salamon tarafindan 1989 yilinda
bulunmustur [3,4]. G> holonomisi olan 7 boyutlu kompakt manifoldlar ise ilk kez
Dominic Joyce tarafindan 1994 yilinda bulunmustur [5]. Ozellikle fizik literatiiriinde
kompakt G, manifoldlar1 Joyce manifoldlar: olarak da anilir.

G> holonomisi olan manifoldlar fizikte ozellikle sicim kuraminda biiyiik bir dneme
sahiptir. Son zamanlarda, G, holonomisinden ziyade G, yapis1 olan manifoldlar, sicim
kurami1 uygulamalarinda daha ¢ok 6nem kazanmistir. Bu durumda, pozitif 3-form ¢
ve onun Hodge duali olan y paralel olmak zorunda degildir. Ve bunlarin paralellikten
ne kadar uzak olduklarini 6l¢gen yapiya G, yapisinin burulma siniflart adi verilir. Biz
bu burulma siniflarinin tanim ve 6zelliklerini inceleyecek ve sicim kuramindaki bir
uygulamasini ¢alisacagiz.

Bu tez caligmasinin temel amaci, G, yapist olan manifoldlarin diferansiyel geometrik
ozelliklerini incelemektir. ~ Ozellikle G, holonomisinden ziyade G, yapist olan
manifoldlar1 incelemektir. G, yapisinin burulma siniflar1 tizerinde detaylica durmak
ve bunlarin sicim kuramina uygulamalarini incelemeyi hedeflemekteyiz.

Bu tez 4 ayn boliimden olusmakta olup, birinci boliimde bu tez boyunca gerekli
olacak bazi cebirsel ve diferansiyel geometrik kavramlarin tanimlar1 incelenmektedir.
IIk olarak, Diferansiyel Geometri alt boliimiinde diferansiyel manifoldlarm genel
tanimu1 verildikten sonra tanjant ve kotanjant uzaylarinin tanimlart verilmistir. Tanjant
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ve kotanjant demetinin tanimlar1 ve r-kovaryant tensor vasitasiyla dig ¢arpim cebiri
tanimlanmig olup bunlarin elemanlarinin ise diferansiyel formlar oldugu belirtilmistir.
Dis carpimin bazi ozellikleri verilmistir. Diferansiyel formlarin lokal koordinatlarda
gosterimi verilmistir. Riemann metrigi tamimlandiktan sonra lokal koordinatlarda
yazilmigti. Bu metrik yardimiyla M iizerindeki voliim formu ve Hodge yildiz
operatorii * lokal olarak tanimlanmugtir.  Affin konneksiyonun tanimi verilerek
bunun {izerinden paralel tasima ve holonomi kavramlari incelenmigtir.  Kisith
holonomi grubunun tanimi verilmigstir. Metrik uyumlu ve burulmasiz olan yegane
affin konneksiyonu Levi-Civita konneksiyonu, Riemann egriligi ile bu alt boliim
sonlandirilmisgtir.  Cebirsel temel kavramlarin incelendigi ikinci alt boliim, normlu
bolim cebirlerinin ve vektor carpiminin tanimlari ile baglamaktadir. Boyutlar
sirastyla 1, 2, 4, 8 olan R, C, H, O disinda normlu boliim cebirlerinin olmadigi
vurgulanmigtir.  Daha sonra R*’teki iki vektoriin vektor carpimu ile kuaterniyon
carpimu iliskilendirilmistir. Aym sekilde R”’de bu durumun oktanyon carpimi ile
iligkilendirildigi belirtilmis olup bu ¢arpimlarin 6zellikleri incelenmistir. Oktanyonlar
yardimiyla tanimlanan yeni vektor carprmimin ayn1 R3’teki vektor carpimi gibi

UXv=—vxu, (uxvuy =0, || xv|[> = |JuAv]]?,
ozelliklerine sahip oldugu goriilmiistiir. Ancak,
ux (vxw)+ (u,v)w— (u,w)v

ifadesi R3’te oldugu gibi sifirlanmamisti. Bu, R7’de vektor carpimimin birlesme
ozelligine sahip olmadigini gosterir.

Ikinci boliimde, G, yapist olan manifoldlar incelenmistir. Oncelikle 3-form, voliim
form ve 4-formun oktanyonlar tizerinden Cayley-Dickson prosesi ile nasil tanimlandig:
gosterilmigtir.  Daha sonra G, yapisinin ve G grubunun tanimi verilmistir. Gj
yapisinin genel ozellikleri verilmistir. G, yapisi olan bir manifoldun metrik, vektor
carpim ve 3-form arasindaki

o(u,v,w) = (uxv,w).

iliskiye sahip oldugu belirtilmisti. Daha sonra (¢,g) G yapisimin burulmasi
V¢ olarak tanimlanmis olup, bu yapinin burulmasiz olmasi i¢in V¢ = 0 olmasi
gerektigi belirtilmistir. 7 boyutlu bir manifoldun G, yapisina sahip olabilmesi
icin yonlendirilebilir ve spin olmasi gerekigi buna denk olarak da birinci ve ikinci
Stiefel-Whitney siniflarinin sifirlanmasi gerektigi vurgulanmistir.  Holonomi, G»>
yapisin burulmasiz olmasi ve 3-form ile 4-formun paralel olmasiyla ilgili iligkiler
verilerek bu alt boliim sonlandirilmagtir.

Sonraki alt bolimde ise metrik, 3-form ve vektdr carpim arasindaki iligkiler
incelenmigtir. Bu tez boyunca kullanilacak olan bazi temel 6zellikler ve iligkiler
verilmis olup bunlarin yanisira lokal koordinatlardaki gosterimleri de detaylica
incelenmistir. Vektor alanlarinin dig ¢arpimi, vektor carpimi ve 4-form arasindaki
iligki verilmistir. @, g ve voliim form arasindaki genel iligki incelenmigtir. Ayni iligki
lokal koordinatlarda detaylica incelenmistir. Bu kavramlarin birlikte kullanildig1 diger
esitlikler ve iligkiler incelenmistir.

Bir sonraki alt bolimde 3-form ¢ ve onun duali olan 4-form y’nin birlikte
bulundugu esitlikler incelenmistir. 3-form ¢ ve onun duali olan 4-form y lokal
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koordinatlarda gosterilmistir. Metrik, vektor carpim ve 3-form arasindaki iligkilerden
ve kovaryant tiirevden yararlanilarak 3-form ve 4-form arasindaki iligkiler ve 6zellikler
belirlenmigtir. Sadece 3-form ¢ ve metrik g iceren esitlikler incelenmisgtir. Son olarak
yalnizca 4-form y ve metrik g iceren esitlikler tizerinde durulmustur. Bunlar lokal
koordinatlarda detaylica incelenmistir. Bir sonraki adim olarak, 3-form ¢, 4-form
¥’ nin kovaryant tiirevlerini iceren esitlikler verilmisgtir.

Sonraki alt boliimde k-formlarmm uzaymin indirgenemez ve ortogonal G, tem-
sillemelerine ayrilmasi incelenmistir. 2-formlarin uzay1 7 ve 14 boyutlu ortogonal
alt modiillere ayrilmistir. Bunun Hodge duali olan 5-formlarin uzay: da aym sekilde
7 ve 14 boyutlu alt modiillere ayrilmigtir. 3-formlarin uzayr ve onun Hodge duali
olan 4-formlarin uzayi ise 1, 7, 27 boyutlu alt modiillere ayrilmigtir. 3-form ¢’nin
ozelliklerinden ve daha dnce hesaplanan G, iligkilerinden yararlanilarak her bir alt
modiil ayr1 ayr tanimlanmigtir. Daha fazla 6zelliklerinin incelenmesi i¢in 3-formlarin
uzayr kullanilarak simetrik bir tensor tanimlanmis ve bununla 3-formlarin uzayi
arasindaki iligkiler irdelenmistir. Boylece 3-formlarin uzayinin 27 boyutlu alt modiilii
icin yeni bir tamim elde edilmistir. Daha sonra, paralel olmayan 3-form ve onun Hodge
duali olan paralel olmayan 4-form alinmistir. d¢@’nin 4 formlarin uzayima ve dy’nin
5 formlarin uzayina ait oldugu ve bu uzaylarin alt modiillere ayrilmasi gibi d¢ ve
dy’nin de alt modiillere ayristig1 elde eldilmistir. Bu ayrisma sonucu burulma siiflar
elde edilmistir.

dp = THY+3TIAQ+*T3
dy = AT \Ny+x*D

Burada d¢ ve dy ifadelerinde ad1 gecen 7;’in aynmi oldugu ispatlanmistir. Burulma
simiflarinin genel ozellikleri incelendikten sonra kovaryant tiirev yardimiyla tam
burulma tensorii tanimlanmigtir.  Bu tensoriin simetrik ve simetrik olmayan
kistmlarinin sirasiyla 7y, 73 ve 71, 7> cinsinden yazilabildigini elde edilmigtir. Ayrica
bu tensoriin, burulma siniflar1 cinsinden yazilmasi gibi her bir burulma sinifinin da
bu tensoriin simetrik ya da simetrik olmayan bdliimleri cinsinden yazildigini elde
edilmistir.

Bu boliimiin son kisminda ise sicim teorisi uygulamalarinda kullanilmak {izere curl,
div, grad gibi baz1 diferansiyel geometrik operatorler tanimlanmis olup G, yapil
manifoldlar iizerinde sagladig1 baz1 6zellikleri verilmistir.

Son boéliimde ise G,-yapilarinin sicim kuramina uygulanmasi incelenmistir. Bunun
icin, on boyutlu siiper kiitle c¢ekimi denklemlerinin klasik bir ¢oziimi ele
alinmigtir.  Daha sonra, G, holonomisinin metriginin kuantum diizeltmelerini
saglamak iizere degistirilebilme durumu arastirilmistir. Buna denk olarak, 3-form
¢’ye bir pertiirbasyon uygulanarak elde edilen yeni metrigin, diizeltilmis kuantum
denklemlerini ¢6zebilme durumu arastirilmistir. Bu da bizi yeni olusturulmus (]), ve
onun Hodge duali l/// tarafindan olusturulan kismi diferansiyel denklem sisteminin
varligini aragtirmaya yonlendirmistir. Bu sistemin ¢6ziimiiniin, baz1 sartlar altinda her
zaman var oldugu gosterilmistir.
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1. INTRODUCTION

A Gy-structure can be defined on any seven dimensional smooth manifold M as a
reduction of the structure group of the frame bundle of M to the compact, exceptional
Lie group G,. The group G is one of the five exceptional Lie groups. It can
be described as the automorphism group of the octonions, or as the subgroup of
the general linear group GL(7,R) which preserves a positive 3-form ¢, called the
associative form. The Hodge dual y = x¢ which is a 4-form, is called the coassociative
form. M admits a G,-structure if and only if the first and second Stiefel-Whitney

classes of M vanish. Equivalently, M is orientable and admits a spin structure [1].

G, manifolds are manifolds with G, holonomy. This is a further differential geometric
condition imposed on the 3-form ¢. More precisely ¢ has to be parallel with respect
to the Levi-Civita connection. The metric is also given via the G,-structure as will be
described in the main body of the thesis. It can be shown that ¢ is parallel, namely
Vo =0 if and only if dp = d @ = 0. It is known that if M is a G>-manifold, then
M is a Ricci-flat, orientable, spin manifold [1]. Manifolds with G, holonomy were
first introduced by Edmond Bonan in 1966 [2]. He constructed the parallel 3-form, the
parallel 4-form and showed that these manifolds are Ricci-flat. The first complete, but
noncompact 7-dimensional manifolds with G, holonomy were constructed by Robert
Bryant and Salamon in 1989. The first compact 7-dimensional manifolds with G,
holonomy were constructed by Dominic Joyce in 1994 [5], and compact G, manifolds
are sometimes known as "Joyce manifolds", especially in the physics literature.

Manifolds with G, holonomy are important in physics, especially in string theory.
They break the original supersymmetry to % of the original amount. Also they
are models for the extra dimension in M-theory. They also play a role in particle
physics, especially the standard model of particle physics. Recently, manifolds with
G»-structure, rather than G,-holonomy has found interesting applications in string

theory. In this case, the associative 3-form ¢ and its Hodge dual y are not necessarily



parallel. And the tool that measures how far they are from being parallel is given by

the torsion classes of the G,-structure.

