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FOREWORD 

Emissions from diesel engines have become one of the most important 

environmental problems in the world today. The emission regulations have become 

stricter and stricter in the last 30 years and diesel engines are no longer allowed to 

release high rates of NOx, CO and particulate matter to the atmosphere.  

One of the important solution to reduce emissions from diesel engines is to use 

exhaust thermal management systems. However, exhaust thermal management 

systems have a major drawback. They generally acquire effective emission 

conversion efficiencies when exhaust gas temperatures are above 250
o
C. As the 

diesel engines have lower than 250
o
C exhaust gas temperatures at low engine speed 

and low engine loading cases, utilizing these systems cannot be as efficient as 

expected on these performance points. 

One of the current methods to achieve higher than 250
o
C temperatures is to use 

variable valve timing. Therefore, the intention in this study is to utilize variable valve 

timing on a diesel engine system to attain greater than 250
o
C exhaust gas 

temperatures and to obtain more effective aftertreatment management for more 

engine performance area. 
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EFFECTS OF VARIABLE VALVE TIMING ON THE EXHAUST THERMAL 

MANAGEMENT OF A TURBOCHARGED & INTERCOOLED DIESEL 

ENGINE 

SUMMARY 

Emissions from diesel engines have become recently a significant problem due to 

their positive effect on global warming and negative effects on human health. 

Recently, NOx and PM emission regulations for diesel engines have become quite 

strict and the emission limits have decreased to very low numbers.  

Engine producers generally use exhaust thermal management systems to reduce the 

high rates of emissions discharged from diesel engines. Some typical aftertreatment 

systems are SCR, DPF and DOC. SCR is used to decrease NOx emissions, DPF is 

utilized to reduce PM emissions and DOC is mostly applied in a diesel engine system 

to diminish unburned hydrocarbons (HCs) and carbon monoxide. Although these 

aftertreatment systems are indeed effective to meet stringent emission regulations on 

diesel engines, they have a major drawback. These systems generally require high 

exhaust gas temperatures in order to have high emission conversion efficiencies. In 

other words, they are temperature-dependent and mostly need higher than 250
o
C 

catalyst temperatures to perform efficiently. However, exhaust gas temperatures are 

generally lower than 250
o
C for diesel engines operating at lower engine speed and 

lower engine loading conditions on the performance map. That not only leads to 

inefficient aftertreatment systems but also insufficient emission reduction for those 

engine performance points.  

One of the current methods to achieve greater than 250
o
C exhaust gas temperatures 

for these lower engine speed and lower engine loading areas is to use VVT. 

Changing the opening and closing timings of intake and exhaust valves, VVT can be 

applied to a diesel engine at any speed and at any load. Therefore, the aim of this 

study is to try to increase the exhaust gas temperatures of a diesel engine above 

250
o
C for different engine speeds and different engine loadings via utilizing VVT. 

Change of inlet and exhaust maximum valve lifts is also examined in order to rise 

exhaust temperatures more in the system. The intention is to attain those high 

exhaust gas temperatures without causing any fuel consumption penalty in 

comparison to nominal valve timings. 

Firstly, a six-cylinder turbocharged and intercooled diesel engine system is modelled 

to analyze exhaust gas temperatures and also exhaust gas flow rates by using Lotus 

Engine Simulation (LES) program. The simulation has different elements (cylinders, 

pipes, ports, valves, turbocharger, intercooler etc.) and these components are 

explained in a detailed manner with mathematical formulations.  

Secondly, validation of the simulation is achieved for earlier and later intake valve 

closing (IVC) timings on a particular engine speed and engine loading point (1200 

rpm and 2.50 bar bmep). The results of the simulation for turbine out temperature 
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and for volumetric efficiency are generally compatible with the experimental results. 

It is shown on the validation that advancing IVC timing 65 degrees CA or retarding it 

100 degrees CA from nominal timing is adequate in the system to reach 250
o
C 

turbine exit temperature (TET). Up to 55
o
 C TET rise is obtained by sweeping IVC 

timings forward or backward. Also, when effect of IVC on other diesel engine 

performance parameters is examined, it is seen that advanced and retarded IVC 

timings results in fuel-saving. However, these timings also cause high exhaust flow 

rate reduction compared to nominal valve timings in the system. Early IVC (EIVC) 

leads to more exhaust flow reduction, but it is also found to be more fuel-efficient 

than later IVC.  

Thirdly, other VVT options are searched to combine with EIVC so as to attain higher 

than 250
o
C exhaust gas temperatures without causing a substantial reduction on 

exhaust flow rate. EEVC, LIVO and EEVO are all examined. EEVO is found to be 

the best option to combine with EIVC. Therefore, combined EIVC&EEVO is applied 

to the system. IVC is advanced 40 degrees CA from stock IVC timing and EVO is 

also advanced 70 degrees CA from nominal EVO timing. Although it is successful to 

satisfy 250
o
C TET in the system, it also causes a little bit more than 1 % bsfc penalty 

in comparison to nominal valve timings. 

Later, inlet and exhaust maximum valve lifts are analyzed to reduce the fuel penalty 

on the system. It is seen that when lower inlet and higher exhaust maximum lifts 

compared to nominal maximum lifts is utilized, not only does it enable the system to 

acquire greater than 250
o
C TET, but also it decreases bsfc penalty down to zero 

percent in comparison to nominal valve timings. 

Then, the method is implemented for different engine speeds (1000 rpm to 2000 

rpm) and several engine loadings (1.0 bar to 5.0 bar bmep). When it is compared 

with TET and exhaust flow figures at nominal valve timings calculated on the 

previous part of the study, it is seen that 250
o
C target TET line can be decreased to 

lower engine loadings. For instance, for 1200 rpm engine speed, TET is obtained at 

only 2.50 bar bmep rather than satisfying the same temperature at 4.50 bar bmep 

with nominal valve timings and nominal maximum lifts. More importantly, this is 

achieved without requiring any extra fuel consumption compared to stock valve 

timings. Also, reduction of exhaust gas flow rates is not as high as the case where 

only IVC is used to meet the target TET for more efficient exhaust thermal 

management. 

Finally, general evaluation of the study is done by discussing the results achieved in 

the analysis and the study is concluded on the final part with recommendations for 

future work. This study is expected to provide insight into the utilization of VVT 

technique on diesel engines to raise TET particularly on lower engine speed and 

lower engine loading points of the engine performance map. In this way, more 

efficient aftertreatment systems can be performed to fullfill the stringent emission 

criteria. 

 

 

 

 

 



xxiii 

 

DEĞİŞKEN VALF ZAMANLAMASININ TÜRBOŞARJLI & 

ARASOĞUTUCULU BİR DİZEL MOTORUN EGZOZ ISIL YÖNETİMİ 

ÜZERİNDEKİ ETKİLERİ 

ÖZET 

Dizel motorlar günümüzde dünyada öncü bir rol üstlenmektedir. Endüstri ve 

sanayiden tarıma, otomotiv araçlarından deniz taşıtlarına kadar hemen her alanda 

dizel motorlar oldukça yaygın bir şekilde kullanılmaktadır. Ancak bu makinaların 

hayatımıza kattığı olumlu etkilerin yanı sıra, özellikle son zamanlarda çevremize 

oldukça olumsuz etkisi söz konusudur. Dizel motorlardan çevreye yayılan yüksek 

orandaki emisyonlar; küresel ısınmayı arttıcı etkileri ve insan sağlığına da olumsuz 

etkileri nedeniyle günümüz dünyasında ciddi bir sorun haline gelmiş bulunmaktadır. 

Günümüzde dizel motorlar için izin verilen NOx ve PM emisyon sınırlamaları çok 

düşük değerlere düşürülmüştür. 

Makina üreticileri dizel makinalardan çevreye yayılan bu yüksek orandaki 

emisyonları düşürmek için genellikle makina sistemlerinde egzoz ısısı yönetim 

sistemlerini kullanmaktadırlar. SCR, DPF ve DOC, bu sistemlerin dizel motorlarda 

en yaygın kullanılan türlerindendir. SCR göreceli olarak NOx emisyonlarını 

düşürmek için daha fazla kullanılırken, DPF yöntemi PM emisyonlarını azaltmakta 

tercih edilmektedir. DOC yöntemi ise, yanmamış hidrokarbon ve karbonmonoksit 

oranları için çevre koruma ajanslarınca dizel motorlara konulan sınırlamaların 

sağlanmasına yönelik bir sistemdir. Her ne kadar bahsi geçen bu ısıl yönetim 

sistemleri dizel motorlar için belirlenmiş emisyon sınırlarını sağlamak amacıyla 

kullanılmaktaysa da, pratikte kullanım sırasında her bir egzoz ısıl yönetim sisteminin 

kendisine has sıkıntıları ve yol açtığı zorluklar bulunmaktadır. Bu sistemlerde, 

yüksek emisyon dönüşüm verimi sağlayabilmek için genellikle yüksek egzoz gazı 

sıcaklıklarına ihtiyaç duyulmaktadırlar. Bir başka ifadeyle, bu sistemler sıcaklığa 

oldukça bağlıdır ve verimli olabilmeleri için katalizör taşıyıcı sıcaklıklarının 

250
o
C'den yüksekte tutulması gerekmektedir. Bu da ancak motordan ısıl yönetim 

sistemlerine gönderilen egzoz gazı sıcaklığının 250
o
C'nin üzerinde sürekli bir şekilde 

seyretmesi ile sağlanabilir. Fakat, dizel motorlarda egzoz gazı sıcaklıkları, dizel 

motorun çalışma alanında (hıza ve yüke bağlı) özellikle hızın ve yükün nispeten daha 

düşük seyrettiği durumlarda genellikle 250
o
C'nin altında kalmaktadır. Düşük egzoz 

gazı sıcaklığı ile çalışma durumu da, oldukça verimsiz egzoz ısıl yönetimine ve dizel 

motorun bu koşulda çalıştığı noktalar için yeterli emisyon düşürümünün 

sağlanamamasına sebep olur. Makina imalatçılarının bu performans noktalarında 

gereken yüksek egzoz gazı sıcaklarına ulaşabilmek için çözümler üretmesi 

gerekmektedir. 

Dizel motorlarda; makina hızının ve makina yükünün nispeten daha düşük olduğu 

motor performans alanlarında, 250
o
C'den yüksek egzoz gazı sıcaklığı elde etmek için 

başvurulan güncel metodlardan birisi de değişken valf zamanlamasıdır (VVT). 

Emme ve egzoz valflerinin açılma ve kapanma zamanları değiştirilerek, VVT bir 
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dizel motoruna herhangi bir hız veya herhangi bir yük durumu için uygulanabilir. Bu 

nedenle; bu çalışmanın amacı, 6 silindirli ve 4 stroklu bir dizel motorunun egzoz gazı 

sıcaklığının 250
o
C'nin altında kaldığı performans noktalarında, farklı hız ve farklı 

yük durumları için VVT yöntemini uygulayarak egzoz gazı sıcaklığını 250
o
C'nin 

üstüne çıkarabilmek ve dolayısıyla makina sisteminde daha verimli egzoz ısıl 

yönetimi elde edebilmektir. Valf açılma ve kapanma zamanlamalarının yanı sıra 

emme ve egzoz maksimum valf açıklıklarının değişimi de yine egzoz gazı sıcaklığını 

daha da arttırmak için uygulanmıştır. Çalışmadaki hedef, bu yüksek egzoz gazı 

sıcaklıklarını elde ederken, başlangıç emme ve egzoz valf açılma ve kapanma 

zamanlamaları ile başlangıç maksimum valf açıklıklarına kıyasla sistemde herhangi 

bir yakıt tüketimi artımına sebep olmadan VVT yöntemini birçok farklı hız ve yük 

durumu için uygulayabilmektir. 

Tez çalışmasında öncelikle altı-silindirli türboşarjlı ve arasoğutuculu marinize bir 

dizel motor sistemi LES motor simülasyon programı kullanılarak, egzoz gazı 

sıcaklıklarını ve egzoz gazı kütle akış oranlarını incelemek için modellenmiştir. 

Simülasyon programı, içerisinde marinize dizel motor sistemini oluşturan birçok 

farklı unsuru (silindirler, portlar, valfler, türboşarjer, arasoğutucu, elemanları 

birbirine bağlayan borular vs.) bulundurmaktadır. Simülasyonu oluşturan bu parçalar 

toplu olarak bir şekil üzerinde gösterilmiş ve ardından programda kullanılan kabuller 

ve programa bu elemanlara ait verilerin girişi detaylı bir şekilde gerek metin içinde 

gerekse de tezin Ek kısmında gösterilmiştir. Ayrıca, bu unsurlarda hesaplamalar için 

kullanılan matematiksel denklemler de yine ayrıntılı olarak açıklanmıştır. 

Tez çalışmasının ilerleyen safhalarında LES programında modellenen marinize dizel 

motorun 1200 rpm hızında ve 2.50 bar sabit motor yükünde (ortalama efektif basınç) 

çalıştığı düşünülmüş ve emme valfi kapanma (IVC) zamanlamasının daha erken/geç 

kapanması durumu açık literatürdeki bir deneysel çalışma ile karşılaştırılmıştır. 

Yapılan inceleme ve kontroller sonucunda teorik modellemenin literatürdeki baz 

deney sonuçlarıyla uyumlu olduğu görülmüş, modellemenin kabul edilebilirliği ve 

doğruluğu anlaşılmıştır. Bilgisayar modellemesi ile hesaplanan türbin çıkış sıcaklığı 

(TET) ve hacimsel verim değerlerinin literatür deney sonuçları ile uyumlu olduğu 

gözlenmiştir. Böylece modelleme programının egzoz gazı sıcaklığı hesabında da 

rahatlıkla kullanılabileceği görülmüştür. Modellemenin doğrulama aşamasında; sabit 

yük koşulu altında, IVC'nin orijinal kapanma krank açısı (CA) değerinden 65 derece 

CA geriye ötelenmesi veya 100 derece CA ileriye ötelenmesinin TET değerinin 

250
o
C'den yüksek olması için yeterli olduğu gösterilmiştir. IVC'nin ileri ve geri 

ötelenmesi ile 55
o
C'ye varana kadar TET artışı elde edilmiştir. Ayrıca, IVC'nin diğer 

makina performans parametreleri üzerindeki etkisi incelendiğinde IVC'nin erken ve 

geç kapanmasının yakıt tüketimini azalttığı gözlenmiştir. Erken kapanma geç 

kapanmaya kıyasla biraz daha fazla yakıt tasarrufu sağlamaktadır. İleri ve geri 

ötelenmiş IVC değerlerinin etkileri P-V indikatör diyagramında gösterilmiş, 

sonuçları orijinal IVC değerleri için açık literatürde ortaya konulan sonuçlarla 

karşılaştırılmıştır. Karşılaştırmalar sonunda yakıt tasarrufunun sistemdeki 

pompalama kayıplarının azalmasından kaynaklandığı görülmüştür. Öte yandan, bu 

erken ve geç kapanma zamanlamaları başlangıç değerine kıyasla, egzoz gazı kütle 

akış oranında oldukça yüksek düşüşlere neden olmaktadır. Erken IVC (EIVC); 

motorun hacimsel verimini, geç IVC (LIVC) zamanlamasına göre daha fazla 

düşürdüğü için egzoz gazı kütle akışında daha yüksek oranda azalışa sebep 

olmaktadır.  
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Tez çalışmasının ilerleyen safhalarında ise egzoz gazı sıcaklıklarını 250
o
C'nin 

yukarısına çıkarmak ve bunu yaparken egzoz gazı akış oranında azalmaya yol 

açmamak için erken emme valfı düzenlemesine ek başkaca VVT seçenekleri de 

araştırılmıştır. Erken egzoz valf kapanması, geç emme valfi açılması ve erken egzoz 

valfi açılması (EEVO) uygulamalarının hepsi ayrı ayrı incelenmiştir. EEVO'nun 

EIVC ile birleştirilmesinin en iyi seçenek olduğu görülmüştür. Çünkü EEVO; hem 

egzoz gazı sıcaklığını hızlı bir şekilde arttırmakta, hem de egzoz akış oranı üzerinde 

olumsuz bir etki yaratmamaktadır. Ayrıca, her ne kadar EEVO yöntemi yakıt 

tüketimini arttırsa da, EIVC metodunun sistemde sağladığı yakıt tasarrufu ile bu 

yükseliş en aza indirilebilir ve hatta dengelenerek başlangıçtaki yakıt tüketim değeri 

korunabilir. Bu nedenle, birleştirilmiş EIVC & EEVO yöntemi sisteme sabit yük 

altında uygulanmıştır. EIVC başlangıç zamanından sadece 40 derece CA geriye 

ötelenmiş ve EEVO da başlangıç açılma değerinden 70 derece CA daha önce 

açılmıştır. Her ne kadar sistemde 250
o
C'ye oldukça yakın egzoz gazı sıcaklığı elde 

edilmiş olsa da, birleşik valf zamanlaması metodu başlangıç valf zamanlamasına 

nazaran 1 %'den biraz daha fazla bir oranda yakıt tüketiminde artışa neden olmuştur.  

