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DIRECT AND INVERSE SCATTERING PROBLEMS RELATED TO THE 

SPHERICALLY LAYERED MEDIA 

SUMMARY 

The direct and inverse scattering problems related to radially inhomogeneous spheres 

have interesting mathematical properties alongside practical value. In the direct 

scattering problem, the acoustic or elecromagnetic parameters of the spherical 

scatterer, which are arbitrary functions of the radial distance only, are assumed to be 

known; and the aim of the problem is to determine the scattered field in the whole 

space. On the other hand, for the inverse problem, these parameters constitute the 

unknowns of the problem, and they are determined through the value of the scattered 

field supposed to be measured on a measurement surface in the outside region. For the 

solution of the direct scattering problem, different techniques, with certain advantages 

and limitations,  exist in the literature. The analytical techniques such as dyadic 

Green’s function are only valid for certain types of profile, whereas numerical solution 

techniques such as method of moments have limited accuracy and they are in general 

computationally expansive. For the inverse problem, established methods such as 

Newton’s method or the contrast source inversion technique can be applied directly to 

the three dimensional problem; however, the computational effort necessary for this 

type of procedure will put a limit to its practical value. Therefore, it can be concluded 

that the problems involving radially inhomogeneous spherical scatterer is still open to 

contributions. 

In this thesis, a method to reduce the original three dimensional acoustic and 

electromagnetic problems into one dimensional forms has been developed. It has been 

demonstrated that such a method would be compatible with the available alternatives, 

and it will require less computational effort than the three dimensional solution 

techniques. It should be noted that although the orginal problem is a three dimensional 

one, the homogeneity along the angular direction enables one to replace it with one 

dimensional object and data equations involving only radial functions. For this 

dimension reduction procedure, the orthogonality of the spherical harmonics over the 

unit spherical surface have been used.  

In the acoustic case, the scalar acoustic field has been expressed as a series expansion 

in terms of scalar spherical harmonics. Since those are functions of the angular terms, 

and the geometry is spherically symmetrical, their orthogonality is preserved within 

the original three dimensional object equation. Therefore, it is possible to eliminate the 

angular terms via orthogonality relation, and to obtain one dimensional reduced 

integral equations involving the coefficients of the series expansion for the acoustic 

field. For the solution of the direct scattering problem these coefficients can be 

determined by a simple discretization of the one dimensional integrals along the radial 

direction. On the other hand, a Newton based iterative scheme has been formulated for 

the solution of the inverse scattering problem. In this formulation, the one dimensional 

equations are solved using an initial guess for the unknown parameters, and the 
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coefficients of the measured scattered field constitute the data that is used to update 

the initial guess iteratively.  

The procedure for the electromagnetic case is similar to the acoustic one. However, 

since the problem is a vectorial one in this case, the electric field is expanded in terms 

of vector spherical harmonics. These vectorial functions also satisfy the orthogonality 

condition over a spherical surface, therefore it is possible to reduce the vectorial 

electric field integral equation into a system of one dimensional integral equations. 

The integrals once again will only contain the scalar coefficients of the series 

expansion for the electric field, which are functions of the radial distance only. The 

resulting system of equations can be solved simultaneously to obtain the coefficients. 

The Newton based algorithm that was used in the acoustic case can be adapted to 

electromagnetic inverse problem in a straightforward manner. Therefore, same 

technique will be applied for the solution of the electromagnetic profile inversion 

problem. 

The results of the numerical tests demonstrate that the method is quite reliable for 

determining the interior and scattered field in the case of acoustic or electromagnetic 

direct scattering problem. It is compatible with alternative methods, and it is 

computationally effective. Unlike analytical techniques which can only be used for 

piecewise homogeneous spheres, the method can be easily adapted to any kind of 

profile.Moreover, its accuracy is higher compared to the computationally more 

expansive numerical techniques. Therefore it is safe to assume that it can be used for 

practical applications involving complex scatterers such as head models. The acoustic 

or electromagnetic scattering problems involving radially inhomogeneous spheres are 

frequently encountered in the research fields such as biomedical engineering or 

material science. The method developed in this thesis can be reliably used in these 

problems. 

For the inverse problem, the method yielded quite satisfactory results for slowly 

varying continuous profiles, provided that an appropriate initial guess is chosen. Other 

than the initial guess for the unknown acoustic or electromagnetic parameters, the most 

important point that effects the outcome of the method is the initial parameters of the 

iterative process itself. Through various numerical tests, the optimal values of these 

parameters have been determined and presented in the thesis. However, it was 

observed that even for these values, the success of the method is considerably lower 

for more rapidly varying profiles. Especially for layered profiles, the method can only 

provide a smoothed approximation. Numerical tests also demonstrated that the method 

produces useful results for relatively low contrast values. It should be noted that these 

are well-known limitations of Newton based algorithms, and the method performs 

reasonably well for an iterative profile inversion technique. 
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KÜRESEL TABAKALI CİSİMLERE İLİŞKİN DÜZ VE TERS SAÇILMA 

PROBLEMLERİ 

ÖZET 

Yarıçap doğrultusunda inhomojen küresel cisimlere ilişkin düz ve ters saçılma 

problemleri matematiksel açıdan ilgi çekici olmanın yanı sıra pratik açıdan da değer 

taşır. Düz saçılma problemlerinde cismin akustik ya da elektromanyetik 

parametrelerinin bilindiği kabul edilir. Bu parametreler sadece yarıçap doğrultusunda 

mesafenin fonksiyonudur. Problemin amacı kürenin dışındaki bölgede saçılan alanı 

hesaplamaktır. Öte yandan bu parametreler ters saçılma problemi için bilinmeyenleri 

oluşturur. Bunların belirlenmesinde kürenin dışında bir yüzeyde gerçekleştirilen 

saçılan alan ölçümlerinden yararlanılır. Düz problemin çözümünde farklı avantajları 

ve dezavantajları olan çeşitli teknikler geliştirilmiştir. Diyadik Green fonksiyonu gibi 

analitik teknikler sadece belirli profiller için kullanılabilmektedir, öte yandan moment 

metodu gibi nümerik tekniklerde başarı daha düşüktür ve işlem yükü gereksinimi de 

daha yüksektir. Ters saçılma probleminin çözümü için yaygın olarak kullanılan 

Newton metodu veya kontrast kaynak tekniği gibi metotlar doğrudan üç boyutlu 

probleme uygulanabilir. Ancak bu yaklaşımın gerektirdiği işlem yükü çok yüksek 

olduğundan pratikte uygulanabilirliği sınırlıdır. Sonuç olarak, küresel inhomojeniteye 

sahip cisimlere ilişkin saçılma problemlerinin hala yeni katkılara açık bir konu olduğu 

söylenebilir. 

Bu tezde üç boyutlu akustik veya elektromanyetik problemi bir boyutlu bir forma 

indirgeyecek bir metot geliştirilmiştir. Yapılan testlerde görüldüğü üzere bu metot 

alternatif tekniklerle uyumludur ve üç boyutlu nümerik çözüm yöntemlerine göre daha 

az işlem yükü gerektirmektedir. Burada dikkat edilmesi gereken nokta üç boyutlu 

olarak formüle edilmiş olsa da problemin aslında bir boyutlu olduğudur. İnhomojenite 

sadece yarıçap doğrultusunda mevcut olduğundan problemin geometrisi açısal 

doğrultularda homojendir, ve bu bileşenler elimine edilebilir. Bu eliminasyon 

işleminin temel prensibi akustik ve elektromanyetik problem için aynıdır. Her iki 

problem için de amaçlanan, inhomojeniteden etkilenen yarıçap doğrultusundaki 

bileşenler ile homojen açısal bileşenlerin birbirlerinden ayrıştırılmasıdır. Bu ayrıştırma 

için akustik veya elektrik alanın küresel koordinat sisteminde birer seri toplamı 

şeklinde ifade edilmesi gerekmektedir. Bu seri toplamının baz fonksiyonları harmonik 

fonksiyonlardan oluşmaktadır. Bu fonksiyonlar alan büyüklüklerinin açısal 

bileşenlerini temsil etmek için kullanılmıştır. Seri toplamlarının skaler katsayıları ise 

sadece yarıçap doğrultusunun fonksiyonlarıdır. Bilindiği üzere küresel koordinat 

sisteminde harmonik fonksiyonlar birim küre yüzeyinde ortogonalite koşulunu sağlar. 

Problemin geometrisi açısal doğrultuda homojen olduğundan bu ortogonalite her 

zaman korunur. İşte bu ortogonalite bağıntısından yararlanılarak açısal terimler 

elenebilir. Dolayısıyla üç boyutlu cisim ve data denklemleri yerine, sadece yarıçap 

doğrultusunda değişen bileşenler içeren bir boyutlu integral denklemler oluşturulabilir. 

Bu temel prensip hem akustik hem de elektromanyetik problemin çözümünde 

kullanılabilir. Ancak problemlerin matematiksel yapıları farklı olduğundan 
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çözümlerinde kullanılacak seri toplamlarının da farklı yapıda olması gerekmektedir. 

Skaler yapıdaki akustik problem için skaler baz fonksiyonlar kullanılmıştır. Öte 

yandan elektromanyetik alanı temsil etmek için vektörel baz fonksiyonlarına ihtiyaç 

duyulmaktadır. Bu nedenle iki problem çözümleri farklı başlıklarda incelenmiştir.  

Akustik problem için skaler alan küresel harmonikler cinsinden bir seri toplamı 

formunda ifade edilmiştir. Teseral harmonik olarak da adlandırılan bu fonksiyonlar 

Legendre fonksiyonları ve trigonometrik fonksiyonlardan oluşmaktadır. Dolayısıyla 

açısal bileşenlerin ifade edilmesinde kullanılabilirler ve küre yüzeyinde ortogonal 

olduklarından seri toplamı için baz fonksiyonu görevi görebilirler. Daha sonraki 

eliminasyon sürecinde küresel simetrik geometriden faydalanılarak üç boyutlu 

denklemde ortogonalite bağıntısı vasıtasıyla sadeleştirme gerçekleştirilebilir. Böylece 

ortogonalite aracılığıyla açısal terimler denklemden elenir ve bir boyutlu integral 

denklemler elde edilmiş olur. Bu fonksiyonlardaki tüm terimler yarıçap 

doğrultusundaki mesafenin fonksiyonlarıdır. Bunlardan en önemlisi elektrik alanı 

ifade eden serinin katsayılarıdır, ve bu katsayılar integral denklemi çözerek elde 

edilebilir. İntegral denklemin çözümü, bir boyutlu integrasyon domeninin eşit 

uzunlukta hücrelere ayrıştırılması ile gerçekleştirilir. Bu hücreler yeteri kadar küçük 

seçildiğinde interaldeki terimlerin hücre içindeki değişimi ihmal edilebilir seviyede 

kalır. Bu varsayım altında integral sadeleşir ve ayrıklaştırma ile integral denklem 

matris formuna çevrilir. Bu ayrıklaştırılmış sistemin çözümü hücre merkezlerindeki 

seri katsayılarını verir. Bu seri katsayıları elde edildikten kürenin içindeki toplam 

akustik alan en başta tanımlanmış seri toplamı kullanılarak elde edilebilir. Saçılan 

alanın hesaplanması da benzer bir yöntemle gerçekleştirilebilir. Saçılan alan için 

katsayılar, içerideki alan katsayıları ve indirgenmiş bir boyutlu integral ile doğrudan 

elde edilebilir.  

Ters problemin çözümü için bu bir boyuta indirgenmiş denklemler kullanılabilir. Bu 

çalışmada alternatif çözüm tekniklerinden biri olan klasik Newton metodu 

kullanılmıştır. Newton metodunun en büyük dezavantajı her adımda düz problemin 

çözülmesinin getirdiği işlem yüküdür. Ancak burada kullanılan bir boyutlu denklemler 

düz problemin işlemsel yükünü oldukça azalttığından ters problemin çözümü için 

Newton temelli temelli iteratif bir algoritmanın kullanılması uygundur. Geliştirilen 

formülasyonda integral denklemler alan büyüklüğünün kendisi yerine seri toplamı 

katsayılarını içerdiğinden ters problemin de buna uygun olarak çözülmesi gerekir. 

Buna göre kürenin dışında ölçülen saçılan alan değerleri kullanılarak saçılan alan 

katsayıları elde edilir. Bu amaçla küresel harmonikleri içeren bir nümerik integrasyon 

işlemi gerçekleştirilir. Katsayılar elde edildikten sonra klasik Newton algoritması 

kullanılır. Bu algoritmada bilinmeyen cisim parametreleri için bir başlangıç değeri 

belirlenir ve bu değer kullanılarak düz problem çözülür. Bu çözüm ile elde edilen 

saçılan alan katsayıları ve ölçüm sonuçlarından elde edilen katsayıların 

karşılaştırılması ile başlangıç değeri güncellenir. Burada kullanılan denklemler kötü 

koşullanmış denklemler olduğundan bir regülarizasyon tekniğinin kullanılması 

gerekir. Bu çalışmada en sık kullanılan tekniklerden biri olan Tikhonov 

regülarizasyonu kullanılmıştır. Her adımda başlangıç değerinin güncellendiği bu 

iteratif süreç güncelleme terimi belli bir değerin altına düşünceye kadar sürdürülür. 

Elektromanyetik problem için çözüm akustik duruma benzer şekilde elde edilir. Ancak 

elektromanyetik alanlar vektörel olduğundan seri toplamı vektör küresel hamonikler 

kullanılarak tanımlanır. Bu vektörel baz fonksiyonları skaler harmonik fonksiyonlar 

aracılığıyla tanımlanır ve skaler eşdeğerlerine benzer şekilde küresel yüzeylerde 

ortogonalite bağıntısını sağlar. Bu seri toplamı için de katsayılar skalerdir ve sadece 

yarıçap doğrultusunun fonksiyonudur. Elektrik alan bu fonksiyonlar yardımıyla seriye 



xxiii 

 

açılabilir. Benzer şekilde boş uzayın dyadik Green fonksiyonu da vektörel dalga 

fonksiyonları kullanılarak seri toplamı şeklinde ifade edilebilir. Vektörel dalga 

fonksiyonları açısal bileşenleri vektör küresel harmonikler, radyal bileşenleri ise 

küresel Bessel fonsiyonlarından oluşan küresel fonksiyonlardır. Bu fonksiyonlar 

homojen uzayda elektrik alanı temsil etmek için kullanılabilirler. Ancak burada 

kürenin içinde yarıçap doğrultusunda inhomojenite mevcut olduğundan elektrik alan 

vektör küresel harmonikler ile seriye açılmıştır. Böylece inhomojeniteden etkilenen 

radyal bileşen ile homojen açısal bileşenler birbirlerinden ayrışmış olur. Dyadik Green 

fonksiyonundaki vektörel dalga fonksiyonları ile elektrik alandaki vektör küresel 

harmoniklerin ortogonalliğinden faydalanılarak üç boyutlu vektörel integral denklemi 

bir boyutlu integral denklemler sistemine indirgemek mümkündür. Bu integraller de 

sadece yarıçap doğrultusunda değişen terimler içerdiğinden akustik duruma benzer bir 

çözüm elde edilmiş olur. Buradaki en temel fark akustik problemdeki tek denklemin 

yerini burada bir denklem sisteminin almasıdır. Elektrik alanın katsayıları bu denklem 

sisteminin çözülmesiyle bulunur ve buradan elektrik alanın gerçek ifadesine 

geçilebilir. Ters problem için akustik durumda kullanılan Newton temelli metodun 

elektromanyetik probleme de uygulanabileceği görülmüştür. Dolayısıyla aynı teknik 

hem akustik hem de elektromanyetik ters saçılma probleminin çözümünde 

kullanılacaktır. 

Nümerik simülasyonlardan elde edilen sonuçlara göre bu tezde geliştirilen yöntem 

gerek akustik gerekse elektromanyetik düz saçılma problemlerinin çözümünde 

güvenle kullanılabilir. Sonuçlar yöntemin alternatifleriyle uyumlu ve işlem yükü 

bakımından daha verimli olduğunu göstermektedir. Sadece tabakalı cisimlerde 

kullanılabilen analitik tekniklerin aksine bu metot her türlü profilde 

uygulanabilmektedir. Tabakalı cisimlerde dyadik Green fonksiyonu ve analitik çözüm 

ile yapılan karşılaştırmalar seri toplamına yeterli sayıda terim eklendiğinde yöntemin 

yüksek bir doğruluğa sahip olduğunu göstermektedir. Sürekli bir fonksiyona sahip 

saçıcılarda karşılaştırma, moment metodu gibi nümerik tekniklerle yapılmıştır. 

Buradaki karşılaştrımalarda elde edilen sonuçlara göre yöntemin doğruluğu nümerik 

alternatiflere göre daha yüksektir. Daha önemlisi, tek boyuta indirgeme sayesinde üç 

boyutlu ayrıştırmaya dayalı moment metoduna göre verimlilik çok daha yüksektir. 

Dolayısıyla, kafa modelleri gibi daha karmaşık saçıcılar içeren pratik uygulamalarda 

burada geliştirilen yöntemin güvenle kullanılabileceği sonucuna varılabilir. Küresel 

yapılara ilişkin akustik ve elektromanyetik saçılma problemleri biyomedikal 

mühendisliği gibi araştırma alanlarında sıklıkla karşılaşılan problemlerdendir, ve 

burada geliştirilen metot rahatlıkla bu alanlarda kullanılabilir.  

Ters saçılma problemlerinde yöntemin özellikle değişim hızı düşük, sürekli profiller 

için oldukça başarılı sonuçlar verdiği görülmüştür. Ancak bu başarı büyük ölçüde 

bilinmeyen parametreler için kullanılan başlangıç değerine bağlıdır. Başlangıç değeri 

ideal değerden saptığında yöntemin başarısı düşmektedir. Bunun dışında yöntemin 

regülarizasyon parametresi, sonlandırma eşiği, çalışma frekansı gibi diğer temel 

parametreleri de sonuca büyük oranda etki etmektedir. Newton metodunun bu standart 

parametreleri dışında burada geliştirilen yöntemde kullanılan seri toplamlarına 

eklenecek terim sayısı da performans üzerinde belirleyici etki yapmaktadır. Çeşitli 

simülasyonlar sonucu bu parametrelerin optimal değerleri tespit edilmiş ve tezin 

içerisinde belirtilmiştir. Bu incelemelerden görüleceği üzere cismin elektriksel boyutu 

belli bir sınırın üstüne çıktığında yöntem sonuç üretmekte zorlanmaktadır. Bu durum 

incelenecek cismin boyutlarına snırlama getirmektedir. Ayrıca optimal değerler 

kullanılsa da değişim hızı yüksek profiller için başarı oranının düşük kaldığı 

gözlemlenmiştir. Özellikle tabakalı cisimler için yöntem keskin geçişleri tespit 
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edemeyip ancak yumuşatılmış yaklaşık bir değer üretebilmektedir. Yöntemin bir diğer 

sıkıntısı da küre ile dış ortam parametreleri arasındaki kontrast değeri yükseldikçe 

sonuçlardaki hata oranının artmasıdır. Öte yandan bütün bu sayılanlar Newton temelli 

bir teknik için beklenebilecek eksikliklerdir, dolayısıyla yöntemin bu tarz bir iteratif 

tekniğe göre yeterli doğrulukta sonuçlar ürettiğini söylemek mümkündür. Burada 

geliştirilen indirgeme tekniğiyle elde edilen bir boyutlu denklemler farklı ters problem 

çözüm teknikleri ile çözülebilir. Bu şekilde Newton temelli yöntemlerin getirdiği 

kısıtlamalar aşılabilir.   
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1.  INTRODUCTION 

Inverse scattering problems aiming to determine the acoustical or electromagnetic 

parameters of a scatterer via the measurement of the scattered field is a major part of 

various research fields such as biomedical engineering, non-destructive material 

testing, or remote sensing. In these problems, the scatterer is illuminated by an 

incoming field, and the scattered field is measured on a domain outside the scatterer. 