The aim of this thesis is to study the differential geometric properties of manifolds of
G»-structure. We are particularly interested in the case when we have just G,-structure
rather than G, holonomy. Hence, we study in detail the description of the torsion

classes of a given G;-structure. We also study an application in string theory.

The outline of this thesis is as follows. We start by a preliminary chapter in differential
geometry and algebra reviewing briefly the topics which are essential for the rest
of the thesis. Firstly, in the Differential Geometry section we review some basic
concepts such as a differentiable manifolds, Riemannian metric and then we write
differential forms, interior product, Hodge star operator and some useful concepts
in local coordinates. Secondly, in the Algebra section we start by the definition of
the normed division algebra. Using the quaternion multiplication we define the cross
product of two vectors in R3. We use this concept to generate cross product on R’
via octonions. Then, we state the properties of cross products on R3 and R7. We
also give the multiplication table of the octonion product. In chapter 2, we study
G»-structures. We construct the 3-form and its dual 4-form via the octonions. Then,
we state the relations between a metric, cross product and 3-form. We use the wedge
product, interior product and covariant derivate to get some useful relations. Secondly,
we consider the equalities involving contractions of ¢ and y. Then we study the
decomposition of the space of k-forms into irreducible G, representations. For each
k, the space of k-forms decomposes as a direct sum of submodules, each of which
is invariant under the action of G,. Also, these submodules are orthogonal to each
other with respect to the metric determined by ¢. Next, using the decomposition
of the spaces of differential forms we decompose d¢ and d * ¢ into irreducible G,
representations. Then, this defines the torsion forms. By considering these torsion
forms we see their relation to the concept of being torsion free ¢. After that, we
define the full torsion tensor and we see some identities involving it. Lastly, in this
section we define some useful operators like curl, div, grad on G;-manifolds which
are useful in the application in string theory. In the last chapter, we consider an
application of G,-structures in string theory. We start with a classical solution of ten

dimensional supergravity of the form R; | X Y7 where Y 7 is a G, manifold. Then we ask



if the metric of G, holonomy can be modified to compensate for quantum corrections,
which are callled o’ corrections. Equivalently we ask, if there is a small deformation
0’ = ¢ + 8¢ of the associative 3-form ¢ such that the corresponding metric g’ solves
the o’ corrected equations of the quantum theory. This amounts to analyzing the
existence of a coupled system of partial differential equations for ¢’, and its Hodge
dual (with respect to g’) where the source terms are determined by physics, and are
related to the torsion forms of the G; structure ¢’. We show that such a solution always

exists.






2. PRELIMINARIES

2.1 Preliminaries in Differential Geometry

In this section, we briefly review some basic concepts in differential geometry which

we will need in this thesis.

Definition 2.1.1 A differentiable manifold of dimension n is a set M and a family of
injective mappings

xXg Uy CR" — M of open sets Uy of R" into M such that:

1. Ugxa(Ug) =M

2. for any pair o, B with x¢(Ug) ﬂxB(Uﬁ) =W # O, the sets x&l(W) and xEI(W)

are open sets in R" and the mappings xlgl oxy are differentiable.

3. The family {(Uq,xo)} is maximal relative to the conditions above.

The pair (Ug,Xxq) with p € xq(Ug) is called a parametrization of M at p; x¢(Uq)
is then called a coordinate neighborhood at p. A family {(Uy,X)} satisfying the

conditions is called a differentiable structure on M [6].

Definition 2.1.2 The tangent space T,(M) at the point p is a vector space spanned by
the basis e; = 5 -

A tangent vector v can be written as v = V'e;. A tangent vector at p is the tangent vector

att =0 of some curve a : (—¢€,€) — M with o.(0) = p.

Definition 2.1.3 The cotangent space T, (M) at the point p is a vector space of linear
maps

o:T,(M) =R v (a,v)
spanned by the basis w' = dx'.

(ei,wl) = &/

This basis is dual to the basis e; in the sense that



Definition 2.1.4 The tangent bundle TM is the disjoint union of the tangent spaces
T,(M), for all p € M.

TM={(p,v);peM,veT,(M)}

The cotangent bundle T*M is the disjoint union of the cotangent spaces le‘ (M), for all
pEM.
T*M = {(p,w);p € M,w € T, (M)} @2.1)

The tangent bundle TM and the cotangent bundle T*M of a manifold M are also

manifolds.

Definition 2.1.5 Let T,/ (M) be the cotangent space and ¢ € Ty (T, (M)), where
T3 (T, (M)) is a collection of all tensors of covariant order r, namely ¢ : T; (M) x
T,(M) x -+ xT;(M) - R. ¢ € Ty (T;(M)) is called r-covariant tensor. ¢ is
symmetric if §(vi,...,v,) = @(vs(1),...,vs(r) and is alternating if ¢(vy,...,v,) =
sign(0)9 (vs(1),...,vs(r)) for every vy,...,v, and permutation 6. The alternating

tensors in Ty (T; (M)) form a subspace which we denote by \'(T; (M)).

Definition 2.1.6 We define a linear transformation on the vector space Ty (T, (M));

alternating mapping ATy (T;(M)) — N'(T; (M)) by

(A9)(v1,--.v7) =~ Tosign(@)9 (v (1), va 1)

Definition 2.1.7 The mapping \'(T,;(M)) x N (T, (M)) — N*(T,;(M)) defined by
(r+s)!

(A.B) = =4

A(A®B)

is called the exterior product of A and B and is denoted by A \ B. The exterior product
is bilinear and associative. The space \'(T,;(M)) equipped with the exterior product
is an algebra. Elements of this algebra are called differential forms. Differential

one-forms are elements of T*M.

Here are some properties of a k-form, from [7].

The space of k-forms on M will be denoted by AK. It is the space of sections of the

6



bundle A¥(T*M). A differential k-form & on M can be written as

1 . . .
o= Eailizmikdxll Adx2 N\ - Adx'*
in local coordinates (xl,...,x7), where the sums are all from 1 to 7, and ,;,...;, 18

skew-symmetric in its indices. By this, o can also be written as
o= Z (Z,'liz...,'kdxil AdX2 A - Adx*
1 <ip<---<iy

d

a XM

We take the interior product (5%; )1 of the k-form a with a vector field (%), we

obtain the (k — 1)-form

d 1 . : .
(W)_l(x = mamiliz...ik_]dxll /\d)(l2 AREE /\dx”‘"
Definition 2.1.8 (Riemannian Metric) A Riemannian metric on a differentiable
manifold M is a correspondence which associates to each point p of M an inner

product () (that is, a symmetric, bilinear, positive-definite form) on the tangent space

T,M which varies differentiably in the following sense:

Ifx :U C R, — M is a system of coordinates around p, with
xX(x1,X2,...,%n) =q €x(U)
and

d
ﬁ = dxq(O,..., 1,,0)

then ( %(q), %(q)} = gij(x1,...,x,) is a differentiable function on U [6].

Definition 2.1.9 Let M be an n-dimensional smooth manifold. For any open set U C
M, an n-tuple of vector fields (X1, ...,X,) over U is called a frame over U if and only if
(X1(p),...,Xu(p)) is a basis of the tangent space T,(M), for every p € U. Over every
point p in M, the Riemannian metric determines the set of orthonormal frames, i.e., the
possible choices for an orthonormal basis for the tangent space T,(M). The collection

of orthonormal frames is the frame bundle.

Here are the identities arise from the metric g, which follows from [7].



Remark 2.1.10 Given a Riemannian metric g on M, it induces a metric on k-forms

which is defined on decomposable elements to be

g(dxt A Ndx dxIT A NdxE) = bd?t k(g(dxif‘,dij)) = det(gl/)
a,b=1,...,
= Z sgn(c)gi1ja<1>gizja(2) ... g
oESy

where g/ = g(dx',dx’) is the induced metric on the cotangent bundle and g" is
the inverse matrix of the matrix g;j. By this, the inner product of two k-forms

o= %Ocil...,-kdxi‘ A---ANdx'* and B = %ﬁjl...jkdxj‘ A Ndxlk is
1 . .
g<a7ﬁ) = Eail'--ikﬁjl“-jkgl]]l "'glk]k (22)
The metric g determines a musical isomorphism between the tangent and cotangent

bundles of M. If v is a vector field, then the metric dual 1-form V is defined by vb(w) =

dx!
1-form o has a metric dual vector field o* defined by B(at) = g(a, B) for all 1-forms

B, and (dxi)ti = g”‘(%).

b
g(v,w) for all vector fields w. In local coordinates, <(i)> = gidx*. Similarly a

We denote the volume form on M associated to a metric g and an orientation by vol.

In local coordinates the volume form can be written as

vol = /det(g)dx! A--- Adx"
d

where det(g) is the determinant of the matrix g;; = g((%), (55))-

The metric and orientation together determine the Hodge star operator * taking k-forms

to (n — k)-forms, denoted by the relation

aANxf =g(a,B) vol

on two k-forms o and 3. Then,

det(g) iy j ~
VNS oy gl Ji+1 Jn
o K k)!a” it €jg 1 dx VAN - Adx
iy — ol kg, .. .
ent = &g
h iy = Al h | = Vie) dxHv N - N dxHn
where ¢j,...;, = sgn(c). Also we have, x1 = Y——="g;, . dx*' N\ --- Ndx

The operator 6 can be written in terms of d and * as

8= (—1)" "y gy (2.3)
8



The exterior derivative do of a k-form ¢ can be written in terms of the covariant
derivative as

1 . .
do = H(Vmail,i27~~7ik)dxm Adx" A dx'*

The coderivative 8 can be written in terms of the metric g and the covariant derivative

V as follows:

1 i 1} ]
oa = (k_1)!(5(X)i1i2...ik_ldx1/\dxz/\-”/\dxk_l

where (60{)1‘1,‘2...,‘](71 = —glmVZOC,,,Z'I...Z'I,{71 (24)

Definition 2.1.11 Let (M,g) be a compact Riemannian manifold. The Laplacian A is

a positive operator on M. It is defined by

A:N' (M) — N (M) (2.5)

A=dd +d'd (2.6)

where d” = — x dx.
An r-form @ is called harmonic if Aw = 0 and closed if dw = 0. It is coclosed if

d'w=0/8].
The following theorem is a direct consequence.

Theorem 2.1.12 An r-form @ is harmonic if and only if ® is closed and coclosed. We

denote the set of harmonic r-forms on M by Harm" (M) [8].

Theorem 2.1.13 (Hodge Decomposition Theorem) Let (M,g) be a compact Rieman-

nian manifold without a boundary. Then N"(M) is uniquely decomposed as
N(M)=dN""(M)®d" AT (M) ® Harm" (M) 2.7)
That is any r-form @, is written globally as
o, =da,_1+d B+ (2.8)

where a1 € N"N(M), Bry1 € NTY M) and ¥, € Harm" (M) [8].



Remark 2.1.14 If o € N (M) is such that @ = AP for some B € \' (M), then we have
that (®,7) = 0 for all y € Harm" (M), with respect to the L? inner product on M which
is given by

(.B) = | sloB)avol

The next definition follows from [6].

Definition 2.1.15 Let M be a smooth manifold and C*(M,TM) be the space of vector
fields on M, that is, the space of smooth sections of the tangent bundle TM. Then an
affine connection on M is a bilinear map

V:C*°(M,TM) xC*(M,TM) — C*(M,TM)

such that for all smooth functions f,g € C*(M,R) and all vector fields X ,Y on M,

1. fo+gyZ = fVXZ+ gVYZ

2. Vx(Y —l—Z) =VxY+VxZ

3. Vx(fY) = df(X)Y + fVxY that is V satisfies the Leibniz rule in the second

variable

Definition 2.1.16 Let V be an affine connection on TM. Let 7y : [0,1] — M be a closed

curve at p in M, namely y(0) = y(1) = p. Parallel transport along v is the map

P:T,M — T,M,

P = o)

where G is the (unique) parallel section of Y*'TM such that 6(0) = v.

Definition 2.1.17 Let p € M. The holonomy group of the connection V is the group of
transformations of T,M given as parallel translations along piecewise smooth curves

based at p. The group is denoted Hol(V, p).