Sonraki aşamada, emme ve egzoz maksimum valf açıklık değerlerinin değişimi 

incelenerek simülasyonda oluşan bu % 1'lik yakıt tüketimi artışı giderilmeye 

çalışılmıştır. Başlangıç valf açıklıklarına kıyasla daha küçük emme valfi maksimum 

açıklığı ile daha yüksek egzoz valfi maksimum açıklığı kullanıldığında, TET 

değerinin 250
o
C'den çok daha yüksek değere ulaşabilmesi sağlanmıştır. Ancak 

bundan daha da önemli olan sonuç, bu yüksek egzoz gazı sıcaklığı elde edilirken, 

sistemdeki yakıt tüketiminin başlangıç valf zamanındaki değere düşürülebilmiş 

olmasıdır. Yöntem, her ne kadar egzoz kütle debisini biraz azaltsa da, TET değerini 

başlangıç valf maksimum açıklık değerlerine nazaran yeterince arttırdığı için ısıl 

sisteme gönderilen egzoz gazı termal gücü sabit kalabilmektedir. 

Son aşamada, yöntemin başarılı olduğunun görülmesi üzerine, metod farklı makina 

hızlarına (1000 rpm'den 2000 rpm'e) ve birçok farklı makina yük durumuna (1.0 

bar'dan 5.0 bar'a) uygulanmıştır. VVT metodu ile, başlangıç valf açılma ve kapanma 

zamanları ile başlangıç valf maksimum açıklık değerlerine kıyasla, çok daha düşük 

makina yüklerinde egzoz gazları 250
o
C TET değerine ulaşabilmektedir. Örneğin, 

1200 rpm makina hızı için; dizel motor başlangıç valf değerlerinde, 250
o
C'nin 

üstünde egzoz kütle akışını ancak 4.50 bar yüklü durumda sağlayabilirken, VVT ve 

değişken valf açıklık değerleri ile aynı sıcaklığa 2.50 bar motor yükü durumunda 

ulaşabilmektedir. Yük durumundaki iyileştirme farklı motor hızlarında farklı değerler 

alsa da, 250
o
C egzoz gazı TET eğrisi bu yöntem ile motorun çalıştığı bütün hızlarda 

daha düşük makina yük durumlarına indirilebilmektedir. Bu da dizel motorun, 

başlangıç valf durumuna nazaran, çalışma bölgesinin çok daha büyük bir kısmında 

daha verimli egzoz ısıl yönetimine sahip olabilmesi ve emisyon değerlerini izin 

verilen sınır değerlerde tutabilmesi demektir. Daha da önemli olan sonuç ise, bu 

sonucun orijinal valf zamanlamasına nazaran fazladan bir yakıt tüketimi 

gerektirmeden gerçekleşmiş olmasıdır. Ayrıca, her ne kadar egzoz gazı kütle 

akışında düşüş gözlense de; hesaplanan azalma, yalnızca IVC zamanlamasının ileri 

ve geri ötelenmesi ile 250
o
C TET değerinin elde edildiği durumdaki kadar yüksek 

olmamaktadır. 

Tezin sonuç kısmında modelleme sonuçları tartışılmış, araştırmanın genel 

değerlendirmesi yapılmış ve gelecekte bu yönde çalışma yapacak araştırmacılar için 

çalışma alan önerileri belirtilmiştir. Bu çalışmayla VVT tekniğinin marinize dizel 

motorların özellikle manevra veya liman içi gibi düşük yükte çalışma durumlarında 
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egzoz gazı sıcaklıklarının 250
o
C'nin üzerine nasıl çıkarılabileceği ortaya konuluştur. 

Teorik araştırmanın deneysel araştırmayla desteklenerek gelecekte emisyon azaltımı 

ile alakalı çalışmalara yöntem bazında fikir vermesi, yol göstermesi ve katkı 

sağlaması umulmaktadır. Tez bulgularıyla marinize dizel motorların egzoz ısıl 

yönetim sistemleri çok daha verimli hale getirilebilir ve aranan/izin verilen emisyon 

kriterleri karşılanabilir. 
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1.  INTRODUCTION 

The internal combustion engines have a leading role in the world as a power plant for 

about a century. Thanks to advances in materials, manufacturing, computer analysis 

and design tools in the current 30 years, the internal combustion engines can attain 

higher standards of performance. Particularly strict legislations on emissions, fuel 

scarceness and social and economic factors are bringing new targets for current 

engine systems for the following years. Therefore, improved diesel engine models 

via computer simulations will be needed to supply those demands in the future. 

Modeling of engine systems have been used for a very long time in the design stage 

of improved engine models. Numerical simulation of engines has become an 

appealing choice as it decreases prototyping costs and enable many different 

parametric and optimization studies to be made on engine models to achieve targeted 

values. Also, experimental tests cannot measure every detail in engine systems and it 

is difficult and expensive for different trials. However, once a validated model is 

acquired; not only is it easier to work the model consecutively, but new targets can 

also be calculated and examined.  

Moreover, new theoretical concepts such as neural network analysis and genetic 

algorithms which are related to optimization are brought in to use in the area of 

engine research. Those new concepts will contribute to examine more complicated 

engine systems. As the more complex components were added to the engines, the 

capabilities of the simulation tools had to grow and will have to grow due to new 

regulations set on engine systems. 

Recently, emissions from diesel engines have become a significant problem and 

strict emission limits on diesel engines are expected to be met by engine 

manufacturers. Therefore, producers try to to create new engine simulations in order 

to calculate the pollutants discharged from these machines without requiring the 

experimental tests. Validated simulation models for the strict emission criteria will 

be the main focus for diesel engines for the forthcoming decades. 
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In this study, the engine simulated and examined for VVT is a low-load truck diesel 

engine. However, it can be marinized, converted into a marine diesel engine and can 

be utilized on small marine vehicles. The diesel engines used as main engines on 

ships are generally low-speed, large and powerful machines. The reason why a 

relatively smaller and high-speed diesel engine is preferred to analyze in this thesis is 

that not only are the technical specifications of the diesel engine known, but also 

experimental results of the same diesel engine can be obtained from open literature. 

Medium and high speed diesel engines are mostly equipped with exhaust thermal 

management systems in order to reduce the high rate of emissions released into the 

environment. These exhaust aftertreatment systems require in general higher than 

250
o
C exhaust gas temperatures so as to operate with maximum efficiency. The 

marinized, high-speed and small diesel engine examined in this thesis discharges 

exhaust gases below 250
o
C temperature at idling speed and also at lower engine 

speed and lower engine loading points of its performance map. In this study, the 

analysis is limited between 1000 - 1300 rpm engine speeds and 1 bar - 3.50 bar bmep 

engine loadings. The VVT application is applied for higher engine speeds and higher 

engine loadings too. However, as stated previously, the main concern for this diesel 

engine is lower engine speed and lower loading areas. Also, it is assumed on the 

diesel engine that turbocharger is not out-of-operation on lower engine speeds and 

the engine inducts air into the compressor at ambient temperature. 

1.1 Motivation 

Diesel engines today are becoming more efficient and cleaner when compared to 

previous engines used in transportation, farming or industry. However, nowadays, 

there is still a significant amount of harmful pollutants such as NOx and particulate 

matter (PM) released by these machines. Although more efficient and more powerful 

engines are demanded, producers have to achieve this goal by decreasing the 

emission levels down to the recent emission limits. These emission regulations are 

needed for both decreasing the air pollution related health problems and minimizing 

the positive effect of these widely used machines on global warming. As shown on 

Figure 1.1 below, the emission criteria has become stricter and stricter for heavy-

duty diesel engines since 1994 to 2010 [1]. 
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Figure 1.1 : Evolution of on-highway emissions criteria [1]. 

U.S. Environmental Protection Agency (EPA) state on the following Figure 1.2 that 

PM should not be more than 0.01 g/hp/hr (0.013 g/kWh) and NOx must not be higher 

than 0.2 g/hp-hr (0.27 g/kWh) for heavy-duty diesel engines used on new trucks and 

buses [2-4]. 

 

Figure 1.2 : EPA standards for new trucks and buses [2]. 

In order to meet the emission criteria seen above, engine producers must either 

decrease the amount of harmful pollutants discharged from the engine or utilize 
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exhaust thermal management systems. Late fuel injection, high pressure fuel 

injection and exhaust gas recirculation (EGR) have been commonly used to diminish 

emissions released from diesel engines [5]. Yet, these methods generally have a 

negative effect on engine efficiency and cannot be practical for the whole engine 

performance map. Therefore, manufacturers have preferred to use both emission-

decreasing techniques and modern exhaust thermal management systems on diesel 

engines so as to meet the stringent regulations demonstrated on Figure 1.2 above. 

Selective catalytic reduction (SCR), lean NOx traps (LNT), diesel oxidation catalyst 

(DOC) and diesel particulate filter (DPF) are typical exhaust aftertreatment systems. 

SCR and LNT are both used to lower NOx emissions, DOC is utilized to decrease 

unburned hydrocarbons (HCs) and carbonmonoxide and DPF is used to reduce PM 

emissions. These aftertreatment systems are definitely effective at decreasing the 

emissions down to the limitation levels. However, these systems are mostly 

temperature-dependent and can be more effective only in a limited temperature 

range. SCR and LNT have generally effective conversion efficiency of NOx into N2 

and H2O, only when catalyst temperature is within 250
o
C and 450

o
C limit [3,6-10]. 

This temperature restriction of aftertreatment systems makes emission reduction 

difficult for cold start, low speed and low loading cases of diesel engines where 

engine exhaust temperatures are generally lower than 250
o
C. When Figure 1.3 below 

is examined, it is seen that NOx conversion efficiency dramatically goes down as 

catalyst temperatures are below 250
o
C [6]. 

 

Figure 1.3 : NOx conversion efficiency change for different SCR catalysts 

depending on temperatures [6]. 
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LNT systems also can work effectively in a limited catalyst temperature range. They 

generally reach their best efficiency between 300
o
C and 400

o
C. Above or under these 

catalyst temperature interval, their NOx conversion efficiency sharply drops [7]. It is 

definite that exhaust gas temperatures must be controlled within a temperature limit 

in diesel engine systems in order to utilize both SCR and LNT systems in an efficient 

manner. 

In addition to SCR and LNT exhaust thermal management systems, diesel engine 

today generally utilize DPF so as to collect carbon based soot in the exhaust gas 

flow. As stated earlier on Figure 1.1, PM emission limitations are decreased to very 

low levels. This is because these particles are directly affecting human health in a 

negative manner. They generally cause to respiratory and cardiovascular related 

health problems [11]. DPF uses a filter to collect the soot particles and these trapped 

carbon particles are generally oxidized by using oxygen or nitrogen oxide. The 

combustion of soot particles in oxygen needs very high temperature interval (550
o
C 

to 600
o
C). These temperatures can only be achieved in diesel engines for high speed 

and high loading cases. However, nitrogen oxide does not require that much high 

temperatures (250
o
C to 300

o
C). On Figure 1.4 below, collected soot combustion 

efficiency for both NO2 and O2 is shown [11,12]. 

Figure 1.4 : Change of PM combustion efficiency in the presence of NO2 and O2 

depending on temperatures [12]. 
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Moreover, a DOC system is commonly used to oxidize NO to NO2 and CO to CO2. It 

is also effective at converting HCs into water via oxidization. These systems are 

temperature-reliant too as SCR, LNT and DPF systems. They generally require 

greater than 200
o
C temperatures for efficient performance. [13-15]. As seen on the 

following Figure 1.5 (a), conversion of CO reaches its maximum efficiency after 

inlet gas temperatures into the DOC system becomes greater than 200
o
C. However, 

when conversion of total hydrocarbons (THCs) is considered on the DOC system, it 

is shown on Figure 1.5 (b) that 200
o
C is not sufficient to obtain the maximum 

conversion efficiency. Just as seen on SCR and DPF, at least 250
o
C inlet gas 

temperature is needed to operate DOC with utmost efficiency [15] 

 

Figure 1.5 : Effect of inlet gas temperature in a DOC system. (a) On the conversion 

of CO. (b) On the conversion of THCs [15]. 

It can be derived that aftertreatment systems are indeed effective and practical for 

diesel engines to meet stringent emission regulations. However, they have a serious 



7 

drawback. They require exhaust gas temperature range (generally above 250
o
C in 

order to perform with higher emission conversion efficiencies. Yet, exhaust 

temperatures become generally lower than 250
o
C for diesel engines at low speed and 

at low engine loading cases. It is also problematic during cold start. Recently, 

variable valve timing (VVT) has been examined as a method to achieve those greater 

than 250
o
C exhaust gas temperatures for exhaust thermal management systems. In 

the following section, not only are those current studies explained, but also historical 

background of the effect of VVT on diesel engine and also gasoline engine 

performance is examined from past studies to the recent analysis on this topic. 

1.2 Literature Review 

1.2.1 VVT effect on gasoline engines 

VVT is one of the solutions for achieving higher torque, brake power, volumetric 

efficiency and reduced brake specific fuel consumption (bsfc) in both gasoline and 

diesel engine systems. VVT concept has long ago been searched for gasoline 

engines. Different VVT techniques on gasoline engines are searched and these 

methods are classified [16-18]. Practicality of VVT technology and its potential 

benefits are also examined [19, 20]. Later, effects of intake valve timing on 

volumetric efficiency [21], engine torque optimization via VVT [22], engine 

performance improvement via intake valve timing and lift [23], VVT application for 

better engine performance and low exhaust emissions [24], analysis of early intake 

valve closing effect on engine performance [25], impact of VVT on SI engine 

thermal efficiency [26] and optimization of VVT for maximum performance [27] are 

some of the studies concerning VVT effect on gasoline engines. Hong et al. 

examined all intake and exhaust valve opening and closing timings on a SI (spark-

ignition) engine and P-V diagrams for varied valve timings (50 degrees later or 

earlier than nominal) are obtained and compared with the nominal engine P-V [28]. 

In more recent studies, influence of VVT on combustion [29], early intake valve 

closing effect on performance and emissions [30], VVT for fuel economy 

improvement [31], engine loading control via utilization of VVT [32], VVT and lift 

design for performance improvement on a single cylinder gasoline engine [33] are 

some of the studies where VVT is used on particularly on SI engines. It is seen that 
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VVT usage on gasoline engines is recently focusing on fuel-efficiency, reduction of 

emissions and engine performance improvement. 

1.2.2 VVT effect on diesel engines 

As explained on the earlier section, VVT has been searched for gasoline engines 

thoroughly. However, VVT has not been documented well for diesel engines [17, 

20]. One of the reason is that inlet air isn’t throttled in diesel engines as done in 

gasoline engines. That doesn’t let diesel engines have a great pumping loss reduction 

using VVT as can be achieved in gasoline engines. Another reason is that diesel 

engines have high compression ratios and the distance between piston and valves at 

top dead center is relatively smaller when compared to spark-ignition engines. [17, 

20]. Therefore, application of VVT is limited for inlet valve opening (IVO) and 

exhaust valve closing (EVC) timings in order to prevent piston-valve strike. But 

same restriction is not valid for inlet valve closing (IVC) and exhaust valve opening 

(EVO) timings. Also, compression ratio of medium speed diesel engines are not as 

high as high-speed ones. Changing one of these timings when others are constant or 

changing inlet and exhaust phases and lifts in particular engine speeds or for a 

specified engine speed interval can help improve torque, brake power, volumetric 

efficiency and also bsfc reduction. The following paragraphs will explain the studies 

concerning the effects of VVT on diesel engines. 

Endo et al. investigated the impact of rising intake and exhaust valve opening areas 

on a high boosted diesel engine [34]. It is shown in the study that larger valve 

opening areas are indeed effective at decreasing the pumping losses and at improving 

fuel consumption especially at higher engine speeds and higher engine loading cases. 

Leonard et al. examined the application of VVT to a turbocharged diesel engine [35]. 

Effect of parametric investigation of valve overlap on reverse flow is studied and it is 

found that decreasing the valve overlap at part load contributes to decrease the 

backflow of exhaust gases into the inlet manifold. At 25 percent fuelling level and 

with a 40
o
 variable phasing system, residual gases can be diminished from 3.9 

percent to 0.12 percent.  

Özsoysal et al. searched the effect of VVT on a high speed turbocharged marine 

diesel engine [36]. The study particularly considers how the intake valve timing 

affects the diesel engine in order to decrease the reverse flow at intake valve at low 
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engine loading conditions. It is shown in the study that there is fuel consumption 

improvement when one of the intake valve timings is retarded or when intake valve 

timing duration is increased close to 30 degrees CA in comparison to nominal intake 

duration. However, advancing the timings of inlet valves while exhaust timings are 

fixed results in lower efficient engine performance. 

Özsoysal et al. also tried to observe the effect of different number of valves on a 

marine diesel engine performance [37]. A thermodynamic-based simulation is 

modeled and the impact of 2, 4 and 6 valve cases on the engine pressure is 

calculated. 

Stone et al. analyzed VVT system on a highly turbocharged diesel engine [38]. It is 

shown that phasing the inlet valve timings or decreasing the inlet valve lift and 

period is useful methods to reduce the exhaust backflow to the cylinder and to the 

inlet manifold. Effect of change of IVO on ignition delay, averaged exhaust gas 

temperature, air flow rate and scavenge ratio are also studied. 