The effect of the scattering object on the acoustic or electromagnetic field is analysed 

by using the related wave equation to model the incoming and scattered field [1]. The 

unknown parameters, which characterize the shape and the material of the scatterer, 

are obtained through one of the numerious solution techniques available in the 

literature for inverse problems [2]. The non-linearity of the wave equation causes the 

inverse problems to include non-linearity, and therefore all solution methods proposed 

in the literature involve a linearization technique.  

One of the first application of the linear approximation is the Born approximation 

method, which provides an approximation of the unknown profile by substituting an 

initial guess for the acoustic or electromagnetic parameters into the integral equation 

involving the scattered field, namely the data equation [3]. While this approach is 

effective for the profiles having low contrast values, other methods are needed for most 

practical applications. To this end, iterative methods that can reconstruct profiles with 

relatively higher contrast values have been developed [4,5]. A widely used iterative 

procedure is the Newton-Kantorovich method, in which the direct scattering problem 

is solved in each step using the initial guess updated in the previous step [6-8]. The 

need to solve the direct scattering problem in each update considerably increases the 

computational effort, especially for 2-D and 3-D problems. The contrast source 

inversion method, a modified gradient method, has been developed in order to remove 

that requirement [9,10].    

The brief review of the inversion techniques presented above, demonstrates that all the 

methods involves the solution of the related direct scattering problem. In addition, for 

most applications, the scattering field, used as data in the inverse problem, is produced 
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synthetically, therefore the related direct scattering problem must be solved before the 

inverse problem. The aim of the direct scattering problems is to determine the field 

scattered by an object, whose shape and material parameters are known. For the case 

of an arbitrarily shaped scatterer, one of the most commonly employed method is the 

method of moments [11-13]. In [14], the electric field scattered by a 3-D dielectric 

object is calculated by a discretization of the scatterer into cubic cells, and the 

evaluation of the interior electric field using point matching technique. This approach 

can also be adapted to the acoustic scattering problem in a straightforward manner. 

However, for electrically large, inhomogeneous 3-D scatterers, MoM becomes 

computationally intensive. Hybrid methods, combining MoM with finite element 

method, which is more suitable for handling inhomogeneities, are proposed to reduce 

computational time [15,16]. Another frequently used approach to create a 

computationally effective numerical technique is to employ conjugate gradient method 

combined with fast Fourier transform to solve linear equations obtained via MoM 

discretization.   

The techniques for inverse and direct problems mentioned above can be used for 

different type of geometries. For each problem, the form of the equations and the 

parameters vary according to the specific geometrical configuration. Therefore, 

choosing an appropriate method and adapting it to the problem at hand is of crucial 

importance for the solution of the inverse problem. Especially for canonical structures 

such as cylindirical or spherical objects, special solutions might be formulated by 

taking advantage of the wave form in that geometry. These special solutions are in 

general obtained by modifying the equations of the direct and inverse scattering 

techniques via analytical or semi-analytical methods available for the related canonical 

structures. The details and the advantages of this approach will be presented in the 

subsequent sections. The emphasis will be on the geometries with spherical symmetry, 

since the main contribution of this work is the development of novel techniques for 

the solution of the direct and inverse scattering problems related to radially 

inhomogeneous spherical objects. 

1.1 Purpose of Thesis 

The direct and inverse scattering problems involving canonical structures have been 

the subject of numerious publications for their theoretical features, and their usage in 
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various practical engineering applications. One of the main source of interest is that 

for the most problems, the computationally intensive numerical methods cited above 

can be replaced by semi-analytical methods. For practical applications, these objects 

can be used as models for scatterers that are more complex. Radially inhomogeneous 

spherical scatterers constitute an especially important research topic for this matter. In 

various works on medical imaging, the human head is modeled as a layered sphere 

[17-20]. This approach has been successfully used in the studies on human head 

interaction with electromagnetic sources, MRI, impedance tomography, microwave 

imaging, and electroencephalography [21-27]. On the other hand, radially 

inhomogeneous spheres with continuous profiles are used in the design of dielectric 

lenses and metamaterials [28-32]. From these examples, it can be concluded that direct 

and inverse problems related to radially inhomogeneous spheres have great value for 

practical applications.  

Therefore, in this thesis, novel techniques have been developed in order to solve direct 

and inverse scattering problems for the radially inhomogeneous spheres. In the first 

part, the acoustical problem has been investigated. The sphere is assumed to have 

arbitrarily varying compressibility along the radial direction only. The purpose of the 

direct scattering problem is to determine the scattered acoustic field outside the sphere, 

in the case of a time harmonic point source or plane wave excitation. By taking 

advantage of the spherically symmetrical geometry, and the structure of the integral 

equations; one can replace the 3-D problem with a 1-D formulation, and therefore 

greatly reduce the time consuming complexity of the original problem. The solution 

of the related inverse scattering problem is based on the 1-D integral equation 

formulation used in the direct scattering problem. This 1-D integral equation is solved 

in an iterative fashion via the Newton method.  The Newton method is especially 

suitable for the 1-D profile inversion problem since the computational complexity 

caused by the need to solve the direct scattering problem in each step is significantly 

lower compared to the original 3-D structure. 

The analysis of the electromagnetic case follows the same plan. First, the direct 

scattering problem involving a dielectric sphere with a permittivity and conductivity 

varying in the radial direction only, has been solved in a similar fashion. However, 

since for the electromagnetic case the field function is vectorial, obtaining the 1-D 

formulation is much more challenging compared to the acoustic case. For the solution 
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of this problem, the spherical vector wave functions, which are the solution of the 

vector wave equation in the spherical coordinates, have been used to obtain a system 

of a 1-D integral equations. The inverse problem has been solved similarly via Newton 

method using this system of integral equations. Finally, for both acoustic and 

electromagnetic cases, the accuracy and the performance of the method have been 

tested via numerical simuations.  

In conclusion, it can be stated that the main purpose of the thesis is, first, to formulate 

an efficient semi-analytical method that can be used in the solution of direct scattering 

problems for the radially inhomogeneous geometry; and second, to transform the 

related 3-D inverse problem into a 1-D profile inversion problem using the same 

formulation. The solution of the resulting 1-D inversion problem will then be obtained 

via a classical technique such as the Newton method.  

1.2 Literature Review 

Numerous publications on the direct scattering problems related to the spherical 

scatterers can be found in the literature. For the acoustic case, a formulation based on 

the integro-differential equation for the field scattered by 3-D inhomogeneous objects 

has been given in [33]. The effect of variable density, which is an important factor for 

acoustic scattering formulations, has been analysed in this work, and it has been 

concluded that the problem cannot be reduced to a classical Schwinger-Lippmann 

integral equation in the case of variable density. Because of this condition, most of 

solutions proposed for the acoustic scattering problems involve scatterers with 

constant density. Similarly, in this thesis, the spherical scatterer is assumed to have 

only variable compressibility along the radial direction. An FFT based adaptive 

integral method has been developed for large inhomogeneous scatterers in [34]. In this 

work the formulation is once again is based on 3-D integral equations. A method to 

reduce the scalar wave equation into a 1-D form by the use of scalar harmonics and 

the Dini series has been presented in [35]. The solution is obtained under the 

assumption of constant density throughout the whole space. It has been shown in this 

work that the acoustic field can be expressed as series expansion in terms of spherical 

harmonics, and a 1-D formulation can be obtained by using the orthogonality of these 

functions. The mathematical properties of the spherical harmonics and the scalar wave 

function can be found in [36]. The extension of the solution presented in [35] to the 
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case of inhomogeneous density in given in [37]. Another important tool for the direct 

scattering problem related to the canonical structures are Green’s functions related to 

the particular geometry. For spherical scatterers, the Green’s function of the scalar 

wave equation for the radially inhomogeneous sphere has been obtained in [38]. In this 

work the closed form expressions are obtained for special compressibility functions 

such as Nomura-Takaku distributions. On the other hand, the closed form of the 

Green’s function for linearly inhomogeneous medium is given in [39]. It is clear from 

this analysis that the different solutions for the direct scattering problem for radially 

inhomogeneous spheres is available in the literature. In this thesis, a novel formulation, 

which is easy to implement, and more suitable to be applied in the inverse scattering 

problems, will be developed.  

The number of works on the subject of acoustic inverse scattering problem for the 

inhomogeneous spheres is much more limited compared to the direct scattering case. 

For the planarly stratified media, a method to reconstruct the density profile has been 

presented in [40]. In this work, the solution is obtained using the classical Born 

approximation. Similarly, in [41], the 1-D inverse scattering problem for a radially 

inhomogeneous sphere has been solved in order to reconstruct the density profile. The 

solution is obtained using Gelfand-Levitan method for the equations of Born 

approximation. In [42], the method of near field acoustical tomography has been 

applied in order to reconstruct the 3-D acoustical parameters. On the other hand, in 

[43], the CSI method has been used to determine the variation of the density and 

compressibility within a 3-D scatterer. A general review of the techniques used in the 

acoustic inverse scattering problems can be found in [44]. Considering the limitation 

of the Born approximation regarding the contrast values, it can be concluded that the 

1-D profile inversion problem related to the radially inhomogeneous spheres is still 

open to contributions. It should be noted that the 3-D solutions require an unnecessary 

computational effort, which can be avoided by transforming the problem into a 1-D 

form. Therefore, the main goal of the thesis regarding the acoustic case is to obtain an 

effective inversion scheme base on the solution of the related direct scattering problem. 

For the electromagnetic direct scattering problem related to radially inhomogeneous 

sphere, various analytical or semi-analytical methods are available in the literature for 

the solution of the problem. In the case of piecewise homogeneous layered spheres, 

the dyadic Green’s function constitute a powerful technique that can be used in order 
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to obtain the scattered or interior electric field [45]. These functions are constructed as 

series expansions in terms of spherical vector wave functions, and the coefficients of 

these expansions are obtained using the boundary conditions. Construction of the 

dyadic Green’s functions for the chiral or bianisotropic media can also be found in the 

literature [46,47]. On the other hand, as it is demonstrated in [48], the construction of 

the dyadic Green’s function for the spheres with continuously varying radial profile is 

much more challenging. In [49], for continuous profiles, two differential equations 

have been formulated to determine the radial component of the electric field. However, 

only for a few special profiles, these differential equations can be solved analytically. 

Therefore, for most of the cases, numerical differentiation techniques must be 

employed to supplement the analytical method. In addition, as these differential 

equations involve the derivative of the electromagnetic parameters, the method 

developed in [48,49] can only be applied for the differentiable profiles. Therefore, a 

method that can be used for the spheres with arbitrarily varying profiles cannot be 

based on dyadic Green’s functions. On the other hand, different semi-analytical 

methods using similar series expansions is available in the literature. In [50], a method 

based on the expension of the scalar free-space Green’s function in terms of spherical 

vector wave functions is presented. Similar to the acoustic case, this expansion is 

combined with a radial expansion in terms of the Dini series. As stated above, the 

spherical vector wave functions are the solution of the vector wave equation in the 

spherical coordinate system, and they are orthogonal over the unit spherical surface 

[51-53]. In this thesis, these functions and their angular parts, the vector spherical 

harmonics, have been used to formulate a 1-D integral equation system for the solution 

of the electromagnetic direct scattering problem. The detailed mathematical analysis 

of the vector spherical harmonics can be found in [54]. 

For the 1-D electromagnetic profile inversion problems, different techniques have 

been used to reconstruct 1-D variation of the profile. Especially for planar and 

cylindrical profiles, various works can be found in the literature. For the planar 

profiles, the Riccati type differential equation has been used to develop an analytical 

reconstruction technique [55,56]. However, this technique cannot be adapted to the 

other corrdinate systems in a straightforward manner [57]. Therefore as an alternative, 

Born approximation has been used for stratified cylindrical medium in [58]. As 

expected for a method based on Born approximation, the solution is valid only for low 
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contrast values. For relatively higher contrast values, solutions based on renormalized 

source type integral equation approach, and distorted Born approximation have been 

developed for cylindrical medium [59,60]. Finally, a more effective approach based 

on iterative Newton method is presented in [61], to reconstruct an arbitrarily varying 

radial profile. Publications related to spherical profile inversion are less numerous in 

the literature. A technique based on the inversion of the Riccati-similar non-linear 

differential equations has been developed in [62], in order to reconstruct continuously 

varying radial profile. On the other hand, a method to determine the electromagnetic 

parameters and the radii of a layered sphere has been proposed in [63]. Therefore, it 

can be concluded that the inverse problem involving the reconstruction of arbitrarily 

varying spherical profile is still open to contribution. In this thesis, a Newton type 

method based on the 1-D integral equation system has been developed in order to 

reconstruct moderately high contrast values. 

1.3 Hypothesis and Main Contributions 

Considering the analysis presented in the previous sections, the hypothesis of this 

thesis can be stated as follows: The 3-D direct and inverse scattering problems related 

to the radially inhomogeneous spheres can be transformed into a 1-D form by taking 

advantage of the spherical symmetry, and using appropriate series expansions for the 

interior and scattered field. Through this 1-D equation system, efficient techniques for 

the solution of direct and inverse problems might be formulated. Although this 

approach can be applied to both acoustic and electromagnetic problems, the process of 

dimension reduction must be different for the two cases, considering the mathematical 

structures of related wave equations. Therefore, in this thesis, the acoustic and the 

electromagnetic problems will be analysed separately. However, it should be noted 

that the general principles of the solutions for both cases are of similar nature. 

For the scalar acoustic case, the direct scattering problem involve determining the 

scalar scattered field in the presence of the time harmonic point source excitation. The 

problem is originally formulated by the use of the 3-D integral equation. The density 

is considered constant throughout the whole space, and the compressibility of the 

sphere is assumed to vary along the radial direction only. Although it limits the 

practical value of the method, the assumption of the constant density is a necessary 

condition for the goal of dimension reduction. It can be shown that the 3-D integral 



8 

equation can be reduced to a 1-D form by expressing the angular dependency of the 

field quantities in terms of the spherical harmonics. The orthogonality of the spherical 

harmonics over the unit spherical surface enables one to form a series expansion for 

any function that is integrable over the spherical domain. Note that as a result of the  

spherical symmetry, the orthogonality of the spherical harmonics is preserved 

throughout the entire space. Therefore, the resulting system constitutes of 1-D integral 

equations containing the series coefficients of the field quantities and the acoustical 

profile. This system is solved via a simple discretization of the integration domain 

along the radial direction to determine the coefficients for the scattered field, and then 

the scattered field itself. The performance of the method is tested by comparing the 

results with alternative techniques such Green’s function for the layered spheres, and 

the MoM for continuous profiles. These numerical simulations demonstrate that the 

method is suitable for various profiles, and can also be used in the inverse scattering 

problems reliably.   

For the formulation of the acoustic inverse problem, same 1-D reduced integral 

equations will be used. Note that since the acoustical profile is a function of the radial 

distance only, it is not effected by this reduction, and remains unchanged throughout 

the entire formulation. The two integral eqautions can be named as the reduced object 

and the reduced data equations. For the inverse problem the acoustical profile is the 

unknown, the aim is to reconstruct this function via measurement of the scattered field 

outside the sphere. The coefficients of the measured scattered field constitute the data 

of the inverse problem. The resulting inverse problem is solved in an iterative fashion 

via Newton method, by starting from an initial estimate of the acoustical profile. In 

each step of the iteration, the coefficients of the interior field is updated using the 

object equation. Since this step is similar to the direct scattering problem, it is a well-

posed problem. However, the update of the object function via the data equation is 

severely ill-posed, and the inversion can be achieved via a regularization technique. In 

this work, the well-known Tikhonov regularization has been employed to obtain a 

stable update amount for the acoustical profile [64]. The proposed method has ben 

tested using various continuous and layered profiles. The results show that the method 

is capable of reconstructing continuous and layered profiles, provided that an 

appropriate initial guess is chosen for the unknown profile. 
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The electromagnetic direct scattering problem is similarly formulated by the 3-D 

electric field integral equation involving the free space dyadic Green’s function. The 

interior electric field and the scattered field are then expanded in terms of the vector 

spherical harmonics, which form the angular components of the vector wave functions, 

and therefore, are also orthogonal over unit spherical surface [54]. The main reason to 

choose these functions as basis for series expansion is to separate angular parts from 

the radial one, which is affected by the inhomogeneity. On the other hand, the free 

space dyadic Green’s function is  expanded in terms of the vector wave functions [53]. 

By substituting these expansions into to 3-D integral equation, and using the 

orthogonality of the basis functions, one can obtain a system of 1-D integral equations 

containing only radial functions. These integral equations are well-posed, and the 

kernels of the integrals are smooth functions. Therefore, similar to the acoustic case 

they can be solved via a discretization along the radial direction. The solution of this 

sytem provides the coefficients of the interior electric field. The scattered field can be 

obtained in a similar fashion by transforming the related integral equation outside the 

sphere. The dimension reduction greatly reduce the computational complexity of the 

original problem. The comparison of the method with 3-D alternatives such as MoM 

demonstrates that the method provides higher accuracy and efficiency for the solution 

of scattering problems related to the radially inhomogeneous spheres. Also the 

mathematical structure of the 1-D integral equations makes the method suitable for 

various applications including inverse scattering problems. 

It should be noted that the main advantage of the formulation developed in this thesis 

compared to the existing 1-D formulations given in [49,50] lies in the fact that the 

electromagnetic parameters remain unaffected from the reduction process. The 1-D 

integral equations have the same form for any type of profiles, and they do not contain 

any differential operator applied on the electromagnetic parameters. Furthermore, the 

series expansion do not involve any of the electromagnetic parameters. Therefore, the 

method is especially suitable for the inverse scattering problems. The reduced 1-D 

integral equations once again constitute the reduced object and data equations. Similar 

to the acoustic case, the inverse problem is solved via iterative Newton method. First, 

using the initial guess for the profile, the system designated as the reduced object 

equations is solved to obtain the coefficients of the approximate interior electric field. 

