<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

TÜRKİYE'DEKİ MEVCUT BETONARME BİNALARIN DEPREMLERDE HASARGÖREBİLİRLİĞİNİN İSTATİSTİKSEL KESTİRİMİ

DOKTORA TEZİ Ülgen MERT TUĞSAL

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

MART 2016

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

TÜRKİYE'DEKİ MEVCUT BETONARME BİNALARIN DEPREMLERDE HASARGÖREBİLİRLİĞİNİN İSTATİSTİKSEL KESTİRİMİ

DOKTORA TEZİ

Ülgen MERT TUĞSAL (501052010)

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Beyza TAŞKIN

MART 2016

İTÜ, Fen Bilimleri Enstitüsü'nün 501052010 numaralı Doktora Öğrencisi Ülgen MERT TUĞSAL, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "TÜRKİYE'DEKİ MEVCUT BETONARME BİNALARIN DEPREMLERDE HASARGÖREBİLİRLİĞİNİN İSTATİSTİKSEL KESTİRİMİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

.....

.....

.....

Tez Danışmanı :

Doç. Dr. Beyza TAŞKIN İstanbul Teknik Üniversitesi

Jüri Üyeleri :

Prof. Dr. Zeki HASGÜR İstanbul Teknik Üniversitesi

Prof. Dr. Feridun ÇILI İstanbul Teknik Üniversitesi

Prof. Dr. Bülent AKBAŞ Gebze Teknik Üniversitesi

Doç. Dr. Bilge DORAN Yıldız Teknik Üniversitesi

Teslim Tarihi: 16 Şubat 2016Savunma Tarihi: 30 Mart 2016

Kızlarıma,

ÖNSÖZ

Son yıllarda ülkemizde, özellikle nüfus yoğunluğunun fazla olduğu bölgelerde, artmakta olan yıkıcı deprem riski mevcut yapı stokunun deprem güvenirliğinin sorgulanması ihtiyacını doğurmuştur. Gelecekte olması muhtemel olan depremlerin şiddetli etkilerinin azaltılması açısından, mevcut bina stokumuz için hasar tahmin çalışmalarının bir an önce yapılması oldukça önemli bir husustur. Bu amaçla bu tez kapsamında, ülkemizde bulunan betonarme binaların deprem yükleri etkisinde hasargörebilirliğinin kestiriminde kullanılmak üzere kırılganlık eğrileri elde edilmiştir. Elde edilen eğrilerin hasar tahmin çalışmalarında kolay ve hızlı uygulama sağlayacağı düşünülmektedir.

Tez çalışmam sırasında bana sağladığı destek ve iyi bir akademisyen olma yolunda bana kattıklarından ötürü sayın hocam ve tez danışmanım Doç. Dr. Beyza TAŞKIN'a en içten dileklerimle teşekkürü bir borç bilirim.

Tez hazırlama sürecimin her aşamasında değerli tavsiye ve yönlendirmeleri ile çalışmama önemli katkıları olan tez izleme jürimdeki değerli hocalarım Sayın Prof. Dr. Zeki HASGÜR ve Sayın Prof. Dr. Feridun ÇILI'ya teşekkür ederim.

Ayrıca tez çalışmam süresince verdikleri destekten ötürü İTÜ İnşaat Fakültesi Yapı Malzemesi Laboratuvarı çalışanlarına, geliştirilen yazılımlar konusunda yardımlarını esirgemeyen İTÜ Elektrik-Elektronik Fakültesi, Sinyal İşleme Laboratuvarı'ndan Prof.Dr. Tayfun AKGÜL ve Elektro.Müh. Altynbek Isabekov'a ve İTÜ İnşaat Fakültesi Mekanik Çalışma Grubu'ndan Yrd. Doç. Dr. Akif KUTLU'ya; sayısal hesaplamalar aşamasında özveri ile çalışmaya destek veren İnş.Yük.Müh. Bülent ÖCALAN, İnş.Yük.Müh. İ.Alper ÇALDIRAN ve İnş.Yük.Müh. Yasemin ÇETİN'e teşekkür ederim.

Tüm öğrenim hayatım boyunca yanımda olup, her türlü manevi desteklerini ve fedakârlıklarını esirgemeyen, başta eşim ve kızlarım olmak üzere, tüm aile bireylerime sonsuz teşekkürü bir borç bilirim.

Bu tez çalışması, T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) bünyesinde yer alan Ulusal Deprem Araştırmaları Programı kapsamında UDAP-Ç-12-04 no'lu proje ile desteklenmiş olup, AFAD-Deprem Dairesi Başkanlığı'na verdikleri destekten ötürü şükranlarımı sunarım.

Şubat 2016

Ülgen Mert Tuğsal (İnşaat Yüksek Mühendisi)

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	vii
İCİNDEKİLER	ix
KISALTMALAR	xi
SEMBOLLER	xiii
CIZELGE LISTESI	XV
ŚEKIL LISTESI	xvii
ÖZET	xxiii
SUMMARY	xxv
1. GİRİŞ	1
1.1 Tezin Amacı	3
1.2 Literatürde Konu İle İlgili Yapılmış Çalışmalar	4
2. ÇALIŞMANIN TEORİK ESASLARI, GENEL KABULLER VE	
BİLGİSAYAR PROGRAMLARI	17
2.1 Giriş	17
2.2 Hasargörebilirlik İlişkileri	19
2.2.1 Hasargörebilirlik eğrilerinin matematiksel ifadesi	19
2.2.2 Literatürde yer alan hasar sınırları	21
2.2.3 Hasargörebilirlik eğrilerinin türetilmesi	23
2.3 Doğrusal Olmayan Analiz Yöntemleri ve Deprem Yönetmeliği Esasları	24
2.3.1 Artımsal itme analizi	25
2.3.2 Zaman tanım alanında doğrusal olmayan hesap	27
2.4 Kullanılan ve Geliştirilen Bilgisayar Programları	36
2.4.1 DRAIN-2DX programı ve kullanılan büyüklükler	36
2.4.1.1 Taşıyıcı sistem elemanları	38
2.4.1.2 Dolgu duvar modeli	39
2.4.2 TARSCTHS programı ile yerel zemin koşullarına uyumlu yapay dep	rem
kayıtlarının üretilmesi	43
2.4.3 Hasargörebilirlik Eğrilerini Elde Etmek Üzere Geliştirilen Yazılıma	
(FORECAST) Ait Kuramsal Esaslar	50
2.4.3.1 Programın arayüzü ve veri girişi	50
2.4.3.2 İstatistiksel analiz yöntemi	52
2.4.3.3 Hasargörebilirlik eğrilerinin analizi	55
2.4.3.4 Hasargörebilirlik eğrilerinin elde edilmesi ve parametrik işlevler	in
uydurulması	56
3. BİNALARIN DOĞRUSAL OLMAYAN ANALİZ SONUÇLARI	61
3.1 Çözümlenen Binalara Ait Yapısal Karakteristikler	61
3.2 Gerçekleştirilen Dinamik Analiz Sonuçları	63
4. BINA STOKUNA AİT HASARGÖREBİLİRLİK EĞRİLERİ	79
4.1 Bina Stokuna Ait Yapısal Istem Dağılımları	79
4.2 Bina Stokuna Ait Hasargörebilirlik Eğrileri	84
4.3 Elde Edilen HG Eğrilerinin Literatürdeki Eğriler İle Karşılaştırılması	101

5. SONUÇLAR VE TARTIŞMA	
KAYNAKLAR	
ÖZGEÇMİŞ	

KISALTMALAR

ABYYHY-75	: Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
AO	: Aşılma Olasılığı
BR	: Çıplak Çerçeve (Bare Frame)
CG	: Can Güvenliği
DBYBHY-07	: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
GÖ	: Göçme Öncesi
HG	: Hasargörebilirlik
НК	: Hemen Kullanım
HS	: Hasar sınırı
INF	: Dolgulu Çerçeve (Infilled Frame)
ISDR	: Göreli Kat Ötelenmesi Oranı (Interstory Drift Ratio)
LR	: Az Katlı (Low-Rise)
MIDR	: Maksimum Göreli Kat Ötelenmesi Oranı (Maximum Interstory Drift
	Ratio)
MKÖ	: Maksimum Göreli Kat Ötelenmesi Oranı
MLE	: En Büyük Olabilirlik Kestirimi (Maximum Likelihood Estimation)
MR	: Orta Katlı (Mid-Rise)
MSK	: Modified Mercalli Ölçeği
PSI	: Parameterless Scale of Intensity
PGA	: Maksimum Yer İvmesi (Peak Ground Acceleration)
PGV	: Maksimum Yer Hızı (Peak Ground Velocity)
RMSE	: Kök Ortalama Karesel Hata (Root Mean Square Error)

SEMBOLLER

Ao	: Etkin ver ivmesi katsavısı
Ac	: Düsey taşıyıcı elemanların etkin kayma alanı
An	: Snektral güç voğunluk fonksiyonuna hağlı genlik
Asw	: Kayma donatisi alani
2 -sw Aduvar	: Esdeğer diyagonal cubuğun genişliği
a(t)	: Yanay ver hareketi kavdı
a(t) Aeff	: Etkin ivme
acn Amay	: Maksimum ivme değeri
Aduvar	: Esdeğer diyagonal cubuğun yataydaki enkesit alanı
hw	: Kesitin genisliği
Č,	: Kapasite (capacity)
[C]	: Sönüm matrisi
d	: Kesitin favdalı yüksekliği
di di	i hasar sevivesine iliskin limit değer
D	: Talep (demand)
 Dduvar	: Esdeğer divagonal cubuğun boyu
DCR	: Talep/kapasite oranı
Eduvar	: Dolgu duvarın elastisite modülü
Ec	: Betonun elastisite modülü
fck	: Betonun karakteristik basınc davanımı
fctk	: Betonun karakteristik cekme dayanımı
fctd	: Betonun tasarım cekme dayanımı
f _{vk}	: Beton celiginin karakteristik akma gerilmesi
fywd	: Kayma donatısının tasarım akma gerilmesi
G (ω)	: Güç spektral yoğunluk fonksiyonu
g	: Yer çekimi ivmesi
ĥ	: Çalışan doğrultudaki kesit boyutu
hduvar	: Dolgu duvarın yüksekliği
Htotal	: Binanın toplam yüksekliği
hk	: Kat yüksekliği
$\mathbf{I}_{\mathbf{k}}$: Kolonun atalet momenti
{ I }	: Birim vektör
[K]	: Kütle matrisi
Ke	: Elastik rijitlik
Ks	: Elasto-plastik rijitlik
k 1	: Başlangıç rijitliği
k 2	: Pozitif yükleme doğrultusu için akma sonrası rijitliği
k 3	: Negatif yükleme doğrultusu için akma sonrası rijitliği
k 4	: Yük boşalması için rijitlik
kduvar	: Eşdeğer diyagonal çubuğun rijitliği
$\mathbf{L}_{\mathbf{p}}$: Plastik şekildeğiştirme bölgesinin uzunluğu
[M]	: Kütle matrisi
$\mathbf{M}_{\mathbf{y}}$: Akma momenti
$\mathbf{M}_{\mathbf{u}}$: Nihai moment

Р	: Aşılma olasılığı
{ p (t)}	: Zamana bağlı dış kuvvetin t anındaki değeri
$\mathbf{S}_{\mathbf{a}}(\mathbf{T})$: Spektral ivme
Sae(T)	: Elastik spektral ivme
$S_d(T)$: Spektral yerdeğiştirme
SI0.20	: Housner şiddeti
teff	: Etkin süre
tsm	: Deprem yer hareketinin kuvvetli yer hareketi kısmının süresi
t	: Esdeğer basınc cubuğunun kalınlığı
t _{duvar}	: Dolgu duvarın kalınlığı
T_1	: Bina hakim periyodu
$\mathbf{T_1}^*$: Yükleme sonrasında hesaplanan bina hakim periyodu
Ta.b.c.d	: Elastik karşılık spektrumu karakteristik periyotları
Utop	: Tepe yerdeğiştirmesi
Utop/H	: Tepe yerdeğiştirmesi oranı
$\left\{ \frac{1}{2} \right\}$	• Var jumasi valtärii
u_g	. I el TVIIIesi Vektoru
$\left\{\dot{u}_{g}\right\}$: Yer hızı vektörü
$\left\{u_{g}\right\}$: Yerdeğiştirme vektörü
Vb	: Taban kesme kuvveti
V _b /W	: Taban kesme kuvveti oranı
Vc	: Kesme kuvvetinin karşılanmasında betonun katkısı
Vr	: Kesme kuvveti kapasitesi
Vy	: Akma kesme kuvveti
V _w	: Kesme kuvvetinin karşılanmasında etriyenin katkısı
W	: Binanın toplam ağırlığı
$\ddot{x}(t)$: Rastgele bir sinüzoidal hareket
Y	: Yer hareketi parametresi
Ymi	: Dağılımın meydan değeri
α	: Akma sonrası gerilme pekleşme oranı
β	: Rijitlik faktörü
βi	: Dağılımın lognormal standart sapma değeri
β(t)	: Deterministik zarf fonksiyonu
δf	: Maksimum yumuşama indeksi
٤	: Sönüm oranı
Δtepe	: Tepe yerdeğiştirmesi
Δt	: Zaman aralığı
φn	: Faz açısı
λduvar	: Dolgu duvardan çerçeveye gelen bağıl rijitlik
Tduvar	: Dolgu duvarın kayma dayanımı
θ	: Diyagonal çubuğun yatayla yaptığı açı
Φ	: Standart normal birikimli dağılım fonksiyonu
ω	: Açısal frekans
χy	: Akma eğriliği
χu	: Nihai eğrilik

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 1.1 : Hasar durum sınırları (Singhal ve Kremidjian, 1996).	7
Çizelge 2.1 : Yapısal performans seviyeleri (FEMA-356,2000).	22
Çizelge 2.2 : HRC ölçeğine göre ISD _{max} % sınırları (Rossetto ve Elnashai, 2003)	22
Çizelge 2.3 : Göreli kat ötelenme oranı sınırları (%) (Akkar ve diğ., 2005)	22
Çizelge 2.4 : Farklı hasar mertebeleri için göreli kat ötelenme oranı aralıkları	
(Booth ve diğ., 2004)	23
Çizelge 2.5 : Üretilen yapay yer hareketlerinin özellikleri.	46
Çizelge 3.1 : İncelenen binaların yapısal özellikleri.	62
Çizelge 3.2 : Deprem toplumu etkisinde yapılardaki en büyük istemlerin	
ortalamaları	72
Çizelge 4.1 : Farklı hasar düzeyleri için belirlenmiş olan tepe noktası göreli	
ötelenme oranı aralıkları	86
Çizelge 4.2 : Farklı hasar düzeyleri için talep/kapasite oranı (DCR) aralıkları	88
Çizelge 4.3 : Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesm	ne
kuvveti oranlarının ortalamaları	90
Çizelge 4.4 : Göreli kat ötelenmesi oranı sınırları (Akkar ve diğ., 2005)1	.01
Çizelge 4.5 : Göreli kat ötelenmesi oranı sınırları (Ay ve Erberik, 2007)1	.04
Çizelge 4.6 : Göreli kat ötelenmesi oranı sınırları (%) (Erberik, 2008)1	.06
Çizelge 5.1 : Orta hasar düzeyi için HG fonksiyonu parametreleri1	11
Çizelge B.1: Deprem toplumu etkisinde yapıların hâkim periyotlarındaki	
değişimlerin ortalamaları1	72

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 1.1 : Sismik hasargörebilirlik parametrelerinin gelişim sürecinin ana adımları
(Tüzün ve Aydınoğlu, 2007)5
Şekil 1.2 : Az-katlı betonarme binalar için hasargörebilirlik eğrileri (Singhal ve
Kremidjian, 1996)7
Şekil 1.3 : Hasargörebilirlik eğrilerinin oluşturulmasında kullanılan farklı yer
hareketi parametreleri (Rossetto ve Elnashai, 2003)
Şekil 1.4 : Kirişsiz döşemeli binalar için hasargörebilirlik eğrileri (Erberik ve
Elnashai, 2004)9
Şekil 1.5 : Yerdeğiştirme esaslı sismik hasargörebilirlik değerlendirme yöntemi
(Crowley ve diğ., 2004) 10
Şekil 1.6 : Az, orta ve şiddetli hasar limit durumları için kırılganlık eğrileri (Akkar
ve diğ., 2005) 10
Şekil 1.7 : Az- ve orta- katlı binalar için hasargörebilirlik eğrileri (Ramamoorthy,
2006)
Şekil 1.8 : Akma ve göçme hasar limit durumları için kırılganlık eğrileri (Kırçıl ve
Polat, 2006) 12
Şekil 1.9 : 4 katlı binaların $S_{ae}(T_1)$ değerine göre hasargörebilirlik eğrisi (Tüzün ve
Aydınoğlu, 2007)
Şekil 1.10 : Analıtık kırılganlık eğrilerinin veya hasar olasılık matrislerinin hesabi
ıçın akış dıyagramı (Tüzün ve Aydınoğlu, 2007)
Şekil I.II : Az- ve orta-katlı yapıların hasargörebilirlik eğrilerinden örnekler (Ay
ve Erberik, 2007)
Şekli 1.12 : AZ- ve orta-katlı yapıların hasargorebilirlik egrilerinden ornekler
(Erberik, 2008)
Sekil 2.1 : Hasargorebilirlik egrierinin şematik gösterimi
Sekil 2.2 : Şematik tune egrisi
göstorimi (Av vo Erborik 2007) 24
Solvil 2 4 · İc kuyyet plastik sekildeğistirme bağıntı kabulleri
Solvil $2.5 \cdot \text{Sematik itme extrict}$
Sekil 2.6 · Cevrim eğrisinde taniant ve sekant rijitlikleri (Chonra 2007) 29
Sekil 2.7 : Sabit ortalama ivme vöntemi (Chopra 2007)
Sekil 2.8 : Sematik cevrim eğrisi (Angelo ve Pierino 2009) 33
Sekil 2.9 : a) Flastonlastik b) Cift doğrulu c) Üc doğrulu d) Rijitliği azalan
(Clough) e) Takeda f) Baslangica vönelik g) Roufaiel-Meyer h)Bouc-
Wen
Sekil 2.10 : 7 numaralı elemana ait eleman geometrisi ve moment-eğrilik
bağıntısına ait iskelet eğrisi
Sekil 2.11 : 9 numaralı elemana ait kuvvet-sekildeğistirme ilişkişi
Sekil 2.12 : Dolgu duvarlı betonarme cercevenin vatav vük etkisindeki davranısı. 41
Sekil 2.13 : Dolgu duvarlı betonarme çerçevede basınç çubuğu

Şekil	2.14 : Dolgu duvarın çapraz diyagonaller ile modellenmesi	11
Şekil	2.15 : Dolgu duvarlar için kuvvet-yerdeğiştirme ilişkisi	13
Şekil	2.16 : Yapay yer hareketlerine ait ivme izleri ($A_0=0.4g$)	17
Şekil	2.17 : Ivme spektrumlarının Z2 tasarım spektrumu ile karşılaştırılması	
~ • • •	$(A_0 = 0.4g).$	18
Şekil	2.18 : Deprem toplumu ortalamasına ait üç parçalı elastik karşılık spektrumu	l.
~ • •		18
Şekil	2.19 : EQ-3 yapay deprem kaydının ölçeklendirilmiş ivme spektrumlarının Z	2
a 1 u	tasarım spektrumu ile karşılaştırılması.	1 9
Şekil	2.20 : Deprem toplumunun en büyük yer hızı değerleri (PGV) ve 0.4g için	•
a 1 u	elde edilmiş olan Housner Şiddetleri ile değişimleri	50
Şekil	2.21 : Yapısal istemlerin *.xls formatında kaydedilmesi	51
Şekil	2.22 : FORECAST programinin arayúzú.	52 =2
Şekil	2.23 : Yapısal istemlerin çizdirilmesi.	53 -2
Şekil	2.24 : Hasar degerlerinin istatistiksel analizi.	55 - C
Şekil	2.25 : Aşılma olasılığının hesabi	50 57
Şekii Saliil	2.20 : Hasargorebilirlik egrisi.	5/
Şekii . Salaili	2.27 : Hasargorebilirlik egrisinin analizi.	50 50
Şekii . Salati	2.28 : Kolmogorov-Smirnov Islausugi.	39 (1
Şekil Sabil	5.1 : 23-WD-S10 binasina alt kalip plani ve enkesit detaylari)4
ŞEKI	modelleri	67
Sabil	3 · 23 MD-ST6 bingsi r r doğrultuşu taban keşme kuyyeti-çatı katı) -t
ŞUKII	verdeğiştirmeşi çevrim eğrileri	65
Sekil	3 4 · 23-MD-ST6 binası v-v doğrultusu taban kesme kuvveti-catı katı	,,,
şem	verdeğiştirmeşi çevrim eğrileri	66
Sekil	3.5 : 23-MD-ST6 binasının <i>x-x</i> doğrultusu için kat verdeğistirmeleri	57
Sekil	3.6 : 23-MD-ST6 binasının v-v doğrultusu için kat verdeğistirmeleri	58
, Sekil :	3.7 : 23-MD-ST6 binasının $x - x$ doğrultusu için göreli kat ötelenmesi oranları	•
,		58
Şekil	3.8 : 23-MD-ST6 binasının y-y doğrultusu için göreli kat ötelenmesi oranları	
-		59
Şekil	3.9 : Kapasite eğrisinin idealleştirilmesi (FEMA356,2000).	70
Şekil	3.10 : 23-MD-ST6 binasının x-x doğrultusu için kapasite eğrisi	70
Şekil	3.11 : 23-MD-ST6 binasının y-y doğrultusu için kapasite eğrisi	71
Şekil	4.1 : En büyük yer ivmesi değerine karşılık tüm binalara ait tepe noktası	
	göreli ötelenme oranları	79
Şekil	4.2 : En büyük yer ivmesi değerine karşılık orta hasarlı binalara ait tepe	
	noktası göreli ötelenme oranları	30
Şekil	4.3 : En büyük yer ivmesi değerine karşılık binalara ait talep/kapasite oranlar	r1.
~ • • •		33
Şekil	1.4 : En büyük yer ivmesi değerine karşılık orta hasarlı binalara ait	~ •
	talep/kapasite oranlari.	54
Şekil	4.5 : 1998 Ceyhan depreminin merkezüssü, kayıt istasyonu ve Yüreğir	. –
	liçesinin konumu.	55
Şekil	1.0 : Bina stoku için "Orta Hasar" düzeyinin aşılması olasılığını vermekte	
Sel-1	01an HG egrisi) 0
Şekli	•. /: Dina sloku içini Agir nasar/Goçme düzeyinin aşılması olasılığını	27
	vermekte ofan HG egrist) /

Şekil 4.8 : Bina stoku için "Orta Hasar" düzeyinin aşılması olasılığını vermekte
olan kırılganlık eğrisi
Sekii 4.9 : Bina stoku için "Agir Hasar/Goçme" düzeyinin aşılması olasılığını
Sokil 4 10 • Binalara ait hasargörebilirlik eğrilerinin Akkar ve diğ (2005)'de ver
alan kırılganlık eğrileri karsılaştırılmaşı
Sekil 4.11 : Binalara ait hasargörebilirlik eğrilerinin Kırcıl ve Polat (2006)'da ver
alan kırılganlık eğrileri karsılastırılması
Sekil 4.12 : Binalara ait hasargörebilirlik eğrilerinin Av ve Erberik (2007)'de ver
alan ve 3-katlı tipik yapı grubuna ait kırılganlık eğrileri karşılaştırılması.
Şekil 4.13 : Binalara ait hasargörebilirlik eğrilerinin Ay ve Erberik (2007)'de yer
alan ve 5-katlı tipik yapı grubuna ait kırılganlık eğrileri karşılaştırılması.
Şekil 4.14 : Binalara ait hasargörebilirlik eğrilerinin Erberik (2008)'de yer alan 2~3
katlı binalara ait kırılganlık eğrileri karşılaştırılması 106
Şekil 4.15 : Binalara ait hasargörebilirlik eğrilerinin Erberik (2008)'de yer alan 4~6
katlı bınalara ait kırılganlık eğrileri karşılaştırılması 107
Şekil A.I : I-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
duzlem çerçeve modeli (orta) ve y-y dogrultusunda duzlem çerçeve
modell (all)
Sekii A.2: 2-MD-S15 binasinin, zenini kai kanp piani (usi), x-x dogrutusunda düzlom opropyo modeli (orte) ya y y doğrultusunda düzlom opropyo
modeli (alt) 121
Sekil A 3 · 3-MD-ST6 binasının: zemin kat kalın planı (üst) x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
modeli (alt)
Sekil A.4 : 4-MD-ST5 binasının: zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.5 : 5-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt) 124
Şekil A.6 : 6-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
$modeli (alt). \dots 125$
Şekil A.7 : 7-MD-S13 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
duzlem çerçeve modeli (orta) ve y-y dogrultusunda duzlem çerçeve
modell (all)
Sekii A.o: 8-MD-S15 binasinin; zemin kai kalip plani (usi), x-x dogrullusunda düzlem eereeve modeli (erte) ve v v doğrultusunda düzlem eereeve
modeli (alt) 127
Sekil A $9 \cdot 9$ -MD-ST4 binasının: zemin kat kalın planı (üst) x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
modeli (alt)
Sekil A.10 : 10-MD-ST3 binasının; zemin kat kalıp planı (üst). x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)

Şekil	A.11: 11-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.12: 12-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.13: 13-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.14: 14-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.15: 15-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.16 : 16-MD-ST2 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.17: 17-HD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.18: 18-ND-ST2 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)
Şekil	A.19: 19-ND-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
	düzlem çerçeve modelı (orta) ve y-y doğrultusunda düzlem çerçeve
.	modeli (alt). 138
Şekil	A.20 : 20-ND-S16 binasinin; zemin kat kalip plani (\hat{u} st), x-x dogrultusunda
	duzlem çerçeve modeli (orta) ve y-y dogrultusunda duzlem çerçeve
G . I9	modeli (alt).
Şekii	A.21: 21-ND-S12 binasinin; zemin kat kalip plani (ust), x-x dogrutusunda
	modeli (elt)
Sabil	140 A 22 · 22 ND ST2 binaginan: zomin kat kalin plani (üst), y y dağmıltugunda
ŞEKII	düzlem eereeve medeli (orte) ve v v değrultuşunda düzlem eereeve
	modeli (alt) 141
Sekil	A 23 • 23-MD-ST6 binasının: zemin kat kalın planı (üst) v-v doğrultusunda
ŞUKII	düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
	modeli (alt) 142
Sekil	A.24 : 24-MD-ST4 binasının: zemin kat kalın planı (üst) x-x doğrultusunda
şenn	düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
	modeli (alt)
Sekil	A.25 : 25-ND-ST3 binasının; zemin kat kalıp planı (üst). x-x doğrultusunda
· · · · · · · · · · · · · · · · · · ·	düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
	modeli (alt)
Sekil	A.26 : 26-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
, -	düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
	modeli (alt)

Şekil A.27 : 27-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Sekil A.28 : 28-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Sekil A.29 : 29-MD-ST4 binasının: zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultuşunda düzlem cerceve
modeli (alt)
Sekil A 30 · 30-ND-ST4 binasının: zemin kat kalın nlanı (üst) x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultuşunda düzlem cerceve
modeli (alt) 140
Sakil A 31 · 31-ND-ST5 binasının: zemin kat kalın nlanı (üst) y-y doğrultusunda
düzlem cerceve modeli (orte) ve v v doğrultuşunda düzlem cerceve
modeli (alt)
Sakil A 22 · 22 ND ST2 bingging zomin kat kalin nlan (üst) v v dačmiltugunda
Sekii A.52 : 52-ND-515 billasilili, zenili kat kalip plali (usi), x-x dogi ulusulda
duziem çerçeve modeli (orta) ve y-y dogrullusunda duziem çerçeve
model1 (alt).
Şekli A.33 : 33-ND-S13 binasinin; zemin kat kalip plani (ust), x-x dogrultusunda
duzlem çerçeve modeli (orta) ve y-y dogrultusunda duzlem çerçeve
modeli (alt). 152
Şekil A.34 : 34-ND-ST/ binasinin; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt) 153
Şekil A.35 : 35-ND-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt) 154
Şekil A.36 : 36-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt) 155
Şekil A.37 : 37-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt) 156
Şekil A.38 : 38-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.39 : 39-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Sekil A.40: 40-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
modeli (alt)
Sekil A.41 : 41-MD-ST4 binasının: zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
modeli (alt)
Sekil A.42 : 42-ND-ST5 binasının: zemin kat kalın nlanı (üst) x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultuşunda düzlem cerceve
modeli (alt)

Şekil A.43 : 43-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.44 : 44-ND-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.45 : 45-SD-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.46 : 46-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Şekil A.47 : 47-MD-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve
modeli (alt)
Sekil A.48 : 48-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultusunda düzlem cerceve
modeli (alt)
Sekil A.49: 49-ND-ST6 binasının: zemin kat kalıp planı (üst), x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultuşunda düzlem cerceve
modeli (alt)
Sekil A 50 : 50-ND-ST5 binasının: zemin kat kalın planı (üst) x-x doğrultusunda
düzlem cerceve modeli (orta) ve v-v doğrultuşunda düzlem cerceve
modeli (alt) 160

TÜRKİYE'DEKİ MEVCUT BETONARME BİNALARIN DEPREMLERDE HASARGÖREBİLİRLİĞİNİN İSTATİSTİKSEL KESTİRİMİ

ÖZET

Ülkemizin geçtiğimiz çeyrek asırda yaşamış olduğu yıkıcı depremler, mevcut bina stokumuzun büyük bir kısmının kuvvetli yer sarsıntıları etkisinde yetersiz kapasiteye sahip olduklarını göz önüne sermiştir. Genellikle az ve orta katlı yapılardan oluşan stokumuzun büyük bir çoğunluğu tasarım ve imalat aşamasında mühendislik hizmeti görmemiş veya görmüş olsa bile inşa edildikleri tarihte yürürlükte bulunan deprem yönetmeliği kurallarına uygun tasarlanmamışlardır. İleri düzeyde sosyoekonomik kayıplar yaşamamıza sebep olan bu hasar durumlarını düşük malzeme dayanımlarına, enkesitlerde yetersiz donatı alanı bulunmasına, eleman birleşimlerinde sargı bölgelerinin teşkil edilmemiş olmasına, binalarımızda ağır ve kapalı çıkmaların tercih edilmesine ve tasarımlarda düzenli yapı taşıyıcı sistemi oluşumuna engel olan dolaylı mesnetlenme oluşumlarına yer verilmesine bağlamak yerinde olmaktadır. Bu nedenle özellikle birinci dereceden risk taşıyan bölgelerimizde bulunan mevcut bina stokumuzun deprem güvenirliğinin bir an önce belirlenmesi ve hasar/ kayıp tahmini çalışmalarının yapılması, yaşanması muhtemel olan bir depremin şiddetli etkilerinin azaltılması adına önemli bir gereklilik olarak karşımıza çıkmaktadır.

Bir binanın ve/veya bina stokunun kuvvetli yer hareketi etkisi altında hasar durumunun olasılıksal olarak tahmin edilebilmesi, hasargörebilirlik (*HG*) ilişkileri ile mümkün olmakta ve elde edilen *HG* eğrileri sayesinde depremin şiddeti ile hasar olasılığı ilişkilendirilebilmektedir. Bu eğriler, deprem öncesinde yapılacak olan planlamalarda; hasar/kayıp tahmini çalışmalarında ve afet yönetim planlamalarının uygulama sürecinde kullanım kolaylığı sağlamaktadır. Özellikle diri faylara yakın, depremselliğin yüksek olduğu büyük yerleşim yerlerinde yapı stokunun tamamı için karar vermenin zorluğu göz önüne alındığında, hasar olasılık eğrileri, kolay ve hızlı uygulama sağlamakta ve deprem etkisi altında önceden tanımlanan bir hasar düzeyine ulaşılması veya aşılması olasılığının değerini vermektedir. Bu tez çalışmasında, ülkemizde bulunan betonarme binaların deprem yükleri etkisinde hasargörebilirliğinin kestirimi için analitik yöntemler kullanılarak istatistiksel bir yaklaşım önerilmiştir.

Tez çalışmasında, mevcut yapı stokumuzun yapısal özelliklerini tüm kusurları ve eksiklikleriyle birlikte temsil eden, gerçek binalardan oluşan 50 adet betonarme yapı seçilmiştir. Türkiye'de meydana gelmiş olan yıkıcı depremlerde farklı düzeylerde hasar görmüş olan bu yapı stokunun deprem yükleri etkisindeki davranışları doğrusal olmayan dinamik ve statik çözümlemeler gerçekleştirilmek suretiyle DRAIN-2DX (Prakash ve diğ. 1993) yazılımı ile belirlenmiş olup, programının betonarme elemanlardaki akma sonrası rijitlik ve dayanım azalmasını da dikkate alan çevrim modelinin eklendiği sürümü kullanılmıştır (Ascheim, 2005). Her bir bina *x-x* ve *y-y* doğrultuları için düzlem çerçeve olarak modellenmiş ve toplamda 100 adet çerçevenin düzlemsel modellerinde taşıyıcı olmayan dolgu duvarların etkisi de göz önüne alınmıştır. Analizlerde, Deprem Bölgelerinde Yapılacak Binalar Hakkında

Yönetmelik (DBYBHY-2007)'de 0.4g etkin yer ivmesi katsayısı ve Z2 zemin sınıfı için tanımlanmış olan tasarım spektrumu ile uyumlu olarak üretilen 7 adet kuvvetli yer hareketi kaydı kullanılmıştır. Elde edilen yapısal karşılıkların geniş bir ivme bandında değerlendirmelerini yapmak amacıyla, 7 adet deprem kaydının her biri 0.1g'den 0.8gdeğerine kadar 0.05g'lik artımlarla ölçeklendirilmiş ve toplamda 105 adet yer hareketi kaydı elde edilmiştir. Deprem toplumu etkisinde yapılarda meydana gelen istemler tepe noktası göreli ötelenme oranı ve taban kesme kuvveti cinsinden elde edilmiş olup, binaların kesme kuvveti kapasiteleri de hesaplanarak talep/kapasite oranı değişimleri belirlenmiştir.

Tez çalışmasının sonucunda, daha önce yapılmış benzer çalışmalar da incelenerek, mevcut yapıların hasar görme potansiyeline yönelik değerlendirmeler yapılmıştır. Ülkemize özgü tasarım ve imalat kusurları barındıran yapıları temsil ettiği düşünülen bina stokundan yola çıkılarak, gelecek yıkıcı depremlerde olası hasarların ve hasar düzeylerinin kestiriminde kullanılacak **FORECAST** (Fragility **Of RE**inforced **C**oncrete **A**ctual **S**tructures in **T**urkey) isimli bir bilgisayar yazılımı geliştirilmiştir. İlgili yazılım kullanılarak talep/kapasite ve kat ötelenmesi parametrelerine bağlı olarak hasar sınırları tanımlanmış ve hasargörebilirlik ilişkileri elde edilmiştir. Gelecekte olması muhtemel bir yer hareketi etkisinde bir binanın ve/veya bina stokunun hasar durumunun hızlı bir şekilde tahmin edilmesi gerektiğinde çalışmada tanımlanmış olan hasar durumuna ait fonksiyonlar, ilgili parametreler göz önüne alınarak, gevrek ve sünek yapı sistemleri için kullanılabilir.

STATISTICAL EVALUATION OF THE FRAGILITY OF EXISTING RC BUILDINGS IN TURKEY UNDER SEISMIC LOADS

SUMMARY

Turkey had been exposed to several devastating shakes throughout the last quarter century, which had exhibited the insufficient capacity of the existing building stock under destructive earthquakes. A clear majority of the total building stock in Turkey consists of low- and mid-rise reinforced concrete (RC) frame structures. The general run of these structures are non-engineered or have not been adequately designed and/or constructed according to the then-current earthquake code regulations. Various deficiencies that the existing building stock have, caused severe damages and partial or even total collapse which have eventuated in severe socioeconomic losses during the recent earthquakes of Turkey. These defects mainly depend on poor structural material quality, inadequate reinforcement detailing, lack of confinement zones, heavy and large-span cantilevers and indirect supporting preventing the formation of regular structural frames due to the fact that there is a lack of control mechanism during the construction stages for most of the structures constructed prior to the National Construction Control and Supervising Law. Therefore, designating the seismic reliability of existing building stock specifically located in the moderate and high seismicity regions and performing damage/loss assessments for these locations are important necessitations in the mitigation of losses during future seismic events.

Fragility curves offer the probability of reaching or exceeding a level of damage for an individual building as well as building stocks under a ground motion intensity parameter by means of earthquake intensity-damage relations. They are very handy tools which can be utilized for pre-earthquake planning; strengthening intervention; damage/loss estimation and disaster management plans to be drawn up. Furthermore, when considering the difficulty on making a decision about the whole building stock, they serve as easy and fast applications when they are applied to estimate the probable seismic damage for building stocks settled on a seismic zone. Although a fragility curve offers the probability of exceeding a predefined structural damage limit in terms of a ground motion intensity parameter: i.e, peak ground acceleration or velocity (*PGA* or *PGV*), elastic spectral acceleration or displacement (S_a or S_d), it is observed that the level of damage state can be related to the structural capacity and demand. Other than the structural system properties, however, the post-earthquake damage state of a building is dependent to many parameters including local site conditions; structural material qualities; adequacy of the workmanship and detailing of reinforcement.

The need to predict the vulnerability of existing structures has led to increase the researches concerning with the development of seismic fragility assessment methods. Existing fragility functions can be classified into four generic groups of empirical, judgmental, analytical and hybrid functions according to whether the damage data used in their generation derives mainly from observed post-earthquake surveys, expert opinion, analytical simulations or combinations of these (Rosetto and Elnashai 2003).

Analytical fragility relationships can be established either by employing a set of nonlinear dynamic or pushover analyses. In this dissertation, an analytical study is carried out and a statistical approach to forecast the fragility of existing reinforced concrete buildings subjected to earthquake excitation is proposed.

In the study, an ensemble of 50 existing *RC* buildings which represent the structural characteristics of existing structures, is selected. The building ensemble have experienced different levels of damages during the major earthquakes in Turkey, where the damage levels of the buildings can be specified as no-damage, slightly damaged, moderately damaged and heavily damaged. In the entire set, the number of stories of the buildings varies from 2-story to 8-story, therefore the set mostly consists of low- and mid-rise structures. All buildings with frame structural systems are investigated in details by means of their structural material quality, reinforcement amount, detailing of bars and local site conditions. Existing concrete class is found to be varying from $f_{ck}=7\sim25.0$ MPa, while the reinforcing steel is mostly S220 ($f_{yk}=220$ MPa) class except 6 buildings that have S420 ($f_{yk}=420$ MPa) bars.

In order to conduct the analytical study, nonlinear dynamic and static analyses are carried out for this set of 50 frame structures utilizing the modified version of DRAIN-2DX (Prakash et al. 1993; Ascheim, 2005) computer program, which is capable of handling the stiffness and strength degradation through Takeda hysteretic model. Nonlinear behavior of columns and beams is assumed to be represented with a stiffness degrading hysteresis model. For the entire building stock, a structural damping of 5% and a strain-hardening of 3% are taken into account. The contribution of non-structural infill walls is also considered during the preparation of a number of 100 planar structural models for these buildings. The structural model for non-structural walls is established as in Al-Chaar and Lamb (2002), where walls are modeled by two diagonal compression struts.

A set consisting of 7 artificial ground motions is generated with durations of 25 seconds which are compatible with the design spectrum defined in the Turkish Earthquake Resistant Design Code (TERDC-2007), that has a probability of exceedance of 10% within 50 years. Locations and local site conditions of the investigated moderately damaged buildings are also taken into account and the effective ground acceleration of $A_0=0.40$ g for seismic zone-1 and a local soil class of Z2 with characteristic periods of $T_A=0.15$ s and $T_B=0.40$ s are employed. This ensemble of artificial ground motions is employed during the analyses. In order to evaluate the acquired structural responses in an extended acceleration range, each of the artifical earthquake record is scaled from 0.1g up to 0.8g with an increment of 0.05g and therefore a set of 105 ground motion records is achieved. The demand parameters in terms of top story drift ratio and base shear demand ratio are obtained for the earthquake ensemble and after calculating the base shear capacities of each building in the stock, the demand/capacity ratios (DCR) are determined in terms of limit states. In the light of the analyses results, one of the main observations of this research is; existing buildings which reflect the general characteristics of existing structures have significantly high values of displacement demands due to their weaknesses in stiffness, however low values of base shear, depending on the poor concrete quality, insufficient amount of transverse reinforcement and their low structural strengths.

Finally, evaluations are performed oriented to the damage potential of the existing buildings. A software is enhanced called Fragility Of REinforced Concrete Actual Structures in Turkey (FORECAST) in order to perform the statistical investigations

to estimate the probable damage states of buildings, which reflect the general characteristics of existing structures with weakness in stiffness, strength and having poor concrete quality. By the favor of this software, damage levels are defined correlated with demand/capacity and interstory drift ratio parameters and fragility relationships are proposed. When a rapid estimation of the damage level of a building and/or building stock under the effect of a probable seismic event is necessitated, the proposed fragility relations are applicable for brittle and ductile structural systems by considering the related demand parameters for sub-standard existing buildings.

Consequently, in order to investigate the congruity of the proposed functions along with the various researches focused on establishing fragility functions, comparisons are carried out in an attempt to designate the individuality and novelty that the dissertation reveals by means of structural responses.

1. GİRİŞ

Ülkemiz topraklarının yaklaşık %90'ı deprem bölgesinde bulunmakta olup, nüfus yoğunluğunun fazla olduğu kentlerimizin önemli bir kısmı yüksek sismik aktiviteye maruz aktif deprem kuşağı üzerinde yer almaktadır. Yurdumuzda son 25 yılda meydana gelen çeşitli büyüklüklerdeki depremlerde yaşanılan sosyoekonomik kayıplar, depreme karşı dayanıklı yapı tasarımı gerekliliğini ve mevcut yapı stokunun deprem etkisi altındaki performanslarının sorgulanması ihtiyacını göz önüne sermiştir. Yaşanılan depremlerde karşılaşılan hasar durumları, genellikle az ve orta katlı betonarme yapılardan oluşan stokunun çoğunluğunun tasarım ve imalat kusurları barındırmakta olduğunu ortaya çıkarmıştır. Meydana gelen hasar durumlarını malzeme dayanımlarının düşüklüğüne, taşıyıcı eleman enkesitlerinde yetersiz donatı bulunmasına, kiriş-kolon birleşim bölgelerinde etriye alanı sıklaştırması yapılmamasına, tasarımda ağır ve kapalı çıkmaların tercih edilmesine ve düzenli yapısal sistem oluşumuna engel olan dolaylı mesnetlenme oluşumlarına yer verilmesine bağlamak, depremler sonrasında sahada gerçekleştirilen incelemeler dikkate alındığında, yerinde olmaktadır.

Özellikle sosyal, kültürel ve ekonomik açıdan Türkiye'nin kalbi olarak nitelendirilen İstanbul ve civarında her geçen yıl artmakta olan yıkıcı deprem riski, T.C. Çevre ve Şehircilik Bakanlığı öncülüğünde kentsel dönüşümün ilk ayağının bu bölgeden başlamasına neden olmuştur. Bölgenin barındırdığı nüfus göz önüne alındığında, olası bir yıkıcı depremin oldukça ağır kayıplara sebep olacağını öngörmek güç değildir. Bu sebeple, yaşanması muhtemel bir deprem öncesinde yapılacak olan hazırlıklar, bu alanda yürütülmekte olan çalışmaların içerisinde oldukça büyük bir önem taşımaktadır. 2012 yılının ikinci yarısı itibariyle başlatılan kentsel dönüşüm çalışmalarında, Altyapı ve Kentsel Dönüşüm Müdürlüğü'nün güncel verilerine göre, ülke genelinde 170binin üzerinde yapı biriminin riskli yapı niteliğinde olduğu tespit edilmiş, ancak bu birimlerden yaklaşık 35bininin yıkımı tamamlanabilmiştir (T.C. Çevre ve Şehircilik Bakalığı, Altyapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü, 2015). Bu nedenle deprem etkisi altında yetersiz kapasiteye sahip olan mevcut yapı stokunun gelecekte olması muhtemel depremlerdeki hasar potansiyelini tahmin edebilmek adına hızlı ve etkili risk değerlendirme yöntemlerinin geliştirilmesi gerekmektedir. Belirli bir bölgede olası bir depremin sebep olabileceği yapısal hasarın dağılımını ve ölçüsünü önceden tahmin edebilmek, afet yönetim çalışmalarının düzenlenmesinde, yönlendirilmesinde ve öncelikle müdahale edilecek noktaların belirlenebilmesinde önemli fayda sağlamaktadır. Bu bağlamda kullanılmakta olan hasargörebilirlik eğrileri, özellikle nüfusun yoğunlaştığı bölgelerde tüm bina stoku için karar vermenin zorluğu düşünüldüğünde, kolay ve hızlı uygulama sağlamakta ve deprem etkisi altında önceden tanımlanan bir hasar düzeyine ulaşılması veya aşılması olasılığını vermektedir. Hesaplanan bu koşullu olasılığın belirli bir yer hareketi parametresine karşılık çizilmesi, ilgili hasar düzeyine ait hasargörebilirlik (*HG*) eğrisini tanımlamaktadır. *HG* eğrileri kullanılarak gerçekleştirilen hasarın tahmini ise, göz önüne alınan hasar seviyelerine ve bunlara ilişkin hasar sınır değerlerine bağlı olarak gerçekleştirilmektedir.

Tez çalışması kapsamında, ülkemize özgü yapısal yetersizlikler barındıran betonarme binaların hâlihazırdaki yapısal karakteristikleri göz önüne alınarak hasargörebilirlik eğrileri oluşturulmuştur. Analitik yöntem kullanılan çalışma kapsamında, Türkiye'deki binaların tipik özelliklerini yansıtan ve meydan gelmiş olan yıkıcı depremlerde orta hasar görmüş bir yapı grubu seçilmiş, doğrusal olmayan dinamik zaman geçmişi ve doğrusal olmayan statik analizleri gerçekleştirilmiştir. Dinamik analizlerde Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBYBHY-2007)'de tanımlanmış olan tasarım spektrumu ile uyumlu olarak üretilen kuvvetli yer hareketi kayıtları kullanılmıştır. Deprem toplumu etkisinde yapılarda meydana gelen talepler en büyük göreli kat ötelemesi oranı, kat kesme kuvvetleri ve taban kesme kuvveti cinsinden elde edilmiş ve yapısal kapasiteler limit durumlara bağlı olarak belirlenmiştir.

Tez çalışmasının sonucunda ise, yetersiz dayanıma ve düşük beton mukavemetine sahip ülkemizdeki betonarme binaların genel özelliklerini yansıtan bu yapı stoku için yapısal istemlere ait büyüklüklerin istatistik çalışmaları gerçekleştirilmiş olup, olasılık dağılımları ve bunlara uygun olasılık yoğunluk fonksiyonları araştırılmıştır. Bu amaç doğrultusunda hazırlanmış olan "*FORECAST*- *F*ragility *O*f *RE*inforced *C*oncrete *A*ctual *S*tructures in *T*urkey" yazılımı aracılığıyla, deprem hareketine ait en büyük yer ivmesi için yapısal istemlerin aşılma olasılıkları, hasar durumunu yansıtan

talep/kapasite ve kat ötelenmesi parametreleri ile karşılaştırılarak beklenen hasar düzeyi dağılımları elde edilmiştir. Çalışmanın sonucunda elde edilmiş olan hasar durumuna ait fonksiyonların, deprem afeti sonrasında hasar durumunun hızlı bir şekilde tahmin edilmesi gerektiğinde, ilgili parametreler göz önüne alınarak, gevrek ve sünek yapı sistemleri için kullanılabilmesi hedeflenmektedir.

1.1 Tezin Amacı

Mevcut bina stokunun barındırdığı yetersizlikleri temsil ettiği varsayılan gerçek bir yapı toplumu ele alınarak analitik yöntemle hasargörebilirlik ilişkilerinin türetilmesi bu tezin amacını oluşturmaktadır. Bu amaç doğrultusunda, Türkiye'de meydana gelmiş olan çeşitli depremlerde değişik düzeylerde hasar görmüş ya da hasarsız az ve orta katlı betonarme binalardan oluşan gerçek bir yapı toplumu seçilmiştir. İncelemeye esas olan yapı stoku 100 farklı çerçeve sistemden meydana gelmekte olup, tez çalışması kapsamında 7 adet yapay yer hareketinden düzenlenmiş deprem toplumu etkisinde doğrusal olmayan dinamik analize dayalı yöntem ile çözümlenerek hasargörebilirlik fonksiyonları türetilmiştir. Depremden oluşan talebin ve tanımlanan bir limit hasar seviyesinin aşılması olasılığının belirlenebilmesi için dinamik analizlere ek olarak doğrusal olmayan statik itme analizleri gerçekleştirilmiş ve itme analizleri sonucunda yapısal kapasiteler belirlenmiştir.

Yüksek sismik etkinliklerin oluştuğu bölgelerde bulunan büyük şehirlerdeki yapıların deprem tehlikesi hem mühendislik, hem sosyolojik, hem de ekonomik olarak büyük önem taşımaktadır. Bir bina ve/veya bina stokunda olası bir kuvvetli yer hareketi etkisi altında meydana gelebilecek hasar ve kayıpların önceden kestirilebilmesi, deprem afeti öncesinde ve sonrasında yapılması planlanan çalışmalarda büyük önem taşımaktadır. Hasargörebilirlik çalışmaları sonucunda elde edilen matematiksel fonksiyonlar adrese dayalı coğrafi bilgi sistemi ile entegre edilebildiğinde, meydana gelecek bir depremden etkilenmesi muhtemel olan alanların tahmin edilebilmesi, kurtarma operasyonlarının organizasyonu ve mobilizasyonu, tıbbi müdahale ve geçici barındırma aktivitelerinin daha etkili olmasını sağlayacaktır.

Ülkemizdeki mevcut binaların nispeten yıkıcı depremler etkisinde hasar görmelerindeki en önemli nedenin kesme kuvveti taşıma kapasitesindeki yetersizliğe dayalı gevrek kırılma davranışı göstermesi olduğu bilinmektedir. Tez çalışması kapsamında mevcut binalar için türetilen *HG* eğrileri için literatürde çok rastlanan bir yapısal büyüklük olan göreli kat ötelenme oranları dışında, binaların kesme kuvveti etkisindeki hasar durumlarını temsil eden bir yapısal karşılık parametresi araştırılmıştır. Bu doğrultuda geliştirilen *HG* fonksiyonlarının ve FORECAST yazılımının Türkiye'de bulunan binaların depremler öncesinde ve sonrasında değerlendirilmesinde araştırmacılar ve yetkili kurumlarca kullanılabileceği öngörülmektedir.

1.2 Literatürde Konu İle İlgili Yapılmış Çalışmalar

Literatürde yapılmış olan çalışmalar incelendiğinde, *HG* eğrilerinin genel olarak üç farklı yaklaşım ile elde edildiği anlaşılmaktadır. Bunlar deneysel, analitik ve hibrid yöntemler olarak adlandırılmaktadır. Deneye dayalı yöntemler, deprem sonrası hasar tespitlerine ya da uzman mühendis kararlarına dayalı olarak yeterli bina veri tabanı oluşturulabildiğinde kullanılmaktadır. Analitik yöntemler, farklı geometrik ve malzeme özelliklerine sahip temsili (model) yapıların çözümlenmesine dayanmaktadır. Deprem sonrası hasar tespitlerinde sınırlı veri elde edilmiş ise, deneye dayalı ve analitik çalışmanın bir birleşimi olan hibrid metot kullanılmaktadır, (Şekil 1.1).

HG eğrilerinin geliştirilmesinde ilk parametre, göz önüne alınacak yapı türlerinin tespitidir. Örneğin, deneye dayalı metotlarda kullanılan binalar, deprem hasar tespiti sonrası gözlenmiş olan yapılardır. Analitik hasar görebilirlik eğrilerinin geliştirilmesinde genel olarak, göz önüne alınan yapı stokunun sismik dayanım özelliklerini geometri ve malzeme bakımından iyi yansıtan bir model seçilmelidir.

İkinci parametre, sismik şiddet parametrelerinin belirlenmesidir. Deprem yer hareketinin şiddetini karakterize eden parametre ile yapıların gözlenen ya da hesaplanan hasarlar uyumlu olmalıdır. Deprem yer hareketi şiddeti, kullanılan hasargörebilirlik ilişkisine bağlı olarak farklı şekillerde tanımlanabilir. Örneğin, deneye dayalı yöntemlerde genellikle MM Ölçeği veya Medvedev- Sponheuer-Karnik (MSK) Ölçeği (Medvedev and Sponheuer, (1969)) kullanılmaktadır. Kimi çalışmalarda maksimum yer ivmesi (*PGA*) ya da maksimum yer hızı (*PGV*) gibi yer hareketi parametreleri de kullanılmaktadır. Yakın geçmişte kullanılmaya başlanan yer hareketi şiddet parametreleri ise spektral ivme, $S_a(T)$, ve spektral yerdeğiştirme, $S_d(T)$, gibi yer hareketinin yapısal karşılıklara bağlı tanımlanan değerleridir. Bu değerlerin kullanılmasının sebebi, şiddet parametresinin direkt olarak yapının karşılığı ile ilgili oluşudur.