Definition 2.1.18 The restricted holonomy group is
HOZS(V) = {Py : v is null-homotopic loop based at p }

A loop 7y based at p is null-homotopic if it can be deformed to the constant loop at p.
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The next definitions follow from [6].

Definition 2.1.19 (Levi-Civita connection) Given a Riemannian metric (-,-), there
exists a unique affine connection V on M. If M is endowed with a Riemannian metric

g, then there is a unique connection V that satisfies

o VxY —VyX =[X,Y]. Vistorsionfree

o X(Y,Z)=(VxY,Z)+(Y,VxZ) X,Y,Ze X(M)

that is V is metric compatible.

Definition 2.1.20 (Curvature) The curvature R of a Riemannian manifold M is a

correspondence that associates every pair X,Y € X(M) a mapping
R(X,Y): X(M) — X(M)

is given by R(X,Y)Z = VyVxZ —VxVyZ+VixyZ , Z € X(M) where V is the

Riemannian connection of M.

2.2 Preliminaries in Algebra

In this section, we briefly review some basic concepts in algebra which will be needed
in this thesis.

We start with defining the normed division algebra.

Definition 2.2.1 Let A be a finite dimensional vector space with a norm |.| we say A
is a normed division algebra if it has the structure of an (not necessarily associative)
algebra with identity such that |ab| = |a|.|b| where a,b € A. Further, the norm is

connected to the inner product by the relation |a| = (a,a) for all a € A.

Remark 2.2.2 Up to isomorphism, there are only four normed division algebras real
numbers R, complex numbers C, quaternions H and octonions QO of dimension 1,
2, 4 and 8, respectively. Also H is noncommutative and Q is noncommutative and
nonassociative. It is known that Q octonions are called the exceptional normed

division algebra.
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In 1898, Hurwitz proved that fact.

Definition 2.2.3 (Cross Product) A bilinear map
x:Im(A) x Im(A) — Im(A)

is defined by a x b = Im(ab) = — (b X a), where Im(A) is the imaginary part of A.

Here are the properties of cross product on R? and R”, which follows from [1,9].

The cross product of two vectors in R> is the pure part of the quaternion product of
two pure quaternions, that is, a x b = Im(ab) for a,b € R*> C H. The cross product
of two vectors in R’ can be defined in terms of an orthonormal basis ey, ..., e7 by
antisymmetry, e; X e; = —e; X ¢; and in the form e; X e;11 = e;43 , where the indices

are permuted cyclically and translated modulo 7.

The octonions come equipped with a positive definite inner product. The span of the
identity element 1 is called the real octonions. Its orthogonal complement is called the
imaginary octonions Im(Q) 22 R’ This is analogous to the quaternions H, except the
non-associativity. We define a cross product on R as follows. Let u,v € R” 22 Im(Q)
and define u x v = Im(uv), where uv denotes the octonion product. The real part of uv
is equal to —(u, V), just as it is for quaternions, where (-, -) denotes the Euclidean inner

product. This cross product satisfies the following relations:
_ _ 2 _ 2
UXv=—vxu, (uxvuy=0, [lux || =|lurv||,

exactly like the cross product on R? = Im(H). However, there is a difference. Unlike

the cross product in R3, the following expression is not zero:
ux (vxw)+ (u,v)w— (u,w)v

but is a measure of being nonassociativity: (uv)w —u(vw) # 0.

Denote the product of a,b € QO by aob. Let 1,e1,e3,...,e7 be a basis of 0. Define the
product in terms of the basis by e;oe; = —1, ¢;oe; = —ejoe; for i # j in the form
ejoej+1 = ej+3 , where the indices are permuted cyclically and translated modulo 7.

This can be shown by the multiplication table, taken from [9].

€106y = é4 €20¢€4 = €] €40€]1 = e
€p0e3 = €5 €30e5 = €n €506y — €3

12



€30e4 = €¢ €40€q = €3 €063 = €4
€40€5 = ey €50¢e7 — é4 €70¢e4 — €5
€50eq = €] € 0€] = €5 €1 0€é5 = €¢
€ 0€7 =€) €706y = €¢ €)0¢eq = €7
e70e] —e3 €10e3 = ey e€30e7 = €1

Similarly a seven dimensional cross product of the octonion product of two pure
octonions, that is, a X b = (aob); . The octonion algebra O is a normed division
algebra with unity 1. The vector part R” in @ = R’ @ R is also an algebra with cross
product, that is, a X b = %(aOb —boa) fora,bc R’ Cc O=R’@R. The octonion
product is given by acb=af +ab+aff —ab+axbfora=a+aandb=+b

inR"@R [9].
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3. MANIFOLDS WITH G, STRUCTURE

A Gj-manifold is a Riemannian manifold whose holonomy group is contained in the
exceptional Lie group G;. For the purposes of this thesis, the importance of the group
G, does not arise from the fact that it is one of the five exceptional Lie groups, but
rather than that it is the automorphism group of the octonions @. A manifold has a
G-structure if there is an isomorphism between its tangent spaces and the imaginary

octonions Im(Q) = R7 [1].

3.1 G,-Structures

In this section, we review the construction and properties of G;-structures. We define
the multiplication on the octonions @ = H & He = R via the Cayley-Dickson process

[10], we have
(a+be)-(c+de) = (ac—db)+ (da+ bc)e a,b,c,d € H

in terms of quaternion multiplication, where ¢ is the conjugate of c. Let (-,-) denote
the standard Euclidean inner product on R®. Imaginary octonions can be considered as

R’, Im(Q) = R” we define the 3-form ¢ by

o(x,y,2) = (x,yz)  x,y,z€Im(0),

and its dual 4-form y by

1
yeoyzw) = Suzwl) o xyzweln(0),
where [x,y,z] = (xy)z — x(yz) is the associator.

In terms of the standard basis for R® = O we have the coordinates x°,x! x%,x3,

y2,y!, 2,y where the x'’s are coordinates on H and the y/’s are coordinates on He [10].

We take the orientation given by the volume form

volg = dxV1?3 /\dy0123.
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where dx'/* = dx' Adx/ A dx* Adx'. The induced orientation on R7 = Im(Q) is given
by

vol; = dx'? ndy?'?.

With respect to this orientation, the 4-form y is the Hodge dual (on R”) of ¢:
Y =x*70.

In these coordinates, from [10] the forms ¢ and y can be written as

¢ = dx'?3 — dx! /\dy23 — dy1 Adx® A dy3 — dy12 Adx®
3.1
—dyO Ndx! Ady! —dyO Adx® Ady? —dYO AdxP Ady?,
and

v = dy0123 — dyO1 Adx? — dy? Adx! Ady? ndx — dyo Adx? A dy3
(3.2)
—dx* /\dy2 Adx® /\a’y3 —dx>A dy3 Adx' A dyl —dx! /\dy] Adx® A dyz.
It can be seen that @ A y = 7vol;.

We have the following equivalent definitions of G,. The next definition follows from

[11].

Definition 3.1.1 We can define G, as the group of automorphisms of octonions as in

G = Aut(0) = {g € GL(0); g(xy) = g(x)g(y) for all x,y € O} (3.3)

Instead of this definition, we prefer to use the following definition of G,, taken from
[12,13], which is more useful in differential geometric point of view. It can be shown

that these definitions are equivalent.

Definition 3.1.2 Lerx',....x7 be coordinates on R’. Write

dx'T% = dx' Adx! Ndx¥ on R. Define a 3-form ¢o on R’ by
@) = dx123 _dx167 —d.X'527 _dx563 —l—dx4]5 -|-dx426 -l-dx437 (34)

The subgroup of GL(7,R) preserving @y is the exceptional Lie group G,. That is given
by
Gy ={A € GL(7,R);A™(¢0) = g0}
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It is compact, connected, simply-connected, semisimple and 14-dimensional, and it

also fixes the 4-form, the Hodge star dual x@q of @y.
* @y = dx4567 —dx4523 —dx4163 —dx4127 —I—dx2637 —I—dx1537 —i—dx1526 (35)

the standard Euclidean metric
7
g= Z dx @ dx*
k=1
and the orientation on R’

The proof can be found in R.L. Bryant [3]. We have the following definition

Definition 3.1.3 A smooth 7 dimensional manifold M has a G,-structure if its tangent
frame bundle reduces to a Gy bundle. It is equivalent to saying that M has a
Go-structure if there exists a 3-form @ € N3R7 such that at each p € M, (T,(M), @p)

is isomorphic to (To(R"), @p), pointwise. We call (M, ¢) a manifold with G-structure
[13].

A Gy-structure @ determines a metric g and a cross product X on the tangent bundle

of M. The next relation follows from [13].
(ua@)N(vap)N@ = —6g(u,v)vol
gluxvw) = o(u,v,w)

The proof of the first identity can be found in Lemma 3.2.2.

By using that relation one can derive the following expression, from [14], that shows

the relation between the metric and the 3-form as follows:

Theorem 3.1.4 Let v be a tangent vector at a point p and let ey, ea, . ..,e7 be any basis

for T,M. Then the length |v| of v is given by

|V‘2:6% (va@)AN(va@)A@)(er,e2,...,e7)

T 3.6)
(det (((eiv@) A(eju@) A @) (e1,e2,...,€7)))°

The detailed proof can be found in S. Karigiannis [14].

We have the next definition follows from [14].
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Definition 3.1.5 Let u and v be vector fields on M. The cross product, u X v is a
vector field on M whose associated 1-form under the metric isomorphism satisfies the

relations as follows:

(u x v)b = VvaulQ

gluxvw) = (uxv)b(w):wmubu(p:(p(u,v,w)

The proof can be found in Appendix A.1., Lemma 1.0.3.
Because G, by definition, preserves @, it also preserves the metric, the cross product
and the volume form determined by the 3-form. Hence, an equivalent (but redundant)

definition of G is the following

G, = {A € GL(7,R), u,v € Im(Q); A*¢y = @y, A*(g) = g detA = 1,
Aux A=A (uxv)}
For this reason G; is a subgroup of SO(7).

Now, we consider some important facts, from [12], for defining a G;-manifold.

Definition 3.1.6 Let M be a T-manifold, (¢,g) a Gy-structure on M, and V the
Levi-Civita connection of g. We call V@ the torsion of (¢,g). If Vo =0 then (@,g) is

called torsion-free.

Definition 3.1.7 We define a G,-manifold to be a triple (M,¢,g) where M is a

7-manifold and (@, g) a torsion-free G,-structure on M.

By [1], the existence of a G,-structure is given by the following.

Remark 3.1.8 Let us consider a T-manifold with a Gy-structure @. This structure
exists if and only if M is orientable and spin, which is equivalent to the vanishing of

the fist and second Stiefel-Whitney classes wi (M) = wy(M) = 0.

The metric g and orientation determine a Hodge star operator *, and we have the
associated dual 4-form y = x¢. The metric also determines the Levi-Civita connection
V, and the manifold (M, ¢) is called a G, manifold if V¢ = 0. We note that this
is a nonlinear partial differential equation for ¢. Such manifolds have Riemannian
holonomy Hol,(M) contained in the exceptional Lie group G, C SO(7) [1]. It is given

by the following proposition, taken from [12].
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Proposition 3.1.9 Let M be a T-manifold and (¢, g) a Gy-structure on M. Then the

following are equivalent:

(i) Hol(g) C Gy, and @ is the induced 3-form,
(i) Vo =0 o0n M, where V is the Levi-Civita connection of g, and

(i) dp=dx@=00n M.

Equivalence of the conditions (i) and (ii) was first proved by Fernandez and Gray [15].
We will study the proof of this theorem in section 3.5.
The following remark gives the definition of a positive 3-form that arises from G,

structures [12, 14].

Remark 3.1.10 Let M be an oriented 7-manifold. The 3-forms on M that arise from a
G,-structure are called positive 3-forms. For each p € M, define P;M to be the subset
of 3-forms @ € /\3TI;" (M) for which there exists an oriented isomorphism between
T,(M) and R7 identifying ¢ and the associative 3-form @. A form oo € N’R7 is said to
be positive if and only if o € P?,M. A positive 3-form o is of the form g* (@) for some
g € GL(7,R) and uniquely determines an associated positive definite inner product
and orientation. Then P?,M is isomorphic to GL(7,R) /G, which naturally imbeds in
AR as P;M, since Qo has symmetry group Gj. It can be seen that both GL(7,R) /G,

and N3R7 are 35 dimensional.