For 3-D problems, this step is the most computationally intensive part of the iterative 
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process; however, the necessary computational effort is significantly decreased 

through the dimension reduction. Hence, the Newton method is especially suitable for 

the 1-D profile inversion problems. In the next step, the non-linear data equations, 

which involves the coefficients of the series expansion instead of the scattered field 

itself, are linearized. As the linearized data equations contain compact operators, they 

are ill-posed. Therefore, they are solved using the Tikhonov regularization to update 

the unknown profile. The numerical simulations demonstrate that the method can be 

effectively used in the reconstruction of the continuous profiles, and although it fails 

to detect sharp transitions, still provides an approximation for the piecewise 

homogeneous layered profiles. However, as expected for a Newton based method, the 

success clearly depends on the choice of initial parameters.   
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2. ACOUSTIC CASE 

2.1 Purpose 

In this section, the acoustic direct and inverse scattering problem related to radially 

inhomogeneous spheres will be analysed. First, the direct scattering problem will be 

solved through a dimension reduction process. The main goal of this process, as stated 

before, is to obtain 1-D integral equations instead of the original 3-D formulation of 

the problem. To this end, the orthogonality properties of the spherical harmonics will 

be used. In the second part, the solution of the related inverse problem will be 

developed using the aforementioned reduced 1-D integral equations. For the inversion 

process the classical Newton algorithm will be used, that is an iterative process, 

starting by an initial guess, will reconstruct the unknown acoustic profile. The content 

of this section has been presented in a more compact form in [65]. Here, the 

formulation of the method will be demonstrated in a more detailed manner. A time 

dependence i te  is assumed and omitted throughout the entire section. 

2.2 Direct Scattering Problem 

In this sub-section, we will first present a brief analysis of the spherical harmonics. 

The dimension reduction process is based on the mathematical properties of these 

functions, and therefore a theoretical background should be presented before the 

demonstration of the formulation. The second part will be the main body of this sub-

section, and will include the formulation of the problem. After the scattering problem 

is first formulated, the dimension reduction process will be developed using the 

spherical harmonics. Via this reduction process, one can replace the 3-D integral 

equation with reduced 1-D integral equations by expressing the interior and scattered 

field in terms of the appropriate spherical harmonic function. The solution of the direct 

scattering problem will be obtained using these integral equations. Finally, in the third 

part, the success of the method developed in the previous section will be tested via 

numerical simulations. The results will be compared with alternative methods such as 
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Green’s function or MoM. Furthermore, through these simulations, the effects of the 

essential parameters of the method, such as truncation number for series expansions, 

will be analysed. 

2.2.1 Spherical harmonics 

In this sub-section, the basis functions that will be used in the series expansions for the 

field values will be introduced. These functions compose the solution of the scalar 

Helmholtz equation in the spherical coordinate system. Therefore in the first part, the 

expression of the wave functions in the spherical coordinates will be given. In the next 

part, the orthogonality of these spherical functions will be demonstrated. The 

orthogonality of these functions enables one to form series expansions over the unit  

spherical surface. The mathematical properties of the series expansions will also be 

presented in the same sub-section. Finally, in the last part, some wave transformations 

that will be needed in the subsequent sections will be presented. The mathematical 

demonstration of this sub-section summarizes the detailed analysis given in [36] with 

a slightly modified notation.   

2.2.1.1 The wave functions 

The scalar Helmholtz equation is written in the spherical coordinates as: 

2
2 2

2 2 2 2 2

1 1 1
sin 0

sin sin
r k

r r r r r

  
 

    

       
      

       
 (2.1) 

Typically the solution of (2.1) is obtained via the method of seperation of variables. 

Therefore, the wave function is expressed in terms of elementary functions:  

( ) ( ) ( )R r H     (2.2) 

By substituting this expression into (2.1), and proceeding with the seperation 

procedure, one can obtain three seperated equations for the variables.  

2 2 2 ( 1) 0
d R

r k r n n R
dr r

 
        

 (2.3) 
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2

2

1
sin ( 1) 0

sin sin

H m
n n H

   

   
      

    
 (2.4) 

2
2

2
0

d
m

d


    (2.5) 

The solutions of (2.3) are called spherical Bessel functions, and they are defined in 

terms of the ordinary Bessel functions as 

1

2

( ) ( )
2

n
n

b kr B kr
kr




  (2.6) 

To represent a field inside the sphere, the functions ( )nj kr  must be used because this 

is the only spherical Bessel function which is finite at 0r  . On the other hand, the 

spherical Hankel functions of the first kind 
(1) ( )nh kr  must be used to represent an 

outward travelling field to satisfy radiation condition for r  .   

The solutions of (2.4) are the associated Legendre functions (cos )m

nP   and (cos )m

nQ   

Since all other associated Legendre functions have singularities at 0   and   ; 

in order to have a finite wave function on the interval  0,  , the functions 

(cos )m

nP  , with n  being an integer, must be used in the final form of   . Finally, 

(2.5) is the well known harmonic equation, and the solution will be expressed in this 

thesis as a linear combination of ime   and ime  , with m  being an integer. 

Therefore, the final form of the wave functions that can be used in the representation 

of the scalar fields in the spherical coordinates can now be written. For the fields inside 

the spheres including the origin, the elementary wave function is given as 

( ) (cos )m im

nm n nj kr P e    (2.7) 

whereas for outward travelling waves the proper form is  

(1) ( ) (cos )m im

nm n nh kr P e    (2.8) 
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Here, m  and n  are integers. Therefore, the general solution of the Helmholtz equation 

in the spherical coordinates system can be written as a linear combination of the 

elementary wave functions as  

nm nm

n m

C   
(2.9) 

with nmC  being scalar constants. The expressions presented in (2.7) and (2.8) 

demonstrate that the angular components of any scalar field in a spherically 

symmetrical geometry can be expressed as a series expansion in terms of the functions 

(cos )m

nP   and ime  , which will be the subject of the next sub-section.   

2.2.1.2 The orthogonality relationships 

In this sub-section, we will first state the orthogonality relationship regarding the 

associated Legendre functions and the harmonic functions. The proof of these 

relationships can be found in [36]. Then we will define the form of the series expansion 

that will be used in the dimension reduction procedure. The proof of these relationships 

can be found in [36].  

First, the harmonic functions ime   satisfy the well known orthogonality relationship 

on the domain  0,2  :  

2

0

0

2

im in
m n

e e d
m n



  


 
  

 
  (2.10) 

Similar to the harmonic functions, the Legendre polynomials form an orthogonal set 

in the interval  0,  . The orthogonality relationship for these polynomials are 

given as 

0

0

(cos ) (cos )sin 2

2 1

n l

n l

P P d
n l

n



   




  
 

  (2.11) 

Finally, to form a complete orthogonal set over the unit spherical surface a 

combination of associated Legendre functions and the harmonic functions must be 

used. First, let us state the orthogonality relationship for the Legendre functions:  
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0

0 , ,

(cos ) (cos )sin 2 ( )!
, ,

2 1 ( )!

m q

n p

n m p q

P P d n m
n m p q

n n m



   




  
  

  (2.12) 

The combination (cos )
m im

nP e  
 are called spherical harmonics or tesseral harmonics, 

and the related orthogonality relationship can be determined by combining (2.10) and 

(2.12) as  

2

0 0

0 , ,

(cos ) (cos ) sin ( )!4
, ,

2 1 ( )!

m q im iq

n p

n m p q

P P e e d d n m
n m p q

n n m

 
      

 


 
   

 

 

(2.13) 

It is clear from (2.13) that any function ( , )f    that is integrable over the domain 

   0, 0,2   can be expressed as a series expansion in terms of spherical harmonics 

as  

0

( )!2 1ˆ( , ) (cos )
4 ( )!

n
m im

nm n

n m n

n mn
f f P e

n m

  




 





   (2.14) 

Here, ˆ
nmf  are the scalar coefficients of the series expansion. These coefficients can 

be determined using the orthogonality relationship (2.13). By multiplying both side 

with (cos )
q iq

pP e  , and integrating over the unit spherical surface, one obtains  

2

0 0

ˆ ( , ) (cos ) sin
m im

nm nf f P e d d

 

         (2.15) 

The series expansion defined by (2.14) and (2.15) can be used to express the angular 

dependence of the scalar fields in the spherical coordinate system.  

2.2.1.3 The wave transformations 

In this sub-section, we will first obtain the acoustic plane wave as a series expansion 

in terms of the spherical wave functions. This expression will be used as an alternative 

for the point source excitation. Secondly, a similar expansion for the acoustic field 

created by a point source will be presented. The addition theorem for the spherical 
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Hankel functions will also be derived through the procedure. This theorem constitutes 

an important part of the dimension reduction process. The more detailed presentation 

of the derivation procedures can be found in [36]. 

First, for the acoustic plane wave travelling in the negative z direction, expressed as 

ikze , the series expansion have the form 

cos

0

( ) (cos )ikz ikr

n n n

n

e e a j kr P 


 



   (2.16) 

Here, na  are scalar coefficients of the series expansion. The radial dependence should 

be expressed in terms of spherical Bessel functions ( )nj kr  to avoid having singularity 

at 0r  . Moreover, since the plain wave is independent of  , the harmonic functions 

are excluded from the series expansion. To obtain the coefficients na , both sides of 

the (2.15) is multiplied by (cos )qP  , and integrated over the interval  0,  . Then 

considering the orthogonality relationship given in (2.11), we obtain  

cos

0

2
(cos )sin ( )

2 1

ikr n
n n

a
e P d j kr

n


    

  (2.17) 

By evaluating this integral, the coefficients are determined as  

  (2 1)
n

na i n    (2.18) 

Subtituting this expression into (2.16) yields the series expansion for the acoustic plane 

wave travelling in the negative z direction:  

 
0

(2 1) ( ) (cos )
nikz

n n

n

e i n j kr P 






    (2.19) 

Secondly, the series expansion for the field created by a point source located at sr , 

defined as  

sik

s

e

ik





r r

r r
 (2.20) 
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Figure 2.1 : The source and the field points in the spherical coordinates. 

will be expanded in terms of the spherical wave functions. Considering the asymptotic 

formula for the spherical Hankel functions   

 
1

(1) ( )n
ikr

n

i
h kr e

kr


  (2.21) 

it is clear that the field given by (2.20) can also be expressed via spherical Hankel 

functions as  

(1)

0 ( )
sik

s

s

e
h k

ik



 


r r

r r
r r

 (2.22) 

Now, consider the geometry given in Fig. 2.1. Since the field created by the point 

source is symmetric around the vector sr , the angular wave functions, the Legendre 

polynomials, can be expressed in terms of the angle   which is defined as 

cos cos cos sin sin cos( )s s s          (2.23) 

To avoid singularity at 0r  , and to satisfy the radiation condition for r  , the 

radial dependence for the series expansion should be of the form 
(1)( ) ( )n n sj kr h kr  for 

sr r , and 
(1)( ) ( )n s nj kr h kr  for sr r . The angular dependence will be expressed by 

the Legendre polynomials. Therefore, the expansion have the form   
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(1)

0(1)

0

(1)

0

( ) ( ) (cos )

( )

( ) ( ) (cos )

n n s n n s

n

s

n n n s n s

n

C h kr j kr P r r

h k

C h kr j kr P r r

















  

 





r r  (2.24) 

Here, nC  are the scalar coefficients. By receding the source to infinity, the field can be 

made equivalent to a plane wave. Therefore, replacing the spherical Hankel functions 

by the asymptotic formula (2.21), and comparing the resulting expression with (2.19) 

yields the coefficients as determined as  

2 1nC n   (2.25) 

Finally, the Legendre polynomials (cos )nP   can be expressed in terms spherical 

harmonics (cos )m im

nP e  
 as  

( )( )!
(cos ) (cos ) (cos )

( )!
s

n
m m im

n n n s

m n

n m
P P P e

n m

    







  (2.26) 

The final form of the addition theorem for the spherical Hankel functions is obtained 

by substituting (2.25) and (2.26) into (2.24):  

(1)

0(1)

0

(1)

0

( )

( )

(2 1)( )!
( ) ( )

( )!
( )

(2 1)( )!
( ) ( )

( )!

(cos ) (cos )

(cos ) (cos )

s

s

n

n s n

n m n

s
n

n n s

n m n

m m im

n n s s

m m im

n n s s

n n m
h kr j kr

n m
h k

n n m
h kr j kr

n m

P P e r r

P P e r r

 

 

 

 



 



 





  



  

 
 

 

 

 

 

r r

 (2.27) 

2.2.2 Solution of the direct scattering problem 

In the first part of this sub-section, the general formulation of the direct scattering 

problem will be presented. After the introduction of the acoustic wave equation in the 

original form, the necessary simplifications will be stated. After the formulation, in the 

second part, the dimension reduction process will be explained in detail. The 3-D 

integral equation, introduced in the first part, will be reduced to a 1-D integral equation 
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along the radial direction. The solution of the direct scattering problem is obtained by 

a simple discretization of these reduced integral equations.  

2.2.2.1 Formulation of the problem 

Consider the sphere with radius a , denoted by D  in Fig. 2.2, whose acoustic 

parameters, the density ( )r  and the compressibility ( )b r , are functions of radial 

distance r  only. The sphere is illuminated by a time harmonic point source of strength 

0P , situated at the point ( , , )s s sr   , sr a . The region outside the sphere is 

characterized by a constant wave number 0 0 0k b  , 0  and 0b  being the density 

and the compressibility of the outside region respectively. Here,   is the operating 

angular frequency of the point source. 

 

 

Figure 2.2 : The geometry of the direct scattering problem. 

The incident field ( )iu r  satisfies the scalar wave equation  

2

0 0( ) ( ) ( )i i

su k u P    r r r r  (2.28) 

Taking (2.22) into account, the solution of (2.28) can be written as  

0

(1)0 0 0 0
0

0

( , , ) ( )
4 4

sik

i

s

s

ik P ik Pe
u r h k

ik
 

 



  


r r

r r
r r

 (2.29) 



20 

The total field ( )u r , on the other hand, satisfies the following wave equation:  

2

0

1
( ) ( ) ( ) ( ) ( ) ( )

( )
su r u k r u P

r
 


       r r r r r  (2.30) 

Here, the density ( )r  and the wave number ( )k r  are defined as  

0
( )

( )

r a
r

r r a







 


 (2.31) 

and 

0
( )

( ) ( )

k r a
k r

r ar b r 

 
 


 (2.32) 

respectively. The aim of the direct scattering problem is to determine the total field 

( )u r  by solving (2.30), for the given functions of ( )r  and ( )b r . The main purpose 

of this thesis is to solve this problem by first formulating Schwinger-Lippmann type 

integral equations, and then reducing these equations into a 1-D form. However, as 

stated in [33], in the case of variable density, the problem cannot be easily reduced to 

Schwinger-Lippmann integral equations. Therefore, to make the problem more 

manageable, the density will be considered constant throughout the whole space, that 

is 0( )r  . Although it limits the practicality of the solution, this assumption makes 

the dimension reduction process possible. For constant density, the term ( )r  in 

(2.30) vanishes, and the equation becomes similar to (2.28).  

At this point, we can define the scattered field as the difference of the total field and 

the incoming field: 

( ) ( ) ( )s iu u u r r r  (2.33) 

Using this expression in (2.30) under the assumption of constant density yields  

2 2 2

0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )i s i s

su u k u u P k r k u                  r r r r r r r  (2.34) 



21 

Considering the wave equation for the incoming field given in (2.28), the equation for 

the scattered field can be obtained via (2.34) as   

2 2

0 0( ) ( ) ( ) ( )s su k u k v r u   r r r  (2.35) 

Here, the function ( )v r  is the object function, and it is defined as   

2

2

0

( )
( ) 1

k r
v r

k
   (2.36) 

It is clear from (2.36) that ( )v r  takes the value of zero outside the sphere. The solution 

of (2.35) can be formulated using the related Green’s function ( , )g r r , which is the 

fundamental solution of the equation:  

2

0( , ) ( , ) ( )g k g       r r r r r r  (2.37) 

The solution of (2.37) yields  
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 (2.38) 

Comparing (2.35) with (2.37) demonstrates that the scattered field ( )su r  can be 

expressed as a convolution integral containing the Green’s function ( , )g r r :  

2

0( ) ( , ) ( ) ( )s

D

u k g v r u dv a    r r r r r  
(2.39) 

This equation shows that when the total field ( )u r  inside the sphere is known, the 

scattered field at any point outside the sphere can be determined. (2.39) is known as 

data equation in the inverse scattering problems, where the measured value of the 

scattered field constitutes the data of the problem. Now, in order to determine the 

equation for the total field inside the sphere, let us substitute (2.39) into (2.33) to obtain  

2

0( ) ( ) ( , ) ( ) ( )i

D

u u k g v r u dv D     r r r r r r  
(2.40) 



22 

This equation is a Fredholm integral equation of the second type, that should be solved 

to determine the total field inside the sphere. This equation is called the object 

equation. The solution of the direct scattering problem involves the solution of (2.40) 

for a given object function (acoustic profile). The scattered field is then evaluated at a 

measurement region outside the sphere using (2.39). A commonly used solution 

technique is MoM, where the 3-D spherical scatterer is discretized into smaller cells, 

and the integral equation is evaluated using point matching technique [14]. However, 

it should be noted that, because of the spherically symmetrical geometry, the problem 

can be reduced to a 1-D form along the radial direction. Such a reduction would 

decrease the necessary computational effort, and would also simplify the solution of 

both direct and inverse scattering problem. Therefore, in the next sub-section, the 3-D 

object and data equations, given in (2.40) and (2.39) respectively, will be reduced to a 

1-D form using the mathematical properties of the spherical harmonics introduced in 

the previous sub-section.  

2.2.2.2 Dimension reduction for the integral equations 

In this sub-section the reduced object and data equations will be obtained. To this end, 

the series expansion defined by (2.14) and (2.15) will be used to express the total field 

and the incoming field. The main aim of this sub-section is to obtain integral equations 

involving the series expansion coefficients instead of the field values themselves. 

Therefore, we first introduce the series expansions of similar form as (2.14) for the 

fields ( )u r , ( )su r  and ( )iu r : 
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Note that the coefficients of the series expansions ˆ ( )nmu r , ˆ ( )s

nmu r , and ˆ ( )i

nmu r  are 

functions of radial distance only, since the angular dependence is expressed by the 
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spherical harmonics. These coefficients will appear in the final form of the reduced 

integral equations. We also expand the Green’s function ( , )g r r  using the addition 

theorem given in (2.27), and by taking (2.22) into account:  
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 (2.44) 

Here, r  and r stand for the smaller and larger term of the pair r , r  respectively.  In 

order to reduce the object equation (2.40) into a 1-D form, let us multiply both sides 

of the equation by (cos ) sinm im

nP e  
, and integrate over the unit spherical surface. 