Şekil 1.1 : Sismik hasargörebilirlik parametrelerinin gelişim sürecinin ana adımları (Tüzün ve Aydınoğlu, 2007).

Üçüncü parametre ise, hasar seviyelerinin belirlenmesidir. Hasar seviyesinin tanımı yapı tipine ve kullanılan *HG* ilişkisine bağlıdır. Deneye dayalı yöntemle hasar tanımlamaları yörenin karakteristiklerine ve inşaat uygulamalarına bağlı olarak öznel bir olgudur. Analitik yöntemlerde ise, çözümleme sonucunda hasar beklenen yapısal eleman esas alınarak hasar seviyeleri tanımlanmaktadır. Bu hasar seviyeleri; hasarsız, az hasarlı, orta hasarlı, ağır hasarlı, çok ağır hasarlı ve göçme olarak adlandırılabilir. Hasarı tanımlamaktaki problemlerden biri, özellikle orta seviyelerdeki hasarlarda eşik değerlerinin tahminidir. Belirli bir sismik şiddet parametresi altında hasar parametresinin dağılımı, ön tanımlı bir hasar durumu için hasar seviyesi eşiğine ulaşılması veya aşılması olasılığını belirlemek üzere istatistiksel bir işleme tabi tutulmaktadır. Önceki araştırmalarda gözlemlenen, genellikle analiz sonuçlarına lognormal dağılım uygulanarak hasargörebilirlik fonksiyonunun parametrelerinin elde edildiği yönündedir.

Yapıların "*sismik hasargörebilirlik*" değerlendirmeleri ilk olarak 1970'lerde mikrosismik şiddetlerin bir fonksiyonu olarak deneysel yöntemlerle geliştirilmiştir. Depremlerden sonra hasar gözlemlerine ve uzmanların kararlarına bağlı olan deneysel ilişkilerin genel olarak iki formu vardır. Hasar olasılık matrisleri, belirli bir deprem şiddetine bağlı olarak önceden tanımlanan bir hasar seviyesinin aşılma olasılığını ayrık olarak verirken, hasargörebilirlik eğrileri bu olasılığı sürekli bir fonksiyon olarak vermektedir.

Literatürdeki ilk değerlendirme metodunun geliştirilmesinde kullanılan veriler, deprem sonrası hasar tespitlerinden elde edilmiş ve yapıların hasargörebilirliği ilk olarak Whitman ve diğ. (1973) tarafından önerilen hasar olasılık matrisleri formunda derlenmiş olup, ana veriler 1971 San Fernando depremi sonrasında hasar görmüş 1600 civarında yapıdan elde edilmiştir.

Sürekli bir fonksiyon olan *HG* eğrilerinin elde edilmesinde de deprem sonrası hasar tespitleri ve arazi incelemeleri kullanılmıştır. Sürekli *HG* eğrilerinin türetilmesinde bir engel makro-sismik şiddetin sürekli bir değişken olmamasıdır. Spence ve diğ. (1992)'nin önerdikleri "*Şiddetin Parametresiz Ölçeği*" (Parameterless Scale of Intensity-*PSI*) ile *MSK* hasar ölçeğini kullanarak bu problemin üstesinden gelmiş ve gözlemlenen yapı hasarlarına bağlı *HG* fonksiyonları türetmiştir.

Singhal ve Kiremidjian (1996), Monte Carlo simülasyonu kullanılarak modellenen üç sınıfa ayrılmış betonarme çerçeve yapılar için *HG* eğrileri geliştirmişlerdir, (Şekil 1.2). Yapıların hasar olasılıkları, doğrusal olmayan dinamik analizlerde birçok yer hareketinin kullanılması ile belirlenmiştir. Yer hareketi parametresi olarak spektral ivme kabul edilmiştir. Yöntemdeki önemli adımlar; dinamik yüklere maruz kalacak yapı özelliklerinin tanımı, potansiyel yer hareketinin tanımı ve yapı hasar sınırlarının tanımlanmasıdır. Çalışmada, doğrusal olmayan dinamik analizler, farklı yapı karakteristiğine sahip birçok bina için bir dizi zaman tanım alanında çözümleme yapılarak uygulanmıştır. Her bir doğrusal olmayan analizin sonucu, Park ve Ang (1985) tarafından geliştirilen daha önceki depremlerde yapılarda oluşan çeşitli hasarlara göre düzenlenmiş hasar indeksi ile hesaplanmıştır, (Çizelge 1.1).

Şekil 1.2 : Az-katlı betonarme binalar için hasargörebilirlik eğrileri (Singhal ve Kremidjian, 1996).

Hasar Durumu	Park ve Ang Hasar İndeksi
Hasarsız	0.00~0.10
Hafif Hasar	0.10~0.20
Orta Hasar	0.20~0.50
Ağır Hasar	0.50~1.0
Göçme	>1.0

Cizelge 1.1 : Hasar durum sınırları (Singhal ve Kremidjian, 1996).

90'lı yıllarda geliştirilen *HG* fonksiyonlarında yer hareketini karakterize etmek için makro-sismik şiddet veya *PGA* yerine hâkim titreşim periyodundaki spektral ivme (S_a) veya spektral yerdeğiştirme (S_d) seçilmiştir (Shinozuka ve diğ., 1997). Bu yeni yöntemler, yer hareketinin frekans içeriği ile yapının hâkim titreşim periyodu arasındaki ilişkiyi göz önüne alması açısından önemli bir gelişme sağlamışlardır.

Kappos ve diğ. (2002), Yunanistan'ın Volos Büyükşehir bölgesinin sismik riskini ve ekonomik kayıplarını belirlemek için "hibrid" hasargörebilirlik yöntemi geliştirmiştir. Kullandığı hibrid yöntem, deneye dayalı ve analitik yaklaşımları içermektedir. Rossetto ve Elnashai (2003), 19 ayrı deprem sonrasında, farklı 99 bölgede incelenen toplam 340,000 adet betonarme yapı için deprem sonrası hasar dağılım tespitlerini kullanarak yeni, deneye dayalı *HG* eğrilerini farklı yer hareketi parametrelerine bağlı olarak türetmiştir (Şekil 1.3). Yapılan bu çalışmada farklı yapı sistemlerinden alınan veriler birleştirilerek bir veri topluluğu oluşturulmuş, farklı sistemlerde kullanılabilecek homojen eğriler türetilmiştir. Eğrilerin oluşturulabilmesi için *HRC* (*Homogeneous Reinforced Concrete*) ismi ile yeni bir hasar ölçeği tanımlanmıştır.

Şekil 1.3 : Hasargörebilirlik eğrilerinin oluşturulmasında kullanılan farklı yer hareketi parametreleri (Rossetto ve Elnashai, 2003).

Analitik hasargörebilirlik eğrileri ise, deprem yükleri altında yapı modellerinin analizlerinden elde edilen hasar dağılımlarını istatistiksel bir başlangıç noktası olarak benimsemektedir. Elde edilen HG eğrileri farklı amaçlar için kullanılabilmekle beraber en önemli uygulama alanı kentsel hasar tahmini çalışmalarıdır. Oldukça geniş kapsamlı bir veri tabanı kullanılarak gerçekleştirilen ve bu konuda geliştirilmiş en önemli çalışma olan HAZUS (2003), ABD'de yaygın olarak kullanılmaktadır. Burada, HG eğrileri, kapasite spektrumunun esas alındığı analitik çalışmadan elde edilmektedir. Bu yöntemde yapıların kapasitesi uzman kararı ile, hasar düzeylerinin eşik değerleri ve onların dağılımları ise analitik çalışma ile belirlenmektedir. Yakın geçmişte yer alan öneriler, mevcut yöntemlerin eksikliklerini gidermek amacıyla analiz yöntemlerinin kullanımında, yerdeğiştirmeye dayalı HG eğrilerini türetirken analitik yöntem olarak, doğrusal olmayan statik analiz kullanılması yönündedir. Rossetto ve Elnashai (2005) çalışmalarında belirli bir yer hareketi şiddeti için yapı performanslarını değerlendirmek amacıyla, kapasite spektrumu yöntemini kullanan itme analizi uygulamışlardır. Doğrusal olmayan statik analize dayanan bir diğer analitik yöntemde, Erberik ve Elnashai (2004), kâgir dolgu duvarlı, orta yükseklikli ve kirişsiz döşemeli yapıların HG eğrilerinin türetilmesi üzerine çalışmışlardır (Şekil 1.4). Çalışmada hasar sınır durumları, göreli kat ötelemesi oranlarına göre belirlenmiştir. Sismik şiddet parametreleri olarak spektral ivme ve spektral yerdeğiştirme seçilmiştir. Bu araştırmalar HAZTURK (2005) ve (2007) toplantıları kapsamında Türkiye bina stoku için de ele alınmıştır.

Şekil 1.4 : Kirişsiz döşemeli binalar için hasargörebilirlik eğrileri (Erberik ve Elnashai, 2004).

2000'li yılların başında yerdeğiştirmeye dayalı yaklaşıma dayanarak yapılan bir diğer çalışmada basit bir yöntem önerilmiştir (Crowley ve diğ., 2004). Söz konusu yöntem, bir yapının kapasitesini, şekildeğiştirme potansiyeli ile farklı güç tükenmesi anındaki hâkim titreşim periyodu arasındaki ilişkiyi kullanarak tanımlamakta ve bunu yerdeğiştirme karşılık spektrumu ile karşılaştırmaktadır. Bu çalışmada, yapının geometri, malzeme ve güç tükenmesi sınır durum özelliklerindeki belirsizlik göz önüne alınmış ve yerdeğiştirme kapasitesi ile periyodun yaklaşık olasılık yoğunluk fonksiyonu türetilmiştir (Şekil 1.5).

Dumova ve Jovanoska (2004), Üsküp bölgesinde bulunan betonarme binalar için *HG* eğrilerini türetmişlerdir. Çalışmada, hasar- şiddet ilişkileri, yapı stokuna uygulanan 240 adet yapay deprem hareketi etkisinde doğrusal olmayan dinamik analiz sonucu elde edilmiştir. Hasar düzeyleri, Park ve Ang (1985) tarafından geliştirilen daha önceki depremlerde yapılarda oluşan çeşitli hasarlara göre düzenlenmiş hasar indeksi ile belirlenmiş olup, analiz sonuçlarına normal dağılım uygulanarak *HG* fonksiyonunun parametreleri elde edilmiştir.

Şekil 1.5 : Yerdeğiştirme esaslı sismik hasargörebilirlik değerlendirme yöntemi (Crowley ve diğ., 2004).

Akkar ve diğ., (2005), yapı kapasitelerini, gözlemlenen verilerden elde ederek ve yapısal karşılıkları dinamik yöntemler ile hesaplayarak analitik yönteme dayalı *HG* eğrilerini elde etmiştir (Şekil 1.6). Gözlemlenen yapısal veriler, 2 ila 5 katlı yapıların genel karakteristiklerini yansıtan 32 adet örnek binayı içermektedir. Örnek yapıların yanal rijitliği, dayanımı ve şekildeğiştirme kapasiteleri iki yönde gerçekleştirilen statik itme analizi ile belirlenmiştir. Yapıların doğrusal olmayan dinamik yapı karakteristikleri araştırılmış ve bir grup eşdeğer tek serbestlik dereceli sistem ile temsil edilmiştir. Sismik şekildeğiştirme istemleri ise 82 adet yer hareketi kaydı kullanılarak hesaplanmıştır. Doğrusal olmayan en büyük yerdeğiştirmelerin, *PGA* yerine *PGV* ile daha iyi bir korelasyon içinde olduğu düşüncesiyle sismik şiddet ölçeği olarak maksimum yer hızı seçilmiştir. Toplam yerdeğiştirme in kullanılarak binaların hasar sınır durumları belirlenmiştir. Toplam yerdeğiştirmenin kullanılmasının nedeni, çalışmada kullanılan binaların hiçbirinde yumuşak kat durumu olmamasındandır.

Şekil 1.6 : Az, orta ve şiddetli hasar limit durumları için kırılganlık eğrileri (Akkar ve diğ., 2005).

Ramamoorthy (2006) tarafından az- ve orta- katlı binaları temsil ettiği kabul edilen Memphis'teki bina stoku için *HG* eğrileri elde edilmiştir. Bu eğrilerde performans seviyeleri, göreli kat ötelemesi oranlarına göre belirlemiş olup, FEMA-356'da belirtilen hemen kullanım, can güvenliği ve göçmenin önlenmesi olarak kabul edilmiştir. Kat ötelenmesi değerleri ilgili performans seviyeleri için sırasıyla %0.5, %1.0 ve %2.0 olarak ifade edilmiş olup, yapısal tepki parametresi olarak S_a kullanılmıştır (Şekil 1.7).

Şekil 1.7 : Az- ve orta- katlı binalar için hasargörebilirlik eğrileri (Ramamoorthy, 2006).

Kappos ve diğ., (2006) tarafından yapılan bir diğer araştırmada, betonarme ve yığma yapıların HG değerlendirmeleri yapılmıştır. Çalışma kapsamında az, orta ve çok katlı yapıları temsilen 2, 4 ve 9 katlı düzlem betonarme çerçeve ve perde-çerçeveli sistemler incelenmiştir. Analitik yöntem kullanılan çalışmada artımsal itme analizi ve doğrusal olmayan dinamik analiz gerçekleştirilmiştir. Hafif, orta, ağır, çok ağır hasar ve göçme sınırlarına ait istatistiksel hesaplamalar yapılarak, *PGA* ve *S*_a yapısal tepki parametreleri için *HG* eğrileri oluşturulmuştur.

Ay ve diğ., (2006), az ve orta katlı betonarme yapılar için *HG* değerlendirmesi yapmıştır. Bir grup yer hareketi, sismik etki parametresinin *PGV* olarak seçildiği doğrusal olmayan dinamik analizde kullanılmıştır. Dinamik çözümleme sonuçları en büyük göreli kat ötelenmesi cinsinden elde edilmiş ve *PGV* ile birlikte "*hasar/istem*" ilişkisini belirlemek için kullanılmıştır. Çalışmanın sonucu olarak, hasar durumu olasılıklarının, göz önüne alınan yapıların ana karakteristiklerini ve Türkiye'deki az ve orta katlı yapıların tipik karakteristiklerini yansıttığı sonucuna varmışlardır.

Kırçıl ve Polat (2006) tarafından yapılan çalışmada, Türkiye'deki orta katlı betonarme çerçeve tipi yapıların hasar olasılıkları araştırılmıştır. 1975 tarihli Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik (ABYYHY) esaslarına göre tasarlanmış 3, 4, 5 ve 6 katlı yapıların dinamik analizi yapılmıştır. Dinamik analizlerde 12 farklı yapay deprem yer hareketi kullanılmıştır. Yapısal etki parametresi olarak *PGA*, *S*_a, *S*_d

ve *ISDR*% (göreli kat ötelenmesi oranları-interstory drift ratio) değerleri göz önünde bulundurularak *HG* eğrileri oluşturulmuştur (Şekil 1.8).

Şekil 1.8 : Akma ve göçme hasar limit durumları için kırılganlık eğrileri (Kırçıl ve Polat, 2006).

Jeong ve Elnashai (2007), rijitlik, dayanım ve süneklik gibi temel yapısal karşılık değerlerini esas alan bir grup *HG* ilişkilerinin türetildiği yaklaşımı önermişlerdir. Eşdeğer tek serbestlik dereceli sistemler için gerçek bir çözüm geliştirilmiş ve bu çoğunlukla kullanılmakta olan lognormal dağılıma sahip *HG* ilişkilerini tanımlayan katsayıların hesabı için kullanılmıştır.

Tüzün ve Aydınoğlu (2007) çalışmalarında mevcut yapı stokunun depremde hasargörebilirliğinin belirlenmesi amacı ile analitik bir yöntem uygulamışlardır (Şekil 1.9). Söz konusu çalışmada toplam 120 adet bina kat adetlerine bağlı olarak 2 ile 7 katlı, her sınıfta 20 adet olmak üzere, sınıflara ayrılmıştır. Binalarda meydana gelen hasar dağılımı deprem yönetmeliğinde tanımlanan spektruma uygun spektruma sahip 20 adet yer hareketi kullanarak elde edilmiştir. Analiz sonucu elde edilen hasar dağılımına uygulanan istatistiksel işlemler sonucunda her bir bina sınıfına ait *HG* parametreleri elde edilmiştir. Söz konusu hasargörebilirlik eğrileri her bir yapı sınıfının hâkim periyoduna karşılık gelen spektral ivme ve spektral yerdeğiştirmeye göre çizilmiştir olup, hesap adımları Şekil 1.10'da verilen akış şemasındaki gibidir.

Şekil 1.9 : 4 katlı binaların $S_{ae}(T_1)$ değerine göre hasargörebilirlik eğrisi (Tüzün ve Aydınoğlu, 2007).

Şekil 1.10 : Analitik kırılganlık eğrilerinin veya hasar olasılık matrislerinin hesabı için akış diyagramı (Tüzün ve Aydınoğlu, 2007).

Ji, Elnashai ve Kuchma (2007) ise yapmış oldukları çalışmada, betonarme yüksek binaların *HG* eğrilerinin türetilmesinde yenilikçi bir analitik yaklaşım önermişlerdir.

Ay ve Erberik (2007), çalışmalarında az ve orta katlı yapıların deprem güvenliğini hasar potansiyeli eğrileri aracılığıyla incelemiştir (Şekil 1.11). Çalışmanın kapsamı 3, 5, 7 ve 9 katlı; yüklerin tamamının çerçeveler ile taşındığı betonarme sistemlerdir. Oluşturulan iki boyutlu analitik modeller ülkemizdeki yapı stokunun sismik performans özelliklerini yansıtabilmek için iyi, tipik ve zayıf olarak sınıflandırılmıştır.

Yapılardaki kuvvetli yer hareketi talep istatistikleri, elastik ötesi zaman tanım alanı analizi ile elde edilmiş, maksimum katlararası ötelenme değerleri ile verilmiştir. Farklı hasar seviyelerini ifade eden performans sınırları belirlenmiş, hasar potansiyeli eğrileri her bir yapı sınıfı için oluşturulmuştur.

Şekil 1.11 : Az- ve orta-katlı yapıların hasargörebilirlik eğrilerinden örnekler (Ay ve Erberik, 2007).

Erberik (2008) tarafından yapılan çalışmada, Türkiye'deki az ve orta katlı betonarme çerçeve tipi yapıların hasar olasılıkları araştırılmıştır ve 1999 Düzce Depremi sonrasında hasar görmüş olan 28 adet binaya ait veriler kullanılmıştır. Kat sayıları 2~6 arasında değişmekte olan bina toplumu, eşdeğer tek serbestlik dereceli sistem olarak modellenmiş ve analitik çalışmalar gerçekleştirilmiştir. Dinamik analizlerde 100 farklı deprem yer hareketinin kullanıldığı bu çalışmada, şiddet parametresi olarak *PGV* seçilerek *HG* eğrileri oluşturulmuştur.

Şekil 1.12 : Az- ve orta-katlı yapıların hasargörebilirlik eğrilerinden örnekler (Erberik, 2008).

Son yıllarda yapılmış olan çalışmalarında Uçar ve Düzgün (2013), İzmir'deki mevcut yapı stokundan faydalanarak 3~8 katlı betonarme binalara ait analitik *HG* eğrilerini oluşturmuşlardır. Artımsal itme analizi yöntemiyle binalara ait modal yerdeğiştirme istemleri hesaplanarak, belirlenen hasar düzeyleri için spektral yerdeğiştirme şiddet parametresine bağlı olarak *HG* eğrileri türetilmiştir.

Hancılar ve Çaktı (2015), yürürlükte bulunan deprem yönetmeliğine uygun olarak tasarladıkları 5, 10, 15 ve 20 katlı betonarme çerçeveler için parametrik bir çalışma yapmışlardır. Bu çalışmada, yer hareketi şiddet parametreleri ile istem parametreleri arasındaki korelasyon araştırılmış ve gerçek deprem kayıtları kullanılarak doğrusal olmayan dinamik analiz yöntemiyle analitik *HG* eğrileri elde edilmiştir.

Bu çalışmada ise analitik esaslı yöntemler kullanılarak, mevcut bina stokunun barındırdığı yapısal yetersizlikleri temsil ettiği varsayılan gerçek bir yapı toplumu ele alınarak, tepe noktası göreli ötelenme oranı ve talep/kapasite oranı parametrelerine bağlı olarak *HG* eğrileri türetilmiş olup, elde edilen bulgu ve öneriler tartışmaya açılmıştır.

2. ÇALIŞMANIN TEORİK ESASLARI, GENEL KABULLER VE BİLGİSAYAR PROGRAMLARI

2.1 Giriş

Geçmişte yaşamış olduğumuz depremler, yapıların ömrü boyunca şiddetli bir depremle karşılaşma olasılığı yüksek olmamasına rağmen, meydana gelen can ve mal kayıplarının oldukça büyük olabildiğini göstemiştir. Bertero (1994) bu durumu şu şekilde ifade etmiştir: "*Depremler oldukça nadir görülen ve meydana geldiğinde sonuçları yıkım ve acı ile sonuçlanan doğal afetlerin çok özel bir tipidir*." Bu nedenle, aktif deprem kuşağı üzerinde yer almakta olan ülkemizde, ekonomik koşulları da göz önünde bulunduran depreme dayanıklı yapı tasarımı her geçen gün önem kazanmaktadır.

Tüm dünyada kabul edilen depreme dayanıklı yapı tasarımı felsefesi şu üç kriterden oluşmaktadır:

a. Yapının ömrü boyunca karşılaşma olasılığı çok fazla olan hafif şiddetli depremlerde yapısal olan ve olmayan elemanlarda oluşacak hasar önlenmelidir.

b. Yapının ömrü boyunca karşılaşma olasılığı çok fazla olmayan orta şiddetli depremlerde yapısal olan ve olmayan elemanlarda oluşacak hasar onarılabilir düzeyde olmalıdır.

c. Yapının ömrü boyunca karşılaşma olasılığı çok az olan şiddetli bir depremde can kaybı ve yapının göçmesi önlenmelidir.

Son çeyrek asırda gerek ülkemizde, gerekse dünyada meydana gelen depremlerde yaşanılan sosyolojik ve ekonomik kayıplar, deprem konusunda bilinmeyenlerin bilinenlerden daha fazla olduğunu göstermiştir. Elde edilen son veriler ışığında yapılan çalışmalar, yukarıda bahsedilen üç maddenin de yapı tasarımında uygulanabilmesi ve mevcut yapıların sismik performanslarının değerlendirilebilmesi amacı ile gerek ülkemizde gerekse dünya çapında deprem yönetmeliklerinde önemli ölçüde değişikliklere sebep olmuştur.

ATC-40 ve FEMA-356 gibi dünyada yaygın olarak kullanılmakta olan standartlarda performansa dayalı tasarım ve değerlendirme amacı doğrultusunda çeşitli hesap yöntemleri önerilmektedir. Genel olarak bu standartlar kapsamında yapılar için bir performans hedefi söz konusudur. Herhangi bir bina için öngörülen performans hedefi, deprem etkisi altında yapının taşıyıcı olan ve olmayan elemanlarının performans seviyelerine bağlı olup, ilgili seviyeler meydana gelebilecek hasarların sınır durumlarını göstermektedir.

Performansa dayalı tasarım ve değerlendirmenin iki ana parametresi kapasite ve istemdir. Yapıya etki eden deprem hareketi "*istem*", yapının bu etki altında göstereceği davranış ise "*kapasite*" olarak adlandırılmaktadır. Yapısal kapasite, taşıyıcı sistemi oluşturan elemanların dayanım ve şekildeğiştirme kapasitelerinin bir birleşimi olarak kabul edilmektedir. Herhangi bir yapının doğrusal veya doğrusal olmayan yöntemler kullanılarak *istem/kapasite* oranının hesaplanabileceği kullanılan standartlarda belirtilmektedir. Ancak, deprem hareketinin, doğası gereği zamana bağlı olarak değişim gösteren dinamik bir hareket olması dolayısıyla, depreme dayanıklı olarak tasarlanması hedeflenen yapıların deprem yükleri etkisi altındaki çözümlemelerinin dinamik hesap yöntemleri kullanılarak gerçekleştirilmesinin daha gerçekçi sonuçlar elde edilmesini sağlayacağı literatürde sıklıkla vurgulanmaktadır. Bu doktora tezi kapsamında depremden oluşan talebin ve tanımlı bir sınır hasar düzeyinin aşılması olasılığının belirlenebilmesi için doğrusal olmayan yöntemler kullanılarak analitik bir çalışma yapılmıştır.

Mevcut yapı stoklarının deprem risklerinin önceden tahmin edilebilmesi, gerek afet yönetiminin temel döngüsündeki "*müdahale*" evresinin daha sağlıklı ve gerçekçi bir biçimde yürütülebilmesi adına ve gerekse depremin yaratacağı zararların azaltılması konusunda yapılması gerekenlerin belirlenmesi açısından çok önemli bir rol oynamaktadır. Bu nedenle, ülkelerdeki bina stokunun niteliklerine ve yerleşim bölgelerine uygun olarak *HG* ilişkilerinin türetilmesi, gelecekte meydana gelebilecek depremlerde, yapılarda oluşabilecek hasarların tahmin sürecinin temel altyapısını oluşturmaktadır. Bu sebeple yıkıcı depremler sonrasında hasar görmemiş ve farklı düzeylerde hasar görmüş binaların ayrıntılı olarak incelenmesi ve ortak bulguların parametrik bileşkeler altında derlenmesi, hasar kestiriminde belirgin bir yol kat edilmesine katkıda bulunacaktır.

Depremler sonrasında yerinde yapılan saha incelemeleri ve yapılardan alınan örnekler üzerindeki deneysel araştırmalar, bina türü yapıların gerek tasarım, gerekse imalat aşamalarında yeterli mühendislik hizmetinin alınmamış olduğuna; mevcut durum ile tasarım projeleri arasında önemli farklılıkların bulunduğuna; yapısal malzeme kalitelerinin gözle görülür düzeyde düşük ve işçiliğin kötü olduğuna ve donatı düzeninin yetersiz ve hatta hatalı teşkil edildiğine işaret etmektedir. Bu nedenlerden ötürü ülkemizdeki binaların deprem yükleri etkisinde son derece gevrek bir davranış sergiledikleri ve deprem nedeniyle oluşan hasarların neredeyse tamamının, taşıyıcı sistem elemanlarında kesme kuvveti kapasitelerinin aşılması sonunca oluşan kayma türü hasarlar olduğu bilinmektedir.

Bu tez çalışması kapsamında, ülkemize ve çevre ülkelere özgü yetersiz dayanım ve düşük beton mukavemetine sahip betonarme binaların genel özelliklerini yansıtan yapı stoku için çeşitli yapısal istemlere ait büyüklüklerin istatistik çalışmaları gerçekleştirilmiş olup, olasılık dağılımları ve bunlara uygun olasılık yoğunluk fonksiyonları araştırılmış ve çalışmanın sonucunda bir yazılım geliştirilmiştir. Teknik ayrıntıları daha sonraki bölümlerde verilmekte olan bu program aracılığıyla, deprem hareketine ait en büyük yer ivmesi için yapısal istemlerin aşılma olasılıkları, hasar durumunu yansıtan büyüklükler ile karşılaştırılarak beklenen hasar düzeyi dağılımları elde edilmiştir.

2.2 Hasargörebilirlik İlişkileri

2.2.1 Hasargörebilirlik eğrilerinin matematiksel ifadesi

Hasargörebilirlik eğrileri; özelde bir yapı, genelde ise yapı stoku için belirli bir deprem yer hareketi etkisi altında çeşitli seviyelerdeki hasarların aşılması olasılığını tahmin etmek için kullanılmaktadır. Diğer bir deyişle hasargörebilirlik eğrileri ele alınan bölge içinde konumlanmış ve belirli bir sismik dayanıma sahip olan yapılar için, performans limit durumuna ulaşılması ya da aşılması olasılığını belirli bir yer hareketi parametresi ile ilişkilendiren fonksiyonlar olup, deprem riskinin grafiksel gösterimidir. Şekil 2.1'de *HG* eğrilerinin şematik bir çizimi verilmiştir. Herhangi bir performans sınır durumunda hasar düzeyine ait *HG* eğrisi, değişik yer hareketi parametresi düzeylerinde göz önüne alınan hasar düzeyine ulaşma ya da aşılma olasılığının hesaplanması ile elde edilir. Hesaplanan bu koşullu olasılığın belirli bir yer hareketi (Singhal ve Kiremidjian, 1996). Toplam *HG* fonksiyonu matematiksel olarak aşağıdaki gibi tanımlanabilir:

$$P(Kirilganlik) = P[LS|S_a = x] \qquad P(LS) = P(C < D)$$
(2.1)

Bu ifadede, C kapasite, D talep ve S_a depremin sismik etkisinin ölçüsünü temsil etmektedir. HG eğrilerinin genel olarak lognormal dağılım fonksiyonu kullanılarak ifade edildiği bağıntı ise:

$$P(D \ge d_i | Y) = \Phi\left[\frac{1}{\beta_i} \ln\left(\frac{Y}{Y_{mi}}\right)\right]$$
(2.2)

şeklinde olup; P, hasar parametresi D'nin, yer hareketi parametresi Y için i hasar düzeyine ilişkin d_i değerine ulaşma ya da aşılma olasılığını göstermektedir. Bu ifadedeki Y_{mi} dağılımın medyan değerini, Φ standart normal birikimli dağılım fonksiyonunu, β_i ise aynı dağılımın lognormal standart sapma değerini göstermektedir.

Şekil 2.1 : Hasargörebilirlik eğrilerinin şematik gösterimi.

Yapılarda, malzeme çeşitliliği ve yapısal geometri gibi önemli faktörlerin rasgele değişken olmalarından dolayı, yapısal güvenirlik, olasılıklı model kullanılarak göçme olasılığının hesaplanması ile ifade edilebilir. Yapının hasar görme durumlarının olasılık modeli lognormal dağılım ile temsil edilmektedir. Bunun sebebi, lognormal dağılımın sayısal uygulamalarda kolaylıkla kullanılması ve yapısal karşılıları oldukça başarılı olarak kestirmesidir.

Seçilen yönteme bağlı olarak bulunan sonuçlar istatistiksel olarak işlenerek, özelde tek bir bina, genelde ise bir bina stoku ve hasar düzeyi için bu söz konusu hasar düzeyine ulaşma ya da aşma olasılığını gösteren *HG* eğrileri elde edilmektedir.

2.2.2 Literatürde yer alan hasar sınırları

Yapısal performans seviyelerinin eşik değerlerini temsil eden limit durumlar, bir yapının o noktadan sonra performansını devam ettiremediği nokta olarak tanımlanabilir. Hasar limit durumlarının gerçekçi bir şekilde belirlenmesi ve buna bağlı olarak sınırların tanımlanması, *HG* eğrilerinin türetilmesi aşamalarının en önemli basamağını oluşturmakta ve elde edilen eğrilerin sonuçlarını doğrudan etkilemektedir (Erberik ve Elnashai, 2004).

Şekil 2.2 : Şematik itme eğrisi.

Doğrusal olmayan statik itme analizi, limit durumlara ait sınır değerlerinin belirlenmesinde en çok kullanılan analiz yöntemidir. Şekil 2.2'de şematik olarak verilen itme eğrisi boyunca yapısal elemanlarda çatlama, akma ve göçme oluşumu gibi yapısal karşılığa ait kritik mertebeler sünek bir yapı için belirlenebilmektedir (Corvera, 2000).

Literatürde hasar sınırlarının belirlenmesine yönelik pek çok çalışma yapılmış olup, büyük bir çoğunluğu göreli kat ötelenme oranı ile ifade edilmiştir. FEMA-356'da betonarme çerçeve sistemler için yapısal performans noktaları geçici ve kalıcı göreli kat ötelenme oranları cinsinden tanımlanmaktadır (Çizelge 2.1).

	Betonarme Çerçeveler		
Performans Seviyesi	Geçici Göreli Kat Ötelenmesi Oranı	Kalıcı Göreli Kat Ötelenmesi Oranı	
Hemen Kullanım (HK)	1%	İhmal edilebilir	
Can Güvenliği (CG)	2%	1%	
Göçmenin Önlenmesi (GÖ)	4%	4%	

Çizelge 2.1 : Yapısal performans seviyeleri (FEMA-356,2000).

Rosetto ve Elnashai (2003), meydana gelmiş olan 19 depremde gözlemlenmiş olan 99 adet deprem sonrası hasar dağılımlarına bağlı olarak değerlendirilen 340,000 betonarme yapının inceleme sonuçları kullanılarak eğriler elde edilmiştir. Gözlemsel olarak elde edilmiş olan veriler, deneysel olarak kalibre edilmiş olan HRC (Homogenised Reinforced Concrete) ölçeğine göre tekrar düzenlenmiştir. İlgili ölçeği tanımlayan göreli kat ötelenmesi oranının sınır değerleri Çizelge 2.2'de verilmektedir.

Çizelge 2.2 : HRC ölçeğine göre ISD_{max}% sınırları (Rossetto ve Elnashai, 2003).

HRC hasar durumu	Betonarme Binalar	Sünek Olmayan Betonarme Binalar
Hasarsız	0.00	0.00
Çok hafif hasar	0.13	0.32
Hafif hasar	0.19	0.43
Orta hasar	0.56	1.02
Ağır hasar	1.63	2.41
Kısmi göçme	3.34	4.27
Göçme	>4.78	>5.68

Akkar ve diğ. (2005) tarafından yapılan çalışmada binaların hasargörebilirlik olasılıkları belirlenirken hafif hasar, orta hasar ve ağır hasar durumları için tanımlanmış olan en büyük göreli kat ötelenme oranına bağlı hasar sınırları Çizelge 2.3'de gösterilmektedir.

Kat Sayısı	Hafif Hasar	Orta Hasar	Ağır Hasar
2	0.11	0.9	1.2
3	0.11	0.8	1.1
4	0.12	0.8	1.1
5	0.11	0.68	0.9

Cizelge 2.3 : Göreli kat ötelenme oranı sınırları (%) (Akkar ve diğ., 2005).

Booth ve diğ. (2004) tarafından yapılan çalışma, 1999 depremleri sonrasında Düzce'deki 4 ve 7 kat arasındaki betonarme yapıları kapsamakta olup, hasar mertebeleri en büyük göreli kat ötelenme oranı aralıkları esas alınarak belirlenmiştir (Çizelge 2.4).

Hasar Mertebeleri	Ötelenme Oranı
Hasarsız	0 - 0.5 %
Hafif Hasar	0.5 - 0.9 %
Orta Hasar	0.9 % - 1.7 %
Ağır Hasar	1.7 % - 4.5 %
Göçme	> 4.5 %

Çizelge 2.4 : Farklı hasar mertebeleri için göreli kat ötelenme oranı aralıkları (Booth ve diğ., 2004).

2.2.3 Hasargörebilirlik eğrilerinin türetilmesi

Hasargörebilirlik eğrilerinin elde edilmesinde izlenen yol, Ay ve Erberik, 2007 tarafından yapılan çalışmada Şekil 2.3'teki gibi özetlenmiştir. Bu aşamada ilk olarak, gerçekleştirilen analizler sonucunda yapısal karşılıkların, örnek olarak maksimum göreli kat ötelenme oranları, kullanılan yer hareketi kayıtlarına ait en büyük yer ivmesi *MYİ (PGA)* veya maksimum yer hızı *MYH (PGV)* değerleri ile olan ilişkisi elde edilmektedir. Herhangi bir *MYİ* ya da *MYH* değerinde dikey olarak yer alan veriler, yapısal çözümlemelerden elde edilen en büyük göreli kat ötelenmesi oranı (*MKÖ*) değerleridir. Doğal olarak yer hareketi parametresi arttıkça bu değerler de artış göstermektedir. Her düşey, sabit *MYH* değerine sahip, veri grubunun istatistiksel olarak normal dağılım gösterdiği kabul edilirse bu gruba ait ortalama ve standart sapma değerlerini hesaplamak mümkün olabilmektedir. Böylece, her düşey veri grubu iki basit istatistiksel tanım parametresi ile temsil edilebilmektedir. Bu istatistiksel veriler, hasar potansiyeli eğrilerinin oluşumu için aşılma olasılıklarının hesaplanmasında kullanılmaktadır. Aşılma olasılığı, matematiksel olarak;

$$AO_{i,j} = P\left(MKO \ge HS_i \left| MYH_j \right.\right)$$

$$(2.3)$$

şeklinde ifade edilebilir. Bu ifadede verilen $AO_{i,j}$, *j* düzeyindeki en büyük zemin hızı etkisinde oluşan *i*'inci hasar sınırının en büyük göreli kat ötelenmesi oranı cinsinden aşılma olasılığını; HS_i , *i*'inci hasar sınırını ve MYH_j ise *j*'inci MYH seviyesini temsil eder. Aşılma olasılığının görsel olarak ifadesi Şekil 2.3'de yer almaktadır.

Şekil 2.3 : Hasargörebilirlik eğrilerinin oluşturulması ile ilgili yöntemin şematik gösterimi (Ay ve Erberik, 2007).

2.3 Doğrusal Olmayan Analiz Yöntemleri ve Deprem Yönetmeliği Esasları

Ülkemizde yürürlükte bulunan DBYBHY, 2007'de yer almakta olan hesap metotları doğrusal ve doğrusal olmayan yöntemler olarak ikiye ayrılmıştır. Doğrusal hesap yöntemleri, eşdeğer deprem yükü yöntemi, mod birleştirme yöntemi ve zaman tanım alanında hesap olmak üzere üç başlık altında toplanmaktadır. Ülkemizde deprem etkisi göz önüne alınarak gerçekleştirilen çözümlemelerde az katlı yapılar için yapı düzensizliği, deprem bölgesi ve yapı yüksekliğine (H_{maks}=25~40m) bağlı olarak eşdeğer deprem yükü yöntemi, nispeten yüksek katlı yapılar içinse mod birleştirme yöntemi kullanılmaktadır. Her ne kadar bu yöntemler kolay uygulanabilir olmaları ve hesap sürelerinin kısalığı açısından mühendisler tarafından tercih edilebilir olsalar da, çoğunlukla belirsizlik barındıran deprem hareketinin yapılar üzerindeki etkilerini yeterli bir yaklaşıklıkla yansıtamamaktadır.

Performansa dayalı tasarım yaklaşımıyla gerek mevcut yapı stokunun güvenirliğinin belirlenmesinde, gerekse yeni tasarlanacak olan yapıların çözümlemelerinde can güvenliği performans seviyesinden farklı performans seviyelerinin de dikkate alınmasıyla birlikte, doğrusal olmayan çözümleme yöntemleri zorunlu olmasalar bile gerekli hale gelmiştir. Ayrıca bilgisayar teknolojisinde yaşanan gelişmeler sayesinde de doğrusal olmayan çözümleme yöntemleri günümüzde sıklıkla tercih edilir hale gelmiştir. DBYBHY, 2007'de yer almakta olan doğrusal elastik olmayan çözümleme

yöntemleri, Artımsal Eşdeğer Deprem Yükü Yöntemi, Artımsal Mod Birleştirme Yöntemi ve Zaman Tanım Alanında Hesap Yöntemi'dir. İlk iki yöntem, Artımsal İtme Analizi'nde kullanılacak olan yöntemler olarak iki başlık altında tanımlanmaktadır.

2.3.1 Artımsal itme analizi

Artımsal itme analizinde, yapı kütlesi ile uyumlu düşey yüklerin göz önüne alındığı doğrusal olmayan statik analizin sonuçları başlangıç koşulları olarak dikkate alınmaktadır. Artımsal itme analizinin "Artımsal Eşdeğer Deprem Yükü Yöntemi" ile yapılması durumunda, yapının birinci titreşim mod şekli ile orantılı olacak şekilde deprem istem sınırına kadar monotonik olarak adım adım arttırılan eşdeğer deprem yüklerinin etkisi altında analizi gerçekleştirilmektedir. Düşey yük analizini izleyen itme analizinin her adımında taşıyıcı sistemde meydana gelen yerdeğiştirme, plastik şekildeğiştirme ve iç kuvvet artımları ile bunlara ait yığışımlı (kümülatif) değerler ve son adımda deprem istemine karşı gelen maksimum değerler hesaplanmaktadır. "Artımsal Mod Birleştirme Yöntemi"nin amacı ise, taşıyıcı sistem davranışını temsil eden yeterli sayıda doğal titreşim mod şekli ile orantılı olacak şekilde monotonik olarak adım adım arttırılan ve birbirleri ile uygun biçimde ölçeklendirilen modal yerdeğiştirmeler veya onlarla uyumlu modal deprem yükleri esas alınarak "Mod Birleştirme Yöntemi"nin artımsal olarak uygulanmasıdır. Ardışık iki plastik kesit oluşumu arasındaki her bir itme adımında, taşıyıcı sistemde "adım adım doğrusal elastik" davranışın esas alındığı bir itme analizi yöntemidir.

Artımsal itme analizinde taşıyıcı sistem elemanlarında doğrusal olmayan davranışın idealleştirilmesi ve analiz modelinin oluşturulması için DBYBHY-2007'de doğrusal olmayan davranışın idealleştirilmesinde tanımlanan kurallara uyulmaktadır. Malzeme bakımından doğrusal elastik olmayan davranışın idealleştirilmesi için, literatürde geçerliliği kanıtlanmış modeller kullanılabilmektedir. Ancak, mühendislik uygulamalarındaki yaygın kullanımı nedeniyle yönetmelikte Şekil 2.4'de verilmekte olan yığılı plastik davranış modeli esas alınmaktadır. Basit eğilme durumunda plastik mafsal hipotezine karşı gelen bu modelde, çubuk eleman olarak idealleştirilen kiriş, kolon ve perde türü taşıyıcı sistem elemanlarındaki iç kuvvetlerin plastik kapasitelerine eriştiği sonlu uzunluktaki bölgeler boyunca, plastik şekildeğiştirmelerin düzgün yayılı biçimde oluştuğu varsayılmaktadır. Plastik mafsal boyu olarak

adlandırılan plastik şekildeğiştirme bölgesinin uzunluğu (L_p), genellikle eğilme doğrultusundaki kesit boyutu (h)'nin yarısına, $L_p=0.5h$, eşit alınmaktadır.

Şekil 2.4 : İç kuvvet-plastik şekildeğiştirme bağıntı kabulleri.

Analiz modelinde kullanılacak plastik kesitlerin iç kuvvet-plastik sekildeğiştirme bağıntılarında pekleşme etkisi (plastik dönme artışına bağlı olarak plastik momentin artışı) yaklaşık olarak terk edilebilir (Şekil 2.4 (a)). Bu durumda, bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki kesitlerde plastikleşmeyi izleyen itme adımlarında, iç kuvvetlerin akma yüzeyinin üzerinde kalması koşulu ile plastik şekildeğiştirme vektörünün akma yüzeyine yaklaşık olarak dik olduğu kabulü yapılmaktadır. Pekleşme etkisi göz önüne alınması durumunda, bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki kesitlerde plastikleşmeyi izleyen itme adımlarında iç kuvvetlerin ve plastik şekildeğiştirme vektörünün sağlaması gereken koşullar, uygun bir pekleşme modeline göre tanımlanabilmektedir (Şekil 2.4 (b)). Gerçekleştirilen itme analizi sonucunda, koordinatları "tepe yerdeğiştirmesi-taban kesme kuvveti" olan ve şematik olarak Şekil 2.5'de verilen itme eğrisi elde edilmektedir. Tepe yerdeğiştirmesi, binanın en üst katındaki kütle merkezinde, dikkate alınan deprem doğrultusunda her itme adımında hesaplanan yerdeğiştirmedir. Taban kesme kuvveti ise, her adımda kat seviyesindeki eşdeğer deprem yüklerinin deprem doğrultusundaki toplamıdır. Elde edilen itme eğrisi iki doğrulu bir diyagrama indirgenerek, yapının akma anındaki yerdeğiştirme ve kesme kuvveti değerleri eşit alanlar yaklaşımı ile elde edilebilmektedir.

Şekil 2.5 : Şematik itme eğrisi.

2.3.2 Zaman tanım alanında doğrusal olmayan hesap

Zaman tanım alanında doğrusal olmayan hesap, günümüz koşullarında yapısal davranışın en gerçekçi şekilde temsil edilmesine olanak sağlayan bir analiz yöntemi olup, taşıyıcı sistemdeki doğrusal olmayan davranış göz önüne alınarak sistemin hareket denkleminin adım adım entegre edilmesi esasına dayanmaktadır. Analiz sırasında her bir zaman artımında sistemde meydana gelen yerdeğiştirme, plastik şekildeğiştirme ve iç kuvvetler ile bu büyüklüklerin deprem istemine karşı gelen maksimum değerleri hesaplanır. Bina ve bina türü yapılar için zaman tanım alanında yapılan çözümlemelerde depremin tersinir etkisi de göz önüne alınmaktadır.

Yürürlükte bulunan DBYBHY, 2007 kapsamında doğrusal olmayan dinamik analizlerde yapay, kaydedilmiş veya benzeştirilmiş yer hareketleri kullanılabilmektedir. Bununla bağlantılı olarak yönetmelikte yer alan koşullardan birisi en az üç adet deprem hareketi ile hesap yapılması olup, yer hareketlerinin sağlaması gereken diğer özellikler Bölüm 2.4'te ayrıntılı olarak anlatılacaktır.

Çok serbestlik dereceli bir sistemin doğrusal olmayan davranışının belirlenebilmesi için sistemin hareket denklemi Denklem 2.4'te verilmiştir:

$$[m]{\ddot{u}}+[c]{\dot{u}}+{f_s(u,\dot{u})} = {p(t)}$$
(2.4)

Bu denklemde [m], [c]ve $\{f_s(u, \dot{u})\}$ sırasıyla kütle matrisini, sönüm matrisini ve katlarda oluşan doğrusal olmayan kesme kuvvetleri vektörünü göstermektedir. $\{p(t)\}$ ise, katlara etkiyen zamana bağlı dış kuvvetin t anındaki değeridir. Sistemin, yalnız deprem hareketi etkisinde olduğu durumda yük vektörü, $-[m]\{I\}\{\ddot{u}_s\}$ ye eşit olup,

 $\{I\}$ birim vektörü, $\{\ddot{u}_s\}$ yer ivmesini ifade etmektedir. Doğrusal olmayan davranışta kesitte çatlama öncesi, çatlama sonrası, akma sonrası ve taşıma kapasitesine ulaşıldıktan sonra şekildeğiştirmeler ve rijitlik zamana bağlı olarak değiştiğinden, rijitlik matrisi ve buna bağlı olarak sönüm matrisi zamana bağlı olarak belirtilmelidir. Denklem 2.4'te verilmekte olan, $\{\ddot{u}\},\{\dot{u}\}ve\{u\}$ terimleri ise sırasıyla zamana bağlı ivme, hız ve yerdeğiştirme vektörlerini göstermektedir.

Sabit bir Δt_i zaman aralığı:

$$\Delta t_i = t_{i+1} - t_i \tag{2.5}$$

şeklinde ifade edildiğinde t_i anındaki hareket denklemi (2.6)'daki gibi olmaktadır:

$$[m]\{\ddot{u}\}_{i} + [c]\{\dot{u}\}_{i} + \{f_{s}\}_{i} = \{p\}_{i}$$
(2.6)

*t*_{*i*+1} anında ise denklemi aşağıdaki hali almaktadır:

$$[m]\{\ddot{u}\}_{i+1} + [c]\{\dot{u}\}_{i+1} + \{f_s\}_{i+1} = \{p\}_{i+1}$$
(2.7)

Hareket denkleminin sayısal olarak çözümü için çeşitli yaklaşık sayısal yöntemler mevcuttur ve genel olarak t_i anındaki yapısal sistem davranışından faydalanılarak t_{i+1} anındaki davranışın $(\{\ddot{u}\},\{\dot{u}\}ve\{u\})$ elde edilmesi temeline dayanırlar. Bu çalışmada kullanılan DRAIN-2DX yazılımı, sözü edilen yaklaşık yöntemlerden biri olan Newmark Yöntemi (Newmark, 1959) ile sayısal çözümlemeleri gerçekleştirmektedir. Bu yöntemde, t_{i+1} anındaki davranış, t_i anındaki davranıştan faydalanılarak aşağıdaki denklemlerle bulunmakta olup, γ ve β 'nın değerleri sırasıyla $\frac{1}{2}$ ve $\frac{1}{4}$ olarak alınmaktadır:

$$\left\{\dot{u}\right\}_{i+1} = \left\{\dot{u}\right\}_{i} + \left[\left(1-\gamma\right)\Delta t\right]\left\{\ddot{u}_{i}\right\} + \left(\gamma\Delta t\right)\left\{\ddot{u}\right\}_{i+1}$$
(2.8a)

$$\{u\}_{i+1} = \{u\}_{i} + (\Delta t)\{\dot{u}\}_{i} + \left[(0.5 - \beta)(\Delta t)^{2}\right]\{\ddot{u}\}_{i} + \left[\beta(\Delta t)^{2}\right]\{\ddot{u}\}_{i+1}$$
(2.8b)

(2.8a) ve (2.8b) denklemlerinin farkı, $\{\Delta \ddot{u}\}_i = \{\ddot{u}\}_{i+1} - \{\ddot{u}\}_i$, $\{\Delta \dot{u}\}_i = \{\dot{u}\}_{i+1} - \{\dot{u}\}_i$ ve $\{\Delta p\}_i = \{p\}_{i+1} - \{p\}_i$ olmak üzere yazıldığında, (2.9) denklemi elde edilmektedir:

$$[m]\{\Delta \ddot{u}\}_{i} + [c]\{\Delta \dot{u}\}_{i} + \{\Delta f_{s}\}_{i} = \{\Delta p\}$$

$$(2.9)$$

Doğrusal olmayan kat kesme kuvvetindeki değişim ise (2.10) denklemi ile ifade edilmektedir:

$$\left\{\Delta f_s\right\}_i = \left(\left[k\right]_i\right)_{sec} \left\{\Delta u\right\}_i \tag{2.10}$$

Burada $([k]_i)_{sec}$, Şekil 2.6'da gösterilmekte olan sekant rijitliği temsil etmektedir. $\{u\}_{i+1}$ bilinmediğinden $([k]_i)_{sec}$ da belirlenememektedir. Bu noktada, küçük bir Δt aralığında, $([k]_i)_{sec}$ sekant rijitliği yerine $([k]_i)_T$ tanjant rijitliği kullanılabileceği kabulüyle denklem (2.11) elde edilmektedir:

Şekil 2.6 : Çevrim eğrisinde tanjant ve sekant rijitlikleri (Chopra, 2007).

Denklem (2.9) bu kabul doğrultusunda yeniden düzenlendiğinde, genel şekli bakımından doğrusal sistemler için yazılabilecek olan hareket denkleminden farklı olmayan aşağıdaki hali almaktadır:

$$[m] \{\Delta \ddot{u}\}_{i} + [c] \{\Delta \dot{u}\}_{i} + ([k]_{i})_{T} \{\Delta u\}_{i} = \{\Delta p\}_{i}$$

$$(2.12)$$

Denklem (2.8a) ve (2.8b) tekrar düzenlendiğinde (2.13a) ve (2.13b) denklemleri elde edilmektedir:

$$\left\{\Delta \dot{u}\right\}_{i} = \left(\Delta t\right)\left\{\ddot{u}\right\}_{i} + \left(\gamma\Delta t\right)\left\{\Delta \ddot{u}\right\}_{i}$$
(2.13a)

$$\left\{\Delta u\right\}_{i} = \left(\Delta t\right)\left\{\dot{u}\right\}_{i} + \frac{\left(\Delta t\right)^{2}}{2}\left\{\ddot{u}\right\}_{i} + \beta\left(\Delta t\right)^{2}\left\{\Delta\ddot{u}\right\}_{i}$$
(2.13b)

(2.13b) denklemi $\{\Delta \ddot{u}\}_i$ için çözülürse:

$$\left\{\Delta \ddot{u}\right\}_{i} = \frac{1}{\beta \left(\Delta t\right)^{2}} \left\{\Delta u\right\}_{i} - \frac{1}{\beta \Delta t} \left\{\dot{u}\right\}_{i} - \frac{1}{2\beta} \left\{\ddot{u}\right\}_{i}$$
(2.14)

elde edilir. (2.14) denklemi (2.13a)'da yerine konulursa:

$$\left\{\Delta \dot{u}\right\}_{i} = \frac{\gamma}{\beta \Delta t} \left\{\Delta u\right\}_{i} - \frac{\gamma}{\beta} \left\{\dot{u}\right\}_{i} + \Delta t \left(1 - \frac{\gamma}{2\beta}\right) \left\{\ddot{u}\right\}_{i}$$
(2.15)

bulunur. (2.14) ve (2.15) denklemleri (2.12) denkeleminde yerine konulup, düzenlendiğinde:

$$\left[\frac{1}{\beta(\Delta t)^{2}}[m] + \frac{\gamma}{\beta\Delta t}[c] + \left([k]_{i}\right)_{T}\right] \left\{\Delta u\right\}_{i} - \left(\frac{1}{\beta\Delta t}[m] + \frac{\gamma}{\beta}[c]\right) \left\{\dot{u}\right\}_{i} - \left[\frac{1}{2\beta}[m] + \Delta t \left(\frac{\gamma}{2\beta} - 1\right)[c]\right] \left\{\ddot{u}\right\}_{i} = \left\{\Delta p\right\}_{i}$$
(2.16)

şeklini almaktadır. Denklemin başında yer almakta olan $\{\Delta u\}_i$ 'nin terimleri katsayı niteliğindeki rijitliği ifade etmekte olup, aşağıdaki şekilde yazılabilmektedir:

$$\left[\hat{k}\right]_{T} = \left[\left(\left[k\right]_{i}\right)_{T} + \frac{\gamma}{\beta\Delta t}\left[c\right] + \frac{1}{\beta\left(\Delta t\right)^{2}}\left[m\right]\right]$$
(2.17)

$$\left[\hat{k}\right]_{T} \left\{\Delta u\right\}_{i} = \left\{\Delta \hat{p}\right\}_{i} \tag{2.18}$$

(2.18) denklemi, (2.16) denkleminde yerine konur ve düzenlenirse aşağıdaki (2.19) denklemine ulaşılır:

$$\left[\Delta \hat{p}\right]_{i} = \left\{\Delta p\right\}_{i} + \left(\frac{1}{\beta\Delta t}\left[m\right] + \frac{\gamma}{\beta}\left[c\right]\right)\left\{\dot{u}\right\}_{i} + \left[\frac{1}{2\beta}\left[m\right] + \Delta t\left(\frac{\gamma}{2\beta} - 1\right)\left[c\right]\right]\left\{\ddot{u}\right\}_{i}$$
(2.19)

 t_i anındaki $(\{\dot{u}\}_i, \{\ddot{u}\}_i)$ hız ve ivme değerlerinin bilinmesi halinde, dış yükteki değişime bağlı olarak $\{\Delta \hat{p}\}_i$ ve $\{\Delta u\}_i$ bulunabilir. $\{\Delta u\}_i$ elde edildikten sonra, (2.14) ve (2.15) denklemleriyle $\{\ddot{u}\}_i$ ve $\{\dot{u}\}_i$ hesaplanabilir ve elde edilen değerler t_i anındaki ivme, hız ve yerdeğiştirmeye eklenerek t_{i+1} anındaki değerleri elde edilebilir.