Benajes et al. examined the impact of intake valve pre-lift on a 6-cylinder diesel 

engine utilizing wave action model [39]. The study asserts that intake valve pre-lift is 

definitely beneficial so as to obtain higher internal EGR. It also suggests that fuel 

delivery adjustments or turbocharger modifications should be considered for greater 

internal EGR. 

Lancefield et al. modeled a modern European 2.15 L 4-cylinder 4 valve diesel engine 

with VVT using Ricardo’s “Wave” program [40]. It is demonstrated in the study that 

brake specific fuel consumption (bsfc) can be reduced up to approximately 2.3 % via 

early IVC and up to around 1 % by using late IVC. Furthermore, at low speeds, 

torque can be raised up to 15.4 % for 1600 rpm and up to 16.4 % for 1000 rpm by 

optimizing both IVC and EVO timings. 

Tai et al. investigated a 2.7 L, V6 4 valves/cylinder, direct injected, common rail 

turbocharged diesel engine with camless valvetrain so as to observe the effects of 

IVC and EVO timings [41]. It is asserted that optimizing IVC timing with constant 

exhaust valve timing leads up to 6.2 % torque increase at low and medium speeds; 

while fuel consumption change is not affected significantly. Also, it is claimed that 

when both IVC and EVO  are optimized, torque improvements can go up to 45.9 % 

again at low and medium speeds, however, fuel consumption raises. Internal EGR 
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examination to improve vehicle transient operation, effect of changing intake valve 

lift, lift profile and valve timing on in-cylinder swirl, effect of advancing IVC timing 

on peak cylinder pressure are the future work suggestions in the study. 

Lancefield tried to identify the impacts of variable valve actuation (VVA) on the fuel 

economy of a part loaded light-duty diesel engine [42]. Retarding and advancing 

intake valve closing timings by 33 degrees CA from the nominal value, up to 19 % 

and up to 5 % bsfc reduction are achieved at part load condition. Also, for the studied 

part loaded diesel engine, bsfc can be decreased to a minimum value by late opening 

of the exhaust valve up to 11 degrees CA from the nominal timing. 

Parvate-Patil studied VVT and its effects on a single cylinder diesel engine [43]. 

VVT effects on gasoline and diesel engines are explained individually by retarding 

the timings. Fuel injection is taken constant and also change of valve timing for all 8 

different valve opening and closing situations is fixed, 50 degrees CA earlier or later 

than their nominal values. It is suggested in the study that reduction of exhaust 

pumping losses with VVT, internal EGR via early IVO and late EVC for decreasing 

NOx emissions, effects of valve opening and closing with variable lift and duration 

and also effects of VVT on gas dynamics should be examined for future studies. 

Murata et al. tried to obtain premixed combustion by using VVT in a direct injected 

single cylinder water cooled diesel engine [44]. It is reported that late IVC (LIVC) at 

medium engine speed can be used to decrease combustion temperatures. Therefore, 

NOx and smoke can be decreased significantly in the system.  

Nevin et al. tested a Caterpillar 3401 direct injected single cylinder oil test engine 

using variable IVC to obtain premixed charged compression ignition (PCCI) [45]. It 

is concluded in the study that CO and PM rates are reduced by 70 % via LIVC and 

NOx emissions are decreased by more than 50 % at low load case with constant 

fueling by delaying the IVC timings. 

Sugiyama et al. used early intake valve closing (EIVC) in order to control volumetric 

efficiency and effective compression ratio [46]. EIVC leads to fuel-efficient engine 

performance, but the decrease in fuel consumption goes down at lower loading cases. 

He also showed that when variable compression ratio is combined with advanced 

intake valve opening (IVO), in-cylinder combustion can be improved and in-cylinder 

temperature can be increased. 
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He et al. utilized LIVC so as to control the emissions in a single cylinder research 

engine [47]. It is claimed in the study that 25 % to 50 % NOx decrease can be 

achieved at different operating conditions with LIVC. Also, LIVC is effective in 

reducing soot emissions and enables less EGR to be used for constant NOx 

emissions.  

Yang and Keller also studied LIVC in a diesel engine system for decreasing the 

emissions [48]. They used 1-D GT Power model in their study and showed that 

retarding IVC has the potential to diminish NOx emissions by 24 % and to improve 

bsfc 1 % in comparison to nominal IVC timing. They also noted that their simulation 

results should be validated with experiments. 

Deng and Stobart examined a Caterpillar C6.6 heavy duty diesel engine with variable 

valve timing [49]. The study investigates the bsfc improvement for different engine 

speeds and torque. Early and late EVO with constant EVC results in increased bsfc, 

early and late IVC with constant IVO leads up to 6 % decreased bsfc. Delayed inlet 

and exhaust valve timings can reduce the bsfc up to 4 % and also changing exhaust 

valve phasing enables up to 1 % bsfc improvement and altering inlet valve phasing 

results in 4 % bsfc diminution. No bsfc benefit can be gained when IVO and EVO 

are both advanced the same angle. 

Dembinski investigated the Miller-cycle (EIVC and LIVC) effect on efficiency, 

emissions and exhaust temperatures on a diesel engine [50]. He found that NOx 

emissions were decreased and brake thermal efficiency of the engine rised for both 

EIVC and LIVC cases. He also stated that when higher compression ratios are 

combined with Miller-cycle method on the diesel engine; not only can exhaust 

temperatures be rised, but also greater brake thermal efficiencies can be achieved. 

Tomoda et al. analyzed the effects of VVT and valve lift so as to increase the thermal 

efficiency of a diesel engine [51]. Using variable phase for both intake and exhaust 

valves and also variable intake lift, NOx emission is decreased more than 40 % and 

also 4 % fuel consumption reduction is obtained. 

Modiyani et al. applied variable intake valve closing timings on a turbocharged 

multi-cylinder diesel engine and studied the effects of these changings on gas 

exchange and effective compression ratio (ECR) [52]. They state that ECR is directly 
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linked to the both early and late IVC timings. ECR goes down for both advanced and 

retarded IVC timings and so does volumetric efficiency. 

Kitabatake et al. tried to decrease fuel consumption and exhaust emissions by 

utilizing fully flexible variable valve actuation (VVA) [53]. They searched the 

optimum intake and exhaust valve profiles for different engine performance cases in 

order to obtain fuel saving and to reduce emissions. They applied cylinder 

deactivation for lower engine loading cases so as to achieve more fuel saving. They 

also investigated internal EGR by changing the valve overlap timings as an option to 

external EGR. 

1.2.3 VVT effect on the exhaust thermal management of diesel engines 

On the previous section, VVT impact on the performance of diesel engines were 

investigaed. It is observed that VVT is definitely beneficial for diesel engines. It can 

be utilized to control air intake, fuel consumption, backflow of exhaust gases and 

also exhaust gas temperatures for aftertreatment systems. On this section, recent 

studies which particularly examine the methods for more efficient exhaust thermal 

management systems are explained. Particularly, effect of VVT on thermal 

management is broadly investigated. 

There is an ongoing search for strategies to improve aftertreatment systems. These 

methods generally include using fuel additive Cerium in combination with an engine 

control system to raise the exhaust gas temperatures [54], applying different fuel 

injection timing, boost pressure and EGR rate [55], throttling the air inlet flow at the 

same time with the fuel flow [56], developing an actively regenerating DPF which 

uses atomized fuel addition to the upstream of the regeneration to rise exhaust 

temperature [57, 58], excess fuel injection early and late in the combustion to 

manage the temperature of a DPF system [59], developing a control-oriented model 

to particularly examine the effect of post-injection timing and post-injection rate on 

the temperature dynamics of the exhaust thermal management [60]. One of the 

current methods to obtain higher exhaust temperatures for more effectual 

aftertreatment systems is to utilize VVT on diesel engine systems [61]. Recent works 

focusing on the impact of VVT on aftertreatment management are listed on the 

following paragraphs below. 
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Fessler and Genova searched the effect of an electro-hydraulic VVA system on a 3.0 

liter diesel engine [62]. It is shown in the study that when different VVA methods are 

applied together, high exhaust gas temperatures for efficient aftertreatment systems 

can be achieved at low loads. Particularly, early exhaust valve opening has a 

considerable impact on exhaust temperatures, however, this method results in fuel 

penalty. 

Bohac and Assanis examined different exhaust valve opening and closing timings on 

a spark-ignition engine [63]. They primarily applied earlier opening of exhaust 

valves (by 60
o
 degrees CA) and showed that a significant exhaust temperature rise 

can be achieved. But HC emissions and fuel consumption rises too. Secondly, earlier 

EVO is combined with earlier EVC (by 40
o
 CA) and HC emissions decreased by 

27%. Yet they conclude that there is a definite fuel consumption penalty to be 

considered with this method. 

De Ojeda studied the impact of VVT on diesel combustion [64]. He pointed out with 

experiments on a medium duty V8 6.4L diesel engine that earlier closing of intake 

valve timing results in fuel-saving and also reduction in PM emissions. 

Schwoerer et al. explored the effect of different VVA methods on diesel exhaust 

thermal management systems [61]. It is stated in the study that advanced or retarded 

closing of intake valve is generally applied for achieving the desired effective 

compression ratio, advanced opening of exhaust valves is implemented to high 

exhaust gas temperatures to support aftertreatment systems. Negative valve overlap 

(NVO) is also an option to obtain internal EGR to obtain sufficient exhaust 

temperatures to operate exhaust thermal management effectively. 

Honardar et al. investigated the effects of different ways (exhaust valve timing phase, 

main injection variation, post injection variation and throttle valve variation) to 

improve the exhaust temperature management on emissions, bsfc rise and external 

EGR requirements on diesel engines [65]. It is asserted in the study that when 

exhaust valve phasing is advanced, exhaust temperature can be increased up to 

approximately 40
o
C, but there is also 11 % bsfc growth in the system. 

Wickström studied the use of VVA for improving the thermal management of 

exhaust gases especially at low load conditions in diesel engines [66]. Different VVT 

strategies are tested in different engine loads on a single-cylinder research engine. 
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Loading is kept constant while VVT is implemented. Early and late IVC result in 

higher exhaust temperatures with lower NOx emissions, but greater fuel consumption 

(up to 11 %). Exhaust and intake valve phase shifts are also rising the exhaust 

temperature and cause a NOx fall of up to 8 g/kWh, however, bsfc growth can go up 

to 25 g/kWh. 

Ehleskog et al. tried to utilize early and late IVC on a heavy duty single cylinder 

AVL 501 diesel engine so as to drop NOx emissions [67]. The variation of IVC 

timings was applied for cases both with and without using exhaust gas recirculation 

(EGR). They also searched the effect of different swirl ratios. They found that 

decreased engine-out emissions can be achieved without fuel consumption rise and 

higher exhaust gas temperatures via EIVC. LIVC with EGR also led to lower PM 

emissions with reduced NOx emissions without rising the fuel consumption. 

Garg et al. investigated the effects of early and late intake valve closing timings 

(EIVC&LIVC) on exhaust thermal management of a six-cylinder 

turbocharged&intercooled diesel engine [68, 69]. The engine loading is kept constant 

in the study and it is shown that turbine exit temperature (TET) can be increased to 

250
o
C (more than 60

o
C TET rise) for a low loading and low engine speed condition 

both with EIVC&LIVC timings. It is seen that TET is inversely proportional with the 

volumetric efficiency for either advanced or retarded IVC timings. It is also 

demonstrated in the study that EIVC&LIVC result in fuel-saving condition in 

comparison to nominal IVC timing due to the increase in open-cycle efficiency. 

However, this method causes to reduction in exhaust flow rate and it decreases the 

heat transfer from the exhaust flow to the catalyst substrate.  

Gehrke et al. tested a single cylinder MAN D20 research engine in order to 

investigate the potential benefits of VVA on exhaust thermal management [70]. 

When early IVC is applied, there is up to 60
o
C exhaust temperature rise. But 

Particulate Matter (PM)  and CO increase in the system and also a slight bsfc growth 

is seen. Same exhaust temperature rise and emission increase are observed for late 

IVC too. For the negative valve overlap (crank angle between IVO and EVC) case; 

although exhaust gas temperature gain can become up to 70
o
C, bsfc and PM can go 

up rapidly for the high negative overlap values. Finally, for the earlier EVO, greater 

bsfc, PM and CO emissions are the penalties so as to raise the exhaust gas 

temperature more than 60
o
C. 
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Roberts et al. searched the effect of early EVO on exhaust temperature and fuel 

consumption growth for a constant torque operation in a turbocharged, charge 

cooled, exhaust gas recirculated (EGR) six cylinder Cummins diesel engine [71, 72]. 

The analysis claims that the method results in lower (max. 5 % decrease) brake 

thermal efficiency, BTE, (therefore, higher fuel consumption) for low speeds and 

high loads in order to increase the turbine out temperature. However, for high speeds 

and low loads, a lower (about 2 % decrease) BTE is required to raise the turbine exit 

temperature. In the study, 30
o
C to 100

o
C exhaust temperature increase is obtained by 

advancing EVO 90 CA from the nominal position and that proves early EVO as a 

useful method for exhaust thermal management. 

Zammit et al. researched the impact of advanced closing of inlet valve and cylinder 

disablement on fuel consumption and emissions on a 4 cylinder common rail direct 

injection diesel engine [73]. In the study, at first, IVC is closed 60
o
 degrees CA 

earlier than nominal and secondly, two cylinders were disabled when working on 

nominal IVC timing. These two methods rised the exhaust gas temperature in the 

system. IVC timing advancement is more effective for degrees more than 30
o
 CA 

from nominal. At light loads, cylinder disablement is more beneficial than earlier 

IVC for both reducing emissions and also reaching higher exhaust gas temperatures 

which enable more effective aftertreatment performance. 

Magee used cylinder deactivation (CDA)  and late IVC (LIVC) in order to raise the 

exhaust gas temperature above 250
o
C for efficient thermal management in a diesel 

engine for different load cases [74]. It is shown in the study that when CDA and 

LIVC are applied together, exhaust temperature values at low loads can become 

higher than 250
o
C for various operating speeds of the diesel engine. Lower NOx 

levels are yielded, however, brake thermal efficiency can not be increased 

significantly in the system. 

Zhang et al. also examined the impact of LIVC and rebreathing valve methods on the 

performance and emissions of a DI diesel engine for 1 to 5 bar gross IMEP engine 

loading cases [75]. LIVC is compared with extra opening of intake valve during the 

exhaust process and also extra opening of exhaust valve during the intake process. It 

is shown that those additional openings during exhaust and intake processes are more 

effective at increasing the exhaust gas temperature than LIVC for different EGR 

rates. The same is valid for different engine loadings too. Extra exhaust valve 
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opening is the most effective method to rise exhaust gas temperatures, decreasing the 

NOx emissions the most in comparison to additional intake valve opening and LIVC. 

Ding et al. searched the cylinder deactivation effect on exhaust thermal management 

at loaded and lightly loaded idle conditions of a six-cylinder 

turbocharged&intercooled diesel engine [76, 77]. 75 
o
C turbine out temperature 

(TOT) rise without fuel consumption rise for lightly loaded idle and 120
o
C TOT raise 

with 2 % fuel consumption penalty for loaded idle is achieved with the combination 

of cylinder deactivation, intake/exhaust valve throttling and LIVC. 

Bharath et al. explored the effect of EEVO both with a cam phaser and with a fully 

flexible variable valvetrain and also cylinder deactivation on a multi-cylinder light 

duty engine [78, 79]. GT-Power and KIVA programs are utilized for the simulation 

of the engine. It is stated in the study that EEVO (32
o
 degrees CA earlier than 

nominal) method enables the adequate exhaust gas temperature increase in the 

system to achieve more effective DOC where UHC and CO conversion efficiency 

reaches more than 90 %. However, there is a fuel consumption penalty due to the 

poorer expansion stroke. Also, they found that cylinder deactivation can be the most 

preferable option for engine opearation conditions close to idle since this method is 

fuel-saving compared to nominal engine condition. 

1.3 Purpose of Thesis 

As the recent studies on exhaust thermal management systems are evaluated on 

previous sections, it can be derived that these works generally concentrate on 

strategies to increase the engine-out exhaust gas temperatures for improving the 

conversion efficiency of these aftertreatment systems. However, in these studies, 

whenever VVT is utilized, either more fuel is required to manage constant engine 

loading with EEVO or exhaust gas flow rate decreases with early or late IVC. 

Moreover, valve timings and maximum lifts are not applied in these works in a 

combined manner. Therefore, the intention in this study is to utilize VVT and also 

variable inlet and exhaust maximum valve lifts for different engine speeds and 

engine loading cases so as to rise turbine exit temperature (TET) above 250
o
C on a 

turbocharged and intercooled diesel engine without more fuel injection requirement 

in comparison to nominal valve timings. Early IVC is combined with EEVO to 

obtain higher than 250
o
C TETs. Also, effect of variation of maximum valve lifts is 
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examined. When these valve timing and valve lift combination is implemented 

together, it seen that same greater than 250
o
C exhaust gas temperatures can be 

achieved without fuel consumption penalty and without decreasing the exhaust flow 

rate compared to the case where only EIVC is used to reach above 250
o
C exhaust 

temperatures for low loaded areas of the diesel engine.  