Since this operation is equivalent to the integration defined in (2.15), the resulting 

equation involves the coefficients ˆ ( )nmu r  and ˆ ( )i

nmu r :    
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(2.45) 

It is clear from (2.45) that, to complete the series expansion, the terms ( , )g r r  and 

( )u r  in the volume integral should also be expanded. Therefore, we substitute the 

expression given for ( , )g r r  in (2.44) into (2.45) to transform the integral in the 

equation into the form  
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 (2.46) 

Here, the subscripts n  and m  are used to distinguish the expansion for the Green’s 

function from the previous integration with the spherical harmonics denoted by n  and 

m . The volume integral within the braces can be written in a more open form as 
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 (2.47) 
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Note that the integration of the terms involving ,     over the unit spherical surface, 

that is, over the domain    0, 0,2  , yields the coefficients ˆ ( )nmu r , since the kernel 

of the integral has the same form as (2.15). Therefore, (2.47) becomes   
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Through this procedure the integral has been reduced to a 1-D form. However, to 

complete the reduction process, all angular terms must be eliminated from the original 

object equation. To this end, we subsititute (2.48) into (2.45) to further take advantage 

of the orthogonality relationship. At this point, the object equation has the form  
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(2.49) 

The last integral in (2.49) is a direct application of the orthogonality relationship for 

the spherical harmonics given in (2.13):  
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(2.50) 

It should be noted that, since for any , ,n m n m  the integral takes the value of zero, 

all the terms of the series expension in (2.49) are zeros except for , ,n m n m . 

Therefore, the series expansion on ,n m  can be removed from the final form of the 

object equation which is obtained as  
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nm nm n n nmu r u r ik j k r h k r v r u r r dr r a 
       (2.51) 

(2.51) can be considered as the reduced object equation. The dimension reduction for 

the data equation (2.39) follows the same procedure, and can be achieved in a 
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straightforward manner. Therefore, we give the final form of the coefficients of the 

scattered field as 

3 (1) 2

0 0 0

0

ˆ ˆ( ) ( ) ( ) ( ) ( )

a

s

nm n n nmu r ik h k r j k r v r u r r dr r a       (2.52) 

Note that, in the region outside the sphere, the field point r has greater value than the 

source point r . Therefore, the radial dependence of the scattered field is always 

expressed in terms of spherical Hankel functions of the first kind.  

Through the dimension reduction process, the original system, formed by (2.39) and 

(2.40), is replaced by the reduced integral equations (2.51) and (2.52). By solving these 

reduced integral equations, one can obtain the series expansion coefficients for the 

interior field and the scattered field. The actual field values can be then determined by 

substituting these coefficients into the series expansions defined in (2.40) and (2.41). 

Note that the solution of the system formed by (2.51)-(2.52) can be achieved via a 

simple discretization of the interval  0,r a , since the kernels of the integrals are 

smooth functions. The details of the discretization procedure is presented in Appendix 

A. In the next sub-section, some numerical simulations will be presented to assess the 

performance of the proposed solution. However, before concluding this sub-section, 

we will present the open expression of the coefficients for the incoming field ˆ ( )i

nmu r , 

to complete the dimension reduction formulation.   

The coefficients of the incoming field 

First, the coefficients for the point source located at the point ( , , )s s sr   , as indicated 

in Fig. 2.1, will be determined. The field created by this source is expressed as   
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(2.53) 

Here, 0P  is the strength of the source, and r , r stand for the smaller and larger term 

of the pair r , sr  respectively. Expectedly, this expression has the same form as the 

Green’s function ( , )g r r . The coefficients ˆ ( )i

nmu r  are defined by the integral   
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Substituting (2.53) into (2.54) yields    
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(2.55) 

The subscripts n  and m  are used once again to distinguish the series expension from 

the integration of (2.54). It is clear that (2.55) has the same form as (2.49), and the 

angular integral is identical to the orthogonality relationship (2.50). Therefore, the final 

form of the coefficients ˆ ( )i

nmu r  for the point source can be written as  
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where min( , )sr r r   and max( , )sr r r  .  

Another widely used form for the incoming field is the acoustic plane wave. Therefore, 

we will also obtain the coefficients for the plane wave travelling in the negative z 

direction. The expression of this field was already given as a series expansion in (2.19) 

as 
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Multiplying both sides of (2.57) by (cos )
m im

nP e  
, and integrating over the unit 

spherical surface yields  
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Considering the identity  
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0( ) ( )n nP u P u  (2.59) 

and the orthogonality relationship for the Legendre functions given in  (2.12), the 

integration on the interval  0,   in (2.58) can be determined as  
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It is clear from (2.60) that, as a result of the orthogonality, the series terms for n n  

in (2.58) will not have any contribution to the integration. Also for 0m , the 

coefficients ˆ ( )i

nmu r  will be zeros. As the integration on the interval  0,2   yields  

2

0

0 0

2 0

im
m

e d
m



 





 


  (2.61) 

the final form of the coefficients for the acoustic plane wave travelling in the negative 

z direction is obtained as  

  0

0 0
ˆ ( )

4 ( ) 0

i

nnm

n

m
u r

i j k r m


 

 

 (2.62) 

2.2.3 Numerical simulations 

In this sub-section, we will represent the results of the numerical simulations in order 

to validate the accuracy of the method proposed in the previous sections. These 

simulations will involve comparisons with alternative techniques available in the 

literature for different configurations. Since the analytical method can be considered 

as the gold standard among these alternatives, it will be frequently employed in the 

comparisons. However, an analytical solution is only available for piecewise 

homogeneous layered spheres. Therefore, for continuous profiles, the comparisons 

will be made using the results already published in the literature, and the frequently 

used numerical technique MoM. In the first part of the sub-section, the calculation of 

the values of the total field inside the sphere by (2.51) will be compared with the 

alternatives. The effect of the change in the operating frequency, and the number of 

the terms involved in the series expansions (2.41)-(2.43) will also be analysed. In the 
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second part, the simulations will involve the calculation of the scattered field outside 

the sphere using (2.52), for continuous and layered profiles. The accuracy of the results 

presented in that section also demonstrates that the method can be reliably used in the 

inverse scattering problems that will be investigated in the next part of the thesis.   

2.2.3.1 Comparisons for the total field inside the sphere 

For the comparison with the analytical expression, first a two layered piecewise 

homogeneous sphere described by  
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(2.63) 

will be considered. Here, 0b  is the compressibility of the surrounding medium which 

is characterized by a constant wave number 0 0 0 20k b   . The radius of the 

sphere is chosen as 0.1a m , and it is illuminated by a time harmonic point source 

situated at the point defined by 0.2sr m , 3s  , 2s  . The total field inside 

the sphere, as a function of the radial distance r , is assumed to be measured on the 

line defined by 6    . The field values are calculated by the reduced integral 

equation (2.51), and the analytical solution explained in Appendix B. For the solution, 

the integral in (2.51) is discretized by 30  points. The results presented in Fig. 2.3 

demonstrate excellent agreement between two methods.  

It is clear from the results that, the field inside the sphere is slowly varying along the 

radial direction. It is an expected result, since the value 0k a , which represents the 

electrical size of the sphere, is rather small for this example. Therefore, in this example 

number of terms included in the series expansions (2.41) and (2.43) is chosen as 

max 5N  . The higher order terms, which correspond to more rapidly varying 

harmonics, do not have a significant contribution to the total field. Accordingly, adding 

more terms do not change the final solution, since the related coefficients have 

considerably smaller values compared to the lower order terms. In the next example, 

the results for the cases with significantly larger 0k  values will be considered to further 

demonstrate this point.  
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Figure 2.3 : Real and imaginary parts of the total field inside a two layered sphere,                                                                                                                           

solution with the reduced integral equation and the analytical expression ( 0 20k  ). 

First, for the same configuration analysed in the previous example, the wave number 

of the outside region will be increased to 0 100k  . The results presented in Fig. 2.4 

demonstrate that, since the variation of the field would be greater for an electrically 

larger sphere, more terms should be added to the series expansion. Comparing the 

results obtained by the analytical solution, with those obtained by the integral 

equations for max 5N   proves that the number of terms included in the previous 

example is inadequate for this example. Increasing the number of terms to max 10N   

significantly reduces the difference, however a perfect match does not occur for this 

case either. On the other hand, as seen in Fig. 2.5, the agreement between two methods 

is once again established when the number of terms is increased to max 15N  . 

Moreover, note that adding further terms do not effect the outcome, since the results 

for max 20N   also displays an excellent agreement with the analytical result. 

Therefore, it can be concluded that the method produces stable results when the 

number of terms included in the series expansion is sufficiently large. As final example 

to illustrate this point, and to assess the performance of the method, the same problem 

is solved for 0 200k  . The simulations presented in Fig. 2.6, demonstrate that for this 

wave number value, the agreement is reached when the limit is chosen as  max 25N  . 

It is clear from the analysis that the method developed in this thesis shows good 



30 

agreement with the analytical solution in the case of layered spheres. Moreover, it is 

suitable to be used in the direct scattering problems involving electrically large 

spheres, provided that appropriate parameters are chosen.   

 

Figure 2.4 : Real and imaginary parts of the total field inside a two layered sphere, 

solution with the reduced integral equation for max 5N   and max 10N   ( 0 100k  ). 

 

Figure 2.5 : Real and imaginary parts of the total field inside a two layered sphere, 

solution with the reduced integral equation for max 15N   and max 20N   ( 0 100k  ). 
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Figure 2.6 : Real and imaginary parts of the total field inside a two layered sphere, 

solution with the reduced integral equation for max 20N   and max 25N   ( 0 200k  ). 

For the continuous profiles, an analytical solution does not exist. Therefore, the 

accuracy of the method for these types of the profiles is tested by comparisons with 

the results presented in the available publications. In [35], the magnitude of the total 

field inside a sphere described by  

0

( )
5 5

b r r

b a
   

(2.64) 

has been calculated for different 0k a  values. The sphere is illuminated by an acoustic 

plane wave propagating along the negative z  direction, and the field inside the sphere 

is assumed to be measured on a line in the xy  plane. Here, we have produced the 

results for the same configuration, using the integral equation (2.51). For all 0k a  

values, the wave number is chosen as 0 21k  , and the radius a  is changed 

accordingly. The number of terms included in the series expansion is identical for all 

cases to the number chosen in [35]; for example, the number is chosen as max 27N 

for 0 16.8k a  . For larger 0k a  values of 8.4  and 16.8 , the integrals are discretized by 

60 points to further increase the accuracy. The results presented in Fig. 2.7 show a 

quite good agreement with those presented in [35]. Therefore, it can be concluded that 

the method can also be reliably used for the spheres with continuously varying profiles.  
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Figure 2.7 :  The field variation inside the sphere described by  0( ) 5 5 /b r b r a  , 

for different 0k a  values: (1) 0 2.1k a  ; (2) 0 4.2k a  ; (3) 0 8.4k a  ; (4) 0 16.8k a  . 

2.2.3.2 Comparisons for the scattered field outside the sphere 

After determining the total interior field via (2.51), the scattered field can be evaluated 

at any point outside the sphere using (2.52). The comparisons for the scattered field 

can be made using the analytical expression as well as numerical techniques. In this 

sub-section, we will use the MoM solution developed in [14] as an alternative 

technique alongside the analytical solution. In this method, the 3-D object equation 

(2.40) is solved by a discretization of the inhomogeneous 3-D scatterer into cubic cells. 

A brief presentation of the MoM formulation for the acoustic case can be found in 

Appendix C.  

As a first example, the field scattered by the two-layed sphere defined in (2.63) will 

be considered. The point source is supposed to be located at the point by 0.25sr m , 

3s  , 2s  , and the measurement line is defined by 0.2obsr m , 2obs  , 

 0,2obs  . The sphere has a radius of 0.1a m , and the wave number of the outside 

region is chosen as 0 8k  . The scattered field is calculated by three different 

methods: the reduced integral equation (2.52), the analytical expression and MoM. The 

results presented in Fig. 2.8 show good agreement between three methods, although a 

perfect match does not occur. For this simulation, the integral in (2.52) is discretized 

by 30  points, and the number of terms for the series expansions in(2.41)-(2.43) is 
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chosen as max 10N  , considering the electrical size of the sphere. On the other hand, 

for MoM, the sphere is discretized into 15 15 15   cubic cells. The agreement between 

analytical solution and the integral equation method is expected, considering 

previously demonstrated agreement for the interior field. The results show that for 

moderate size and contrast values, MoM also provides a reliable alternative. The limits 

of the agreement with MoM will be tested in the next example.  

 

Figure 2.8 :  The magnitude of field scattered by a two layered sphere, calculated by 

three methods. Measurement region: 0.2obsr m , 2obs  ,  0,2obs  ; 0 8k  . 

However, before analysing different configurations, the behaviour of the coefficients 

for the series expansions should be discussed. Since the measurement have been made 

at a constant radial distance obsr r , the variation of the coefficients for the scattered 

field, ˆ ( )s

nm obsu r , can be observed more easily compared to case involving calculations 

of the interior field as a function of radial distance. Therefore, in Fig 2.9, the magnitude 

of the coefficients for 0m  ; that is 0
ˆ ( )s

n obsu r  for 1,2,..,10n  ;  has been presented. 

The terms with 0m   are chosen over remaining coefficients because those are the 

most dominant terms that form the scattered field. It is clear from the results that the 

contribution of the terms decreases rapidly as the index term n  grows, and for 5n  , 

the effect of the related term becomes negligeable. This observation is in accord with 

the results for the interior field presented in the previous sub-section. 
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Figure 2.9 : 0
ˆ ( )s

n obsu r : The coefficients of the series expansion for the scattered field 

Now, to test the performances of the methods in the case of electrically larger sphere, 

the same configuration as the previous example will be analysed after changing the 

wave number of the outside region to 0 200k  . Similar to the case of interior field, 

the number of terms in the series expansions is increased to max 30N   in order to 

handle the relatively rapid variation of the field inside and outside the sphere. In Fig 

2.10, the results obtained via three different methods are compared. It is clear from the 

results that, while the solution with the integral equation and the analytical expression 

display considerable agreement, the solution with MoM diverges substantially from 

other calculations. This result shows that the discretization into 15 15 15   cubic cells 

is not adequate to obtain a reliable solution for a sphere of this size. Therefore, for the 

results presented in Fig 2.11, a discretization into 25 25 25   cubic cells has been 

used for the solution with MoM. The comparison with the previous results of the 

remaining methods demonstrate a significant improvement; however, the level of 

agreement is still lower compared to the other two methods. This is an expected result, 

considering that the analytical solution and the solution with the integral equations are 

designed specifically for the spherical geometry, whereas the cubic cell discretization 

of MoM can only approximately represent the spherical scatterer. In conclusion, the 

agreement between the method developed in this thesis, and the analytical solution 

shows that the method can be reliably used in order to determine the field scattered by 

spheres with layered profiles. On the other hand, MoM, which is the only altenative to 
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be used in the comparisons for continuous profiles, have a relatively limited accuracy, 

especially for electrically larger scatterers. Therefore, in the examples involving 

continuous profiles, a general agreement should be expected instead of a perfect match.  

 

Figure 2.10 :  The magnitude of field scattered by a two layered sphere, calculated 

by three methods ( 0 200k  ). The number of terms for the solution with the integral 

equations is 
max 30N  , the discretization for MoM involves 15 15 15   cubic cells. 

 

Figure 2.11 :  The magnitude of field scattered by a two layered sphere, calculated 

by three methods ( 0 200k  ). The number of terms for the solution with the integral 

equations is max 30N  , the discretization for MoM involves 25 25 25   cubic cells. 
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As a first example for the continuous profiles, the linearly varying profile defined in 

(2.64) will be analysed. In order to make the comparison with MoM feasible, the wave 

number of the outside region is chosen as 0 8k  , and the radius of the sphere is 

determined as 0.1a m . For the solution with integral equation, the number of 

included terms is chosen as max 10N  , and 15 15 15   cubic cell discretization is used 

for MoM. The measurement region is the arc defined by  0.2obsr m ,  0,obs  , 

0obs  . Two different sources have been used for the excitation of the scattered field. 

In Fig 2.12, the scattered field in the case of point source excitation has been calculated 

via the integral eqautions and MoM. The point source is situated at the point 

0.25sr m , 3s  , 2s  . On the other hand, the results for the case of plane 

wave excitation is presented in Fig 2.13. The plane wave is assumed to be travelling 

along the negative z direction. For both cases, the results show good agreement, 

however, a perfect match does not occur. Although the sphere is electrically small, this 

divergence can be expected, considering the relatively high contrast between the 

sphere and the outside region. Therefore, relatively low contrast values should be used 

to obtain better matching results. 

 

Figure 2.12 :  The field scattered by the sphere described by  0( ) 5 5 /b r b r a   in 

the case of point source excitation, calculated by the integral equations and MoM.  

Measurement region: 0.2obsr m ,  0,obs  , 0obs  ; ( 0 8k  ). 
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Figure 2.13 :  The field scattered by the sphere described by  0( ) 5 5 /b r b r a   in 

the case of plane wave excitation, calculated by the integral equations and MoM.  

Measurement region: 0.2obsr m ,  0,obs  , 0obs  ; ( 0 8k  ). 

Since the data for the inverse scattering problems, i.e. the scattered field, will be 

produced using MoM in order to prevent inverse crime, obtaining accurate results for 

the scattered field is crucially important. Therefore, profiles with relatively lower 

contrast values should be used in order to increase the accuracy and the level of 

agreement between two methods. To this end, we will first consider the well-known 

Luneburg lens described by 2

0( ) / 2 ( / )b r b r a   which has a slowly varying smooth 

profile. The sphere with a radius 0.1a m  is illuminated by the point source located 

at the point 0.25sr m , 3s  , 2s  . The outside region is characterized by 

the wave number 0 8k  , and the scattered field is assumed to be measured on the 

line is defined by 0.2obsr m , 2obs  ,  0,2obs  .  Same parameters as the 

previous example with the linear profile have been used for the solutions with the 

integral equations and MoM. The results presented in Fig. 2.14 demonstrate that for 

slowly changing smooth profiles, the methods show perfect agreement.  

Secondly, an oscillating profile described by  0( ) / 1.5 0.5cos 3 /b r b r a   is 

analysed using the same configuration. Although the variation of this profile is 

considerably greater than Luneburg lens, the methods nevertheless demonstrate 

perfect agreement as seen in Fig. 2.14. Therefore, it can be concluded that for relatively 

low contrast values, MoM can be reliably used to produce data for the inverse 



38 

problems. Moreover, it is clear from the examples presented in this section that the 

method based on the reduced integral equations yields accurate results in the 

calculations of the interior and the scattered field for various types of profiles. 

 

Figure 2.14 :  The field scattered by the Luneburg lens, calculated by the integral 

equations and MoM.  Measurement region: 0.2obsr m , 2obs  ,  0,2obs  . 

 

Figure 2.15 : The field scattered from the sphere of  0( ) / 1.5 0.5cos 3 /b r b r a  , 

calculated by the integral equations and MoM. Measurement region: 0.2obsr m , 

2obs  ,  0,2obs  ; ( 0 8k  ). 
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2.3 Inverse Scattering Problem 

In this section, the solution of the 1-D profile inversion problem in spherical 

coordinates will be developed. As stated in the introduction, the aim of this problem is 

to reconstruct the acoustical profile, which is a function of the radial distance only, via 

a measurement of the scattered acoustic field on a certain domain outside the sphere. 