DRAIN-2DX yazılımı, Newmark yönteminin özel bir hali olan sabit ortalama ivme yöntemini kullanmaktadır (Şekil 2.7). Bu yöntemde, Δt zaman aralığı boyunca ivmenin sabit kaldığı ve t_i ile t_{i+1} anlarındaki ivmelerin ortalamasına eşit olduğu varsayılır.

Şekil 2.7 : Sabit ortalama ivme yöntemi (Chopra, 2007).

Sabit ortalama ivme τ değişkeninin bir fonksiyonu olarak aşağıdaki şekilde yazılabilir:

$$\ddot{u}(\tau) = \frac{1}{2} (\ddot{u}_{i+1} + \ddot{u}_i)$$
(2.20)

(2.20) denkleminin ilk integrasyonu hızı, ikinci integrasyonu ise yerdeğiştirmeyi vermek üzere (2.21) ve (2.22) ifadeleri elde edilir:

$$\dot{u}(\tau) = \dot{u}_i + \frac{\tau}{2} (\ddot{u}_{i+1} + \ddot{u}_i)$$
(2.21)

$$u(\tau) = u_i + \dot{u}_i \tau + \frac{\tau^2}{4} (\ddot{u}_{i+1} + \ddot{u}_i)$$
(2.22)

 τ 'nun Δt 'ye eşit olması durumunda yukarıdaki iki denklem t_{i+1} anındaki hız ve yerdeğiştirmeyi vermektedir:

$$\dot{u}_{i+1} = \dot{u}_i + \frac{\Delta t}{2} \left(\ddot{u}_{i+1} + \ddot{u}_i \right)$$
(2.23)

$$u_{i+1} = u_i + \dot{u}_i \Delta t + \frac{(\Delta t)^2}{4} (\ddot{u}_{i+1} + \ddot{u}_i)$$
(2.24)

(2.23) ve (2.24) denklemleri, γ ve β 'nın değerlerinin sırasıyla $\frac{1}{2}$ ve $\frac{1}{4}$ olması durumunda, (2.8a) ve (2.8b) denklemleri ile özdeş olduğu görülmekte olup; sabit ortalama ivme yönteminde kullanılmaktadır.

Bu tür bir yaklaşımla çözümleme gerçekleştirildiğinde iki tip hata ile karşılaşılabilmektedir. Sabit bir Δt zaman aralığı için yapılacak çözümlemede, sekant rijitliği yerine tanjant rijitliğinin kullanılmasından ötürü kaynaklanan hata miktarı önemli değerlere ulaşabilir. Bu hata miktarı Newton-Rapson iterasyonu gibi iteratif bir yöntemle azaltılabilmektedir. Diğer bir hata ise sabit Δt nedeniyle çevrim eğrisinin yön değiştirdiği noktanın belirlenmesinde oluşacak hatadır. Bu nokta için hata miktarı, yeterince küçük bir Δt değeri ile çözümleme yapılmasıyla azaltılabilir.

DRAIN-2DX yazılımı, iteratif bir yöntem kullanmak yerine, doğrusal olmayan dinamik çözümlemenin her adımında bulunan artık yükü, bir sonraki adımda yapıya etkiyen yükü düzeltmek üzere kullanarak, sekant rijitliği yerine tanjant rijitliğinin kullanılması nedeniyle ortaya çıkan hatayı azaltmaktadır. Her adımda ortaya çıkan artık yüklerin birikerek, çözümlemenin ilerleyen adımlarında sonuçları etkileyecek boyutlara ulaşmasını engellemek için yeterince küçük bir zaman aralığı ile çözümleme yapılması gerekmektedir.

DRAIN-2DX yazılımı, sistemin doğrusal olmayan davranışını her eleman için tanımlanan histeretik kuvvet-yerdeğiştirme ilişkileri ile göz önüne almaktadır. Bu yaklaşım, yığılı plastisite, diğer bir deyişle plastik mafsal kabulüne dayanmaktadır. Elemanlarda plastik mafsal uzunluğu olarak tanımlanan bölgeler boyunca plastik şekildeğiştirmelerin sabit kaldığı ve en büyük değere eşit olduğu kabul edilmekte olup, bu kabul toplam şekildeğiştirmenin hesabında önemli kolaylık sağlamaktadır.

Yapısal bir elemanın, tekrarlı, tersinir yüklemeler altındaki kuvvet-yerdeğiştirme bağıntısındaki elastik olmayan malzeme davranışı dikkate alındığında, çevrimsel bir sistem davranışı ile karşılaşılmaktadır. Bu davranış biçimi esas alınarak, literatürde farklı yapısal çevrim ilişkileri, etkiyen yükün tersinir karakteristiklerini kapsayacak

şekilde çeşitli araştırmacılar tarafından önerilmektedir. En genel haliyle "Histeretik Model" olarak adlandırılan bu ilişkiler, yapısal sistemi oluşturan elemanların yükleme, boşaltma ve yeniden yükleme etkileri altındaki karşı gelen yerdeğiştirme zarflarını matematik olarak ifade etmektedir. Betonarme bir eğilme elemanı için yatay yük altında ölçülen tepe noktası yerdeğiştirmesine bağlı olarak deney sonucu elde edilen çevrim eğrisi şematik olarak Şekil 2.8'de gösterilmektedir.

Şekil 2.8 : Şematik çevrim eğrisi (Angelo ve Pierino, 2009).

İdeal elastoplastik modelde (Şekil 2.9a), kuvvet-yerdeğiştirme eğrisinin ilk kısmının doğrusal olarak arttığı, kesitte akmaya ulaşıldıktan sonra yük almadan şekildeğiştirmeye devam ettiği kabul edilir. Bu tip modelde yükleme rijitliği ile yük boşalma rijitliği birbirine eşittir.

Çift doğrulu (bilinear) modelde ise, yapı elemanında gerilme pekleşmesi özelliği gözönüne alınmaktadır. Bu modelde kesit akmaya ulaşıncaya kadar elastik bir davranış söz konusudur. Akma anından sonra, eleman rijitliği azalarak yerdeğiştirmeye devam eder. Kesitte oluşacak rijitlik, önceki kolun rijitliği oranından ifade edilir. Şekil 2.9b'de görüldüğü üzere, çift doğrulu model, elastoplastik modele göre daha gerçekçi olmakla beraber, akmadan sonraki yük boşaltılması ve ters yükleme durumlarında gerçekleşecek rijitlik azalımı davranışını içermemektedir. Bunun sonucu olarak yeni modeller türetilmiştir.

Üç doğrulu (trilinear) modelde çift doğrulu modelden farklı olarak, yapı elemanında çatlama durumu da dikkate alınmaktadır. Bu nedenle ana iskelet eğrisi, çatlama öncesi,

çatlama sonrası ve akma sonrasını temsil eden üç doğru ile oluşturulmuştur. Yük boşalması, çatlamamış elemanın rijitliğine eşit olacak şekilde meydana gelmektedir (Şekil 2.9c).

Şekil 2.9 : a) Elastoplastik, b) Çift doğrulu, c) Üç doğrulu, d) Rijitliği azalan (Clough), e) Takeda, f) Başlangıca yönelik, g) Roufaiel-Meyer, h)Bouc-Wen.

Başka bir *rijitliği azalan* çevrim modeli Clough (1966) tarafından önerilmiş olup, geri yükleme durumunda rijitlik azalımı etkisini içerecek şekilde oluşturulmuştur (Şekil 2.9d). Model, gerilme pekleşmesi etkisini dikkate alan çift doğrulu model üzerinde çalışmaktadır. İlk yükleme durumunda kesit akmaya ulaşmışsa, yük boşalması başlangıç rijitliğine paralel gerçekleşmektedir. Yükleme terse döndüğünde rijitlik azalmaktadır. Bu durumdaki rijitlik, ters yüklemenin başladığı noktadan ters yöndeki yüklemeye ait akma noktasına yönlenen doğrunun eğimine eşittir. Yeni bir yükleme yönünde kesit önceden akmaya ulaşmış ise, yeni yüklemeye ait rijitlik, yüklemenin başladığı nokta ile en büyük pozitif yerdeğiştirmenin gerçekleştiği noktaya uzanan doğrunun eğimi ile belirlenir (Saiidi, 1982).

Takeda ve diğ. (1970) tarafından geliştirilmiş olan bir diğer rijitliği azalan modelde eğri, çatlama öncesi, çatlama ve akma sonrası durumlarını ifade eden üç doğrulu bir ana iskelete sahiptir (Şekil 2.9e). Elemanın yük boşalması ve geri yükleme durumlarındaki rijitlikleri akma durumundaki rijitlikten ve birbirlerinden farklıdır. Üç doğrulu Takeda modeli, çatlama noktası çevrim düzleminin başlangıcı olarak kabul edilerek iki doğrulu Takeda modeline dönüştürülebilir (Otani ve Sözen, 1972).

Tersinir kesme kuvveti ve kayma yerdeğiştirmelerinin zamana bağlı değişimini ifade eden *başlangıca yönelik* çevrim modelinde, yükleme ilk başta ana iskelet eğrisini izler (Şekil 2.9f). Çatlamadan önce eleman elastik davrandığı için doğal olarak histeretik enerji kaybı olmaz. Bu durumda, yükleme ve boşaltma sırasında sistem kayma rijitliği başlangıç eğimini takip eder. Yükün azalarak boşalmaya başlaması ile çevrim başlangıca yönelik olarak çatlakları kapanmış bir kesit gibi, ulaştığı en büyük kesme kuvveti ve yerdeğiştirmeyi başlangıca bağlayan bir rijitlikle doğrusal bir davranış izler. Bir sonraki yükleme de, bu başlangıca yönelmiş boşalma güzergâhını izleyerek ana çevrim iskeleti ile rastlaşana kadar ya da yeniden boşalma olana kadar devam eder. Ana çevrim iskeleti ile rastlanılırsa, ana eğri takip edilir. Ana iskeleti geçmeden boşalma olursa, başlangıca yönelir (Taşkın, 2001).

Roufaiel-Meyer modelinde rijitlik azalımının yanı sıra dayanım azalımı da dikkate alınmaktadır. Değişim her yüklemede üç doğruludur; fakat yük boşalmalarındaki rijitlik değişmektedir (Şekil 2.9g). Ters yükleme sırasında ilk olarak kesitteki çatlaklar kapanır (*pinching*). Çatlakların kapanmasından sonra etkiyen yükler altında şekildeğiştirmeler hızla artmaya başlar. İlk yük çevriminden sonraki ikinci yük çevriminde, meydana gelen kalıcı şekildeğiştirmelerden dolayı kesitin akma ve göçme

sınırları daha düşük değerlerde oluşur. Bunun sonucu olarak her yük çevriminde dayanımda da bir azalma meydana gelir (Taşkın, 2001).

Bouc-Wen çevrim modeli ise en yumuşak (smooth) modellerden biri olup, dinamik bir hareket denklemi kullanılarak oluşturulmuştur. Bu denklemde histeretik davranış eğrisini şekillendiren bir iç değişken bulunmaktadır. Bu iç değişken, sabitleri histeretik döngünün şeklini kontrol eden ve deneysel olarak belirlenen bazı parametrelerden oluşan, değişkenleri ise hız ve iç değişkenin kendisi ile birinci türevi olan diferansiyel denklemin çözümüyle bulunmaktadır (Marano ve Greco, 2003).

Bu tez çalışmasında taşıyıcı olan elemanların doğrusal olmayan davranışlarını temsil etmek üzere Ascheim, 2005 tarafından DRAIN-2DX (Prakash ve diğ., 1993) programında güncellenen ve betonarme elemanlardaki akma sonrası rijitlik ve dayanım azalmasını dikkate alan çevrim modeli kullanılmıştır (Şekil 2.9g).

2.4 Kullanılan ve Geliştirilen Bilgisayar Programları

2.4.1 DRAIN-2DX programı ve kullanılan büyüklükler

Binaların doğrusal olmayan analizlerini gerçekleştirmek için kullanılan DRAIN-2DX yazılımı California Üniversitesi, Berkeley'de geliştirilen Fortran tabanlı bir yapısal analiz programıdır. Bu yazılım, düğüm noktalarında birbirine bağlı doğrusal veya doğrusal olmayan elemanlardan oluşan ve iki boyutlu düzlem olarak modellenen yapı üzerinde düşey yük çözümlemesinin yanı sıra doğrusal olmayan statik ve dinamik analiz de gerçekleştirebilmektedir.

Program doğrusal olmayan bir problemi çözmek için her zaman adımında ayrı bir çözüm yapmaktadır. Her adımda, yüklemeden dolayı ortaya çıkan etkilerin sistem davranışını değiştirip değiştirmediğine bakılmakta ve gerekirse rijitlik yeniden hesaplanmaktadır. Böylece istenilen doğrusal olmayan davranış sistemde tanımlanmış olmaktadır.

DRAIN-2DX yazılımında, yapı elemanında akma ya da elastik olmayan yük boşaltımı gibi nedenlerden dolayı sistem rijitliğinde meydana gelen herhangi bir değişim "*olay (event)*" olarak tanımlanmıştır. Programdaki çözüm stratejisinde, rijitlik değişimlerini göz önüne alan bir yöntem takip edilmekte ve elemanların akma değerlerini belirlemek üzere tanımlanan "*sayısal yaklaşıklık mertebesi*" büyük önem taşımaktadır. Tanımlanan mertebenin değerinin çok küçük olması durumunda ($<1x10^{-2}$), en kritik elemandaki en kritik kesitin akması sağlanmış olmaktadır ki bu, her bir elemandaki her bir kesitin farklı zamanlarda akmasına ve rijitlik matrisinin tekrar tekrar yenilenmesine neden olmakta ve analizin süresini uzatmaktadır. Tolerans değerinin büyük tanımlanması durumunda ($>1x10^{-2}$) ise, birçok elemandaki birçok kesitin normalden daha büyük ve birbirine yakın değerlerde akması sağlanarak rijitlik matrisinin yenilenme sayısı azaltılmakta ve analiz süresi kısalmaktadır. Ancak bu durumda gerçekleştirilen analizde dengelenmemiş artık yük değerleri artmakta ve analizin doğruluk payı azalmaktadır.

Dengelenmemiş yüklerden kaynaklanan hatalar programda dikkate alınmaktadır. Eğer sistemdeki tüm elemanlar çok doğrulu kuvvet-şekildeğiştirme bağıntılarına sahipse, tolerans değerleri küçük tanımlanmışsa ve eleman rijitliği hızlı değişmiyorsa çözüm denge durumuna yakın kalarak, küçük dengelenmemiş yük durumları oluşmaktadır. Aksi durumda programda önemli dengesizlikler oluşabilmekte ve analizin daha geniş bir yük adımında tekrar edilmesi gerekmektedir.

DRAIN-2DX programında yapı sistemlerinin veri girişleri hazırlanırken, ilk olarak sistemin düğüm noktaları *X* ve *Y* global eksenlerinde koordinatları ile tanımlanmaktadır. Düzlem çözüme uygun olarak düğüm noktaları *X* ve *Y* eksenlerinde öteleme, *Z* ekseninde dönme olmak üzere üç serbestliğe sahiptir. Düğüm noktalarının diğer düğüm noktalarına bağlı ya da mesnetli olması durumları ilgili kısımlardaki komutlarla tanımlanmaktadır. Kütle matrisi, yapının tüm kütlelerinin düğüm noktalarında toplandığı kabulüyle oluşturulmaktadır.

Yapı sistemini oluşturan taşıyıcı ya da taşıyıcı olmayan elemanlar için programın içinde önceden tanımlanmış olan istenilen davranış özelliğine sahip eleman tipi seçilmektedir. İlgili eleman tipine göre yapı malzemelerine ait bilgiler ve kesitlere ait karakteristikler giriş bilgisi olarak verilmektedir. Herhangi bir elemanın sönüm matrisi, denklem (2.25)'de verildiği üzere kütle ve rijitlik matrisleri ile orantılı olarak tanımlanmaktadır.

$$[C] = \alpha[M] + \beta[K_e] \tag{2.25}$$

Sönüme etki eden α ve β sayılarının hesaplanmasında (2.26)'da ifadeleri verilmekte olan Rayleigh Sönümü (Chopra, 2007) kullanılmıştır. Bu ifadelerde ω_1 ve ω_2 sırasıyla

birinci ve ikinci moda ait açısal frekansları; ξ ise 0.05 olarak alınan kritik sönüm yüzdesini göstermektedir.

$$\alpha = \xi \times \frac{2\omega_1 \omega_2}{\omega_1 + \omega_2} \qquad \beta = \xi \times \frac{2}{\omega_1 + \omega_2} \tag{2.26}$$

Yapı elemanlarının doğrusal olmayan davranışını temsil eden model, gerilme pekleşmesi oranı, doğrusal kısımdaki ve yük boşalım durumundaki rijitlik değerleri gibi parametrelerin yapısal modelin hazırlanması kısmında belirtilmesiyle ortaya konulmaktadır.

2.4.1.1 Taşıyıcı sistem elemanları

Bu tez kapsamında, taşıyıcı olan elemanların doğrusal olmayan davranışlarını temsil etmek üzere DRAIN-2DX programının betonarme elemanlardaki akma sonrası rijitlik ve dayanım azalmasını dikkate alan ve Şekil 2.10'da verilmekte olan iskelet eğrisi ile gösterilen çevrim modelinin ilave edildiği sürümde yer alan 7-numaralı plastik mafsallı kiriş-kolon elemanı kullanılmıştır (Ascheim, 2005). 7-numaralı eleman, doğrusal davranışı temsil eden elastik bir kısım, doğrusal olmayan davranışı temsil eden elastik bir kısım, doğrusal olmayan davranışı temsil eden elastik parçanın uçlarında oluşturulan plastik mafsallar ve uzunluğu program içinde tanımlanabilen rijit uç kısımlardan meydana gelmektedir. Çerçeveleri birbirine bağlayan elemanlar ve dolgu duvarları temsil eden diyagonaller içinse 9-numaralı bağlantı elemanı kullanılmıştır.

Şekil 2.10 : 7 numaralı elemana ait eleman geometrisi ve moment-eğrilik bağıntısına ait iskelet eğrisi.

Çevrim modelinde görülen M_y ve M_u sırasıyla akma ve kapasite momentlerini; χ_y ile χ_u ise bunlara karşı gelen eğrilikleri temsil etmektedir. k_1 başlangıç rijitliği; k_2 ve k_3 pozitif ve negatif yükleme doğrultuları için akma sonrası rijitlikleri; k_4 yük boşalması

için rijitliği ve α ise pekleşme oranını göstermektedir. Yapısal elemanların doğrusal olmayan davranışlarının modellenmesinde rijitlik azalmasını dikkate alan bu çevrim modeli için gerekli olan moment-eğrilik ilişkileri KESDON programı (Hasgür, 2009) ile hesaplanmıştır. Kolonlardaki simetrik donatı düzeninden ötürü eğilme momentleri pozitif ve negatif yönler için birbirine eşit olmakta ($M^+=M^-$); ancak kirişler için simetrik olmayan donatı düzeninden ötürü değişmektedir. Diğer yandan kirişlerin eksenel kuvvetleri rijit diyafram kabulü nedeniyle ihmal edilmiştir.

Yapısal modellerde her iki yönde oluşturan çerçeveler bağlantı elemanlarıyla birbirlerine bağlanarak sözde (*pseudo*) büyük bir çerçeve oluşturulmaktadır. Bu amaçla tanımlanan 9-numaralı bağlantı elemanına ait genel kuvvet-şekildeğiştirme ilişkisi Şekil 2.11'de verilmektedir. Bu bağlantı elemanlarının çerçeveler arası kuvvet aktarımını herhangi bir şekildeğiştirme yapmadan gerçekleştirmesi için akma rijitlikleri (K_1) taşıyıcı sistem elemanlarına göre oldukça yüksek (10⁶ mertebelerinde) tutularak ve K_2 , K_3 ve K_4 rijitlikleri sıfır olarak tanımlanarak bağlantı elemanlarının elastik davranması sağlanabilmektir.

Şekil 2.11 : 9 numaralı elemana ait kuvvet-şekildeğiştirme ilişkisi.

Her bir yapının analitik modeli oluşturulduktan sonra ilk adım olarak modal analizleri gerçekleştirilerek birinci ve ikinci titreşim modlarına ait periyotlar hesap edilip, kütle ve rijitlikle orantılı olan sönüm oranları elde edilip ve programda ilgili alanlarda tanımlanmaktadır.

2.4.1.2 Dolgu duvar modeli

Dolgu duvarlar, mimari fonksiyon gereği yapının taşıyıcı sistemini oluşturan çerçevelerin arasındaki boşlukların doldurulması amacıyla, daha çok kil malzemeden üretilen ve çoğunlukla boşluklu tuğla elemanların örülmesiyle oluşturulurlar. Her ne

kadar taşıyıcı olmayan eleman olarak adlandırılsalar da, taşıyıcı sistemin yatay yükler altındaki davranışına etkileri, çerçeve ile duvar arasındaki yük aktarımı engellenmedikçe, göz önüne alınmalıdır. Dolgu duvarları, yapının yanal rijitliğini ve enerji yutma kapasitesini arttırarak dinamik yükler altındaki davranışını önemli derecede etkilemektedir. Yapının yanal rijitliğini arttırmaları sebebiyle, yapının mod şeklini ve periyodunu değiştirmektedirler.

Dolgu duvarlı çerçeveler ile ilgili ilk çalışma 1956 yılında Polyakov tarafından yapılmıştır (Al-Chaar, 2002). Dolgu duvarların eşdeğer diyagonal basınç çubukları olarak modellenebilmesi, Stafford Smith tarafından 1962 yılında ortaya atılarak incelenmiştir. Stafford araştırmalarında dolgu duvarlı çerçevelerin yatay rijitliklerinin ve dayanımlarının sadece malzeme karakteristik özelliklerine değil, aynı zamanda birbirleri ile olan etkileşim yüzeylerine de bağlı olduğunu bulmuştur (Toker, 2007). Son zamanlarda ise, çok katlı yapıların tasarımı ve çözümlenmesinde özellikle (P- Δ) etkilerinin sınırlanması temel tasarım felsefesi haline gelmiştir. Çerçeveler ne kadar esnekse ikinci mertebe etkileri de o kadar fazla olduğundan, yatay rijitliği arttırarak (P- Δ) etkisini azaltan dolgu duvarların etkisi geçmişe oranla daha da fazla önem taşımaktadır (Saneijad ve Hobbs, 1995).

Sünek ve esnek taşıyıcı sistemlere sahip yapıların, gevrek ve rijit dolgu duvarlar ile birleştirilmesi durumunda yapının dinamik özellikleri değişmektedir. Dolgu duvarlar, yatay yüklere karşı koyacak şekilde tasarlanmadılarsa hasar görürler ve karşılanamayan yükler ana taşıyıcı sisteme aktarılırlar. Bazı durumlarda dolgu duvarların ve yapıdaki betonarme elemanların etkileşimi ile oluşan kuvvetler yapıda beklenmedik bir davranışa sebep olabilirler. Bu da yapı elemanlarının çeşitli düzeylerde hasar almalarına, hatta bazı durumlarda kısmi göçmelere neden olur (Tomazevic, 1999).

Dolgu duvarlı çerçeve tipi yapıların deprem etkisi altındaki davranışları incelendiğinde, yatay derz kayması, çapraz çatlama, köşe kırılması ve düzlem dışı kırılma gibi bazı karakteristik davranış biçimleri gösterdikleri belirlenmiştir (Toker, 2007).

Al-Chaar tarafından önerilen yöntem, yatay yükler etkisi altındaki dolgu duvarlı çerçevenin şekildeğiştirmeleri esas alınarak geliştirilmiştir. Bu davranışa göre, duvarın yük aldığı köşegen doğrultusunda duvar orta bölgesinde artan basınç etkisinden dolayı

diyagonal çatlaklar oluşmaktadır. Duvarın yük almadığı köşegen doğrultusunda ise, köşelerde duvar ve çerçeve birleşimlerinde açılmalar ve dolayısıyla o doğrultuda çekme etkileri oluşmaktadır (Şekil 2.12).

Şekil 2.12 : Dolgu duvarlı betonarme çerçevenin yatay yük etkisindeki davranışı.

Böyle bir durumda deprem yüklerinin tersinir olduğu da dikkate alınarak, duvarın modellenmesinde Şekil 2.13 ve 2.14'de gösterilen iki adet eşdeğer basınç çubuğu tanımlanarak matematik model oluşturulur (Hasgür ve diğ., 2009).

Şekil 2.13 : Dolgu duvarlı betonarme çerçevede basınç çubuğu.

Şekil 2.14 : Dolgu duvarın çapraz diyagonaller ile modellenmesi.

Ele alınan yapılarda dolgu duvarlar, DBYYHY'de öngörülen boşluklu tuğlanın elastisite modülünü E_w =1000 MPa; kayma dayanımını τ_w =0.15 MPa olarak ve yapılarda kullanılan beton ve çelik malzemelerinin karakteristik değerleri alınarak modellenmiştir. Dolgu duvar davranışını temsil eden *a* genişliğinde ve *t* kalınlığındaki eşdeğer bir basınç çubuğu (2.27)'deki eşitlikler kullanılarak belirlenmektedir:

$$\lambda_{duvar} = \left[\frac{E_{duvar} \times t_{duvar} \times \sin 2\theta}{4E_c I_k h_{duvar}}\right]^{1/4}$$

$$a_{duvar} = 0.175 \times \left(\lambda_{duvar} \times h_k\right)^{-0.4} \times \tau_{duvar}$$

$$A_{duvar} = a_{duvar} \times t_{duvar}$$
(2.27)

Burada;

 λ_{duvar} : duvardan çerçeveye gelen bağıl rijitlik

nauvar . dolga daval yaksekiigi	h _{duvar}	: dolgu duvar yüksekliği
---------------------------------	--------------------	--------------------------

*t*_{duvar} : dolgu duvar kalınlığı

 h_k : kat yüksekliği

 D_{duvar} : eşdeğer diyagonal çubuğun boyu

*a*_{duvar} : eşdeğer diyagonal çubuğun genişliği

Aduvar : eşdeğer diyagonal çubuğun yataydaki enkesit alanı

- θ : diyagonal çubuğun yatayla yaptığı açı
- *E*_{duvar} : dolgu duvar elastisite modülü
- E_c : betonun elastisite modülü

I_k : kolonun atalet momenti

 τ_{duvar} : dolgu duvarın kayma dayanımı

büyüklüklerine karşı gelmektedir. Verilen eşitlikler kullanılarak, duvar-çerçeve birleşimi bağıl rijitliği tanımlanmaktadır. Oluşturulan eşdeğer basınç çubuk elemanlarının eksenel rijitliklerinin ve kesme dayanımlarının hesabı içinse aşağıdaki (2.28) ifadeleri kullanılmıştır.
$$k_{duvar} = \frac{a_{duvar} \times t_{duvar} \times E_{duvar}}{D_{duvar}}$$

$$V_{duvar} = A_{duvar} \times \tau_{duvar}$$
(2.28)

Burada;

*k*_{duvar} : eşdeğer diyagonal çubuğun rijitliği

 V_{duvar} : dolgu duvarın kesme kuvveti dayanımı

değerlerine karşı gelmektedir.

Taşıyıcı olmayan dolgu duvarların doğrusal olmayan davranışları da Şekil 2.11'deki kuvvet-yerdeğiştirme ilişkisi ile tanımlanabilmektedir. Ancak yapılan karşılaştırmalı analizler sonrasında, taşıyıcı olmayan elemanların çatlamadan sonra da bir miktar yük aldığı kabulü gerçeklik göstermemiş ve kapasite aşıldıktan sonra ilave yük almadıkları, ancak gerçekte oluşacak kayma şekil değiştirmelerinden ötürü bir süre daha, *çatlama yerdeğiştirmesinin %10'u mertebesine kadar*, mevcut yükün taşınabileceği kabulüyle k_2 ve k_3 rijitliklerinin sıfır alınmasına karar verilmiştir (Şekil 2.15). Yük boşalmasının ise başlangıç rijitliğini takip etmediği kabulüyle $1x10^6$ değeri k_4 rijitliği için seçilmiştir. Ayrıca u_2 değerinden itibaren duvarların yük taşımadıkları kabul edilmiştir.

Modellemede boşluklu tuğla özelliklerine uygun olarak seçilen k_{duvar} başlangıç rijitliği, Şekil 2.15'de görülen k_1 rijitliğine karşı gelmektedir.

Şekil 2.15 : Dolgu duvarlar için kuvvet-yerdeğiştirme ilişkisi.

2.4.2 TARSCTHS programı ile yerel zemin koşullarına uyumlu yapay deprem kayıtlarının üretilmesi

2007 yılında yürürlüğe giren DBYBHY'in esaslarına göre, zaman tanım alanında doğrusal olmayan hesapta kullanılacak yer hareketleri, yerel zemin koşullarına uygun

olarak seçilen gerçek deprem kayıtları ya da yapay veya benzeştirilmiş deprem yer hareketleri olarak uygulanabilmektedir. Her durum için aşağıdaki koşullar sağlanmalıdır:

- i. Kuvvetli yer hareketi kısmının süresi, binanın birinci doğal titreşim periyodunun 5 katından ve 15 saniyeden daha kısa olmayacaktır.
- ii. Üretilen deprem yer hareketinin sıfır periyoda karşı gelen spektral ivme değerlerinin ortalaması A_{0g} 'den daha küçük olmayacaktır.
- iii. Yapay olarak üretilen her bir ivme kaydına göre %5 sönüm oranı için yeniden bulunacak spektral ivme değerlerinin ortalaması, göz önüne alınan deprem doğrultusundaki hâkim periyod T_1 'e göre $0.2T_1$ ile $2T_1$ arasındaki periyodlar için, $S_{ae}(T)$ elastik spektral ivmelerinin %90'ından daha az olmayacaktır.

Zaman tanım alanında doğrusal olmayan dinamik çözümlemede kullanılacak olan yer hareketi sayısı da önemli bir husus olup, yönetmeliğe göre üç kayıt kullanıldığında yapısal karşılıkların en büyükleri, en az 7 hareket kullanıldığında ise ortalamaları yapısal istemler olarak ele alınmaktadır.

Tez çalışmasında gerçekleştirilen doğrusal olmayan dinamik analizlerde kullanılmak üzere, DBYBHY-07'de tanımlanan %5 sönümlü ve 50 yılda aşılma olasılığı %10 olan tasarım spektrumu esas alınarak, Z2 yerel zemin sınıfı kabulüyle birinci derece deprem bölgesi (*A*₀=0.4*g*) için 7 adet yapay yer hareketi üretilmiştir. Yapay yer hareketlerini üretmek için Papageorgiou ve diğ. (2000) tarafından geliştirilmiş olan TARSCTHS yazılımı kullanılmıştır. Teorik olarak Deodatis (1996)'in çalışmasını esas almakta olan bu yazılımla, karşılık spektrumu elastik tasarım ivme spektrumuna benzeyen yapay kayıtlar üretmek mümkün olmaktadır. Yazılımda "*Güç Spektral Yoğunluk Fonksiyonu*" kullanılmak suretiyle yönetmelikteki tasarım spektrumuna ardışık yaklaşımlı (*iterative*) bir yöntemle erişmeyi amaçlayan bir algoritma kullanılmaktadır. İlk adım olarak farklı faz açıları için rastgele sinüzoidal hareketler üretilmektedir. Herhangi bir rastgele sinüzoidal hareket aşağıdaki (2.29) ifadesiyle tanımlanmaktadır:

$$\ddot{x}(t) = \sum_{n=1}^{N} A_n \sin\left(\omega_n t + \varphi_n\right)$$
(2.29)

Burada;

 ω_n : Açısal frekans

 φ_n : 0<t<2 π aralığında 1/2 π şiddetinde düzgün dağılımlı olasılık yoğunluk fonksiyonuna sahip rastgele faz açıları

 A_n : Genlik \longrightarrow Spektral güç yoğunluk fonksiyonu $G(\omega)$ 'ya bağlı

N: Yeteri kadar büyük bir sayı (500~1000) dır.

Tasarım ivme spektrumundan bulunan güç spektrum yoğunluk fonksiyonu, uygun bir filtre fonksiyonu ile filtrelendikten sonra rastgele faz açıları ile birleştirilerek sinüzoidal hareketler türetilmektedir. Üretilen bu sinüzoidal sinyaller toplanarak uygun bir $\beta(t)$ deterministik zarf fonksiyonu ile çarpılmakta ve böylece yapay bir kayıt elde edilmektedir.

$$\ddot{x}(t) = \beta(t) \sum_{n=1}^{N} A_n \sin(\omega_n t + \varphi_n)$$
(2.30)

Belirli frekans değerlerinde ve adım sayısında ardışık yaklaşıma dayanan bir yöntem kullanılarak, tasarım ivme spektrumu ile karşılık spektrumunun yaklaştırılması sağlanmaktadır. Yazılımın kullandığı bu yöntemde, seçilen frekans değerlerinde karşılık spektrumu ile tasarım ivme spektrumunun ordinatları arasındaki ölçekleme katsayısı hesaplanmaktadır. Burada, belirli bir zaman aralığında üretilmiş olan kayıtların güç spektral yoğunluk fonksiyonunun,

$$G(\omega_n) \cong \lim_{n \to \infty} \frac{\left| \int_{0}^{h\Delta t} x_r(t) e^{-i\omega_n t} dt \right|^2}{2\pi n \Delta t}$$
(2.31)

olduğu göz önünde bulundurularak elde edilen ölçeklenme katsayısının karesi ile güç spektral yoğunluk fonksiyonu ayarlanarak kayıt düzeltilmektedir.

$$G(\omega_n)_{i+1} = G(\omega_n)_i \left[\frac{S_a(\omega_n)}{S_a(\omega_n)_i}\right]^2$$
(2.32)

Yeterli yaklaşıklığın sağlandığı iterasyonun son adımında elde edilmiş olan frekans tanım alanındaki güç spektral yoğunluk fonksiyonundan zaman tanım alanına geçerken,

$$a(t) = \sum_{n=1}^{N} 2\sqrt{G(\omega_n) \times \Delta \omega_n} \sin(\omega_n t + \varphi_n)$$
(2.33)

harmonik model fonksiyonları kullanılmakta ve programın sonunda yapay yer hareketi kaydı a(t) üretilmiş olmaktadır.

Yönetmelik koşulları göz önünde bulundurularak, yapay yer hareketlerinin her birinde zaman aralığı Δt =0.005*s* için 5000 adet ivme değeri üretilmiş, toplamda süresi 25s olan yapay yer hareketleri elde edilmiştir. Aşağıdaki Şekil 2.16 üretilen yapay yer hareketlerinin ivme izlerini göstermektedir. Üretilen yapay yer hareketlerine ait en büyük ivme değerleri *a_{maks}* ile hesaplanan "*Mühendislik Şiddetleri*"nden önemli olanları aşağıdaki Çizelge 2.5'de deprem toplumu için özetlenmiştir.

Benzeștirilmiș	PGA	t _{SM}	$t_{e\!f\!f}$	$SI_{0.2}$
Depremler	cm/s ²	s	S	cm
EQ-1	420.7	17.33	11.27	113.33
EQ-2	435.0	19.79	11.80	112.89
EQ-3	412.8	18.08	12.02	116.31
EQ-4	406.2	18.67	11.91	108.07
EQ-5	413.2	17.69	11.82	106.74
EQ-6	405.3	18.36	11.69	126.47
EQ-7	427.0	19.83	11.95	97.04
ORTALAMA	417.2	18.54	11.78	111.55

Çizelge 2.5 : Üretilen yapay yer hareketlerinin özellikleri.

Burada söz konusu parametrelerden t_{SM} , anlamlı kuvvetli yer hareketi süresi (*bracketed duration*), 0.05g eşik ivme değerinin ilk aşıldığı an ile son aşıldığı an arasındaki süreden; etkin süre (*significant duration*), t_{eff} ise, Husid Eğrisinin %5'i ile %95'ine karşı gelen anlar arasındaki zaman farkından hesaplanmıştır. Housner Şiddeti (*Housner Intensity*), *SI*_{0.2}, kuvvetli yer hareketinin %20 sönümlü hız spektrum eğrisinin 0.1s ile 2.5s periyotları ile sınırlandırılmış alanının hesaplanması suretiyle elde edilmiştir.

Yapay yer hareketlerinin uygunluğu ve yıkıcı deprem karakterine sahip oldukları, gerçek deprem kayıtları ile karşılaştırmak suretiyle belirlenmiştir. Örneğin 17 Ağustos 1999 Kocaeli depreminde alınan Yarımca-DB kaydı 323.1cm/s² en büyük ivme

değerine ve 104.5cm Housner Şiddetine sahiptir. Deprem ivme izi 0.40g için düzenlendiğinde ise $SI_{0.2}$ =127.3cm olmaktadır. Benzer olarak 12 Kasım 1999 Düzce depreminin Bolu-KG kaydı ele alındığında, a_{maks} =739.5cm/s² ve $SI_{0.2}$ =160.8cm olarak hesaplanmaktadır. Bu kayıt için de en büyük ivme 0.40g için ölçeklendirildiğinde $SI_{0.2}$ =85.3cm bulunmaktadır.

Şekil 2.16 : Yapay yer hareketlerine ait ivme izleri ($A_0=0.4g$).

Üretilen deprem toplumu, yapay veya benzeştirilmiş depremlere ait yönetmelik koşulları açısından irdelendiğinde, her bir kaydın 25s olması dolayısıyla (i) koşulunun sağlandığı; en büyük ivme değerinin ortalamasının 417.2 cm/s² olması dolayısıyla da (ii) koşul olan $S_a(T=0)$ için A_0g 'den büyük ivme değeri koşulunun sağlandığı görülmektedir. Son olarak binaların hâkim periyotlarının elde edilen değerleri göz önüne alındığında (iii) koşulu olan $0.2T_1$ ile $2T_1$ arasındaki spektral ivmelerin ortalamalarının $S_{ae}(T)$ elastik spektral ivmelerinin %90'nın üzerine çıktığı anlaşılmaktadır. Aşağıdaki Şekil 2.17, deprem toplumu için elde edilen her bir ivme spektrumunu, yönetmelikte Z2 yerel zemin sınıfı için tanımlanan tasarım spektrumu ile karşılaştırmaktadır.

Şekil 2.17 : İvme spektrumlarının Z2 tasarım spektrumu ile karşılaştırılması $(A_0=0.4g)$.

Şekil 2.18 : Deprem toplumu ortalamasına ait üç parçalı elastik karşılık spektrumu.

Şekil 2.18, ortalama elastik karşılık spektrumu, ivmeye, hıza ve yerdeğiştirmeye duyarlı bölgeleriyle birlikte verilmektedir. Şekilden de görüldüğü üzere; köşe periyotlar toplum ortalaması için sırasıyla T_c =0.46s ve T_d = 3.57s olarak hesaplanmıştır.

Çalışmanın ana hedefi olan HG eğrilerinin üretilmesinde geniş bir aralıkta değişim gösteren en büyük ivme (PGA) değerlerinin hesaba katılması önem taşımaktadır. Bu amaçla, PYTON programlama dili kullanılarak bir yazılım hazırlanmış, 7 adet deprem kaydının her biri 0.1g'den 0.8g değerine kadar 0.05g'lik (%5'lik) artımlarla ölçeklendirilmiştir. Örnek olarak, Şekil 2.19 yapay olarak üretilmiş olan EQ-3 depreminin ilgili 15 katsayı ile ölçeklendirilmesi sonucunda elde edilmiş olan ivme spektrumlarının, yönetmelikte yer alan Z2 tasarım spektrumu ile karşılaştırmasını göstermektedir.

Şekil 2.19 : EQ-3 yapay deprem kaydının ölçeklendirilmiş ivme spektrumlarının Z2 tasarım spektrumu ile karşılaştırılması.

Bunun yanı sıra elde edilmiş olan bu yeni ölçeklendirilmiş deprem toplumlarının uygunluğunun ve yıkıcı karaktere sahip olup olmadıklarının belirlenmesi amacıyla en önemli göstergelerden biri olarak kabul edilmiş olan Housner şiddetleri hesaplanmıştır. Deprem toplumunun en büyük yer hızı değerleri (PGV) ayrıca hesaplanarak, 0.4g için elde edilmiş olan Housner Şiddetleri ile değişimleri incelenmiş

ve Şekil 2.20'de sunulmuştur. Şekilden de görüldüğü üzere, deprem toplumundaki kuvvetli yer hareketlerinin en büyük yer hızı değerleri 33~58 cm/s aralığında değişmekte olup, 48 cm/s gibi bir ortalamaya sahiptir. Sadece EQ-4 depremi ortalama değerde yer alırken, diğer depremlerin üç adedi ortalama üstünde, kalanları ise ortalama altında en büyük yer hızı değerine sahiptir. Bu da bir anlamda en büyük yer ivmesi açısından karşılaştırıldıklarında benzer değerlere sahip olan üretilmiş yer hareketi kayıtların frekans içeriklerinin farklı olduğu sonucunu işaret etmektedir.

Şekil 2.20 : Deprem toplumunun en büyük yer hızı değerleri (PGV) ve 0.4g için elde edilmiş olan Housner Şiddetleri ile değişimleri.

2.4.3 Hasargörebilirlik Eğrilerini Elde Etmek Üzere Geliştirilen Yazılıma (FORECAST) Ait Kuramsal Esaslar

Tez çalışması kapsamında, ülkemizdeki betonarme binaların genel özelliklerini yansıtacak şekilde oluşturulan yapı stoku için göreli kat ötelenmesi oranı ve kesme kuvveti gibi çeşitli yapısal istemlere ait büyüklüklerin istatistik çalışmaları gerçekleştirilmiş olup, olasılık dağılımları ve bunlara uygun olasılık yoğunluk fonksiyonları araştırılmıştır. Bu amaçla geliştirilen MATLAB tabanlı yazılım aracılığıyla, deprem hareketine ait en büyük yer ivmesi için yapısal istemlerin aşılma olasılıkları, hasar durumunu yansıtan büyüklükler ile karşılaştırılarak beklenen hasar düzeyi dağılımları elde edilmiştir.

2.4.3.1 Programın arayüzü ve veri girişi

Bina stokunun deprem toplumu etkisinde farklı 15 ivme katsayısı değerlerinde doğrusal olmayan dinamik analizi sonucunda elde edilen değerler, Şekil 2.21'de gösterilmiş olan *.xls formatında matris olarak kaydedilmektedir. Matriste yer almakta

olan bu değerler, bina stokunun her bir deprem katsayısı değerine karşılık gelen yapısal istemleridir. Verilerin bulunduğu *.*xls* sayfasının ismi "*Buildings*" olarak tanımlanmakta olup, program bu isimli bir sayfa bulamadığında *.*xls* sayfasındaki ilk tablodan veriyi okumaktadır. Yer hareketi parametresi ("*X-label*") A2 hücresinde; yer hareketi parametresinin değerleri ("*Ground Motion*") A3-A17 sütununda; yapısal istem parametresi ("*Y-label*") B2 hücresinde; yapısal istem değerleri ise ("*Drift*") B3-B17, C3-C17,, Hücre3-Hücre17 sütunlarında kaydedilmektedir. Burada her bir sütun ayrı binayı temsil etmektedir.

	А	В	С	D	E	F	G
1	5	- X-label	Y-label				
2	PGA	U _{top} /H	u _{top} /H	u _{top} /H	u _{top} /H	u _{top} /H	u _{top} /H
3	0.1	0.0025455	0.0019636	0.0017862	0.0019379	0.0015273	0.0015418
4	0.15	0.0042788	0.0033697	0.002669	0.0030759	0.0023709	0.0024364
5	0.2	0.0063273	0.004897	0.0037103	0.0043448	0.0032364	0.0032727
6	0.25	0.0086788	0.0065455	0.0048621	0.0057103	0.0041091	0.0041964
7	0.3	0.0110182	0.0084	0.0060414	0.0070414	0.0051564	0.0052291
8	0.35	0.0134667	0.0104606	Y: Drift	0.008469	0.0063127	0.0063855
9	0.4	0.0158303	0.0128242	0.0089241	0.0099379	0.0075491	0.0075055
10	0.45	0.0181576	0.0149939	0.0104552	0.0113724	0.0087491	0.0086182
11	0.5	0.0203273	0.0174424	0.0117172	0.0128	0.0099709	0.0098327
12	0.55	0.0227394	0.0196121	0.0131448	0.0142276	0.0111345	0.0110182
13	0.6	0.0254303	0.0219758	0.0143448	0.015869	0.0124291	0.0122618
14	0.65	0.0281333	0.0239879	0.0159517	0.0175862	0.0137527	0.01352
15	0.7	0.030 636	0.0261333	0.0174207	0.0192276	0.0151055	0.0148655
16	0.75	0.0330667	- X: Ground M	Aotion 0069	0.0208621	0.0163709	0.0161527
17	0.8	0.0358061	0.0303515	0.0204138	0.0222552	0.0176727	0.0175055
18		A					
€ €	Build	ings ··· +	Spreadshe	et name			

Şekil 2.21 : Yapısal istemlerin *.xls formatında kaydedilmesi.

Hazırlanmış olan programın FORECAST.p kodu çalıştırıldığında, Şekil 2.22'de verilmekte olan pencere açılmaktadır. Binaların yapısal istemlerini içeren bu *.xls dosyasını yüklemek için ilgili pencerede yer alan "Load an XLS File" düğmesine basılarak, yeni açılan pencereden ilgili *.xls dosyasını seçmek yeterlidir.

Yapısal istem matrisi yüklendikten sonra program otomatik olarak yapı stokuna ait doğrusal olmayan dinamik analiz sonuçlarını ilgili istem parametresini düşey eksende göstermek koşuluyla yer hareketi parametresine bağlı olarak çizdirmektir (Şekil 2.23). *"Load an XLS File"* tuşunun altında bulunan ve daha önceden tanımlanmış olan hasar sınırları da hafif hasardan göçme durumuna kadar temsili renklerle verilmekte olup, grafik üzerinde bu hasar seviyelerine göre hasar bantları çizdirilmektedir. Her bir hasar sınırına ait değerler ilgili girdi noktalarında istenildiği gibi değiştirilebilmektedir.

2.4.3.2 İstatistiksel analiz yöntemi

Program aracılığıyla ilk adımda, yer hareketi şiddet parametresi olan *PGA*'nın 0.1g'den 0.8g'ye kadar 0.05g'lik artımlarla verilen her bir değerine karşı gelen yapısal istem değerlerinin istatistiksel analizi yapılmaktadır. Şekil 2.22'de verilen arayüzde görüldüğü üzere, ilgili dağılım grafiğinin altında ve sağında bulunan kaydırıcı yardımıyla istenilen yer hareketi şiddet değeri seçilebilmektedir.

FORECAST programı ikinci adımda, seçilen bir yer hareketi şiddet değerinde bina stoğuna ait yapısal istem değerlerinin histogramını çıkartıp, Şekil 2.24'te görülmekte olan sol-alt pencerede çizdirmektedir. Ayrıca program, daha önceden tanımlanmış olan hasar sınırlarını grafik üzerindeki renklerine göre histogram üzerine işlemektedir.

Şekil 2.22 : FORECAST programının arayüzü.

Programda, bina stoğuna ait yapısal istem dağılımını kestirmek için "En Büyük Olabilirlik Kestirimi - Maximum Likelihood Estimation (MLE)" yöntemi kullanılmaktadır. MLE analizinde her bir olasılık yoğunluk işlevi ailesi (Normal, Log-Normal, Weibull, Rayleigh, Extreme-Value, Generalized Extreme-Value, Beta, Gamma) için en uygun parametreler bulunup, bu parametrelere ilişkin olabilirlik

Şekil 2.23 : Yapısal istemlerin çizdirilmesi.

Şekil 2.24 : Hasar değerlerinin istatistiksel analizi.

değerinin logaritmasının ortalaması hesaplanmaktadır. Bu normalize edilmiş logolabilirlik (*Normalized Log-Likelihood*) değerlere göre dağılımlar sağ panoda azalan şekilde sıralanmaktadır. Listenin en üstteki dağılım, veriyi *MLE* kriterine göre en iyi şekilde temsil edendir. Seçili dağılım ailesi için *MLE* analizinde bulunan parametreler, istatistiksel momentler (ortalama (*mean*), değişinti (*variance*), yamukluk (*skewness*) ve savrukluk (*kurtosis*)) ile beraber sol panoda gösterilmektedir. Örneğin, Şekil 2.24'te verilen dağılım için *MLE*'ye göre en uygun olasılık yoğunluk işlevi, parametreleri $\mu = 0.014806$, $\sigma = 0.003952$ olan "*Normal dağılım*"dır.

En Büyük Olabilirlik Kestirimi-Max Likelihood Estimation (MLE)

En Büyük Olabilirlik Kestirimi, istatistiksel bir modelin parametrelerini kestirmek için kullanılmaktadır. Genellikle verinin hangi dağılımdan geldiği bilinmediği için aşağıda verilmekte olan varsayımlar yapılmaktadır;

1. Her bir veri örneği $[x_1, x_2, ..., x_n]$ bir rastlantı değişkenin gerçekleşmesidir. Başka bir deyişle, her bir veri örneği bir olasılık yoğunluk işleviyle modellenmektedir.

2. Veri örnekleri aynı $f(x|\theta)$ dağılımından gelmektedir. Örneğin, tüm örnekler Weibull olasılık yoğunluk işlevinden alınmıştır.

3. Tüm örneklere tekabül eden rastlantı değişkenleri bir birinden bağımsızdır.

MLE yöntemindeki amaç, veri örneklerini kullanarak varsayılan istatistiksel modelin (*olasılık yoğunluk işlevinin*) θ parametresini (*ya da parametrelerini*) kestirmektir. Tüm örnekler bağımsız ve aynı dağılımlı ise, bunların ortak olasılık yoğunluk işlevi örneklerin münferit olasılık yoğunluk işlevlerinin çarpımına eşittir:

$$f(x_1, x_2, ..., x_N | \theta) = f(x_1 | \theta) \times f(x_2 | \theta) \times ... \times f(x_N | \theta)$$
(2.34)

Olabilirlik işlevi, $l(\theta; x_1, ..., x_N)$ örneklerin ortak olasılık yoğunluk işlevi şeklinde tanımlanmaktadır:

$$l(\theta; x_1, ..., x_N) = f(x_1, x_2, ..., x_N | \theta) = \prod_{i=1}^N f(x_i | \theta)$$
(2.35)

Amaç, olabilirlik işlevini azami seviyeye çıkaran $\hat{\Theta}$ parametresi ya da parametrelerini bulmaktır:

$$\hat{\theta} = \arg\max_{\theta} l(\theta; x_1, ..., x_N)$$
(2.36)

Olabilirlik işlevinin büyük değer alması, varsayılan modelin mevcut veriyi oluşturma (üretme) olasılığını arttırmaktadır. Daha kolay bir şekilde çözümü elde edebilmek için eşdeğer bir problem analiz edilmektedir. Bunun için logaritmik olabilirlik işlevi tanımlanmaktadır:

$$\mathcal{L}(\theta; x_1, \dots, x_N) = \ln l(\theta; x_1, \dots, x_N)$$
(2.37)

Önceki problemdeki gibi amaç, logaritmik olabilirlik işlevini maksimum seviyeye çıkaran $\hat{\theta}$ parametresini ya da parametrelerini bulmaktır:

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta; x_1, ..., x_N)$$
(2.38)

Programın "Normalized Log-Likelihood (*goodness of fit*)" listesinde normalize edilmiş log-olabilirlik işlevinin değerleri yer almaktadır:

$$\mathcal{L}_{N}\left(\theta; x_{1}, ..., x_{N}\right) = \frac{1}{N} \ln l\left(\theta; x_{1}, ..., x_{N}\right)$$
(2.39)

→ Örnek: Rayleigh dağılımı

Veri örneklerinin $[x_1, x_2, ..., x_n]$ Rayleigh dağılımından geldiğini varsayılmaktadır. Rayleigh olasılık yoğunluk işlevi şu şekilde verilmiştir:

$$f(x \mid b) = \frac{x}{b^2} \exp\left(\frac{-x^2}{2b^2}\right)$$

MLE yöntemine göre log-olabilirlik işlevini maksimuma çıkaran b parametresini bulunması gerekmektedir.