Before we close this section, we would like to emphasize that we do not study the
representation theory of G, as a Lie group. Information in this direction can be found

in [2].

3.2 Metric, Cross Product and the 3-form Identities

In this section, we state the relations between the Riemannian metric g, cross product
and the 3-form ¢. Also we state the basic and useful properties which will be essential

for the rest of the thesis. We start with the next corollary follows from [7].

Corollary 3.2.1 Let a,b,c,d be vector fields. Then we have

glaxb,cxd)=glaNb,cNd)—wy(a,b,c,d) 3.7
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Proof. According to [7], we compute

glaxb,exd) = @(a,b,cxd) (3.8)
= —¢(a,cxd,b)
= —glax(cxd),b)
= —g(—g(a,c)d+g(a,d)c— (ascadoy)?,b)

= g(a,c)g(b,d) —g(a,d)g(b,c) + W(d76‘»aab)

We have the relation involving the metric, 3-form and metric dual 1-forms, which

follows from [7].

Lemma 3.2.2 Let u, v, and w be vector fields on M. Let ub, vb, and W’ denote their

dual 1-forms with respect to the metric g. Then we have the following identity:

x((us@)AN(va@)AN(wa@)) = —2g(u, v)wb — 2g(u,w)v|7 —2g(v, w)ub

Proof. According to [7], we begin with the relation between ¢, g, and the volume form
(us@) AN (va@) Ao = —6g(u,v)vol

First, we should prove

(va@) A (va@) A = 6|v|*vol (3.9)

From Lemma 1.0.1 and Proposition 1.0.2 we have
vip = >x<(vb AxQ)

and
(vup) AN = 2(vb A*Q)

Thus we obtain
2
(va@) A (va@) A @ =2V’ Ax¢| vol = 6|v|>vol
By polarizing (3.9) in v, we have the following the relation:

(va@) A (wap) Ao = 6(v,w) vol
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Taking the interior product of this equation with w and using w_vol = *w’, we obtain

—6g(u,v)xw’ = (wous@)A(va@)AQ+ (ua@) A (wavi@)A@

F (U @) A (va@) A (wa9)
= —2(uxw)’ Ax(va) —2(vx w)’ A*(usg)
+(ua@) A (v2@) A (wap)
where we have used equation (A.8) and the relation (vu@) A ¢ = —2x (vo@) from

Proposition 1.0.2. We rearrange this equation and use *(vi@) = v’ A W to obtain

(@) A(Vva@)A(wa@) = —6g(u,v)xw’ =2 Auxw)’ Ay

— 2’ A (vxw) Ay
We now use (A.8) and (A.9), and take * of both sides to get

(U @) A(va@) A (wa9))
— —6g(u, )W’ —2(v x (uxw))’ —2(ux (vxw))’

= —6g(u,v)wb -2 <—g(u,v)wb +g(v, w)ub

— (vauaw_ l//)ﬁ>
) (‘g(u,v)wb +g(u, W)V = (uovaws Wi)

= —2g(u,v)w’ —2g(u,w)v’ — 2g(v,w)u’
and the proof is complete.

Now, we denote the previous lemma in local coordinates, which follows from [7].

Remark 3.2.3 Let u = %, y = %, and w = % be vector fields, then our identity

becomes
0 0 0 o
(57PN (5 520N (5 729) | = 2 (8ij&im + gugjm+ &j18im) d

If we take x of both sides of this equation, and wedge both sides with an arbitrary

1-form o0 = ogdx*, we get
9 9 9 L
oA (WJ ®) A (WJ )A (WJ @) | = —2(8ij&im~+ gugjm+ & i8im) Mdx" A *dx

1
gaS7 (Pislsz (ij354 ¢155s6dx§1 N NdXT = =2 (gijglm + &il8 jm + gjlgim) akgkm vol

and hence

1
3 G; sg1(0) Pio(1)0(2) Pjo(3)0(@) Pio(5)0(6) Xo(7) dX A ... Adx’
7

=-2 (g,'jOCl + 8 +gj106i) Vv det(g) dx' A Adx
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Thus, we get the following relation.

Z sgn(o ‘ch 6(2)®jc(3)(4)Pic(5)0(6)%s(7) = _16(gijal+gilaj+gjlai)

[of=NY

det(g) (3.10)

Similarly, we have the following corollary that can be derived from the Lemma 3.2.2,

which also follows from [7].

Corollary 3.2.4 Let u, v, and w be vector fields on M. Then the following holds:

s (owo @) A (us @) A @) = 2g(u, )W’ — 2g(u, W)’ + 2% (uovoaw_y)f
We can denote the previous corollary in local coordinates by [7].

Remark 3.2.5 Let v = % w= % and u = % be vector fields, then our identity

becomes

Jd 4 d
" ((WJ 5510 A (55 J«p)w) = 2(81j8im — &ji8im + Wit jm)dx"

If we take x of both sides of this equation, and wedge both sides with an arbitrary

1-form o = oydx*, according to [7] we have
Jd 0 P )
*A (WJ oxi )N (a SIP) N | =2(818im — 8 ji&im + Wit jm) Odx” N\ xdx™

1
12asl(Pllsz(p]S3S4(Pv5Y6¥7de1 A Ndx 2(gljgim _gjiglm+ l»Uiljm)akgkm vol

and hence

Z 5g1(0) U (1) Pito(2) Pjo(3)0(4) Po(s)o(6)o(7) dX' A Adx’

6657

=2 (gljai —gjioy + l//ﬂjmgkmak> Vdet(g)dx! AL Adx

Thus, we get the following useful relation.

Y. sen(0) (1) Piio(2)Pjo(3)0(4) Po(5)0(6)0(7) = 24 (gljai—gjial+ll’iljmgkmak)

oEeSy

det(g) (3.11)

According to [7], we have the following proposition, its proof and local coordinate

representation.
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Proposition 3.2.6 Let u, v, and w be vector fields on M. Then, the following holds:
(uavaY) AWa@)A@ = (vay) A(uswi@) A @
Proof. We begin with the 8-form which vanishes on a 7-manifold M.

(oY) A(wa@) N @ =0

and take the interior product with u. This gives

(uavay) A(wa@)A@ = (vay) A(uawa@) A@+ (vay) A (wa@) A (use)
We use the fact that (vay) A (wa@) A (ua@) = 0 for any u, v, w which is proved in [14],

Theorem 2.4.7, we have the desired result.

Remark 3.2.7 If we put u = %, w = %, andv = % this identity becomes

(ii )/\(i )/\ _<i )/\(ii )/\
oxi o VNG P NP = VI MGG 55 29N e

According to [7], in local coordinates this becomes

)

1 d d
ﬂWlis152(Pj5354(PAV5AY6AV7del A...Ndxsy = (WJ V) A (WJ ¥ P)NQ

and hence

Y. 5en(0) Viis(1)0(2) Pio(3)0(4) Po(5)o(6)o(7) IS skew-symmetric in i, j. (3.12)

cESy

We also note that the identity (vay) A (wo@) A (us@) = 0 in local coordinates we can

denote it as

Y. sen(0) Gis(1)6(2)Pjo(3)0(4) Vic(5)0(6)0(7) = O (3.13)

ocSy

Now, we give the identities involving the 3-form, Hodge dual 4-form, metric and the

metric dual 1-forms, which follows from [7].

Proposition 3.2.8 Let v,w,a,b,c,d be vector fields on M. We have the followings:
AN NEAY = @(a,b,c)vol
AN NCANL N9 = wl(a,b,c,d)vol
& NDNE AW Aay) = (g(v,w)e(a,b,c)—gla,v)@(w,b,c)
— 8(b,v)@(a,w,c) —g(c,v)@(a,b,w)) vol
AN N AW A (va@) = (gv,w)w(a,b,c,d) —gla,v)y(w,b,c,d)
—g(b,v)y(a,w,c,d)—g(c,v)y(a,b,w,d)
—g(d,v)y(a,b,c,w))vol
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Proof. According to [7], the first two equations follow from Lemma 1.0.1.
AP NCAY = x(asbico@)

= *¢(a,b,c)
= o¢(a,b,c)\/det(g)e' A...Ae’ = @(a,b,c)vol

@ ANDNE N A @ = *(asbacaday) = y(a,b,c,d)vol
To prove the third, we begin with the 8-form which vanishes
AL NEAWAY =0

and take the interior product with v, we get

(\uab) AB" A AW A l,l/—ab A (\ubb) A AW A l,l/—ab AB’ A (\ucb) AW’ A v

—d ANDNENaw YAy —d’ ADAE AW A(vay) =0
After rearranging terms, we have the following.
NP NEAW A(ay) = (g(v,w)e(a,b,c) —g(a,v)o(w,b,c)
— 8(b,v)0(a,w,c) —g(c,v)p(a,b,w)) vol
We have the following identity involving the 3-form, Hodge dual 4-form, metric,
volume form and the metric dual 1-forms, which also follows from [7]
Proposition 3.2.9 Let a,b,c,d be vector fields on M. The following relation holds:
& AND A(ca@) A(doy) = (2g(aAb,c Ad)+ y(a,b,c,d))vol.

Proof. We begin with the relation y A (ch Q) =3x ¢® from Proposition 1.0.2. Then,

we take the interior product with d, also use Lemma 1.0.3. According to [7], after

rearranging we get the following
(co@) A (day) =3 (P Ad) = (cxd) Ny
We take the wedge product with @ A,
b b _ b b b by b b b
A ANDN(co)N(day) = 3(@NAD)A(CND)—a’ NP’ AN(cxd) ANy
= 3glanb,cNd)vol—@(a,b,c x d)vol
= 3g(anb,cNd)vol—g(axb,cxd)vol

= (2g(anb,cnd)+wy(a,b,c,d))vol.
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In the second equality, we used u” AV’ Aw” A W = @(u, v, w) vol from Proposition 3.2.8,
in the third equality we used ¢ (u,v,w) = g(u X v,w), and in the final equality we used

Corollary 3.2.1.

3.3 Equalities Involving Contractions of ¢ and y

We consider some identities consisting of ¢, y, and their derivatives. We also denote

them in local coordinates, which follows from [7].

2

In local coordinates x!,x%,...,x7, the 3-form ¢ and the dual 4-form y can be written

as
1 i :
o = 6<p,~,-kdx Adx! A dx*
1 : .
y = ﬁl//ijkldxl/\dxj/\dxk/\dxl

¢ijk and ;i are skew-symmetric in their indices. The metric can be written as

8ij = g(%7 %) . The cross product is a (2, 1) tensor which can be written as
d d ;0
9 9 _p 2 3.14
ox < 9n UGk G-19
where Pi'j. = —P]’?i . Therefore,
ik = gu P Pl =g" pije (3.15)
If we set u = %,v:% andw:%in
8X 8X8 B “8+.8+“(c9)ﬁ
oxi "\ o " axk ) T T8 gk T8k T ik G
d d d 0
/ Im
P,"Z”ijﬁ = “8ij5x T 8iky T Vg 5 L (3.16)

We have the following identities and the proof by [7].

Lemma 3.3.1 Let the tensors g, ¢, W, and P be as given above. Then the following

identities hold:

PiP, = —6g;
Ok Papeg gl = 42
(Pijk(Pabcgjbgkc = 6gis

Qi jk(PabcgkC = &ia8jb — 8ib8ja — VYijab
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Proof. We first prove the last equation. The other identities follow by contraction with

gij and using (3.15). To obtain the last equation, we take the inner product of (3.16)

: J .
with x-
PirlnP]l‘kgmn = —&ij&knt &ik&jn+ Vijkn
(Pﬂagam(ijbgblgmn =  —8ij8kn T &ik&jn+ Vinjk
(Piln(ijbgbl = —8ij8kn T &ik&jn + Vinjk
since Qj, = — @y, wWe get the desired equation.