The study focuses on the thermal power of the exhaust gases leaving the turbine 

instead of just concentrating on the increase of the temperature of these gases above 

250
o
C. Temperature of catalyst substrates on aftertreatment systems are generally 

needed to be greater than 250
o
C in order to perform high emission conversion 

efficiencies. This is achieved via the heat transfer from the exhaust gases to the 

catalyst substrates. However, heat transfer depends on both temperature and exhaust 

flow rates of these gases. Therefore, obtaining exhaust gases with higher than 250
o
C 

temperatures may be insufficient if the method used to provide this results in 

dramatic exhaust flow rate reductions on the system. This is particularly seen when 

only IVC is advanced further backward or retarded further forward to reach greater 

than 250
o
C temperatures for low loading points. This can obviously be problematic 

for low loading or cold-start cases of diesel engines. Catalysts can not reach higher 

efficiencies on time even though the temperature going directly to the exhaust 

thermal management system is above 250
o
C. The method used in the study seems to 

be promising to keep thermal power at higher rates. It can be a solution for these 

engine loading points by validating it on some specific engine speed and engine 

loading cases in the future. 

The study with the main intention explained above includes six sections. Firstly, 

specifications of the diesel engine studied are explained and the simulation model 

built by using Lotus Engine Simulation (LES) program is demonstrated. Steps of 

LES engine model is given on a graph. Model built for selected 

turbocharged&intercooled diesel engine are explained with figures from the 

program. Assumptions taken, the specifications inserted into the program, boundary 

conditions are all expressed with related figures. Since there are several figures to 

shown, these graphs are put on the appendice section. Secondly, mathematical 

formulations utilized in the simulation are expressed. One dimensional flow of gas 

inside the pipes, combustion model, in-cylinder calculations, heat transfer from the 

cylinder, friction model of the diesel engine, turbocharger model are all explained in 
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this part. Thirdly, diesel engine simulation is validated with the experimental results 

of the same diesel engine for different IVC timings using LES at 1200 rpm engine 

speed and constant 2.50 bar bmep engine loading. Then TETs at nominal valve 

timing condition for different engine speeds and engine loadings are calculated and 

shown in a graph. It is once again seen in the study that low TET is generally a 

problem for low engine speed and low engine loading cases. Then, different VVT 

methods are implemented on the system to observe the effects on TET and exhaust 

flow rate. The best option to raise those two engine performance parameters is found 

to combine EEVO and EIVC on the system. Although TET is yielded very close to 

250
o
C with this combination, it also results in 1 % bsfc rise in comparison to nominal 

valva timings. After, inlet and exhaust maximum valve lifts are examined to decrease 

that fuel injetion rise down to zero. EIVC and EEVO combination and low inlet and 

high exhaust maximum lifts  is found to be a promising option for achieving higher 

thermal power while keeping the fuel consumption fixed in the system. Later, 

general evaluation of the study is made and finally, the study is concluded and 

recommendations for the future studies are given on the last section of the study.  
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2.  DIESEL ENGINE SPECIFICATIONS AND THE SIMULATION MODEL 

On this section of the study, diesel engine used is explained with detailed 

specifications and also the simulation model of the diesel engine is explained. 

2.1 Diesel Engine Specifications 

The engine used for the study is Cummins type 6 cylinder turbocharged and 

intercooled diesel engine. The detailed specifications are given on Table 2.1 below. 

The same engine is utilized in Garg's study for increasing the turbine out 

temperatures above 250
o
C for more effective exhaust thermal management [68]. The 

validation of the simulation via LES will be shown in the fourth section by using the 

experimental results Garg achieved in his study [68]. These experiments were made 

for different early and late IVC timings at 1200 rpm engine speed and engine loading 

is kept constant while closing timings are changed. 

Table 2.1 : Technical details of the studied Cummins type diesel engine. 

No of cylinders 6 

Bore (mm) 107 

Stroke (mm) 124 

Connecting-Rod Length (mm) 192 

Displacement (L) 6.7 

Compression ratio 17.3 

Firing order 1-5-3-6-2-4 

Fuel System/Type Direct Injection / Diesel 

Calorific Value of Fuel (kJ/kg) 42700 

Intake Method Turbocharged & Air-Air Intercooled 

As shown above on Table 2.1, diesel engine direct-injected, turbocharged and also it 

has a firing order starting from the first cylinder ending in fourth one. When the 

simulation model is prepared, these specifications are considered in LES. However, 

some other required data to construct whole diesel engine simulation is defined 
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appropriately on the simulation in order to obtain the experimental performance 

values of the same diesel engine which were achieved by Garg [68]. 

2.2 The Simulation Model 

In this study, Lotus Engine Simulation (LES) program is used for the simulation of 

the studied turbocharged&intercooled diesel engine [80]. The simulation model is 

shown on Figure 2.1 below. 

Figure 2.1 : LES model of the diesel engine. 
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As demonstrated on Figure 2.1 above, every component of the system can be easily 

seen. Cylinders, valves, ports, intercooler, turbocharger, plenums, sensors (seen on 

the figure as SPLOT1 and SPLOT2) and also pipes connecting these elements are all 

individually shown on the figure. Sensor SPLOT 1 is used to measure the exhaust 

gas temperatures leaving the turbine. These temperatures are intended to increase 

above 250
o
C for different engine speeds and various engine loadings in the study. 

Sensor SPLOT2 is utilized to obtain the exhaust gas flow rates for different engine 

performance points. Fueling system is pictured separately from the system. As 

mentioned on Table 2.1 before, it is direct-injected and diesel fuel is utilized in the 

study.  

Exhaust thermal management system is not shown in the system seen above on 

Figure 2.1. In the study, it is assumed that exhaust gases released from the turbine go 

directly into the aftertreatment system. The study focuses on the temperature and 

exhaust gas flow rate of the exhaust gases leaving the turbine which have an 

important role on the conversion efficiency of the exhaust thermal management. 

Sensors SPLOT1 and SPLOT2 will be helpful to obtain these two critical data as 

mentioned previously. 

The mathematical formulations for the elements above and for combustion, friction 

and heat transfer of the diesel engine are explained in a detailed manner in the 

following section. On this section, it is intended to show the basics of the diesel 

engine studied and also elements combined on LES to simulate the diesel engine. 

Intake and exhaust valve timings, valve maximum lifts and change of lifts between 

opening and closing timings both for intake and exhaust will be expressed on the 

validation of the model part. The intended VVT application will be implemented to 

the model after it is validated with the experimental results on Garg's work [68]. 

2.2.1 Steps of LES engine model 

On the following Figure 2.2, the schematical steps of engine model built in LES are 

shown [81]. As it is seen explicitly, after every step, the program checks the validity 

of the built engine model or inserted data, specifications. Finally, when the operating 

conditions are determined to be true, then the simulation is run at the specified 

engine speed to achieve the demanded engine loading with the fuel injection rate 

inserted. 
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Figure 2.2 : The schematical steps of LES engine model [81]. 

2.2.2 LES engine model data insertion 

The general specifications of the turbcharged and intercooled six-cylinder diesel 

engine were given on Table 2.1. Although these technical details are really 

significant for the simulation, these specs are not sufficient to have a reliable model 

of the engine. There are other specs to be determined and assumption to be taken in 

order to run a simulation model on LES. 
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On this part, only fuelling and boundary conditions figures will be shown below. 

Other figures related with the program (combustion, friction, heat transfer etc.) are 

put into the Appendices section on Appendix A. On the following Mathematical 

Formulations section, the equations used to build these particular elements of the 

whole model and assumptions taken in those components are explained in a detailed 

manner. 

Figure 2.3 below points out the fuelling injection rate (mm
3
/inj) for different engine 

speeds changing from 1000 rpm to 2000 rpm at 2.50 bar bmep engine loading 

condition. As expected, injection rate is increasing as the engine speed rises in the 

system. Heywood states that combustion efficiency is generally higher than 95 % in 

diesel engines [82]. Therefore, as shown on the figure, it is taken as 0.98 in order to 

keep the engine loading constant at 2.50 bar bmep. For other engine loadings (from 

1.0 bar bmep to 5.0 bar bmep), this value is not changed. Instead fuelling injection 

rate is varied to alter the loading of the system on the same speed. Also, injection rate 

is same for all six cylinders in the system as seen particularly for 1200 rpm on the 

figure below. 

Figure 2.3 : Insertion of fuel injection rate data. 
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Moreover, boundary conditions assumed on the simulation are demonstrated on the 

following Figure 2.4. Ambient air pressure and inlet boundary pressure, exit 

boundary pressure are taken as 1 bar. Ambient air temperature and inlet boundary 

temperature are assumed 20
o
 C in the system. 

Figure 2.4 : Boundary conditions of the simulation model. 
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3.  MATHEMATICAL FORMULATIONS 

In this section, equations and assumptions behind the theory of the diesel engine 

simulation are explained. Governing equations of gas flow in pipes, cylinders, heat 

transfer and combustion modeling, ports, valves, turbocharger, charge cooling and 

engine dynamics are individually described. 

3.1 Governing Equations of Gas Flow 

In the diesel engine simulation, one-dimensional model of pipe gas dynamics are 

applied for the gas flow in pipes. At each time step (crank angle), conservation 

equations for mass, momentum and energy are solved for calculating the conditions 

within the pipe elements.  

The flow of a compressible fluid through an infinitesimal section of pipe is shown 

below in Figure 3.1. When the area variation is small, the fluid properties can be 

taken uniform across any cross-section and can be considered as functions of x and 

time only. Therefore, the flow can be assumed as quasi-one-dimensional [83, 84]. 

The related properties are pressure, density, velocity of flow and cross-sectional area 

in order. 

Figure 3.1 : Fluid control volume in duct [83]. 
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The governing equations (continuity, momentum and energy equations in order) for 

the 1-dimensional flow of a compressible fluid in a pipe with area variation, wall 

friction and heat transfer are [83]:  
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In the equations above p, f, D, e0, h0 and q represent pressure, pipe wall friction 

coefficient, diameter of the duct, specific stagnation internal energy, specific 

stagnation enthalpy and rate of heat transfer per unit mass. The equations can also be 

shown in vector form as: 
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This representation of the equations is called the 'conservation law' form as the 

equations can be obtained directly from the integral conservation equations of mass, 

momentum and energy applied to the fixed control volume.    

The two-step Lax-Wendroff (Richtmyer) is used to solve the governing equations 

above. This numerical method is a space-centred scheme based on the computational 

stencil shown below on Figure 3.2 [84]. The detailed formulations are given below 

the figure. 
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Figure 3.2 : Schematic representation of the two-step Lax-Wendroff scheme. 

This scheme can be modified to include the source terms and can be expressed with 

the following formulas: 
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3.2 Calculation of the Engine Performance Parameters 

Diesel engine performance parameters in LES are calculated with the following 

equations below [82, 85]: 

The brake mean effective pressure (bmep) of the diesel engine is found with: 

                     (3.11) 

Sandoval&Heywood engine friction model [86] is used to obtain friction mean 

effective pressure (fmep) shown in formula above. This friction model is explained 

in a detailed manner in the following 3.3 subsection. 

The indicated mean effective pressure (imepcycle) in equation (3.11) is calculated 

with: 

           
  

  
  (3.12) 
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In the equation (3.12) above, Wc (kJ) represents the net indicated work per cycle and 

Vd shows the cylinder displacement volume.  

Wc is defined as: 

          (3.13) 

Displaced volume, Vd, is obtained with the following equation: 

             (3.14) 

where S and B are the stroke and cylinder bore. 

The brake power, Pe (kW), and torque,    (Nm), are calculated with the equations 

given: 
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    (3.16) 

N is the engine speed (rpm) and Z is the cylinder number in the equations (3.15) and 

(3.16) above.  

Also, nr is the revolution per cycle and is taken as 2 for four stroke engines. Angular 

speed of the engine, ω (rad/s), in equation (3.16) is defined as: 

          (3.17) 

The brake specific fuel consumption, bsfc (g/kWh), is calculated with the following 

formula below: 

             (3.18) 

Pe is found with the formula (3.15) for (3.18) and     shows the fuel mass flow rate 

(g/h). 

The brake thermal efficiency of the system,      can be calculated with: 

     
       

       
  (3.19) 

where QLHV represents lower heating calorific value of fuel (kJ/kg). Pe and     are 

specified in earlier equations. 
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Finally, volumetric efficiency is found out with the given equation below: 

       
       

 

        
   (3.20) 

where      is inlet air mass flow rate (g/h) and     is inlet air density (kg/m
3
). Inlet 

air density is calculated with: 

     
      

    
  (3.21) 

3.3 Calculation of Diesel Engine Friction 

The friction model in the simulation depends on the equations from the 

Sandoval&Heywood engine friction model [86]. It is an updated version of the 

equations in Patton, Nitschke and Heywood engine friction model [87]. The update 

by Sandoval&Heywood is that the impact of changing oil viscosity is considered for 

the redefinition of the friction results. A function of engine oil viscosity is 

determinded and the variation of hydrodynamic friction’s share with respect to this 

function is investigated for each four basic friction parts: rotating, reciprocating, 

valvetrain and auxiliary friction. The total engine friction is calculated by adding up 

those four sections. Before explaining these main sections, hydrodynamic scaling is 

defined as: 

           
    

      
 (3.22) 

where         is the viscosity of the oil from the test engine and      is the viscosity 

of the engine that the friction calculation is aimed for. The four main friction sections 

can now be expressed in detailed. 

3.3.1 Rotating friction 

This friction part has three sections; main bearing seal friction, main bearing 

hydrodynamic lubrication friction and turbulent dissipation to pump fluids. Total of 

these three parts gives the definite rotating friction. 

Main bearing seal friction (kPa) concerns the front and rear main bearing seal friction 

and can be calculated with: 
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 (3.23) 

Db, B, S and nc represent the main bearing diameter, bore, stroke and the number of 

cylinders. 

Main bearing hydrodynamic lubrication friction (kPa) is found with: 

                     
 

  
  

      
       

     
  (3.24) 

RPM, Lb and nb show engine speed, length of main bearing and number of main 

bearings. 

Turbulent dissipation to pump fluid (kPa) considers the losses owing to the transfer 

of oil through the bearings and can be calculated with the following equation: 

                       
  

       

  
  (3.25) 

Therefore, total rotating friction can be found with: 

 Total Rotating Friction = (Seal FMEP + Lub FMEP + Turb FMEP) (3.26) 

3.3.2 Reciprocating friction 

This part involves also three elements: piston friction under hydrodynamic and 

mixed friction, piston ring friction due to gas loading and connecting rod 

hydrodynamic friction values. 

The first one, piston friction (kPa) is found with summing the two equations given 

below: 

                                  
 

  
 
  

 
 
 

 (3.27) 

                             
   

 
  

 

 
 
 

 (3.28) 

where Sp and B values are the mean piston speed and cylinder bore. 

The second subsection, Piston ring friction (kPa) involves the friction due to gas 

loading. Friction owing to gas loading can be obtained with the application of the 

formula below: 

                             
  

  
        

 

  
          

              
  (3.29) 



31 

where Pi, Pa and rc are intake and ambient pressures and compression ratio. C value is 

the Lotus adjustment coefficient which is derived from the experimental data [85]. 

Connecting rod friction (kPa) is found out with the formula given below: 

                           
 

  
 
      

     

     
  (3.30) 

Therefore, total reciprocating friction is the aggregate of the piston, total ring and 

connecting rod frictions. 

3.3.3 Valve train friction 

This friction component has three main parts. These are camshaft bearing friction, 

cam and follower friction and finally oscillatory valvetrain friction. The coefficients 

used in the formulations are chosen from Patton-Heywood friction model [87]. 

Camshaft bearing friction is defined as: 

                     
 

  
  

      

       
  (3.31) 

Cam follower friction can be found by one of the two methods. The method chosen 

relies on the fact that valve train has flat followers or roller followers. 

For flat follower: 

                               
   

   
 

  

   
  (3.32) 

                                
      

    
   (3.33) 

where coefficients Cff and Crf are obtained from Patton-Heywood friction model 

[87].   

Valve train oscillatory friction is computed in two sub-sections. These parts are 

‘oscillating hydrodynamic friction’ and ‘oscillating mixed lubrication friction’. These 

two sections are found with: 

                                      
 

  
 
   

                

        
  (3.34) 

                                             
   

   
  

     

      
  (3.35) 
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where Lv is valve lift and Coh and Com are oscillating hyrodynamic constants 

determined by valvetrain type from Patton-Heywood friction model [87]. 

Therefore, total valvetrain friction is the sum of the camshaft bearing friction, cam 

follower friction, valve train oscillatory frictions. 