➔ Çözüm:

Log-olabilirlik işlevi şu şekilde tanımlanmaktadır:

$$\mathcal{L}(b; x_1, \dots, x_N) = \ln \ell(b; x_1, \dots, x_N)$$

= $\ln \prod_{i=1}^N f(x_i \mid b) = \ln \prod_{i=1}^N \frac{x_i}{b^2} \exp\left(\frac{-x_i^2}{2b^2}\right)$
= $\sum_{i=1}^N \ln\left[\frac{x_i}{b^2} \exp\left(\frac{-x_i^2}{2b^2}\right)\right]$
= $\sum_{i=1}^N \ln(x_i) - 2N \ln(b) - \frac{1}{2b^2} \sum_{i=1}^N x_i^2$

Log-olabilirlik işlevinin b'ye göre türevi alınıp sıfıra eşitlendiğinde, en uygun b parametresi bulunur:

$$\frac{\partial}{\partial b} \mathcal{L}(b; x_1, \dots, x_N) = 0$$
$$-2N\frac{1}{b} - (-2)\frac{1}{2}\frac{1}{b^3}\sum_{i=1}^N x_i^2 = 0$$
$$\frac{1}{b^3}\sum_{i=1}^N x_i^2 = \frac{2N}{b}$$
$$b = \sqrt{\frac{1}{2N}\sum_{i=1}^N x_i^2}$$

2.4.3.3 Hasargörebilirlik eğrilerinin analizi

Yer hareketi şiddet parametresinin seçilen bir değerinde bina stoğuna ait yapısal istemlerin değerlerinin dağılımı Şekil 2.24'te gösterilmiştir. Dağılımı en iyi şekilde temsil eden olasılık yoğunluk işlevi ise *MLE* yöntemiyle bulunmaktadır. Bu aşamadan

sonra, dağılımın belirlenen Hasar Sınırı (*HS*)'nın sağında kalan alan aşılma olasılığını vermektedir. Örneğin, maksimum yer ivmesinin 0.5g değerinde (Şekil 2.23), elde edilen dağılım Şekil 2.24 ve 2.25'te gösterilmiştir. Tepe Noktası Göreli Ötelenme Oranı- U_{top}/H , Şekil 2.25'te gösterilen *HS* (*L*) değerindeki hasar seviyesini aşma olasılığı aşağıdaki denklemle ifade edilmektedir:

$$P_{asilma}(HS) = Pr\left\{U_{top}/H \ge HS\right\} = 1 - F(x)$$
(2.40)

Burada F(x) birikimli olasılık dağılım işlevini temsil etmektedir:

$$F(x) = \int_{-\infty}^{x} f(\eta) d\eta$$
(2.41)

Analizde kullanılan birikimli olasılık dağılım işlevi ayrık örneklerden elde edilmektedir:

$$F(x) = \frac{1}{N} \sum_{i=1}^{N} I_{X_i \le x},$$

$$I_{X_i \le x} = 1, \quad X_i \le x,$$

$$I_{X_i \le x} = 0, \quad \text{dişinda.}$$

$$(2.42)$$

2.4.3.4 Hasargörebilirlik eğrilerinin elde edilmesi ve parametrik işlevlerin uydurulması

Hasar sınırının seçilen bir değeri için hesaplanan bu aşılma olasılıkları yer hareketi şiddet parametresinin farklı değerlerinin işlevi şeklinde çizdirildiğinde kırılganlık eğrisi elde edilmektedir. Şekil 2.26'da *HS*=0.022112 hasar sınırı için kırılganlık eğrisi gösterilmiştir.

Şekil 2.25 : Aşılma olasılığının hesabı.

FORECAST programı istatistiksel yöntemle elde edilen $F_{STA}(x)$ kırılganlık eğrisinin parametrik bir işlevle betimlenmesini de yapmaktadır. Bu aşamada, iki farklı modelin

parametreleri kestirilmektedir:

- 1) Log-Normal birikimli olasılık dağılım işlevi,
- 2) Polinom eğri türetme.

Şekil 2.27'de görüldüğü gibi bu modeller program arayüzünde seçilebilmekte ve uydurulan eğriler ayrı ayrı çizdirilebilmektedir. Polinom eğri türetme işlevinde polinom mertebesi "*Polyfit order*" seçeneği kullanılarak değiştirilebilmektedir.

Log-Normal birikimli olasılık dağılım işlevi kullanıldığında çözüm, Nelder–Mead metoduyla bulunmaktadır (Lagarias ve diğ., 1998).

Hasargörebilirlik eğrisi, dördüncü mertebeden polinom eğri türetme yönteminde ise istatistik işlev X'in polinomu şeklinde modellenmektedir.

$$\begin{aligned} X\vec{a} &= \vec{F}_{STA}, \\ \begin{pmatrix} x_1^p & x_1^{p-1} & \dots & x_1 & 1 \\ x_2^p & x_2^{p-1} & \dots & x_2 & 1 \\ M & M & O & M & M \\ x_N^p & x_N^{p-1} & L & x_N & 1 \\ \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ M \\ a_{p+1} \\ \end{pmatrix} = \begin{pmatrix} F_{STA}(x_1) \\ F_{STA}(x_2) \\ M \\ F_{STA}(x_N) \\ \end{pmatrix}$$
(2.43)

Şekil 2.27 : Hasargörebilirlik eğrisinin analizi.

Burada amaç, ortalama karesel hatayı asgari değere indiren \vec{a} katsayılarını bulmaktır:

$$\vec{a}^* = \underset{\vec{a}}{\operatorname{argmax}} \operatorname{MSE}$$
 (2.44)

Polinom eğri türetme yöntemi kullanıldığında çözüm, en küçük kareler (*Least Squares*) yöntemiyle bulunur:

$$\vec{a}^* = \left(X^T X\right)^{-1} X^T \vec{F}_{STA}$$
(2.45)

Eğri türetmede Şekil 2.22'de verilmekte olan arayüzde gösterilen hatalar, Kök Ortalama Karesel Hata (*Root Mean Square Error, RMSE*) ve Kolmogorov-Smirnov istatistiği (*K-S Statistics*)'dir.

İstatistiksel olarak elde edilen $F_{STA}(x)$ ve uydurulan $F_{THR}(x)$ işlevlerin arasındaki Kök ortalama karesel hata aşağıda verilmekte olan (2.46) ifadesi ile tanımlanmaktadır:

$$RMSE = \sqrt{\frac{1}{N} \left[F_{THR} \left(x_{i} \right) - F_{STA} \left(x_{i} \right) \right]^{2}}$$
(2.46)

Kolmogorov-Smirnov istatistiği ise iki birikimli olasılık dağılım işlevinin benzerliğini ölçen standart bir metrik olup, tüm X noktalarında hesaplanan iki işlevin arasındaki en büyük mutlak fark şeklinde aşağıda verilmekte olan (2.47) ifadesi ile tanımlanmaktadır (Şekil 2.28):

$$D_{\max} = \sup_{x} |F_{EMP}(x) - F_{THR}(x)$$
(2.47)

Şekil 2.28 : Kolmogorov-Smirnov istatistiği.

Elde edilen hasargörebilirlik eğrilerinin analizini göstermekte olan Şekil 2.28'de de görüldüğü üzere, polinom eğri türetme işlevi hasargörebilirlik fonksiyonunu gerçekçi olarak temsil edememekte ve düşük *PGA* oranlarında gerçek dışı sonuçlar vermektedir. Bu bulgu doğrultusunda, bina stoğuna ait hasargörebilirlik eğrilerini elde ederken log-normal birikimli olasılık dağılım işlevi kullanılmıştır.

3. BİNALARIN DOĞRUSAL OLMAYAN ANALİZ SONUÇLARI

Tez çalışmasında kullanılan bina stoku oluşturulurken İTÜ Yapı ve Deprem Uygulama-Araştırma Merkezi arşivlerinden yararlanılmıştır. Geçmişte ülkemizde yaşanmış yıkıcı depremlere maruz kalmış betonarme, az ve orta katlı binalara ait yapısal projeler ile bunların yapı malzemelerinin tespitine yönelik deney esaslı bilgiler ilgili arşivden sağlanarak, çoğunluğu orta hasarlı olan 50 adet betonarme binadan oluşan yapı stoku incelemeye esas hale getirilmiştir. 50 adet binanın *x-x* ve *y-y* doğrultuları ayrı ayrı olmak kaydıyla, toplam 100 düzlem çerçeve modeli, Bölüm 2'de detayları verildiği gibi, DRAIN-2DX bilgisayar programı için giriş verisi olarak hazırlanmıştır. Binalar seçilirken düzlem çerçeve çözümlemesi yapılacağından, olabildiğince simetrik ve burulma düzensizliği katsayısı (η_{bi}) düşük olanlar (η_{bi} 'nin 1.02~1.56 aralığında değiştiği binalar) ele alınmıştır.

3.1 Çözümlenen Binalara Ait Yapısal Karakteristikler

Çerçeve taşıyıcı sisteme sahip olan bina toplumu; yapısal malzeme özellikleri, donatı detayları ve yerel zemin koşulları göz önünde bulundurularak farklı depremler sonrasında sahada detaylı olarak incelenmiş binalardan oluşmaktadır. İncelenme sonucunda, her birine ait malzeme kalitesi deney raporları, zemin bilgileri, kesit detayları ve bina rölöveleri yapılara ait hasar tespit raporlarına eklenmiştir. Beton dayanımının f_{ck} =7.0~25.0 MPa arasındaki değerlerde değiştiği binalarda kullanılan çelik sınıfının ağırlıklı olarak S220 (f_{yk} =220 MPa) olduğu ancak bazılarında S420 (f_{yk} =420 MPa) çelik sınıfına rastlandığı tespit edilmiştir. İncelenen tüm binalara ait karakteristikler Çizelge 3.1'de verilmekte olup, f_{ck} değerleri 10 MPa'ın altında olan binalar (tüm toplumun %14'ü) belirtilmiştir. Çizelgedeki H_{toplam} , binanın toplam yüksekliğini; f_{ck} , karakteristik beton basınç dayanımını; f_{yk} , karakteristik çelik akma dayanımını; W, binanın toplam ağırlığını; $T_{l,(x-x'y-y)}$, binanın x-x ve y-y doğrultularındaki hakim titreşim periyotlarını göstermektedir.

Bina Kodu	Kat Savısı	$H_{\text{toplam}}(\mathbf{m})$	f_{ck} (MPa)	f_{vk} (MPa)	W(kN)	$T_{1}(\mathbf{x},\mathbf{x}/\mathbf{y},\mathbf{y})$
		12.00	14.0	<i>Jyk</i> (111 u)	17100.0	1,(x-x/y-y)
01-ND-S14	4	12.00	14.0	220	1/100.0	0.498 / 0.469
02-MD-S13	3	8.25	16.0	220	3950.7	0.423 / 0.351
03-MD-S16	6	17.4	16.5	220	10/50.7	0.502 / 0.544
04-MD-S15	5	13.75	13.3	220	8104.4	0.442 / 0.445
05-MD-ST3	3	8.85	8.6	220	7676.8	0.439/0.319
06-MD-ST4	4	12.1	10.0	220	6382.8	0.718/0.423
07-MD-ST3	3	8.7	8.3	220	3872.7	0.356 / 0.379
08-MD-ST5	5	13.85	11.4	220	7859.3	0.481/ 0.519
09-MD-ST4	4	11.05	12.0	220	5890.4	0.539 / 0.557
10-MD-ST3	3	8.55	11.9	220	4009.2	0.302 / 0.285
11-MD-ST3	3	8.10	9.4	220	3556.9	0.393 / 0.421
12-MD-ST4	4	12.25	13.1	220	5731.8	0.588 / 0.504
13-MD-ST5	5	13.75	11.5	220	8104.4	0.451 / 0.454
14-MD-ST5	5	14.25	8.2	220	10587.2	0.921 / 0.603
15-MD-ST5	5	15.3	11.7	220	7383.9	0.793 / 0.518
16-MD-ST2	2	5.60	12.0	420	4594.0	0.222 / 0.233
17-HD-ST3	3	7.95	12.0	220	5789.0	0.341 / 0.257
18-ND-ST2	2	6.3	25.0	220	4238.0	0.261 / 0.251
19-ND-ST8	8	22.4	14.0	220	11154.7	0.808 / 0.618
20-ND-ST6	6	17.55	14.0	220	9214.0	0.726 / 0.599
21-ND-ST2	2	6.4	14.0	220	10086.7	0.309 / 0.270
22-ND-ST2	2	6.4	14.0	220	7400.3	0.337 / 0.268
23-MD-ST6	6	15.2	8.3	220	8208.1	0.563 / 0.546
24-MD-ST4	4	10.8	12.3	220	3442.8	0.443 / 0.397
25-ND-ST3	3	11.5	14.0	220	26130.7	0.602/0.614
26-ND-ST5	5	14.32	12.0	220	26880.8	0.890/0.749
27-ND-ST4	4	11.55	14.0	220	15130.5	0.649/0.495
28-ND-ST7	7	19.5	20.0	420	26544.0	0.631/0.522
29-MD-ST4	4	13.3	12.3	220	8198.4	0.415 / 0.629
30-ND-ST4	4	11.2	12.2	220	13834 7	0.478 / 0.432
31-ND-ST5	5	17.2	11.0	220	57775.8	0.750 / 0.691
32-ND-ST3	3	10.2	10.0	220	13138.6	0.505 / 0.496
32 ND ST3	3	10.2	10.0	220	9635.0	0.499 / 0.472
24 ND ST7	3 7	20.8	20.0	420	20275.0	1 210 / 1 224
25 ND ST2	2	20.8	20.0	420	10520.0	0.221 / 0.255
35-ND-515	3	8.J	15.0	220	10320.0	0.072 / 1.020
30-ND-S17	7	19.6	16.0	220	35299.5	0.97371.039
37-ND-ST7	/	18.5	16.0	220	30900.8	0.681/0.767
38-MD-ST3	3	9.65	7.0	220	5151.4	0.541 / 0.546
39-MD-ST5	5	14.75	10.6	420	19050.6	0.653/ 0.796
40-MD-ST5	5	14.75	10.0	220	15680.1	0.521 / 0.541
41-MD-ST4	4	12.8	14.5	220	14147.1	0.526 / 0.507
42-ND-ST5	5	13.75	14.0	220	18538.3	0.616 / 0.688
43-MD-ST4	4	10.65	16.3	220	10684.8	0.261 / 0.376
44-ND-ST8	8	24.0	17.0	420	39385.3	0.611/ 0.631
45-SD-ST8	8	24.0	9.0	220	41317.9	0.836 / 0.855
46-SD-ST5	5	14.8	13.0	220	4238.4	0.550 / 0.508
47-MD-ST7	7	20.0	14.0	220	18814.0	0.896 / 0.638
48-ND-ST4	4	12.0	10.0	220	24573.8	0.658 / 0.682
49-ND-ST6	6	18.7	25.0	420	22838.0	0.704 / 0.557
50-ND-ST5	5	14.3	13.4	220	7132.9	0.539 / 0.497

Çizelge 3.1 : İncelenen binaların yapısal özellikleri.

3.2 Gerçekleştirilen Dinamik Analiz Sonuçları

Toplam 100 adet düzlem çerçeve modeli oluşturulan 50 adet betonarme binaya üretilen 7 adet yapay yer hareketinden oluşan deprem toplumunun maksimum ivme değerlerinin 0.1g'den 0.8g'ye kadar 0.05g'lik artımlarla ölçeklendirilmesini gerçekleştirmek üzere hazırlanmış olan yazılım kullanılarak, her bir binanın her biri için 15 farklı PGA seviyesine sahip yer hareketi etkisinde, toplamda 10500 adet analiz yapılmıştır. Bu doğrusal olmayan dinamik analizlerde, hareket denkleminin Newmark yöntemi ile sayısal çözümü için hesap zaman aralığı Δt =0.0025s olarak alınmış olup, dinamik çözümlemede her zaman adımında rijitlik hesabı için maksimum 50 iterasyona izin verilmiştir. Çözümlemelerde yapısal sönüm oranı ζ =%5 ve akma sonrası gerilme pekleşme oranı α =%3 alınmıştır. Analiz sonuçlarının derlenip değerlendirilebilmesi amacıyla, PYTHON yazılım dili ile bir program geliştirilerek, yer hareketinin ölçeklenmesi ve her bir yer hareketi etkisinde DRAIN-2DX programının bina için sürekli olarak çalışır hale getirilmesi sağlanmıştır. Analizlere ait çıktılar ise aynı program ile listelenerek, ilgilenilen yapısal büyüklüklerin ayıklanması işlemi gerçekleştirilmiştir.

Deprem toplumu etkisinde çözümlenen binalara ait taban kesme kuvveti (V_b), çatı katı yerdeğiştirmesi (U_{top}) ve göreli kat ötelenme oranlarının değişimleri, tezin CD ekinde toplumdaki her bir binanın her iki doğrultusu için verilmiş olup, ilgili büyüklüklere ait tüm analiz sonuçları Çizelge 3.2 ve 4.3'te özetlenmiştir. Yapılan işlemlerin adım adım açıklanabilmesi amacıyla örnek olarak 23-MD-ST6 no'lu binaya ait çözümler gösterilmiştir. Binaya ait kalıp planı, kolon ve kiriş enkesitleri ile birlikte Şekil 3.1'de verilmektedir. Şekil 3.2'de ise bu bina için her iki doğrultuda oluşturan yapısal çerçeve modellerini göstermektedir. Yapı toplumunda bulunan diğer binalara ait kalıp planları ve her iki doğrultudaki düzlem çerçeve modelleri EK-A'da verilmektedir.

23-MD-ST6 binasının 15 farklı *PGA* seviyesine sahip EQ-4 yer hareketi etkisinde gerçekleştirilen doğrusal olmayan dinamik analizleri sonucunda elde edilen kuvvetyerdeğiştirme çevrim eğrileri Şekil 3.3 ve 3.4'te sırasıyla binanın x-x ve y-y doğrultuları için verilmektedir.

Şekil 3.1 : 23-MD-ST6 binasına ait kalıp planı ve enkesit detayları.

Şekil 3.2 : 23-MD-ST6 binasına ait iki doğrultuda oluşturulan düzlem çerçeve modelleri.

Şekil 3.3 : 23-MD-ST6 binası *x-x* doğrultusu taban kesme kuvveti-çatı katı yerdeğiştirmesi çevrim eğrileri.

Binanın *x-x* ve *y-y* doğrultularındaki kesme kuvveti kapasiteleri (3.1) ifadesi kullanılarak, bu örnek yapı için sırasıyla 369 kN ve 348 kN olarak hesaplanmış ve değerleri ilgili grafiklerde mavi kesikli çizgi ile belirtilmiştir. Toplam yerdeğiştirme sınır değerleri 1975 tarihli ABYYHY'ye göre belirtilen sınır olan 0.0025 değerine göre belirlenerek, grafikte dikey siyah kesikli çizgi ile gösterilmiştir. Şekil 3.3 ve 3.4'te görüldüğü üzere, maksimum yer ivmesinin küçük değerlerinde bile taban kesme kuvvetleri kesme kuvveti kapasitelerinin üzerinde değerler almaktadır. Yine aynı şekillerde görüldüğü üzere yönetmelik yerdeğiştirme sınırının 0.20g'lik maksimum yer ivmesi değerinden itibaren aşıldığı görülmektedir. Bu durum, 1998 yılında meydana gelen ve 0.28g *PGA* değerine sahip olan Adana Ceyhan Depremi sonrasında örnek binada yapılan hasar tespiti bulgusu ile örtüşmektedir.

$$V_r = 0.2 \times \sqrt{f_{ck}} \times A_c \tag{3.1}$$

Şekil 3.4 : 23-MD-ST6 binası y-y doğrultusu taban kesme kuvveti-çatı katı yerdeğiştirmesi çevrim eğrileri.

(3.1) denkleminde V_r kesme kuvveti kapasitesini; f_{ck} betonun karakteristik basınç dayanımını; A_c ise kesme kuvvetine karşı koyan düşey taşıyıcı sistem elemanlarının etkin kayma alanını göstermektedir.

Bina toplumunda yer alan yapıların kesme kuvveti kapasitelerini hesaplamakta kullanılmış olan (3.1) ifadesi; kesme kuvvetinin karşılanmasında kesit kapasitesini dolgu duvar katkısı alınmadan, betonun ve minimum etriyenin bulunması koşuluyla hesaplamaktadır. (3.2) denklem takımı ise kesme kuvvetinin karşılanmasında betonun ve minimum etriyenin katkısının nasıl hesaplandığını adım adım göstermektedir:

$$V_r = V_c + V_w \quad ; \qquad f_{ctk} = 0.35 \times \sqrt{f_{ck}}$$

$$V_c = 0.80 \times \left[0.65 \times f_{ctd} \times A_c \right] \rightarrow V_c = 0.3467 \times f_{ctk} \times A_c$$

$$V_{c} = 0.1213 \times \sqrt{f_{ck}} \times A_{c}$$

$$V_{w} = \frac{A_{sw}}{s} \times f_{ywd} \times d \rightarrow \left(\frac{A_{sw}}{s}\right)_{\min} = 0.30 \times \frac{f_{ctd}}{f_{ywd}} \times b_{w}$$

$$V_{w,\min} = 0.30 \times \frac{f_{ctd}}{f_{ywd}} \times b_{w} \times f_{ywd} \times d$$

$$V_{w,\min} = 0.30 \times f_{ctd} \times A_{c}$$

$$V_{w,\min} = 0.20 \times f_{ctk} \times A_{c}$$

$$V_{w,\min} = 0.07 \times \sqrt{f_{ck}} \times A_{c}$$

$$V_{r} = V_{c} + V_{w,\min} = (0.1213 + 0.07) \times \sqrt{f_{ck}} \times A_{c} \rightarrow V_{r} \cong 0.20 \times \sqrt{f_{ck}} \times A_{c}$$
(3.2)

23-MD-ST6 binasının 15 farklı *PGA* seviyesine sahip EQ-4 yer hareketi etkisinde gerçekleştirilen doğrusal olmayan dinamik analizleri sonucunda elde edilen kat yerdeğiştirmeleri Şekil 3.5 ve 3.6'da sırasıyla binanın x-x ve y-y doğrultuları için verilmektedir.

Şekil 3.5 : 23-MD-ST6 binasının x-x doğrultusu için kat yerdeğiştirmeleri.

Şekil 3.6 : 23-MD-ST6 binasının y-y doğrultusu için kat yerdeğiştirmeleri.

23-MD-ST6 binasının 15 farklı *PGA* seviyesine sahip EQ-4 yer hareketi etkisinde gerçekleştirilen doğrusal olmayan dinamik analizleri sonucunda elde edilen göreli kat ötelenmesi oranları Şekil 3.7 ve 3.8'de sırasıyla binanın x-x ve y-y doğrultuları için verilmektedir.

Şekil 3.7 : 23-MD-ST6 binasının x-x doğrultusu için göreli kat ötelenmesi oranları.

Şekil 3.8 : 23-MD-ST6 binasının y-y doğrultusu için göreli kat ötelenmesi oranları.

Binaların *HG* eğrileri elde edilirken; depremden oluşan talebin ve tanımlanan bir sınır hasar seviyesinin aşılması olasılığının belirlenebilmesi için dinamik analizlere ek olarak doğrusal olmayan statik itme analizi yapılmış, gerçekleştirilen bu itme analizi sonucunda yapısal kapasite belirlenmiştir. Uygulanan statik itme analizlerinde, kapasite eğrileri yapının etkin olan moduna bağlı olarak artan yatay yükler altında hesaplanmıştır. Elde edilen kapasite eğrisi, FEMA356 (2000)'de verilen yöntemde anlatıldığı gibi, elastik rijitlik (K_e) ve elasto-plastik rijitlik (K_s) ile iki doğru parçası olarak idealleştirilmektedir. İdealleştirme yapılırken iki koşul esas alınmaktadır. İlk koşul, idealleştirilmiş kapasite diyagramının altında kalan alan ile itme analizinden elde edilen alanların eşit olmasıdır. İkinci olarak, K_e eğimli doğrunun kapasite eğrisini kestiği noktaya karşılık gelen taban kesme kuvvetini değerinin, K_e ve K_s eğimli doğrularının kesiştiği noktanın taban kesme kuvveti değerinin 0.60 katı olması koşulu esas alınmaktadır (Şekil 3.9). İki doğrunun kesişim noktası V_y akma kuvvetini vermektedir.

Yapısal kapasitelerin belirlenebilmesi amacıyla gerçekleştirilmiş olan doğrusal olmayan statik itme analizleri sonucunda, her bir binanın her bir doğrultusu için elde edilmiş olan kapasite eğrileri tezin CD ekinde verilmiş olup, burada yine sadece 23-MD-ST6 no'lu binaya ait itme eğrileri gösterilmiştir (Şekil 3.10 ve 3.11). Her bir binanın her iki doğrultusu için elde edilmiş olan akma kesme kuvveti değerleri Çizelge 3.2'de ayrıca verilmektedir.

Taban Kesme Kuvveti (VT)

Şekil 3.9 : Kapasite eğrisinin idealleştirilmesi (FEMA356,2000).

50 adet binaya ait toplu sonuçlar, her bir deprem düzeyinin ortalamaları için ayrı ayrı olmak kaydıyla Çizelge 3.2'de verilmektedir. Tablodaki H bina toplam yüksekliğini; W bina toplam ağırlığını; V_y doğrusal olmayan statik itme analizi sonucunda elde edilen akma kesme kuvvetini; U_{top} en üst kat yerdeğiştirmesini ve V_b ise taban kesme kuvveti istemini göstermektedir.

Diğer yandan, ilgili binaların sonuçlarının kırılganlık analizleri için irdelenmesi amacıyla, Bölüm 4'te detaylıca açıklanacağı üzere göreli tepe yerdeğiştirmesi oranları (U_{top}/H) , ve talep/kapasite $(DCR=V_b/V_r)$ parametreleri hesaplanarak Çizelge 3.3'te sunulmuştur.

Şekil 3.11 : 23-MD-ST6 binasının y-y doğrultusu için kapasite eğrisi.

Ayrıca her iki bina doğrultusu için 50 adet binanın hâkim periyodunun, ölçeklendirilmiş yer hareketleri etkisindeki değişimleri elde edilmiş olup, EK-B'de verilmektedir. Aynı tabloda Di'Pasquale ve Cakmak (1987) tarafından önerilen:

$$\delta_f = 1 - \frac{\left(T_1\right)^2}{\left[\left(T_1\right)^*\right]^2} \tag{3.3}$$

maksimum yumuşama indeksinin (maximum softening index) değişimi de gösterilmektedir. İfadede T_I , hasarsız binanın hâkim periyodunu; T_I^* ise deprem yüklemesi sonrasında hesaplanan birinci mod periyodunu göstermektedir. Araştırma çalışmasında bu indeks, hasar durumu bilinen yapılardan yola çıkılarak, deprem yüklemeleri sonrasında rijitlik ve dayanım kaybına maruz kalan bina toplumunun hasar sınırlarını gözlemlemek ve değerlendirmek amacıyla incelenmiştir. Tüm yapı toplumu için hesaplanan değerler incelendiğinde maksimum yumuşama indeksinin 0.068~0.990 aralığında değerler aldığı görülmüştür. Yapı toplumu içindeki orta hasarlı yapılara ait hesaplanan değerler ise 0.704~0.989 aralığında değişmekte olup, saha gözlemleri ile birlikte değerlendirildiğinde, elde edilen indeks aralığının "orta hasar" düzeyine işaret ettiği düşünülmektedir.

#	Bina	H	W	Vän	Vr	Vy	Yapısal								PGA							
#	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	<u></u> .			V-V	876	1380	Utop (m)	0.0246	0.0394	0.0566	0.0750	0.0933	0.1119	0.1320	0.1523	0.1735	0.1954	0.2184	0.2385	0.2612	0.2858	0.3089
1	1-NI ST4	12	17100.0	~~~	010	1300	V ь (kN)	967.7	1267.3	1461.2	1556.3	1613.2	1655.4	1722.9	1770.1	1811.4	1854.5	1901.5	1962.4	2012.6	2067.1	2126.9
1	0	12	17100.0	N-N	7/3	1295	U top (m)	0.0230	0.0355	0.0531	0.0693	0.0881	0.1053	0.1276	0.1485	0.1692	0.1907	0.2119	0.2350	0.2550	0.2772	0.2994
				y-y	745	1255	V ь (kN)	961.4	1203.4	1368.7	1493.6	1532.2	1591.5	1644.3	1690.6	1738.3	1781.1	1825.3	1880.5	1936.1	1989.4	2045.9
	<u>ط</u>			V-V	253	190	U top (m)	0.0210	0.0353	0.0522	0.0716	0.0909	0.1111	0.1306	0.1498	0.1677	0.1876	0.2098	0.2321	0.2538	0.2728	0.2954
2	2-MI ST3	8 25	3950.7	~~~	200	150	V _b (kN)	112.2	163.8	189.3	209.3	217.1	225.9	234.7	244.0	253.1	260.3	268.2	274.0	281.8	288.5	294.7
2	0	0.20	0000.1	V-V	290	200	U top (m)	0.0162	0.0278	0.0404	0.0540	0.0693	0.0863	0.1058	0.1237	0.1439	0.1618	0.1813	0.1979	0.2156	0.2324	0.2504
				уу	200	200	V ь (kN)	76.6	114.7	160.2	201.4	224.3	240.3	244.5	257.8	268.0	274.6	282.2	289.5	295.5	301.9	310.3
	<u>ط</u> ر			х-х	992	980	U top (m)	0.0259	0.0387	0.0538	0.0705	0.0876	0.1073	0.1294	0.1516	0.1699	0.1906	0.2080	0.2313	0.2526	0.2756	0.2960
3	3-M ST6	174	10750 7	~ ~ ~	002	000	V _b (kN)	570.4	750.0	959.9	1089.5	1134.5	1157.5	1213.3	1264.7	1300.9	1350.2	1410.5	1449.0	1470.6	1504.4	1540.5
Ũ	0			v-v	1039	1015	U_{top} (m)	0.0281	0.0446	0.0630	0.0828	0.1021	0.1228	0.1441	0.1649	0.1856	0.2063	0.2301	0.2550	0.2788	0.3025	0.3227
				,,	1000	1010	V ь (kN)	574.8	802.2	948.5	1021.3	1114.8	1198.9	1245.4	1289.1	1330.0	1377.1	1428.0	1465.8	1495.2	1530.4	1581.2
	ᆸᇅ			x-x	430	1020	U top (m)	0.0210	0.0326	0.0445	0.0565	0.0709	0.0868	0.1038	0.1203	0.1371	0.1531	0.1709	0.1891	0.2077	0.2251	0.2430
4	N4-M ST(13.75	8104.4		100	1020	V ь (kN)	376.5	578.2	750.5	872.4	983.6	1035.6	1076.9	1111.5	1135.3	1163.4	1180.6	1204.9	1227.1	1251.7	1284.1
	0			v-v	407	1030	Utop (m)	0.0212	0.0335	0.0450	0.0577	0.0719	0.0878	0.1032	0.1185	0.1352	0.1515	0.1686	0.1859	0.2044	0.2221	0.2407
				, ,			V _b (kN)	393.8	649.1	819.1	891.8	942.2	986.4	1024.6	1057.3	1083.6	1101.1	1123.6	1147.7	1169.3	1202.5	1232.8
	é∽			х-х	478	650	Utop (m)	0.0219	0.0354	0.0521	0.0705	0.0874	0.1067	0.1254	0.1425	0.1637	0.1834	0.2035	0.2222	0.2408	0.2593	0.2806
5	ST ST	8.85	7676.8				V ь (kN)	342.8	501.1	616.2	652.2	684.9	705.0	/33.3	/64.1	/86.0	808.4	834.1	856.6	8/6.2	897.3	920.3
	0			v-v	546	945	Utop (m)	0.0145	0.0229	0.0332	0.0438	0.0552	0.0676	0.0815	0.0957	0.1097	0.1238	0.1387	0.1547	0.1707	0.1868	0.2028
				,,			V ь (kN)	440.0	6/3.9	/82.2	884.6	959.0	1018.2	10/6./	1110.7	11/3.1	1202.2	1227.0	1266.9	1296.3	1313.0	1329.1
	4 D			х-х	306	350	U _{top} (m)	0.0342	0.0530	0.0738	0.0954	0.1163	0.1374	0.1600	0.1845	0.2115	0.2376	0.2644	0.2907	0.3155	0.3397	0.3644
6	ST ST	12.1	6382.8				V _b (kN)	251.2	303.1	334.1	357.2	3/4.5	392.6	412.8	432.2	448.2	462.6	4/0.8	492.6	508.3	524.1	539.7
	0			v-v	299	262	Utop (m)	0.0214	0.0344	0.0506	0.0670	0.0841	0.1019	0.1188	0.1363	0.1512	0.1655	0.1814	0.1969	0.2135	0.2310	0.2505
				,,			V ь (kN)	79.1	130.2	167.5	205.2	228.7	240.3	252.3	257.2	260.8	260.2	264.2	272.3	2/8.2	279.2	2//.b
	ģ∽			x-x	310	260	Utop (m)	0.0176	0.0291	0.0413	0.0549	0.0699	0.0867	0.1029	0.1188	0.1354	0.1535	0.1715	0.1897	0.2079	0.2260	0.2447
7	N-70 ST	8.7	3872.7				V ь (kN)	116.4	1/3.0	214.2	252.2	2/4.6	297.1	313.3	328.0	346.4	303.7	3/6.2	388.6	401.2	415.8	432.5
-	0			v-v	312	280	U _{top} (m)	0.0190	0.0327	0.0452	0.0621	0.0797	0.0982	0.1167	0.1364	0.1548	0.1741	0.1930	0.2156	0.2302	0.2484	0.2661
				, ,			V ь (kN)	112.6	162.9	228.2	260.1	283.3	307.3	322.3	336.1	349.9	362.2	3/4.9	387.4	401.8	415.8	430.1

Çizelge 3.2 : Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	H	W	Vän	Vr	Vy	Yapısal								PGA							
π	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	<u></u> .			X X	377	280	Utop (m)	0.0228	0.0378	0.0574	0.0752	0.0958	0.1166	0.1377	0.1592	0.1816	0.2032	0.2243	0.2465	0.2681	0.2907	0.3156
0	3-MI ST5	13 95	7850 3	X-X	511	200	V ь (kN)	281.8	404.1	497.2	542.8	565.3	582.8	593.6	603.3	616.3	632.5	649.3	659.2	672.5	682.9	693.0
0	õ	13.05	1059.5		100	205	Utop (m)	0.0276	0.0460	0.0654	0.0866	0.1072	0.1275	0.1502	0.1722	0.1943	0.2183	0.2419	0.2655	0.2892	0.3154	0.3434
				у-у	400	200	V ь (kN)	182.7	240.2	268.9	288.7	308.3	324.5	336.0	348.5	358.1	369.4	379.2	388.9	397.6	407.4	416.0
	Ċ.			V V	071	400	U top (m)	0.0273	0.0454	0.0659	0.0871	0.1090	0.1308	0.1518	0.1748	0.1965	0.2200	0.2436	0.2681	0.2922	0.3203	0.3473
٥	9-MI ST4	11 05	5800 /	~~~	271	400	V ь (kN)	179.4	276.0	331.5	363.6	394.2	414.3	429.4	451.6	469.0	483.5	498.7	513.8	526.5	538.4	550.8
3	8	11.05	5050.4	W_	210	305	U top (m)	0.0276	0.0455	0.0673	0.0912	0.1137	0.1351	0.1596	0.1835	0.2076	0.2339	0.2604	0.2891	0.3183	0.3465	0.3744
				y-y	215	000	V ь (kN)	161.2	260.8	302.3	318.7	344.8	361.6	375.2	396.6	413.9	433.8	451.8	471.6	490.0	509.3	524.7
				V-V	218	330	U_{top} (m)	0.0127	0.0194	0.0282	0.0372	0.0478	0.0561	0.0711	0.0821	0.0948	0.1062	0.1187	0.1319	0.1451	0.1572	0.1692
10	0-MI ST3	8 55	4009.2	~~~	210	550	V ь (kN)	12.6	16.0	19.1	22.0	24.7	26.9	32.3	34.6	39.1	40.2	42.4	45.7	50.0	51.0	53.9
10	~	0.00	4003.2	V-V	218	355	U top (m)	0.0115	0.0186	0.0277	0.0363	0.0455	0.0562	0.0683	0.0787	0.0906	0.1032	0.1153	0.1268	0.1393	0.1528	0.1654
				уу	210	000	V ь (kN)	10.2	17.2	23.4	26.8	30.9	33.9	37.0	39.3	42.1	45.6	48.5	51.7	54.6	58.0	61.1
	ٺ س			X-X	130	168	U_{top} (m)	0.0177	0.0294	0.0419	0.0565	0.0719	0.0913	0.1104	0.1309	0.1506	0.1666	0.1864	0.2042	0.2225	0.2422	0.2617
11	STS	81	3556 9	~~~	100	100	$\mathbf{V}_{\mathbf{b}}$ (kN)	91.4	123.5	153.1	181.7	192.9	200.6	205.4	213.6	214.7	223.0	228.9	235.4	241.7	248.9	255.7
	-	0.1	0000.0	V-V	130	103	U top (m)	0.0211	0.0362	0.0517	0.0721	0.0951	0.1188	0.1426	0.1645	0.1860	0.2079	0.2307	0.2528	0.2738	0.2954	0.3165
				,,	100	100	V ь (kN)	33.3	57.4	89.4	110.5	125.9	135.0	147.3	155.7	160.6	167.3	173.9	180.7	186.7	194.0	199.6
	ᅌᅲ			x-x	511	375	U top (m)	0.0278	0.0432	0.0602	0.0774	0.0960	0.1120	0.1307	0.1491	0.1667	0.1855	0.2084	0.2314	0.2549	0.2778	0.2999
12	2-M ST	12.25	5731.8		••••	0.0	V ь (kN)	259.8	314.7	348.6	366.7	384.0	399.1	415.9	430.1	444.2	459.4	473.6	488.7	502.7	517.4	533.0
	÷			V-V	456	430	U top (m)	0.0225	0.0377	0.0535	0.0704	0.0892	0.1075	0.1264	0.1428	0.1598	0.1773	0.1936	0.2114	0.2302	0.2504	0.2728
				,,			V ь (kN)	256.0	343.9	377.7	396.2	414.2	425.8	446.8	460.2	475.5	492.8	514.3	534.2	554.2	569.5	583.8
	പ്ഹ			x-x	400	880	U top (m)	0.0212	0.0328	0.0450	0.0593	0.0748	0.0918	0.1095	0.1263	0.1423	0.1604	0.1803	0.1984	0.2168	0.2351	0.2546
13	I3-N ST	13.75	8104.4				V ь (kN)	335.8	535.2	672.0	801.0	890.9	943.1	970.9	990.4	1013.8	1038.8	1057.6	10/8.8	1108.5	1132.2	1149.9
	τ.			v-v	379	825	Utop (m)	0.0210	0.0338	0.0456	0.0596	0.0752	0.0915	0.10/2	0.1234	0.1394	0.1575	0.1/53	0.1937	0.2121	0.2305	0.2502
				,,	010	020	V _b (kN)	375.8	608.3	755.6	826.6	874.3	913.1	944.7	971.8	989.5	1010.2	1027.8	1051.4	1076.6	1100.3	1125.6
	പ്ഹ			x-x	433	380	U top (m)	0.0553	0.0871	0.1201	0.1565	0.1977	0.2379	0.2751	0.3080	0.3417	0.3757	0.4083	0.4400	0.4702	0.4994	0.5274
14	STI STI	14.25	10587.2				V ь (kN)	304.7	392.5	449.3	484.4	516.3	546.1	572.7	592.5	611.4	629.9	647.9	663.3	680.2	696.1	711.2
	-			V-V	491	640	Utop (m)	0.0337	0.0536	0.0759	0.1001	0.1226	0.1475	0.1754	0.2047	0.2333	0.2637	0.2950	0.3261	0.3578	0.3904	0.4206
				,,	101	0.0	V ь (kN)	488.8	627.9	702.3	731.8	766.9	820.2	847.5	851.9	869.4	894.1	919.5	940.7	968.6	993.2	1016.7

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	H	W	Vän	Vr	Vy	Yapısal								PGA							
#	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	Å			~ ~	245	200	Utop (m)	0.0358	0.0575	0.0777	0.0976	0.1203	0.1447	0.1726	0.2009	0.2299	0.2569	0.2821	0.3066	0.3322	0.3580	0.3841
15	5-MI ST5	15 3	7383 0	X-X	545	200	V ь (kN)	87.9	122.3	146.7	166.8	183.0	197.4	207.6	215.6	222.6	228.9	234.9	240.4	246.2	251.2	256.1
15	ŧ	15.5	1303.9		345	340	Utop (m)	0.0229	0.0370	0.0528	0.0703	0.0893	0.1073	0.1241	0.1400	0.1567	0.1751	0.1931	0.2115	0.2299	0.2519	0.2741
				у-у	545	540	V _b (kN)	107.1	165.4	225.2	266.9	290.3	306.0	318.9	329.3	339.2	348.5	357.8	366.7	373.8	379.5	385.0
				~ ~	554	345	U top (m)	0.0085	0.0130	0.0179	0.0241	0.0287	0.0384	0.0493	0.0604	0.0741	0.0842	0.0945	0.1082	0.1198	0.1319	0.1438
16	ST2	56	1501	X-X	554	545	V_b (kN)	189.6	315.3	379.0	417.1	441.5	472.2	491.7	511.5	531.3	567.0	587.0	598.3	620.0	636.3	655.9
10	÷	0.0	-00-	N-N	554	360	Utop (m)	0.0093	0.0137	0.0184	0.0242	0.0315	0.0387	0.0456	0.0534	0.0641	0.0806	0.0919	0.1047	0.1173	0.1291	0.1397
				у-у	554	500	V ь (kN)	152.3	256.2	379.0	466.5	487.0	495.3	497.3	516.4	545.0	543.6	562.8	566.4	563.6	587.6	597.2
	<u>ط</u> س			Y- Y	522	1090	U top (m)	0.0149	0.0229	0.0309	0.0393	0.0479	0.0574	0.0691	0.0827	0.0952	0.1086	0.1219	0.1359	0.1501	0.1642	0.1787
17	7-HI ST3	7 95	5789	~ ~	022	1000	V ь (kN)	555.2	792.3	923.8	985.7	1067.9	1131.1	1185.5	1236.5	1276.0	1317.0	1362.8	1399.3	1435.7	1471.1	1507.3
17	~	1.00	0100	V-V	522	1230	U_{top} (m)	0.0106	0.0171	0.0247	0.0315	0.0389	0.0458	0.0531	0.0616	0.0724	0.0835	0.0945	0.1062	0.1181	0.1298	0.1419
				y y	022	1200	V ь (kN)	502.7	766.1	982.4	1070.4	1103.4	1145.1	1186.1	1223.2	1255.7	1286.4	1313.6	1347.6	1378.3	1410.0	1438.6
				X-X	499	635	U top (m)	0.0109	0.0182	0.0251	0.0324	0.0404	0.0512	0.0617	0.0731	0.0852	0.0968	0.1102	0.1213	0.1339	0.1465	0.1630
18	8-N ST2	63	4238	~ ~ ~	100	000	V ь (kN)	381.3	485.5	532.1	605.1	670.1	723.0	771.2	811.1	844.5	895.0	935.1	977.1	1005.2	1038.7	1066.9
10	÷	0.0	.200	V-V	648	630	U top (m)	0.0116	0.0182	0.0259	0.0336	0.0435	0.0534	0.0635	0.0777	0.0900	0.1082	0.1059	0.1139	0.1277	0.1452	0.1510
				,,	010	000	V ь (kN)	269.9	389.4	465.9	530.3	558.2	594.3	613.1	626.6	641.4	686.9	683.9	714.9	731.2	743.6	776.6
	ے م			x-x	833	492	U top (m)	0.0442	0.0682	0.0941	0.1237	0.1535	0.1855	0.2156	0.2492	0.2732	0.3028	0.3319	0.3589	0.3871	0.4141	0.4397
19	N-6	22.4	11154.7				V ь (kN)	418.3	502.7	547.5	580.3	606.9	642.3	672.9	709.3	736.6	765.9	793.6	819.9	845.3	869.8	894.1
	v			v-v	780	1320	U top (m)	0.0356	0.0536	0.0725	0.0913	0.1155	0.1371	0.1612	0.1836	0.2087	0.2353	0.2509	0.2739	0.2958	0.3243	0.3520
				, ,			V ь (kN)	/25.8	938.8	1045.3	1122.6	11/2.9	1224.3	1284.4	1337.8	13/6.3	1415.4	1457.1	1498.7	1534.1	1568.0	1599.9
	പ്ര			x-x	493	508	U _{top} (m)	0.0387	0.0579	0.0792	0.1071	0.1367	0.1674	0.2011	0.2343	0.2676	0.2981	0.3245	0.3558	0.3856	0.4150	0.4452
20	ST ST	17.55	9214				V ь (kN)	455.7	520.1	563.7	598.5	614.6	636.4	645.5	6/1.5	696.7	/19.9	/45.8	/64.5	/85.6	/98.6	815.7
				v-v	482	530	Utop (m)	0.0345	0.0509	0.0704	0.0950	0.1228	0.1477	0.1764	0.2059	0.2337	0.2610	0.2884	0.3162	0.3447	0.3722	0.4001
				, ,			V ь (kN)	504.1	598.0	639.1	663.0	687.9	703.4	724.3	751.2	782.5	814.5	848.3	881.2	913.8	942.6	971.7
	ط م			x-x	758	980	Utop (m)	0.0131	0.0228	0.0337	0.0450	0.0564	0.0687	0.0815	0.0943	0.1071	0.1204	0.1347	0.1503	0.1662	0.1823	0.1987
21	ST:	6.4	10086.7				V ь (kN)	441.8	646.2	869.8	1024.5	1129.0	1191.6	1249.8	1293.7	1340.6	1390.7	1421.9	1452.1	1487.4	1515.8	1550.5
- '		-		v-v	758	1345	U _{top} (m)	0.0121	0.0196	0.0293	0.0365	0.0451	0.0528	0.0648	0.0769	0.0890	0.1001	0.1130	0.1259	0.1385	0.1519	0.1653
				, ,		1010	V ь (kN)	513.5	834.8	1094.6	1208.9	1338.9	1482.5	1578.9	1660.3	1737.3	1819.0	1913.4	2008.6	2063.5	2123.0	2183.3

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	\boldsymbol{H}	W	Vön	Vr	Vy	Yapısal								PGA							
π	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	4				725	GEE	Utop (m)	0.0150	0.0264	0.0377	0.0502	0.0631	0.0767	0.0900	0.1040	0.1182	0.1338	0.1504	0.1670	0.1843	0.2016	0.2184
22	2-NC ST2	61	7400 2	X-X	135	000	V _b (kN)	320.2	487.1	615.2	715.0	781.8	836.5	879.5	911.0	941.5	968.0	991.7	1013.4	1042.5	1073.5	1105.1
22	5	0.4	7400.5		757	005	Utop (m)	0.0114	0.0186	0.0284	0.0357	0.0439	0.0533	0.0650	0.0765	0.0895	0.1014	0.1148	0.1270	0.1398	0.1520	0.1660
				у-у	151	000	V ь (kN)	333.8	533.5	714.0	831.6	917.4	1009.6	1072.2	1127.3	1161.7	1219.6	1268.3	1316.8	1363.6	1396.5	1429.8
	Ċ			V V	260	000	U top (m)	0.0307	0.0474	0.0633	0.0801	0.1013	0.1221	0.1434	0.1610	0.1878	0.2069	0.2270	0.2568	0.2825	0.3020	0.3161
23	3-MI ST6	15.2	8208 1	X-X	309	000	V _b (kN)	637.2	777.2	854.2	904.8	919.8	953.9	993.9	1023.9	1041.0	1064.3	1164.4	1125.1	1161.1	1185.1	1220.7
25	Ň	13.2	0200.1	M -M	3/18	875	U top (m)	0.0268	0.0426	0.0587	0.0771	0.0963	0.1165	0.1358	0.1562	0.1778	0.2006	0.2202	0.2426	0.2662	0.2910	0.3148
				у-у	J 4 0	015	V ь (kN)	651.8	807.1	878.8	916.1	935.7	955.8	979.7	1016.8	1030.0	1048.8	1069.3	1165.2	1126.7	1150.3	1174.2
	<u></u> .			V-V	157	185	U_{top} (m)	0.0205	0.0326	0.0490	0.0660	0.0836	0.1036	0.1246	0.1398	0.1588	0.1774	0.1946	0.2128	0.2342	0.2553	0.2761
2/	4-MI ST4	10.8	3442.8	~~~	157	105	V b (kN)	84.8	129.5	172.0	198.4	206.2	212.1	216.1	221.4	226.3	231.5	236.8	242.9	249.4	256.1	262.8
24	5	10.0	5442.0	W_W	204	300	U top (m)	0.0181	0.0296	0.0421	0.0562	0.0715	0.0854	0.1014	0.1183	0.1360	0.1540	0.1728	0.1898	0.2062	0.2240	0.2399
				y-y	204	500	V b (kN)	148.3	222.5	255.9	284.0	300.8	312.4	319.0	325.8	333.4	340.8	347.4	356.0	363.3	370.8	379.1
	Ċ ~			v _v	1170	1800	U_{top} (m)	0.0310	0.0498	0.0703	0.0933	0.1165	0.1371	0.1570	0.1792	0.2017	0.2243	0.2489	0.2742	0.3024	0.3304	0.3599
25	ST3	11 5	26130.7	<u>v-v</u>	1170	1000	$\mathbf{V}_{\mathbf{b}}$ (kN)	835.0	1364.0	1663.7	1764.5	1824.2	1866.4	1912.7	1961.8	2015.1	2067.2	2122.2	2182.0	2246.9	2305.3	2361.3
20	2	11.0	20100.1	V-V	1170	1810	U_{top} (m)	0.0314	0.0498	0.0709	0.0924	0.1169	0.1404	0.1593	0.1815	0.2041	0.2283	0.2542	0.2782	0.3052	0.3363	0.3656
				y y	1170	1010	V b (kN)	840.9	1357.1	1681.4	1808.9	1882.0	1943.6	2009.5	2065.5	2121.9	2178.5	2235.8	2296.0	2362.9	2420.8	2479.6
	d in			X-X	791	1270	U top (m)	0.0536	0.0829	0.1467	0.1441	0.1749	0.2115	0.2503	0.2862	0.3193	0.3538	0.3855	0.4201	0.4524	0.4834	0.5140
26	ST5	14 32	26880 8	~ ~	101	1210	V b (kN)	1021.2	1295.7	1523.6	1559.2	1630.5	1712.4	1782.7	1841.9	1892.5	1939.7	1985.4	2030.8	2071.4	2110.7	2149.9
20			2000000	V-V	1059	1650	U top (m)	0.0409	0.0649	0.0928	0.1223	0.1495	0.1779	0.2062	0.2359	0.2693	0.3053	0.3385	0.3703	0.4000	0.4261	0.4600
				,,	1000	1000	V b (kN)	1221.5	1497.8	1661.3	1812.3	1929.5	2028.3	2108.5	2197.5	2273.5	2347.9	2410.8	2474.9	2532.9	2591.4	2633.5
	占 ,,			x-x	867	1015	U top (m)	0.0380	0.0606	0.0810	0.1020	0.1230	0.1441	0.1676	0.1913	0.2176	0.2452	0.2720	0.2967	0.3258	0.3561	0.3843
27	ST ₂	11 55	15130 5		001	1010	V ь (kN)	707.9	929.6	1075.5	1147.0	1185.9	1232.3	1283.7	1326.0	1380.4	1434.0	1482.6	1528.2	1576.2	1620.9	1666.5
			1010010	V-V	760	1330	U top (m)	0.0252	0.0414	0.0595	0.0794	0.0996	0.1180	0.1376	0.1553	0.1770	0.2007	0.2230	0.2462	0.2704	0.2961	0.3217
				,,	100	1000	$\mathbf{V}_{\mathbf{b}}$ (kN)	945.2	1262.5	1428.1	1496.2	1561.0	1617.0	1679.3	1721.0	1766.5	1824.6	1869.7	1915.6	1975.2	2030.1	2085.3
	_ ს			x-x	2008	3650	U_{top} (m)	0.0143	0.0217	0.0304	0.0398	0.0518	0.0632	0.0798	0.0960	0.1124	0.1288	0.1446	0.1597	0.1755	0.1918	0.2088
28	8-N ST	19.5	26544 0	~ ~ ~	2000	0000	V b (kN)	2617.5	3024.1	3353.4	3815.9	4121.1	4367.8	4759.0	5068.5	5323.5	5548.8	5756.5	6002.5	6230.8	6452.2	6757.1
20	~			v-v	1847	3270	U top (m)	0.0155	0.0235	0.0309	0.0382	0.0455	0.0549	0.0633	0.0752	0.0873	0.0998	0.1096	0.1206	0.1304	0.1416	0.1509
				, ,	1011	02.0	V ь (kN)	680.8	1129.1	1719.0	2276.0	2787.7	3130.3	3368.7	3554.8	3717.7	3744.3	3803.8	3819.6	3864.7	3861.8	3907.6