For the third equation, we contract the last equation by g/,
(l’ijk(Pabcgkngb = giagjbgjb — giv8 a8’ — llfijabgjb = 6gia (3.17)
For the second, we contract the third equation by gi“,

@ik Punc8’’ 8" g = 6giag™ = 6.7 =42 (3.18)

We also note that the second identity is just the pointwise norm |(p\2 of is7.

For the first equation, we use the equation (3) of Proposition 1.0.2 and (3.15).

The next identities, from [7], involves contractions of ¢ with y.

Lemma 3.3.2 Let the tensors g, ¢, and ¥ be as given above. Then the following

identities hold:

@ik Vabcag g’ g™ = 0

Gk Vabea8’ 8 = —4up
%k%bcdgkd = 8iaPjbc + 8ibPajc 1 8icPabj

—8ajPibc — 8bjPaic — 8cjPabi

Proof. According to [7], the first two follow from the last. To prove the third, we take
the inner product of (A.9) with (3.14):

9 9 a9 (9 9 ,
8\ 55 X 30 9 \ 307 X 94 = 8aiPjkb — &ibPjka — Vabit Py
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Here we used g(a x b,c xd) = g(a,c)g(b,d) — g(a,d)g(b,c) + w(d,c,a,b). But this
also equals

B Pl 0 9 . 0 o 0
= g abﬁa_g11ﬁ+gzkﬁ+vftjkng e

= —&i jgszéb + 8ik81 jPéb + Pébgnmglm Yijkn
= —8ijPabk t 8ikPabj + Pgllb‘l/ijkl

We use these two equations and rearrange them. Then, we have the following

8iaPjkb — 8ibPjka T 8ijPabk — ik Pabj — (ijcllfabﬂgd — Quabc llfijkzgd =0

We denote this expression by A;jx.,. Then it can be seen that
Ajjkab + Adjibi + Abijka — Akijab — A jkabi = 0

By this, we get desired expression. For the second equation we start contracting the

last equation with g/¢, we have
(Pijkllfabcdgkdgjc = giagjc¢jbc+gibng(Pajc +gicgjc(Pabj _gajgjcq)ibc _gbjgjcq)aic _gcjng(Pabi
becomes

Pijk Vabcd8 8% = @iab — Piab + Piab + Piab + Piab — TPiab = —4Piap
by using the fact that | ¢ |>= 7. Also, for the first equation we contact the second with
g

Now we contract y with itself, which follows from [7].

Lemma 3.3.3 Let the tensors g, ¢, and Y be as given above. Then the following
identities hold:
Vijk Vabeag g’ 8" ¢! = 168
VijkiYabeag'' 88" = 24gia
Vijk Yabea8 8" = 48iag b — 488 ja — 2Wijab
Vijkl %bcdgld = =04k Pibc — Piak Pjbc — Pija Pkbe
+ &ia8 jb8kc + 8ib8 jc8ka 1 8ic8 ja8kb
— 8ia8jc8kb — 8ib8 ja8kc — 8ic8 jb8ka
— 8iaVijkbe — 8 jaWVkibc — 8ka Vijbe
+ 8ab Vijke — 8acVijkb
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Next, we consider identities involving the covariant derivatives of ¢ and y, which are

given by [7].

Proposition 3.3.4 Let the tensors g, ¢, and y be as given above. Then the following

identities hold:
(Vm (pijk) (pabcgiagjbgkc

(VinWi k1) Wabeag 7" g g

(Vm (Pijk> Wabcdgibgjcgkd

0
0

—0ijk(Vim Vabea)g" 87 g

(Vm (Pijk) (Pabcgjbgkc = _(Pijk(vm (Pabc)gjbgkc
(VinWijkt) Wancag”’ 88" = Wit (Vi Wapea) 88" 8"
(Vm (Pijk) Wabcdgjcgkd — _(Pijk(vm Wabcd)gjcgkd —4 Vm Qiab

and also

VinWabcd = —(Vin®@ab) Peakg”™ — Papj(VinPear) 8 (3.19)

Proposition 3.3.5 The following relation holds between V@ and Vy:

(Vm I//ijkl) Wabcdgjbgkcgld =3 (Vm(Pijk)(PabcgjbgkC

Proof According to [7], we substitute (3.19) into the left hand side above, and use
Lemma 3.3.2. Then,

—~ ((Viu®ijp) Prag8” + 0ijp (Vi Priq) 8°7) Wabcag’ g 8"

= —(Vuoijp)ghg’ b((qul Vabcag g") — (Vin@rig) 8" 1% ¢! ()i Weaapg”")
= — (Viu@ijp)gg”" (—4 @uap)

- (Vm(pqu)gpqgkcgld (gpc(Pida + gpd(Pcia + 8paPedi — gic(ppda — 8idPcpa — gia(Pcdp>

= 4 (Vm(Pijp)(Pabquqgjb +0+0

— (Vinrig) (828" 8" @cai — 5Fe"18" @paa — 88718 Oepa — 8ia8"8° 8" Pea)

= 4 (Vm(Pijk)(pabcgjbgkc - (Vm(Pkla)q)cdigkcgld + (qu)ilq)(deagpqgld

+ (Vm (Pkiq) (Pcpagpqgkc + (Va (Pqu) (Pcdpgpqgkcgldgia
Using Proposition 3.3.4 on the second and final terms, the final term vanishes and the
remaining terms become
3 (Vm (Pijk) (pabcgjbgkc
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and the proof is complete.

3.4 Decomposition of \*(M) Into Irreducible G,-Representations
The group G» acts on R’, and hence acts on the spaces A* of differential forms on M.
Let A € GL(7,R), and we have

1 P * 3. * /\J{
One can decompose each space AX into irreducible G-representations. This is
analogous to the decomposition of the space of k-forms to the space of differential

forms of type (p,q) on a complex manifold. The results of this decomposition are

presented below.

Proposition 3.4.1 Let M be a T-manifold and (¢@,g) a Gy-structure on M. Then
NKT*M splits orthogonally into components as follows, where /\;< corresponds to an

irreducible representation of G, of dimension 1:
1. A'TT*M = A}

2. NIT*M =N o A2,

3NT*M =N aA e,

4. N*T*M = N1 D AT DAY,

5. NT*M = N @A,

6. NOT*M = NS

The Hodge star x gives an isometry between /\;‘ and /\17_1‘. Note also that /\? = (@) and

/\41, = (x@), and that the spaces /\’§ fork=1,2,...,6 are canonically isomorphic [12].

Proposition 3.4.2 The map o — @ A o is an isomorphism between the following

spaces:
INEETS AL 22 2
2~ AS 2 ~AS
N =Ny Aa = Nig
A3 = AS AT AT
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The map o — @ A\ o is an isomorphism between the following spaces:

NS A2 AS

= A=A

In addition, if o is a 1-form, we have the following identities from [14] :

x(pAx(pAO)) = —4a (3.20)
xQAx (@A) = 0

x(x@Ax(xpA@)) = 3a (3.21)

PAx(xQANa) = 2(xpAa) (3.22)

We now describe the decomposition, from [14], starting with

The case k =2,5

A = {wapiwe(T(M))} (3.23)
= {Benr’x(pnB)=2B}

Here for (3.23) we used the (11) equation of Proposition 1.0.2. Also using the (6)

equation we can write

N ={B €N« (x@A(x(x AB))) =3B}

NMs = {BeAxpAB =0} (3.24)
= {Benx(onB)=—P}

For (3.24), by Proposition 3.4.2 we know that there exists a linear map
L:A? = A8 =nS~ 3
L:a—yAa

Now, let V € A? then V = Im(L) @ Ker(L).
Thus A}, =Ker(L)=yAa =0

The decomposition of A’

A = /\3 D /\? 4 1s obtained by taking the Hodge star of the decompositions of A2
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A = {arx@iae A} (3.25)
= {reN;oAxy=2y}
= {YE N =@ A (x(x@ AxY)) =37}

For (3.25) we used the Proposition 1.0.2, equations (8) and (6). Similarly, we get

Ny = {YeNiorsy=—7} (3.26)
= {ye A% Axy=0}

The decompositions for k = 3,4

AN = {feifeCc (M)} (3.27)
= {nenon(x(xpAn)) =Tn}

For (3.27) we write N = f¢

PAFEFOALP)) = OAG(fxoNQ))
= Tof=7n

A = {x(pra);oe AP} (3.28)
= {wox@;w e (T (M))}

= {nen=(prx(pAn))=—4n}

For (3.28) we use the Proposition 1.0.2 in Appendix A.l. equation (5).

Finally, for /\g7 we define

L:N = NoN ~Aan]

L:a—yAa+oAa

If y Ao =0then a € (A3)™.
If pAa=0then a € (A})L. Ker(L)=yAa+@Aa=0if and only if y Aot =0
and @ A ¢ = 0, since they belong to the orthogonal modules of the decomposition of

3-forms. We have

Ay = {nenpAn=0and xp AN =0} (3.29)
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The decomposition of A*

Similarly we use the fact that the decomposition of A% is obtained by taking the Hodge

star of the decomposition of A3 to get the following expressions.

A = {froifeC (M)} (3.30)

= {oenrtxpA(x(pNn0))=To}

A = {oAra;ae N} (3.31)
= {o€ /\4;((p/\*((p/\*c)) =—40}
Ny, = {ocertpAc=0and pAxc =0} (3.32)

By using the definitions above, we can define the following expressions, from [14], for

B e A?

“(Q@AB) = =(@A(m(B)+ma4(B))
= *(@A(m7(B)) + (@ Ama(B))
= 2m(B) — ma(B)
B = m(B)+ma(B)

mB) = w (3.33)
ma(p) = P0NP) (3.34)

and for y € A° using (3.25) and (3.26)

PpAxy = (@A (mr(x7)) + (@ Amia(xY))
= 2m(y) — ma(y)

Y = m(y)+ma(y)
Y+QAxY

my = 20T (3.35)
2 _
ma(y) = 20 (3.36)

where 77, 714 are projections of A2 to /\% and /\%4, respectively.

o P .
Ay = {hijgﬂdx’/\<WJ(p);hij:hﬁ,Trg(hij): g7hi; =0}  (3.37)

32



For B = % Bi jdxi Adx/ is a 2-form, according to [14], we have

1 /1 1 oo
m(B) = 3 (gﬁab + gBijgllgjmll/lmab> dx* Ndx” (3.38)

1 /2 1 oo
m4(B) = 3 (gﬁab_gﬁijgllg]mll/lmab) dx" N dx” (3.39)

Now, we give a summary

N o= {woeiw e I(T(M))}

= {Ben’x(pnB)=2B}

= {Be N x(xp A (x(x9 A B))) =3B}
ANy = {BerxoAB =0}

= {Ben’x(pnB)=—B}

= {Zaijei/\ej;(aij) € 92}

/\? = {aAx@;a e N}

= {yenN:pAxy=2y}

= {YEN QA (x(x@ AxY)) =37}
Ny = {YEN;0Axy=—7}

= {yE/\S;*(p/\*y:O}

N o= {fe:fec™(M)}

= {nenton(x(xpAn)) =Tn}
A = {x(pra)aenl}

= {wax@:weI(T(M))}

= {nen’x(prx(pAn)) =—4n}
Ay = {nen’;pAn=0and x@ AN =0}
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A= {frefecm (M)}
= {oeAt %A (x(pA0)) =70}

AN = {praae N}
= {ocen' (pAx(pAx0))=—40}
Ny, = {ocertpAc=0and pAxc =0}

We derive some further properties of the representation modules A%, that we will need
in this thesis, which follows from [7]. For this, we define maps i : S2(T) — A3 and

j:A? — S2(T) as follows:

. ;0 d 1 . ,
i(hij) = h,-jgﬂw/\(WJ(p)zihfq)ljkdx’/\dxj/\dxk (3.40)

GmMmw) = *((va@) A(wa@)Am) (3.41)

Now, on a manifold with G,-structure we have the relation between a symmetric

2-tensor, its trace, an arbitrary 3-form and its Hodge dual, which also follows from [7].

Proposition 3.4.3 Suppose that h;; is a symmetric tensor. It corresponds to the form

n =i(h;;) in A3, given by
_ Jl i J _ L i j k
N =h;;g’ dx N\ W_I(P = Ehi(pljkdx ANdx! \dx
Then the Hodge star xn of 1 is
*1N = ZTrg(h)g,-j—hij gldx' N WJI//
where Trg(h) = g"/h;;.
We can also see the relation which is given by [7].