3.3.4 Auxiliary friction 

This is the last friction term and is found by a Lotus altered type of the updated 

Sandoval&Heywood auxiliary friction formula which depends on a function of 

engine speed [80]: 

                                                      (3.36) 

Finally, total engine friction is calculated with the aggregate of the four main parts as 

follows: 

TOTAL FMEP = FMEProtating + FMEPreciprocating + FMEPvalvetrain + FMEPauxiliary (3.37) 

3.4 Pipe Wall Friction and Heat Transfer 

The pipe wall friction factor, f, is defined as [83, 84]: 

    
  

        
 (3.38) 

In this equation above,    represents the shear stress in pipe walls. Generally, pipe 

wall friction factor is taken as constant in the region where Re number is between 

0.004-0.01. However, for Re numbers in the range 5*10
3
 – 10

8
, a different formula 

can be used: 

    
    

       
 

    
 

    

     
  

  (3.39) 

The heat transfer term, q, in the governing equations represent the simple convective 

heat transfer in the radial direction from the gas to the pipe. An approximate 

approach for convective heat transfer is applied [88]. The assumption is that heat and 

momentum transfer in steady flow can be extended to non-steady flow. The heat 

transfer rate per unit mass is: 

    
  

  
        (3.40) 
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where h is the convective heat transfer coefficient and Tw and Tg are the temperatures 

of the pipe inner wall and gas. If h is taken as  
 

 
      and the fluid is assumed to 

the ideal gas, then; 

    
   

 

  

   
        (3.41) 

where k and cp are the ratio of specific heats and specific heat at constant pressure. 

3.5 In-cylinder Calculations 

The conditions within cylinders are calculated at each crank angle by solving the 

energy equation [88]: 

  
  

  
 

  

  
 

  

  
 

  

  
     (3.42) 

In the equation above, Q is the net rate of heat energy transfer into the system, B is 

the heat release due to combustion,    is the enthalpy change due to gas flows. W 

and E represent the displacement work and the internal energy. 

Firstly, change in cylinder pressure due to energy and volume changes is estimated: 

          
        

          
  

  

    
  (3.43) 

Then, using    value, displacement work is estimated and that value is used to 

estimate the temperature difference: 

                   (3.44) 

     
        

  
 (3.45) 

New temperature and pressure values in the system are calculated as: 

               (3.46) 

       
              

    
 (3.47) 

As there is a new    value (difference between pnew and pcyl values), displacement 

work can be recalculated given the formula (3.44) above. Also, heat transfer is 
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calculated dependent on mean gas temperature during increment. Therefore, energy 

change due to this temperature difference is found with using formula (3.42) as: 

  
  

  
 

  

  
 

  

  
 

  

  
     (3.48) 

Internal energy change in the cylinder can also be calculated with: 

                (3.49) 

The error in temperature due to the mismatch between these two formulations above 

is: 

     
     

  
 (3.50) 

If temperature difference, dT, is above 0.01 K value; calculations are redone. When 

convergence is achieved, all the values withing the cylinder are calculated for the 

final case. 

The gas property model is based on polynomial curve fits to the thermodynamic data 

for each species (H2, O2, N2, H2O, CO2, NO, C12H26). For each species i at 

temperature T, the enthalpy (h) and the internal energy (u) are given by: 

                                                                (3.51) 

                                                     

          (3.52) 

The specific enthalpy and internal energy values are calculated by multiplying the 

equations above with the mass fraction for the related species. The constants for the 

polynomials are obtained from Heywood [82]. 

3.6 Combustion System 

A single zone heat release model is applied to the system. Therefore, the heat 

released is used to heat the whole combustion space during combustion. The 

empirical heat release functions are derived from the Wiebe equation and adapted to 

diesel combustion characteristics by the addition of a pre-mixed combustion phase 

[89]. 
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The Wiebe function define the mass fraction burned as: 

              
   

 

  
 
   

 (3.53) 

in which, A and M are coefficients in Wiebe equation. θ is actual burn angle (after 

start of combustion),    is the total burn angle (0-100% burn duration) [89]. 

In two-part Wiebe equation, total combustion period includes two periods: premixed 

combustion period and diffusion combustion period. The mass fraction burned in the 

premixed combustion is given as: 

                        
 

  
 
  

 
  

 (3.54) 

and for diffusion combustion period, it is: 

                        
   

   

    
 
   

 (3.55) 

Finally, mass fraction value is calculated with the following formula for two-part 

Wiebe: 

                                     (3.56) 

In the equations above, C1 and C2 are coefficients in Watson&Pilley equation.   and 

  are the fraction of premixed combustion to total combustion and delay angle 

between premixed and diffusion combustion values. In the study, these coefficients 

are taken as A=6.0, M=0.1, C1 = 2.5, C2 = 2500,  =0.05 and  =0.0 in order to 

replicate the experimental results of the turbocharged&intercooled DI diesel engine.  

Combustion duration is defined as the number of crank degrees before or after TDC 

at which combustion starts. In this study, it is taken as 3 degrees CA after TDC. The 

combustion period can be calculated with the following formula which is obtained 

from experiments by Lotus [80]. 

                       
    

                       
  (3.57) 

where AFR represents the air-fuel ratio of the gas mixture inside the cylinder. An 

examplary combustion period is shown on Figure 3.3 where SOC shows start of 

combustion, A50% represents the 50 % mass fraction burned CA and EOB states the 

end of burning. [80]. 
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Figure 3.3 : An exemplary mass fraction burn variation during combustion period 

[80]. 

3.7 Cylinder Heat Transfer 

In LES, heat transfer can be modelled with different heat transfer formulations such 

as Annand, Woschni and Eichelberg [80]. Annand heat transfer model is chosen in 

the simulation for the cylinders. This is because when studies using LES as engine 

modelling are examined, Annand heat transfer model is generally preferred in order 

to calculate the heat transfer from cylinders [81,90,91]. 

The connective heat transfer model defined by Annand can be stated as [92]: 

 
Bcyl

A
k

hD
Re  (3.58) 

In (3.58); h is heat transfer coefficient (W/m
2
K), k is thermal conductivity of gas in 

the cylinder (W/mK), Dcyl is cylinder bore, Re is Reynolds number and A and B are 

Annand open or closed cycle coefficients which are taken for open cycle as 1.1 and 

0.7 and for closed cycle as 0.15 and 0.8. The heat transfer per unit cylinder area can 

be calculated with: 

    44

wallgaswallgas TTCTTh
A

dQ
  (3.59) 

where A is area, T is temperature and C is Annand closed cycle coefficient, taken as 

4.29*10
-9

. 
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3.8 Charge Cooler 

Charge coolers are used for removing heat from the gas in the engine simulation 

model. Pressure loss, coolant temperature and effectiveness verses mass flow rate 

data constitute the main characteristics of the charge cooler. In the simulation, the 

mass flow in the charge cooler is calculated for the instantaneous pressure drop. The 

same procedure is also true for coolant temperature and effectiveness data [80]. 

The charge cooler effectiveness is described as: 

   
                      

                      
 (3.60) 

where Tcharge,in and Tcharge,out represent charge cooling inlet and outlet temperatures, 

Tcoolant,in shows the cooling inlet temperature. 

3.9 Cylinder Scavenging 

The cylinder scavenging operates charge gas mixing with the gas already in the 

cylinder before the cylinder gas is removed from the cylinder. Perfect mixing model 

is used in the simulation. 

The assumption in this model is that any charge gas entering the cylinder is 

instantaneously, homogeneously mixed with the gas currently in the cylinder. Thus 

the subsequent transfer of gas to the exhaust will cause some of the charge gas to be 

removed from the cylinder [93]. 

The scavenging terms in the simulation are: 

       
    

           
 (3.61) 

   
             

           
 (3.62) 

     
    

         
 (3.63) 

       
    

             
 (3.64) 

These equations above represent scavenging efficiency, scavenging ratio, charging 

efficiency and trapping efficiency consecutively. 

 



38 

3.10 Flow Through Valves and Ports 

A simple one-dimensional model for flow through a valve or port using the analogy 

of an orifice, having an equivalent flow area (an area that produces the same flow 

rate under the same upstream and downstream pressures) is used. Applying the 

energy equation from upstream to the valve throat for isentropic steady flow, and 

assuming that the inlet velocity is negligible, gives [94]: 

 
  

  
        

  

   
 

 

   
  

  

  
 
   

  
  

  
 
       

   (3.65) 

This mass flow equation may seem working well in theory. But in practice, 

secondary flow effects, boundary layer separation, friction, etc. leads to the mass 

flow rate being less than that calculated from equation (3.65) above. A discharge 

coefficient is used for this practical difficulty. Therefore, it is rewritten as: 

 
  

  
          

  

   
 

 

   
  

  

  
 
   

  
  

  
 
       

   (3.66) 

The value of the discharge coefficient (Cd) or effective area (A2) is established from 

steady flow tests at varying valve lifts and pressure ratios. It is shown in Figure 3.4 

below that the effective area (CdA2) is a function of valve lift and pressure ratio. The 

effect of the pressure ratio is small when compared to the valve lift [94]. 

Figure 3.4 : Effective area variation with valve lift [94]. 
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3.11 Turbocharger 

Turbocharger is modelled as compressors and turbines on a common free spinning 

(or compounded) shaft. The non-dimensionalised characteristic maps of compressor 

and turbine are used to obtain the instantaneous performance of these elements. For a 

given engine application; mass flow, pressure ratio, speed and efficiency scaling 

factors are used to state a particular compressor/turbine map. The accurate simulation 

of free spinning turbochargers demands that the simulation converge on a shaft speed 

that provides an exact work balance between compressors and turbines. 

Compressor maps must be defined as a series of constant speed lines defining mass 

flow, pressure ratio and efficiency. Compressor map used in the simulation is seen 

below in Figure 3.5 [80]. 

Figure 3.5 : Compressor efficiency map [80]. 

At each crank angle increment; the mass flow rate and efficiency of the compressor 

are calculated from the current corrected shaft speed and the instantaneous pressure 

ratio across the device. The calculation procedure is to interpolate a constant speed 

line from the map data. (see above). From this line the mass flow and efficiency 

defined by the current pressure ratio are interpolated. 
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4.  VVT APPLICATION ON THE SYSTEM 

Diesel engine specifications were given with details on the second section of the 

study. Also, simulation of the diesel engine with LES was demonstrated with 

detailed elements. On this section, the purposed VVT application on the system will 

be implemented to achieve higher than 250
o
C exhaust gas temperatures. However, at 

first, the simulation model must be validated with experimental results in order to 

utilize a reliable model while using VVT. Then, the intended VVT method can be 

applied to the system. 

4.1 Validation of the Model 

The simulated diesel engine was also studied by Garg [68]. That was mentioned 

before on section 2. The engine speed was 1200 rpm and engine loading was taken as 

2.50 bar in that study. The same is valid in this study too.  

The experimental results taken from [68] for volumetric efficiency and turbine exit 

temperature (TET) are shown on Table 4.1 below. These experimental data for the 

diesel engine at 1200 rpm engine speed and at 2.50 bar engine loading is used for the 

validation of the simulation model. 

Table 4.1 : Experimental data for different IVC timings at 2.50 bar engine loading. 

IVC Timing (CA) Volumetric Efficiency (%) TET (
o
C) 

-65 63,00 254,5 

-50 72,30 232,0 

-40 78,00 220,5 

-20 88,50 206,5 

0 93,60 198,0 

20 94,50 195,0 

50 89,60 203,0 

70 82,30 217,0 

90 74,20 235,0 

100 69,30 249,0 
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As seen on Table 4.1 above, volumetric efficiency and TET values vary when IVC 

timings is closed earlier or later than its nominal timing. 0 CA denotes the nominal 

IVC timing above. Negative numbers show the advanced and positive ones 

demonstrate the retarded closing timing of the intake valve. The aim of the 

simulation will be to calculate these engine performance values as close as those 

experimental data above. 

Also, nominal intake and exhaust opening&closing timings, inlet and exhaust 

maximum valve lifts  are listed on Table 4.2 below. Only intake valve closing timing 

is altered, other opening and closings timings and valve lifts are kept constant for the 

validation. 

Table  4.2 : Nominal valve timings and maximum valve lifts. 

Intake Valve Opening (CA) 20 CA BTDC 

Intake Valve Closing (CA) 25 CA ABDC 

Exhaust Valve Opening (CA) 20 CA BBDC 

Exhaust Valve Closing (CA) 20 CA ATDC 

Inlet Maximum Valve Lift (mm) 8.50  

Exhaust Maximum Valve Lift (mm) 9.90  

As it is shown on Table 4.2 above, intake valve opens 20 Crank Angle (CA) before 

top dead center (BTDC) and closes 25 CA after bottom dead center (ABDC). 

Opening timing of the exhaust valve is 20 CA before bottom dead center (BBDC) 

and closing timing is 20 CA after top dead center (ATDC). Valve lifts given above 

are fixed in the validation.  

The simulation model was shown previously in the second part of the study on 

Figure 2.1. The specifications given on Table 2.1 are used in the simulation in order 

to simulate the diesel engine at 1200 rpm and 2.50 bar engine loading. However, 

some other required data is defined appropriately on the simulation in order to obtain 

the experimental results seen on Table 4.1. Some of the engine parameters assumed 

are explained on the previous mathematical formulations part's subsections.  

It is easy to define opening and closing timings on the simulation. Nominal intake 

and exhaust timings are shown on Figure 4.1 below. 
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Figure 4.1 : Nominal intake & exhaust valve timings on the simulation. 

On Figure 4.1, the blue part shows the intake valve timing interval, the yellow part 

demonstrates the CA interval between opening and closing timings of exhaust. MOP 

on the figure points out the maximum opening point (CA degree after opening  for 

both intake and exhaust). As mentioned on Table 4.2, MOP goes to 8.5 mm valve lift 

for intake and 9.9 mm valve lift for exhaust. 

Also, there is a firing-order which is mentioned before on Table 2.1. It starts with no 

1 cylinder and ends with no 4. This can be explicitly seen on Figure 4.2 below. 

Figure 4.2 : Cylinder phase and valve event display of the diesel engine. 
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As there are six cylinders and one cycle in diesel engines takes 720 CA, there is 120 

CA degrees phase between cylinders. All cylinders have the same valve timings and 

lifts specified on Figure 4.1. This is also seen on Figure 4.2 too. 

The nominal IVC timing is 25 CA ABDC. The first intention is to alter this timing 

forward and backward and to observe the effect on TET and volumetric efficiency. 

The experimental results on Table 4.1 are yielded via changing IVC timings as 

shown on Figure 4.3 below. 

Figure 4.3 : Advanced and retarded IVC timings. 

The changing on IVC timing is shown for cylinder no 1 on Figure 4.3 above. This is 

indeed valid for all other 5 cylinders in the system too. While changing IVC timings, 

especially for advanced IVC timings, valve lift values get higher and higher at TDC. 

This high lifts at TDC can result in piston-valve crash for very high intake valve lift 

values at this point. In Garg's study, the distance between valve lift and piston is 

shown as 1 mm at TDC [68]. Therefore, the same restriction is binding in this study 

too. VVT is applied to the system under this limitation so as to prevent a piston-valve 

crash. 

While changing the closing timings of intake, engine loading which is taken as bmep 

is managed constant at 2.50 bar in order to compare the effect of variable IVC on a 

fixed loaded engine. Therefore, fuel injection rate is altered for every specific IVC 

timing so as to hold engine loading constant. Only nominal IVC (25 CA ABDC) is 
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closed later or earlier when all other valve timings and maximum valve lifts are kept 

constant.  

By using the engine specifications on Table 2.1, assumptions and mathematical 

expressions stated on previous section, the validation graphs of the simulation are 

yielded for TET on Figure 4.4 and for volumetric efficiency on Figure 4.5. 

 

Figure 4.4 : Turbine exit temperature comparison between simulation&experiment. 

As it is shown from Figure 4.4 above, simulated and experimental TET values are 

compared. It is seen that the calculated results are generally compatible with the 

experimental TET data. As seen, changing IVC timing is very useful for rising TET 

from 195 
o
C nominal value to higher than 250

o
C which is determined as a limit 

temperature for more effective exhaust thermal management. Early and late IVC are 

both beneficial. Advancing IVC timing 65 CA (40 CA BBDC) from the nominal 

value can result in 60
o
C TET increase at 1200 rpm and 2.50 bar bmep. However, for 

the same TET rise, IVC timing must be retarded 100 CA (125 CA ABDC) from the 

nominal closing timing. Therefore, earlier closing affects faster than later closing. 

However, sweeping closing timing in both ways has the similar effect on exhaust 

gases leaving the turbine. It can be derived that variation of closing timing has 

positive effect on TET. It is particularly important for a low loading point (2.50 bar 
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bmep), since nominal exhaust temperature is 195
o
C for this point and it is much 

lower than 250
o
C. 

 

Figure 4.5 : Volumetric efficiency comparison between simulation&experiment. 

Effect of changing IVC timing on volumetric efficiency is demonstrated on Figure 

4.5 above. The simulation results are relatively close to experimental results as 

achieved on TET. As seen from the experimental and simulation results, volumetric 

efficiency decreases in both directions in comparison to nominal IVC timing. Earlier 

and later closing timings affect volumetric efficiency negatively. It drops sharply 

with EIVC and sufficient retardation of IVC causes the same volumetric efficiency 

reduction in the system. EIVC shortens the air inlet time and LIVC pushes some of 

the air out of the cylinder by extending the intake valve duration. 