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	H	W	Vän	Vr	Vy	Yapısal								PGA							
#	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	Ċ			× ×	700	005	Utop (m)	0.0290	0.0372	0.0646	0.0672	0.0879	0.1010	0.1140	0.1365	0.1617	0.1762	0.1681	0.2157	0.2058	0.2193	0.2476
20	9-MI ST4	12.2	0100 /	X-X	190	990	V _b (kN)	519.4	687.7	885.0	993.9	1097.6	1143.5	1167.9	1199.7	1242.9	1246.8	1151.5	1308.1	1244.6	1173.1	1315.5
29	й	13.3	0190.4		700	760	Utop (m)	0.0359	0.0547	0.0743	0.0935	0.1144	0.1355	0.1583	0.1792	0.2019	0.2285	0.2534	0.2796	0.3070	0.3301	0.3571
				у-у	190	100	V _b (kN)	440.4	588.6	692.3	768.2	833.6	882.1	927.2	962.1	987.4	1023.4	1061.5	1099.7	1136.8	1173.5	1209.0
	Å			V V	702	1075	Utop (m)	0.0226	0.0357	0.0509	0.0692	0.0880	0.1084	0.1288	0.1483	0.1684	0.1910	0.2117	0.2332	0.2528	0.2731	0.2960
30	0-NE ST4	11.2	1383/ 7	X-X	195	1075	V_b (kN)	579.1	811.6	1000.3	1107.0	1159.8	1184.8	1236.6	1305.4	1346.5	1381.4	1437.3	1491.3	1539.6	1584.8	1641.5
50	ñ	11.2	13034.7	N N	728	1100	Utop (m)	0.0222	0.0342	0.0483	0.0640	0.0819	0.1006	0.1191	0.1378	0.1578	0.1777	0.1967	0.2179	0.2384	0.2601	0.2821
				у-у	120	1100	V_b (kN)	553.2	802.2	997.5	1142.7	1280.0	1377.5	1460.5	1520.0	1568.5	1667.3	1776.2	1862.0	1941.9	2028.9	2134.2
	<u>ط</u> .			V-V	3555	6600	U top (m)	0.0506	0.0760	0.0882	0.1260	0.1324	0.1531	0.1741	0.2249	0.2516	0.2774	0.3061	0.3387	0.3718	0.4042	0.4364
21	1-NI ST5	174	57775 8	~~~	3333	0000	V_b (kN)	2725.8	4100.2	4574.7	6190.8	6097.5	6667.8	7129.1	8812.0	9112.0	9395.1	9652.2	9871.2	10060.8	10229.1	10403.6
51	ŝ	· · · · ·	51115.0	<u></u>	3555	6550	U top (m)	0.0427	0.0658	0.0901	0.1163	0.1417	0.1659	0.1907	0.2133	0.2353	0.2650	0.2972	0.3273	0.3589	0.3906	0.4209
				y-y	0000	0000	V ь (kN)	2368	3514.2	4659.5	5621.1	6533.4	7389.7	8062	8569.3	8992.4	9262.5	9415.8	9617.2	9764.3	9925.2	10103.6
	d m			v _v	901	1/180	U top (m)	0.0297	0.0459	0.0615	0.0780	0.0946	0.1114	0.1271	0.1466	0.1659	0.1868	0.2017	0.2210	0.2471	0.2661	0.2869
32	ST3	10.2	13138.6	<u></u>	504	1-00	V ь (kN)	866.1	1194.0	1422.0	1587.0	1676.9	1739.2	1805.9	1830.7	1873.5	1932.2	1984.3	2042.6	2058.7	2101.4	2137.9
02	с С	10.2	10100.0	V-V	904	1620	U top (m)	0.0304	0.0454	0.0608	0.0764	0.0921	0.1083	0.1241	0.1408	0.1586	0.1770	0.1959	0.2165	0.2379	0.2585	0.2794
				y y	504	1020	V _b (kN)	976.3	1346.2	1512.4	1642.5	1741.3	1830.4	1918.5	1985.5	2044.1	2100.0	2154.7	2199.1	2241.1	2295.3	2338.9
	ط م			X-X	677	1025	U top (m)	0.0311	0.0476	0.0640	0.0796	0.0992	0.1153	0.1345	0.1520	0.1731	0.1935	0.2100	0.2325	0.2463	0.2708	0.2951
33	ST3-N	10.2	9635 9	~ ~	011	1020	V b (kN)	575.5	780.3	962.7	1083.3	1156.9	1217.8	1260.0	1306.6	1326.4	1387.6	1415.7	1432.5	1481.6	1522.7	1553.1
00	с о	10.2	0000.0	V-V	626	1020	U top (m)	0.0269	0.0404	0.0549	0.0700	0.0851	0.1004	0.1163	0.1325	0.1478	0.1642	0.1824	0.2030	0.2191	0.2391	0.2565
				,,	020	1020	V ь (kN)	609.8	860.4	982.0	1069.0	1129.1	1173.6	1208.1	1239.8	1270.4	1296.1	1319.0	1347.9	1380.0	1411.3	1437.4
	ط م			X-X	2996	2115	U_{top} (m)	0.1014	0.1519	0.2051	0.2572	0.3041	0.3490	0.3921	0.4336	0.4783	0.5246	0.5739	0.6188	0.6641	0.6967	0.7253
34	ST.	20.8	29375 0		2000	2110	V _b (kN)	1568.3	2281.0	2888.0	3455.9	3930.3	4233.9	4519.1	4819.6	5161.4	5469.2	5794.4	6092.8	6308.8	6525.5	6701.5
01	с о	20.0	20070.0	V-V	2996	1890	U top (m)	0.1060	0.1601	0.2171	0.2687	0.3151	0.3596	0.4014	0.4479	0.4942	0.5439	0.5905	0.6347	0.6755	0.7071	0.7274
				,,	2000	1000	V b (kN)	1522.2	2197.2	2773.3	3289.7	3728.8	4048.6	4286.9	4522.0	4841.4	5174.8	5477.5	5722.6	5952.3	6158.7	6351.4
	ط م			x-x	992	1460	U top (m)	0.0127	0.0199	0.0268	0.0339	0.0432	0.0546	0.0660	0.0779	0.0890	0.1006	0.1117	0.1254	0.1368	0.1504	0.1615
35	ST3	85	10520.0	~ ~	002	1100	V b (kN)	799.9	1016.4	1230.9	1428.8	1549.1	1653.1	1774.1	1875.5	1984.9	2079.6	2153.5	2273.0	2379.5	2441.7	2542.5
00	(T)	0.0		V-V	1276	900	U top (m)	0.0141	0.0216	0.0306	0.0410	0.0527	0.0664	0.0794	0.0925	0.1074	0.1223	0.1355	0.1535	0.1677	0.1837	0.1977
				y y	1210	500	V ь (kN)	773.8	937.6	1106.8	1258.0	1369.0	1443.7	1534.0	1601.2	1644.1	1694.5	1780.8	1854.6	1932.2	2007.5	2056.8

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	\boldsymbol{H}	W	Vän	Vr	Vy	Yapısal								PGA							
π	Kodu	(m)	(kN)	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	4		_	~ ~	1040	1560	Utop (m)	0.0482	0.0787	0.1017	0.1352	0.1670	0.2021	0.2365	0.2750	0.3119	0.3513	0.3894	0.4287	0.4616	0.5005	0.5349
26	5-NC ST7	10.6	25200 5	X-X	1042	1000	V _b (kN)	1204.9	1473.5	1697.4	1853.8	1994.6	2136.4	2269.0	2367.7	2460.6	2564.4	2669.6	2763.4	2860.4	2941.5	3025.3
30	Ř	19.0	35299.5		1069	1400	Utop (m)	0.0529	0.0782	0.1041	0.1358	0.1716	0.2135	0.2532	0.2921	0.3283	0.3622	0.3927	0.4269	0.4601	0.4957	0.5291
				у-у	1000	1400	V _b (kN)	1015.5	1363.7	1551.2	1623.1	1711.5	1796.9	1889.5	1986.7	2047.4	2110.6	2162.4	2209.8	2252.6	2291.4	2333.4
	Å			V V	1660	1400	U top (m)	0.0407	0.0629	0.0857	0.1068	0.1281	0.1494	0.173	0.198	0.224	0.2485	0.2737	0.3010	0.3294	0.3592	0.3884
37	7-NI ST7	195	30000 8	7-7	1002	1490	V ь (kN)	1984.4	2683.7	3142.7	3459.6	3687.8	3793.9	3915.4	4020.6	4131.7	4264.9	4383.2	4524	4681.8	4824	4952.6
51	ŝ	10.5	30900.0	M -M	1718	21/10	U top (m)	0.0367	0.0567	0.0799	0.1033	0.1264	0.1498	0.1749	0.1991	0.2234	0.2505	0.2807	0.3154	0.3477	0.3819	0.4138
				у-у	1710	2140	V ь (kN)	1822.5	2315.6	2842.0	3315.9	3647.6	3832.9	4002.0	4117.5	4245.7	4377.4	4525.2	4649.8	4728.8	4868.4	5007.7
				V-V	205	360	U top (m)	0.0247	0.0405	0.0565	0.0726	0.0894	0.1058	0.1208	0.1368	0.1539	0.1696	0.1854	0.2036	0.2245	0.2459	0.2669
38	8-MI ST3	9 65	5151 /	~~~	205	500	V ь (kN)	212.6	296.5	327.9	342.8	354.3	364.4	373.6	382.8	393.5	404.5	415.6	428.9	442.3	456.0	469.2
50	ŝ	5.05	5151.4	W_W	205	225	U top (m)	0.0230	0.0397	0.0557	0.0703	0.0864	0.1013	0.1197	0.1367	0.1523	0.1702	0.1901	0.2092	0.2273	0.2482	0.2684
				y-y	200	225	V b (kN)	91.2	139.6	177.5	203.8	214.9	220.8	227.9	234.7	240.9	248.3	255.7	262.5	269.1	276.4	283.5
	d .a			v _v	785	030	U_{top} (m)	0.0319	0.0501	0.0706	0.0922	0.1126	0.1337	0.1551	0.1770	0.1988	0.2257	0.2506	0.2763	0.3009	0.3267	0.3501
30	9-MI ST5	14 75	19050 6	<u>v-v</u>	100	550	V _b (kN)	492.8	694.7	799.2	877.0	944.0	997.5	1039.1	1094.2	1141.6	1187.0	1234.8	1287.3	1337.3	1373.2	1412.5
00	ŝ	14.70	10000.0	V-V	673	610	U top (m)	0.0381	0.0586	0.0807	0.1044	0.1275	0.1543	0.1827	0.2105	0.2364	0.2614	0.2842	0.3075	0.3334	0.3595	0.3845
				y y	010	010	V ь (kN)	327.2	464.2	568.1	616.5	658.1	707.2	753.3	784.9	819.1	847.7	869.1	897.5	924.6	952.9	978.2
	ᆸᇅ			X-X	795	1610	U top (m)	0.0240	0.0374	0.0542	0.0716	0.0892	0.1075	0.1261	0.1451	0.1644	0.1844	0.2047	0.2255	0.2458	0.2658	0.2837
40	O-M ST5	14 75	15680 1	~ ~	100	1010	V b (kN)	845.5	1176.6	1444.4	1592.5	1686.9	1732.1	1788.2	1857.5	1901.5	1961.0	2025.6	2081.0	2126.9	2187.9	2250.9
10	4	11.70	10000.1	V-V	748	1325	U top (m)	0.0250	0.0385	0.0558	0.0752	0.0956	0.1182	0.1385	0.1598	0.1863	0.2057	0.2267	0.2529	0.2741	0.3026	0.3306
				,,	710	1020	V b (kN)	878.3	1109.3	1329.5	1425.1	1485.3	1523.0	1604.8	1636.6	1709.0	1779.3	1817.8	1882.9	1935.4	1989.7	2058.6
	<u>ط</u> ج			x-x	1391	1010	U top (m)	0.0301	0.0495	0.0711	0.0923	0.1136	0.1365	0.1617	0.1875	0.2122	0.2364	0.2623	0.2868	0.3128	0.3382	0.3740
41	ST-N	12.8	14147.1				V ь (kN)	746.8	924.7	1038.1	1127.6	1204.5	1285.7	1372.9	1461.7	1539.8	1567.1	1625.7	1694.8	1770.2	1825.9	1881.1
	4			V-V	1469	1060	U top (m)	0.0280	0.0450	0.0653	0.0861	0.1080	0.1304	0.1506	0.1734	0.1971	0.2223	0.2466	0.2702	0.2940	0.3197	0.3465
				, ,	1100	1000	V _b (kN)	784.6	1075.9	1172.4	1247.2	1339.4	1414.5	1519.3	1629.9	1739.1	1852.1	1933.5	2000.1	2072.5	2167.3	2251.1
	പ്ഹ			x-x	1138	1100	U top (m)	0.0355	0.0571	0.0818	0.1092	0.1316	0.1551	0.1777	0.2068	0.2370	0.2674	0.2952	0.3266	0.3613	0.3918	0.4210
42	t2-N ST(13.75	18538.3			. 100	V ь (kN)	746.5	897.2	1100.0	1253.7	1379.8	1487.6	1564.1	1638.8	1730.8	1803.0	1861.0	1932.4	2006.3	2097.9	2172.8
	7			V-V	1052	855	Utop (m)	0.0046	0.0109	0.0181	0.0254	0.0323	0.0389	0.0449	0.0501	0.0578	0.0658	0.0729	0.0804	0.0891	0.0969	0.1043
				, ,			V ь (kN)	670.6	853.7	987.3	1066.6	1159.3	1235.5	1322.0	1384.9	1440.9	1475.9	1522.0	1593.1	1646.7	1688.2	1712.5

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	H	W	Vän	Vr	Vy	Yapısal								PGA							
#	Kodu	(m)	(kN)	ron	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	-				E04	0070	Utop (m)	0.0129	0.0186	0.0240	0.0296	0.0359	0.0428	0.0501	0.0529	0.0672	0.0697	0.0866	0.0959	0.1071	0.1165	0.1247
10	ST4	10.05	10004.0	х-х	291	2270	V ь (kN)	937.5	1371.2	1786.1	1858.8	1963.8	2096.8	2232.1	2263.9	2446.5	2467.3	2615.2	2685.3	2726.0	2792.5	2829.4
43	64	10.05	10004.0		501	2000	Utop (m)	0.0190	0.0273	0.0357	0.0477	0.0557	0.0673	0.0806	0.0931	0.1070	0.1203	0.1325	0.1485	0.1625	0.1753	0.1878
				у-у	291	2000	V _b (kN)	1232.9	1646.9	1929.0	2095.3	2144.9	2204.1	2259.3	2348.8	2458.4	2520.9	2579.8	2662.5	2781.4	2876.5	2938.0
	-				2000	1025	Utop (m)	0.0365	0.0578	0.0799	0.1018	0.1258	0.1428	0.1663	0.1994	0.2264	0.2578	0.2661	0.2717	0.2906	0.3304	0.3613
11	4-NC ST8	24	20205.2	X-X	3200	1035	V _b (kN)	1904.7	2626.5	3318.1	3787.0	4222.7	4515.6	4817.8	4944.1	5158.9	5261.6	5610.3	5704.4	5734.3	5800.4	6095.9
44	4	24	39305.3		2226	1120	Utop (m)	0.0272	0.0430	0.0568	0.0728	0.0900	0.1067	0.1302	0.1442	0.1597	0.1751	0.1937	0.2005	0.2187	0.2429	0.2563
				у-у	3320	1130	V ь (kN)	1866.4	2760.7	3430.1	4074.0	4896.3	5338.4	5495.1	5625.8	5821.7	5892.5	6084.5	6135.4	6241.7	6361.5	6484.3
	-			V V	1750	555	U top (m)	0.0441	0.0696	0.0972	0.1217	0.149	0.1791	0.2096	0.2428	0.2800	0.3173	0.3546	0.3894	0.4219	0.453	0.4872
15	5-SI ST8	24	11217 0	X-X	1750	555	V _b (kN)	1281.7	1698.2	2016.1	2268.5	2440.0	2622.2	2756.8	2855.4	3008.6	3151.3	3245.2	3300.3	3377.0	3469.3	3550.2
40	4	24	41317.9	~~~	1528	535	U top (m)	0.0451	0.0749	0.0989	0.1280	0.1557	0.1887	0.2193	0.2551	0.2937	0.334	0.3715	0.4079	0.4422	0.4758	0.5107
				у-у	1520	555	V ь (kN)	1300.8	1705.0	2089.2	2337.6	2446.5	2572.6	2690.0	2765.1	2908.7	3017.7	3135.1	3222.5	3318.2	3404.7	3489.4
	<u>ط</u>			V-V	250	1/6	U top (m)	0.0307	0.0472	0.0690	0.0903	0.1109	0.1347	0.1558	0.1757	0.1958	0.2182	0.2416	0.2642	0.2873	0.3124	0.3385
46	6-SI ST5	1/1 8	1238 1	<u></u>	200	1-0	V ь (kN)	155.0	231.2	299.1	339.7	363.9	376.7	391.9	406.9	413.8	422.1	434.8	449.7	461.8	473.1	485.5
40	4	14.0	4230.4	<i>N_N</i>	256	121	U top (m)	0.0244	0.0385	0.0555	0.0794	0.1021	0.1230	0.1448	0.1662	0.1904	0.2119	0.2321	0.2571	0.2810	0.3034	0.3256
				у-у	200	121	V _b (kN)	183.9	269.7	348.6	393.5	415.1	439.2	456.2	476.3	494.8	509.7	520.9	531.0	542.9	553.9	566.7
	Ь.			v_v	861	860	U top (m)	0.0404	0.0644	0.0838	0.1034	0.1279	0.1533	0.1827	0.2118	0.2398	0.2663	0.2917	0.3179	0.3453	0.3721	0.4005
/17	7-MI ST7	20	1881/	<u></u>	001	000	V ь (kN)	468.2	659.6	779.7	897.5	967.9	1000.1	1062.1	1118.9	1172.9	1218.0	1269.6	1322.3	1369.3	1413.3	1453.7
77	4	20	10014	V-V	791	1410	U top (m)	0.0305	0.0466	0.0653	0.085	0.106	0.1271	0.1483	0.1684	0.1905	0.2166	0.2399	0.2624	0.2847	0.3107	0.3382
				y-y	751	1410	V b (kN)	790.9	973.0	1155.0	1262.7	1320.3	1339.4	1433.5	1500.1	1528.8	1575.2	1656.0	1698.2	1749.8	1801.9	1855.6
				Y-Y	967	645	U_{top} (m)	0.0326	0.0532	0.0751	0.0952	0.1162	0.1374	0.1601	0.1840	0.2089	0.2338	0.2566	0.2822	0.3067	0.3280	0.3498
48	8-NI ST ²	12	24573 8	~ ~	501	0+0	V _b (kN)	468.6	726.2	911.7	1024.8	1151.8	1243.1	1290.9	1363.1	1412.4	1452.9	1499.6	1539.7	1584.6	1622.8	1665.9
10	4	12	21010.0	V-V	941	615	U_{top} (m)	0.0336	0.0549	0.0801	0.1016	0.1236	0.1463	0.1719	0.1947	0.2198	0.2462	0.2722	0.2974	0.3227	0.3456	0.3691
				,,	011	010	V ь (kN)	421.8	657.5	865.9	995.8	1095.7	1170.4	1263.7	1321.7	1359.1	1402.6	1431.6	1472.5	1506.9	1540.8	1571.5
	ط م			x-x	1470	630	U top (m)	0.0336	0.0537	0.0760	0.0977	0.1212	0.1457	0.1705	0.1955	0.2204	0.2450	0.2689	0.2931	0.3177	0.3423	0.3672
49	9-N ST(18 7	22838		1110	000	V ь (kN)	48.6	71.0	94.2	114.8	140.2	169.7	199.3	225.7	250.4	271.5	288.6	300.3	316.1	330.7	344.1
10	4	10.7	22000	V-V	1686	565	U_{top} (m)	0.0343	0.0530	0.1328	0.0965	0.1197	0.1430	0.1695	0.1967	0.2247	0.2532	0.2798	0.3109	0.3421	0.3729	0.4028
				,,	1000	000	V b (kN)	1091.4	1441.5	1910.5	1861.3	2108.7	2355.5	2588.4	2792.0	2966.9	3155.8	3249.0	3323.5	3408.7	3482.9	3565.5
	ᆸᇅ			x-x	352	257	U top (m)	0.0268	0.0421	0.0600	0.0797	0.0985	0.1203	0.1401	0.1600	0.1794	0.2019	0.2248	0.2477	0.2735	0.2986	0.3242
50	STE	14.3	7132.9		002	201	V b (kN)	267.5	394.3	474.7	525.4	555.5	588.7	621.5	654.8	671.7	689.5	705.4	727.4	746.4	770.6	798.6
00	67		02.0	v-v	357	285	U top (m)	0.0218	0.0356	0.0493	0.0677	0.0878	0.1065	0.1272	0.1472	0.1665	0.1870	0.2076	0.2289	0.2502	0.2706	0.2905
				, ,	001	200	V ь (kN)	25.6	44.5	63.2	76.9	91.6	102.6	107.3	113.7	119.2	125.8	130.0	135.9	141.8	147.3	154.4

Çizelge 3.2 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.
4. BİNA STOKUNA AİT HASARGÖREBİLİRLİK EĞRİLERİ

4.1 Bina Stokuna Ait Yapısal İstem Dağılımları

Bina stoğundaki 50 adet yapının her iki doğrultusu için deprem toplumu etkisindeki 0.1g~0.8g ivme değerleri arasında ölçeklendirilmiş haldeki sonuçları, tepe noktası göreli ötelenme oranı yapısal karşılığı cinsinden Şekil 4.1'de verilmektedir. Bina toplumunda ağırlıklı olarak bulunmakta olan orta hasarlı binaların dağılımlarının daha net bir şekilde görülebilmesi için bu hasar düzeyindeki binalar ayrı olarak gruplandırılmış ve dağılımları Şekil 4.2'de ayrıca gösterilmiştir.

Her iki şekilde de kırmızı eğri ile gösterilen dağılım, her bir gruptaki ortalamayı; mavi eğri ile gösterilen dağılım, dağılımdaki değerlerin %90'ının hangi değerden büyük olma olasılığına sahip olduğunu; yeşil eğri ile gösterilen dağılım ise dağılımdaki değerlerin %10'unun hangi değerden küçük olma olasılığına sahip olduğunu göstermektedir.

Şekil 4.1 : En büyük yer ivmesi değerine karşılık tüm binalara ait tepe noktası göreli ötelenme oranları.

Şekil 4.2 : En büyük yer ivmesi değerine karşılık orta hasarlı binalara ait tepe noktası göreli ötelenme oranları.

Tepe noktası göreli ötelenme oranı parametresine bağlı olarak hasar sınırlarını belirlemek üzere yapılan istatistiksel çalışmada, her bir ivme düzeyine karşı gelen bina stoku dağılımları incelenmiş ve lognormal dağılıma uygun oldukları belirlenmiştir.

Gündüz, 1996'da belirtildiği üzere, bir X rasgele değişkenine ilişkin lnX olasılık dağılımı normal ise, X'in olasılık dağılımı lognormal dağılım olarak belirtilmekte olup, olasılık yoğunluk fonksiyonu denklem (4.1)'de verilmektedir:

$$f(x) = \frac{1}{\sqrt{2\pi\zeta x}} \exp\left[-\frac{1}{2}\left(\frac{\ln X - \lambda}{\zeta}\right)^2\right]$$
(4.1)

Dağılımın parametreleri λ ve ζ sırasıyla, *lnX*'in ortalama değerini ve standart sapmasını belirtir (4.2):

$$\lambda = E(\ln X)$$

$$\zeta = \left[Var(\ln X) \right]^{1/2}$$
(4.2)

Normal dağılım ile –bir logaritmik dönüşümü içeren- ilişkisi nedeniyle bir lognormal değişkene ilişkin olasılıklar, standart normal olasılıklar tablosu kullanılarak belirlenebilir.

$$p(a < X \le b) = \left(Z \le \frac{\ln b - \lambda}{\zeta}\right) - \left(Z \le \frac{\ln a - \lambda}{\zeta}\right)$$
(4.3)

(4.3) bağıntısından görüleceği gibi olasılık, λ ve ζ parametrelerinin fonksiyonudur. Bu parametreler ile X değişkeninin ortalama değeri μ ve standart sapması σ arasındaki ilişkileri belirten bağıntılar aşağıda denklem (4.4) ile verilen şekilde türetilebilir:

$$\lambda = \ln \mu - \zeta^{2} / 2$$

$$\zeta^{2} = \ln \left(1 + \sigma^{2} / \mu^{2} \right) = \ln \left(1 + V^{2} \right)$$
(4.4)

FORECAST programının istatistiksel analiz arayüzünden faydalanılarak (Şekil 2.23), lognormal dağılıma uygun oldukları belirlenen yapı stoku için olasılık yoğunluk işlevi parametreleri, λ ve ζ , her bir ivme düzeyi için elde edilmiştir. Standart normal dağılım tablosundan; dağılımdaki değerlerin %90'ının büyük ve %10'unun küçük olma olasılığına bağlı değerler (1- $\Phi(s)$ = 0.100273; $\Phi(s)$ =0.899727) sırasıyla yaklaşık olarak s=-1.28 ve s=+1.28 olarak belirlenmiştir. Bu değerlerden hareketle yapı stoku dağılımlarını gösteren şekillerde belirtilmiş olan eğriler hesaplanırken (4.5) ifadelerinden yararlanılmıştır:

$$\Phi\left[\left(\ln X_{0.10} - \lambda\right) / \zeta\right] = 0.10 \Rightarrow \left(\ln X_{0.10} - \lambda\right) / \zeta = -1.28$$

$$\ln X_{0.10} = -1.28\zeta + \lambda \Rightarrow X_{0.10} = e^{(\lambda - 1.28\zeta)}$$

$$\Phi\left[\left(\ln X_{0.90} - \lambda\right) / \zeta\right] = 0.90 \Rightarrow \left(\ln X_{0.90} - \lambda\right) / \zeta = +1.28$$

$$\ln X_{0.90} = +1.28\zeta + \lambda \Rightarrow X_{0.90} = e^{(\lambda + 1.28\zeta)}$$
(4.5)

Bina stokunda yeralan 28-ND-ST7 (x ve y doğrultuları) ve 42-ND-ST5 (y doğrultusu) binalarının analiz sonuçları genel dağılıma göre dikkat çeken sapma gösterdiklerinden, hesaplanan istatistiksel değerler olan ortalama ve standart sapma parametrelerinin hesabında göz önüne alınmamışlardır. Bina grubunda dikkat çekici davranış gösteren 28-ND-ST7 binası, Van İli, Erciş İlçesinde ve hâlihazırda yürürlükte bulunan deprem yönetmeliğine göre tasarlanıp inşa edilmiş ve 2011 Van depremlerinde hiç hasar görmemiştir. 42-ND-ST4 binası İstanbul İli, Kadıköy İlçesinde bulunmakta olup, y

doğrultusunda bina stokunda yer alan diğer binalara nazaran daha düzgün bir çerçeve taşıyıcı sistemine sahiptir.

Benzer olarak, bina stokunun ölçeklendirilmiş yer hareketleri etkisindeki sonuçları, bina taban kesme kuvveti oranı yapısal karşılığı cinsinden elde edilmiştir. Ele alınan bina toplumu için binaların kesme kuvveti kapasiteleri de hesaplanarak talep/kapasite oranı (Demand/Capacity Ratio-DCR) şeklinde bir parametre tanımlanmıştır. İlgili parametre tanımlanırken; binalarda ölçeklenmiş haldeki deprem toplumu etkisinde meydana gelen istemler (V_b) , binanın her iki doğrultusu için hesaplanan ve Çizelge 4.3'te verilmekte olan V_r kesme kuvveti taşıma kapasitelerine oranlanmıştır. Ayrıca hesaplanan kesme kuvveti taşıma kapasiteleri, bina stokuna uygulanan doğrusal olmayan statik itme sonuçlarından elde edilen ve aynı tabloda verilmekte olan V_{y} akma kesme kuvveti değerlerine oranlanarak tüm yapı toplumu için V_r/V_v oranları elde edilmiştir. Tüm bina stoku göz önüne alındığında, %57'sinde $V_r/V_y < 1$ olarak hesaplanmış olup, kesme kuvveti taşıma kapasitesindeki yetersizliğe dayalı gevrek davranış gösterme eğiliminde oldukları belirlenmiştir. Beklendiği üzere, V_r/V_v oranı birden büyük olan binaların çoğunda eğilme hasarı meydana gelirken, V_r/V_v oranı birden küçük olan binaların tümünde hasar durumunun kesme kuvveti etkisiyle meydana gelmiş olduğu sahada tespit edilmiştir. Binalara ait hasar durumları, Çizelge 4.3'de deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranları verilmek suretiyle, çalışmada önerilen hasar sınırlarına ait bölgeler farklı renklerde işaretlenerek belirtilmiştir.

Şekil 4.3, bina toplumu için talep/kapasite oranı değerlerinin deprem toplumu etkisindeki 0.1g~0.8g ivme değerleri arasında ölçeklendirilmiş haldeki değişimlerini göstermektedir. Bir öncekine benzer olarak, bina toplumunda ağırlıklı olarak bulunmakta olan orta hasarlı binaların dağılımları Şekil 4.4'de ayrıca gösterilmiştir.

Şekil 4.1 ve 4.2'de olduğu gibi, kırmızı eğri ile gösterilen dağılım, her bir gruptaki ortalamayı; mavi eğri ile gösterilen dağılım, dağılımdaki değerlerin %90'ının hangi değerden büyük olma olasılığına sahip olduğunu; yeşil eğri ile gösterilen dağılım ise dağılımdaki değerlerin %10'unun hangi değerden küçük olma olasılığına sahip olduğunu göstermektedir.

Talep/kapasite oranı parametresine bağlı olarak hasar sınırlarını belirlemek üzere yapılan istatistiksel çalışmada, her bir ivme düzeyine karşı gelen bina stoku dağılımları

incelenmiş ve bunların da benzer olarak lognormal dağılıma uygun oldukları belirlenmiştir. Tepe noktası göreli ötelenme oranları için yapılmış olan çalışmaya benzer olarak, FORECAST programının istatistiksel analiz arayüzünden faydalanılarak (Şekil 2.24), lognormal dağılıma uygun oldukları belirlenen yapı stoku için olasılık yoğunluk işlevi parametreleri, λ ve ζ , her bir ivme düzeyi için elde edilmiştir. Standart normal dağılım tablosundan; dağılımdaki değerlerin %90'ının büyük ve %10'unun küçük olma olasılığına bağlı değerlerden hareketle yapı stoku dağılımlarını gösteren şekilllerde belirtilmiş olan eğriler elde edilmiştir.

Şekil 4.3 : En büyük yer ivmesi değerine karşılık binalara ait talep/kapasite oranları.

Bina stokunda yeralan *10-MD-ST3* ve *43-MD-ST4* binalarının *x* ve *y* doğrultularındaki analiz sonuçları dağılımına göre belirgin bir saçılma gösterdiklerinden, hesaplanan istatistiksel değerler olan ortalama ve standart sapma parametrelerinin hesabında göz önüne alınmamışlardır. Bina grubunda dikkat çekici davranış gösteren *10-MD-ST3* binası, Adana-Ceyhan depreminde orta hasar görmüş binalardan biri olup, binada yer alan düşey taşıyıcı eleman boyutları yönetmeliğin izin verdiği minimum değerin altındadır. *43-MD-ST4* binası ise Adana-Ceyhan depreminde orta hasar görmüş olduğu raporlanan binalardan biri olmakla beraber, her iki yönde de simetrik olup bölgedeki diğer binalara nazaran daha düzgün bir taşıyıcı sisteme sahiptir.

Şekil 4.4 : En büyük yer ivmesi değerine karşılık orta hasarlı binalara ait talep/kapasite oranları.

4.2 Bina Stokuna Ait Hasargörebilirlik Eğrileri

Bina toplumunda yer alan yapıların %51'i, İTÜ Yapı ve Deprem Uygulama Araştırma Merkezi'nin 1998'de meydana gelen Adana Ceyhan Depremi sonrasında sahada incelemiş olduğu ve gözlemsel olarak "*Orta Hasar*" aldığı belirlenen binalardan seçilmiştir. Bu bağlamda, meydana gelen depremin kaydedilen en büyük yer ivmesinin a_{max} =0.28g olduğu ve binaların bulunduğu Yüreğir İlçesinin zemin koşulları da göz önünde bulundurularak, Şekil 4.2 ve 4.4'de verilmekte olan doğrusal olmayan dinamik analiz sonuçları değerlendirilmiştir.

Diğer yandan, ele alınan bina toplumundaki orta hasar aldığı bilinmekte olan binaların Adana İlinin Yüreğir İlçesinde ve merkezüssüne ortalama 26km uzaklıkta bulundukları Şekil 4.5'te görülmektedir. Depremde Tarım İşletme Müdürlüğü binasından alınan kayıtlar ise merkezüssüne 32km uzaklıkta olup, en büyük yer ivmelerinin yaklaşık olarak aynı düzeylerde meydana gelmiş olabileceği tahmin edilebilir. Bu durumun aksine, yerel zemin koşullarındaki büyütme etkisi söz konusu olabilir ki; Yüreğir ilçesinin Seyhan Nehri'nin hemen yanında yer alması ve bu nehre ait baraj gölüne yakınlığı göz önüne alındığında, zemin büyütme etkilerinin meydana gelmiş olması oldukça yakın bir olasılık olarak ortaya çıkmaktadır. Bu değerlendirmeden yola çıkıldığında, binalara deprem sırasında etkimiş olan yer ivmesinin 0.25g~0.45g aralığında meydana gelmiş olabileceği düşünülebilir.

Bina toplumuna ait hasargörebilirlik eğrilerini türetme aşamasında kullanmak üzere hasar sınırlarını belirlemek amacıyla, bu ivme değerleri aralığında orta hasarlı binaların ve tüm yapı stoğunun deprem toplumu etkisindeki tepe noktası göreli ötelenme oranları ve talep/kapasite oranları (*DCR*) karşılaştırılmıştır. Bina stokunda yer alan tüm yapıların ilgili yer ivmesi değerlerindeki yapısal istem değişimleri, orta hasar aldığı bilinen yapı grubuyla oldukça örtüşmektedir. Bu sonuç ise ele alınan bina toplumunun yetersiz dayanım ve düşük beton mukavemetine sahip ülkemizde geçmişte uygulanmış betonarme binaların genel özelliklerini yansıttığını göstermektedir.

Şekil 4.5 : 1998 Ceyhan depreminin merkezüssü, kayıt istasyonu ve Yüreğir İlçesinin konumu.

Hasar mertebelerinin tepe noktası göreli ötelenme oranı aralıkları esas alınarak belirlendiği durumunda değişimleri Çizelge 4.1'de verilmektedir. Çizelgeden de anlaşılacağı üzere, tepe noktası göreli ötelenme oranı %0.9~%1.7 arasında değişim gösteren binalarda orta hasar beklenebileceği; bu oranın %0.9'dan küçük olması halinde hasarın hafif olacağı ya da hasar beklenmeyeceği; bu oranın %1.7'den büyük olması halinde ise ağır hasar ya da göçme durumu yaşanacağı tahmin edilmektedir. 1999 depremleri sonrasında Düzce'deki 4~7 katlı binalar kullanılarak hazırlanmış olan Booth ve diğ. (2004)'de verilen orta hasar bandını temsil eden ötelenme oranı aralıkları ile bu tez çalışması kapsamında belirlenmiş olan değerler birebirlerine oldukça yakın değerlerdedir.

Çizelge 4.1 : Farklı hasar düzeyleri için belirlenmiş olan tepe noktası göreli ötelenme oranı aralıkları.

Hasar Düzeyleri	Tepe Noktası Göreli Ötelenme Oranı
Hasarsız veya Hafif Hasar	< 0.9 %
Orta Hasar	0.9 % - 1.7 %
Ağır Hasar veya Göçme	> 1.7%

Aşılma Sınırı 0.00917 için HG Eğrisi

Şekil 4.6 : Bina stoku için "Orta Hasar" düzeyinin aşılması olasılığını vermekte olan HG eğrisi.

FORECAST programı ile tüm yapı stokunun istatistiksel analizi, belirlenmiş olan bu en büyük yerdeğiştirme oranlarına bağlı hasar mertebeleri göz önüne alınarak gerçekleştirilmiştir. Şekil 4.6, tüm yapı stoku için orta hasarın aşılması olasılığını ifade eden HG eğrisini, önceki bölümlerde anlatıldığı üzere elde edilen eğri fonksiyonu ile birlikte göstermektedir. Bölüm 2.4.3'te detayları verilmiş olan ve eğri türetmede kullanılan Kök Ortalama Karesel Hata (RMSE) ve Kolmogorov-Smirnov istatistiğine bağlı değerler bu eğri türetme işlemi için sırasıyla 0.013517 ve 0.032632 olarak hesaplanmıştır. Bina toplumu için "Orta Hasar" düzeyinin aşılma olasılığını vermekte olan HG eğrisinin fonksiyonu (4.6) denklemi ile verilmektedir:

$$f(x) = \int_{0}^{x} \frac{1}{\xi \times 0.20091 \times \sqrt{2\pi}} \exp\left(\frac{-\left(\ln \xi + 1.0377\right)^{2}}{2 \times \left(0.20091\right)^{2}}\right) d\xi$$
(4.6)

Şekil 4.7 ise, ağır hasar/göçme düzeyinin tüm yapı stoğu için aşılması olasılığını ifade eden hasargörebilirlik eğrisini, elde edilen eğri fonksiyonu ile birlikte göstermektedir. Bu eğri türetme işlemi için Kök Ortalama Karesel Hata (RMSE) ve Kolmogorov-Smirnov istatistiğine bağlı değerler sırasıyla 0.016412 ve 0.041493 olarak hesaplanmıştır. Bina toplumu için "Ağır Hasar/Göçme" düzeyinin aşılma olasılığını vermekte olan *HG* eğrisinin fonksiyonu (4.7) denklemi ile verilmektedir:

Şekil 4.7 : Bina stoku için "Ağır Hasar/Göçme" düzeyinin aşılması olasılığını vermekte olan HG eğrisi.

$$f(x) = \int_{0}^{x} \frac{1}{\xi \times 0.19753 \times \sqrt{2\pi}} \exp\left(\frac{-\left(\ln \xi + 0.55051\right)^{2}}{2 \times \left(0.19753\right)^{2}}\right) d\xi$$
(4.7)

Hasar mertebelerinin talep/kapasite oranı (*DCR*) aralıkları esas alınarak belirlendiği durumdaki değişimleri Çizelge 4.2'de verilmektedir. Çizelgeden de anlaşılacağı üzere, talep/kapasite oranı (*DCR*) 1.04~2.44 arasında değişim gösteren binalarda orta hasar beklenebileceği; bu oranın 1.04'den küçük olması halinde hasarın hafif olacağı ya da hasar beklenmeyeceği; bu oranın 2.44'ten büyük olması halinde ise ağır hasar ya da göçme durumu yaşanacağı tahmin edilmektedir.

FORECAST programı ile tüm yapı stoğunun istatistiksel analizi, belirlenmiş olan bu talep/kapasite oranlarına bağlı hasar mertebeleri göz önüne alınarak gerçekleştirilmiştir. Şekil 4.8, tüm yapı stoğu için orta hasarın aşılması olasılığını ifade

eden hasargörebilirlik eğrisini, elde edilen eğri fonksiyonu ile birlikte göstermektedir. Eğri türetmede kullanılan RMSE ve Kolmogorov-Smirnov istatistiğine bağlı değerler bu eğri türetme işlemi için sırasıyla 0.037119 ve 0.087833 olarak hesaplanmıştır. Bina toplumu için "Orta Hasar" düzeyinin aşılma olasılığını vermekte olan *HG* eğrisinin fonksiyonu (4.8) denklemi ile verilmektedir.

Hasar Mertebeleri	Talep/Kapasite Oranı
Hasarsız veya Hafif Hasar	< 1.04
Orta Hasar	1.04 - 2.44
Ağır Hasar veya Göçme	> 2.44

Çizelge 4.2 : Farklı hasar düzeyleri için talep/kapasite oranı (*DCR*) aralıkları

Şekil 4.8 : Bina stoku için "Orta Hasar" düzeyinin aşılması olasılığını vermekte olan kırılganlık eğrisi.

$$f(x) = \int_{0}^{x} \frac{1}{\xi \times 0.8089 \times \sqrt{2\pi}} \exp\left(\frac{-\left(\ln \xi + 1.7773\right)^{2}}{2 \times \left(0.8089\right)^{2}}\right) d\xi$$
(4.8)

Şekil 4.9 ise, ağır hasar/göçme düzeyinin tüm yapı stoğu için aşılması olasılığını ifade eden hasargörebilirlik eğrisini, elde edilen eğri fonksiyonu ile birlikte göstermektedir. Benzer olarak gerçekleştirilen eğri türetme işlemlerinde RMSE ve Kolmogorov-Smirnov istatstiğine bağlı değerler sırasıyla 0.016965 ve 0.035627 olarak hesaplanmıştır. Bina toplumu için "Ağır Hasar/Göçme" düzeyinin aşılma olasılığını vermekte olan *HG* eğrisinin fonksiyonu (4.9) denklemi ile verilmektedir:

$$f(x) = \int_{0}^{x} \frac{1}{\xi \times 0.75487 \times \sqrt{2\pi}} \exp\left(\frac{-\left(\ln \xi + 0.18843\right)^{2}}{2 \times \left(0.75487\right)^{2}}\right) d\xi$$
(4.9)

Şekil 4.9 : Bina stoku için "Ağır Hasar/Göçme" düzeyinin aşılması olasılığını vermekte olan kırılganlık eğrisi.

Bu tez çalışması kapsamında mevcut binalar için türetilen *HG* eğrileri için literatürde çok rastlanan bir yapısal büyüklük olan göreli yerdeğiştirmeler haricinde, binaların kesme kuvveti etkisindeki hasar durumlarını temsil eden bir yapısal karşılık parametresi araştırılmıştır. Gerçekleştirilmiş olan hasargörebilirlik çalışmaları sonucunda elde edilen matematiksel fonksiyonların, gelecekte olması muhtemel bir yer hareketi etkisinde bir binanın ve/veya bina stokunun hasar durumunun hızlı bir şekilde tahmin edilmesi gerekliliğinde, tepe noktası göreli ötelenme oranı ve talep/kapasite oranı parametreleri göz önüne alınarak, gevrek ve sünek yapı sistemleri için kullanılabileceği düşünülmektedir. Üretilen *HG* eğrileri, ileride gerçekleştirilecek çalışmalarla adrese dayalı coğrafi bilgi sistemi ile entegre edilebildiğinde, meydana gelecek bir depremden etkilenmesi muhtemel olan alanların tahmin edilebilmesi, kurtarma operasyonlarının organizasyonu ve mobilizasyonu, tıbbi müdahale ve geçici barındırma aktivitelerinin daha etkili olmasını sağlayacağı öngörülmektedir.

#	Bina	Vän	$\mathbf{V}_{\mathbf{r}}$	Vy	Yapısal								PGA							
#	Kodu	1011	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
					U _{top} /H	0.0021	0.0033	0.0047	0.0063	0.0078	0.0093	0.0110	0.0127	0.0145	0.0163	0.0182	0.0199	0.0218	0.0238	0.0257
		х-х	876	1380	V _b / W	0.0566	0.0741	0.0855	0.0910	0.0943	0.0968	0.1008	0.1035	0.1059	0.1085	0.1112	0.1148	0.1177	0.1209	0.1244
1	01-ND-				DCR(V _b /V _r)	1.1046	1.4466	1.6679	1.7765	1.8414	1.8896	1.9666	2.0205	2.0677	2.1169	2.1705	2.2400	2.2973	2.3595	2.4278
I	ST4				U _{top} /H	0.0019	0.0030	0.0044	0.0058	0.0073	0.0088	0.0106	0.0124	0.0141	0.0159	0.0177	0.0196	0.0213	0.0231	0.0250
		у-у	743	1295	V _b / W	0.0562	0.0704	0.0800	0.0873	0.0896	0.0931	0.0962	0.0989	0.1017	0.1042	0.1067	0.1100	0.1132	0.1163	0.1196
					$DCR(V_b/V_r)$	1.2946	1.6205	1.8431	2.0113	2.0632	2.1431	2.2142	2.2765	2.3408	2.3984	2.4579	2.5323	2.6071	2.6789	2.7550
					U _{top} /H	0.0025	0.0043	0.0063	0.0087	0.0110	0.0135	0.0158	0.0182	0.0203	0.0227	0.0254	0.0281	0.0308	0.0331	0.0358
		х-х	253	190	V _b / W	0.0284	0.0415	0.0479	0.0530	0.0550	0.0572	0.0594	0.0618	0.0641	0.0659	0.0679	0.0694	0.0713	0.0730	0.0746
2	02-MD-				$DCR(V_b/V_r)$	0.4434	0.6473	0.7481	0.8271	0.8579	0.8927	0.9275	0.9642	1.0002	1.0287	1.0599	1.0828	1.1136	1.1401	1.1646
2	ST3				U _{top} /H	0.0020	0.0034	0.0049	0.0065	0.0084	0.0105	0.0128	0.0150	0.0174	0.0196	0.0220	0.0240	0.0261	0.0282	0.0304
		у-у	290	200	Vb / W	0.0194	0.0290	0.0405	0.0510	0.0568	0.0608	0.0619	0.0653	0.0678	0.0695	0.0714	0.0733	0.0748	0.0764	0.0785
					$DCR(V_b/V_r)$	0.2639	0.3951	0.5519	0.6938	0.7727	0.8278	0.8423	0.8881	0.9233	0.9460	0.9722	0.9973	1.0180	1.0401	1.0690
					U _{top} /H	0.0015	0.0022	0.0031	0.0041	0.0050	0.0062	0.0074	0.0087	0.0098	0.0110	0.0120	0.0133	0.0145	0.0158	0.0170
		х-х	992	980	V _b / W	0.0531	0.0698	0.0893	0.1013	0.1055	0.1077	0.1129	0.1176	0.1210	0.1256	0.1312	0.1348	0.1368	0.1399	0.1433
З	03-MD-				$DCR(V_b/V_r)$	0.5750	0.7560	0.9676	1.0983	1.1436	1.1668	1.2231	1.2749	1.3114	1.3611	1.4219	1.4607	1.4825	1.5165	1.5529
0	ST6				U _{top} /H	0.0016	0.0026	0.0036	0.0048	0.0059	0.0071	0.0083	0.0095	0.0107	0.0119	0.0132	0.0147	0.0160	0.0174	0.0185
		у-у	1039	1015	Vb / W	0.0535	0.0746	0.0882	0.0950	0.1037	0.1115	0.1158	0.1199	0.1237	0.1281	0.1328	0.1363	0.1391	0.1424	0.1471
					DCR(V _b /V _r)	0.5531	0.7719	0.9127	0.9827	1.0727	1.1536	1.1984	1.2404	1.2798	1.3251	1.3741	1.4105	1.4387	1.4726	1.5215
					U _{top} /H	0.0015	0.0024	0.0032	0.0041	0.0052	0.0063	0.0075	0.0087	0.0100	0.0111	0.0124	0.0138	0.0151	0.0164	0.0177
		х-х	430	1020	V _b / W	0.0465	0.0713	0.0926	0.1076	0.1214	0.1278	0.1329	0.1371	0.1401	0.1436	0.1457	0.1487	0.1514	0.1544	0.1584
4	04-MD-				$DCR(V_b/V_r)$	0.8761	1.3454	1.7463	2.0300	2.2887	2.4097	2.5058	2.5863	2.6417	2.7071	2.7471	2.8037	2.8553	2.9126	2.9879
•	ST5				U _{top} /H	0.0015	0.0024	0.0033	0.0042	0.0052	0.0064	0.0075	0.0086	0.0098	0.0110	0.0123	0.0135	0.0149	0.0162	0.0175
		у-у	407	1030	Vb / W	0.0486	0.0801	0.1011	0.1100	0.1163	0.1217	0.1264	0.1305	0.1337	0.1359	0.1386	0.1416	0.1443	0.1484	0.1521
					$DCR(V_b/V_r)$	0.9672	1.5943	2.0118	2.1904	2.3142	2.4228	2.5166	2.5969	2.6615	2.7045	2.7597	2.8189	2.8720	2.9535	3.0280
					U _{top} /H	0.0025	0.0040	0.0059	0.0080	0.0099	0.0121	0.0142	0.0161	0.0185	0.0207	0.0230	0.0251	0.0272	0.0293	0.0317
		х-х	478	650	V _b / W	0.0447	0.0653	0.0803	0.0850	0.0892	0.0918	0.0955	0.0995	0.1024	0.1053	0.1087	0.1116	0.1141	0.1169	0.1199
5	05-MD-				$DCR(V_b/V_r)$	0.7180	1.0495	1.2906	1.3660	1.4345	1.4766	1.5359	1.6004	1.6462	1.6932	1.7470	1.7941	1.8352	1.8794	1.9275
•	\$13				U _{top} /H	0.0016	0.0026	0.0038	0.0049	0.0062	0.0076	0.0092	0.0108	0.0124	0.0140	0.0157	0.0175	0.0193	0.0211	0.0229
		у-у	546	945	V _b / W	0.0573	0.0878	0.1019	0.1152	0.1249	0.1326	0.1403	0.1447	0.1528	0.1566	0.1598	0.1650	0.1689	0.1710	0.1731
					$DCR(V_b/V_r)$	0.8064	1.2350	1.4335	1.6212	1.7575	1.8660	1.9732	2.0355	2.1499	2.2032	2.2487	2.3218	2.3757	2.4063	2.4358