Proposition 3.4.4 The map j: N> — Sz(T) is an isomorphism between /\? &) /\37 and

S2(T). /\% is the kernel of j. Explicitly, we have

/)
If 1= hijgldx A (ﬁw) () = i)+ ()
then ](1]) = —2Trg(h)g,-j _4hij
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To summarize, we have seen that an arbitrary 3-form 1 on a manifold M with

G-structure @ consists of a vector field X and a symmetric 2-tensor 4 [7]. We have
. . 0 0
_ gl i
n = hjjg/dx'A (—axlup) +X _8x1JW
1 i i gk Lo NN
= Ehi(Pljkdx Adx! N\dx +8X Wik dx' Ndx) N\dx

Lastly, we have the useful relation between traceless, tracefull part of a symmetric

2-tensor and the submodules of space of 3-forms, which follows from [7]

Remark 3.4.5 Note that the symmetric 2-tensor h;j decomposes as h;j = % Trg(h) gij+
h?j where h?j is the traceless part of h;j. Hence the first term in the above expression

can be written as

3 1 Ny
Sho+ 5 (h0) gy dx’ Adxd N dx*

which is exactly the /\% and /\%7 components.

3.5 The Torsion Forms of a G>-Structure

Using the decomposition of the spaces of differential forms on M determined by ¢
given in Section 3.4, we can decompose d ¢ and dy into irreducible G; representations.

This defines the torsion forms of the G;-structure [7]. According to [7], we have

Definition 3.5.1 There are four independent torsion forms corresponding to a

Ga-structure @.

TOE/\(l) ‘516/\%

T € /\%4 73 € /\%7
They are defined by the equations
dp = THY+3TIANQ+*T3 (3.42)
dy = AT A\Ny+x*D

de € A*and dy € N,

Remark 3.5.2 We call 1y the scalar torsion, Tj the vector torsion, T, the Lie algebra

torsion, and T3 the symmetric traceless torsion [7].

35



Theorem 3.5.3 In the expressions d@ and dv, the same one-form T| appears [7].

Proof. We begin by not assuming that the two 7;’s are the same. Let d¢ = 7y ¥ +

3T AN @+ %73 and dy = 47] A Wy + xT,. We must show that T; = 7;. Then, we have

dp=TY+3T1NQ+*T3 dy =47 ANy 41
*(dQ)=T00+3*(T1\Q)+ T3 x(dy) =4x(HAY)+ T
OAx(do)=0-30Ax(pAT;)+0 YAx(dy) =4y Ax(yAT)+0

O Ax(dp) =12x%1 UAx(dy) =12x 7T

Therefore, we see that
=7 & @Ax(de)=yAx(dy)
& dP NQAx(de)=dxP ANy Ax(dy) for all p

< g(do,dxP No) = g(dy,dx’ \y) for all p

Let X = X;dx' be an arbitrary one-form. Then, we have
XN = éXq(pijk dxd Adx' Adx! A dx*
= % (X, 01k — XiPq jre — X Pigke — X Pijq) dx? Adx' ANdx! N dx*
= %Aqiﬂ{ dxd Adxt Adx? A dx*
where we have skew-symmetrized the coefficients [7].

Similarly we have

1
do = c (Vin®abe — Va@mbe — Vi Pame — Ve@apm ) dx™ Adx* Ndx” A dx°
1
= 51 Bonape dX™ A dx® Adx” A dx©

Now using (2.2), we have

gXN,do) ﬁAqi jkBmabcgqmgiagj bk
= é (X @ik — XiPgjk — X Pigk — XePijq) (VinPane) 87" g7 g
Let X = dx?, so that X; = 5ip , and this expression becomes
gldx’ Np,dp) = é (55%'1« — 8 Pyj— 87 Pigh — 5/f<Pijq> (VinPabe) 87" 8" g""
= é Pijic (VinPae) 87887 8% — % Pgj (VinPane) 87" 8787 g

36



By Proposition 3.3.4, the first term vanishes, and the second term becomes

g(dxP A9, d@) = = (Viu®ijt) Qapcg™g" g/ g (3.43)

| —

By an analogous calculation, we have the following expression

(Viu Wi jr1) Wabeag ™ g 87" < g (3.44)

AN =

gldx! Ny ,dy) =

1 . ,
XAy = ﬁqu//ijkldxq/\dx’/\dxj/\dxk/\dxl

1
= 10 (Xg Wit — XiWgjut — XjWight — XiWijgt — X1 Wijiq)
dx? Ndxt Adx A dxk A dx

1 . .
= EOAqijkl dxd Ndx' Adx! A dx* A dx!

where we have skew-symmetrized the coefficients [7].

Similarly, we have

1
i (
dx™ A\ dx® A dx A dx€ A dx?

1

= 120 Buabea dx™ N dx® AdxP A dx€ A dx?

dV/ - Vm Yabed — Va Winbed — Vb Yamed — Vc Wabmd — Vd Wabcm)

Now using (2.2), we have

1 o
sX Ay, dy) = mAqijklBmabcdgqmglagjbgkcgld

1
= (XqVijut — XiWyjit — XjWigkt — XiWijgl — X1Vijiq)

(VinWabea) 8" g0 g* g

Let X = dx?, so that X; = 5ip , and this expression becomes

1
gldx’ Ny, dy) = By (527‘Vijkl — 8 Wyjn — 5jpllfz'qkl — 8 Wijgl — 5lpllfijkq>
(VinWabea) 8782 88"

By Proposition 3.3.4, the first term vanishes, and the remaining terms become

(Vo Wijut) Wabeag ™ g g% g* g (3.45)

AN =

gldx! Ny,dy) =
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Combining the two expressions, g(dx” A ¢,d@) = g(dx? A\ y,dy) if and only if

(VonWijit) Vabea8 8”88 = 3 (Vin®iji) Qancg™ g 8¢

But this is the Proposition 3.3.5, after contracting with g™

We state the reason of considering torsion forms, which follows from [7].

Remark 3.5.4 We consider the torsion forms of a Gy-structure ¢ because @ is
torsion-free if and only if all four torsion forms vanish, and these forms are
independent. This is because the decomposition of N* into Gy-representations is
orthogonal, and because the maps o — @ N\ o from /\% — /\‘7t and o0 — Y A\ o from

/\% — /\% are isomorphisms.

Lemma 3.5.5 For any vector field X, the 3-form Vx @ lies in the subspace /\% of N3.
Therefore, the covariant derivative V@ lies in the space /\% ® /\%, a 49-dimensional

space (pointwise) [7].

Proof. Let X = % and consider the 3-form V;¢. According to [7], n of /\? D /\%7 can

be written in terms of a symmetric tensor 4;; as follows:
= L gdni ndx nak =L (e nr R @ijm ) dx' A dx? A dx*
TI—E i Pmjkdx Nax’ N\dx _5( i Pmjk + N5 Qi + kQDijm) X Adx? A\
Using (2.2), the inner product of  with V;¢ = %Vl Qape dXx® Ndx? Ndx€ is

ai _bj _ck

gVio.n) = —(ViQape) (1 Omjic + 1} Qimic + 1y ijm) 8487 &

—_ Q\| =

= E(Vl(Pabc)h;n(ijkgaigbj

1 ,
ng = 5 (Vl q)abc)hmaq)mjkgbngk

which vanishes since the third equation of Proposition 3.3.4 says that
(Vlgoabc)(pmjkgbngk is skew-symmetric in @ and m. Since g(V;¢,n) = 0 for all

ne /\%@/\37, we have that V;¢ € /\3 forall/=1,...,7.

We have the following theorems from [7].

Theorem 3.5.6 The covariant derivative V @ of the 3-form ¢ can be written as

Vl Pabe = Tlmgmn Whabc

where the full torsion tensor Ty, is

To 1

Tlm = Zglm — (T3)lm + (Tl)lm - E(TZ)lm
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Proof. According to [7], we start to write the full torsion tensor as 7;,, = S, +
Cin, Where S, = %(Tlm + T,y) and Cy,, = %(Tlm — T,) are the symmetric and

skew-symmetric parts of 7j,,, from [7]. Thus, we have that

Vl Pabe = (Slm + Clm)gmn Whabc (346)

Since d¢ = oy + 37 A\ ¢ + *73, the /\? S /\%7 component of xd¢ is T + 13,

dx!
where f;; = 1 (179) gij + (13)ij. Therefore, by Proposition 3.4.3, we have that the

A& A3 component of d@ = *(xd @) is (§ Tre(f)gij — fij) &'ldx' A (iJ IV). However,

ox!
Tre(f) = %‘L’(), SO

we can write it as %(%‘L’o) ¢ + 73. By Remark 3.4.5, this is f,-jgﬂdxi A (iJ (p),

7 4 1
—Trg(f)gij— fij = T3 P08~ 1y ™08ij ~ (73)ij = 7 708ij~ (73)ij (3.47)

Now, we can also write d¢ = n Vigpe dx! Adx® AdxP A dxe, by (3.46) we have that

1
dop = ¢ (Sim 4 Cim) €™ Whnape dx' Ndx® NdxP N dx

= Spug™dx! A iJl// + Cppng™dx' N J ay
ox" ox"

The second term belongs to A3. Therefore, if we compare the AT @ A3, term of d@ and

by (3.47), we see that

To
Sm:_ m — \13)im
m= g8 (t3):

Secondly, we write 0¢p = — xd x ¢ in two different ways. First, since dy = 4711 A
W+ *Ty, we have 8¢ = — xdy = —4(1;*1 @) — 1, using Lemma 1.0.3. in Appendix

A.1.Therefore, we have
1 1
8¢ = —42(T1)apdx" A dx’ — 5 (@)apdx* dx’ (3.48)
From (2.4), we also have 6 ¢ = —%g”‘V; Orap dX* N\ dx?. Using (3.46), this is

1
6(P = _E glk (Slm + Clm) gmnll/nkab dx* \ dxb

The first term vanishes since Sj;,, is symmetric and Y,z 1S skew-symmetric. Now we
decompose Cj,; = (C7) 1 + (Cr4) i into /\% ® /\%4 components and we interchange n

and k. Thus,we see that

8¢ = — g% (Cim+ (Cra)im) €™ Winap dx® A dx"

N =D =

(—4(C7)ap +2(Cr4)ap) dx* N dxb
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By comparing this to (3.48), we see that (C7). = (71)ap and (Cia)ap = —%(‘L’z)ab,
hence
1
Cim = (T)im = 5 (72)im

and the proof is complete.

Now, we will prove the fact that we mention before in Section 3.1.

Corollary 3.5.7 The 3-form @ is parallel if and only if it is both closed and co-closed
[12].

Proof. According to [7], a parallel form is always closed and co-closed, since the
exterior derivative d and the coderivative 6 can both be written in terms of the covariant
derivative V, which is the Levi-Civita connection and remember that it is torsion-free.
Conversely, from Theorem 3.5.6, d = 0 and d ¢ = 0 hold if and only if all four torsion

forms vanish, thus 7;,, = 0 and then V;¢,;. = 0.

We have another definition of full torsion tensor in terms torsion, metric and Hodge

dual 4-form, which follows from [7].

Lemma 3.5.8 The full torsion tensor Ty, is

1 L
Tim = 57 (Viabe) Vi g gl gk (3.49)

Proof. [7] We begin with V;@uc = Titg" Wypape and use Lemma 3.3.3 to get the

following:
Vl Pabe W”ijkgiagjbgkc = legkn Wnabe I//mijkgiagjbgkc
= Tg"(24gum) = 24T

Proposition 3.5.9 The four torsion forms can be written in terms of Tpg = Spg + Cpqg

as follows:
4
T = §gpq5pq

1

(13)pg = ZTngq_Spq
1 1

(T1)pg = gcpq_g ijgag]b‘l’abpq
4 1 I

(T2)pg = _gcpq_gcijgmg]b‘/’abpq
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Hence, we can write all independent four torsion forms in terms of the symmetric or

anti-symmetric part of the full torsion tensor by [7].

3.6 Some Differential Operators on G, Manifolds

In this section, we will consider some necessary definitions and properties that will be

useful for the application in String Theory. The next definition follows from [16].