It is important to notice that although advanced and retarded IVC lead to dramatic 

reductions of volumetric efficiency, it also enables the system to achieve greater than 

250
o
C exhaust temperatures going directly to the aftertreatment systems. It can be 

stated that whenever the volumetric efficiency goes down, TET gets higher than 

nominal timing. For the same engine loading case, it is obvious that TET is inversely 

proportional with the volumetric efficiency. This is valid when IVC is swept either 

earlier or later than the stock valve timing.  

It can also be derived that simulation model has promising results with VVT. The 

results are not far-fetched from the experimental results for both TET and volumetric 
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efficiency. It can be asserted that the simulation model is reliable and can be used to 

predict the TET values for different engine speed and engine loading cases.  

4.2 Examining the Effect of IVC on Diesel Engine Performance 

As explained on the previous subsection that earlier and later IVC timing is definitely 

practical for reaching higher than 250
o
C TET and hence more efficient exhaust 

thermal management. However, as seen on Figure 4.5 volumetric efficiency is 

decreasing dramatically for both EIVC and LIVC cases. It goes down less than 70 % 

with LIVC and even lower than 65 % with EIVC. The same reduction effect is also 

seen on trapped air to fuel ratio (AFR) on the system as shown on Figure 4.6 below.  

 

Figure 4.6 : Trapped AFR change along EIVC and LIVC. 

The decrease in AFR also stems from the reduction of volumetric efficiency along 

EIVC and LIVC. Less air is inducted into the system compared to nominal case and 

only fuel injection rates are adjusted for different IVC timings to keep engine loading 

constant at 2.50 bar bmep.  

It can be deduced that those extra air close to nominal IVC timing causes a decrease 

on TET. As the closing timing is advanced or retarded, volumetric efficiency 

decreases and lower air is used to achieve same engine loading and TET increases. 

TET is reciprocally proportional with the volumetric effiency. The lower the 

volumetric efficiency is, the higher the TET becomes. Effect of IVC timing on other 

engine performance parameters are examined below. 
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4.2.1 Exhaust flow rate 

Volumetric effiency has a critical role for obtaining higher exhaust gas temperatures 

and enables exhaust thermal management systems to perform more effectively. As 

explained on the previous section, having lower volumetric efficiency at constant 

engine loading via sweeping IVC timings causes an abrupt rise on TET. However, it 

also has a negative effect. It leads to reduction on exhaust flow rate shown on Figure 

4.7 below.  

 

Figure 4.7 : Exhaust flow rate change with different IVC timings. 

There is no doubt that increasing TET greater than 250
o
C is significant for more 

effectual aftertreatment systems. This is definitely necessary in order to achieve 

catalyst temperatures higher than 250
o
C on exhaust thermal management systems. 

But, decreased exhaust flow rate reduces the catalyst temperature change rate. This is 

because heat transfer to the catalyst substrates does not only rely on exhaust gas 

temperatures, but also exhaust gas flow rates. Therefore, diminishing exhaust flow 

rate decreases the heat transfer rate from the exhaust gases leaving turbine to the 

catalyst substrates on thermal management systems. As explained on the purpose of 

the study part, in this study, the search is to find out appropriate VVT on the diesel 

engine system to both reach higher than 250
o
C exhaust temperatures, but also to 

achieve this without a dramatic exhaust flow rate reduction on the system. 
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4.2.2 Fuel injection rate 

Although this method results in decrease in exhaust flow which is significant for the 

heat transfer from exhaust gases to the catalyst substrate, it also has another positive 

effect. As demonstrated on Figure 4.8 below, fuel injection rate goes lower than the 

nominal injection rate for either EIVC or LIVC for constant engine loading cases.  

 

Figure 4.8 : Fuel injection rate variation along early and late IVC. 

When the figure above is examined, less fuel is required to manage the same engine 

loading for both advanced and retarded closing timings of intake. It can be derived 

that not only does the method sufficiently raise the exhaust temperatures to the 

desired 250
o
C temperature limit, but also it results in fuel-saving diesel engine 

performance. This positive effect can also be seen on Figure 4.9 below with the 

increase on brake thermal efficiency. 

 

Figure 4.9 : Brake thermal efficiency change along early and late IVC. 
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As the fuel consumption drops for forward and backward sweeping of IVC, brake 

thermal efficiency of the system increases as expected compared to nominal IVC 

timing. In order to understand the reason behind this thermal-efficient performance 

of the diesel engine along EIVC and LIVC, Friction mean effective pressure 

(FMEP), pumping mean effective pressure (PMEP) and indicated mean effective 

pressure of the power phase (IMEPpower) values should be examined. In section 3, 

bmep was defined as the difference between indicated mean effective pressure of the 

whole diesel cycle (IMEPcycle) and diesel engine FMEP. IMEPcycle is calculated with 

the following formula below [82]: 

                          (4.1) 

4.2.3 FMEP, PMEP and IMEPpower variation along IVC sweep 

As the IMEPpower change along advanced and retarded closing timings shown in 

Figure 4.10 below is examined, it is seen that less power is needed to obtain same 

2.50 bar bmep in the system. The results found are compatible with the Figure 4.8 

and Figure 4.9 where earliest IVC timing is more fuel-efficient than the latest IVC 

timing. 

 

Figure 4.10 : IMEPpower change along EIVC and LIVC. 

The decrease in IMEPpower in the system is an expected result since fuel injection rate 

is reducing through EIVC and LIVC as shown previously on Figure 4.8. However, 

FMEP and PMEP should be further investigated in order to grasp where the fuel-
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saving effect comes from. FMEP and PMEP variation for different IVC timings are 

demonstrated on Figure 4.11 below. 

 

Figure 4.11 : FMEP and PMEP change along EIVC and LIVC. 

It is seen that FMEP does not alter significantly when IVC is changed, it is more or 

less the same. However, PMEP is decreasing as IVC goes earlier or later than the 

stock IVC timing. This may stem from the reduction of volumetric efficiency as 

obtained on Figure 4.6. Because decreasing air induction along EIVC and LIVC 

results in lower pumping losses in the system. 

It can be concluded that lower PMEP enables the system to perform with lower 

IMEPpower. Therefore, less fuel is demanded in the system to hold the engine loading 

constant. In order to comprehend the reduction in PMEP in a detailed manner, 

change of pressure behaviour for EIVC and LIVC sweeps should be examined. 

4.2.4 Pressure-volume diagrams 

As demonstrated on the previous section, the effect of fuel-efficiency is due to the 

reduction in PMEP in the system. Change of PMEP can be observed by investigating 

the change of pressure behaviour along the cycle while IVC is advanced or retarded 

in the system. The experimental results for EIVC and LIVC from Garg's study [69] 

are shown on the following Figures 4.12 and 4.15. Simulation results are put below 

the Garg's results in order to compare for both EIVC and LIVC. At first, pressure-

volume diagrams for earlier IVC timings are compared on Figures 4.12 and Figure 
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4.13. Experimental results are given in PSI and in
3 

for pressure and volume in Garg's 

study (Figures 4.12 and 4.15). In ITU studies, SI units are generally taken for 

graphical results. Therefore, these units are converted into bar and cm
3 

for pressure 

and volume. The simulation results are in bar and cm
3
 units for pressure and volume 

too (Figures 4.13 and 4.16). 

Figure 4.12 : Experimental pressure-volume diagrams for EIVC timings [69]. 

Figure 4.13 : Pressure-volume diagrams along the cycle for EIVC with simulation. 



53 

On Figure 4.13 above, IVC25 shows the nominal IVC timings which was also 

specified on Table 4.2 and Figure 4.1. IVC-15 is the 40 CA advanced timing and 

IVC-40 also points out 65 CA advanced IVC timing. As the pressure variation along 

the cycle is analyzed on the diagram, it is seen that when IVC is closed earlier than 

nominal, maximum pressure (Pmax) decreases. That leads to decreased pressure at the 

end of power and expansion phases and lower pumping loops (lower PMEPs) are 

needed for advanced IVC timings. Change of Pmax can also be seen in a detailed 

manner on Figure 4.14 below. 

 

Figure 4.14 : Maximum pressure change with IVC sweep. 

The same situation is valid for retarded closing timings of intake too. The 

experimental results are seen on the following Figure 4.15 and simulation results for 

the same case are demonstrated on the following Figure 4.16 below. Unlike Figure 

4.13, on this case, IVC is closed 70 CA later at first seen on the figure with IVC95 

and it is also closed 100 CA later than the nominal with IVC125. Maximum pressure 

drops with IVC95 and decreases further with IVC125 (this case is also demonstrated 

on Figure 4.14). Lower pressure takes place at the end of power and expansion and 

lower pumping losses are required (similar to Figure 4.13) along the cycle for LIVC. 

When Figure 4.14 and Figure 4.5 are compared, it is definite that both Pmax and 

PMEP are directly proportional with the volumetric efficiency.  
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Figure 4.15 : Experimental pressure-volume diagrams for LIVC timings [69]. 

Figure 4.16 : Pressure-volume diagrams along the cycle for LIVC with simulation. 

It can be derived from Figures 4.13 and 4.16 that decrease in volumetric efficiency 

and air flow into the system results in reduced pumping losses and hence lower 

PMEPs. Therefore, lower IMEPpower is needed for constant 2.50 bar bmep and lower 

fuel injection into the system is sufficient to manage engine loading fixed. The 
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reason to prefer EIVC rather than LIVC in the study is that this method decreases 

PMEPs more than LIVC as shown on Figure 4.11. More efficient method can be an 

advantage while combining different VVT strategies to achieve greater than 250
o
C 

exhaust temperatures. 

4.3 TET and Exhaust Flow Diagrams for Different Engine Speeds and Engine 

Loadings 

The simulation model of LES is used for a particular engine speed (1200 rpm) and a 

particular engine loading case (2.50 bar bmep) and it is seen that reliable results for 

exhaust gas temperatures can be attained by utilizing it. The case examined is a low 

speed and low engine loading point. As expressed on earlier sections, diesel engines 

generally have lower than 250
o
C TET values at low engine speeds and low engine 

loading points. At this specific point, TET was calculated as 195
o
C with nominal 

valve timings. However, diesel engine can work at lower&higher engine speeds and 

lower&higher engine loadings. TET will be higher and lower than that number for 

different performance zones of the diesel engine. Therefore, it is intended to observe 

the TET change for different engine speeds and engine loadings at nominal valve 

timings and maximum valve lifts. Valve timings on Figure 4.1 are not changed. Only 

fuelling rate is altered in order to manage constant bmep for different engine speeds. 

TET change is demonstrated on Figure 4.17 below. 

Figure 4.17 : TET (
o
C) change for different engine speeds and engine loadings. 
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As it is seen on the figure above, change of TET is examined for engine speed from 

1000 rpm to 2000 rpm and for engine loading 1 bar to 5 bar. Engine loading is taken 

as bmep. It is shown on the engine performance zone that TET is lower than 250
o
C 

under the yellow line between 1000 rpm and 2000 rpm engine speeds. At low 

loading and low engine speeds TET is much lower than 250
o
C and that causes to 

lower efficient exhaust thermal management on those parts. High TET rises are 

required on those areas in order to reach greater than 250
o
C exhaust gases. However, 

as seen on the figure, high engine speed zones have temperatures closer to 250
o
C and 

thus low TET rises will be sufficient for those areas to obtain turbine out 

temperatures above 250
o
C. In comparison to the calculations done on earlier section, 

less advanced or less retarded IVC timings can be adequate for greater than 250
o
C 

TETs for higher engine speeds. 

It is proved on previous section that alteration of IVC timings for fixed bmep is 

definitely beneficial for TET rise. Not only does it increase TET, but also it enables a 

fuel-saving engine system. However, there is an abrupt reduction on exhaust flow 

rate due to the decrease in volumetric efficiency and this is not useful for the heat 

transfer to the catalyst substrate on exhaust thermal management. As mentioned 

before, heat transfer from the exhaust gases to the catalyst substrate depends on both 

TET and also exhaust gas flow rate. Therefore, exhaust gas flow should also be 

considered to achieve more effective aftertreatment systems. Exhaust flow rate at 

nominal valve timings is seen below on Figure 4.18. 

Figure 4.18 : Exhaust flow change for different engine speeds and engine loadings. 
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On the figure above, it is shown that low loading and low engine speed points have 

lower exhaust flow rates in comparison to high speed and high loading parts. This 

makes those zone especially important since it is known from Figure 4.17 that those 

points also have TETs much lower than 250
o
C. As it is obtained previously on Figure 

4.7, exhaust flow rate reduces almost 36 % compared to nominal valve timing at 

1200 rpm and 2.50 bar engine loading in order to exceed 250
o
C TET limit via EIVC. 

It can be derived that high exhaust flow rate reduction is a penalty for those points 

when only EIVC is utilized to rise TET above 250
o
C. Therefore, the aim of this study 

is to use EIVC in combination with other VVT methods and change of inlet&exhaust 

max. valve lifts so as to decrease the TET line shown on Figure 4.17 to lower engine 

loadings. This is intended to be achieved without allowing a dramatic exhaust flow 

rate reduction and without permitting a fuel injection rate rise compared to nominal 

valve timing case. 

4.4 Effects of Other VVT Methods on the System 

Other than IVC timing, intake valve opening (IVO), exhaust valve closing (EVC) 

and exhaust valve opening (EVO) timings can be investigated for exhaust flow 

change and higher TETs in the system. The first goal is to find out the appropriate 

option from those VVT methods to combine with EIVC. Afterwards, the effect of 

change of inlet and exhaust maximum valve lifts will be considered. 

Changing IVO and EVC is restricted with the movement of the piston close to the 

Top Dead Center (TDC) area. As shown on Figure 4.19 below, for early IVO (EIVO) 

and late EVC (LEVC) valve lifts are getting greater than 1mm at top dead center 

(TDC). On the validation of the simulation section, this 1 mm distance is specified as 

a limit for different VVT options. Because it can lead to piston-valve crash which is 

not allowed during the cycle. Therefore, primarily, late IVO (LIVO) and early EVC 

(EEVC) which are safer (valve lifts lower than 1 mm at TDC) are examined in the 

system to be beneficial to both TET and exhaust flow rate. After analyzing these two 

options, EVO will be examined in a separate subsection. As it is known from the 

literature review, early EVO (EEVO) is indeed effective for obtaining higher TETs 

although it results in fuel consumption penalty [71, 72]. However, similar TET rise 

should be calculated with LES too in order to consider EEVO as a strategy to 

combine with EIVC. 
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Figure 4.19 : Earlier and later timings of EVC and IVO. 

4.4.1 Late intake valve opening 

Exhaust gas temperature change is shown below on Figure 4.20 for LIVO. Also, 

change of exhaust flow rate is seen on Figure 4.21 for retarded opening timings of 

intake. 

 

Figure 4.20 : TET change for LIVO. 

The nominal opening timing of the intake is 20 degrees CA BTDC as shown on 

Figure 4.20. As the opening is swept towards TDC and even retarded more until 25 

degrees CA ATDC, there is not a significant TET rise in the system. Although up to 

25
o
C TET increase is obtained by decreasing the overlap time (degree between IVO 
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and EVC) and allowing more residual gases in the cylinder, exhaust flow rate 

decreases for the most retarded case as seen on Figure 4.21 below. Because LIVO 

causes volumetric efficiency to drop when it is applied ATDC. 

 

Figure 4.21 : Exhaust flow rate change for LIVO. 

Not only is the reduction in exhaust flow rate a problem for this case, but also there 

is high fuel consumption penalty as demonstrated on Figure 4.22 below. As this 

method increases the pumping losses in the system [28], more fuelling rate is 

required to hold engine loading constant at 2.50 bar. It can be derived that this VVT 

method is not appropriate to combine with EIVC to achieve higher than 250
o
C TETs. 

 

Figure 4.22 : Fuel consumption change for LIVO. 
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4.4.2 Early exhaust valve closing 

Nominal EVC timing is 20 degrees CA ATDC as shown on Figure 4.23. EVC timing 

is advanced until 15 degrees CA BTDC. It is seen that EEVC is indeed effective for 

high TETs. TET becomes even more than 250
o
C for the most advanced EVC case. 

 

Figure 4.23 : TET change for advanced EVC timings. 

However, when Figure 4.24  below is examined, it is seen that EEVC leads to an 

abrupt exhaust flow reduction. It is very similar to the case when EIVC is applied to 

the system. 

 

Figure 4.24 : Exhaust flow rate variation with EEVC. 
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The reason behind this sharp exhaust flow rate decrease is that when EVC timing is 

advanced, not all of the exhaust gases can be discharged from the cylinder through 

exhaust ports. Because exhaust timing duration is shortened to complete that release. 

Some of the exhaust gases flow back to the intake port, some of the gases stay in the 

cylinder and mix with the fresh charge. Although this situation increases the TET via 

rise in the residual gases, it also needs more fuel consumption in the system as shown 

on Figure 4.25. Since having more residual gases in the next cycle decreases the 

combustion efficiency, fuel injection rate should be increased to compensate this. 

 

Figure 4.25 : Fuel consumption change for EEVC. 