Although this can be considered as a 3-D problem, it can be reduced into a 1-D form 

by the dimension reduction process demonstrated in the previous sections. Therefore, 

the original 3-D inverse scattering problem will be restated in a 1-D form through the 

system formed by the reduced integral equations (2.51) and (2.52). The detailed 

formulation of the problem, and its solution via a Newton based iterative scheme will 

be presented in the second part of this section. However, before the development of 

the solution, a brief discussion of the theoretical features of the inverse problems, 

alongside the related concepts of ill-posedness and non-linearity, will be given in the 

first part. Finally, the section will be concluded in the third part where the results of 

numerical simulations testing the effectiveness of the method will be presented.  

2.3.1 Theoretical background 

The main difficulty in the solution of the inverse scattering problems lies in the 

inherent non-linearity and the ill-posedness of the problems [2]. The measured data, 

that is the scattered field, always contain errors; and due to the ill-posedness, even 

small deviations in the measured field can cause large errors in the reconstructed 

profile [2]. Therefore, a typical solution would involve a linearization process such as 

Born approximation, and a regularization technique such as Tikhonov regularization, 

in order to obtain a stable solution. In short, the main aim of the solution techniques is 

to obtain useful approximate solutions instead of an exact solution [2].  

In this sub-section, we will first give the mathematical definition of the ill-posedness, 

and then discuss the regularization procedures that are used to obtain approximate 

solutions for the ill-posed problems. The entire section can be considered as a summary 

of the rigorous treatment of these subjects presented in [2]. Therefore, for the 

mathematical proofs and the systematic analysis of the concepts mentioned in this 

section, readers should refer to sections four and five of the book [2].    
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The definition of well-posedness posited in [66] states that for an operator

:A U X V X   , from a subset U  of a normed space X  into a subset V  of a 

normed space Y , the equation   

A f   (2.65) 

is called well-posed if :A U V  is bijective and the inverse operator 1 :A V U  is 

continuous. Otherwise the equation is called ill-posed [2]. This definition of well-

posedness has three components. First, a solution should exist for all f V , that is A  

must be surjective. Second, the solution should be unique, that is A  must be injective. 

Finally, 1A  should be continuous, that is the solution   must depend continuously 

on the data f . The last condition guarantees that small perturbations in the measured 

data will cause small errors in the solution of the problem. However, for most inverse 

scattering problems, this condition can not be satisfied, and hence these problems are 

clasified as ill-posed problems. Typically, completely continuous operator equations 

of the first kind are ill-posed [2]. The linearized form of the reduced data equation 

(2.52), which is a Fredholm integral equation of the first kind, involves linear compact 

operators. As the linear compact operators are continuous, the inverse problem that is 

analysed in this thesis is ill-posed [2]. The ill-posedness implies that a straightforward 

inversion will result in an instable solution with a large error, since the measured data 

is assumed to contain random noise. Therefore, special techniques, called 

regularization methods, should be used to obtain a stable approximate solution of the 

inverse problem [2].  

The regularization methods aims to solve the equation (2.65) for a right hand side with 

error denoted as f  , satisfying  

f f    (2.66) 

where   is the error level [2]. It is clear that the solution   of the equation with f 

will be an approximate solution. To obtain this stable approximate solution the inverse 

operator 1A  must be replaced by an approximate linear operator :R Y X  [2]. That 

is, for the normed spaces of X ,Y  and the bounded linear operator :A X Y ; a family 

of bounded linear operators :R Y X  , 0  ,  with the property  
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0
lim R A


 


  
(2.67) 

for all X  , is a regularization scheme for A ; here   is the regularization parameter 

[2]. It is from (2.67) that the approximate solution   is given by  

R f 

   (2.68) 

Considering (2.66) and (2.68), the resulting error can be stated as   

R R A

          (2.69) 

The first term in the right hand side of (2.69) shows the effect of the perturbations in 

the measured data, and the second term is the result of the replacing inverse operator 

1A  with the regularization sheme R . As for 0  ,  
1R A

 ; the second part of 

the error decreases for smaller values of the regularization parameter   [2]. However, 

this choice will increase the instability of the solution, and hence will result in an 

increase in the first part of the error [2]. Different criteria, such as Morozov’s 

discrepancy principle, are used to choose an optimal value for  . In the solution of 

the inverse problem analysed in this thesis, we have chosen to decrease the value of 

  in each step of the iterative process. This decision is based on the assumption that 

in each step the difference between the actual and the approximate solutions will 

decrease, and therefore the stability of the solution will increase. Since a lower value 

of  increases the accuracy, whereas a higher value improves the stability; it is safe to 

assume that relatively smaller values of  will be more beneficial as the number of 

iterations increases. The initial value of  is determined by trial and error. 

Finally, before concluding this sub-section, we will introduce the formal definition of 

the well-known Tikhonov regularization scheme that will be employed in the solution 

of the inverse problem in the following sections. The theorem states that for a compact 

linear operator :A X Y , the operator * :I A A X X    is bijective for 0  , and 

has a bounded inverse [2]. Here, I  is the identity operator, and *A  is the adjoint of the 

operator of the A . More importantly, if A  is injective, then   

* 1 *( )R I A A A     (2.70) 
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describes the Tikhonov regularization scheme [2]. (2.70) will be used as the 

regularization technique in the Newton based iterative inversion algorithm, which will 

later be used in the solution of the 1-D profile inversion problem.  

It should be noted that the reduced data equation (2.52) is a non-linear equation. The 

Newton’s method involves replacing a non-linear equation denoted as [2] 

( ) sF v u  (2.71) 

by a linearized equation    

( ) sF v F q u   (2.72) 

The details of this procedure will be explained in the next section. In (2.72), F   denotes 

the Fréchet derivative of the completely continuous operator F . As stated in [2], for 

a completely continuous, Fréchet differentiable operator F , the derivative F   is also 

compact. Therefore, the linearized equation (2.72) involves compact operators, and 

hence it is ill-posed [2]. In conclusion, the ill-posedness is not affected by the 

linearization, and regularization techniques will be used in the Newton based solution 

scheme that will be developed in the next section.   

2.3.2 The solution of the inverse scattering problem 

In the first part of this section the 1-D profile inversion problem will be formulated. 

The formulation will be based on the configuration of the direct scattering problem, 

which is already presented in the previous sections. The measurement domain and the 

method to obtain data for the inversion procedure will also be specified in this part. In 

the second part of the section, a Newton based iterative solution will be developed in 

order to reconstruct the unknown acoustic profile of the spherical scatterer. The 

solution will involve the linearization of the non-linear system formed by the equations 

(2.51)-(2.52) according to the principles explained in the previous sub-section.    

2.3.2.1 Formulation of the problem 

Consider the geometry given in Fig. 2.16. Similar to the direct scattering problem, the 

sphere with radius a  is illuminated by a time harmonic point source located at the 

point ( , ,s s sr   ) , sr a . The density 0  is considered constant throughout the whole 
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space, and the outside region is characterized by a constant wave number 0 0 0k b 

The compressibility inside the sphere, denoted as ( )b r , is a function of the radial 

distance only, and it constitutes the unknown of the inverse scattering problem. 

 

Figure 2.16 : The geometry of the inverse scattering problem. 

The scattered field is assumed to be measured on a spherical surface denoted by 

with radius b , b a . Therefore, the aim of the 1-D profile inversion problem is to 

reconstruct the unknown object function ( )v r  via the measurement of the scattered 

field on the surface   outside the sphere. Considering this formulation, the reduced 

integral equations that defines the problem will be restated here for the sake of 

presentation:  

3 (1) 2

0 0 0

0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

a

i

nm nm n n nmu r u r ik j k r h k r v r u r r dr r a 
       (2.73) 

3 (1) 2

0 0 0

0

ˆ ˆ( ) ( ) ( ) ( ) ( )

a

s

nm n n nmu b ik h k b j k r v r u r r dr r b       (2.74) 

As stated before, (2.73) is the reduced object equation, and (2.74) is called as the 

reduced data equation. Note that the data equation is defined on the measurement 

domain  . (2.73) and (2.74) form a non-linear system of equations for the unknowns 

( )v r  and ˆ ( )nmu r , since the coefficients of the interior field ˆ ( )nmu r  are themselves 

dependent on ( )v r , as seen in (2.73). Therefore, the solution should involve a 
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linearization technique; and as declared before, a Newton based iterative scheme will 

be formulated in the next sub-section in order to determine the object function ( )v r . 

However, it should be noted that, in this formulation the coefficients of the scattered 

field ˆ ( )s

nmu b  constitute the measured data of the inverse problem instead of the 

measured field itself. Since those coefficients cannot be measured directly, they should 

be evaluated using the measured value of the scattered field on the spherical surface 

 . Using the integration defined in (2.15) for series expansion coefficients, ˆ ( )s

nmu b  

can be obtained as   

2

0 0

ˆ ( ) ( , , ) (cos ) sin
ms s im

nm nu b u b P e d d

 

         (2.75) 

where ( , , )su b    represents the actual scattered field measured on  . In practical 

applications, the scattered field can be measured on a finite number of points, and 

therefore the integral in (2.75) should be evaluated numerically. In the numerical 

simulations, we used the Simpson’s rule for the evaluation of the integral over the 

spherical surface. At this point, the non-linear system of equations and the data that 

will be used in the inversion process have been introduced. Therefore, in the next sub-

section, the Newton based iterative scheme will be developed.     

2.3.2.2 Newton based iterative solution 

In order to present the iterative scheme, let us write (2.73) and (2.74) in a more compact 

form similar to (2.71):    

ˆ ˆ iKu u  (2.76) 

ˆ sLv u  (2.77) 

where the operators K  and L  are defined as   

3 (1) 2

0 0 0

0

ˆ ˆ ˆ( ) ( ) ( ) ( )

a

n n nmKu u ik j k r h k r v r u r r dr 
       (2.78) 

3 (1) 2

0 0 0

0

ˆ( ) ( ) ( ) ( )

a

n n nmLv ik h k b j k r v r u r r dr       (2.79) 
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Then, we begin the iterative process by choosing an initial guess, denoted as (0) ( )v r , 

for the object function. The reduced object equation (2.73) can be solved using this 

initial guess in order to obtain the initial values of the coefficients of the interior field, 

that is (0)ˆ ˆ ( )u u r . This step is identical to the solution of the direct scattering problem, 

and in the compact notation of (2.76)-(2.77), it corresponds to the inversion of the 

operator [ ]I K . Here, I  represents the identity matrix with appropriate dimensions. 

After solving the direct scattering problem via (2.76), the non-linear data equation 

(2.77) is linearized by expanding the operator L  into a Taylor series around the initial 

guess (0)v :   

(0) ˆ( ) sLv L v r u   (2.80) 

Note that the resulting equation is of the same form as (2.72). In (2.80), ( )v r  is the 

update amount of the object function ( )v r . Therefore, the aim is to solve linearized 

equation (2.80) for ( )v r , in order to update the initial guess (0) ( )v r . Here, L  is the 

Fréchet derivative of the operator L , which is defined as   

3 (1) (0) 2

0 0 0

0

ˆ( ) ( ) ( ) ( )

a

n n nmL v ik h k b j k r v r u r r dr 
       (2.81) 

Now, the update amount ( )v r  can be obtained by solving (2.80) via inversion of the 

equation    

(0)ˆ sL v u Lv    (2.82) 

However, as stated in the previous section, the Fréchet derivative L  is a compact 

operator and (2.82) is ill-posed. Therefore, the Tikhonov regularization will be used to 

obtain a stable solution for the inversion process. Considering the formulation given 

in (2.70), the expression for the update amount is determined as    

(1) * 1 * (0)ˆ( ) ( )sv I L L L u Lv  

      (2.83) 

Here,   is the regularization parameter, and 
*L  is the conjugate transpose of the 

matrix form of the operator L . Note that the matrix elements of the operators are 
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obtained by discretizing the integrals according to the point matching technique. That 

is, similar to solution of the direct scattering problem, the unknowns ( )v r  and ˆ( )u r  

are assumed to have constant values at each sub-domain of the integration domain 

 0,r a . Finally, at the end of each iterative step, the object function is updated using 

the equation    

(1) (0) (1)v v v   (2.84) 

Another important parameter of the Newton’s method is the stopping threshold for the 

iterative process. In this thesis, the iterative process is continued until the condition 

( )

( )

j

j

v

v


  (2.85) 

is satisfied. Here,   is a pre-determined threshold, and ( ) ( )j jv v  is the 2  norm of 

the ratio ( ) ( )j jv v  at the j th iteration.  

2.3.3 Numerical simulations 

In order to test the validity of the inversion scheme developed in the previous section, 

numerical tests involving spherical scatterers with various profiles have been 

performed. In all simulations, the sphere is assumed to have a radius of 0.1a m , and 

it is illuminated by a time-harmonic point source located at the point 0.25sr  , 

/ 3s  , / 2s  . The measurement surface  , is chosen as the spherical surface 

with radius 0.2b m . It should be noted that in order to avoid inverse crime, the 

scattered field is synthetically produced via MoM, following the formulation given in 

the Appendix C. Furthermore, a random term of 2
0.05 ni rsu e

  is added to the scattered 

field to model a more realistic measurement scenario with 5%  noise level. Here, nr ’s 

are normally distributed random numbers. The coefficients of the scattered field which 

constitute the data of the inverse problem are obtained by substituting this noise-added 

scattered field into the integral given in (2.75). The integrals in the reduced object and 

data equations are discretized by 30  points in all configurations. As demonstrated in 

the examples for the direct scattering problem, this choice yields satisfactory results 

for a reasonably large frequency range.  
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In the first part of this section, the overall performance of the method will be tested 

using piecewise homogeneous and continuous profiles. In order to demonstrate the 

robustness of the method, same parameters will be used for different scenarios. In the 

second part, the effect of these parameters (e.g. regularization parameter, stopping 

threshold) on the success of the method will be analysed using different profiles. The 

dependence of the results on operating frequency will also be demonstrated in the same 

part.     

2.3.3.1 Performance evaluation of the method 

In this sub-section, numerical simulations involving four different profiles (two 

layered piecewise homogeneous, Luneburg lens, sinusoidally varying, and linearly 

varying) will be presented in order to demonstrate the validity of the inversion method. 

As stated above, the tests will be performed using identical parameters for all profiles 

to show the versatility of the inversion scheme. Therefore, for all simulations in this 

sub-section, the region outside the sphere is assumed to be characterized by the wave 

number 0 8k  . The number of terms included in the series expansions for the field 

values is chosen as max 3N  . Note that adding more term increases not only the 

computational cost of each iterative step, but also the instability of the inversion 

scheme. Therefore, maxN  can also be considered as an additional regularization 

parameter. The remaining parameters of the Newton based method, namely the 

Tikhonov regularization parameter  and the stopping threshold  , are chosen 

according to the principles explained in the previous sections. Choosing lower values 

for   increases both the accuracy of the inversion, and the instability of the solution. 

As the ill-posedness of the inversion operation is assumed to decrease in each step, 

smaller values of  would be more suitable as the number of iteration increases. 

Therefore, in all configurations the regularization parameter is determined as 

0.1/ ni  , ni  being the number of iterations. The stopping threshold for the iterative 

process is chosen as 310  , that is the procedure is continued until the 2  norm of 

the ratio ( ) ( )j jv v becomes smaller than 310 . The convergence history graph of the 

2  norm ( ) ( )j jv v  versus the number of iterations is presented in Fig. 2.17 for each 

investigated profile. In the figure, the 2  norms are given in logarithmic scale in order 

to better depict the variations in smaller scales. For each case in this section, the actual 



48 

profile will be reconstructed using three different initial guesses (0) ( )v r  for the object 

function. As a measure of the performance of the method, an 2  error metric  

2

rec exact

exact

v v
e

v


  (2.86) 

is defined using the exact and reconstructed profiles. 

 

Figure 2.17 : The convergence history graph of the 2  norm of  ( ) ( )j jv v  (in 

logorithmic scale) for four different profiles. 

As a first example, the two layered piecewise homogeneous sphere defined in (2.63) 

will be analysed. The three different initial guesses are chosen as (0) ( ) 0.4v r  , 

(0) ( ) 0.5v r  , and (0) ( ) 0.6v r  . For these values, the iterative process lasted for 18 , 

16 , and 12  iterations respectively. As the exact and reconstructed profiles depicted in 

Fig. 2.18 suggest, although the method is not capable of catching the sharp transition, 

it nonetheless provides a smoothed approximation of the actual profile. This is an 

expected result, considering that we are trying to approximate a piecewise continuous 

functions via pulse basis functions. This also explains the relatively low rate of 

convergence for the two layered profile compared to the continuous profiles as seen in 

Fig. 2.17. The lowest error metric is obtained as 2 0.16e   for the optimal initial guess 

of  (0) ( ) 0.5v r  . The error increases to 2 0.18e   for (0) ( ) 0.6v r  , and to 2 0.23e   
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for (0) ( ) 0.4v r  . This results demonstrate that the success of the method is dependent 

on the choice of the initial guess. It should be also noted that, when the initial guess 

further diverges from the optimal value, the method fails to converge to a meaningful 

result. This is a common problem for Newton based algorithms.   

 

Figure 2.18 : Exact and reconstructed values of the object function for a two layered 

sphere with three different initial guesses. 

In the second example, the profile of the Luneburg lens described by     

2

0

( )
2

b r r

b a

 
  

 
 (2.87) 

will be reconstructed using the initial guesses of (0) ( ) 0.75v r  , (0) ( ) 1v r  , and 

(0) ( ) 1.25v r  . The results are obtained in 12  iterations for (0) ( ) 1v r  , and in 13  

iterations for (0) ( ) 0.75v r   and (0) ( ) 1.25v r  . The results presented in Fig. 2.19 

demonstrate that for slowly varying smooth profiles, the method is very effective. For 

the initial estimate of  (0) ( ) 1v r  , the error is calculated as 2

39.1 10e   . Expectedly, 

as the initial guess deviates from the optimal value, the error starts to increase. For 

(0) ( ) 0.75v r  , the error metric is obtained as 2 0.16e  , and for (0) ( ) 1.25v r   as 

2 0.13e  . Nevertheless, these values show that the method performs better for 

smooth profiles, even with sub-optimal guesses, compared to piecewise homogeneous 
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profiles. The relatively rapid convergence of 2  norm for Luneburg lens seen in Fig. 

2.17 also proves the efficiency and the reliability of the method for slowly varying 

continuous profiles.   

 

Figure 2.19 : Exact and reconstructed values of the object function for the Luneburg 

lens with three different initial guesses. 