Definition 3.6.1 We define the curl of a vector field X to be the vector field curlX,
given by
curlX = x(dX A\ y) (3.50)

Here we denote the vector field X and its metric dual 1-form by the same notation. In

local coordinates we have

(curlX)e = g"'g% (VpXy) @ijk. (3.51)
divk = —d'X’ = xdx X", (3.52)
where d is the adjoint to the exterior derivative d. The identity d7 = — xdx is true for

1-forms, since our manifolds is an odd-dimensional manifold [16].

We have the following definition
gradf = (df)*. (3.53)

There are various relations between the operators grad, div, and curl on a manifold M
with a torsion-free G, structure. First, we recall some identities that are satisfied for

torsion-free G, structures. Let X;dx* be a 1-form on M. The Ricci identities say that
ViViXi—V;ViXp = —Rijug" Xm, (3.54)
where R; i is the Riemann curvature tensor [16]. If we contract (3.54) with gjk, we get
(gmda,'ivX)b = Vi(gjijXk) = gjijViXk — Rijklgjkglme = gjijV,'Xk, (3.55)

here we have used the fact that R; jklgjk = R;; is the Ricci tensor, which vanishes

for a torsion-free G; structure. The Ricci-flatness of the metric also implies that the
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Laplacian agrees with the Hodge Laplacian Ay = dd' +d'd on 1-forms. In particular
by [16],if X = Xk% is a vector field on M, then

gIVV X = —AX’ = —(dd" +d"ad)X’. (3.56)

Because ¢ is torsion-free, the Riemann curvature tensor R;ji; lies in Symz(/\%4) says

that
Rijuug g Wanea = 2Rcani.
Contracting it with g gives the following equation, which follows from [16].

Rijug“s’ b e Wpea = 2Rear1g™ = —2R4 = 0. (3.57)

Now according to [16], we have the following relations between grad, div, and curl

on a G, manifold

Proposition 3.6.2 Let f be any function and X be any vector field on a manifold M

with a torsion-free Gy structure. The following relations hold:

curl(gradf) = 0, (3.58)
div(curlX) = 0, (3.59)
curl(curlX) = —dd'X+AX = —d'dX (3.60)

Proof. To establish (3.58), we note that, from [16], equations (3.51) and (3.53) show

that
s(curl(gradf)) = d(df) A,
which vanishes since d(df) = 0. To establish (3.59), we note that equations (3.52)
and (3.51) show that
div(curlX) = xd x (x(dX" Ay)) = *d(dX’ A y) = 0,

using the facts that x2 =1, d(de) =0, and dy = 0. Note that (3.59) does not
necessarily requires the G, structure to be parallel but dy = 0. Finally, we prove (3.60),

using local coordinates, and the full torsion-free hypothesis. Using (3.51), we compute:

(curlcurlX))y = V,(curlX), 8784 Qupk
- v, (VaXﬁgaigBj(Pijq> 878 P
— (VpVaXﬁ)gaigﬁjgpa((Pijq(Pkabgqb)
= (vaaxﬁ)gaigﬁjgpa(gikgja — 8ia&jk — Vijka),
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where we have used Lemma 3.3.1. This expression becomes
(curl(curlX)) = gPP(V,ViXp) — 8% (V,VaXi) — (V,VaXp) 8% gP g Wijia
= (grad(divX))i+ (AaX")i+ (V,VaXp)8" g% 8P I Wi i,

using (3.55) and (3.56). Thus to prove (3.60) the only thing we have to show that
the last term vanishes. By the skew-symmetry of y;jx, we can write the last term as

follows:
(VpVaXp)g™ g% ePivin = $(VyVaXp — VoV, X5)87 g% gy i
= — AR o8 " Xn8" g% 8P Wijk = 0,
using (3.54) and (3.57).

We have the next lemma that states the relation between the projections of space of

3-forms into submodules and curl, which follows from [16].

Lemma 3.6.3 Let X be a vector field, and consider the form X 1 ¢ € /\%. Then

m(d(Xa9)) = —%(d*X)(p, m(d(Xag)) = %*((curlX)/\(p). (3.61)

Proof. According to [16], we have
m(d(X2¢9)) = he for some h € AY.
Using the fact that /\% &) /\%7 lies in the kernel of wedge product with y, we compute
d(Xoo)A\y) =dXa9) Ny =m(dX2@)) ANy = ho ANy = Thvol.

Hence, we find that
d(3*xX) =d((Xo@)Ay) = Thvol,

and then h = % xd(xX) = —%d*X. Similarly, we have
m(d(X2@)) = *(Y A@) forsomeY € AL
Using the fact that /\? &) /\37 lies in the kernel of wedge product with ¢, we compute
d(Xo@)N@) =dXaQ) AN = m(d(X@)) NP = «(Y ANQ)A@ = —4xY.
Hence, we find that

—4xY =d(Xa@)A @) =d(—2%(X1@)) = =2d(XANy) = =2(dX) Ay,
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and thus Y = § « ((dX) A y) = JcurlX [16].

We now consider the relation involving the 2-form dX, its projection onto the

7-dimensional submodule of the space of 2-forms and curl, which follows from [16].

Lemma 3.6.4 Consider the vector field X as a 1-form using the metric. Then dX €

N = /\% &) /\%4. The /\% component of dX is given by

m(dX) = %(CMI’ZX)_I(,D = %* ((curlX) Ny). (3.62)

Proof. According to [16], we have that 7;(dX) = W_ ¢ for some vector field W. Then

by using the definition /\% and the curl, we have the following

curlX = x(dXAvy)

= *(Wap)Avy)

(

— (mX)AY)
(

= *x(3xW)= 3W
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4. AN APPLICATION IN STRING THEORY

String theory is a theory of quantum gravity, which unifies quantum field theory with
Einstein’s theory of general relativity. The low energy limit of string theory is ten
dimensional supergravity theory, which is a supersymmetric theory of gravity. A
variant of string theory is M-theory, whose low energy limit is eleven dimensional
supergravity theory. As we live in a four dimensional space-time, one has to assume
that the extra seven dimensions are small and belong to a compact internal manifold.

Indeed, eleven dimensional supergravity has classical solutions of the form
My x Y,

where My is four dimensional Minkowski space-time that we observe and Y7 is a
compact manifold. Related to this (type II) string theory has solutions of the form
R> 1 x Y7. To have only one unbroken supersymmetry in four dimension requires that
the seven dimensional manifold Y7 must be of G, holonomy. This follows from the
requirement of the existence of a parallel spinor field 17 , which plays the role of
generating supersymmetry transformations. Then one can construct a parallel 3-form
field out of this spinor field, as a spinor bilinear @, = N7 Typen !"and this 3-form field
indeed defines a G, structure. From the fact that the 3-form field is parallel, it follows

that the internal manifold should have G, holonomy.

These low energy, supergravity solutions acquire corrections from the quantum theory,
which we call o’ corrections, for reasons which are not relevant to this thesis. All
we have to know is that these corrections imply that the spinor field, which generates
the supersymmetry transformations is not covariantly constant, any more. This in turn
means that the 3-form field constructed out of this spinor field is not parallel and hence
the internal manifold is not of G, holonomy. Then it is natural to ask whether the
classical metric of G, holonomy can be modified to compensate for these corrections.
In other words, is there a small deformation of the G, metric, and hence of the G»

3-form, such that the deformed metric solves the equations to all orders in o’? In this

IT 4 are products of Dirac matrices, which are the generators of an appropriate Clifford algebra.
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part of the thesis we will only consider o’ corrections to first order and we follow

closely the paper [17].
Our goal is to find a globally-defined G, structure ¢ which is close to ¢,

¢ =0+68¢ 4.1)

where ¢ is the torsionless Gj-structure, corresponding to the Ricci-flat metric that
solves the supergravity equations. The deformed metric g/, associated to the 3-form ¢’
is to solve the o-corrected equations of motion. The following theorem assures that
such a small perturbation of the original 3-form ¢ defining the G, structure also yields

a Gp-structure, which is given by Joyce [5]:

Theorem 4.1 Let £ > 0 be a universal constant such that whenever {¢,g} is a
G,-structure on a 7 dimensional manifold.

If ¢’ € C*(A3T*M) and ||¢' — ¢ |0 < & then ¢’ € C*(P’M).

So, ¢’ defines a Gy-structure {¢’, ¢’}

We assume ¢ is such that

16" = 9llco =169]lc0 < & 4.2)

We define the norm || - || o on CO(M) by || fllco = supar | f |.
It can be shown that the equations for supersymmetry can be converted to the following

equations for ¢’ and its Hodge dual ' with respect to the deformed metric:
dy) = « (4.3)
dy' = B (4.4)
Here oo = dy and B = d& can be calculated from physics and it can be shown that
they are exact forms, which is obviously a necessary condition for the existence of a

solution the the above system of partial differential equations. The aim of this section

is to show that this condition is sufficient and such a solution always exists.
We have the solution of the first equation
¢'=0¢+x+db (4.5)

where b is a two form.

For the second equation we have for the dual four form y/ = ¢’
4
dy’ = d (S +m — Ty (1 +db) (4.6)
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Here 7y, 77, mp7 are the projections of three forms onto /\*i’, /\?, /\%7 We have that

'@ ~ *(gﬂl + 7 — my7) (X +db)

Then we have

*(d*(gﬂ1+7f7—ﬂ27)(x+db)):*d& (4.7)
This is the linearization, from [12], of the *” operator as can be seen from the following
Proposition 4.2 Let € be as in the Theorem 4.1. Then there exists constants &, &3 > 0
such that whenever M is a 7-manifold and (¢, g) a G,-structure on M with d¢ = 0 then
the following is true. Suppose y € C*(A3T*M) and |y| < &;. Then ¢ + x € C*(P>M)
and 0(@, x) is given by

0(p,x) = *p+ g * 70 (X)) +xm7(%) — *m27 (%) — F(X)

7
= *<p+§*m(%)+2*7r7(x)—*x—F(x)

where F is a smooth function from the closed ball of radius &, in A3T*M to A*T*M
with F(0) =0.
Applying (4.7) we have

4 4
*(d* (5751 + 7 — 7T27))db = *d& —xd % (§7'L'1 + 7 — 7'[27)%

4 4
—dT(gﬂl + 7 —m)db = d(—xE+ (§ﬂ1 + 07 — m7)X)

Thus, we have an equation for b
¥ 4 ¥ 4
d (7T27—7T7—§711)db:d P, P:—*i—(ﬂﬂ—?ﬁ—gm)% (4.8)

Here d' = — x dx.
We want to understand whether this equation has a solution for b or not. Our aim is to

convert this equation to a Laplacian equation for b.

Ab = d' p under the assumption that d'b = 0 where A = dd" +dd.
Putting the equation in that form ensures that we can always solve for b. A coexact
form is orthogonal to all harmonic forms by Hodge decomposition theorem. Our claim
is that

d' (my7 — 77 — gm)db = d'(my7 4+ 7+ 7y )db =d"db = Ab (4.9)

In order to show it, first we prove
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° 7[7(db) =0

o m(db) =0

First, let @ be a torsion-free Gy-structure and define 71 = d(X_ ¢), by using the

definition of /\%, for some vector field X. We claim that
4
d(*(gﬂm +mn —mm)) =0
From Lemma 3.6.3 we find

4 7
g*nln+*7r7n—*7r27n = §*7TITI+2*7T777—*77 (4.10)

= —(d"X)y+ (curlX) N @ —xn. (4.11)
Hence we have
4 *
d(*(gnm +mn —mm)) =—(dd* X)ANy+ (deurlX) N —d x 1. 4.12)
and we use Definition 3.6.1, the third term above can be rewritten as

—dxnN=—dxdX19) = —dxd*(XA\y)
= dd"(XNvy)
(A-d*d)(X Ny)
= (AX)Ay—d*((dX)Ay)
(AX) ANy —d* (xcurlX)
(

AX) ANy —x(dcurlX).

Substituting the above into (4.12) and using the definitions of /\% and /\%4, we obtain

d(*(%ﬂ'ln +mn—mm)) = —(dd*X)\y+ (—2* m7(deurlX) + *7r14(dcurlX))
+ (AX) Ay — (x77 (dcurlX) + M4 (dcurlX))
= (d*dX) Ny —3*m(dcurlX).