EEVC also becomes impractical to combine with EIVC due to the negative effect on 

exhaust flow rate. However, it is definite that it can be an option to reach higher than 

250
o
C for high speed and low loading points where exhaust flow is already at high 

rates. 

4.4.3 Early exhaust valve opening 

Nominal EVO timing is 20 degrees CA BBDC as shown on Figure 4.26 below. On 

this section the intention is to open EVO much earlier than BDC in order to increase 

exhaust gas temperatures in the system. As examined on the literature review section, 

EEVO has a great potential to rise turbine out temperatures, particularly for high 

engine speed and high engine loading cases [71, 72, 78]. In order to observe the same 

effects in LES, EVO is advanced from 20 degrees CA BBDC to 105 degrees CA 

BBDC. All other valve timings and valve lifts are kept constant. Also, engine loading 

is managed fixed at 2.50 bar bmep as done previously on other VVT methods. 
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Figure 4.26 : Advanced EVO timings on the exhaust valve lift profile. 

The results for TET for earlier swept EVO timings are seen on Figure 4.27 below. As 

timing is getting further from the BDC, TET is rising rapidly in the system. The 

reason behind this sharp increase in TET comes from the fact that the diesel engine 

starts to release the exhaust gases from the cylinder earlier than nominal case. At 

earlier valve timings, these gases have higher pressures and higher temperatures 

since EVO timing is closer to combustion phase. Therefore, exhaust gases with 

higher temperatures go into the turbocharger and leave the turbine with greater 

temperatures in comparison to nominal EVO timing. 

 

Figure 4.27 : TET change for advanced EVO. 
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It is definite that EEVO is indeed beneficial to obtain 55
o
C TET rise for a low 

loading case (2.50 bar bmep) at 1200 rpm engine speed and 250
o
C TET target line 

can be reached when sufficient advancement is applied. Also, when exhaust flow 

along EEVO is analyzed in the sytem on Figure 4.28 below, it can be derived that it 

is steadily increasing along EEVO. 

 

Figure 4.28 : Exhaust flow rate variation with advanced EVO. 

Exhaust flow is constantly rising in the system because fuel injection rate is 

increasing rapidly in the system as shown on Figure 4.29. This excessive fuel need is 

added to the system for advanced EVO timings and results in higher exhaust flow. 

 

Figure 4.29 : Fuel consumption change with EEVO. 
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The EEVO seems to be only VVT strategy to increase both TET and exhaust flow 

rate which are the two significant parameters for rising heat transfer from exhaust 

gases to the catalyst substrates on aftertreatment systems. However, it has a 

considerable negative effect. It causes high fuel consumption penalty. In fact, when 

Figure 4.30 below is examined explicitly, it can be understood why this VVT method 

requires higher fuel consumption in comparison to nominal EVO timing. 

Figure 4.30 : Pressure - volume diagrams for EEVO. 

Nominal (EVO20, 20 degrees CA before BDC), EVO70 (50 degrees CA advanced 

from nominal) and EVO105 (85 degrees CA advanced from nominal) timings are 

compared on Figure 4.30 above. It is seen that as the opening is taken earlier than 

nominal timing, expansion phase is cut off in the cycle and there is an earlier 

blowdown in pressure for EVO70 and EVO105 compared to nominal. Therefore, 

more fuel should be injected into the cylinders in order to compensate the reduced 

expansion work. It is seen that EVO105 and EVO70 have higher maximum pressures 

than nominal EVO20. This is in fact due to consuming more fuel to hold engine 

loading constant. However, combining EEVO with EIVC can be useful, because 

EIVC is fuel-saving and it can decrease the fuel penalty caused by EEVO. 
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4.5 Application of Combined EIVC and EEVO on the System  

On the previous sections, it is seen that EEVO is the best option to obtain both high 

TETs and also high exhaust gas flow rates. But, it has a major drawback, it increases 

the required fuel for the same engine loading in the system. Since EIVC is fuel-

saving, these two VVT methods can be applied together as shown on Figure 4.31 

below. 

Figure 4.31 : Combined EEVO and EIVC valve lift profiles. 

TET change is demonstrated below on Figure 4.32 for this EIVC&EEVO combined 

VVT strategy. TET rises for both advanced EVO and advanced IVC. 

Figure 4.32 : Rise of TET (
o
C) via combined EIVC & EEVO. 
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It can be derived that utilizing combined EIVC&EEVO method is definitely effective 

for reaching greater than 250
o
C exhast gas temperatures. IVC does not have to be 

advanced until 40 degrees CA BBDC as studied previously on the validation section. 

Instead, advancing it 15 degrees CA BBDC is sufficient when EVO is also advanced 

70 degrees CA from the nominal timing. Moreover, when exhaust flow rate variation 

on Figure 4.33 below is examined, it is decreasing for valve point EVO90 and IVC-

15 as expected due to the earlier IVC. However, it is not as dramatic as the one 

achieved on the validation part where IVC is advanced 65 CA from the stock valve 

timing. It is seen that when only IVC is used to exceed 250
o
C TET target 

temperature, exhaust gas flow rate reduces almost 36 %. Yet, EIVC&EEVO 

application results in a drop of 17 % in comparison to nominal valve timing while 

achieving the same high TET in the system. 

Figure 4.33 : Exhaust flow rate change along EEVO & EIVC. 

There is no doubt that the method is beneficial for both enabling diesel engine 

performance with exhaust gas temperatures above 250
o
C and also providing 

relatively higher exhaust gas flow rates in comparison to the case where only IVC is 

swept to earlier timings to attain greater than 55
o
C TET rises in the system. 

However, as emphasized previously, the intention is to gain high exhaust gas 

temperature increase for different engine loading cases without rising the required 

fuel consumption to hold the engine loading constant. Therefore, fuel consumption 

variation for EEVO&EIVC on Figure 4.34 should be examined. 
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Figure 4.34 : bsfc change (%) variation compared to nominal valve timings along 

combined EEVO & EIVC. 

The rise and decrease on fuel consumption need for constant load can be explicitly 

seen on the figure above. As expected, lower fuel is required to keep loading 

constant for EIVC due to lower PMEPs and more fuel must be injected into the 

system for EEVO parts because of the sharp blowdown of the pressure and shortened 

expansion phase. However, for the combined application, there is a zero fuel 

consumption penalty line and this line also crosses the part where high TETs are 

achieved. There is only 1 % fuel consumption penalty in comparison to nominal 

timing for 90 degrees CA BBDC EVO and 15 degrees CA BBDC IVC timings. 

EIVC's fuel-efficiency effect compensates the fuel rise need due to EEVO, however, 

fuel penalty is unavoidable when EVO is earlier than 80 degrees CA BBDC. 

Therefore, change of inlet and exhaust maximum valve lifts will be examined to 

decrease this fuel penalty while TET exceeds 250
o
C. 

4.6 Application of Variable Inlet and Exhaust Maximum Valve Lifts 

Nominal inlet and exhaust maximum valve lifts are 8.50 mm and 9.90 mm 

respectively as specified previously on Table 4.2. While change of opening and 

closing timings of valves are investigated before, these max. lifts can also be changed 

in the system in order to observe the effects on TET, exhaust flow and bsfc. Max. lift 

alteration is shown on Figure 4.35 below. 
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Figure 4.35 : Higher and lower valve lift profiles of inlet & exhaust. 

The changings on max. lifts are applied for the 70 degrees advanced EVO and 40 

degrees CA advanced IVC timings. Firstly, change of inlet max. lift is examined. 

Then, impact of exhaust max. lift will be analyzed. Finally, effect of changing those 

both max. valve lifts will be investigated. 

4.6.1 Change of inlet maximum valve lift 

TET and bsfc change for different inlet max. valve lifts are demonstrated on Figure 

4.36 below. Inlet max. lift is increased and decreased while exhaust max. lift is fixed. 

Figure 4.36 : TET and bsfc along higher and lower inlet maximum valve lifts. 
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When the figure above is examined, TET is decreasing for higher max. lifts. It also 

increasing for lower inlet max. lifts. In other words, it is inversely proportional with 

the inlet max. lifts. This is because at higher max. lifts, volumetric efficiency is rising 

and excessive air causes TET to drop. Higher air induction also increases the PMEP 

in the system and results in higher bsfc in comparison to nominal max. lift. In order 

to reduce the 1 % fuel consumption penalty, using smaller inlet max. lifts seems to be 

practical. But exhaust flow change below on Figure 4.37 should also be considered.  

 

Figure 4.37 : Exhaust flow rate change for higher and lower inlet max. valve lifts. 

On the validation section, it is seen that EIVC decreases both volumetric efficiency 

and exhaust flow rate. The same is valid for lower inlet max. lifts too. It is shown on 

Figure 4.37 above that very low inlet max. lifts leads to the sharp reduction of 

exhaust flow rate. While it is beneficial to diminish the fuel requirement, change of 

exhaust max. lifts should also be examined in order not to cause an abrupt decrease 

on exhaust flow in the system. 

4.6.2 Change of exhaust maximum valve lift 

It seems from the former section that utilizing lower inlet max. valve lifts is 

promising to lessen the 1 % fuel consumption penalty. However, changing only inlet 

max. lifts while exhaust max. lift is constant is affecting exhaust flow rate negatively 

in the system. Therefore, exhaust max. lifts are taken lower and higher than the 

nominal lift. Change of bsfc and TET for different exhaust max. lifts are shown on 

Figure 4.38 below. 
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Figure 4.38 : TET and bsfc along higher and lower exhaust maximum valve lifts. 

As it is shown on the Figure 4.38 above, although incresing exhaust max. lifts does 

not have a significant effect on TET, it is useful for decreasing the bsfc. This may 

come from the reason that more exhaust gases can be released at higher lifts and 

more fresh air inducts into the system for the next cycle. The benefit goes to 

negligible values for very high lift values. Lower max. lifts result in greater fuel 

penalty and higher TETs. The rise in TET stems from the increased residual exhaust 

gases in the cylinder. Incomplete discharge of exhaust gases and more backflow of 

exhaust gases into the intake port cause reduction of exhaust flow rate as seen on 

Figure 4.39 below too.  

 

Figure 4.39 : Exhaust flow rate change for higher & lower exhaust max. valve lifts. 
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It can be derived from the change of both inlet&exhaust max. valve lifts that using 

lower inlet and higher exhaust max. lifts seem to be the best option in the system so 

as to have a diesel engine performance without fuel penalty in comparison to 

nominal valve timings and maximum lifts. On the next part, the impacts of utilizing 

this method at 1200 rpm engine speed and 2.50 bar bmep constant engine loading 

will be examined. 

4.6.3 Using lower inlet and higher exhaust maximum valve lifts 

On former sections, it is seen that decreasing inlet and increasing exhaust max. valve 

lift is expected to be beneficial for attaining higher than 250
o
C TET without fuel 

consumption penalty.Therefore, effect of this variable max. lift method is examined 

in this part. The first parameter examined is change of TET. Variation of TET at 

lower inlet and higher exhaust max. valve lifts are shown in Figure 4.40 below. 

Figure 4.40 : TET (
o
C) for lower inlet and higher exhaust maximum valve lifts. 

As it is demonstrated on Figure 4.40 above, TET is rising sharply when inlet max. 

lift is decreased lower values than the nominal lift. Increasing exhaust max. valve lift 

does not have a significant effect on TET as expected. As seen previously on Figure 

4.36 TET becomes almost the same along exhaust lifts. At least, it can be asserted 

that there is not a negative effect on TET. For the smallest inlet and higher exhaust 

max. lift, TET reaches close to 290
o
C. It is much higher than 250

o
C. Indeed, the 

higher the TET is, the faster the thermal management process is. It can speed up the 
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heat transfer from the exhaust gases to the catalyst substrate and rise the conversion 

efficiency in a faster manner. However, increasing only TET is not sufficient. Heat 

transfer depends also on exhaust gas flow. Therefore, exhaust flow rate going 

directly to the aftertreatment system should also be considered. Change of exhaust 

flow rate is shown on Figure 4.41 below. 

Figure 4.41 : Exhaust flow rate (kg/min) change for lower inlet and higher exhaust 

maximum valve lifts. 

When the variation of exhaust flow rate on Figure 4.41 above is analyzed, it can be 

derived that exhaust max. lifts do not have an important impact on the flow rate. This 

is similar to the results calculated on Figure 4.39. However, flow rate is reducing 

dramatically for the lower inlet max. lifts. This is also an expected result. Because air 

induction reduces at smaller inlet max. lifts and that leads to decreased exhaust flow 

rate. 

The exhaust flow rate decreased to almost 3 kg/min when IVC is advanced 65 

degrees CA from the nominal timing on the validation. That is equal to virtually 36 

% reduction in comparison to nominal timing. It is observed on Figure 4.41 that 

although the decrease on exhaust flow rate seems to be above 3 kg/min, there is no 

doubt that the fall is significant. But, inlet max. lift does not have to be decreased to 

close to 4.5 mm value on Figure 4.41. Since, TET is still higher than 250
o
C at higher 

than 4.5 mm lift cases. However, in order to determine which area on the figure can 

be most appropriate to utilize on the system, change of bsfc should also be 
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considered. The fuel consumption requirement variation is seen on Figure 4.42 

below. 

Figure 4.42 : bsfc change (%) variation in comparison to nominal max. valve lifts. 

It is definite that decreased inlet and increased exhaust max. lifts are reducing the 1 

% fuel consumption penalty to zero and even to below zero (fuel efficient) engine 

performance. However, fuel efficient zones have very low exhaust flow rates. That 

may affect the thermal power (mexhaust flow*Cp*TET) negatively. Therefore, change of 

thermal power on Figure 4.43 below is also examined to decide most proper zone. 

Figure 4.43 :                      variation for different maximum valve lifts. 
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When thermal power variation for different inlet and exhaust max. valve lifts are 

analyzed on Figure 4.43 above, it is seen that thermal power at nominal valve lifts 

can be obtained at lower inlet and higher exhaust max. lifts. That means the rise on 

TET observed on Figure 4.40 can compensate the reduction on exhaust flow rate 

seen earlier on Figure 4.41 at least on some parts of the graph. Other than this 

constant thermal power line, points have both advantages and disadvantages and the 

circled area is chosen considering these pros and cons. 

The circled area on the figure is 6.5 mm inlet and 15.9 exhaust max. lift point. At that 

point, thermal power is slightly higher than the nominal. However, there is no fuel 

consumption penalty as shown on Figure 4.42. When we go upward from that point, 

thermal power increases, but bsfc penalty rises too. For the lower points, the area is 

fuel saving, however, exhaust flow rate falls and so does thermal power. On the right 

side of that point, bsfc begins to increase slightly, there is not a significant change on 

the thermal power and also it increases the risk of piston-valve crash. There is no 

need to take extra risks while no extra benefit comes from increasing exhaust max. 

lift further than that point. On the left side of that circle point, once again the system 

starts to perform with higher fuel injection rate and also thermal power begins to 

lessen. The circled point satisfies the zero fuel consumption penalty and enables 265
o
 

C TET which is higher than 250
o
C target temperature. Moreover, exhaust flow rate 

decreases to only 3.75 kg/min which is 21 % less than the nominal. When compared 

with the 36 % reduction achieved on the validation part, the circled point definitely 

improves the exhaust flow rate in the system too.  

The application is explained on the former sections for a particular point, 1200 rpm 

engine speed and 2.50 bar bmep engine loading. And it is seen that the application 

can be successful when EEVO and EIVC is combined with proper inlet and exhaust 

max. lifts (lower inlet and higher exhaust max. lifts). After noticing the benefits of 

the method on this special point, the study can be extended to other performance 

points of the diesel engine. The nominal TET and exhaust flow rate variation were 

calculated previously on Figure 4.17 and Figure 4.18 on section 4.3. Now, the 

method can be applied to different engine speeds (from 1000 rpm to 2000 rpm 

engine speed) and engine loadings (from 1 bar to 5 bar) in order to observe where it 

is most effective and also at which points it is least effective or has no effect at all on 

TET and exhaust flow rate. 
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4.7 Application of EIVC & EEVO with Low Inlet and High Exhaust Max. Lifts 

On the previous section, the VVT strategy with low inlet and high exhaust max. lifts 

was found to be useful for rising TET and thermal power of the exhaust gases 

without requiring any excessive fuel consumption compared to nominal valve 

timings. The application area can now be widened to observe the effect on the whole 

engine performance zone.  

TET change for different engine speeds and various engine loadings with the VVT 

method can be seen on Figure 4.44 below. IVC timings are advanced 40 degrees CA 

from nominal timing and inlet and exhaust max. lifts are kept at 6.50 mm and 15.90 

mm as applied on the former section. For the same IVC and EVO timings and max. 

lifts on other points, fuel consumption penalty becomes higher or lower than the one 

achieved on nominal timings. Therefore, only EVO is advanced more or less than 90 

degrees CA BBDC in order to attain zero bsfc penalty on those performance points 

too. 

Figure 4.44 : TET (
o
C) variation on diesel engine performance zone. 