For the third example, the method is used to reconstruct a sinusiodally varying profile 

described by     

0

( ) 3
1.5 0.5cos

b r r

b a

 
   

 
 

(2.88) 

In this case, the initial guesses for the object function are chosen as (0) ( ) 0.75v r  , 

(0) ( ) 1v r  , and (0) ( ) 1.25v r  . The results presented in Fig. 20 shows that the method 

is capable of reconstructing an approximate oscillating profile, however, the error is 

much larger compared to the slowly varying profile of the Luneburg lens. This results 

demonstrate that rapid variation of the profile restricts the success of the reconstruction 

process, even for continuous profiles. The error metrics are calculated as 2 0.22e   

for  (0) ( ) 1v r  , and 2 0.23e   for the other two guesses. The close values of error 

metrics, and the relatively irregular convergence curve in Fig. 2.17 are also caused by 

the rapid oscillation of the profile. However, it should be noted that the error level is 

not independent of the initial guess. Similar to the previous cases, it increases as the 
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initial value differs from the optimal value of (0) ( ) 1v r  . For example, when the initial 

guess is chosen as (0) ( ) 1.5v r  , the method still produces a relevant result, however, 

the error increases to 2 0.35e  . For more rapidly oscillating profiles, the method 

either diverges or needs more iterations to converge. 

 

Figure 2.20 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 1.5 0.5cos 3 /b r b r a   with three different initial guesses. 

When the compressibility of the outside region is greater than the compressibility 

inside the inhomogeneous sphere, the object function takes negative values. To test the 

performance of the method in this type of configurations, we analyse a linearly varying 

profile described by     

0

( )
0.5 0.5

b r r

b a
   

(2.89) 

as the fourth example. For this case, the initial guesses are chosen as  (0) ( ) 0.4v r   , 

(0)( ) 0.5v r   , and (0) ( ) 0.6v r   . The results presented in Fig. 2.21 demonstrate that 

the method is also useful in the configurations involving scatterers with 

compressibility smaller than the outside medium. As expected for a slowly varying 

smooth profile, the error is relatively low. The metrics are calculated as 2 0.08e   for 

(0) ( ) 0.5v r   , 2 0.11e   for (0) ( ) 0.4v r   , and 2 0.19e   for (0) ( ) 0.6v r   . For 
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similar reasons, the result for the optimal guess of (0) ( ) 0.5v r    converges faster than 

the other profiles as seen in Fig. 2.17. However, for the remaining sub-optimal guesses 

the convergence rate, presented in Fig. 2.22, drops significantly. This further 

emphasizes that not just the accuracy but also the efficiency of the method depends on 

the initial guess. On the other hand, it should be noted that similar drops in the 

convergence rate do not occur for sub-optimal guesses of the other profiles analysed 

in this section. In conclusion, due to the ill-posed nature of the problem, the 

convergence rate is not entirely predictable.   

 

Figure 2.21 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 0.5 0.5 /b r b r a   with three different initial guesses. 

From these examples, it is concluded that the method is reliable for continuous 

profiles, and provides a useful approximation for a piecewise homogeneous layered 

profile. However, the success of the method is clearly dependent on the choice of initial 

guess, which is an expected result for a Newton based iterative scheme. Another 

limitation that should be mentioned is the limitation on the contrast value of the 

scatterer. When the contrast between the compressibility of the sphere, and that of the 

outside region becomes too large, the method fails to produce useful results. Since the 

non-linearity increases significanly for profiles with large contrasts, the linearization 

procedure becomes inadequate for these cases. The last point to consider, that is the 

effect of the initial parameters on the outcome, will be analysed in the next sub-section.   
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Figure 2.22 : The convergence history graph of the 2  norm of  ( ) ( )j jv v  (in log 

scale) for three different initial guesses (0) ( )v r . The sphere has a linearly varying 

profile described by  0( ) / 0.5 0.5 /b r b r a  . 

2.3.3.2 The effect of the initial parameters 

In this sub-section, the effects of four different initial parameters ( 0k , maxN ,  , and 

 ) on the performance and the outcome of the method will be investigated. In order 

to analyse each parameter seperately, a single parameter will be altered for each 

configuration. For the remaining parameters, the values that are used in the previous 

sub-section ( 0 8k  , max 3N  , 0.1/ ni  , 310  ) will remain unchanged. 

Different profiles will be used in each case to avoid repetition, and to emphasize the 

particular effects of the related parameters.  

First, in order to analyse the effect of the operating frequency, the two layered sphere 

defined in (2.63) will be reconstructed using different values for 0k . The results 

obtained for three different values, 0 4k  , 0 8k  , and 0 12k  , are plotted in Fig. 

2.23. For all simulations, the initial value of the object function is chosen as 

(0) ( ) 0.5v r  . Note that the electrical size of the spherical scatterer is determined by 

the term 0k a . Therefore, changing the operating frequency, and thus the value 0k , is 

equivalent to changing the radius of the sphere. The result for 0 4k   shows that, for 

this value, the size of the sphere is too low for a meaningful reconstruction. On the 
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other hand, as the frequency increases, the reconstructed profile starts to reflect the 

actual profile. For 0 12k  , the error is calculated as 2 0.12e  , which is lower than 

the previously calculated error for 0 8k  . However, further increase in the electrical 

size negatively effects the performance of the method. Although the result is not shown 

here, the error for 0 16k   is obtained as 2 0.15e  . More importantly, as shown in 

Fig. 2.24, the result significantly diverges from the actual profile for 0 20k  . Note 

that this result is obtained in 85  iterations. For even higher values, the method fails to 

converge. Considering the relation between the electrical size and the term maxN , 

analysed in the direct scattering section, one might argue that increasing the value of 

maxN  could improve the performance of the method for higher frequency. However, 

as it will be demonstrated below, the regularizing effect of  maxN  is crucial, and an 

increase in this value causes the method to further diverge due to the ill-posedness.  

These results demonstrate that an optimal value for 0k  must be found to maximize the 

performance of the method. However, it should be noted that this optimal value might 

be different for different profiles.    

 

Figure 2.23 : Exact and reconstructed values of the object function for a two layered 

sphere with three different 0k  values. 
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Figure 2.24 : Exact and reconstructed values of the object function for a two layered 

sphere with 0 20k  . 

As a second case, the effect of maxN , the number of terms included in the series 

expansions, will be analysed using the linearly varying profile defined in (2.89). The 

initial guess of the object function is determined as (0) ( ) 0.5v r   . The exact and 

reconstructed profiles for max 1N   and max 2N   are presented in Fig. 2.25. Note that 

the lowest order term of the series is denoted by the index 0n  , therefore, for 

max 1N  , the terms with indices 0n   and 1n   are included. As demonstrated in Fig. 

2.9, the lower order terms make the greatest contribution to the final result. Thus, even 

for max 1N  , the method produces a useful approximation. The error for this case is 

calculated as 2 0.11e  . On the other hand, adding more terms still improves the 

results at this point. For max 2N  , the error metric is determined as 2 0.09e  . In Fig. 

2.26, the results for max 3N   and max 4N   is given. From the comparison with the 

previous figure, it is clear that the variation of the reconstructed profile, that is the 

fitting ability, increases with the number of terms. However, after the optimal value of  

max 3N  , the error starts to increase due to the over-fitting. For max 4N  ,  the error is 

calculated as 2 0.10e  , whereas it was determined as 2 0.08e   for max 3N  . 

Moreover, for max 4N  , the results are obtained in 18 iterations. These results 

demonstrate that the perturbance caused by the added noise in the data is especially 
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effective on the higher order terms, and adding more terms increases the instability of 

the problem. Indeed, the method fails to converge for max 5N  . It is clear that maxN  

acts as an additional regularization parameter, and even relatively low values are 

adequate to produce useful results, especially for slowly varying profiles.  

 

Figure 2.25 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 0.5 0.5 /b r b r a   with max 1N   and max 2N  . 

 

Figure 2.26 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 0.5 0.5 /b r b r a   with max 3N   and max 4N  . 
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One of the most important parameter of the inverse problems is the regularization 

parameter  . As stated in the section 2.3.1, in this thesis, it has been determined by 

trial and error, instead of Morozov’s principle, for the sake of practicality. Since the 

error level is strongly affected by this parameter, as a third case, sinusoidally varying 

profile defined in (2.88) is reconstructed using different values for  . First, in order 

to test the assumption that smaller values will be more beneficial as the number of 

iterations increase, we have reconstructed the profile using 0.1/ ni  , and the 

constant value of 0.1  . The comparison of the results presented in Fig. 2.27 

demonstrate that the reconstruction for 0.1/ ni   is more accurate compared to the 

reconstruction with constant value. The error 0.1/ ni   is measured as 2 0.23e  , 

whereas for 0.1   the value is calculated as 2 0.39e  . Clearly, lower regularization 

parameters increased the accuracy of the inversion procedure, while maintaining the 

stability. To better elucidate this point, in Fig. 2.28, higher values have been used for 

the reconstruction. Defining the regularization parameter as 0.5 / ni   actually 

improved the result, the error for this case is calculated as 2 0.19e  . However, it 

should be noted that the iterative process lasted for 34  iterations. This is an expected 

result considering that higher values of  slowed the convergence initially by 

increasing the error in the inversion procedure. On the other hand, this choice also 

increased the stability of the problem. It should be noted that the possibility of 

obtaining a significantly divergent result, which is caused by the ill-posedness of the 

problem, diminishes considerably for larger values of  . The result for 0.5   

demonstrates this point. Although the accuracy is too low, the method nevertheless 

converged to a useful solution in 9  iterations. These examples suggest that lowering 

the value of   in each iteration is a sensible strategy for this inversion scheme. 

However, when the initial value of   is too low, further decrease might cause the 

regularization scheme to fail to stabilize the problem. In this case, the outcome will be 

a divergent result like the one presented in Fig. 2.29 for 0.01/ ni  . This result is 

obtained in 119  iterations. It is clear that the error caused by the instability was the 

dominant factor in this case. On the other hand, the fixed value of  0.01   produced 

the best recontruction for the sinusoidally varying profile. The error for this value is 

calculated as 2 0.08e  . Although this result suggests that a low constant value for 

might be the best choice, further tests with close values demonstrate the 
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unpredictability of the outcome. For the constant value of 0.05  , the error is 

calculated as 2 0.33e  . Similarly, reconstruction with the even smaller value of 

0.001   yielded an error of 2 0.38e  . In conclusion, choosing an optimal value for 

  is a highly challenging task, and requires numerous simulations for each profile. 

 

Figure 2.27 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 1.5 0.5cos 3 /b r b r a   with 0.1/ ni   and 0.1  . 

 

Figure 2.28 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 1.5 0.5cos 3 /b r b r a   with 0.5 / ni   and 0.5  . 
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Figure 2.29 : Exact and reconstructed values of the object function for a sphere 

described by  0( ) / 1.5 0.5cos 3 /b r b r a   with 0.01/ ni   and 0.01  . 

Finally, the effect of the stopping threshold  is analysed using the Luneburg lens 

defined in (2.87). The effect of choosing a higher value for   is predictable. The 

accuracy of the result would be expected to drop alongside the number of iterations. 

Indeed, although the results are not presented here, reconstruction with a threshold of  

210   yielded a slightly higher error level of 2 0.02e   compared to the previous 

simulation with 310  . On the other hand, the number of iterative steps decreased to 

7  iterations. However, lowering the value of   does not always result in a more 

accurate reconstruction. In Fig. 2.30, the reconstructions of the Luneburg lens using 

the thresholds 310   and 610   are compared with the actual profile. It is clear 

from the figure that 310   provided a better reconstruction. The error for 610   

is calculated as 2 0.05e  , which is higher than the values obtained by using 310   

or 210  . As the figure suggests a prolonged iterative process causes unnecessary 

variations in the reconstructed profile. More importantly, as the convergence history 

graph presented in Fig. 2.31 demonstrates, the convergence rate drops significantly 

when the threshold is too low. The iterative process lasted for 192  iterations in this 

case. It should be noted that for rapidly varying profiles, the method fails to produce a 

result for the threshold of 610  . Even for the slowly varying linear profile, the 

result converged in 418  iterations, and yielded an error of 2 0.12e  , a slightly higher 
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value than the one obtained with the threshold 310  . These results show that, like 

other parameters, an optimal value must be chosen for   in order to increase the 

performance of the reconstruction process. In conclusion, the outcome of the method 

developed in this thesis is highly dependent on the choice of the initial parameters.   

 

Figure 2.30 : Exact and reconstructed values of the object function for the Luneburg 

lens with 310   and 610  . 

 

Figure 2.31 : The convergence history graph of the 2  norm of  ( ) ( )j jv v  (in 

logorithmic scale) for the Luneburg lens with 310   and 610  . 
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3.  ELECTROMAGNETIC CASE 

3.1 Purpose 

In this section, the electromagnetic direct and inverse scattering problem related to 

radially inhomogeneous spheres will be analysed. Similar to the acoustic case, we will 

first formulate the solution of the direct scattering problem through a dimension 

reduction process. Since the electromagnetic problem is a vectorial one, this process 

will employ vectorial basis functions instead of the scalar spherical harmonics used in 

the solution of the acoustic problem. Because of this difference, the reduction process 

will result in a system of reduced integral equations instead of a single object and a 

single data equation. However, it should be noted that the main approach of the 

process, namely obtaining 1-D integral equations using series expansions and 

orthogonality relations, remains the same; therefore, the formulation and the solution 

of the direct scattering problem will follow a similar outline as the acoustic case. In 

the second part, the solution of the related inverse problem will be developed using 

this system of reduced 1-D integral equations. Since the nature of the problems are 

similar, the classical Newton algorithm will be used once again for solving the inverse 

problem. The effect of replacing a single data equation with a system of equations will 

also be discussed in the same part.  A time dependence i te  is assumed and omitted 

throughout the entire section. 

3.2 Direct Scattering Problem 

In this sub-section, we will first give a brief presentation of the vector spherical 

harmonics and the vector wave functions. These functions will provide the vectorial 

basis functions that will be used in the series expansion of the electric field and the 

free space dyadic Green’s function. The same orthogonality relationships that were 

demonstrated in the acoustic section will form the mathematical foundation for the 

formulation of the vector spherical harmonics. The second part will be the main body 

of this sub-section, and will include the formulation of the problem. After the 

scattering problem is first formulated, the dimension reduction process will be 
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developed using the aforementioned vector spherical harmonics. Via this reduction 

process, one can replace the 3-D integral equation with a system of reduced 1-D 

integral equations by expressing the interior and scattered electric field in terms of the 

vector spherical harmonics. The solution of the direct scattering problem will be 

obtained using this system of integral equations. Finally, in the third part, the success 

of the method developed in the previous section will be tested via numerical 

simulations. The results will be compared with alternative methods such as dyadic 

Green’s function or MoM. The content of this section has been presented in a more 

compact form in [67]. Here, the formulation of the method will be demonstrated in a 

more detailed manner.  

3.2.1 Vectorial basis functions 

In this sub-section, the basis functions that will be used in the series expansions for the 

interior and scattered electric field will be introduced. These functions compose the 

solution of the vector wave equation in the spherical coordinate system. The solution 

of this equation can be formulated using the scalar harmonics, which form the solution 

of scalar Helmholtz equation. Therefore, the orthogonality relationships related to 

scalar harmonics will be reused in this section to develop the orthogonality conditions 

necessary for the series expansions. In the first sub-section, we will introduce the 

vector spherical harmonics that will be used as the basis functions of the series 

expansion for the electric field. The orthogonality of these functions over the unit 

spherical surface will be demonstrated, and the terms of a series expansion with 

vectorial basis functions will be defined. This series expansion will be used to express 

the vectorial electric field. The main goal of the dimension reduction process is to 

obtain 1-D integral equations containing the scalar coefficients of the series expansion 

for the interior electric field. In the second part, the spherical vector wave functions 

will be obtained using the vector spherical harmonics. The vector wave functions 

constitute the formal solution of the Helmholtz equation in the spherical coordinates. 

That is, in the source free homogeneous medium, the electric field can be expressed in 

terms of these functions. Therefore, as it will be demonstrated in the next sections, the 

scattered field outside the sphere can be expanded in terms of vector wave functions. 

On the other hand, because of the radial inhomogeneity, the field inside the sphere can 

only be expressed in terms of the vector spherical harmonics. Finally, the expansion 

of the free space dyadic Green’s function will also be presented in the second part.   
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3.2.1.1 Vector spherical harmonics 

As stated in [54], the solution of the Maxwell equations in the spherical coordinates 

can be expressed via some vector-valued functions, which later will form the basis for 

the series expansion of the electric field in the source free homogeneous medium. The 

vector spherical harmonics are defined in [54] in order to construct these vector-valued 

solutions. Moreover, as it will be demonstrated in the subsequent sections, these 

harmonics can also be effectively used to represent the angular part of the electric field 

within the radially inhomogeneous spherical scatterer. Therefore, the definition of the 

vector spherical harmonics and the analysis of their their mathematical properties is a 

prerequisite to formulating the solution of the direct scattering problem via a 

dimension reduction process. A detailed analysis of the subject can be found in [54]. 

Here, we will present a brief summary, involving the definitions and the essential 

orthogonality relations, of the comprehensive treatment given in [54].  

The vector spherical harmonics are based on the scalar spherical harmonics that have 

been used in the solution of the acoustic problem. For the sake of presentation, we will 

first express the scalar harmonics in a more compact form as    
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( , ) (cos ) (cos )
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m im m im
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where nmC  is the normalization factor. The following relations hold for negative values 

of indice m : 

*

, ( , ) ( 1) ( , )m

n m nmY Y       (3.2) 

*

, ( , ) ( 1) ( , )m

n m nmY Y   
 



  
     

 (3.3) 

Here, * ( , )nmY    represents the complex conjugate. From the orthogonality relations 

already established in the acoustic section, it is clear that ( , )nmY    are orthonormal 

over the unit spherical surface, that is these functions satisfy the orthogonality 

condition  
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( , ) ( , )sinnm n m nn mmY Y d d

 

              (3.4) 

where   is the Kronocker delta. Taking (3.4) into account, a series expansion in terms 

of the scalar harmonics can be defined for the vectorial electric field ( )E r  satisfying 

the Maxwell equations  

2

0( ( )) ( ) 0k   E r E r  (3.5) 

in a source free homogeneous medium. Here, 0k  denotes the wave number of the 

medium. However, as indicated in [54], such a series would have vector-valued 

coefficients, and therefore would be unsuitable for the dimension reduction process. 

In order to have a series expansion with scalar coefficients, a set of vector-valued basis 

functions that are orthonormal over the unit spherical surface must be defined [54]. 