Çizelge 4.3 : Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

щ	Bina	Vän	$\mathbf{V}_{\mathbf{r}}$	Vy	Yapısal								PGA							
Ħ	Kodu	1011	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
					U _{top} /H	0.0028	0.0044	0.0061	0.0079	0.0096	0.0114	0.0132	0.0153	0.0175	0.0196	0.0219	0.0240	0.0261	0.0281	0.0301
		x-x	306	350	V _b / W	0.0394	0.0475	0.0523	0.0560	0.0587	0.0615	0.0647	0.0677	0.0702	0.0725	0.0747	0.0772	0.0796	0.0821	0.0846
c	06-MD-				$DCR(V_b/V_r)$	0.8209	0.9905	1.0921	1.1675	1.2239	1.2831	1.3491	1.4127	1.4648	1.5120	1.5583	1.6098	1.6613	1.7130	1.7641
0	ST4				Utop/H	0.0018	0.0028	0.0042	0.0055	0.0069	0.0084	0.0098	0.0113	0.0125	0.0137	0.0150	0.0163	0.0176	0.0191	0.0207
		у-у	299	262	V _b / W	0.0124	0.0204	0.0262	0.0321	0.0358	0.0376	0.0395	0.0403	0.0409	0.0408	0.0414	0.0427	0.0436	0.0437	0.0435
					$DCR(V_b/V_r)$	0.2650	0.4359	0.5610	0.6872	0.7658	0.8048	0.8448	0.8615	0.8735	0.8714	0.8848	0.9118	0.9316	0.9349	0.9298
					U _{top} /H	0.0020	0.0033	0.0047	0.0063	0.0080	0.0100	0.0118	0.0137	0.0156	0.0176	0.0197	0.0218	0.0239	0.0260	0.0281
		х-х	310	260	V _b / W	0.0301	0.0447	0.0553	0.0651	0.0709	0.0767	0.0809	0.0849	0.0894	0.0939	0.0971	0.1003	0.1036	0.1074	0.1117
7	07-MD-				$DCR(V_b/V_r)$	0.3760	0.5588	0.6919	0.8147	0.8870	0.9597	1.0120	1.0615	1.1190	1.1749	1.2152	1.2553	1.2960	1.3432	1.3971
'	ST3				U_{top}/H	0.0022	0.0038	0.0052	0.0071	0.0092	0.0113	0.0134	0.0157	0.0178	0.0200	0.0222	0.0248	0.0265	0.0286	0.0306
		у-у	312	280	V _b / W	0.0291	0.0421	0.0589	0.0672	0.0732	0.0794	0.0832	0.0868	0.0904	0.0935	0.0968	0.1000	0.1038	0.1074	0.1111
					$DCR(V_b/V_r)$	0.3606	0.5217	0.7308	0.8330	0.9073	0.9841	1.0322	1.0764	1.1206	1.1600	1.2006	1.2407	1.2868	1.3316	1.3774
					U _{top} /H	0.0016	0.0027	0.0041	0.0054	0.0069	0.0084	0.0099	0.0115	0.0131	0.0147	0.0162	0.0178	0.0194	0.0210	0.0228
		х-х	377	280	V _b / W	0.0359	0.0514	0.0633	0.0691	0.0719	0.0742	0.0755	0.0768	0.0784	0.0805	0.0826	0.0839	0.0856	0.0869	0.0882
8	08-MD-				$DCR(V_b/V_r)$	0.7477	1.0722	1.3190	1.4401	1.4997	1.5462	1.5747	1.6005	1.6350	1.6779	1.7225	1.7488	1.7840	1.8117	1.8384
Ũ	ST5				U _{top} /H	0.0020	0.0033	0.0047	0.0063	0.0077	0.0092	0.0108	0.0124	0.0140	0.0158	0.0175	0.0192	0.0209	0.0228	0.0248
		у-у	408	285	V _b / W	0.0232	0.0306	0.0342	0.0367	0.0392	0.0413	0.0428	0.0443	0.0456	0.0470	0.0482	0.0495	0.0506	0.0518	0.0529
					$DCR(V_b/V_r)$	0.4474	0.5882	0.6585	0.7070	0.7550	0.7947	0.8228	0.8534	0.8769	0.9046	0.9286	0.9524	0.9737	0.9977	1.0187
					U _{top} /H	0.0025	0.0041	0.0060	0.0079	0.0099	0.0118	0.0137	0.0158	0.0178	0.0199	0.0220	0.0243	0.0264	0.0290	0.0314
		х-х	271	400	V _b / W	0.0305	0.0469	0.0563	0.0617	0.0669	0.0703	0.0729	0.0767	0.0796	0.0821	0.0847	0.0872	0.0894	0.0914	0.0935
9	09-MD-				$DCR(V_b/V_r)$	0.6627	1.0195	1.2246	1.3431	1.4562	1.5304	1.5862	1.6682	1.7325	1.7860	1.8422	1.8980	1.9449	1.9888	2.0346
•	S14				U _{top} /H	0.0025	0.0041	0.0061	0.0083	0.0103	0.0122	0.0144	0.0166	0.0188	0.0212	0.0236	0.0262	0.0288	0.0314	0.0339
		у-у	219	305	V _b / W	0.0274	0.0443	0.0513	0.0541	0.0585	0.0614	0.0637	0.0673	0.0703	0.0736	0.0767	0.0801	0.0832	0.0865	0.0891
					$DCR(V_b/V_r)$	0.7356	1.1901	1.3794	1.4543	1.5/34	1.6500	1./121	1.8097	1.8887	1.9795	2.0616	2.1520	2.2359	2.3240	2.3943
					U _{top} /H	0.0015	0.0023	0.0033	0.0044	0.0056	0.0066	0.0083	0.0096	0.0111	0.0124	0.0139	0.0154	0.0170	0.0184	0.0198
		х-х	218	330	V _b / W	0.0031	0.0040	0.0048	0.0055	0.0062	0.0067	0.0081	0.0086	0.0098	0.0100	0.0106	0.0114	0.0125	0.0127	0.0134
10	10-MD-				$DCR(V_b/V_r)$	0.0577	0.0733	0.0875	0.1008	0.1132	0.1233	0.1480	0.1585	0.1792	0.1842	0.1943	0.2094	0.2291	0.2337	0.2470
	513		040	0.55	U _{top} /H	0.0013	0.0022	0.0032	0.0042	0.0053	0.0006	0.0080	0.0092	0.0106	0.0121	0.0135	0.0148	0.0103	0.0179	0.0193
		у-у	218	355	V _b / W	0.0025	0.0043	0.0058	0.0067	0.0077	0.0085	0.0092	0.0098	0.0105	0.0114	0.0121	0.0129	0.0136	0.0145	0.0152
					DCR(V _b /V _r)	0.0467	0.0788	0.1072	0.1228	0.1416	0.1553	0.1695	0.1801	0.1929	0.2090	0.2222	0.2369	0.2502	0.2658	0.2800

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

#	Bina	Vän	Vr	Vy	Yapısal								PGA							
#	Kodu	1011	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
-					U _{top} /H	0.0022	0.0036	0.0052	0.0070	0.0089	0.0113	0.0136	0.0162	0.0186	0.0206	0.0230	0.0252	0.0275	0.0299	0.0323
		x-x	130	168	V _b / W	0.0257	0.0347	0.0430	0.0511	0.0542	0.0564	0.0577	0.0601	0.0604	0.0627	0.0644	0.0662	0.0680	0.0700	0.0719
11	11-MD-				$DCR(V_b/V_r)$	0.7043	0.9516	1.1797	1.4001	1.4864	1.5457	1.5827	1.6459	1.6543	1.7183	1.7638	1.8138	1.8624	1.9179	1.9703
11	ST3				U _{top} /H	0.0026	0.0045	0.0064	0.0089	0.0117	0.0147	0.0176	0.0203	0.0230	0.0257	0.0285	0.0312	0.0338	0.0365	0.0391
		у-у	130	103	Vb / W	0.0094	0.0161	0.0251	0.0311	0.0354	0.0380	0.0414	0.0438	0.0452	0.0470	0.0489	0.0508	0.0525	0.0545	0.0561
					$DCR(V_b/V_r)$	0.2566	0.4423	0.6889	0.8514	0.9701	1.0402	1.1350	1.1997	1.2375	1.2891	1.3400	1.3924	1.4386	1.4948	1.5380
					U_{top}/H	0.0023	0.0035	0.0049	0.0063	0.0078	0.0091	0.0107	0.0122	0.0136	0.0151	0.0170	0.0189	0.0208	0.0227	0.0245
		х-х	511	375	V _b / W	0.0453	0.0549	0.0608	0.0640	0.0670	0.0696	0.0726	0.0750	0.0775	0.0801	0.0826	0.0853	0.0877	0.0903	0.0930
12	12-MD-				$DCR(V_b/V_r)$	0.5081	0.6155	0.6818	0.7172	0.7510	0.7806	0.8135	0.8413	0.8688	0.8985	0.9263	0.9560	0.9833	1.0120	1.0425
12	ST4				U _{top} /H	0.0018	0.0031	0.0044	0.0057	0.0073	0.0088	0.0103	0.0117	0.0130	0.0145	0.0158	0.0173	0.0188	0.0204	0.0223
		у-у	456	430	V _b / W	0.0447	0.0600	0.0659	0.0691	0.0723	0.0743	0.0779	0.0803	0.0830	0.0860	0.0897	0.0932	0.0967	0.0994	0.1019
					$DCR(V_b/V_r)$	0.5618	0.7546	0.8289	0.8694	0.9090	0.9344	0.9804	1.0098	1.0436	1.0815	1.1286	1.1723	1.2163	1.2497	1.2811
					U_{top}/H	0.0015	0.0024	0.0033	0.0043	0.0054	0.0067	0.0080	0.0092	0.0103	0.0117	0.0131	0.0144	0.0158	0.0171	0.0185
13 ^{13-MD-} -	х-х	400	880	V _b / W	0.0414	0.0660	0.0829	0.0988	0.1099	0.1164	0.1198	0.1222	0.1251	0.1282	0.1305	0.1331	0.1368	0.1397	0.1419	
				$DCR(V_b/V_r)$	0.8403	1.3392	1.6816	2.0044	2.2293	2.3599	2.4295	2.4783	2.5368	2.5994	2.6464	2.6995	2.7738	2.8331	2.8774	
10	ST5				U _{top} /H	0.0015	0.0025	0.0033	0.0043	0.0055	0.0067	0.0078	0.0090	0.0101	0.0115	0.0127	0.0141	0.0154	0.0168	0.0182
		у-у	379	825	V _b / W	0.0464	0.0751	0.0932	0.1020	0.1079	0.1127	0.1166	0.1199	0.1221	0.1246	0.1268	0.1297	0.1328	0.1358	0.1389
					$DCR(V_b/V_r)$	0.9926	1.6068	1.9958	2.1834	2.3094	2.4118	2.4953	2.5669	2.6136	2.6683	2.7148	2.7771	2.8437	2.9063	2.9731
					U _{top} /H	0.0039	0.0061	0.0084	0.0110	0.0139	0.0167	0.0193	0.0216	0.0240	0.0264	0.0287	0.0309	0.0330	0.0350	0.0370
		х-х	433	380	V _b / W	0.0288	0.0371	0.0424	0.0458	0.0488	0.0516	0.0541	0.0560	0.0577	0.0595	0.0612	0.0627	0.0642	0.0657	0.0672
14	14-MD-				$DCR(V_b/V_r)$	0.7038	0.9067	1.0379	1.1189	1.1926	1.2615	1.3229	1.3686	1.4123	1.4550	1.4966	1.5322	1.5712	1.6080	1.6428
	ST5				U _{top} /H	0.0024	0.0038	0.0053	0.0070	0.0086	0.0104	0.0123	0.0144	0.0164	0.0185	0.0207	0.0229	0.0251	0.0274	0.0295
		у-у	491	640	V _b / W	0.0462	0.0593	0.0663	0.0691	0.0724	0.0775	0.0800	0.0805	0.0821	0.0845	0.0869	0.0889	0.0915	0.0938	0.0960
					$DCR(V_b/V_r)$	0.9962	1.2798	1.4314	1.4915	1.5631	1.6717	1.7273	1.7363	1.7720	1.8223	1.8741	1.9173	1.9742	2.0243	2.0722
					U_{top}/H	0.0023	0.0038	0.0051	0.0064	0.0079	0.0095	0.0113	0.0131	0.0150	0.0168	0.0184	0.0200	0.0217	0.0234	0.0251
		х-х	345	200	V _b / W	0.0119	0.0166	0.0199	0.0226	0.0248	0.0267	0.0281	0.0292	0.0301	0.0310	0.0318	0.0326	0.0333	0.0340	0.0347
15 ^{15-MD-} ST5				$DCR(V_b/V_r)$	0.2551	0.3548	0.4257	0.4838	0.5309	0.5725	0.6023	0.6253	0.6456	0.6640	0.6813	0.6974	0.7143	0.7286	0.7429	
	ST5				U_{top}/H	0.0015	0.0024	0.0035	0.0046	0.0058	0.0070	0.0081	0.0091	0.0102	0.0114	0.0126	0.0138	0.0150	0.0165	0.0179
	у-у	345	340	V _b / W	0.0145	0.0224	0.0305	0.0362	0.0393	0.0414	0.0432	0.0446	0.0459	0.0472	0.0485	0.0497	0.0506	0.0514	0.0521	
					$DCR(V_b/V_r)$	0.3107	0.4799	0.6533	0.7743	0.8422	0.8876	0.9250	0.9551	0.9839	1.0108	1.0380	1.0637	1.0843	1.1009	1.1168

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

щ	Bina	Vän	$\mathbf{V}_{\mathbf{r}}$	Vy	Yapısal			/ · · ·					PGA							
<i>"</i> 1	Kodu	1011	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
_			_	_	U _{top} /H	0.0015	0.0023	0.0032	0.0043	0.0051	0.0069	0.0088	0.0108	0.0132	0.0150	0.0169	0.0193	0.0214	0.0236	0.0257
		х-х	554	345	V _b / W	0.0413	0.0686	0.0825	0.0908	0.0961	0.1028	0.1070	0.1113	0.1157	0.1234	0.1278	0.1302	0.1350	0.1385	0.1428
10	6-MD-				$DCR(V_b/V_r)$	0.3420	0.5688	0.6837	0.7525	0.7965	0.8519	0.8870	0.9228	0.9585	1.0229	1.0590	1.0793	1.1185	1.1479	1.1833
10	ST2				U _{top} /H	0.0017	0.0024	0.0033	0.0043	0.0056	0.0069	0.0081	0.0095	0.0114	0.0144	0.0164	0.0187	0.0209	0.0231	0.0249
		у-у	554	360	V _b / W	0.0332	0.0558	0.0825	0.1015	0.1060	0.1078	0.1082	0.1124	0.1186	0.1183	0.1225	0.1233	0.1227	0.1279	0.1300
					$DCR(V_b/V_r)$	0.2748	0.4622	0.6837	0.8416	0.8786	0.8935	0.8971	0.9316	0.9832	0.9807	1.0153	1.0218	1.0167	1.0600	1.0774
					U _{top} /H	0.0019	0.0029	0.0039	0.0049	0.0060	0.0072	0.0087	0.0104	0.0120	0.0137	0.0153	0.0171	0.0189	0.0207	0.0225
		x-x	522	1090	V _b / W	0.0959	0.1369	0.1596	0.1703	0.1845	0.1954	0.2048	0.2136	0.2204	0.2275	0.2354	0.2417	0.2480	0.2541	0.2604
17	17-HD-				$DCR(V_b/V_r)$	1.0634	1.5176	1.7694	1.8880	2.0454	2.1665	2.2707	2.3684	2.4440	2.5226	2.6103	2.6802	2.7499	2.8177	2.8871
17	ST3				U _{top} /H	0.0013	0.0022	0.0031	0.0040	0.0049	0.0058	0.0067	0.0077	0.0091	0.0105	0.0119	0.0134	0.0149	0.0163	0.0178
		у-у	522	1230	V _b / W	0.0868	0.1323	0.1697	0.1849	0.1906	0.1978	0.2049	0.2113	0.2169	0.2222	0.2269	0.2328	0.2381	0.2436	0.2485
					$DCR(V_b/V_r)$	0.9629	1.4674	1.8817	2.0502	2.1134	2.1933	2.2718	2.3429	2.4051	2.4639	2.5160	2.5812	2.6400	2.7007	2.7555
					U _{top} /H	0.0017	0.0029	0.0040	0.0051	0.0064	0.0081	0.0098	0.0116	0.0135	0.0154	0.0175	0.0193	0.0213	0.0233	0.0259
		X-X	499	635	V _b / W	0.0900	0.1146	0.1256	0.1428	0.1581	0.1706	0.1820	0.1914	0.1993	0.2112	0.2206	0.2306	0.2372	0.2451	0.2517
18	18-ND-				$DCR(V_b/V_r)$	0.7637	0.9724	1.0657	1.2119	1.3421	1.4481	1.5446	1.6245	1.6914	1.7926	1.8729	1.9570	2.0133	2.0804	2.1369
10	18 ^{18-ND-} ST2				U _{top} /H	0.0018	0.0029	0.0041	0.0053	0.0069	0.0085	0.0101	0.0123	0.0143	0.0172	0.0168	0.0181	0.0203	0.0230	0.0240
		у-у	648	630	V _b / W	0.0637	0.0919	0.1099	0.1251	0.1317	0.1402	0.1447	0.1479	0.1513	0.1621	0.1614	0.1687	0.1725	0.1755	0.1832
					$DCR(V_b/V_r)$	0.4164	0.6008	0.7188	0.8182	0.8612	0.9169	0.9459	0.9668	0.9896	1.0598	1.0552	1.1030	1.1282	1.1473	1.1982
					U _{top} /H	0.0020	0.0030	0.0042	0.0055	0.0069	0.0083	0.0096	0.0111	0.0122	0.0135	0.0148	0.0160	0.0173	0.0185	0.0196
		х-х	833	492	V _b / W	0.0375	0.0451	0.0491	0.0520	0.0544	0.0576	0.0603	0.0636	0.0660	0.0687	0.0711	0.0735	0.0758	0.0780	0.0802
19	19-ND-				$DCR(V_b/V_r)$	0.5021	0.6034	0.6572	0.6965	0.7285	0.7710	0.8077	0.8514	0.8841	0.9193	0.9526	0.9841	1.0146	1.0440	1.0732
	S18				U_{top}/H	0.0016	0.0024	0.0032	0.0041	0.0052	0.0061	0.0072	0.0082	0.0093	0.0105	0.0112	0.0122	0.0132	0.0145	0.0157
		у-у	780	1320	V _b / W	0.0651	0.0842	0.0937	0.1006	0.1051	0.1098	0.1151	0.1199	0.1234	0.1269	0.1306	0.1344	0.1375	0.1406	0.1434
					$DCR(V_b/V_r)$	0.9308	1.2040	1.3406	1.4397	1.5042	1.5701	1.6472	1.7157	1.7651	1.8152	1.8687	1.9220	1.9674	2.0109	2.0518
					U _{top} /H	0.0022	0.0033	0.0045	0.0061	0.0078	0.0095	0.0115	0.0134	0.0152	0.0170	0.0185	0.0203	0.0220	0.0236	0.0254
		X-X	493	508	V _b / W	0.0495	0.0564	0.0612	0.0650	0.0667	0.0691	0.0701	0.0729	0.0756	0.0781	0.0809	0.0830	0.0853	0.0867	0.0885
20 2	20-ND-				$DCR(V_b/V_r)$	0.9241	1.0547	1.1431	1.2137	1.2463	1.2905	1.3090	1.3617	1.4128	1.4598	1.5123	1.5503	1.5931	1.6194	1.6541
20	ST6				U _{top} /H	0.0020	0.0029	0.0040	0.0054	0.0070	0.0084	0.0101	0.0117	0.0133	0.0149	0.0164	0.0180	0.0196	0.0212	0.0228
010		у-у	482	530	V _b / W	0.0547	0.0649	0.0694	0.0720	0.0747	0.0763	0.0786	0.0815	0.0849	0.0884	0.0921	0.0956	0.0992	0.1023	0.1055
					$DCR(V_b/V_r)$	1.0468	1.2418	1.3272	1.3768	1.4285	1.4607	1.5041	1.5600	1.6250	1.6914	1.7616	1.8300	1.8977	1.9575	2.0179

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

щ	Bina	Vän	Vr V	/y	Yapısal								PGA							
#	Kodu	1011	(kN) (k	N)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
-					U _{top} /H	0.0020	0.0036	0.0053	0.0070	0.0088	0.0107	0.0127	0.0147	0.0167	0.0188	0.0210	0.0235	0.0260	0.0285	0.0310
		x-x	758 98	30	V _b / W	0.0438	0.0641	0.0862	0.1016	0.1119	0.1181	0.1239	0.1283	0.1329	0.1379	0.1410	0.1440	0.1475	0.1503	0.1537
01	21-ND-				$DCR(V_b/V_r)$	0.5833	0.8531	1.1483	1.3525	1.4905	1.5731	1.6500	1.7079	1.7698	1.8360	1.8772	1.9170	1.9636	2.0011	2.0469
21	ST2				U _{top} /H	0.0019	0.0031	0.0046	0.0057	0.0070	0.0083	0.0101	0.0120	0.0139	0.0156	0.0177	0.0197	0.0216	0.0237	0.0258
		у-у	758 13	45	V _b / W	0.0509	0.0828	0.1085	0.1199	0.1327	0.1470	0.1565	0.1646	0.1722	0.1803	0.1897	0.1991	0.2046	0.2105	0.2165
					DCR(V _b /V _r)	0.6779	1.1021	1.4451	1.5960	1.7676	1.9572	2.0844	2.1919	2.2936	2.4014	2.5260	2.6517	2.7242	2.8028	2.8824
					U _{top} /H	0.0023	0.0041	0.0059	0.0078	0.0099	0.0120	0.0141	0.0163	0.0185	0.0209	0.0235	0.0261	0.0288	0.0315	0.0341
		х-х	735 65	55	V _b / W	0.0433	0.0658	0.0831	0.0966	0.1056	0.1130	0.1188	0.1231	0.1272	0.1308	0.1340	0.1369	0.1409	0.1451	0.1493
22	22-ND-				$DCR(V_b/V_r)$	0.4355	0.6625	0.8368	0.9725	1.0634	1.1378	1.1963	1.2391	1.2806	1.3167	1.3489	1.3784	1.4180	1.4602	1.5031
22	ST2				U _{top} /H	0.0018	0.0029	0.0044	0.0056	0.0069	0.0083	0.0102	0.0120	0.0140	0.0158	0.0179	0.0198	0.0218	0.0238	0.0259
		у-у	757 88	35	V _b / W	0.0451	0.0721	0.0965	0.1124	0.1240	0.1364	0.1449	0.1523	0.1570	0.1648	0.1714	0.1779	0.1843	0.1887	0.1932
					$DCR(V_b/V_r)$	0.4407	0.7043	0.9426	1.0979	1.2111	1.3329	1.4155	1.4882	1.5337	1.6101	1.6744	1.7384	1.8002	1.8436	1.8876
					U _{top} /H	0.0020	0.0031	0.0042	0.0053	0.0067	0.0080	0.0094	0.0106	0.0124	0.0136	0.0149	0.0169	0.0186	0.0199	0.0208
		х-х	369 88	30 [°]	V _b / W	0.0776	0.0947	0.1041	0.1102	0.1121	0.1162	0.1211	0.1247	0.1268	0.1297	0.1419	0.1371	0.1415	0.1444	0.1487
23	23-MD-				$DCR(V_b/V_r)$	1.7290	2.1089	2.3178	2.4551	2.4958	2.5883	2.6969	2.7783	2.8247	2.8879	3.1595	3.0529	3.1505	3.2157	3.3123
20	ST6				U _{top} /H	0.0018	0.0028	0.0039	0.0051	0.0063	0.0077	0.0089	0.0103	0.0117	0.0132	0.0145	0.0160	0.0175	0.0191	0.0207
		у-у	348 87	' 5 '	V _b / W	0.0794	0.0983	0.1071	0.1116	0.1140	0.1164	0.1194	0.1239	0.1255	0.1278	0.1303	0.1420	0.1373	0.1401	0.1431
					$DCR(V_b/V_r)$	1.8706	2.3163	2.5221	2.6291	2.6854	2.7431	2.8117	2.9181	2.9560	3.0100	3.0688	3.3440	3.2336	3.3013	3.3699
					U _{top} /H	0.0019	0.0030	0.0045	0.0061	0.0077	0.0096	0.0115	0.0129	0.0147	0.0164	0.0180	0.0197	0.0217	0.0236	0.0256
		х-х	157 18	35	V _b / W	0.0246	0.0376	0.0500	0.0576	0.0599	0.0616	0.0628	0.0643	0.0657	0.0672	0.0688	0.0706	0.0724	0.0744	0.0763
24	24-MD-				$DCR(V_b/V_r)$	0.5414	0.8268	1.0982	1.2668	1.3166	1.3542	1.3798	1.4136	1.4449	1.4781	1.5119	1.5509	1.5924	1.6352	1.6779
21	ST4				U _{top} /H	0.0017	0.0027	0.0039	0.0052	0.0066	0.0079	0.0094	0.0110	0.0126	0.0143	0.0160	0.0176	0.0191	0.0207	0.0222
		у-у	204 30	00	Vb / W	0.0431	0.0646	0.0743	0.0825	0.0874	0.0907	0.0927	0.0946	0.0968	0.0990	0.1009	0.1034	0.1055	0.1077	0.1101
					$DCR(V_b/V_r)$	0.7253	1.0882	1.2515	1.3890	1.4711	1.5279	1.5601	1.5934	1.6306	1.6667	1.6990	1.7411	1.7768	1.8135	1.8541
					U _{top} /H	0.0027	0.0043	0.0061	0.0081	0.0101	0.0119	0.0137	0.0156	0.0175	0.0195	0.0216	0.0238	0.0263	0.0287	0.0313
		х-х	1170 18	00	V _b / W	0.0320	0.0522	0.0637	0.0675	0.0698	0.0714	0.0732	0.0751	0.0771	0.0791	0.0812	0.0835	0.0860	0.0882	0.0904
25 25-ND- ST3 -				$DCR(V_b/V_r)$	0.7139	1.1662	1.4224	1.5086	1.5597	1.5957	1.6353	1.6773	1.7229	1.7674	1.8144	1.8656	1.9211	1.9710	2.0189	
				U _{top} /H	0.0027	0.0043	0.0062	0.0080	0.0102	0.0122	0.0139	0.0158	0.0177	0.0199	0.0221	0.0242	0.0265	0.0292	0.0318	
	у-у	1170 18	10	V _b / W	0.0322	0.0519	0.0643	0.0692	0.0720	0.0744	0.0769	0.0790	0.0812	0.0834	0.0856	0.0879	0.0904	0.0926	0.0949	
					$DCR(V_b/V_r)$	0.7190	1.1603	1.4376	1.5466	1.6091	1.6617	1.7181	1.7660	1.8142	1.8626	1.9116	1.9630	2.0202	2.0697	2.1200

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

" E	Bina	Vän	Vr Vy	Yapısal								PGA							
" K	lodu	1011	(kN) (kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
-				U _{top} /H	0.0037	0.0058	0.0102	0.0101	0.0122	0.0148	0.0175	0.0200	0.0223	0.0247	0.0269	0.0293	0.0316	0.0338	0.0359
		х-х	791 1270	V _b / W	0.0380	0.0482	0.0567	0.0580	0.0607	0.0637	0.0663	0.0685	0.0704	0.0722	0.0739	0.0755	0.0771	0.0785	0.0800
26 20	6-ND-			DCR(V _b /V _r)	1.2916	1.6388	1.9270	1.9720	2.0622	2.1658	2.2547	2.3296	2.3936	2.4533	2.5111	2.5685	2.6198	2.6695	2.7191
20	ST5			U _{top} /H	0.0029	0.0045	0.0065	0.0085	0.0104	0.0124	0.0144	0.0165	0.0188	0.0213	0.0236	0.0259	0.0279	0.0298	0.0321
		у-у	1059 1650	V _b / W	0.0454	0.0557	0.0618	0.0674	0.0718	0.0755	0.0784	0.0817	0.0846	0.0873	0.0897	0.0921	0.0942	0.0964	0.0980
				$DCR(V_b/V_r)$	1.1532	1.4141	1.5684	1.7110	1.8216	1.9149	1.9906	2.0746	2.1464	2.2166	2.2760	2.3365	2.3913	2.4465	2.4863
				U _{top} /H	0.0033	0.0052	0.0070	0.0088	0.0106	0.0125	0.0145	0.0166	0.0188	0.0212	0.0235	0.0257	0.0282	0.0308	0.0333
		x-x	867 1015	V b / W	0.0468	0.0614	0.0711	0.0758	0.0784	0.0814	0.0848	0.0876	0.0912	0.0948	0.0980	0.1010	0.1042	0.1071	0.1101
27 2	7-ND-			$DCR(V_b/V_r)$	0.8162	1.0718	1.2400	1.3224	1.3673	1.4208	1.4800	1.5288	1.5915	1.6533	1.7093	1.7619	1.8173	1.8688	1.9214
21	ST4			U _{top} /H	0.0022	0.0036	0.0052	0.0069	0.0086	0.0102	0.0119	0.0134	0.0153	0.0174	0.0193	0.0213	0.0234	0.0256	0.0279
		у-у	760 1330	V _b / W	0.0625	0.0834	0.0944	0.0989	0.1032	0.1069	0.1110	0.1137	0.1168	0.1206	0.1236	0.1266	0.1305	0.1342	0.1378
				$DCR(V_b/V_r)$	1.2437	1.6611	1.8790	1.9686	2.0539	2.1276	2.2095	2.2644	2.3243	2.4007	2.4601	2.5205	2.5989	2.6711	2.7437
				U _{top} /H	0.0007	0.0011	0.0016	0.0020	0.0027	0.0032	0.0041	0.0049	0.0058	0.0066	0.0074	0.0082	0.0090	0.0098	0.0107
	29 ND	х-х	2008 3650	V ь (kN)	0.0986	0.1139	0.1263	0.1438	0.1553	0.1645	0.1793	0.1909	0.2006	0.2090	0.2169	0.2261	0.2347	0.2431	0.2546
28 28	8-ND-			$DCR(V_b/V_r)$	1.3034	1.5059	1.6699	1.9002	2.0521	2.1750	2.3698	2.5239	2.6509	2.7631	2.8665	2.9890	3.1027	3.2129	3.3648
20	ST7			U _{top} /H	0.0008	0.0012	0.0016	0.0020	0.0023	0.0028	0.0032	0.0039	0.0045	0.0051	0.0056	0.0062	0.0067	0.0073	0.0077
		у-у	1847 3270	V ь (kN)	0.0256	0.0425	0.0648	0.0857	0.1050	0.1179	0.1269	0.1339	0.1401	0.1411	0.1433	0.1439	0.1456	0.1455	0.1472
				$DCR(V_b/V_r)$	0.3685	0.6112	0.9305	1.2321	1.5091	1.6945	1.8236	1.9243	2.0125	2.0269	2.0591	2.0677	2.0921	2.0905	2.1153
				U _{top} /H	0.0022	0.0028	0.0049	0.0051	0.0066	0.0076	0.0086	0.0103	0.0122	0.0132	0.0126	0.0162	0.0155	0.0165	0.0186
		х-х	790 995	V _b / W	0.0634	0.0839	0.1079	0.1212	0.1339	0.1395	0.1425	0.1463	0.1516	0.1521	0.1405	0.1596	0.1518	0.1431	0.1605
29 ²⁹	9-MD-			$DCR(V_b/V_r)$	0.6578	0.8709	1.1208	1.2587	1.3901	1.4482	1.4791	1.5194	1.5741	1.5790	1.4583	1.6567	1.5762	1.4857	1.6660
	514			U _{top} /H	0.0027	0.0041	0.0056	0.0070	0.0086	0.0102	0.0119	0.0135	0.0152	0.01/2	0.0191	0.0210	0.0231	0.0248	0.0268
		у-у	790 760	V _b / W	0.0537	0.0718	0.0844	0.0937	0.1017	0.1076	0.1131	0.1174	0.1204	0.1248	0.1295	0.1341	0.1387	0.1431	0.1475
		_		$DCR(V_b/V_r)$	0.5578	0.7454	0.8768	0.9729	1.0557	1.11/1	1.1/43	1.2185	1.2505	1.2961	1.3444	1.3927	1.4397	1.4862	1.5312
				U _{top} /H	0.0020	0.0032	0.0045	0.0062	0.0079	0.0097	0.0115	0.0132	0.0150	0.0171	0.0189	0.0208	0.0226	0.0244	0.0264
		х-х	793 1075	V _b / W	0.0419	0.0587	0.0723	0.0800	0.0838	0.0856	0.0894	0.0944	0.0973	0.0999	0.1039	0.1078	0.1113	0.1146	0.1187
30 ³⁰)-ND-			$DCR(V_b/V_r)$	0.7304	1.0236	1.2616	1.3961	1.4627	1.4943	1.5596	1.6464	1.6982	1.7422	1.8127	1.8808	1.9417	1.9987	2.0702
30 30-ND- ST4	514		700 4400	U _{top} /H	0.0020	0.0031	0.0043	0.0057	0.0073	0.0090	0.0106	0.0123	0.0141	0.0159	0.0176	0.0195	0.0213	0.0232	0.0252
		у-у	728 1100	V _b / W	0.0400	0.0580	0.0721	0.0826	0.0925	0.0996	0.1056	0.1099	0.1134	0.1205	0.1284	0.1346	0.1404	0.146/	0.1543
				DCR(V _b /V _r)	0.7600	1.1021	1.3704	1.5699	1./585	1.8924	2.0065	2.0882	2.1548	2.2906	2.4402	2.5580	2.6678	2.7873	2.9320

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

щ	Bina	Vän	Vr Vy	Yapısal								PGA							
<i>"</i>	Kodu	1011	(kN) (kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
_				U _{top} /H	0.0029	0.0044	0.0051	0.0072	0.0076	0.0088	0.0100	0.0129	0.0145	0.0159	0.0176	0.0195	0.0214	0.0232	0.0251
		x-x	3555 6600	V _b / W	0.0472	0.0710	0.0792	0.1072	0.1055	0.1154	0.1234	0.1525	0.1577	0.1626	0.1671	0.1709	0.1741	0.1770	0.1801
21	31-ND-			$DCR(V_b/V_r)$	0.7668	1.1535	1.2870	1.7416	1.7154	1.8758	2.0056	2.4790	2.5634	2.6431	2.7154	2.7770	2.8304	2.8777	2.9268
31	ST5			U _{top} /H	0.0025	0.0038	0.0052	0.0067	0.0081	0.0095	0.0110	0.0123	0.0135	0.0152	0.0171	0.0188	0.0206	0.0224	0.0242
		у-у	3555 6550	Vb / W	0.0410	0.0608	0.0806	0.0973	0.1131	0.1279	0.1395	0.1483	0.1556	0.1603	0.1630	0.1665	0.1690	0.1718	0.1749
				DCR(V _b /V _r)	0.6662	0.9886	1.3108	1.5813	1.8380	2.0789	2.2680	2.4108	2.5298	2.6058	2.6489	2.7056	2.7470	2.7922	2.8424
				U_{top}/H	0.0029	0.0045	0.0060	0.0076	0.0093	0.0109	0.0125	0.0144	0.0163	0.0183	0.0198	0.0217	0.0242	0.0261	0.0281
		x-x	904 1480	V _b / W	0.0659	0.0909	0.1082	0.1208	0.1276	0.1324	0.1374	0.1393	0.1426	0.1471	0.1510	0.1555	0.1567	0.1599	0.1627
32	32-ND-			$DCR(V_b/V_r)$	0.9579	1.3205	1.5727	1.7551	1.8546	1.9235	1.9972	2.0247	2.0720	2.1369	2.1945	2.2590	2.2768	2.3240	2.3644
52	ST3			U _{top} /H	0.0030	0.0045	0.0060	0.0075	0.0090	0.0106	0.0122	0.0138	0.0155	0.0174	0.0192	0.0212	0.0233	0.0253	0.0274
		у-у	904 1620	V _b / W	0.0743	0.1025	0.1151	0.1250	0.1325	0.1393	0.1460	0.1511	0.1556	0.1598	0.1640	0.1674	0.1706	0.1747	0.1780
				$DCR(V_b/V_r)$	1.0797	1.4888	1.6726	1.8165	1.9258	2.0243	2.1218	2.1959	2.2607	2.3225	2.3830	2.4321	2.4785	2.5385	2.5867
				U_{top}/H	0.0030	0.0047	0.0063	0.0078	0.0097	0.0113	0.0132	0.0149	0.0170	0.0190	0.0206	0.0228	0.0241	0.0265	0.0289
		х-х	677 1025	V _b / W	0.0597	0.0810	0.0999	0.1124	0.1201	0.1264	0.1308	0.1356	0.1377	0.1440	0.1469	0.1487	0.1538	0.1580	0.1612
33	33-ND-			$DCR(V_b/V_r)$	0.8505	1.1531	1.4226	1.6009	1.7096	1.7996	1.8620	1.9308	1.9601	2.0505	2.0921	2.1169	2.1894	2.2502	2.2951
00	ST3			U _{top} /H	0.0026	0.0040	0.0054	0.0069	0.0083	0.0098	0.0114	0.0130	0.0145	0.0161	0.0179	0.0199	0.0215	0.0234	0.0251
		у-у	626 1020	V _b / W	0.0633	0.0893	0.1019	0.1109	0.1172	0.1218	0.1254	0.1287	0.1318	0.1345	0.1369	0.1399	0.1432	0.1465	0.1492
				$DCR(V_b/V_r)$	0.9746	1.3751	1.5694	1.7085	1.8045	1.8757	1.9308	1.9815	2.0304	2.0714	2.1080	2.1542	2.2055	2.2556	2.2973
				U _{top} /H	0.0049	0.0073	0.0099	0.0124	0.0146	0.0168	0.0189	0.0208	0.0230	0.0252	0.0276	0.0298	0.0319	0.0335	0.0349
		х-х	2996 2115	V _b / W	0.0534	0.0777	0.0983	0.1176	0.1338	0.1441	0.1538	0.1641	0.1757	0.1862	0.1973	0.2074	0.2148	0.2221	0.2281
34	34-ND-			$DCR(V_b/V_r)$	0.5235	0.7614	0.9641	1.1536	1.3120	1.4134	1.5086	1.6089	1.7230	1.8257	1.9343	2.0339	2.1060	2.1783	2.2371
0.	S17			U _{top} /H	0.0051	0.0077	0.0104	0.0129	0.0151	0.0173	0.0193	0.0215	0.0238	0.0261	0.0284	0.0305	0.0325	0.0340	0.0350
		у-у	2996 1890	V _b / W	0.0518	0.0748	0.0944	0.1120	0.1269	0.1378	0.1459	0.1539	0.1648	0.1762	0.1865	0.1948	0.2026	0.2097	0.2162
				$DCR(V_b/V_r)$	0.5081	0.7335	0.9258	1.0982	1.2447	1.3515	1.4310	1.5095	1.6161	1.7274	1.8285	1.9103	1.9870	2.0559	2.1202
				U_{top}/H	0.0015	0.0023	0.0032	0.0040	0.0051	0.0064	0.0078	0.0092	0.0105	0.0118	0.0131	0.0148	0.0161	0.0177	0.0190
		x-x	992 1460	V _b / W	0.0760	0.0966	0.1170	0.1358	0.1473	0.1571	0.1686	0.1783	0.1887	0.1977	0.2047	0.2161	0.2262	0.2321	0.2417
35	35-ND-			$DCR(V_b/V_r)$	0.8065	1.0248	1.2411	1.4406	1.5619	1.6668	1.7888	1.8910	2.0014	2.0968	2.1/13	2.2918	2.3992	2.4619	2.5636
	513			U _{top} /H	0.0017	0.0025	0.0036	0.0048	0.0062	0.0078	0.0093	0.0109	0.0126	0.0144	0.0159	0.0181	0.0197	0.0216	0.0233
313	у-у	1276 900	V _b / W	0.0736	0.0891	0.1052	0.1196	0.1301	0.1372	0.1458	0.1522	0.1563	0.1611	0.1693	0.1763	0.1837	0.1908	0.1955	
				$DCR(V_b/V_r)$	0.6065	0.7349	0.8675	0.9861	1.0731	1.1316	1.2024	1.2551	1.2887	1.3282	1.3958	1.4537	1.5145	1.5735	1.6122

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

#	Bina	Vän	Vr Vy	Yapısal								PGA							
<i>"</i>]	Kodu	1011	(kN) (kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
-				U _{top} /H	0.0025	0.0040	0.0052	0.0069	0.0085	0.0103	0.0121	0.0140	0.0159	0.0179	0.0199	0.0219	0.0236	0.0255	0.0273
		x-x	1042 1560	V _b / W	0.0341	0.0417	0.0481	0.0525	0.0565	0.0605	0.0643	0.0671	0.0697	0.0726	0.0756	0.0783	0.0810	0.0833	0.0857
26	86-ND-			DCR(V _b /V _r)	1.1564	1.4141	1.6290	1.7791	1.9142	2.0503	2.1776	2.2723	2.3615	2.4611	2.5620	2.6521	2.7452	2.8230	2.9034
30	ST7			U _{top} /H	0.0027	0.0040	0.0053	0.0069	0.0088	0.0109	0.0129	0.0149	0.0168	0.0185	0.0200	0.0218	0.0235	0.0253	0.0270
		у-у	1068 1480	V b / W	0.0288	0.0386	0.0439	0.0460	0.0485	0.0509	0.0535	0.0563	0.0580	0.0598	0.0613	0.0626	0.0638	0.0649	0.0661
				$DCR(V_b/V_r)$	0.9508	1.2768	1.4524	1.5197	1.6025	1.6824	1.7691	1.8602	1.9170	1.9762	2.0247	2.0690	2.1091	2.1454	2.1848
				U _{top} /H	0.0022	0.0034	0.0046	0.0058	0.0069	0.0081	0.0094	0.0107	0.0121	0.0134	0.0148	0.0163	0.0178	0.0194	0.0210
		х-х	1662 1490	V _b / W	0.0642	0.0868	0.1017	0.1120	0.1193	0.1228	0.1267	0.1301	0.1337	0.1380	0.1418	0.1464	0.1515	0.1561	0.1603
37	87-ND-			$DCR(V_b/V_r)$	1.1938	1.6145	1.8907	2.0813	2.2186	2.2825	2.3555	2.4188	2.4857	2.5658	2.6369	2.7217	2.8166	2.9022	2.9795
51	ST7			U _{top} /H	0.0020	0.0031	0.0043	0.0056	0.0068	0.0081	0.0095	0.0108	0.0121	0.0135	0.0152	0.0170	0.0188	0.0206	0.0224
		у-у	1718 2140	Vb / W	0.0590	0.0749	0.0920	0.1073	0.1180	0.1240	0.1295	0.1332	0.1374	0.1417	0.1464	0.1505	0.1530	0.1575	0.1621
				$DCR(V_b/V_r)$	1.0608	1.3478	1.6542	1.9301	2.1231	2.2310	2.3294	2.3966	2.4713	2.5479	2.6339	2.7065	2.7525	2.8337	2.9148
				U _{top} /H	0.0026	0.0042	0.0059	0.0075	0.0093	0.0110	0.0125	0.0142	0.0159	0.0176	0.0192	0.0211	0.0233	0.0255	0.0277
		х-х	205 360	Vb / W	0.0413	0.0575	0.0637	0.0665	0.0688	0.0707	0.0725	0.0743	0.0764	0.0785	0.0807	0.0833	0.0859	0.0885	0.0911
38 3	8-MD-			$DCR(V_b/V_r)$	1.0366	1.4453	1.5987	1.6711	1.7274	1.7767	1.8214	1.8662	1.9183	1.9719	2.0262	2.0912	2.1565	2.2233	2.2872
	\$13			U _{top} /H	0.0024	0.0041	0.0058	0.0073	0.0090	0.0105	0.0124	0.0142	0.0158	0.0176	0.0197	0.0217	0.0236	0.0257	0.0278
		у-у	205 225	V _b / W	0.0177	0.0271	0.0345	0.0396	0.0417	0.0429	0.0442	0.0456	0.0468	0.0482	0.0496	0.0510	0.0522	0.0536	0.0550
				$DCR(V_b/V_r)$	0.4446	0.6805	0.8653	0.9935	1.0475	1.0763	1.1110	1.1444	1.1/46	1.2107	1.2464	1.2800	1.3120	1.3474	1.3821
				U _{top} /H	0.0022	0.0034	0.0048	0.0063	0.0076	0.0091	0.0105	0.0120	0.0135	0.0153	0.0170	0.0187	0.0204	0.0222	0.0237
		х-х	785 930	V _b / W	0.0259	0.0365	0.0420	0.0460	0.0496	0.0524	0.0545	0.0574	0.0599	0.0623	0.0648	0.0676	0.0702	0.0721	0.0741
39 ³	9-MD-			$DCR(V_b/V_r)$	0.0282	0.0040	1.0188	1.1179	1.2033	1.2715	1.3245	1.3947	1.4552	1.5130	1.5740	1.6409	1.7046	1.7504	1.8005
	515		070 040	Utop/H	0.0020	0.0040	0.0000	0.0071	0.0000	0.0100	0.0124	0.0143	0.0100	0.0177	0.0193	0.0208	0.0220	0.0244	0.0201
		у-у	673 610		0.0172	0.0244	0.0290	0.0324	0.0345	1.0502	0.0395	1 1656	0.0430	1.0599	1,2006	1 2227	0.0400	1.4151	1.4526
		_		$DCR(V_b/V_r)$	0.4009	0.0095	0.0437	0.9100	0.9772	1.0000	0.0005	0.0000	0.0111	0.0105	0.0120	0.0152	0.0167	0.0190	0.0100
			705 4040	Utop/H	0.0010	0.0020	0.0037	0.0049	0.0000	0.0075	0.0000	0.0090	0.0111	0.0120	0.0139	0.0100	0.0107	0.0100	0.0192
		x-x	195 1010		1.0621	1.4704	1.0161	0.1010	0.1070	0.1103	0.1140	0.1100	0.1213	0.1201	0.1292	0.1327	0.1330	0.1395	0.1430
40 4	40 ^{40-MD-} –			$DCK(V_b/V_r)$	0.0017	0.0026	0.0038	0.0051	0.0065	0.0080	0.0004	0.0108	0.0126	0.0130	0.0154	0.0171	0.0186	0.0205	0.0224
		<u></u>	7/9 1205	Utop/ I	0.0560	0.0020	0.0848	0.0001	0.0003	0.0000	0.0034	0.0100	0.0120	0.1135	0.0154	0.1201	0.0100	0.0200	0.0224
	у-у	140 1325		1 1739	1 4925	1 7769	1 0046	1 0850	2 0354	2 1447	0.1044	2 2840	2 2770	2 4204	2.1201	2 5866	2 6501	2 7512	
				$DCK(V_b/V_r)$	1.1730	1.4020	1.7700	1.9040	1.9000	2.0304	2.1447	2.1072	2.2040	2.3119	2.4294	2.5104	2.3000	2.0591	2.7312

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

" ¹	Bina	Vän	Vr Vy	Yapısal								PGA							
" I	Kodu	1011	(kN) (kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
_				U _{top} /H	0.0024	0.0039	0.0056	0.0072	0.0089	0.0107	0.0126	0.0146	0.0166	0.0185	0.0205	0.0224	0.0244	0.0264	0.0292
		x-x	1391 1010	V _b / W	0.0528	0.0654	0.0734	0.0797	0.0851	0.0909	0.0970	0.1033	0.1088	0.1108	0.1149	0.1198	0.1251	0.1291	0.1330
4 4	1-MD-			$DCR(V_b/V_r)$	0.5369	0.6647	0.7463	0.8106	0.8659	0.9243	0.9869	1.0508	1.1069	1.1265	1.1687	1.2183	1.2725	1.3126	1.3523
41	ST4			U _{top} /H	0.0022	0.0035	0.0051	0.0067	0.0084	0.0102	0.0118	0.0135	0.0154	0.0174	0.0193	0.0211	0.0230	0.0250	0.0271
		у-у	1469 1060	Vb / W	0.0555	0.0761	0.0829	0.0882	0.0947	0.1000	0.1074	0.1152	0.1229	0.1309	0.1367	0.1414	0.1465	0.1532	0.1591
				$DCR(V_b/V_r)$	0.5341	0.7324	0.7981	0.8490	0.9118	0.9629	1.0342	1.1095	1.1839	1.2608	1.3162	1.3615	1.4108	1.4753	1.5324
				U_{top}/H	0.0026	0.0042	0.0060	0.0079	0.0096	0.0113	0.0129	0.0150	0.0172	0.0194	0.0215	0.0238	0.0263	0.0285	0.0306
		х-х	1138 1100	V _b / W	0.0403	0.0484	0.0593	0.0676	0.0744	0.0802	0.0844	0.0884	0.0934	0.0973	0.1004	0.1042	0.1082	0.1132	0.1172
12 4	2-ND-			$DCR(V_b/V_r)$	0.6558	0.7882	0.9663	1.1014	1.2121	1.3069	1.3741	1.4397	1.5205	1.5839	1.6349	1.6977	1.7626	1.8431	1.9089
42	ST5			U_{top}/H	0.0003	0.0008	0.0013	0.0018	0.0023	0.0028	0.0033	0.0036	0.0042	0.0048	0.0053	0.0058	0.0065	0.0071	0.0076
		у-у	1052 855	V _b / W	0.0362	0.0461	0.0533	0.0575	0.0625	0.0666	0.0713	0.0747	0.0777	0.0796	0.0821	0.0859	0.0888	0.0911	0.0924
				$DCR(V_b/V_r)$	0.6372	0.8112	0.9381	1.0135	1.1015	1.1740	1.2561	1.3159	1.3691	1.4023	1.4462	1.5138	1.5647	1.6041	1.6272
				U _{top} /H	0.0012	0.0017	0.0023	0.0028	0.0034	0.0040	0.0047	0.0050	0.0063	0.0065	0.0081	0.0090	0.0101	0.0109	0.0117
		X-X	591 2270	V _b / W	0.0877	0.1283	0.1672	0.1740	0.1838	0.1962	0.2089	0.2119	0.2290	0.2309	0.2448	0.2513	0.2551	0.2614	0.2648
43 ⁴	3-MD-			$DCR(V_b/V_r)$	1.5863	2.3202	3.0224	3.1454	3.3230	3.5481	3.7771	3.8308	4.1399	4.1751	4.4253	4.5440	4.6129	4.7254	4.7878
40	ST4			U _{top} /H	0.0018	0.0026	0.0033	0.0042	0.0052	0.0063	0.0076	0.0087	0.0100	0.0113	0.0124	0.0139	0.0153	0.0165	0.0176
		у-у	591 2080	V _b / W	0.1154	0.1541	0.1805	0.1961	0.2007	0.2063	0.2115	0.2198	0.2301	0.2359	0.2414	0.2492	0.2603	0.2692	0.2750
				$DCR(V_b/V_r)$	2.0863	2.7868	3.2641	3.5455	3.6295	3.7297	3.8232	3.9745	4.1601	4.2657	4.3655	4.5053	4.7067	4.8674	4.9716
				U _{top} /H	0.0015	0.0024	0.0033	0.0042	0.0052	0.0060	0.0069	0.0083	0.0094	0.0107	0.0111	0.0113	0.0121	0.0138	0.0151
		х-х	3280 1035	V _b / W	0.0484	0.0667	0.0842	0.0962	0.1072	0.1147	0.1223	0.1255	0.1310	0.1336	0.1424	0.1448	0.1456	0.1473	0.1548
44 4	4-ND-			$DCR(V_b/V_r)$	0.5808	0.8008	1.0117	1.1547	1.2875	1.3768	1.4690	1.5075	1.5730	1.6043	1.7106	1.7393	1.7484	1.7686	1.8587
	S18			U_{top}/H	0.0011	0.0018	0.0024	0.0030	0.0037	0.0044	0.0054	0.0060	0.0067	0.0073	0.0081	0.0084	0.0091	0.0101	0.0107
		у-у	3326 1130	V _b / W	0.0474	0.0701	0.0871	0.1034	0.1243	0.1355	0.1395	0.1428	0.14/8	0.1496	0.1545	0.1558	0.1585	0.1615	0.1646
				$DCR(V_b/V_r)$	0.5612	0.8301	1.0314	1.2250	1.4/23	1.6052	1.6523	1.6916	1.7505	1.//18	1.8295	1.8448	1.8/68	1.9128	1.9497
				U _{top} /H	0.0018	0.0029	0.0041	0.0051	0.0062	0.0075	0.0087	0.0101	0.0117	0.0132	0.0148	0.0162	0.01/6	0.0189	0.0203
		х-х	1/49 555	V _b / W	0.0310	0.0411	0.0488	0.0549	0.0591	0.0635	0.0667	0.0691	0.0728	0.0763	0.0785	0.0799	0.0817	0.0840	0.0859
45 ⁴	5-SD-			DCR(V _b /V _r)	0.7324	0.9704	1.1521	1.2963	1.3943	1.4984	1.5754	1.6317	1.7192	1.8008	1.8544	1.8859	1.9297	1.9825	2.0287
	518		4507 505	U _{top} /H	0.0019	0.0031	0.0041	0.0053	0.0065	0.0079	0.0091	0.0106	0.0122	0.0139	0.0155	0.0170	0.0184	0.0198	0.0213
		у-у	1527 535	V _b / W	0.0315	0.0413	0.0506	0.0566	0.0592	0.0623	0.0651	0.0669	0.0704	0.0730	0.0759	0.0780	0.0803	0.0824	0.0845
				$DCR(V_b/V_r)$	0.8515	1.1161	1.3676	1.5302	1.6015	1.6840	1.7609	1.8101	1.9041	1.9754	2.0523	2.1095	2.1721	2.2288	2.2842

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

#	Bina	Vön	Vr	Vy	Yapısal								PGA							
π	Kodu	101	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
					U _{top} /H	0.0021	0.0032	0.0047	0.0061	0.0075	0.0091	0.0105	0.0119	0.0132	0.0147	0.0163	0.0178	0.0194	0.0211	0.0229
		х-х	250	146	V _b / W	0.0366	0.0546	0.0706	0.0802	0.0858	0.0889	0.0925	0.0960	0.0976	0.0996	0.1026	0.1061	0.1090	0.1116	0.1145
16	46-ND-				$DCR(V_b/V_r)$	0.6202	0.9254	1.1968	1.3594	1.4560	1.5076	1.5680	1.6281	1.6558	1.6889	1.7401	1.7997	1.8480	1.8933	1.9426
40	ST5				U _{top} /H	0.0016	0.0026	0.0038	0.0054	0.0069	0.0083	0.0098	0.0112	0.0129	0.0143	0.0157	0.0174	0.0190	0.0205	0.0220
		у-у	256	121	V _b / W	0.0434	0.0636	0.0822	0.0928	0.0979	0.1036	0.1076	0.1124	0.1167	0.1202	0.1229	0.1253	0.1281	0.1307	0.1337
					$DCR(V_b/V_r)$	0.7182	1.0532	1.3614	1.5367	1.6209	1.7151	1.7817	1.8602	1.9324	1.9903	2.0341	2.0738	2.1200	2.1630	2.2131
					U _{top} /H	0.0020	0.0032	0.0042	0.0052	0.0064	0.0077	0.0091	0.0106	0.0120	0.0133	0.0146	0.0159	0.0173	0.0186	0.0200
		х-х	861	860	V _b / W	0.0249	0.0351	0.0414	0.0477	0.0514	0.0532	0.0565	0.0595	0.0623	0.0647	0.0675	0.0703	0.0728	0.0751	0.0773
17	47-MD-				$DCR(V_b/V_r)$	0.5438	0.7661	0.9056	1.0424	1.1241	1.1616	1.2336	1.2996	1.3623	1.4147	1.4747	1.5359	1.5904	1.6415	1.6884
47	ST7				U _{top} /H	0.0015	0.0023	0.0033	0.0043	0.0053	0.0064	0.0074	0.0084	0.0095	0.0108	0.0120	0.0131	0.0142	0.0155	0.0169
		у-у	791	1410	Vb / W	0.0420	0.0517	0.0614	0.0671	0.0702	0.0712	0.0762	0.0797	0.0813	0.0837	0.0880	0.0903	0.0930	0.0958	0.0986
					$DCR(V_b/V_r)$	0.9994	1.2295	1.4596	1.5957	1.6684	1.6926	1.8114	1.8957	1.9319	1.9905	2.0927	2.1459	2.2111	2.2770	2.3448
					U _{top} /H	0.0027	0.0044	0.0063	0.0079	0.0097	0.0114	0.0133	0.0153	0.0174	0.0195	0.0214	0.0235	0.0256	0.0273	0.0291
		X-X	967	645	Vb / W	0.0191	0.0296	0.0371	0.0417	0.0469	0.0506	0.0525	0.0555	0.0575	0.0591	0.0610	0.0627	0.0645	0.0660	0.0678
18	48-ND-				$DCR(V_b/V_r)$	0.4848	0.7513	0.9433	1.0604	1.1917	1.2862	1.3357	1.4103	1.4614	1.5032	1.5516	1.5931	1.6395	1.6791	1.7237
70	ST4				U _{top} /H	0.0028	0.0046	0.0067	0.0085	0.0103	0.0122	0.0143	0.0162	0.0183	0.0205	0.0227	0.0248	0.0269	0.0288	0.0308
		у-у	941	615	V _b / W	0.0172	0.0268	0.0352	0.0405	0.0446	0.0476	0.0514	0.0538	0.0553	0.0571	0.0583	0.0599	0.0613	0.0627	0.0639
					$DCR(V_b/V_r)$	0.4482	0.6988	0.9202	1.0582	1.1644	1.2438	1.3429	1.4046	1.4443	1.4905	1.5213	1.5648	1.6014	1.6374	1.6700
					U _{top} /H	0.0018	0.0029	0.0041	0.0052	0.0065	0.0078	0.0091	0.0105	0.0118	0.0131	0.0144	0.0157	0.0170	0.0183	0.0196
		X-X	1470	630	Vb / W	0.0021	0.0031	0.0041	0.0050	0.0061	0.0074	0.0087	0.0099	0.0110	0.0119	0.0126	0.0131	0.0138	0.0145	0.0151
49 ^{49-ND-} - ST6 -	49-ND-				$DCR(V_b/V_r)$	0.0331	0.0483	0.0641	0.0781	0.0954	0.1155	0.1356	0.1535	0.1703	0.1847	0.1964	0.2043	0.2150	0.2250	0.2341
	ST6				U _{top} /H	0.0018	0.0028	0.0071	0.0052	0.0064	0.0076	0.0091	0.0105	0.0120	0.0135	0.0150	0.0166	0.0183	0.0199	0.0215
		у-у	1686	565	V _b / W	0.0478	0.0631	0.0837	0.0815	0.0923	0.1031	0.1133	0.1223	0.1299	0.1382	0.1423	0.1455	0.1493	0.1525	0.1561
				DCR(V _b /V _r)	0.6475	0.8552	1.1335	1.1043	1.2511	1.3975	1.5357	1.6565	1.7602	1.8723	1.9276	1.9718	2.0224	2.0664	2.1154	

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

1	Bina , Kodu	Vän	Vr	Vy	Yapısal								PGA							
" F		1011	(kN)	(kN)	Karşılık	0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
					U _{top} /H	0.0019	0.0029	0.0042	0.0056	0.0069	0.0084	0.0098	0.0112	0.0125	0.0141	0.0157	0.0173	0.0191	0.0209	0.0227
	x 0-ND ST5	х-х	352	257	V _b / W	0.0375	0.0553	0.0666	0.0737	0.0779	0.0825	0.0871	0.0918	0.0942	0.0967	0.0989	0.1020	0.1046	0.1080	0.1120
_{E0} 5					$DCR(V_b/V_r)$	0.7598	1.1202	1.3487	1.4925	1.5782	1.6725	1.7657	1.8604	1.9081	1.9589	2.0039	2.0665	2.1205	2.1893	2.2688
⁵⁰ ST					U _{top} /H	0.0015	0.0025	0.0034	0.0047	0.0061	0.0074	0.0089	0.0103	0.0116	0.0131	0.0145	0.0160	0.0175	0.0189	0.0203
		у-у	357	285	V _b / W	0.0036	0.0062	0.0089	0.0108	0.0128	0.0144	0.0150	0.0159	0.0167	0.0176	0.0182	0.0191	0.0199	0.0206	0.0216
					$DCR(V_b/V_r)$	0.0716	0.1246	0.1769	0.2152	0.2563	0.2873	0.3003	0.3183	0.3337	0.3522	0.3639	0.3805	0.3971	0.4124	0.4323

Çizelge 4.3 (devam): Deprem toplumu etkisinde yapılardaki göreli kat ötelenmesi ve kesme kuvveti oranlarının ortalamaları.