As it is shown on Figure 4.44 above, TETs increase in all parts of the performance 

zone in comparison to the nominal TETs achieved on Figure 4.17. 250
o
C target TET 

line is decreased to lower engine loadings. For instance, it reduced from 4.50 bar to 

almost 2.75 bar for 1000 rpm engine speed and from 3.50 bar to 1.0 bar for 1500 rpm 
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engine speed. Moreover, engine speeds higher than 1500 rpm have TETs greater than 

250
o
C and low speed and low loading points are much closer to 250

o
C compared to 

nominal TETs. However, when the figure is examined explicitly, it can be derived 

that the method is especially beneficial for higher engine speeds and higher engine 

loadings. Also, there is still a performance area below 2.50 bar bmep for low engine 

speeds where TET is below 250
o
C. This can also be seen by examining the TET rise 

change on Figure 4.45 below. 

Figure 4.45 : TET rise (
o
C) variation with VVT on diesel engine performance zone. 

As it is demonstrated above on Figure 4.45, TET rise is getting higher when engine 

speed or engine loading is increased. This is because more fuel is needed for these 

performance areas. In contrast, lower fuel injection rate is sufficient to achieve lower 

engine speeds and lower engine loadings. In fact, this is why those points have TETs 

much lower than 250
o
C at nominal valve timings and results in lower conversion 

efficiency on aftertreatment systems. However, the method is capable of increasing 

the TET up to 75
o
C for these low speed & low loading area and that results in more 

efficient exhaust thermal management system for most of the diesel engine 

performance zone. Also, since the TET rise requirement decreased on those points, 

some other methods (for instance electrically heating or different injection strategies) 

can be applied on the sytem in order to reduce the 250
o
C TET line further down to 

lower engine loadings. 
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Exhaust flow change should also be analyzed because heat transfer to the catalyst 

subtrate depends also on exhaust gases flow rate. Similar to Figure 4.18 calculated on 

section 4.3 for nominal valve timings, the VVT method leads to the exhaust flow 

variation on the performance area shown on Figure 4.46 below. 

Figure 4.46 : Exhaust flow variation with VVT on diesel engine performance zone. 

As expected, exhaust flow rate decreases with the application in comparison to 

nominal timings. This is even better seen on Figure 4.47 below which shows the 

exhaust flow rate reduction percentage compared to nominal timings. 

Figure 4.47 : Exhaust flow rate reduction compared to nominal valve timings. 
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It can be derived from Figure 4.47 above that the method causes greater reductions 

on high engine speed cases. At high engine speeds, more air should be inducted into 

the cylinder for the same time period. The flow rate is faster than low engine speeds 

and using EIVC on those areas may decrease the air inducted (in percentage) more 

than lower engine speeds. However, on these points, exhaust flow is already much 

higher than lower speeds for both nominal valve timings and also for the VVT case. 

Therefore, exhaust flow rate reduction on low speeds is more important than higher 

speeds. High reductions on those points can affect the heat transfer to the catalyst 

substrate negatively. But as seen on Figure 4.47 above, the reductions are relatively 

low for low engine speeds. It can be deduced that the intention to keep exhaust flow 

reductions at smaller percentage is achieved for the performance zone. If it is 

remembered, the flow rate had to be decreased 36 % on the validation for reaching 

higher than 250
o
C TET. On low loading & low engine speed zone, the reduction is 

lower than that and TETs are much higher than nominal. 

Exhaust flow rates decrease, however, TETs are rising for the same points on the 

performance map. It is not known whether increased TET compensates the reduced 

exhaust flow rate. Therefore, method's impact on the thermal power (mexhaust 

flow*Cp*TET) of the performance area must also be analyzed. Using Figure 4.17 and 

4.18 on section 4.3, thermal power change for nominal valve timings can be obtained 

with the Figure 4.48 seen below. 

Figure 4.48 : Variation of thermal power at nominal valve timings. 
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As it is demonstrated above on Figure 4.48, thermal power of the diesel engine is 

increasing for higher engine speeds and higher engine loadings. Two points are 

chosen to show the change on thermal power with numbers. One of them is at a low 

speed and low engine loading case and the other is a high speed and high engine 

loading point. As expected, there is a high thermal power difference between those 

points. However, when Figure 4.49 below is examined; with the VVT method, these 

two separate points have both higher thermal power compared to nominal timings. 

This can be better observed on the thermal power rise variaton on Figure 4.50 below.  

Figure 4.49 : Thermal power change with VVT and low inlet & high exh. max. lifts. 

Figure 4.50 : Thermal power rise with VVT and low inlet & high exh. max. lifts. 
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As it is shown above on Figure 4.50, greater thermal power rise can be attained on 

higher engine speeds and higher engine loading cases. Although exhaust flow rates 

decrease more at these points, it is known from Figure 4.45 that TET rise on high 

engine speeds is much higher than lower engine speeds. Therefore, TET rise 

percentage becomes much higher than the exhaust flow reduction percentage on 

these points and thermal power increases in comparison to nominal valve timings. 

On the other hand, thermal power increases for low engine speeds too. The rise may 

be lower than high engine speeds, however, it is important to note that exhaust flow 

rate decreases for these points too and TET rise obtained is still capable of raising the 

thermal power without requiring any fuel consumption penalty. 

To summarize the VVT method applied on this section; after validating the results of 

the simulation with experimental results by using EIVC and LIVC, the effects of 

IVC timings on other engine performance parameters are examined and it is seen that 

it affects the exhaust flow rate negatively. 
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5.  CONCLUSIONS 

In this section of the study, conclusions obtained from the simulations are given and 

general evaluation of the study is made. Then, some recommendations for the future 

studies concerning utilization of VVT on increasing the efficiency of exhaust thermal 

management systems are explained.  

5.1 Conclusions 

The emission criteria for these widely used machines has become stricter and stricter 

since 1994 and it seems it will be more stringent in the future too. Particularly, 

environmental protection agencies are really sensitive about the negative effects of 

high rates of emissions. Therefore, diesel engines with low rates of emissions has 

become the first goal of engine manufacturers.  

Modern aftertreatment systems are definitely effective at reducing the NOx, 

unburned HCs, CO and PM emissions from diesel engines. Engine producers are 

generally preferred to use these exhaust thermal management systems to meet the 

emission limits. However, these systems have a major drawback. They are 

temperature-reliant. In other words, catalyst substrates in these systems need at least 

250
o
C in order to acquire an efficient emission conversion efficiency. This can only 

be achieved when exhaust gas temperatures releasing from diesel engines can be kept 

above 250
o
C temperature. But, particularly at low engine speed and at low engine 

loading conditions, exhaust gas temperatures become much lower than 250
o
C. 

Therefore, emission standards cannot be attained for these cases due to the inefficient 

aftertreatment systems. 

As the problem is stated in an explicit manner, a method should be applied to diesel 

engine for these low speed, low loading performance zone in order to overcome the 

less efficient exhaust thermal management. Therefore, the primary objective of this 

study is stated as the utilization of VVT on a Cummins ISB type, six-cylinder, 

turbocharged and intercooled diesel engine so as to rise TET values higher than 
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250
o
C and provide more efficient aftertreatment system for more areas on the engine 

performance map. 

The diesel engine simulated with LES has experimental results at 1200 rpm and 2.50 

bar bmep engine loading. These results are obtained by sweeping the IVC timings 

backward and forward from nominal timing [68]. The simulation results show good 

correlation with those experimental results. The first goal of the study is to have a 

validated simulation model in order to predict TET for different engine speed and 

engine loading cases. Therefore, the similarity between simulation and experimental 

results for TET and volumetric efficiency proves the reliability of the simulation 

model.  

EIVC and LIVC are definitely effective for increasing TET for low loading engine 

cases. It is proved in the simulation that up to 55
o
C TET rise can be accomplished 

when IVC is closed earlier and later than nominal timing. The loading is managed 

constant at 2.50 bar bmep at 1200 rpm by changing the fuel injection rate. It is seen 

that while up to 100 degrees CA retardation is needed to satisfy greater than 250
o
C 

exhaust gas temperatures, only 65 degrees CA advancing is sufficient to achieve 

same target TET point. Not only do these early and late sweepings raise TETs close 

to 250
o
C, but also they lead to fuel-saving by decreasing the pumping losses in the 

system. The lower pumping losses come from the decreased volumetric efficiency 

values at these timings which reduce the air induction into the system. 

Although early or late IVC is a good solution to increase TETs beyond 250
o
C, these 

valve timings have a negative effect on the system too. They result in a major 

reduction of exhaust flow rate in comparison to nominal timing. The decrease is up 

to 36 % with EIVC since the volumetric efficiency goes lower than 65 % in the 

earliest timing. For LIVC, the reduction is up to 30 % because the volumetric 

efficiency is close to 70 % for the latest closing timing. However, this is still a 

substantial decline compared to nominal exhaust flow rate value. 

Exhaust flow rate is important in the system because heat transfer from the exhaust 

gases to the catalyst substrates depend on both TET and exhaust flow rate. So, 

increasing TET above 250
o
C with a high reduction on exhaust flow rate cannot be as 

effective as expected on aftertreatment systems, particularly for low loading cases 

where higher TET rises are demanded to reach 250
o
C temperature. Therefore, other 
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valve timings are examined in the system in order to combine with EIVC and 

provide same high TETs with higher exhaust flow rates. While changing other valve 

timings, the limit is stated as there will not be any fuel consumption penalty in 

comparison to nominal valve timings and nominal maximum lifts. 

LIVO is not really effective at rising TET. It also decreases the exhaust flow rate. 

EEVC is indeed found to be an attractive solution to increase TETs. Advancing 35 

degrees CA from nominal closing timing is adequate to reach higher than 250
o
C. 

However, it results in approximately 25 % exhaust flow rate reduction compared to 

nominal closing timing. When EEVO is examined it is seen that this method 

increases TETs rapidly and also it does not have a negative effect on exhaust flow 

rate, even has positive effect for higher advanced EVO timings. But this method has 

a cost on the system too. It also raises the fuel consumption in the system. Since 

EIVC is found to be fuel-efficient, EIVC and EEVO combination is preferred to be 

utilized in the system. 

EIVC&EEVO combination results in TET very close to 250
o
C. IVC is only 

advanced 40 degrees CA from nominal and EVO is advanced 70 degrees CA from 

nominal opening timing. Less advanced IVC timing is sufficient to achieve 250
o
C 

TET compared to the validation case where IVC has to be advanced 65 degrees CA 

from nominal closing timing. Therefore, exhaust flow rate reduction becomes only 

18 % in comparison to nominal case. However, this method causes a little bit more 

than 1 % fuel consumption penalty in the system. 

Change of inlet and exhaust maximum valve lifts is investigated so as to minimize 

the 1 % fuel injection rate rise in the system. It is shown that lower inlet maximum 

lifts result in TET rise and bsfc reduction in the system. Increased TET comes from 

the lower air induction and decrease in fuel penalty stems from the lower pumping 

losses in the system. It is also demonstrated that higher exhaust maximum lift does 

not have a significant effect on TET and exhaust flow rate. Yet, it is useful to lessen 

the bsfc. As the exhaust gases are better released with higher exhaust maximum lifts 

and there is lower residual gases for the next cycle, the system may need lower fuel 

to achieve the same engine loading with this method. Therefore, combined EIVC and 

EEVO can be improved more by lower inlet maximum lifts and higher exhaust 

maximum lifts for obtaining higher TETs without fuel consumption penalty. Thermal 

power of exhaust gases can be kept constant without any need of extra fuel. 



84 

Finally, as the method is successful to meet high TETs with lower reduced exhaust 

flow rates compared to validated case, it is considered that it can be applied to 

different engine speeds and engine loadings. When it is implemented for engine 

speeds from 1000 rpm to 2000 rpm and engine loadings changing from 1.0 bar bmep 

to 5.0 bar bmep, it is seen that 250
o
C target TET line can be declined to lower engine 

loadings with this method. For instance, the system needs to be at least 4.25 bar 

bmep engine loading at 1200 rpm speed to attain 250
o
C temperature. However, the 

method reduced that engine loading to almost 2.25 bar bmep. Up to 120
o
C TET rise 

can be obtained in the system. It is generally seen that high engine speed and high 

engine loading cases have higher TET rises and lower speed and lower loading 

conditions. Therefore, lower than 2.50 bar engine loading and lower than 1500 rpm 

engine speed conditions are still below 250
o
C temperature. However, the 

temperatures are higher than nominal valve timings and the system does not require 

fuel consumption penalty. 

Exhaust flow reduction is inevitable for the whole engine performance map due to 

the advanced IVC timings. However, when thermal power at nominal valve timings 

is compared with the one achieved via VVT, it can be derived that thermal power of 

exhaust gases rises on the whole engine performance zone. In other words, high TET 

rise compensates the reduction on exhaust flow rate and even increases the thermal 

power on the system. More importantly, this is accomplished without requiring any 

additional fuel injection. Thermal power rise is up to 140 kJ/min. But the rise reduces 

down to 50 kJ/min for low loading and low engine speed cases. Similar to TET rise 

graph, higher thermal power raise is calculated at high speed and high loading 

conditions. 

5.2 Recommendations for Future Work 

Thermal management of exhaust gases is indeed a complicated task. Different valve 

timing methods has different positive and negative effects on the efficiency of 

aftertreatment systems. While EIVC and LIVC increases the TET, they also reduce 

the exhaust flow rate significantly. When EEVO is considered as a solution, although 

it rises rapidly the TET, it has a major negative effect on bsfc. It is obvious that there 

is always a tradeoff in the system when VVT is applied into the system for higher 

than 250
o
C TET values. 
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The simulation has similar results with the experiments at 1200 rpm and 2.50 bar 

bmep engine loading. However, there is not experimental results for combined EIVC 

and EEVO cases and also lower inlet and higher exhaust maximum valve lifts. 

Modeling results should be validated with experimental results in the future for this 

VVT method at least for some low loading and low engine speed cases where there 

needs more TET rise to attain 250
o
C. Simulation can only be improved to achieve 

realistic results by comparing the model results with experimental results. 

Also, VVT search can be specified for a particular engine load and engine speed 

case. In this study, the method is applied for the whole engine performance zone. 

Although it seems to be successful for most of the area, IVO and EVC timings can 

also be changed for some points to acquire more TET rise. Moreover, change of inlet 

and exhaust maximum valve lifts can be altered differently for different speed and 

loading cases. The important point here is that a deeper analysis is required to find 

out which VVT strategy is the most appropriate to satisfy adequate thermal 

management of exhaust gases for different engine loading points without causing 

fuel consumption penalty or at least with the lowest fuel rise.  

VVT proved to be a useful method in earlier studies for thermal management of 

exhaust gases. The same is valid in this study too. However, for low engine speed 

and low engine loading cases, it is seen that utilizing only VVT is not sufficient to 

reach greater than 250
o
C temperatures. Therefore, other methods can be combined 

with VVT particularly at these points. Multiple fuel injection, high injection 

pressure, late fuel injection and exhaust gas recirculation can be some of the methods 

to combine with VVT. However, these methods may require some tradeoffs in the 

system too similar to different VVT methods. Therefore, the combination should be 

optimized for particular engine performance points. 

Inlet and exhaust valve lift profiles can be changed. In this study, only maximum lift 

values are altered and it is seen that change of lifts can affect the system slightly. 

However, different lift profiles for different engine loadings may be beneficial for 

TET rise or decreasing fuel consumption penalty. The distance between piston and 

valve at TDC should be considered while valve lift profiles are changed in order not 

to cause a piston-valve crash in the system. Actually, simulation programs like LES 

can give the user the chance to alter valve profiles easily for many different cases. 

Therefore, several points can be examined in a shorter time using these programs. 
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Another VVT option is to apply EVO during intake valve timing or vice versa. 

Opening EVO during intake valve timing may result in backflow of exhaust gases 

into the cylinder before combustion and increase TET. However, if more exhaust 

gases flows back into the cylinder, that may affect combustion negatively and results 

in bsfc rise in the system. There is another tradeoff here too. The duration of the 

opening timing of exhaust should be optimized for different engine speed and 

loading situations. 

Besides, effect of VVT on transient states of the diesel engine can be examined in the 

future. In this study, the loadings are kept constant by increasing or decreasing the 

fuel injection rate in the system. However, diesel engines do not perform in a steady 

state manner all the time. The loadings can be required to increase rapidly in some 

situations from lower bmep to higher bmep or vice versa. For instance, EIVC and 

LIVC may not be as appropriate as the steady state case to obtain greater than 250
o
C 

TETs. Because these timings result in a major volumetric efficiency reduction and 

that may affect the engine negatively while trying to go from a lower loading to 

higher loading. There will be different tradeoffs for transient cases when VVT is 

implemented and it is worthwhile to investigate in future studies. 
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APPENDIX A : Steady State Test Data Figures. 

 

Figure A.1 : Insertion of main technical specs of the cylinder. 

 

 

Figure A.2 : Friction assumption of the simulation model. 
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Figure A.2 (continued) : Friction assumption of the simulation model. 

 

 

Figure A.3 : Combustion data inside the cylinders. 
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Figure A.4 : Combustion heat release graph. 

 

 

Figure A.5 : Annand open cycle heat transfer model. 
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Figure A.6 : Annand closed cycle heat transfer model. 

 

 

Figure A.7 : Compressor map data. 
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