The vector spherical harmonics constitute such a set of basis functions. These vector-

valued functions are defined by using scalar harmonics as: 

1

1
( , ) [ ( , )]

( 1)
nm nmY

n n
    


A r  (3.6) 

2

1
( , ) ( , )

( 1)
nm nmr Y

n n
    


A  (3.7) 

3 ( , ) ( , )nm nmY   A r  (3.8) 

Alternatively, these functions can be expressed in terms of the unit vectors r̂ , ̂ , ̂  of 

the spherical coordinates system:  

1
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   
A  (3.10) 

3
ˆ( , ) ( , )nm nmY r   A  (3.11) 
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Considering (3.2) and (3.3), the forms of the vector spherical harmonics for negative 

values of m  are determined by   

*

, ( , ) ( 1) ( , )m

n m nm      A A  (3.12) 

where 1,2,3  . Before stating the orthogonality condition related to the vector 

spherical harmonics, one more orthogonality relation for the associated Legendre 

functions must be established. Using (2.12) and the formula for the derivative of 

Legendre functions available in [36], following equations can be obtained:    
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  (3.14) 

The orthogonality of the vector spherical harmonics over a spherical surface can be 

easily demonstrated using (3.13)-(3.14) and the orthogonality relations previously 

stated in (2.10)-(2.13). The resulting orthogonality relation can be expressed as    

2
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( , ) ( , )sinnm n m nn mmd d

 

                 A A  (3.15) 

(3.15) demonstrates that vector spherical harmonics constitute a set of vector-valued 

functions orthonormal over the unit spherical surface. Therefore, a series expansion 

for the vectorial electric field can be formulated as  
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 (3.16) 

It should be noted that the scalar coefficients ( )nm r , ( )nm r , ( )nm r  are functions of 

the radial distance only. Therefore, this series expansion is especially suitable for 

expressing the electric field inside the radially inhomogeneous spherical scatterer. By 
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isolating the radial variation which is affected by the inhomogeneity, the orthogonality 

of angular ones can be preserved. The dimension reduction process will be executed 

by taking advantage of this orthogonality, and the main aim of the process will be to 

obtain a system of 1-D integral equations involving the coefficients of the electric field. 

On the other hand, in the homogeneous region, that is outside the sphere, the radial 

dependance can be determined by solving (3.5). These solutions will be obtained in 

the next sub-section.  

3.2.1.2 Spherical vector wave functions 

In this sub-section, we will formulate the solutions of the vector wave equation defined 

in (3.5), in the source free homogeneous medium. Similar to the previous sub-section, 

the formulation will follow the one presented in [54], with a slightly modified notation. 

The solutions, named spherical vector wave functions, will later be used in the 

expansion of the 3-D free space dyadic Green’s function, and the incoming vectorial 

electric field in the spherical coordinates. It is clear from the discussion presented in 

the previous section that the angular components of these vector wave functions will 

be formed by the vector spherical harmonics. Therefore, in this section, the radial 

dependence of the vector wave functions will be determined. To this end, the 

expansion for the electric field given in (3.16) should be substituted into the wave 

equation (3.5). The resulting equation can be stated in an open form as     
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(3.17) 

Using the orthogonality of the vector spherical harmonics demonstrated in the previous 

sub-section, separated equations can be obtained for the coefficients ( )nm r , ( )nm r , 
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( )nm r . Multiplying both sides of the equation by complex conjugates of vector 

spherical harmonics * ( , )nm  A  in order, and integrating over unit spherical surface 

yields three differential equations for the coefficients:    

2 2 2

0( ) ( 1) ( ) ( ) 0nm nm nm

d d
r r n n r k r r

dr dr
  

 
    

 
 (3.18) 

2 2 2

0( ) ( 1) ( ) ( ) 0nm nm nm

d d d
r r r n n r k r r

dr dr dr
  

 
    

 
 (3.19) 

  2 2

0( 1) ( ) ( 1) ( ) ( ) 0nm nm nm

d
n n r r n n r k r r

dr
        (3.20) 

Note that the coefficients ( )nm r  and ( )nm r  are coupled in (3.19) and (3.20), 

indicating that the final solution will involve both coefficients, and the related vector 

spherical harmonics 2 ( , )nm  A , 3 ( , )nm  A . On the other hand, (3.18) is an 

independent equation, and its solution yields spherical Bessel functions. In conclusion, 

the solutions of (3.18)-(3.20) are obtained as    

( ) ( )nm nr z kr   (3.21) 

 0

0

1
( ) ( )nm n

d
r r z k r

k r dr
   (3.22) 

0

0

( )
( ) ( 1) n

nm

z k r
r n n

k r
    (3.23) 

where 0( )nz k r  denotes either 0( )nj k r  or (1)

0( )nh k r  depending on the type of wave, that 

is the region where the solution is defined. It is clear that for radiating scattered field, 

the radial dependency should be represented by (1)

0( )nh k r  in order to satisfy the 

radiation condition at infinity. Using the results given in (3.21)-(3.23), and considering 

the fact that the coefficients  ( )nm r  and ( )nm r  are coupled, the spherical vector wave 

functions can be determined as [53]    
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0 0 1( ) ( 1) ( ) ( , )nm n nmk n n z k r   M r A  (3.24) 
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 (3.25) 

Since the angular component of the wave functions are composed of spherical 

harmonics, these functions are also orthogonal over the unit spherical surface, and they 

form a complete set. Note that the functions defined in (3.24)-(3.25) have zero 

divergence. Therefore, a third vector wave functions should be included in the 

representation of the electric field in the source region. This additional vector wave 

function is defined as     
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 (3.26) 

For the formulation used in this thesis, the function 0( )nm kL r  would not be needed, 

since the field inside the sphere will be represented by the series expansion given in 

(3.16), instead of one that uses vector wave functions. On the other hand, the scattered 

field can be expanded in terms of vector wave functions, since the region outside the 

sphere is assumed to be homogeneous. Therefore, the scattered field will be expressed 

by a series expansion of the form 

 (1) (1)

0 0

0

( ) ( ) ( )
n

s

nm nm nm nm

n m n

A k B k


 

  E r M r N r  (3.27) 

where nmA  and nmB  are scalar constant coefficients. In (3.27), the superscript (1) 

signals that the radial dependence is expressed by spherical Hankel functions (1)

0( )nh k r  

in order to represent out-going scattered field. The free-space dyadic Green’s function 

can also be expanded in terms of the vector wave functions in the spherical coordinates 

as [53]  
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In (3.28) the radial functions 0( )nz k r  of the vector wave functions denote either 

0( )nj k r  or (1)

0( )nh k r , where r  and r  represent the smaller and the larger of the pair 

r , r  respectively.  This expansion will be used in the dimension reduction process.  

A final point to note is that in the literature, slightly different formulations are used in 

the definition of vector wave functions. In [51] and [52], linear combinations of 

trigonometric functions cos( )m  and sin( )m  are used to represent the angular 

dependence. Since these textbooks will be frequently referred in the subsequent 

sections, their definition of vector wave functions should be presented here. In [51], 

Stratton defined these functions as     
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where the subscripts e  and o  refer to even and odd functions respectively. The free 

space dyadic Green’s function can be alternatively defined by a series expansion in 

terms of these even and odd vector wave functions. Such an expansion is provided in 

[52] by Tai:  
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where 

0

1 0

0 0

m

m



 


 (3.32) 

Since it includes neither the functions 0( )nm kL r  nor the last term in (3.28) with dyad 

ˆˆrr , 0 ( )eo G r,r  is not valid in the source region [53]. However, it should be noted that, 

outside source region, the expansion given in (3.31) is equivalent to the one introduced 

in (3.28). Therefore, both forms of free space dyadic Green’s function can be used in 

the formulation of direct scattering problem, although 0 ( )G r,r  will be more 

frequently employed in this thesis. The correspondance of the even and odd functions 

defined in (3.29)-(3.30) to the vector wave functions introduced in (3.24)-(3.25), and 

will be used throughout this thesis, is determined in [68] as   
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where X  represents either M  or N , and nmC  denotes the normalization factor defined 

in (3.1).  

3.2.2 Solution of the direct scattering problem 

In the first part of this sub-section, the general formulation of the direct scattering 

problem will be presented. We will define the electromagnetic vectorial problem in its 

original 3-D form, and then introduce the electric field integral equation that will be 

reduced to a 1-D form. The series expansion for the incoming field will also be 
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constructed in this section. The details of the dimension reduction process will be 

presented in the second part. The main aim of that process is to obtain 1-D integral 

equations involving scalar coefficients of the series expansion for the electric field. 

Unlike the acoustic problem, the 3-D object equation cannot be reduced to a single 1-

D equation; instead, it will be replaced by a system of reduced integral equations. 

Solution of the direct scattering problem will be obtained by solving this system via a 

discretization of the integration domain.   

3.2.2.1 Formulation of the problem 

Consider a dielectric spherical object with radius a , denoted by D  in Fig. 3.1, whose 

permittivity ( )r , and conductivity ( )r  are arbitrarily varying functions of radial 

distance r  only. The magnetic permeability 
0  is considered constant throughout the 

whole space. The region outside the sphere is assumed to be described by a constant 

wave number 
0 0 0k    , 0  being the free space dilectric constant, and   the 

operating angular frequency of the source. The sphere is illuminated by a infinitesimal 

horizontal electric dipole with a current moment 0C  pointed in the x-direction, located 

at the point 0x  , 0y  , dz z , ( dz a ).  

 

Figure 3.1 : The geometry of the direct scattering problem. 
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The total electric field inside sphere, ( )E r , satisfies the electric field integral equation    

2

0 0( ) ( ) ( ) ( ) ( )i

D

k v r dv D     E r E r G r,r E r r  
(3.35) 

where ( )i
E r  represents the incoming electric field. Similarly, the scattered field 

outside the sphere can be expressed by      

2

0 0( ) ( ) ( ) ( )s

D

k v r dv a    E r G r,r E r r >  
(3.36) 

Similar to the acoustic case, the function ( )v r  appearing in (3.35) and (3.36)  denotes 

the object function that is defined as      

2

2

0

( )
( ) 1

k r
v r

k
   (3.37) 

where 
2 2

0 0( ) ( ) ( )k r r i r       inside the sphere, and 
2 2

0( )k r k  in the outside 

region. It is clear that (3.35) and (3.36) have similar forms as (2.40) and (2.39) 

respectively. Therefore, (3.35) can be named as the 3-D electromagnetic object 

equation, and (3.36) is called as the data equation. One can obtain the electric field 

anywhere in the space by solving the system formed by these equations, via a 

numerical technique such as MoM [14]. However, since the electromagnetic problem 

is a vectorial one, the computational effort required for solving 3-D problem is even 

higher than the acoustic case. Therefore, a dimension reduction process will be applied 

in this thesis to replace 3-D equations by 1-D reduced integral equations. To this end, 

the electric field ( )E r  and the free space dyadic Green’s function 0 ( )G r,r  will be 

expressed as series expansions. Although the approach will be similar to the one used 

for the solution of the acoustic problem, the technique must be altered to suit the 

vectorial problem. The details of the procedure will be explained in the next sub-

section. 

It should be noted that in order to complete the expansion of (3.35), the incoming 

electric field must also be expressed as a series expansion, and the coefficients of this 

expansion must be determined before solving the system of reduced object and data 
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equations that will be produced by the dimension reduction process. To this end, the 

incident field will be expressed as a series expansion in a form similar to the interior 

electric field:  
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Note that an expansion in terms of vector wave functions, like the one introduced in 

(3.27), can also be used, since the calculation of the incident field assumes a 

homogenous space characterized by 
0k . The form of (3.38) is chosen to match the 

expansion of the interior electric field, and to simplify the structures of the reduced 

equations that will be formed in the next sub-section.  

First, we will obtain the coefficients for the infinetesimal horizontal electric dipole 

depicted in Fig 3.1. The series expansion of the field created by this source is 

developed in [52]. Here, the results will be reproduced, and the process will be 

presented in a more detailed fashion. Following the notation of [52], (3.31) will be 

used as the free-space dyadic Green’s function. The current density of the x-oriented 

dipole situated at  dr z  , 0  , 0   is defined as [52]   
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(3.39) 

The field induced by this dipole can be determined by a convolution integral involving 

the free space dyadic Green’s function that yields [52] 

0 0 0 0 0
ˆ( ) ( ) ( ) ( )i eo eoi dv i C x      E r G r,r J r G r,r  

(3.40) 

Considering that in (3.40)  

ˆ ˆˆ ˆcos sin cos cos sin ,x r              (3.41) 

and  ,0,0dzr =  in spherical coordinates, it is clear that only the ̂  components of 

0( )e
nm

o

k M r  and 0( )e
nm

o

k N r  will make a contribution to the final form of (3.40); the 
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remaining components do not survive the scalar product with x̂ . Moreover, since 

0  , the outcome of the functions 0( )enm k M r  and 0( )onm k N r  will be zero due to 

the term sin . Therefore, the expression of incident field becomes    
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where 
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0( )onm k


  M r  and 
(1)

0( )enm k


  N r  denote the ̂  components of the respective 

functions. Note that in (3.42) only the case of  r r  is taken into account, since dr z   

and for the region inside the sphere dr z . The final point to consider is the behaviour 

of the associated Legendre functions for 0  . Calculating the limit values of the 

terms with   in (1)

0( )onm k


  M r  and (1)

0( )enm k
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(3.43) demonstrates that only for 1m , 
(1)

0( )onm k


  M r  and 
(1)

0( )enm k


  N r  takes non-

zero finite values. Therefore, the series with indice m  disappears from (3.42), and the 

equation simplifies to [52]   
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Although (3.44) completes the series expansion of the incident field for an 

infinitesimal horizontal dipole, it is not yet suitable for determining the coefficients  

( )i

nm r , ( )i

nm r and ( )i

nm r  that will be used in the solution of the reduced direct 

scattering problem. To this end, the series expansion in (3.44) should be restated using 
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the vector wave functions defined in (3.24)-(3.25). Using the identity established in 

(3.33) and (3.34), the incident field can be expressed as  
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(3.45) 

Considering the expressions of the vector wave functions given in (3.24)-(3.25), the 

coefficients of the incident field for x-oriented inifnitesimal horizontal electric dipole 

can be determined from (3.45) as  
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It should be clear that for any 1,1m   , the coefficients are all zeros.  

Another frequently used incident field is the plane wave excitation. Therefore, we will 

also present the coefficients for an x-polarized plane wave travelling in the z direction. 

The series expansion for this incident field has been obtained by Stratton in [51], using 

even and odd vector wave functions. As noted in [51], the divergence of the electric 

field excited by an x-polarized plane wave is zero, therefore the functions 0( )nm kL r  

are not needed for the expansion. Moreover, to avoid having singularity in the origin 

the functions 0( )nj k r  must be used to express the radial component [51]. Therefore, 

the expansion would have the form   



76 

0 0

1 0

ˆ( ) ( ) ( )
n

i ikz

nm e nm e
nm nm

n m o o

e x a k b k


 

  E r M r N r  
(3.49) 

The scalar coefficients nma  and nmb  can be determined using the orthogonality 

relations. Considering the expression x̂  given in (3.41), and the   dependence of the 

vector wave functions; it is clear that only 1 0( )on kM r  and 1 0( )en kN r  will have non-

zero contributions [51]. Therefore, using the series expansion for the plane wave 

introduced in (2.16), the coefficients can be determined as [51]  
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Once again through the equivalence demonstrated in (3.33)-(3.34), the final form of 

the coefficients for the x-polarized plane wave travelling along the positive z  direction 

can be stated as  
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Similar to the case with dipole, for any 1,1m   , the coefficients are all zeros.  

3.2.2.2 Dimension reduction for the object and data equations 

In this sub-section the reduced object and data equations will be obtained. To this end, 

the series expansion defined by (3.16) and (3.38) will be used to express the total field 

and the incoming field respectively. Similar to the acoustic case, the main aim of this 

sub-section is to obtain 1-D integral equations involving the series expansion 

coefficients instead of the field values themselves. As the expansion defined in (3.16) 

contains three separate coefficients ( )nm r , ( )nm r , ( )nm r ; three equations will be 
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needed to determine the coefficients of the interior field. Therefore, the vectorial object 

equation (3.35) will be replaced by a system consisting of three reduced 1-D integral 

equations. Similarly, using (2.27) to represent scattered field, two independent 1-D 

integral equations will be obtained as reduced data equations.  

In order to take advantage of the orthogonality relations, let us substitute the expansion 

for the interior field given in (3.16), and the one for the dyadic Green’s function 

0 ( )G r,r  given in (3.28) into the object equation (3.35). For the sake of compactness, 

we will analyze the integral appearing on the right-hand side of (3.35) in three parts as    
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(3.55) 

where I , I  , and I  represent the parts containing the terms 1( ) ( , )nm nmr  A , 

2( ) ( , )nm nmr  A , and 3( ) ( , )nm nmr  A  of the expansion for the interior electric field 

respectively. Therefore, the open form of the integral I  is defined as    
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where the indices n , m  are used to distinguish the expansion of the dyadic Green’s 

function from the expansion for the interior electric field. In order to obtain the 1-D 

expression of (3.56), the structures of 
*

0 0( ) ( )nm nmk k M r M r  and 
*

0 0( ) ( )nm nmk k N r N r  

must be analyzed. Note that the form of the dyad for 0m  should be investigated 

separately. Considering (3.12), the expression of the first dyad can be determined as 

*

0 0, ,
( ) ( )

n m n m
k kM r M r  for 0m . Now, let us state the dyad 

*

0 0( ) ( )nm nmk k M r M r  in 

matrix form as    
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where the elements MM  and MM  are defined as    
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and     
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In (3.58) and (3.59), the signs  


 and  


 denote the ̂  and ̂  components of the 

related functions respectively. The remaining matrix elements MM  and MM  can 

be written in a similar fashion. Since the vector wave functions 0( )nm kM r  do not have 

an r̂  component, the related matrix elements are all zeros. To comlete the matrix 

notation, we also express the term 1( ) ( , )nm nmr    A  as a matrix:    
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T
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Here the term A  can be expressed in an open form as    
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 (3.61) 

The remaining term, A  in (3.60), can be expressed in a similar form using ̂  

component. In order to obtain the kernel of the integral I , one can use the matrices 

introduced in (3.57) and (3.60). It is clear that the result of the matrix product will be 

a vector whose components are given by    
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where the open form of the ̂  component, denoted as MA , can be stated as    
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Once again, the ̂  component MA  will not be stated here, since its form is similar to 

(3.63). It is clear from (3.63) that, for any m m  and n n , the result of the integral 

I  will be zero due to the orthogonality of the functions 1nmA  over unit spherical 

surface.  Therefore the series expansion of the dyadic Green’s function 0 ( )G r,r  with 

terms ,n m  can be discarded. Moreover, the analysis presented above demonstrates 

that the dyad 
*

0 0( ) ( )nm nmk k N r N r  and the term with ˆˆrr  will not have any contribution 

to I , since the functions nmA  are orthogonal, and 1nmA  have no radial component. 

Therefore, after putting the vectorial components together for 0m  and 0m  by 

taking (3.12) into account, the integral I  can be restated as     
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 (3.64) 

It is clear that the last integral in (3.64) is a direct application of the orthogonality 

relation. Therefore, the final 1-D form of the integral can be obtained by carrying the 

integration over the unit spherical surface:    
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Note that the functions 1 ( , )nm  A  appearing in (3.65) are functions of r  coordinates 

instead of r . This term will be eliminated in later stages by using the orthogonality 

condition for r  coordinates.  