=: $(V_r/V_y) < 1$

•:

(V_r/V_y)≥1 Önerilen sınırlara göre 'hafif hasar' bölgesi .

= :

Önerilen sınırlara göre 'orta hasar' bölgesi Önerilen sınırlara göre 'ağır hasar/göçme' bölgesi •:

4.3 Elde Edilen HG Eğrilerinin Literatürdeki Eğriler İle Karşılaştırılması

Tez çalışması kapsamında türetilmiş olan *HG* eğrilerinin yapısal davranış anlamında ortaya koyduğu özgünlük ve yeniliklerin belirlenebilmesi amacıyla literatürde yer alan ve daha önce literatür özeti bölümünde değinilmiş olan eğrilerden bazıları ile karşılaştırılmaları yapılmış ve detaylarıyla aşağıda sunulmuştur:

✓ <u>Akkar ve diğ., 2005</u>

- 2-, 3-, 4- ve 5- olmak üzere farklı kat sayılarına sahip 32 adet betonarme bina için kırılganlık eğrileri türetilirken karma yöntem kullanılmıştır.
- Yapısal kapasiteler, saha gözlemlerinden elde edilmiş olup; binaların dinamik karşılıkları zaman geçmişi analizi ile hesaplanmıştır. Doğrusal olmayan dinamik analizlerde 82 adet yer hareketi kullanılmıştır.
- Binaların yanal rijitlik, dayanım ve şekildeğiştirme kapasiteleri her iki doğrultuda gerçekleştirilen itme analizleri ile hesaplanmıştır.
- Sismik şiddetin ölçüsü olarak "En büyük yer hızı (*PGV*)" seçilmiştir. Bunun sebebi olarak da meydana gelen en büyük doğrusal olmayan yerdeğiştirmelerin *PGV* ile daha iyi korelasyonda olduğu söylenmiştir.

Hasar sınırları, en büyük göreli kat yerdeğiştirme oranı esas alınarak belirlenmiştir. Çalışmada; hafif hasar, orta hasar ve ağır hasar durumları için binaların hasargörebilirlik olasılıkları belirlenmiştir. Çizelge 4.4'te en büyük göreli kat ötelenmesi oranına bağlı hasar sınırları gösterilmektedir.

Kat Savısı	Hafif Hasar	Orta Hasar	Ağır Hasar
2	0.0011	0.009	0.012
3	0.0011	0.008	0.011
4	0.0012	0.008	0.011
5	0.0011	0.0068	0.009

Çizelge 4.4 : Göreli kat ötelenmesi oranı sınırları (Akkar ve diğ., 2005).

Şekil 4.10 : Binalara ait hasargörebilirlik eğrilerinin Akkar ve diğ. (2005)'de yer alan kırılganlık eğrileri karşılaştırılması.

Şekil 4.10'da görüldüğü üzere, proje kapsamında elde dilmiş olan kırılganlık eğrileri ile Akkar ve diğ. (2005)'de yer alan 5-katlı binalara ait eğrilerin oluşturduğu "Orta Hasar" bandı çakışmakta olup, *PGV*'nin 35~60 cm/sn değerlerinde benzer aşılma olasılığı değerlerini vermektedir. Projede göreli ötelenme oranları göz önüne alınarak elde edilmiş olan 3- ve 4-katlı binalara ait hasargörebilirlik eğrileri, Akkar ve diğ. (2005)'e göre daha düşük *PGV* değerlerinde "Orta Hasar" bandını işaret etmektedir. 5-katlı binalara ait eğriler ise tüm yapı stoğu karakterine benzer olarak *PGV*'nin 35~60 cm/sn değerlerinde Akkar ve diğ. (2005) eğrileri ile örtüşmektedir.

- ✓ <u>Kırçıl ve Polat, 2006</u>
- Orta- katlı betonarme çerçeve yapıların hasar olasılığının araştırılması amacıyla, 1975 Türkiye deprem yönetmeliğine uygun olarak 3-, 4-, 5- ve 6katlı temsili yapılar tasarlanmıştır.
- Artımsal doğrusal olmayan dinamik analiz yöntemi kullanılan çalışmada, yapılara 12 adet benzeştirilmiş yer hareketi etkittirilmiştir.
- Binaların akma ve göçme kapasiteleri PGA, S_a, ve S_d parametrelerine bağlı olarak hesaplanmış olup, kırılganlık eğrileri bu yer hareketi parametrelerine bağlı olarak elde edilmiştir.

Analitik yöntem kullanılarak Kırçıl ve Polat (2006) tarafından elde edilen hasargörebilirlik eğrilerinden şiddet parametresi *PGA* olan eğriler kullanılmış olup, akma ve göçme olasılıklarını temsil eden hasargörebilirlik eğrileri ile karşılaştırılma yapılmıştır. Akma sınırında en büyük göreli ötelenme oranının 0.0013 olarak kabul edildiği çalışmada, göçme sınırı olarak yönetmelikte verilen en büyük göreli ötelenme oranı olan 0.04 değeri göz önüne alınmıştır. Bina stokundaki yapılar kat adetlerine göre bu eğriler ile değerlendirilmiştir (Şekil 4.11).

Şekil 4.11 : Binalara ait hasargörebilirlik eğrilerinin Kırçıl ve Polat (2006)'da yer alan kırılganlık eğrileri karşılaştırılması.

Şekil 4.11'de de görüldüğü üzere, elde edilmiş olan kırılganlık eğrilerinin oluşturduğu "Orta Hasar" bandı, benzer kat sayısına sahip betonarme binalar için Kırçıl ve Polat (2006)'da önerilmiş olan kırılganlık eğrilerinin temsil ettiği akma ve göçme hasar sınırlarının içerisinde kalmaktadır.

- ✓ <u>Ay ve Erberik, 2007</u>
- Az- ve orta- katlı betonarme çerçeve yapıların hasar olasılığının araştırılması amacıyla, farklı yönetmelikler göz önüne alınarak 3-, 5-, 7- ve 9- katlı temsili yapılar tasarlanmış olup, iki boyutlu analitik modeller ülkemizdeki yapı stoğunun sismik performans özelliklerini yansıtabilmek için iyi, tipik ve zayıf olarak sınıflandırılmıştır.
- Bir grup yer hareketi, sismik şiddet parametresinin maksimum yer hızı (*PGV*) olarak seçildiği doğrusal olmayan dinamik analizde kullanılmıştır.

- Yapılardaki kuvvetli yer hareketi talep istatistikleri, elastik ötesi zaman tanım alanı analizi ile elde edilmiş maksimum katlararası ötelenme değerleri ile verilmiştir.
- Hemen kullanım, can güvenliği ve göçmenin önlenmesi performans seviyelerine göre 4 farklı hasar sınırının (hasarsız (HS1); orta hasar (HS2); ağır hasar (HS3) ve göçme (HS4)) belirlendiği çalışmada, Çizelge 4.5'de verilmekte olan en büyük göreli kat ötelenmesi oranına bağlı sınırlar göz önüne alınmıştır.

	Göreli Kat Ötelenmesi Oranı (%)									
Yapı sınıfı	Hasar S	Sınırı-1	Hasar	Sınırı-2	Hasar Sınırı-3					
	Alt Sınır	Üst Sınır	Alt Sınır	Üst Sınır	Alt Sınır	Üst Sınır				
3 katlı-zayıf	0.26	0.34	0.52	0.80	1.19	1.64				
3 katlı-tipik	0.35	0.47	1.17	1.75	2.41	3.22				
5 katlı-zayıf	0.20	0.26	0.38	0.49	0.85	1.43				
5 katlı-tipik	0.26	0.36	0.58	0.95	1.84	2.50				

Çizelge 4.5 : Göreli kat ötelenmesi oranı sınırları (Ay ve Erberik, 2007).

Ay ve Erberik, (2007) tarafından elde edilen hasargörebilirlik eğrilerinden, 3- ve 5katlı tipik yapı sınıfına giren binalar için elde edilmiş olan hasargörebilirlik eğrileri ile karşılaştırılma yapılmış ve Şekil 4.12 ve 4.13'te sırasıyla sunulmuştur.

Şekil 4.12 : Binalara ait hasargörebilirlik eğrilerinin Ay ve Erberik (2007)'de yer alan ve 3-katlı tipik yapı grubuna ait kırılganlık eğrileri karşılaştırılması.

Şekil 4.13 : Binalara ait hasargörebilirlik eğrilerinin Ay ve Erberik (2007)'de yer alan ve 5-katlı tipik yapı grubuna ait kırılganlık eğrileri karşılaştırılması.

Şekil 4.12 ve 4.13'te görüldüğü üzere, proje kapsamında göreli ötelenme oranları göz önüne alınarak elde dilmiş olan kırılganlık eğrileri, Ay ve Erberik (2007)'de yer alan benzer katlı binalara ait eğrilere göre daha yüksek *PGV* değerlerinde "Orta Hasar" bandını işaret etmektedir.

- ✓ Erberik 2008
- Türkiye'deki az- ve orta- katlı betonarme çerçeve tipi yapıların hasar olasılıkları araştırılmıştır.
- 1999 Düzce Depremi sonrasında hasar görmüş olan 28 adet binaya ait veriler kullanılmıştır. Kat sayıları 2~6 arasında değişmekte olan bina toplumu, azkatlı (*LR*) ve orta- katlı (*MR*) olmak üzere alt gruplara ayrılmıştır.
- Eşdeğer tek serbestlik dereceli sistem olarak modellenen bina toplumu, dolgu duvarlı (*INF*) ve dolgu duvarsız (*BR*) olarak tekrar alt gruplara ayrılmış ve analitik çalışmalar gerçekleştirilmiştir.
- Dinamik analizlerde 100 farklı deprem yer hareketinin kullanıldığı bu çalışmada, şiddet parametresi olarak *PGV* seçilerek hasargörebilirlik eğrileri oluşturulmuştur.

Hemen kullanım, can güvenliği ve göçmenin önlenmesi limit durumlarının tanımlandığı çalışmada, yapısal istem parametresi olarak en büyük göreli kat

ötelenmesi oranı ve spektral yerdeğiştirme esas alınmıştır. Çizelge 4.6'a çalışmada kullanılan en büyük göreli kat ötelenmesi oranına bağlı hasar sınırları gösterilmektedir.

	Bina Toplumu Alt Grupları						
Limit Durum	LR-BR	LR-INF	MR-BR	MR-INF			
Hemen Kullanım	0.27	0.19	0.20	0.18			
Can Güvenliği	0.84	0.78	0.78	0.71			
Göçmenin Önlenmesi	1.51	1.43	1.28	1.22			

Çizelge 4.6 : Göreli kat ötelenmesi oranı sınırları (%) (Erberik, 2008).

Erberik (2008) tarafından elde edilen hasargörebilirlik eğrilerinden, 2~3 ve 4~6 katlı tipik yapı sınıfına giren dolgu duvarlı binalar için elde edilmiş olan hasargörebilirlik eğrileri ile karşılaştırılma yapılmış ve Şekil 4.14 ve 4.15'de sırasıyla sunulmuştur.

Şekil 4.14 : Binalara ait hasargörebilirlik eğrilerinin Erberik (2008)'de yer alan 2~3 katlı binalara ait kırılganlık eğrileri karşılaştırılması.

Şekil 4.14 ve 4.15'de görüldüğü üzere, proje kapsamında göreli ötelenme oranları göz önüne alınarak elde dilmiş olan kırılganlık eğrileri, Erberik (2008)'de yer alan benzer katlı binalara ait "Can Güvenliği" limit durumu eğrilerine göre aynı *PGV* değerlerinde "Orta Hasar" durumu için daha yüksek aşılma olasılığı işaret etmektedir.

5. SONUÇLAR VE TARTIŞMA

Gelecekte gerçekleşmesi olası ve yıkıcı niteliğe sahip bir depremin barındırdığı birçok belirsizlik nedeniyle günümüzde sadece olası büyüklük ve konumu tahmin edilebilmektedir. Bu nedenle, depremlerin yapılar üzerindeki etkilerini incelemek üzere yürütülecek çalışmaların olasılıksal yaklaşımlar içermesi kaçınılmazdır. Özellikle birinci derece risk altında bulunan yoğun nüfusa sahip yerleşim bölgelerinde sismik riskin tahmin edilebilir olması, afet planlama stratejilerinin geliştirilmesinde önemli rol oynamaktadır. Bu amaç doğrultusunda tüm dünyada yaygın olarak kullanılmakta olan ve mevcut yapı stokları için gerçekleştirilen olasılıksal değerlendirmeler sonrasında elde edilen hasargörebilirlik (*HG*) ilişkileri, hasar/kayıp değerlendirme sürecini önemli düzeyde hızlandırmaktadır. Tez kapsamında istatistiksel çalışmaya dayalı bir yöntem izlenerek, mevcut yapı stoku içinde oldukça önemli yer tutan az ve orta katlı betonarme binaların *HG* eğrileri iki yapısal karşılık parametresi için elde edilmiştir.

Çalışmada, Türkiye'deki mevcut binaların tipik özelliklerini yansıtan ve gerçek binalardan oluşan bir yapı toplumu seçilerek ele alınmış ve analitik yöntem kullanılarak hasargörebilirlik değerlendirmeleri yapılmıştır. Seçilen her bir binanın hasar görme potansiyelini irdelemek amacıyla öncelikle deprem yükleri etkisindeki davranışları doğrusal olmayan dinamik ve statik çözümlemeler ile irdelenmiştir. Türkiye'de meydana gelmiş olan yıkıcı depremlerde farklı düzeylerde hasar görmüş ya da hasarsız olan bu yapı toplumunun analitik düzlem modellerinde taşıyıcı olmayan dolgu duvarların etkisi de göz önüne alınmıştır. Analizlerde DBYBHY-2007'de 0.4getkin yer ivmesi katsayısı ve Z2 zemin sınıfı için tanımlanmış olan tasarım spektrumu ile uyumlu olarak üretilen 7 adet kuvvetli yer hareketi kaydı kullanılmıştır. Geniş bir ivme bandı aralığında değerlendirme yapılabilmesi amacıyla, 7 adet deprem kaydının her biri 0.1g'den 0.8g değerine kadar 0.05g'lik (%5'lik) artımlarla ölçeklendirilmiş ve toplamda 105 adet kuvvetli yer hareketi içeren bir deprem toplumu elde edilmiştir.

Depremden oluşan istemin ve tanımlanan bir sınır hasar seviyesinin aşılması olasılığının belirlenebilmesi için, dinamik analizlere ek olarak doğrusal olmayan statik

itme analizleri stokta yer alan 100 adet düzlem çerçeve için gerçekleştirilmiş ve bu analizlerin sonucunda bazı yapısal büyüklükler hesaplanmıştır.

Deprem toplumu etkisinde yapılarda meydana gelen istemler öncelikle literatürde sıklıkla kullanılmakta olan tepe noktası göreli ötelenme oranı parametresi cinsinden elde edilmiştir. Çalışmada kullanılan bina toplumunun önemli bir bölümünün orta hasar görmüş yapılardan oluşması nedeniyle, bu hasar düzeyindeki bina grubuna ait her bir binanın maruz kaldığı depremin en büyük yer ivmesi değerlerinden yola çıkılarak, orta hasarı temsil edecek göreli kat ötelenmesi değerlerinin alt ve üst sınır değerleri, literatürdeki sınır değerler de göz önünde bulundurularak belirlenmiştir.

Ülkemizde özellikle son çeyrek asırda yaşadığımız depremler, mevcut bina stokunun nispeten yıkıcı yer hareketleri etkisinde kesme kuvveti taşıma kapasitesindeki yetersizliğe dayalı gevrek davranış gösterdiğini ve bu sebeple hasar aldığını göz önüne sermiştir. Bu sebeple tez çalışması kapsamında mevcut binalar için türetilen *HG* eğrilerinin oluşturulmasında ayrıca kesme kuvveti etkisinde oluşması beklenen hasarı tanımlayabilecek bir yapısal karşılık parametresi araştırılmıştır. Binaların kesme kuvveti kapasiteleri hesaplanarak, taban kesme kuvveti istemi ile mevcut kapasiteler ve yer ivmesi arasında ilişki kurularak talep/kapasite oranı (*DCR*) tanımlanmış ve orta hasarı temsil edecek *DCR* değerlerinin alt ve üst sınır değerleri belirlenmiştir.

İki farklı yapısal istem parametresi göz önüne alınarak belirlenen bu hasar sınırlarına bağlı olarak tanımlanan hasar mertebelerinin aşılması olasılıklarını göstermekte olan hasargörebilirlik eğrileri, tez çalışması kapsamında geliştirilen FORECAST yazılımı kullanılarak elde edilmiştir. Bu doğrultuda geliştirilen *HG* fonksiyonlarının ve FORECAST yazılımının Türkiye'de bulunan binaların depremler öncesinde ve sonrasında değerlendirilmesinde araştırmacılar ve yetkili kurumlarca kullanılabileceği öngörülmektedir.

Herhangi bir yer ivmesi düzeyi için, her iki yapısal istem göz önüne alınarak belirlenen orta hasar bandının üst sınır değerlerinin de üzerinde istemlere sahip yapıların ağır hasar görme potansiyeline sahip oldukları, alt sınır değerlerinin de altında istemlere sahip yapıların ise hafif hasar görme ya da hasarsız kalma potansiyeline sahip olacağı tahmin edilmektedir. Buna göre belirli bir yer ivmesi değeri için, hem tepe noktası göreli ötelenme oranlarına, hem de kesme kuvveti açısından da *DCR* değerine bağlı beklenen hasar düzeyinin aşılma olasılığı F(x) en uygun şekilde log-normal dağılımı takip etmekte olup, aşağıdaki Çizelge 5.1'de "*Orta Hasar*" durumunun alt ve üst sınırları için hesaplanan istatistik değerler verilmektedir. Aşılma olasılığı parametresi için bu araştırmada x=PGA, en büyük yer ivmesi, değeri kullanılmıştır. Yapılan bazı çalışmalarda en büyük yer hızı (*PGV*)'nin hasar ile korelasyonunun yüksek olduğu vurgulanmış olduğundan, istatistiksel çalışmalar ilgili şiddet parametresi için tekrarlanarak elde edilen istatistik değerleri Çizelge 5.1'de ayrıca sunulmuştur.

$$F(x) = \int_{0}^{x} \frac{1}{\xi \sigma \sqrt{2\pi}} \exp\left[\frac{-(\ln \xi - \mu)^{2}}{2\sigma^{2}}\right] d\xi$$
 (5.1)

Şiddet	Danam stra	Tepe Nok Ötelenn	tası Göreli ne Oranı	DCR Oranı		
Parametresi	<i>I arametre</i>	Alt Sınır (% 0.9)	Üst Sınır (%1.7)	Alt Sınır (1.04)	Üst Sınır (2.44)	
\mathbf{PCA} (see (r^2))	μ	-1.03770	-0.55051	-1.77730	0.18843	
$PGA(cm/s^{-})$	σ	0.20091	0.19753	0.80890	0.75487	
PCV (am/s)	μ	3.76350	4.25070	3.02350	4.99390	
FGV (CM/S)	σ	0.20090	0.19760	0.80899	0.75979	

Çizelge 5.1 : Orta hasar düzeyi için HG fonksiyonu parametreleri.

Tez çalışması kapsamında tepe noktası göreli ötelenme oranı ve kesme kuvveti talep/kapasite oranlarına bağlı olarak hasargörebilirlik ilişkileri türetilirken; yapı toplumunun %51'ini oluşturan ve geçmiş depremlerde 'Orta Hasar' görmüş yapılar ayrıntılı olarak ele alınmıştır. Bu binalarda göreli kat ötelenmeleri dışında, kesme kuvveti kapasitesinin (V_r) akma kesme kuvvetine (V_v) orani (V_r/V_v) da hesaplanarak, binanın kesme veya eğilme modunun hangisinde orta hasar durumuna ulaştığı incelenmiştir. Bina toplumundaki yapıların %57'sinde V_r/V_y oranı 1'den küçük olup bu binalar ele alındığında tepe noktası göreli ötelenme oranlarının, yerinde gözlemlenen hasarı temsil edemeyecek şekilde küçük kaldığı; hâlbuki kesme kuvveti kapasitesi açısından değerlendirildiğinde mevcut hasar durumu ile örtüştüğü anlaşılmaktadır. Yapı stokundaki binaların %43'ünde ise V_r/V_y oranı 1'den büyük olarak hesaplanmıştır ve ilgili binaların sonuçları 'Orta Hasar' bandının alt ve üst sınırları olan %0.9 ve %1.7 tepe noktası göreli ötelenme oranları için incelendiğinde; kesme kuvveti kapasitesinin (V_r) akma kesme kuvveti (V_y) değerinden büyük olan bu yapıların %65'inde beklendiği üzere eğilme etkisinde hasar durumunun meydana geldiği belirlenmiştir. Beklenenin aksine gevrek davranış gösterdiği tespit edilmekle birlikte, analiz sonuçlarına göre sünek davranış ile hasar gördüğü hesaplanan birkaç bina ayrıca ele alınmıştır. Çünkü hesap bulguları saha gözlemleri ile örtüşmemektedir. Bu durumdaki 8 adet bina, istatistik dağılımda da saçılma gösterdiğinden, hesaplanan istatistiksel değerler olan ortalama ve standart sapma parametrelerinin hesabında dikkate alınmamışlardır.

Sonuç olarak; Türkiye'deki yapıların tipik özelliklerini yansıtacak şekilde oluşturulan bina toplumu için elde edilmiş olan *HG* ilişkileri kullanılırken, göz önüne alınan hasar seviyesi için, tepe noktası göreli ötelenme oranı ve talep/kapasite oranı istem parametrelerine göre elde edilmiş olan eğrilerden yer hareketi şiddet parametresinin ilgili değerinde en olumsuz sonucu veren istem parametresinin dikkate alınması gerekmektedir.

Çalışma kapsamında elde edilen *HG* fonksiyonları, malzeme dayanımları geçerli standartlara göre düşük ve çoğunluğu depreme dayanıklı yapı tasarımı ilkelerine bağlı kalınmadan inşa edilmiş olan yapı toplumunun değerlendirilmesi sonucu elde edilmiştir. Deprem yönetmeliğine uygun inşa edilen yapılarda, doğal olarak kesme tipi göçme beklenmediğinden, verilen hasargörebilirlik fonksiyonlarından kesme kapasitesine bağlı olan ifadenin kullanımı da tanımı gereği sınırlandırılmış olacaktır.

Tepe noktası göreli ötelenme oranlarına bağlı olarak verilen ifade ile bu çalışmada ele alınan ve deprem yönetmeliğine uygun tasarlanıp inşa edilmiş olan 28-ND-ST7, 34-ND-ST7, 35-ND-ST3, 36-ND-ST7, 37-ND-ST7, 42-ND-ST5, 44-ND-ST8, 45-SD-ST8, 46-SD-ST7 ve 49-ND-ST6 kodlu binalar değerlendirildiğinde, hasar durumları ile hasargörebilirlik fonksiyonu bulgularının örtüşmekte oldukları görülmektedir. Fakat bu anlamdaki bina sayısının sınırlı olması dolayısıyla, yeni binalar için ilave değerlendirmelerin yapılması, elde edilecek eğrilerin deprem tasarım ilkelerine uygun yeni yapılar için gerçekçi sonuçlar vermesi açısından önem taşımaktadır.

Yararlanılan bina veri tabanı az ve orta katlı yapıları içerdiğinden, ilgili bina toplumu için elde edilmiş olan hasargörebilirlik ilişkileri en çok 8 katlı ve çerçeve türü taşıyıcı sisteme sahip binaların hasargörebilme olasılığını temsil etmektedir. Bu sebeple ileride yapılacak araştırmaların perde+çerçeve taşıyıcı sisteme sahip binaları da içerecek şekilde geliştirilmesi hususu değerlendirilebilir. Ayrıca bina toplumundaki yapılar nispeten simetrik ve burulma düzensizliği sınırlı olan binalardan seçilmiş ve bütün analizler iki boyutlu düzlemde, her iki doğrultu için ayrı ayrı gerçekleştirilmiştir. Dolayısıyla üç boyutlu yapı davranışının yaratacağı yeniden dağılım gibi olumlu etkiler ile burulma gibi olumsuz etkiler sayısal analizlerde ihmal edilmiştir. İleride yapılacak çalışmalarda, üç boyutlu yapı modeli üzerinde durulması hususu dikkate alınabilir.

Çalışma, bina toplumunda yer alan yapıların %51'inin bulunduğu Yüreğir İlçesinin zemin koşulları göz önünde bulundurularak gerçekleştirilmiştir. Dolayısıyla Adana dışından seçilen binaların bulundukları yerel zemin koşulunun benzer olmasına dikkat edilerek bina toplumu oluşturulmuştur. Farklı zemin koşulları göz önüne alındığında elde edilmiş olan hasargörebilirlik fonksiyonlarında meydana gelebilecek olan değişim ileride gerçekleştirilecek çalışmalarda incelenebilir.

KAYNAKLAR

- Akansel, V. H. (2011). Fragility of a shear wall building with torsional irregularity. (Yüksek Lisans Tezi). Orta Doğu Teknik Üniversitesi, Ankara.
- Akkar, S., Sucuoğlu, H. & Yakut, A. (2005). Displacement based fragility functions for low and mid-rise ordinary concrete buildings. *Earthquake Spectra*, 21(4), 901-927.
- Al-Chaar, G. & Lamnb, G. (2002). Design of Fiber-Reinforced Polymer Materials for Seismic Rehabilitation of Infilled Concrete Structures, ERDC/CERL TR-02-33, US Army Corps of Engineers, USA.
- Ascheim, M. (2005). <u>http://nisee.berkeley.edu/software/drain2dx</u> [Computer software].
- ATC-13 (1985). Earthquake Damage Evaluation Data For California, Applied Technology Council, Report No ATC-13, Redwood City, California, USA.
- ATC-40 (1996). Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Report No ATC-40, Redwood City, California, USA.
- Ay, B.Ö. & Erberik, M.A. (2007). Türkiye'deki az ve orta katlı betonarme yapıların deprem güvenliği açısından incelenmesi, *Altıncı Ulusal Deprem Mühendisliği Konferansı*, 16-20 Ekim 2007, İstanbul, Türkiye.
- Ay, B.Ö., Erberik, M.A. & Akar, S. (2006). Fragility based assessment of the structural deficiencies in Turkish RC frame structures, 1st European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, paper No.593.
- Aydoğan, V. (2003). Seismic vulnerability assessment of existing RC buildings in Turkey. (Yükseklisans Tezi). Orta Doğu Teknik Üniversitesi, Ankara.
- **Bertero, R.D.** (1994). Earthquake-resistant design of structures: Conceptual numerical earthquake-resistant design of tall RC buildings. *Advances in Earthquake Engineering Practice: Series 2*, University of California, Berkeley.
- **Chopra, A.K.** (2007). Dynamics of Structures: Theory and applications to Earthquake Engineering, 3rd Edition, Prentice Hall, USA.
- Clough, R.W. (1966). Effect of stiffness degradation on earthquake ductility requirements, Report No. 66-16, Department of Civil Engineering, University of California, Berkeley, CA.
- **Corvera, R.B.** (2000). Spectral evaluation of seismic fragility of structures. (PhD Dissertation). Department of Civil, Structural & Environmental Engineering, State University of New York at Buffalo, N.Y.

- Crowley, H., Pinho, R. & Bommer, J.J. (2004). A probabilistic displacement-based vulnerability assessment procedure for earthquake loss estimation, *Bulletin of Earthquake Engineering*, 2 (2) 173-219.
- **DBYBHY** (2007). Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara.
- **Deodatis, G.** (1996). Non-stationary stochastic vector processes: Seismic ground motion applications, *Probabilistic Engineering Mechanics*, 11 (3), 149-167.
- DiPasquale, E. & Çakmak, A.S. (1987). Detection and Assessment of Seismic Structural Damage, Technical Report NCEER-87-0015, State University of New York, Buffalo, NY.
- **Dumova-Jovanoska, E.** (2004). Fragility curves for RC structures in Skopje region. *Proceedings of the 13th World Conference on Earthquake Engineering*, Vancouver, Canada.
- Erberik, M.A. (2008). Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey, *Engineering Structures*, *30*, 1360-1374.
- Erberik, M.A. & Elnashai, A.S. (2004). Fragility analysis of flat-slab structures, *Engineering Structures*, 26 (7), 937-948.
- Erduran, E. (2005). Component based seismic vulnerability assessment procedure for RC buildings. (Yükseklisans Tezi). Orta Doğu Teknik Üniversitesi, Ankara.
- **FEMA-356** (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C.
- Gündüz, A. (1996). *Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik*, ISBN 975-95012-01-1, 1. Baskı, İstanbul.
- Hancılar, U. & Çaktı, E. (2015). Fragility functions for code complying RC frames via best-correlated IM-EDP pairs, *Bulletin of Earthquake Engineering*, 13: 3381-3400.
- Hasgür, Z., Taşkın, B. & Tuğsal, Ü.M. (2009). Betonarme Bir Binada Dolgu Duvar Katkısının Benzetilmiş Deprem Toplumu Etkisinde DBYBHY-07'ye Göre Zaman Tanım Alanında İrdelenmesi, Prof.Dr. Nahit Kumbasar için Betonarme Yapılar Semineri, Bildiriler, İstanbul, 21 Ekim 2009, 168-181.
- HAZTURK (2005). 1st International Workshop on an Earthquake Loss Estimation Program for Turkey, 1-2 December, İstanbul.
- HAZTURK (2007). International Symposium on an Earthquake Loss Estimation for Turkey, 24-26 September, İstanbul.
- HAZUS (2003). *Earthquake Loss Estimation Methodology*, Technical Manual, Prepared by National Institute for Building Sciences for Federal Emergency Management Agency (FEMA).
- Jeong, S.H. & Elnashai, A.S. (2007). Probabilistic fragility analysis parameterized by fundamental response quantities, *Engineering Structures*, 29 (6), 1238-1251.

- Ji, J., Elnashai, A.S. & Kuchma, D.A. (2007). An analytical framework for seismic fragility analysis of RC high-rise buildings, *Engineering Structures*, doi:10.1016/j.engstruct.2007.08.026.
- Kappos, A.J., Pitilakis, K.D., Morfidis, K. & Hatzinikolaou, N. (2002). Vulnerability and risk study of Volos (Greece) metropolitan area, 12th European Conference on Earthquake Engineering, London, Paper No. 74.
- Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. & Penelis, G. (2006). A hybrid method for the vulnerability assessment of RC and URM buildings, *Bulletin of Earthquake Engineering*, 4, 391-413.
- Kırçıl, M.S. & Polat, Z. (2006). Fragility analysis of mid-rise R/C frame buildings, *Engineering Structures*, 28 (9):1335-1345.
- Lagarias, J.C., Reeds, J.A., Wright, M.H. & Wright, P.E. (1998). Convergence properties of the Nelder-Mead simplex method in low dimensions, *SIAM Journal of Optimization, Vol. 9*, Number 1, pp. 112–147.
- Marano, G.C. & Greco, R. (2003). Degrading structural systems under seismic actions: A sthochastic analysis. *Proceedings of the FIB Symposium on concrete Structures in Seismic Zones*, Athens, Greece, May 6-8.
- Medvedev, A.V. & Sponheuer, W (1969). Scale of seismic intensity. Proceedings of the Fourth World Conference on Earthquake Engineering, Santiago, Chile.
- Newmark, N.M. (1959). A method of computation for structural dynamics. *Journal* of the Engineering Mechanics Division, Proceedings of the ASCE, 85 (EM 3), 67-94.
- Otani, S. & Sozen, M.A. (1972). *Behavior of Multistory Reinforced Concrete Frames During Earthquakes*. Civil Engineering Studies, Structural Research Series No.392, University of Illinois at Urbana-Champaign.
- Papageorgiou, A., Halldorsson, B. & Dong, G. (2000). Target Acceleration Spectra Compatible Time Histories – TARSCTHS, User Manual, V:1.0, State University of New York-Buffalo, Engineering Seismology Laboratory Report, New York, USA.
- Park, Y.J. & Ang, A.H.S. (1985). Mechanistic seismic damage model for reinforced concrete, *Journal of Structural Engineering, ASCE, Vol. III*, No. ST4, p. 722-739.
- Prakash, V., Powell, G.H. & Campbell, S. (1993). DRAIN-2DX Base Program Description and User Guide, SEMM Report, UCB/SEMM-93/17, University of California-Berkeley, CA, USA.
- **Ramamoorthy, S.T.** (2006), Seismic fragility estimates for reinforced concrete framed buildings. (PhD Dissertation), Texas A&M University.
- Rossetto, T. & Elnashai, A.S. (2003). Derivation of vulnerability functions for European-Type RC structures based on observational data, *Engineering Structures*, 25 (10), 1241-1263.

- **Rossetto, T. & Elnashai, A.S.** (2005). A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures, *Engineering Structures*, *27* (3), 397-409.
- Saiidi, M. (1982). Hysteresis models for reinforced concrete. ASCE, Journal of the Structural Division, 108, 1077-1087.
- Saneijad, A. & Hobbs, B. (1995). Inelastic design of infilled frames, *Journal of Structural Engineering, ASCE, 121*, 634-650.
- Shinozuka, M., Chang, S.E., Eguchi, R.T., Abrams, D.P., Hwang, H.H.M. & Rose, A. (1997). Advances in earthquake loss estimation and application to Memphis, Tennessee, *Earthquake Spectra*, 13 (4), 739-758.
- Singhal, A. & Kiremidjian, A. (1996). A Method for probabilistic evaluation of seismic structural damage, *Journal of Structural Engineering, ASCE*, 122 (12), December 1996.
- Spence, R., Coburn, A.W. & Pomonis, A. (1992). Correlation of ground motion with building damage: The definition of a new damage-based seismic intensity scale, 10th World Conference on Earthquake Engineering, Madrid, Spain, Vol.1, 551-556.
- Takeda, T., Sozen, M.A. & Nielson, N.N. (1970). Reinforced concrete response to simulated earthquakes. ASCE Journal of the Structural Division, 96:2557–2573.
- **Taşkın, B.** (2001). Sismik titreşimler altında betonarme perde ve çerçeve sistemlerin doğrusal olmayan stokastik analizi. (Doktora Tezi). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
- **Toker, A.** (2007). Betonarme bir yapıda dolgu duvar etkisinin doğrusal olmayan dinamik hesap yöntemiyle incelenmesi. (Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
- **Tomazevic, M.** (1999). *Earthquake-Resistant Design of Masonry Buildings*, Imperial College Press, London.
- Tüzün, C. & Aydınoğlu, N. (2007). Development of fragility relationships from nonlinear analysis of real buildings, *Computational Methods in Structural Dynamics and Earthquake Engineering-COMPDYN 2007*, Rethymno, Crete, Greece, 13-16 June, 2007, pp. 353.
- Uçar, T. & Seçer, M. (2007). Beton sınıfının yapı performansına etkisi, 7. Ulusal Beton Kongresi, TMMOB İnşaat Mühendisleri Odası, İstanbul, Türkiye, 28-30 Kasım, 2007, pp. 333.
- Uçar, T. & Düzgün, M. (2013). Betonarme binalar için artımsal itme analizi esaslı analitik hasargörebilirlik eğrilerinin oluşturulması, *Teknik Dergi, 24* (3): 6421-6446.
- Url-1 <http://www.csb.gov.tr/gm/altyapi/>, T.C. Çevre ve Şehircilik Bakanlığı, Altyapı ve Kentsel Dönüşüm Hizmetleri Genel Müdürlüğü, erişim tarihi 15.09.2015.
- Whitman, R.V., Reed, J.W. & Hong, S.T. (1973). Earthquake damage probability matrices, 5th World Conference on Earthquake Engineering, Rome, Italy, Vol. 2, 2531-2540.

EKLER

EK A: Binaların kalıp planları ve düzlem çerçeve modelleri **EK B:** Deprem toplumu etkisinde yapıların hâkim periyotlarındaki değişim

		01-ND-ST4 Y DOĐ	RULTUSU			
1-1 CERCEVESI	3-3 CERCEVESI	6-6 CERCEVESI 7-7 CERCEVESI	10-10 CERCEVESI	11-11 CERCEVESI	13-13 CERCEVESI	15-15 CERCEVES

Şekil A.1: 1-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

		· · · · ·	ERCEVET				ERCEVE	-		Ç.E	QEVE 3		CERCE	E 4	ÇERÇE.	12.5	QERCE VI	2.0	ÇE.	QEVE /		ÇERÇEVE (3	CERCEVE 3		"EKCEVE I	0
	8	8 8				. 🖻		8	29	. 8	8	30	. 🖸		. 8	32	. 🖸		. 🖻			. 🖻		. 🖻		. 🖻 .	
	\gg		K		0	X	X	X	0	X		0				0	X	0	$\mathbf{\mathbf{k}}$	X	0	\mathbb{X}	0	\mathbb{N}	0 "	M	э
	X		\mathbb{A}	X		\mathbb{R}	X	X	Ø		X	. O		•		6		0	\geq	K	•	\mathbb{K}	© _	\mathbb{N}	<u> </u>	\bowtie	Ð
	\gg	KÞ	X	X	0	\mathbb{N}	X	X	ē .	X				6		6,	\geq	•	\mathbb{N}	X	ø ,	\bowtie	Θ.	\bowtie	0	\bowtie	9
¢	\gg	$\sim >$	\triangleright	\triangleright	o	\triangleright	\triangleright	\triangleright	Þ	\triangleright	\triangleright	lo	\triangleright	Þ		\mathbf{b}	\geq	þ	\geq	\triangleright	0	\triangleright	Θ	\bowtie	0	\bowtie	Э
à	01 Č02	Č15	Č64	cus .	Č16	cos	C109	č10	C11	C14	čis	C16	C18	C19	C20	C21	Č22	C23	Č4	Č25	C26	C27	C28	č.9 č	:50	či č	32
- 22	50 2550	50/25	25.50	2550	50/25	25/60	25.60	50.25	25:50	60.25	50/25	25/60	50.25	25:60	50.25	50/25	50.25	50/25	50.25	60/25	60/25	25.60	20/25	25.50 5	3/25	2560 25	100
U.	I U		U	U		U.	U		U .			U		U								U 9	_	0 0		μι	
+	3.30	3.00 3.30	2.20	3.20	1.00	3.00	3.30	2.20	1.00	4.00	3.40	1.00	3.30	1.00	3.60	1.00	3.20	1.00	3.30	3.50	1.00	4.60	1.00	1.70	1.00	3.30	_

ND-S14 - X DO	GRULTUSU
CEPCEVE A	CERCEVE 5

EK A

02-MD-ST3 - X DOGRULTUSU

02-MD-ST3 - Y DOGRULTUSU

Şekil A.2: 2-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

ÇERÇEVE 1 ÇERÇEVE 2 ÇERÇEVE 3 ÇERÇEVE 4 ÇERÇEVE 5 ÇERÇEVE 6	
Kat Kat <td>/75</td>	/75

Şekil A.3 : 3-MD-ST6 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

04-MD-ST5 - X DOGRULTUSU ÇERÇEVE 2 ÇERÇEVE 3 ÇERÇEVE 1 ÇERÇEVE 4 79 90 92 80 83 85 86 89 93 6 49 C 30 33 S15 40/25 S6 40/25 S12 40/25 S14 40/25 8 3 阁 闼 1.00 3.55 2.225 1.00 1.00 1.00 1 00 2 225

04-MD-ST5 - Y DOGRULTUSU

ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3	ÇERÇEVE 4	ÇERÇEVE 5	ÇERÇEVE 6
		54	56		
9 49 9 50 33 21 (3) 5) 5) 50 (3) 21	94 51 95 52 96 22 39 9 ³ 9 ³ 9 ³	98 53 98 99 23 30 9 42 3	101 102 24 13 101 102 24 13 144	103 57 Not 58 105 25 3 3 3 59 101 105	108 33 10 ² / _{1/2} 108 108 108 108 108 108 108 108
	76 39 78 17 10 11 10 10 10 10 10	80 \$1 18 15 4 30	No. 43 83 84 19 10 10 10 10 10 10 10 10 10 10	85 45 86 87 20 19 30 46 57 20	
5 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	58 27 50 12 59 00 00 00 00 12		N 31 65 66 14		
		17 44 45 8 17 6	19 47 48 9 (9 3) 8 (9		54 23 54 24 54 (0) 50 57 50
	22 3 4 4 2 69 6 39 37 6 6 1	26 27 3 05 3 0 5 3 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	29 30 4 05 33 0 0 0 0 0 0		3 11 3 2 3 5 35 35 0 10 10 10 10 10 10 10 10 10 10 10 10 1
1 2 3 25 25 25/40 25/40 25/40	4 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	S14 25/40 8 8 8 8 8 70/25	S15 25/40 70/25	13 14 15 S16 S10 S4 25/40 25/50 25/40	10 17 18 ST ST ST ST 25/40 25/40 25/40
365 390 100	3.65 3.90 1.00	2.65 1.00 1.00	2.65 1.00 1.00	3.65 3.90 1.00	3.65 3.90

Şekil A.4 : 4-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

05-MD-ST3 - X DOGRULTUSU

ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3			ÇERÇEVE 4		ÇERÇEVE	2.5
1 2 3 3 3 4 4 € 1 2 2 3 50/25 50/25 + 3.80 1.00	3 3 4 3 50/25 50/25 50/25 50/25 50/25	Solution Solution	Image: system Image: s	3 2 2 3 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2	3 13 14 50/25 50/25 2.80 2.60	3/2 15 15 50/25 3.80 1.00	16 17 16 17 17 17 17 17 17 17 17 17 17	18 19 19 19 19 19 19 19 19 19 19

		05-	-MD-ST3 - Y DOG	RULTUSU		
ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3	ÇERÇEVE 4	ÇERÇEVE 5	ÇERÇEVE 6	ÇERÇEVE 7
SIT SIT <td>S18 S12 S7 S2 S150 25/70 50/25 25/50 4.60 00 2.25 1.00 00 3.45 1.00</td> <td>S19 25/80 50/25</td> <td>S8 S3 25/50 25/50</td> <td>S20 25/80 5.60 1.00</td> <td>S21 25/50 4.60 1.00 25/50 25/70 50/25 25/50 50/25 25/50 50/25 25/50 50/25 25/50 50/25 25/50 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 1.0</td> <td>SS2 S16 S10 S5 25/50 25/50 25/50 25/50 25/50 + 4.50 - - -</td>	S18 S12 S7 S2 S150 25/70 50/25 25/50 4.60 00 2.25 1.00 00 3.45 1.00	S19 25/80 50/25	S8 S3 25/50 25/50	S20 25/80 5.60 1.00	S21 25/50 4.60 1.00 25/50 25/70 50/25 25/50 50/25 25/50 50/25 25/50 50/25 25/50 50/25 25/50 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 50/25 1.00 1.0	SS2 S16 S10 S5 25/50 25/50 25/50 25/50 25/50 + 4.50 - - -

Şekil A.5 : 5-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

06-MD-ST4 - X DOGRULTUSU

06-MD-ST4 - Y DOGRULTUSU

Şekil A.7 : 7-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

08-MD-ST5 - X DOGRULTUSU

08-MD-ST5 - Y DOGRULTUSU

Şekil A.8 : 8-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

09-MD-ST4 - X DOGRULTUSU

09-MD-ST4 - Y DOGRULTUSU

Şekil A.9 : 9-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.10 : 10-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

83

S17 20/30

83

88

88

(II)

86

S15 30/20

\$6 30/20

8 52 30/

Şekil A.11 : 11-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

12-MD-ST4 - X DOGRULTUSU

12-MD-ST4 - Y DOGRULTUSU

Şekil A.12 : 12-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

13-MD-ST5 - Y DOGRULTUSU

ÇERÇEVE 1		ÇERÇ	ÇEVE 2		ÇERÇEVE 3		ÇERÇEVE	4	ÇEF	ÇEVE 5		ÇERÇ	CEVE 6	
	93 21 (2) 15 16 (1) 37 11	94 51 (2) 76 39 (1) 58 27		% 22 (3) 78 78 17 (3) 8 (3) 12		23		3 1 102 24 3 3 4 19 3 4 19 3 6 6 14 6 6 14	103 57 33 85 45 17 67 33		105 25 37 87 20 20 89 15			108 (10) 90 (10) (10) (10) (10) (10) (10) (10) (10
		66 40 IS 60 22 3 60		8 32 7 © 24 2		8	17 18 19 17 18 19 17 18 17 29		49 21 © 31 9		(6) 31 10 69 33 5 (3)			9 54 62 36
2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 S1 25/40	4 S13 25/40	5 5 25/50	6 8 25/40	7 8 9 514 25/40 58 70/	25	10 11 S15 25/40	12 59 70/25	13 S16 25/40	14 S10 25/50	15 S4 25/40	16 S17 25/40	17 17 17 17 17 17 17 17 17 17	18 33 25/41

Şekil A.13 : 13-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

14-MD-ST5 - X DOGRULTUSU

14-MD-ST5 - Y DOGRULTUSU

15-MD-ST5- X DOGRULTUSU

ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3	ÇERÇEVE 4	ÇERÇEVE 5
49 50 51 52 86 87 88 80 90 1	7 N 92 93 18	55 95 19	56 57 1%	
00 00 28 00 25 26 27 28 00	100 100 100 100 100 100 100 100 100 100			
52 53 54 55 56 5 (1) 14 15 16 9	58 59 10 (17) 18	61 11 19 19	62 54 64 64 20 55 21 66	12 66 67 68 (22) (23) 68 (24) (9)
1 2 14 No. 119 No. 121 No.		26 27 3 60 Ø	²⁸ ²⁹ ³⁰	4 N 33 N3 34 1 BAP 2 BAP 33
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ 1 \\ 2 \\ \end{array}{}\\ 1 \\ 2 \\ \end{array}{}\\ 1 \\ 2 \\ \end{array}{}\\ 3 \\ 4 \\ 5 \\ \end{array}{}\\ 5 \\ \end{array}{} \begin{array}{c} \end{array}{}\\ 5 \\ \end{array}{} \begin{array}{c} \end{array}{}\\ 3 \\ 5 \\ \end{array}{} \begin{array}{c} \end{array}{}\\ 3 \\ 3 \\ 3 \\ \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} $			11 12 13 11 12 13 13 59 510 5	$\begin{array}{c} & & & \\ & & & \\ 14 & & 15 & 16 & \\ 15 & & & \\ 11 &$
50/25 50/25 25/50	50/25 50/25	50/25 50/25	2.75 50/25 2.	5/50 50/25 50/25 50/25

15-MD-ST5 - Y DOGRULTUSU

Şekil A.15 : 15-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

17-HD-ST3 - X DOGRULTUSU

ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3	ÇERÇEVE 4	ÇERÇEVE 5	ÇERÇEVE 6
23 36 37 53 11		24 27 ⁵⁷ ⁵⁸ ⁵⁹ ¹³ ⁶ ¹³ ⁶⁹ ¹³			
12 36 6 10 1	1 14 3 23 28 80 31 3 2 40 3 59 7 59 2 40 3 59		43 44 ³ 5 9 (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	46 47 ⁴ 8 10 ⁴⁰ 8 ⁶⁰ 9 ⁶⁰	
			$\begin{array}{c} 26 \\ \hline \\ \hline \\ \hline \\ \hline \\ 9 \\ 2 \\ \end{array}$	$\begin{bmatrix} 2^{29} \\ 0 \\ 12 \\ 12 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	
S12 30/30 S6 30/30 - 100	S13 S7 50/30 30/50 50/30	S14 50/30 S	S15 50/30 50/30 50/30 50/30 50/30 50/30	S16 S10 S4 50/30 50/30 50/30	S17 S11 S5 50/30 30/50 50/30

Şekil A.17 : 17-HD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.18 : 18-ND-ST2 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

19-ND-ST8 - X DOGRULTUSU

\boxtimes		\times					\bowtie	\square
\boxtimes		\times					\bowtie	\square
\boxtimes	\square	\times			\sim	\square	\bowtie	
\bowtie		\times					\bowtie	
\bowtie		\times					\bowtie	
\times		\times					\bowtie	
\times		\times					\bowtie	
s1 s2	s3 s4 s	55 56	S7 S8	59 S	s10 S11	s12 s13	S14	S15 S17

19-ND-ST8 - Y DOGRULTUSU

Şekil A.19 : 19-ND-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

20-ND-ST6 - X DOGRULTUSU

\square	\searrow		$\mathbf{ imes}$					\mathbb{X}	\triangleright		\boxtimes	\searrow		\boxtimes	\searrow
\geq	\triangleright		\searrow					\geq	\triangleright		\boxtimes	\ge		\ge	\bowtie
\geq	\geq							\geq	\geq		\geq	\ge		\geq	\ge
\geq	\geq		\geq					\geq	\geq		\ge	\ge		\geq	\ge
\geq	\geq		\geq					\geq	\geq		\ge	\triangleright		\ge	\ge
4.02	4 39	>> 100	4 39	100	4.02	4 39	100	4.02	4 39	100	4.02	4 39	100	1 1 95	51/