Applying Lemma 3.6.4 to the last equation (for the vector field cur/X), we obtain

d(*(gnm +mm —mym)) = (d*dX) ANy — (curlcurlX) A\ y.
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The right hand side above vanishes by curl(curlX) = d*dX for any vextor field X by

Proposition 3.6.2. It means that b € /\%4.

Now, we will show that 7 (db) = 0if b € A3,

Since b € /\%4, then @ A b = 0. Taking derivative of boths sides we get
d(x@A\b)=dx @ ANb+xpNdb=0
Since ¢ is a G, structure then d x ¢ = 0. Then x¢ Adb =0

Since db is a 3-form, we have

«@ A (71(db) + m7(db) + 727 (db)) = 0 (4.13)
x@ AT (db) + @ A 7(db) + @ N m7(db) =0 (4.14)
Now ,we know that 77 (db) = *(¢ A ) where o € AL Also,

xQ A17(db) =@ Ax(pANat) =0 (4.15)

by (3.21)
Also *@ A 7 (db) = 0 by the definiton of A3;. Thus,

*@ AT (db) =0 (4.16)

by the definition of A we write 7, (db) = f¢@ where f € C*(M)). f* @ A @ =0 then
fvol =0« f=0. Thus, m;(db) = 0, as claimed.

Now, we will show that 7t;(db) = 0 because d'b = 0.

Since b € /\%4, then x@ A b = 0.We have ¢ Adb = 0 as above. Also, b € /\%4, then
%(@ Ab) = —b. Taking d' of both sides we have
d"(*(¢ Ab)) = —d'b = 0 by the assumption d'b = 0.

—xd %> (@ Ab) = *d(@ Ab) = x(d@ Nb) ++(9 ANdb) =0 (4.17)

by using d@ = 0 we have *(@ Adb) = 0. Also (¢ Adb) =0.

Using the facts that @ Adb = 0 and (¢ Adb) = 0 we conclude that db € A3,. Then,
m7(db) = 0.

Then we have showed that the equation (4.9) for b takes the simple form d'db = Ab =
d'p which always has a solution by Hodge decomposition theorem.

The above analysis shows that the system of equations (4.3) and (4.4) always has a
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solution, for given exact forms o and 3, determined by physics. This in turn proves
our claim: the G, holonomy metric of the supergravity solution can be corrected to a
metric of G, structure, which solves the o corrected equations of motion of the string

theory.
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S. CONCLUSION

The purpose of this thesis is to study the differential geometric properties of manifolds

with Gj-structure, with a special emphasis on the torsion forms.

Firstly, we studied various equivalent definitions of G,. We investigate conditions for
the existence of a G,-structure. Also, we consider the properties of a G;-structure and
a Gp-manifold. Then, we described the decomposition of each space of k forms into
irreducible G, representations. Afterwards, using the decomposition of the spaces of
differential forms we decompose d¢, d * ¢ into irreducible G, representations. This
led us to introducing the torsion forms for G; structures. As we studied in detail in
the thesis, a Gy structure is parallel if and only if all the torsion forms vanish. Hence,
torsion forms are an important tool in studying manifolds with G, structure, but not
of G, holonomy. Since our aim is to study such manifolds, we studied in detail some

important properties satisfied by the torsion forms.

Recently, manifolds of G, structure, rather than G, holonomy, has found important
applications in string theory. As one such application, we investigated if a metric of G,
holonomy can be modified to compensate for ¢’ corrections or equivalently if there is
a perturbation of the associative 3-form ¢ such that the corresponding metric g’ solves
the o’ corrected equations of the quantum theory. This led us to the investigation of
the existence of a coupled system of partial differential equations for ¢’, and its Hodge
dual (with respect to g’) where the source terms are determined by physics, and are
related to the torsion forms of the G, structure ¢’. Then, by analyzing this system of
equations, we showed that the G, holonomy metric of the supergravity solution can
be corrected to a metric of G, structure, which solves the a corrected equations of

motion of the string theory.

51






REFERENCES

[1] Karigiannis, S. (2011). What is... a Gy-manifold?, arXiv: math.DG/1104.2296v1.

[2] Bonan, E. (1966). Sur les varietes riemanniennes a groupe d’holonomie G, ou
Spin(7).

[3] Bryant, R. (1987). Metrics with exceptional holonomy, Ann. of Math.

[4] Bryant, R. (2005). Some remarks on G; structures, Proceedings of Gokova
Geometry-Topology Conference, 75-109.

[5] Joyce, D. (2000). Compact manifolds with special holonomy, Oxford University
Press.

[6] Do Carmo, M. Riemannian Geometry, Birkhduser.
[7] Karigiannis, S. (2008). Flows of G5 structures, 1., Q. J. Math.
[8] Nakahara, M. (2001). Geometry, Topology and Physics.

[9] Lounesto, P. (1890). Clifford Algebras and Spinors (London Mathematical Society
Lecture Notes Series.286).

[10] Karigiannis, S. Some Notes on G, and Spin(7) Geometry, arXiv:
math.DG/0608618.

[11] Arenas, R. (2005). Constructing a Matrix Representation of the Lie Group G,
Ph.D. thesis, Harvey Mudd College.

[12] Joyce, D. (2007). Riemannian Holonomy Groups and Calibrated Geometry,
Oxford University Press.

[13] Akbulut, S. and Salur, S. (2006). Mirror Duality via G, and Spin(7) Manifolds,
arXiv: math.DG/0605277.

[14] Karigiannis, S. (2005). Deformations of G, and Spin(7) structures, Canad. J.
Math., volume 57, pp.1012-1055.

[15] Fernandez, M. and Gray, A. (1982). Riemannian manifolds with structure group
G, Annali di matematica pura ed applicata, 132, 19-45.

[16] Karigiannis, S. and Lotay, J. (2014). Deformation theory of G, conifolds, arXiv:
math.DG/1212.6457v2.

[17] Becker, K., Robbins, D. and Witten, E. (2014). The o’ Expansion On A Compact
Manifold Of Exceptional Holonomy, arXiv: math.DG/1404.2460v1.

53






APPENDICES

APPENDIX A.1 : Some Useful Identities

55






APPENDIX A.1

We have the following Lemma that gives the relations between the contractions and
the wedge product.
By [14], we have that

2 = (—1)kr=k) (A1)

on k-forms. We also have %> = 1. Suppose v is a vector field and ¢ is a k-form.

Lemma 1.0.1 According to [14], we have the following four identities :

s(waa) = (=)W Axa) (A.2)
(waa) = (=1 s (W’ Axar) (A.3)
s(woxa) = (=1 (A @) (A4)
(woka) = (=)« Aa) (A.5)
and when o = vol, the special case
w_vol = xu’ (A.6)

Proof. According to [14], we have

(B,waa)vol = BAx(wi)
= (waa)(B*)vol
= a(wABF)vol

= <a,wb/\ﬁ>vol
(W AB) Axor
= (-)"'BAW Aa)

Since f is arbitrary, (A.2) follows. Substituting xa for o and using (A.1), we obtain
(A.4). The other two are obtained by taking * of both sides of the first two identities.

We have the following relations involving the 3-form, its Hodge dual 4-form, metric
dual 1-forms and Hodge star, which follows from [7],

Proposition 1.0.2 Let o be a 1-form on M, let w be a vector field on M, and
w” be the 1-form dual to w. Then the following relations hold:

L o) =7
2. |y =7
3. oA af? =4|af?
4. lyAal? =3|af?
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x(PAx(pAQ)) =—4o
x(WAx(yAQ))=3a
YAx(A) =0
oNx(YAa)=-"2UAa

v oL =2 W

(@ AW) =way
10. (W AW) =wa@

1. @A (wa@) = 2% (wa@)
12. WA (wa@) =3%w’
13. QA (woy) = —4xw
14. yA(way)=0

Proof. According to [14], for (1), using (A.4) and (A.5) we start by necessarily zero
eight form

O=w AaAx0 = wi(w AaAx*Q)
w2a A kot —w A (waot) Asa+ (—1) W’ A A (woxa)
Iw[? o[> vol — (waot) As(waa) — (waxa) Ax(woxar)
= |w)?|a|?vol — |wao|*vol — |woxa|*vol

We have |w|?|at|? = [woa|? + |waxal?.
Now, we write

ol’lal® = [yoaf’ +|poal = 3laf+4|af® =7|al®

o> = 7
Similarly, for (2) we write
yPlaf® = lyoal* +|pual = 4af+3af* =7
y> =7
For (5), let @ = o;dx' be a one form.
pro = al(—dx5271 _ @631 4 g, 4261 —|—dx4371)
s(pAa) = og(—dx’® —dx®™ 4+ dx*" 4 dx*®)
PAx(QAQ) = al(—dx527364 — 563274 | 1, 426375 +dx437265)

s(Ax(pA@)) = dajdx! =4a
For (7), * o Ax(p Aa) = a;0 =0

For (8),
*QAO = o (dX45671 . dx45231 +dx26371)
s(xoAa) = —oy(dx® —dx® +dx®)
PAx(xQA0) = —204(dx*PT —ax®B L dx® = 2(y A )
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For (3), we have from (5) (p Ax(pAQ)) = —4*

(PANO)Ax(pAQ) = —daN*o
= —|oAalvol
—4]o*vol

Therefore, |@ A a|? = 4|a|?.
For (6),
f(WAx(WAQ)) = (o (dx*075 4 ax®207 4 15263743
= o (dxl + dx! +dx1) =3
For (4), we have from (6) y Ax(y A @) =3*«

CANYAR(YAQ) = 3aAxa
lwAalvol = 3|al?vol

Therefore, |y A > = 3||?. For (9), we have from (A.5)
way=—x(WAQ) = x(@AW)

Thus, woay = (@ Aw’).
For (10), by using (A.3), we have *(y Aw’) = w_ .

For (12), from (6) we have w A x(y A @) = 3*xa If we set o = w”, then by (10) we

have x(y A o) = w_ . Plugging into the first equation we have
YA (W) = 3w
For (14), from (7) we have w Ax(¢@ A a) = 0. But here
«(@ Aat) =%(@ Aw’) = w_y from (9). Thus y A (way) = 0.
For (11), from (8) we have @ Ax(y Aw’) = 2y AW,
Also by (10) we have,
«(WAW) =wag
So, =2% (Yu@) =@ A (wa@).
Finally, for (13) we use (5) (@ A (@ Aw’)) = —4xw” and (A.5)

OA(Way) = —4xw

We have the next lemma of the G,-structure, which follows from [7].

Lemma 1.0.3 The metric g, cross product x, and 3-form ¢ satisfy the following

relations:
guxvw) = @@uv,w)
(u><v)b = vous@ = «(’ MV AY)
ux (vxw) = —gu,v)w+g(uw)v— (usvowoy)?
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where u, v, w are vector fields and v’ denotes the 1-form which is metric dual to v.

Proof. Let u and v be vector fields on M. According to [14], the cross product u x v
is a vector field on M whose associated 1-form under the metric isomorphism satisfies
the following:

(u x v)b =Viul@Q (A.10)

From this, we have the relation between x, ¢, and the metric g:
g(uxv,w) = (ux v)b(w) =waviul@ = @(u,v,w). (A.11)

Another characterization of the cross product can be obtained from this one using
Lemma 1.0.1:

(u><v)b = VviulQ (A.12)
—x(V Ax(usg))
— % (V" Au’ A*Q)
= *(ub/\vb/\*q))

For the last one, from (A.12), we have
(ux (v ><w))b = (ub/\* (vb/\wb/\*(p> /\*q))
Now since B A*¢ = 0 for B € A3, we can replace VAW by m(V Aw) =
% <vb AW’ — x ((p AV A wb) > Then using (3.37), we have
* (71:7(vb AW’) A *(p) Ax@ = 3xm; (v Aw’)
= x (vb/\wb — % ((p/\vb/\wb>)
= % (vb AW + mmu*(p)
which we substitute back to obtain
(ux (vx w))b = % (ub A (vb/\wb —|—v4w4>x<(p))

= —uJ (vb AW’ +vawl >x<q))

= —g(u,v)W + g(u,w)V’ — usvow_x@
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