20-ND-ST6 - Y DOGRULTUSU

Şekil A.20 : 20-ND-ST6 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

	0	0	0	Θ	0	Ð	Θ	Θ	0	Θ	0	Θ		Θ	Θ	0	0	0	Θ	0	Θ	0	Θ	0	p	Ø	Θ	0	Θ	0	0	0	0	0	0	0	0	P	0	0	P	0	0	0	Θ	P	
	100	2 10	<u> </u>		100	4 634			2			10	61	C 200	CCCC	CD-	100		(CD			107		777	2	22 72	14 (20)	100	100	2773	223.5	100	(C)):	<u> </u>	120.00	<u> </u>		15 (77)	(<u>m</u>	400	400	100	1000	1 (12)-	(1 1 1	16	714
,	Θ,	0	þ	0	þ	þ	0	Þ	0	0	þ	0	12	ο,	Θ,	0	þ,	0	0	þ	0	0	þ,	Ο,	0	þ	þ	þ	0 ,	þ	0	0	0	0	0	0	0	þ	þ	þ.	þ	þ.	0	þ	0	þ	•
	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.6	2.0		1.00	2.40	2.40	2.40	1 2.40	2.40	2.00	2.40	2.40	2.40	2.00	2.40	1.00	2.4	· · ·	1 24	2.40	1 2.00	2.40	2.40	2.40	2.40	2.40	2.40		1 2	a l 2.4	1 22	a d 2.45	1 24	1 2.40	1 2.40	2.00		2.40

Şekil A.21 : 21-ND-ST2 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.22 : 22-ND-ST2 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.23 : 23-MD-ST6 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.24 : 24-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.25 : 25-ND-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

		26-ND-ST5 - X DOGRU	LTUSU	
ÇERÇEVE 1	ÇERÇEVE 2	ÇERÇEVE 3	ÇERÇEVE 4 ÇERÇEVE 5 ÇERÇEVE 6 ÇERÇEVE 7 ÇERÇEVE 8	ÇERÇEVE 9
141 142 143 144 145				166 167 188
a a a a a				5 S S
S1 S2 S3 S3a S3a S3 S3a With Max	Sia S5 S5a S6 S7 2000 2000 2000 2000 2 2000 2000 2 2000 2	S7 S8 S8a S7a S8a S7a 23.0 822 872 872 23.0 23.0 23.0 822 872 23.0 23.0 23.00 23.0 822 872 23.0 23.00 23.00 23.0 822 872 23.00 23.00 23.00	510 510 510 512 513 <td>S22 S22a S23 D D D 7030 7030 7020 823 8030 8023 823 8033 8023</td>	S22 S22a S23 D D D 7030 7030 7020 823 8030 8023 823 8033 8023

Şekil A.26 : 26-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

				28-ND-ST7 - X DOGRULTU	su		
\square	X	X	X				
51 52	54 55			s12 s13 s14 s15	516 S17		

		28-ND-ST7 - Y DO0	GRULTUSU				
				\square	\square		
52 510 516	54 S11 S17		57 513 519		512	58 514 523	

Şekil A.28 : 28-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.29 : 29-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.30 : 30-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.31 : 31-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.32 : 32-ND-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.33 : 33-ND-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

34-ND-ST7_X DOGRULTUSU

211			240
			10
			180
			150
			120
			90
	34 35 36 40 41		55
]
\$27 \$28 \$29 \$30 \$31 \$22 \$23 \$24	\$25 \$26 \$17 \$18 \$19 \$20 \$21 \$11 \$12 \$13 \$	\$14 \$15 \$6 \$7 \$8 \$9 \$10 \$1 \$2 \$3 \$4 \$5	

Şekil A.34 : 34-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.35 : 35-ND-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

36-ND-ST7 - X DOGRULTUSU

\square		\times	[\bowtie	\bowtie			[\mathbb{X}	\bowtie		\bowtie			\bowtie	[\bowtie	[\times
		\times		\ge	\triangleright					\ge	\bowtie		\boxtimes		1	\boxtimes		\bowtie				${ imes}$
	1	\times		\triangleright	\triangleright]				\triangleright	\bowtie		\bowtie			\bowtie		\bowtie				${ imes}$
	_	\ge	[\bowtie	\triangleright]				\triangleright	\triangleright	[\bowtie		1	\ge	[\bowtie				imes
\sim		imes	[\triangleright	\triangleright					\ge	\bowtie		\bowtie			\bowtie		\bowtie				imes
			[\bowtie	\triangleright	\triangleright	\bowtie			\triangleright	\bowtie		\bowtie			\bowtie	[\bowtie		\bowtie	\times	\times
525	\$26	\$27	528	517	518	\$31	523	522	 \$12	[]		516	\mathbb{N}	510	533	57	S11		56	\triangleright	\times	\times
+							1		 				-			-						

			36-ND-ST	7 - Y DOGRULTUSU				
\bowtie								$\neg \bowtie$
\bowtie	\square					\square	\square	\supset
\bowtie						\square		\square
\bowtie	\square					\square		\square
\bowtie								
\bowtie								
	s 50 S11	s17 56 510 512	52 533 553 553]	500 528 529	525 532	526 531	527 S

Şekil A.36 : 36-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

37-ND-ST7	 X DOGRULTUSI 	J

	\bowtie				
	\bowtie				
		S16 S17 S18 S19	S20 S21 S14 S15	S8 59 S10 S11	
6.05 5.35 6.85	6.30 4.70 1.00	6.05 6.10 6.10 6.30	4.70 1.00 4.70 1.00	5.35 6.85 6.30 1.00	

	37-ND-ST7 - Y DOGRULTUSU
3.57 4.00 4.00 3.34 1.00 4.52 7.15 3.34 1.00	7,15 3,34 1,00 7,15 3,34 1,00 3,87 3,27 4,00 3,34 1,00 3,06 4,00 4,00 3,34

Şekil A.37 : 37-ND-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

38-MD-ST3 - X DOGRULTUSU \$12 S13 S11 1.00 3.80 3.00 3.00 + 3.90 1.00 3.80 3.90 3.80 3.90 3.00 1.00 3.90 3.80 38-MD-ST3 - Y DOGRULTUSU

Şekil A.38 : 38-MD-ST3 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.39 : 39-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.40 : 40-MD-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.41 : 41-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

42-ND-ST5 - Y DOĞRULTUSU

Şekil A.42 : 42-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.43 : 43-MD-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

100100 10000 10000 10000 10000	1 3210 1 30110 822 	s 300110 	873 2010 10 10 10 10 10 10 10 10 10 10 10 10	9226 966	20110 8211 12199066	30/116 SE12 K2143080 - 8	
- 00068							2000
8215 80120		30 / 335 3000 9 / + 120/20		15 1 1 1 1 1 8217	10 290 I 10	201 201 201 201 201 201 201 201 201 201	20120
16							
C 427	82	100120 - 100120	292 - 256	85		8242	
						1 2212 Aug	
		1 20100 200 R	<u>+</u> X	827.8 230 R			
		×					
		300	200 1 200 1 El (200 20 200 200 200 KZ#530/80		1.E 0 9232 0 R	+-+	
					ļX.		
	8 99201 993000 99300000000	300					- C
(B) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	<u>+29</u> 9040		⊉ 30 ¹¹ 0 02233	- ₽ ² arris <u>/</u>	5 K222 30.00		
0 2 2	(3) \(4)	\$	\$ \$\D\ \$) (1)	9 (9)	0 10 0	₽ \₽
			44-ND-ST8 - X DOGRULTUS	J.			
	1.11 L.11 L.11 L.11 L.11 L.11 L.11	4.00 1.00 4.10 4.10					
			4-ND-ST8 - Y DOGRULTUSU				
							$ \land \land \land$

Şekil A.44 : 44-ND-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.45 : 45-SD-ST8 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

46-ND-ST5 - X DOGRULTUSU

Şekil A.46 : 46-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

47-MD-ST7 - X DOGRULTUSU

	\square	\bigcup	\square	\bowtie	\bowtie	\bowtie	
	\bowtie	\square	\square	\bowtie	\bowtie	\bowtie	
	\bowtie		\square	\bowtie	\bowtie	\bowtie	
	\square		\square	\bowtie	\bowtie	\bowtie	
	s5 S6	S7 S8	59 S10	S11 S12	S13 S14	S15 S16	517 518 519
4.55 2.70 4.55 1.00	4.55 2.70	4.55 1.00	4.55 2.70	4.55 1.00	4.55 2.70	4.55 1.00	5.90 5.90

47-MD-ST7 - Y DOGRULTUSU

Şekil A.47 : 47-MD-ST7 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

Şekil A.48 : 48-ND-ST4 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

49-ND-ST6 - X DOGRULTUSU

	\square	\bowtie	\square	
	\square	\bowtie	\square	
\square	\square	\bowtie	\square	
	\bowtie	\bowtie	\square	
	\square	\bowtie		

49-ND-STG - Y DOGRULTUSU

Şekil A.49 : 49-ND-ST6 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

50-ND-ST5 - X DOGRULTUSU

	\bowtie	\boxtimes				\bowtie	
	\bowtie	\square				\square	
	\bowtie					\bowtie	\sim
						\bowtie	\mid \times \times
	56 S7		S11 S12	S13 S14	S15 S16 S17	518 S19	
317 254 439 100	1.47 1.00	3.17 1.00	3.17 1.00	2.92 1.47	1.00 2.17 2.54	4.30 1.00	4.28 5.82

Şekil A.50 : 50-ND-ST5 binasının; zemin kat kalıp planı (üst), x-x doğrultusunda düzlem çerçeve modeli (orta) ve y-y doğrultusunda düzlem çerçeve modeli (alt).

EK B: Deprem toplumu etkisinde yapıların hâkim periyotlarındaki değişim

#	Bina	Vän	\mathbf{T}_1									PGA											
#	Kodu	1011	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g				
	÷	~ ~	0.400	T1* (s)	1.208	1.263	1.333	1.417	1.521	1.608	1.717	1.781	1.850	1.938	2.008	2.053	2.113	2.186	2.236				
4	ST4	х-х	0.498	δf	0.830	0.845	0.861	0.876	0.893	0.904	0.916	0.922	0.928	0.934	0.939	0.941	0.944	0.948	0.950				
I	0		0.400	T ₁ * (s)	1.171	1.281	1.368	1.440	1.586	1.666	1.771	1.846	1.940	1.994	2.053	2.138	2.191	2.281	2.324				
		у-у	0.469	δf	0.840	0.866	0.882	0.894	0.913	0.921	0.930	0.935	0.942	0.945	0.948	0.952	0.954	0.958	0.959				
	4	~ ~	0 400	T ₁ * (s)	1.694	1.850	2.079	2.120	2.224	2.298	2.389	2.508	2.554	2.618	2.765	2.833	2.892	2.990	2.994				
0	2-MC ST3	X-X	0.425	δf	0.938	0.948	0.959	0.960	0.964	0.966	0.969	0.972	0.973	0.974	0.977	0.978	0.979	0.980	0.980				
2	0		0.251	T ₁ * (s)	1.577	2.231	2.241	2.335	2.360	2.375	2.517	2.619	2.707	2.783	2.866	2.931	3.013	3.048	3.104				
		у-у	0.351	δf	0.950	0.975	0.975	0.977	0.978	0.978	0.981	0.982	0.983	0.984	0.985	0.986	0.986	0.987	0.987				
	4	~ ~	0 500	T1* (s)	1.114	1.327	1.455	1.518	1.587	1.638	1.700	1.748	1.776	1.837	1.864	1.929	1.985	2.048	2.117				
S	3-ME ST6	X-X	0.502	δf	0.797	0.857	0.881	0.891	0.900	0.906	0.913	0.917	0.920	0.925	0.928	0.932	0.936	0.940	0.944				
3	8		0 5 4 4	T ₁ * (s)	1.311	1.439	1.525	1.590	1.657	1.729	1.788	1.835	1.877	1.923	1.975	2.036	2.096	2.157	2.204				
		у-у	0.344	δf	0.828	0.857	0.873	0.883	0.892	0.901	0.907	0.912	0.916	0.920	0.924	0.929	0.933	0.936	0.939				
	<u>ط</u> ہم	X-X	0.442	T1* (s)	0.834	1.050	1.102	1.129	1.160	1.188	1.233	1.274	1.340	1.374	1.400	1.446	1.490	1.512	1.570				
4	1-MI ST5	ST5 X-X	0.442	δf	0.719	0.823	0.839	0.847	0.855	0.862	0.871	0.880	0.891	0.896	0.900	0.907	0.912	0.915	0.921				
4	ð	у-у	0.445	T ₁ * (s)	0.906	1.043	1.058	1.080	1.117	1.171	1.220	1.272	1.337	1.392	1.410	1.453	1.486	1.505	1.579				
			0.445	δ_{f}	0.759	0.818	0.823	0.830	0.841	0.856	0.867	0.878	0.889	0.898	0.900	0.906	0.910	0.913	0.921				
	Å	V V	0 420	T1* (s)	1.296	1.349	1.427	1.491	1.570	1.644	1.721	1.783	1.829	1.878	1.968	2.028	2.152	2.219	2.285				
5	5-MI ST3	X-X	0.439	δf	0.885	0.894	0.905	0.913	0.922	0.929	0.935	0.939	0.942	0.945	0.950	0.953	0.958	0.961	0.963				
5	ö	V-V 0.3	0.240	0 319	0.319	v 0.319	v 0.319	T ₁ * (s)	0.780	0.983	1.117	1.149	1.179	1.217	1.248	1.303	1.342	1.382	1.432	1.463	1.504	1.534	1.546
		у-у	0.319	δf	0.833	0.895	0.918	0.923	0.927	0.931	0.935	0.940	0.944	0.947	0.950	0.952	0.955	0.957	0.957				
	Ļ	V V	0 710	T1* (s)	1.837	1.986	2.080	2.239	2.327	2.409	2.497	2.590	2.687	2.770	2.889	2.989	3.099	3.208	3.486				
c	ST4	X-X	0.710	δf	0.847	0.869	0.881	0.897	0.905	0.911	0.917	0.923	0.929	0.933	0.938	0.942	0.946	0.950	0.958				
0	8		0 400	T ₁ * (s)	1.343	1.859	1.971	2.015	2.077	2.144	2.212	2.294	2.357	2.425	2.482	2.550	2.624	2.674	2.734				
		у-у	0.425	δ _f	0.901	0.948	0.954	0.956	0.959	0.961	0.963	0.966	0.968	0.970	0.971	0.972	0.974	0.975	0.976				
	4	~ ~	0.256	T1* (s)	1.012	1.367	1.400	1.456	1.516	1.571	1.656	1.748	1.822	1.873	1.945	2.045	2.079	2.119	2.179				
7	7-ML ST3	х-х	0.000	δf	0.876	0.932	0.935	0.940	0.945	0.949	0.954	0.959	0.962	0.964	0.967	0.970	0.971	0.972	0.973				
1	0		0 270	T ₁ * (s)	1.040	1.396	1.450	1.503	1.576	1.643	1.729	1.816	1.868	1.931	2.023	2.095	2.160	2.223	2.296				
		у-у	0.379	δf	0.867	0.926	0.932	0.936	0.942	0.947	0.952	0.956	0.959	0.961	0.965	0.967	0.969	0.971	0.973				

Çizelge B.1: Deprem toplumu etkisinde yapıların hâkim periyotlarındaki değişimlerin ortalamaları.

#	Bina	Vän	\mathbf{T}_1									PGA							
#	Kodu	101	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	-		0.404	T ₁ * (s)	1.332	1.794	2.005	2.151	2.229	2.326	2.383	2.439	2.480	2.545	2.617	2.664	2.737	2.796	2.844
0	ST5	х-х	0.481	δf	0.870	0.928	0.942	0.950	0.953	0.957	0.959	0.961	0.962	0.964	0.966	0.967	0.969	0.970	0.971
ð	8		0.540	T ₁ * (s)	1.535	1.709	1.796	1.882	1.964	2.099	2.165	2.376	2.504	2.581	2.740	2.793	2.858	2.925	2.977
		у-у	0.519	δf	0.886	0.908	0.916	0.924	0.930	0.939	0.943	0.952	0.957	0.960	0.964	0.965	0.967	0.969	0.970
	4		0 5 0 0	T ₁ * (s)	1.723	1.861	1.919	2.010	2.103	2.179	2.255	2.356	2.454	2.522	2.597	2.676	2.739	2.802	2.849
0	9-MC ST4	X-X	0.539	δf	0.902	0.916	0.921	0.928	0.934	0.939	0.943	0.948	0.952	0.954	0.957	0.959	0.961	0.963	0.964
9	8		0 557	T1* (s)	1.802	2.064	2.212	2.347	2.450	2.521	2.610	2.730	2.811	2.897	2.977	3.043	3.170	3.253	3.334
		у-у	0.557	δf	0.904	0.927	0.937	0.944	0.948	0.951	0.954	0.958	0.961	0.963	0.965	0.966	0.969	0.971	0.972
	÷		0.202	T1* (s)	0.757	0.994	1.105	1.177	1.240	1.316	1.388	1.458	1.529	1.568	1.583	1.626	1.676	1.723	1.777
10)-MC ST3	X-X	0.302	δf	0.841	0.908	0.925	0.934	0.941	0.947	0.953	0.957	0.961	0.963	0.964	0.965	0.968	0.969	0.971
10	10		0.205	T1* (s)	0.723	0.963	1.035	1.079	1.120	1.189	1.244	1.301	1.341	1.396	1.439	1.475	1.512	1.554	1.599
		у-у	0.200	δf	0.845	0.913	0.924	0.930	0.935	0.943	0.947	0.952	0.955	0.958	0.961	0.963	0.964	0.966	0.968
	ല്ന x-x	x-x	-x 0.393	T1* (s)	1.230	1.882	1.980	2.104	2.228	2.372	2.542	2.681	2.807	2.888	2.962	3.055	3.135	3.261	3.378
11	1-ME ST3	X-X	0.393	δf	0.898	0.956	0.961	0.965	0.969	0.973	0.976	0.979	0.980	0.981	0.982	0.983	0.984	0.985	0.986
11	~	<i>N_</i>	0 / 21	T1* (s)	1.129	1.989	2.455	2.542	2.658	2.787	2.899	3.008	3.111	3.249	3.364	3.520	3.715	3.837	3.952
		у-у	0.421	δf	0.861	0.955	0.971	0.973	0.975	0.977	0.979	0.980	0.982	0.983	0.984	0.986	0.987	0.988	0.989
		~ ~	0 588	T1* (s)	1.512	1.646	1.792	1.941	2.022	2.079	2.292	2.301	2.348	2.430	2.533	2.584	2.652	2.695	2.816
12	2-MI ST4	X-X	0.500	δf	0.849	0.872	0.892	0.908	0.915	0.920	0.934	0.935	0.937	0.941	0.946	0.948	0.951	0.952	0.956
12	-	M - M	0 504	T1* (s)	1.339	1.507	1.589	1.686	1.784	1.871	1.939	1.985	2.111	2.184	2.286	2.391	2.413	2.460	2.469
		у-у	0.304	δf	0.858	0.888	0.899	0.911	0.920	0.927	0.932	0.936	0.943	0.947	0.951	0.956	0.956	0.958	0.958
		V _ V	0 /51	T1* (s)	0.911	1.120	1.167	1.209	1.241	1.284	1.352	1.389	1.418	1.473	1.532	1.564	1.613	1.691	1.730
13	3-MI ST5	A-V	0.451	δf	0.755	0.838	0.851	0.861	0.868	0.877	0.889	0.895	0.899	0.906	0.913	0.917	0.922	0.929	0.932
10	~	M - M	0 /5/	T1* (s)	0.926	1.083	1.112	1.128	1.171	1.234	1.301	1.363	1.394	1.432	1.500	1.515	1.577	1.664	1.721
		у-у	0.434	δf	0.760	0.824	0.833	0.838	0.850	0.865	0.878	0.889	0.894	0.899	0.908	0.910	0.917	0.926	0.930
	ظ	V V	0.021	T1* (S)	3.009	3.115	3.211	3.387	3.683	3.903	4.136	4.271	4.438	4.533	4.604	4.642	4.702	4.738	4.818
11	4-MI ST5	X-X	0.921	δf	0.906	0.913	0.918	0.926	0.937	0.944	0.950	0.953	0.957	0.959	0.960	0.961	0.962	0.962	0.963
14	7	N-M	0 603	T ₁ * (s)	1.823	2.117	2.281	2.399	2.502	2.595	2.680	2.742	2.809	2.903	3.048	3.129	3.233	3.348	3.503
		у-у	0.003	δf	0.891	0.919	0.930	0.937	0.942	0.946	0.949	0.952	0.954	0.957	0.961	0.963	0.965	0.968	0.970

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	Vän	\mathbf{T}_1									PGA							
#	Kodu	1011	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	5-MD- ST5	~ ~	0 702	T ₁ * (s)	2.183	2.269	2.347	2.434	2.602	2.692	2.868	3.003	3.469	3.518	3.636	3.797	3.909	4.080	4.289
45	5-MC ST5	X-X	0.795	δf	0.868	0.878	0.886	0.894	0.907	0.913	0.924	0.930	0.948	0.949	0.952	0.956	0.959	0.962	0.966
15	Ψ.		0 5 4 0	T ₁ * (s)	1.393	1.629	1.718	1.817	1.934	2.016	2.110	2.198	2.249	2.356	2.475	2.583	2.656	2.707	2.784
		у-у	0.518	δf	0.862	0.899	0.909	0.919	0.928	0.934	0.940	0.944	0.947	0.952	0.956	0.960	0.962	0.963	0.965
	Å		0.000	T ₁ * (s)	0.408	0.608	0.912	1.062	1.147	1.215	1.241	1.271	1.336	1.356	1.396	1.464	1.511	1.552	1.596
10	ST2	X-X	0.222	δf	0.704	0.867	0.941	0.956	0.963	0.967	0.968	0.969	0.972	0.973	0.975	0.977	0.978	0.980	0.981
10	10		0 0 0 0 0	T ₁ * (s)	0.431	0.629	0.636	0.815	0.992	1.124	1.133	1.192	1.231	1.268	1.284	1.316	1.365	1.427	1.459
		у-у	0.233	δf	0.708	0.863	0.866	0.918	0.945	0.957	0.958	0.962	0.964	0.966	0.967	0.969	0.971	0.973	0.975
	Å	~ ~	0.244	T1* (s)	0.645	0.705	0.740	0.775	0.800	0.827	0.897	0.943	1.005	1.043	1.092	1.137	1.174	1.231	1.276
17	7-HC ST3	X-X	0.341	δf	0.721	0.766	0.788	0.806	0.818	0.830	0.856	0.869	0.885	0.893	0.902	0.910	0.916	0.923	0.929
17	ί,		0.057	T ₁ * (s)	0.487	0.626	0.647	0.694	0.730	0.773	0.806	0.833	0.873	0.920	0.938	1.003	1.039	1.074	1.115
		у-у	0.257	δf	0.722	0.831	0.842	0.863	0.876	0.889	0.898	0.905	0.913	0.922	0.925	0.934	0.939	0.943	0.947
	12 P	V V	0.261	T1* (s)	0.588	0.736	0.775	0.808	0.846	0.889	0.938	0.974	1.009	1.064	1.078	1.112	1.164	1.189	1.234
10	8-NE ST2	X-X	0.201	δf	0.803	0.874	0.886	0.896	0.905	0.914	0.923	0.928	0.933	0.940	0.941	0.945	0.950	0.952	0.955
10	÷	<u> </u>	0.251	T ₁ * (s)	0.590	0.756	0.869	0.892	0.933	0.957	1.028	1.014	1.064	1.121	1.139	1.226	1.274	1.266	1.332
		у-у	0.251	δf	0.819	0.890	0.917	0.921	0.928	0.931	0.940	0.939	0.944	0.950	0.951	0.958	0.961	0.961	0.965
	Ċ	~ ~	0 808	T ₁ * (s)	2.607	3.827	4.752	5.209	5.439	5.687	5.881	6.014	6.070	6.199	6.293	6.497	6.642	6.817	6.972
10	9-NI ST8	~~~	0.000	δf	0.904	0.955	0.971	0.976	0.978	0.980	0.981	0.982	0.982	0.983	0.984	0.985	0.985	0.986	0.987
19	~	N N	0 6 1 8	T ₁ * (s)	1.304	1.571	1.830	1.914	1.963	1.990	2.035	2.096	2.152	2.196	2.238	2.289	2.345	2.407	2.441
		у-у	0.010	δf	0.775	0.845	0.886	0.896	0.901	0.904	0.908	0.913	0.918	0.921	0.924	0.927	0.931	0.934	0.936
	Ċ.	~ ~	0 726	T1* (s)	2.366	3.213	3.848	4.522	5.265	5.553	5.766	5.781	6.090	6.206	6.316	6.488	6.662	6.727	6.918
20	0-NE ST6	X-X	0.720	δf	0.906	0.949	0.964	0.974	0.981	0.983	0.984	0.984	0.986	0.986	0.987	0.987	0.988	0.988	0.989
20	5		0 500	T ₁ * (s)	2.411	2.938	3.833	4.095	4.602	4.925	4.964	5.018	5.168	5.253	5.480	5.636	5.782	5.892	5.984
		у-у	0.599	δf	0.938	0.958	0.976	0.979	0.983	0.985	0.985	0.986	0.987	0.987	0.988	0.989	0.989	0.990	0.990
	,	~ ~	0 200	T1* (s)	1.004	1.243	1.291	1.307	1.339	1.377	1.407	1.460	1.515	1.569	1.628	1.678	1.701	1.752	1.805
01	1-NE ST2	X-X	0.309	δf	0.905	0.938	0.943	0.944	0.947	0.950	0.952	0.955	0.958	0.961	0.964	0.966	0.967	0.969	0.971
21	5		0.07	T ₁ * (s)	0.568	0.970	1.112	1.155	1.165	1.193	1.231	1.281	1.286	1.331	1.413	1.423	1.436	1.431	1.489
		у-у	0.27	δ _f	0.774	0.922	0.941	0.945	0.946	0.949	0.952	0.956	0.956	0.959	0.963	0.964	0.965	0.964	0.967

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	Yö	\mathbf{T}_1									PGA							
#	Kodu	n	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	-ND- ST2		0.007	T ₁ * (s)	1.160	1.346	1.373	1.402	1.440	1.477	1.522	1.588	1.657	1.704	1.746	1.783	1.834	1.916	1.971
2	2-ND ST2	х-х	0.337	δf	0.916	0.937	0.940	0.942	0.945	0.948	0.951	0.955	0.959	0.961	0.963	0.964	0.966	0.969	0.971
2	52		0.000	T1* (s)	0.562	1.016	1.164	1.168	1.174	1.214	1.229	1.253	1.328	1.357	1.385	1.418	1.464	1.477	1.484
		у-у	0.268	δf	0.773	0.930	0.947	0.947	0.948	0.951	0.952	0.954	0.959	0.961	0.963	0.964	0.966	0.967	0.967
	4		0 500	T₁* (s)	1.360	1.539	1.665	1.739	1.804	1.876	1.965	2.039	2.140	2.217	2.307	2.362	2.437	2.521	2.602
2	ST6	х-х	0.563	δ	0.829	0.866	0.886	0.895	0.903	0.910	0.918	0.924	0.931	0.936	0.940	0.943	0.947	0.950	0.953
3	23		0.540	T1* (s)	1.301	1.509	1.638	1.673	1.770	1.816	1.891	1.997	2.053	2.150	2.226	2.303	2.368	2.428	2.473
		у-у	0.546	δf	0.824	0.869	0.889	0.894	0.905	0.910	0.917	0.925	0.929	0.935	0.940	0.944	0.947	0.949	0.951
	÷		0.440	T1* (s)	1.490	1.742	1.846	1.934	2.031	2.140	2.251	2.341	2.421	2.501	2.575	2.632	2.706	2.792	2.887
2	ST4	х-х	0.443	δf	0.912	0.935	0.942	0.948	0.952	0.957	0.961	0.964	0.967	0.969	0.970	0.972	0.973	0.975	0.976
4	54		0.207	T1* (s)	1.034	1.254	1.353	1.430	1.506	1.582	1.641	1.737	1.809	1.869	1.938	2.021	2.088	2.150	2.204
		у-у	0.397	δf	0.853	0.900	0.914	0.923	0.930	0.937	0.941	0.948	0.952	0.955	0.958	0.961	0.964	0.966	0.968
			0.000	T1* (s)	1.681	1.858	1.927	2.014	2.103	2.181	2.259	2.347	2.484	2.643	2.701	2.752	2.837	2.926	3.009
2	ST3	х-х	0.602	δf	0.872	0.895	0.902	0.911	0.918	0.924	0.929	0.934	0.941	0.948	0.950	0.952	0.955	0.958	0.960
5	26	N-N	0.614	T1* (s)	1.489	1.855	1.966	2.046	2.121	2.198	2.282	2.359	2.426	2.530	2.629	2.707	2.754	2.832	2.896
		у-у	0.014	δf	0.830	0.890	0.902	0.910	0.916	0.922	0.928	0.932	0.936	0.941	0.945	0.949	0.950	0.953	0.955
	÷		0.00	T1* (s)	2.420	2.503	2.731	2.699	2.816	2.961	3.161	3.467	3.676	3.849	4.043	4.173	4.316	4.432	4.529
2	ST5	х-х	0.89	δf	0.865	0.874	0.894	0.891	0.900	0.910	0.921	0.934	0.941	0.947	0.952	0.955	0.957	0.960	0.961
6	50		0 740	T1* (s)	1.970	2.141	2.258	2.372	2.471	2.560	2.627	2.739	2.859	2.966	3.088	3.270	3.448	3.574	3.692
		у-у	0.749	δf	0.855	0.878	0.890	0.900	0.908	0.914	0.919	0.925	0.931	0.936	0.941	0.948	0.953	0.956	0.959
	÷	~ ~	0.640	T1* (s)	1.543	1.618	1.680	1.776	1.855	1.944	2.070	2.178	2.236	2.334	2.423	2.511	2.586	2.668	2.733
2	ST4	X-X	0.049	δf	0.823	0.839	0.851	0.866	0.878	0.888	0.902	0.911	0.916	0.923	0.928	0.933	0.937	0.941	0.944
7	21		0.405	T1* (s)	1.148	1.224	1.281	1.357	1.426	1.519	1.629	1.700	1.751	1.809	1.887	1.973	2.018	2.075	2.155
		у-у	0.495	δf	0.814	0.837	0.851	0.867	0.880	0.894	0.908	0.915	0.920	0.925	0.931	0.937	0.940	0.943	0.947
	÷		0.024	T1* (s)	0.654	0.671	0.738	0.791	0.799	0.849	0.919	0.953	0.991	1.041	1.085	1.093	1.127	1.177	1.207
2	ST7	х-х	0.631	δf	0.068	0.116	0.268	0.363	0.377	0.448	0.529	0.562	0.594	0.633	0.662	0.667	0.686	0.712	0.727
8	S. 38		0 500	T1* (s)	0.643	0.688	0.727	0.748	0.768	0.784	0.782	0.797	0.815	0.819	0.827	0.839	0.848	0.866	0.879
		у-у	0.522	δf	0.342	0.425	0.485	0.512	0.538	0.556	0.555	0.571	0.589	0.594	0.601	0.613	0.621	0.636	0.647

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina	Vän	\mathbf{T}_1									PGA							
#	Kodu	ron	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	29-MD- ST4		0.445	T ₁ * (s)	1.068	1.221	1.283	1.305	1.355	1.394	1.453	1.464	1.572	1.609	1.541	1.697	1.641	1.749	1.696
00	ST4	х-х	0.415	δf	0.849	0.884	0.895	0.899	0.906	0.911	0.918	0.920	0.930	0.933	0.927	0.940	0.936	0.944	0.940
29	56		0.000	T ₁ * (s)	1.597	1.686	1.734	1.789	1.840	1.900	1.943	2.038	2.114	2.207	2.282	2.326	2.365	2.424	2.480
		у-у	0.629	δf	0.845	0.861	0.868	0.876	0.883	0.890	0.895	0.905	0.911	0.919	0.924	0.927	0.929	0.933	0.936
	1		0.470	T ₁ * (s)	1.280	1.479	1.593	1.680	1.770	1.840	1.903	1.997	2.038	2.094	2.158	2.228	2.290	2.359	2.423
20	ST4	х-х	0.478	δf	0.861	0.896	0.910	0.919	0.927	0.933	0.937	0.943	0.945	0.948	0.951	0.954	0.956	0.959	0.961
30	30		0.420	T ₁ * (s)	1.087	1.258	1.308	1.353	1.388	1.430	1.475	1.499	1.546	1.580	1.673	1.693	1.746	1.765	1.794
		у-у	0.432	δf	0.842	0.882	0.891	0.898	0.903	0.909	0.914	0.917	0.922	0.925	0.933	0.935	0.939	0.940	0.942
	4	~ ~	0.75	T ₁ * (s)	1.741	1.745	1.625	1.799	1.648	1.668	1.695	1.898	1.970	2.050	2.114	2.132	2.217	2.303	2.372
24	I-ND ST5	х-х	0.75	δ	0.815	0.815	0.787	0.826	0.793	0.798	0.804	0.844	0.855	0.866	0.874	0.876	0.886	0.894	0.900
31	то С		0.750	T ₁ * (s)	1.780	1.817	1.826	1.834	1.806	1.783	1.832	1.900	2.019	2.098	2.163	2.235	2.290	2.336	2.409
		у-у	0.758	δf	0.849	0.855	0.857	0.858	0.854	0.850	0.858	0.868	0.883	0.892	0.898	0.904	0.909	0.913	0.918
	ч Ч		0 505	T ₁ * (s)	1.105	1.134	1.172	1.175	1.209	1.285	1.329	1.393	1.434	1.483	1.545	1.613	1.648	1.682	1.694
20	2-NC ST3	X-X	0.505	δf	0.791	0.802	0.814	0.815	0.826	0.846	0.856	0.869	0.876	0.884	0.893	0.902	0.906	0.910	0.911
32	3		0.406	T ₁ * (s)	1.114	1.122	1.148	1.170	1.199	1.259	1.312	1.348	1.385	1.444	1.479	1.535	1.548	1.596	1.694
		у-у	0.490	δf	0.802	0.805	0.813	0.820	0.829	0.845	0.857	0.865	0.872	0.882	0.888	0.896	0.897	0.903	0.914
	4	V V	0.400	T ₁ * (s)	1.146	1.185	1.216	1.213	1.277	1.323	1.379	1.410	1.480	1.507	1.528	1.644	1.645	1.681	1.795
22	3-NE ST3	X-X	0.499	δf	0.811	0.823	0.832	0.831	0.847	0.858	0.869	0.875	0.886	0.890	0.893	0.908	0.908	0.912	0.923
აა	3		0 470	T ₁ * (s)	1.051	1.055	1.079	1.109	1.130	1.154	1.183	1.228	1.291	1.345	1.401	1.472	1.490	1.523	1.544
		у-у	0.472	δf	0.798	0.800	0.809	0.819	0.825	0.833	0.841	0.852	0.866	0.877	0.887	0.897	0.900	0.904	0.907
	÷	~ ~	1 01	T1* (s)	3.629	3.681	3.789	3.951	4.063	4.169	4.240	4.368	4.557	4.767	4.890	4.985	5.138	5.276	5.457
24	4-NC ST7	X-X	1.21	δf	0.889	0.892	0.898	0.906	0.911	0.916	0.919	0.923	0.930	0.936	0.939	0.941	0.945	0.947	0.951
34	<i>е</i> ,		1 224	T ₁ * (s)	3.708	3.807	3.990	4.090	4.189	4.276	4.350	4.469	4.685	4.843	4.960	5.090	5.246	5.365	5.451
		у-у	1.334	δf	0.871	0.877	0.888	0.894	0.899	0.903	0.906	0.911	0.919	0.924	0.928	0.931	0.935	0.938	0.940
	ė	~ ~	0 221	T1* (s)	0.568	0.672	0.767	0.812	0.843	0.851	0.882	0.922	0.954	0.968	0.988	1.044	1.029	1.087	1.115
25	5-NC ST3	X-X	0.321	δf	0.681	0.772	0.825	0.844	0.855	0.858	0.868	0.879	0.887	0.890	0.894	0.906	0.903	0.913	0.917
35	ж ²		0.255	T ₁ * (s)	0.765	0.831	0.896	0.946	1.068	1.128	1.221	1.269	1.307	1.333	1.366	1.406	1.422	1.448	1.375
		у-у	0.355	δf	0.785	0.817	0.843	0.859	0.889	0.901	0.915	0.922	0.926	0.929	0.932	0.936	0.938	0.940	0.933

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

#	Bina Kodu	Yön	\mathbf{T}_1									PGA							
#		1011	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	5-ND- ST7		0.072	T1* (s)	2.057	2.266	2.400	2.496	2.577	2.661	2.734	2.833	2.938	3.030	3.113	3.248	3.370	3.425	3.508
26	ST7	X-X	0.973	δf	0.776	0.816	0.836	0.848	0.857	0.866	0.873	0.882	0.890	0.897	0.902	0.910	0.917	0.919	0.923
30	36		1.020	T1* (s)	2.414	2.656	2.822	2.947	3.108	3.364	3.728	4.016	4.174	4.320	4.414	4.517	4.598	4.645	4.664
		у-у	1.039	δf	0.815	0.847	0.864	0.876	0.888	0.905	0.922	0.933	0.938	0.942	0.945	0.947	0.949	0.950	0.950
	ė	~ ~	0.691	T1* (s)	2.722	2.761	2.842	2.963	3.047	3.127	3.180	3.276	3.418	3.575	3.668	3.739	3.854	3.957	4.093
27	7-NC ST7	X-X	0.001	δf	0.937	0.939	0.943	0.947	0.950	0.953	0.954	0.957	0.960	0.964	0.966	0.967	0.969	0.970	0.972
31	3		0 767	T1* (s)	1.301	1.394	1.455	1.539	1.625	1.711	1.758	1.842	1.906	1.990	2.044	2.133	2.178	2.248	2.292
		у-у	0.767	δf	0.652	0.697	0.722	0.752	0.777	0.799	0.810	0.827	0.838	0.851	0.859	0.871	0.876	0.884	0.888
		× ×	0.540	T1* (s)	1.375	1.563	1.628	1.713	1.777	1.872	1.948	2.040	2.244	2.324	2.383	2.481	2.538	2.592	2.655
20	3-MC ST3	X-X	0.516	δf	0.845	0.880	0.890	0.900	0.907	0.916	0.923	0.930	0.942	0.946	0.948	0.952	0.955	0.956	0.958
30	ä		0 5 2 5	T1* (s)	1.799	2.019	2.249	2.335	2.431	2.554	2.644	2.738	2.930	3.040	3.110	3.234	3.249	3.585	3.666
		у-у	0.555	δf	0.908	0.927	0.941	0.945	0.950	0.954	0.957	0.960	0.965	0.968	0.969	0.971	0.972	0.977	0.978
	₽ ₽		0.000	T1* (s)	1.760	2.038	2.157	2.252	2.332	2.407	2.478	2.561	2.629	2.718	2.806	2.900	3.042	3.195	3.348
20	9-MC ST5	X-X	0.020	δf	0.862	0.897	0.908	0.916	0.922	0.926	0.931	0.935	0.938	0.942	0.946	0.949	0.954	0.958	0.962
29	ŝ	V-V	0 767	T1* (s)	2.328	2.609	2.748	2.838	3.002	3.257	3.511	3.722	3.808	3.878	3.982	4.037	4.237	4.292	4.340
		у-у	0.767	δf	0.883	0.907	0.916	0.921	0.930	0.940	0.949	0.954	0.956	0.958	0.960	0.961	0.965	0.966	0.966
	ė	~ ~	0 5 2 1	T1* (s)	1.093	1.187	1.242	1.306	1.364	1.418	1.459	1.520	1.558	1.648	1.707	1.793	1.857	1.857	1.957
10	D-ME ST5	X-X	0.521	δf	0.773	0.807	0.824	0.841	0.854	0.865	0.873	0.883	0.888	0.900	0.907	0.916	0.921	0.921	0.929
40	4		0 5 4 1	T1* (s)	1.064	1.222	1.332	1.430	1.520	1.605	1.682	1.749	1.789	1.853	1.906	1.937	2.015	2.116	2.182
		у-у	0.341	δ_{f}	0.741	0.804	0.835	0.857	0.873	0.886	0.897	0.904	0.909	0.915	0.919	0.922	0.928	0.935	0.939
	4	V V	0 526	T1* (s)	1.460	1.541	1.619	1.678	1.788	1.856	1.931	2.009	2.087	2.216	2.303	2.361	2.428	2.480	2.547
11	1-MC ST4	X-X	0.520	δf	0.870	0.883	0.894	0.902	0.913	0.920	0.926	0.931	0.936	0.944	0.948	0.950	0.953	0.955	0.957
41	4		0 507	T1* (s)	1.366	1.586	1.651	1.709	1.761	1.815	1.885	1.965	2.043	2.102	2.173	2.204	2.254	2.368	2.414
		у-у	0.507	δf	0.862	0.898	0.906	0.912	0.917	0.922	0.928	0.933	0.938	0.942	0.946	0.947	0.949	0.954	0.956
	÷		0.014	T1* (s)	1.865	2.095	2.182	2.275	2.344	2.399	2.479	2.558	2.629	2.672	2.699	2.713	2.746	2.773	2.799
10	2-NC ST5	X-X	0.014	δf	0.891	0.914	0.920	0.927	0.931	0.934	0.938	0.942	0.945	0.947	0.948	0.948	0.950	0.951	0.952
42	4		0.699	T1* (s)	2.036	2.354	2.553	2.663	2.759	2.855	2.940	3.025	3.194	3.412	3.543	3.659	3.760	3.941	4.099
		у-у	0.000	δf	0.886	0.915	0.927	0.933	0.938	0.942	0.945	0.948	0.954	0.959	0.962	0.965	0.967	0.970	0.972

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

щ	Bina	Vän	\mathbf{T}_1									PGA							
#	Kodu	ron	(s)		0.1g	0.15g	0.2g	0.25g	0.3g	0.35g	0.4g	0.45g	0.5g	0.55g	0.6g	0.65g	0.7g	0.75g	0.8g
	4		0.004	T ₁ * (s)	0.558	0.577	0.599	0.630	0.661	0.691	0.715	0.723	0.758	0.757	0.794	0.798	0.834	0.847	0.867
40	ST4	X-X	0.261	δ	0.781	0.796	0.810	0.828	0.844	0.857	0.867	0.870	0.881	0.881	0.892	0.893	0.902	0.905	0.909
43	43		0.070	T ₁ * (s)	0.852	0.874	0.898	0.949	1.004	1.056	1.090	1.119	1.189	1.225	1.237	1.281	1.298	1.346	1.407
		у-у	0.376	δf	0.805	0.815	0.825	0.843	0.860	0.873	0.881	0.887	0.900	0.906	0.908	0.914	0.916	0.922	0.929
	1		0.004	T ₁ * (s)	1.442	1.594	1.674	1.734	1.785	1.824	1.875	1.928	1.969	2.032	2.056	2.136	2.145	2.157	2.211
	ST8	X-X	0.894	δf	0.820	0.853	0.867	0.876	0.883	0.888	0.894	0.900	0.904	0.910	0.912	0.918	0.919	0.920	0.924
44	44		0.074	$T_{1}^{*}(s)$	1.505	1.607	1.670	1.722	1.764	1.811	1.883	1.911	1.959	1.991	2.043	2.071	2.128	2.193	2.196
		у-у	0.871	δf	0.824	0.846	0.857	0.866	0.872	0.879	0.888	0.891	0.896	0.900	0.905	0.907	0.912	0.917	0.917
			0.000	T ₁ * (s)	2.053	2.284	2.425	2.511	2.589	2.632	2.720	2.825	2.897	3.075	3.187	3.375	3.605	3.776	3.889
45	5.SD ST8	X-X	0.836	δf	0.834	0.866	0.881	0.889	0.896	0.899	0.906	0.912	0.917	0.926	0.931	0.939	0.946	0.951	0.954
45	46		0.050	T ₁ * (s)	2.059	2.249	2.310	2.417	2.513	2.588	2.685	2.819	2.950	3.089	3.310	3.457	3.703	3.865	3.972
		у-у	0.856	δf	0.828	0.855	0.863	0.875	0.884	0.891	0.899	0.908	0.916	0.923	0.933	0.939	0.947	0.951	0.954
	1		0 704	T ₁ * (s)	1.216	1.528	1.675	1.751	1.810	1.886	1.943	2.030	2.102	2.170	2.244	2.314	2.395	2.456	2.507
40	ST5	X-X	0.794	δf	0.795	0.870	0.892	0.901	0.908	0.915	0.920	0.927	0.932	0.936	0.940	0.943	0.947	0.950	0.952
40	46		0.040	T ₁ * (s)	1.134	1.370	1.514	1.574	1.660	1.698	1.765	1.814	1.864	1.921	1.990	2.038	2.114	2.173	2.231
		у-у	0.819	δf	0.799	0.863	0.887	0.896	0.906	0.910	0.917	0.922	0.926	0.930	0.935	0.938	0.942	0.945	0.948
	ė		0.000	T ₁ * (s)	2.033	2.257	2.336	2.411	2.480	2.573	2.698	2.788	2.945	3.091	3.325	3.607	3.735	3.909	3.997
47	ST7	X-X	0.896	δf	0.806	0.842	0.853	0.862	0.869	0.879	0.890	0.897	0.907	0.916	0.927	0.938	0.942	0.947	0.950
47	47		0.000	T ₁ * (s)	1.564	1.750	1.859	1.959	2.033	2.095	2.165	2.202	2.259	2.313	2.381	2.422	2.495	2.531	2.572
		у-у	0.638	δf	0.834	0.867	0.882	0.894	0.902	0.907	0.913	0.916	0.920	0.924	0.928	0.931	0.935	0.936	0.938
	ė	~ ~	0.650	T1* (s)	1.851	2.054	2.161	2.255	2.345	2.411	2.483	2.570	2.675	2.786	3.024	3.159	3.269	3.420	3.595
40	3-NC ST4	X-X	0.000	δf	0.766	0.810	0.828	0.842	0.854	0.862	0.870	0.878	0.888	0.897	0.912	0.920	0.925	0.931	0.938
48	84		0 600	T ₁ * (s)	1.908	2.084	2.183	2.291	2.392	2.470	2.579	2.697	2.863	3.061	3.213	3.353	3.431	3.499	3.647
		у-у	0.002	δf	0.888	0.906	0.915	0.922	0.929	0.933	0.939	0.944	0.950	0.957	0.961	0.964	0.965	0.967	0.969
	Å		0 704	T1* (s)	1.410	2.457	2.932	2.599	2.335	2.412	2.703	2.989	2.859	3.111	3.291	3.424	3.297	3.783	3.803
40	9-ND ST6	X-X	0.704	δf	0.596	0.867	0.907	0.881	0.853	0.862	0.890	0.910	0.902	0.917	0.926	0.932	0.926	0.944	0.944
49	46		0 557	T ₁ * (s)	1.501	1.718	1.973	1.896	1.950	2.025	2.093	2.139	2.202	2.271	2.344	2.423	2.429	2.456	2.547
		у-у	0.557	δf	0.819	0.862	0.895	0.887	0.893	0.901	0.907	0.911	0.916	0.921	0.926	0.931	0.931	0.933	0.937
	4		0 500	T ₁ * (s)	1.280	1.543	1.662	1.746	1.818	1.897	1.973	2.048	2.126	2.206	2.281	2.345	2.395	2.468	2.541
E0)-NC ST5	X-X	0.539	δf	0.510	0.663	0.709	0.737	0.757	0.777	0.794	0.809	0.822	0.835	0.846	0.854	0.860	0.868	0.876
50	20		0.407	T ₁ * (s)	1.207	1.551	1.682	1.721	1.771	1.821	1.897	1.968	2.060	2.122	2.204	2.280	2.334	2.398	2.474
		у-у	0.497	δf	0.720	0.831	0.856	0.863	0.870	0.877	0.887	0.895	0.904	0.910	0.916	0.922	0.925	0.929	0.933

Çizelge B.1 (devam): Deprem toplumu etkisinde yapılardaki en büyük istemlerin ortalamaları.

ÖZGEÇMİŞ

Ad-Soyad	: Ülgen MERT TUĞSAL
Doğum Tarihi ve Yeri	: 24.11.1976 BOLU
E-posta	: tugsal@itu.edu.tr

ÖĞRENİM DURUMU:

- Lisans : 1998, İstanbul Teknik Üniversitesi, İnşaat Fakültesi, İnşaat Mühendisliği Bölümü
- Yükseklisans : 2005, Gebze Teknik Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, Deprem ve Yapı Mühendisliği Anabilim Dalı

MESLEKİ DENEYİM VE ÖDÜLLER:

- 1998-2001 yılları arasında Altıneller Müh. Ve Taah. Ltd. Şti.'de Proje Mühendisi olarak çalıştı.
- 2002-2007 yılları arasında Gebze Teknik Üniversitesi, Deprem ve Yapı Mühendisliği Anabilim Dalı'nda Araştırma Görevlisi olarak çalıştı.
- Eylül 2007 yılından itibaren İTÜ İnşaat Fakültesi, İnşaat Mühendisliği Bölümü'nde Araştırma Görevlisi olarak çalışmaktadır.

DOKTORA TEZİNDEN TÜRETİLEN YAYINLAR, SUNUMLAR VE PATENTLER:

Diğer Uluslararası Hakemli Dergilerdeki Yayınlar:

1. Mert Tugsal U., Taskin B. (2015). Analytical Vulnerability Assessment of the Moderately Damaged RC Building Stock After 1998 Ceyhan, Turkey EQ, *Research Journal of Applied Sciences, Engineering and Technology*, ID#:16518-RJASET-DOI, 10(10): 1236-1244.

Uluslararası Kitap İçinde Bölüm Yazarlığı:

1. Mert Tugsal U, Taskin B (2014). *Proposed Vulnerability Functions to Estimate the Real Damage State of RC Buildings After Major Turkish Earthquakes*. IN: Seismic Evaluation and Rehabilitation of Structures, (Eds:İlki A & Fardis MN), Geotechnical, Geological and Earthquake Engineering Series, Vol. 26, Chapter-4, Springer, ISBN: 978-3-319-00457-0 (Printed)

Uluslararası Bildiriler

1. U.M. Tugsal, B. Taskin (2012). Proposed Vulnerability Functions To Estimate The Real Damage State Of RC Buildings After Major Turkish Earthquakes, 15th World Conference on Earthquake Engineering, Lisbon-Portugal, 24 September-28 September, Paper no:1335.

2. Mert Tugsal U, Taskin B (2012). Structural Vulnerability Functions and the Comparison of the Observed Damages of RC Buildings After Major Turkish Earthquakes, International Workshop on the Role of Research Infrastructures in Seismic Rehabilitation, *SERIES EC FP-7*, İstanbul, Turkey, 8-9 February.

3. Mert Tugsal U, Taskin B. (2011). Estimation of Roof Displacements in Moderately Damaged Turkish RC Buildings by Nonlinear Dynamic Analysis and Empirical Expressions, *World Congress on Advances in Structural Engineering and Mechanics-ASEM11*+, Seoul, South Korea, 18-22 September.

4. Taskin, B., **Mert Tugsal, U**. (2010). Seismic Reliability Evaluation of Moderately Damaged RC Buildings Considering Nonstructural Wall Contribution, *International Symposium on Reliability Engineering and Risk Management (ISRERM2010)*, Shanghai-China, 23-26 September.

5. Mert Tugsal, U., Taskin, B., Hasgur, Z. (2010). Seismic Performance Analysis of Moderately Damaged RC Buildings Considering Nonstructural Wall Contribution, *14th European Conference on Earthquake Engineering*, Ohrid-Macedonia, 30 August-03 September.

6. Hasgur, Z., Taskin, B., **Mert Tugsal, U**. (2010). Estimation of the Observed Earthquake Damage in RC Buildings Considering Different Hysteretic Models: Case Studies, *Turkish-Saudi Workshop on Structural and Earthquake Engineering*, 24 June 2010, İstanbul, Turkey.

7. Hasgur, Z., Taskin, B., **Mert Tugsal, U**. (2010). Effect of Concrete Quality for the Seismic Performance of RC Buildings, *Joint Symposium on Concrete Engineering*, 9 June 2010, Istanbul, Turkey.

Ulusal Bildiriler

1. Mert Tuğsal, Ü., Taşkın, B. (2015). 1998 Ceyhan Depreminde Orta Hasar Görmüş Betonarme Binaların Performanslarının Farklı Yöntemlerle Değerlendirilmesi, *8. Ulusal Deprem Mühendisliği Konferansı*, İstanbul, Türkiye, 11 Mayıs-14 Mayıs.

2. Mert Tuğsal, U., Öcalan B., Taşkın, B., Hasgür, Z., (2013). Mevcut Betonarme Binaların Hasar Görebilirliği, *Prof.Dr. Zekai Celep Onuruna Betonarme Yapılar Semineri*, Bildiriler, İstanbul, 10 Ekim, 113-125.

3. Hasgür, Z., Taşkın, B., **Tuğsal, Ü.M**. (2009). Betonarme Bir Binada Dolgu Duvar Katkısının Benzetilmiş Deprem Toplumu Etkisinde DBYBHY-07'ye Göre Zaman Tanım Alanında İrdelenmesi, *Prof.Dr. Nahit Kumbasar için Betonarme Yapılar Semineri*, Bildiriler, İstanbul, 21 Ekim 2009, 168-181.

Araştırma Projeleri

1. "Deprem Etkisine Maruz Türkiye Türü Betonarme Yapılar İçin Hasargörebilirlik İlişkilerinin Türetilmesi" – T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Ulusal Deprem Araştırma Programı Projesi- UDAP-Ç-12-04

Görevi: Araştırıcı

Yürütücü: Beyza TAŞKIN