Next, for the integrals I   and I , the procedure will be similar. It is clear that for these 

integrals the dyad 
*

0 0( ) ( )nm nmk k M r M r  will not make any contribution due to the 

orthogonality. Hence, this time we should express 
*

0 0( ) ( )nm nmk k N r N r  as a matrix in 

order to obtain 1-D forms of the integrals:   
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Note that all the matrix elements are non-zeros, since the vector wave functions

0( )nm kN r  contains both 2nmA  and 3nmA . We will state some of the terms in (3.66) in 

open form in order to illucidate the matrix structure. Expectedly, the angular part of 

the term rrNN  consists solely of the functions 3nmA :  
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Similarly, for the terms NN , NN , NN , NN , the angular parts will be formed 

by the ̂  and ̂  components of the functions 2nmA . Since the structure of these terms 

are very similar to those presented in (3.58)-(3.59), they will not be stated here. On the 

other hand, the remaining terms are the results of the coupling between the functions 

2nmA  and 3nmA  within the dyad 
*

0 0( ) ( )nm nmk k N r N r , and they will effect the outcome 
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of the dimension reduction process by causing the 1-D reduced integral equations to 

be dependent. The open form of the terms    
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and    
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clearly demonstrate the coupling effect. In (3.68), the term 
(1)

0 0( ) ( )n nh k r r j k r
r


   

must be used for r r , and 
(1)

0 0( ) ( )n nj k r r h k r
r


   

 for r r . Similarly, in (3.69),   

(1)

0 0( ) ( )n nj k r r h k r
r


   

 and 
(1)

0 0( ) ( )n nh k r r j k r
r


   

 must be chosen for the cases of 

r r  and r r  respectively. In order to obtain the 1-D form of the integral I  , one 

must express the vectorial functions 2( ) ( , )nm nmr    A  as a matrix in a form similar 

to (3.60), and repeat the procedure outlined in (3.62)-(3.65) by using (3.67) instead of 

(3.62).  By applying the orthogonality relations for angular terms, the final form of the 

integral is obtained as   
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 (3.70) 

First term in (3.70) which contains 3 ( , )nm  A , is the result of the terms rNN   and 

rNN   in (3.66). Note that the term with the dyad ˆˆrr  in 0 ( )G r,r  had no effect on I  , 

since the functions 2 ( , )nm  A  have no radial component.   

Finally, to obtain the 1-D form of I , one must use 3( ) ( , )nm nmr    A  alongside (3.66) 

in a fashion similar to the previous integrals. However, since the functions 3nmA  have 

a radial component, the additional ˆˆrr  term in 0 ( )G r,r  must be taken into account. It 

is clear that the integration of 3( ) ( , )nm nmr    A , i.e. ˆ( ) ( , )nm nmr Y r     , with the dyad 

ˆˆrr  will yield a vectorial function with r̂  component. Considering the mathematical 

properties of the Dirac delta function, the result of the integral can be calculated as     
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 (3.71) 

Note that the left hand side of (3.71) consists solely of functions of r  coordinates due 

to the integration with Dirac delta function. Therefore, the contribution of this term in 

the final form of the reduced object equations will be different from the other terms. 

Adding the left hand side of (3.71) to the result of the integration with the dyad 

*

0 0( ) ( )nm nmk k N r N r  yields the 1-D form of the integral I  as    
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 (3.72) 

Similar to I  , the first term with 2 ( , )nm  A  reflects the effect of the coupling, and it 

is a result of the terms rNN  and rNN  in (3.66). On the other hand, the last term in 

(3.72) stems from (3.71).   

At this point, the series expansions for all terms in (3.35) is completed. The vector 

spherical harmonics appearing in the series expansions are all functions of r  

coordinates, and therefore they can be eliminated using orthogonality relations. Before 

that operation, we represent the expanded form of the object equation by substituting 

(3.16), (3.38), (3.65), (3.70), and (3.72) into (3.35):    
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(3.73) 
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Note that each term in (3.73) consists of a vector spherical harmonic ( , )nm  A , 

coefficients of series expansions for interior or incident electric fields, and a 1-D 

integral along the radial direction. Therefore, to obtain a completely 1-D formulation, 

the vector spherical harmonics must be eliminated. Since each ( , )nm  A  in (3.73) is 

a function of  r  coordinates, orthogonality relations can be applied in a straightforward 

manner to achieve this objective. That is, by multiplying both sides of (3.73) with the 

complex conjugate of each ( , )nm  A  separately, and integrating over the unit 

spherical surface; one can obtain three 1-D integral equations for the coefficients 

( )nm r , ( )nm r , and ( )nm r . We first apply this procedure with the function 

*

1 ( , )nm  A  to obtain the first reduced object equation  

3 (1) 2

0 0 0

0

( ) ( ) ( 1) ( ) ( ) ( ) ( )

a

i

nm nm n n nmr r ik n n j k r h k r r v r r dr   
       (3.74) 

(3.74), contains only the coefficients ( )nm r , since it is the only coefficient that is 

related to the vector wave functions 0( )nm kM r . Note that the form of the reduced 1-D 

integral equation (3.74) is similar to the acoustic reduced object equation (2.51). 

Therefore, one can determine the coefficients ( )nm r  by solving (3.74) independently 

through discretization of the interval  0,r a , in a fashion identical to the one 

presented for the acoustic case in Appendix A. For the remaining coefficients, the 

procedure will be similar. However, due to the coupling effect demonstrated earlier, 

separate equations for each coefficient cannot be formed. Now, to produce the second 

reduced object equation, let us apply the same procedure with the function 
*

2 ( , )nm  A  

to obtain    
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Finally, using 
*

3 ( , )nm  A , the third reduced object equation can be formed as    
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The term  ( ) 1v r   appearing in (3.76) stems from the term with ˆˆrr  dyad in 0 ( )G r,r  

As demonstrated in (3.71), that term makes a contribution in the r  coordinates for the 

coefficient ( )nm r , which is reflected in the last term of (3.73).  It is clear from the 

appearance of the coefficients ( )nm r   and ( )nm r   in both equations that, (3.75)- 

(3.76) are coupled, and form a system of equations. Therefore, the discretization 

procedure of Appendix A should be slightly altered. For a discretization into P  sub-

interval, the coefficient matrix will be of the form ;K K K K K   
    . Here, 

these four sub-matrices are of size P P . The elements of K  and K  will be 

determined from the integrals in (3.75) containing ( )nm r   and ( )nm r   respectively. 

Similarly, K  and K  will be formed using the integrals in (3.76). It is clear that K  

will have a size of 2 2P P , and solving the resulting discretized equation would 

provide the coefficients ( )nm r  and ( )nm r  simultaneously.  

Therefore, one can solve the system of reduced object equations (3.74)-(3.76) to obtain 

the coefficients of the interior electic field ( )nm r , ( )nm r , and ( )nm r . After 

determining the coefficients, it is possible to calculate the total electric field inside the 
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sphere using (3.16). Note that the coefficients ( )i

nm r , ( )i

nm r , and ( )i

nm r  appearing 

in (3.74)-(3.76) are the coefficients of the incident field. The open forms of these 

coefficients were given in (3.46)-(3.48) for the infinitesimal horizontal electric dipole, 

and in (3.52)-(3.54) for the x-polarized plane wave. Finally, for the scattered field the 

3-D vectorial data equation (3.36) must be transformed in a manner similar to (3.35). 

Since both equations have similar structures, the related dimension reduction processes 

would be identical. Note that in the region outside the sphere r r , since  0,r a ; 

and the object function ( )v r  is zero. Considering these conditions, the expanded form 

of (3.36) can be written for ar  as    
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 (3.77) 

By comparing (3.77) with the series expansion for the scattered field defined in (3.27), 

one can form the reduced data equations for the scalar coefficients nmA  and nmB  of the 

scattered field:   
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(3.78)-(3.79) constitute the reduced data equations. After solving the reduced object 

equations, determining the coefficients of the interior field, one can obtain the 

coefficients of the scattered field using these equations. The scattered field itself can 

be then calculated easily via (3.27).  

3.2.3 Numerical simulations 

In this sub-section, some numerical examples will be presented in order to test the 

validity of the method developed in the previous sub-sections. The result obtained by 

the method developed in this thesis will be compared with established alternative 

methods such as dyadic Green’s function or MoM. We will present the results in four 

sub-sections. In the first part, the interior electric field calculated via the reduced 

integral equations (3.74)-(3.76) will be compared with the field obtained via dayadic 

Green’s function. In the second part, the comparison with MoM will be performed for 

the scattered field. The advantages, in terms of efficiency and accuracy, of the method 

developed in this work will be demonstrated through this comparison. In the third sub-

section, the field inside well-known lenses such as Luneburg or Eaton lens will be 

reconstructed using the reduced integral equations. The agreement of the results with 

the established characteristics of the lenses further proves the applicability of the 

method. Finally, in the fourth part, a special case with a dipole located inside the sphere 

will be analysed. As it will explained in that sub-section, although a rigorous 

mathematical formulation that removes the singularity cannot be developed, the 

method nevertheless provides an effective tool for determining the field distribution 

outside the vicinity of the source.   

3.2.3.1 The comparison with the dyadic Green’s function 

Consider a two-layered piecewise homogeneous sphere described by    
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denotes the complex relative dielectric constant of the material. The magnetic 

permeability 0  considered constant throughout the whole space. The radius of the 

sphere is chosen as 1a m  and it is illuminated by a dipole positioned right above the 

surface along the positive z  direction. The outside region is assumed to be a 

homogeneous medium characterized by the free space parameters of 0  and 0 . As 

stated in the previous sections, dyadic Green’s functions can be used reliably in order 

to determine the interior and the scattered field for layered spheres. The formulation 

of the dyadic Green’s function for a two layered sphere, developed in [52], is presented 

in Appendix D. Here, the result obtained by the reduced integral equations will be 

compared with the results produced via dyadic Green’s function. For the first case the 

operating frequency is chosen as 300f MHz . The variation of the magnitude of the 

electric field components inside the sphere, on the line defined by 4    , is 

calculated via both methods. The results depicted in Fig. 3.2 show an excellent 

agreement between two techniques. The number of terms n  included in the series 

expansion for the interior electric field is determined as max 15N  . The reduced 

integral equations (3.74)-(3.76) are discretized into 30  points along the radial 

direction.  

 

Figure 3.2 : Magnitude of the total field inside the two-layered sphere, solid line 

corresponds to the solution with integral equations, and circles to the dyadic    

Green’s function ( 0 2k a  , max 15N  ). 
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 Note that for the parameters 1a m  and 300f MHz  used in the previous example 

the value 0k a  is determined as 0 2k a  . This parameter denotes the electrical size of 

the sphere. In the section 2.2.3.1 of the acoustic case, it was demonstrated that number 

of terms included in the series expansions must be increased as higher operating 

frequencies are used. The same necessity also exists for the electromagnetic case. 

Higher values of maxN  must be chosen for electrically larger spheres. To demonstrate 

this, the same configuration as the previous example will be repeated for the operating 

frequency of  955f MHz . This value is chosen in order to replicate the value of  

0 20k a  , which was used for the acoustic example analysed in Fig. 2.6. To make the 

comparison exact, the value of maxN  is chosen as max 25N  . In the acoustic case, an 

almost perfect agreement with the analytical solution was obtained for this value. 

However, as shown in Fig. 3.3, the results obtained via reduced integral equations 

differs considerably from those produced via the dyadic Green’s function. Actually, 

even for higher values of maxN , a perfect match does not occur. The results presented 

in Fig. 3.4 demonstrate that for max 75N  , there is good agreement between two 

methods, however the level of agreement is lower compared to acoustic case. It can be 

concluded from these simulations that the complexity of the electromagnetic problem 

is higher compared to the acoustic one. 

 

Figure 3.3 : Magnitude of the total field inside the two-layered sphere, solid line 

corresponds to the solution with integral equations, and circles to the dyadic   

Green’s function ( 0 20k a  , max 25N  ). 



90 

 

Figure 3.4 : Magnitude of the total field inside the two-layered sphere, solid line 

corresponds to the solution with integral equations, and circles to the dyadic   

Green’s function ( 0 20k a  , max 75N  ). 

3.2.3.2 Calculation of the scattered field 

The dyadic Green’s function can also be used to calculate the scattered field outside 

the sphere. Therefore, we will first calculate the scattered field for the configuration 

used in the first example of the previous sub-section. The integrals in (3.74)-(3.76) and 

those in (3.78)-(3.79) are discretized by 30  points. The number of terms included in 

the series expansions for the interior field and the scattered field are both chosen as 

max 15N  , since the working frequency is assumed to be 300f MHz . The 

scattering cross section defined as     

2

2

2
lim 4

s

CS
r i

r 



E

E
 (3.82) 

is calculated for different values of  ,  0,  , in the H-plane ( 2  ), and in the 

E-plane ( 0  ). For each investigated case, the scattering cross section is presented 

with the E-plane and the H-plane shown in the same figure, and plotted from 0   to 

180  , and from 180   to 360  , respectively. The results given in Fig. 3.5 

demonstrate that the method is in agreement with the dyadic Green’s function, and can 

be reliably used for layered profiles. 
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Figure 3.5 : Scattering cross section for the two layered sphere illuminated by a dipole, 

solid line corresponds to the solution with integral equations, and circles to the dyadic 

Green’s function. E-plane values are given in  0,180  , H-plane in  180,360  . 

As stated in the introduction, constructing the dyadic Green’s functions for continuous 

profiles is much more challenging. Therefore, for this type of profiles, the comparison 

must be made using alternative numerical techniques. In this sub-section, the MoM 

formulation developed in [14] will be used for the comparison. A brief presentation of 

the formulation can be found in Appendix E. However, before proceeding with the 

comparison, the consistency and the robustness of the method developed in this thesis 

must be established. To this end, we will first analyze the behaviour of the scattered 

field coefficients in the configuration that will subsequently be used for the comparison 

with MoM. 

For the first case of continuous profiles, consider the linearly varying profile described 

by      

( ) 2 1 .r

r r
r i

a a


   
      
   

 (3.83) 

In order to reduce the computational effort for MoM simulation that will be performed 

later, the radius of the sphere is chosen as is 0.5a m , and accordingly the integrals 

are discretized by 15  points. The sphere is illuminated by an x-polarized plane wave 
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propagating along the minus z-direction with a frequency of 300f MHz . Since the 

electrical size of the sphere is smaller, lower values can be used for the term maxN . To 

prove this point, the coefficients of the scattered field must be analyzed. To better 

depict the behaviour of the coefficients in the far field, let us use the set of coefficients 

( )s

nm r , ( )s

nm r , and ( )s

nm r  instead of the scalar coefficients nmA , nmB  of the scattered 

field. That is, instead of (3.27), a series expansion in the form of  (3.16) will be used: 





1 2

0

3

( ) ( ) ( , ) ( ) ( , )

( ) ( , )

n
s s s

nm nm nm nm

n m n

s

nm nm

r r

r

     

  



 

 



 E r A A

A

 (3.84) 

Note that the radial components of the vector wave functions 
(1)

0( )nm kM r  and 
(1)

0( )nm kN r

in (3.27) will be represented by the coefficients ( )s

nm r , ( )s

nm r , and ( )s

nm r  in (3.84). 

This form is preferred in order to demonstrate the behaviour of the 3( ) ( , )s

nm nmr  A , 

which represent the r̂  component of the scattered field. Since we are investigating the 

scattering cross section, the far field pattern of the scattered field should be used. 

Therefore, the values of the coefficients at a sufficiently far radial distance of 

300r m , that is the  values of 1( 300)s

n r  , 1( 300)s

n r  , and 1( 300)s

n r  , will be 

depicted in Fig. 3.6 and 3.7. Note that only the coefficients for 1m  are presented 

since for 1m     the coefficients are all zeros, and the values for 1m    have the 

same magnitude as the coefficients with 1m .  

The coefficients 1( 300)s

n r   and 1( 300)s

n r   are presented in the same graph in Fig. 

3.6, since their magnitude are of the same scale. That shows that the vector spherical 

harmonics 1 ( , )nm  A  and 2 ( , )nm  A  make similar contribution to the ̂  and ̂  

components of the scatered field. On the other hand, as depicted in Fig. 3.7, the 

magnitudes of the coefficients 1( 300)s

n r   are far lower. This is an expected result 

considering the fact that the far field pattern is dominated by the tangential 

components. Therefore the functions 3 ( , )nm  A , which represent the r̂  component, 

do not make any significant contribution to the scattered field in the far field region. 

Also note that for 5n  , the values of coefficients are preactically zero. This suggests 

that max 5N   is an efficient choice. For any value lower than 5 , there will be an error 



93 

in the scattered field, as demonstrated in Fig. 3.8. For this figure, the scattering cross 

section of the sphere with linearly varying profile is calculated with the reduced 

integral equations using max 3N   and max 5N  . The difference between two results 

demonstrates that the coefficients with indices 4n   and 5n   make non-zero 

contributions to the scattered field. On the other hand, as expected, adding more terms 

with indices 5n   do not effect the outcome. This will be demonstrated in Fig. 3.9.  

 

Figure 3.6 : The magnitude of the coefficients 1( 300)s

n r   and 1( 300)s

n r   of the 

field scattered by a sphere with linearly varying profile. 

 

Figure 3.7 : The magnitude of the coefficients 1( 300)s

n r   of the field scattered by 

a sphere with linearly varying profile. 
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Figure 3.8 : Scattering cross section for the sphere with linearly varying profile, 

illuminated by a plane wave travelling in the negative z-direction. Solid line 

corresponds to the solution with max 5N  , and dashed line to the solution with 

max 3N  . E-plane values are given in  0,180  , H-plane in  180,360  . 

After establishing the optimal parameters of the solution with integral equations, we 

can proceed to the comparison with MoM. In the method descibed in [14], the entire 

volume of the scatterer is discretized into cubic cells, and the electric field in the 

centres of those cells are evaluated by solving 3-D vectorial electric field equation via 

method of moments. Two different discretizations have been employed for this 

example. First, the dimensions of the cubic cells are chosen as 0.1m , which 

corresponds to the ratio of 0 /10 , 0  being the wavelength of the free space. This is 

a commonly used measure in MoM applications. By this choice, the sphere is 

discretized into 552  cells, therefore the number of unknowns, the electric field vector 

components, is 1656 . Secondly, a cell dimension of 0.067m  is used for finer meshing. 

For this case, the number of cells and unknowns are 1791 and 5373  respectively.  

On the other hand, with a discretization into 15  points, and the optimal value of 

max 5N  , the number of unknowns is determined as 450  for the solution with integral 

equations. Note that this value indicates the number of interior electric field 

coefficients that will be used in (3.77). Only the coefficients with indices 1m    are 

taken into account, since the remaining coefficients are all zeros. For an electrically 
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larger sphere, the difference in the required computational effort would be greater as a 

result of the higher complexity of the MoM algorithm, which uses a 3-D discretization 

scheme. The scattering cross sections calculated via the reduced integral equations and 

MoM are plotted in Fig. 3.9. Unlike the method based on 1-D integral equations, or 

dyadic Green’s function, which are designed specifically for symmetrical spheres, the 

cubic discretization only approximately represents the spherical geometry. Therefore 

a perfect match does not occur, although the methods are compatible in general. An 

important point to note is the excellent agreement between the results with max 5N   

and max 10N   for the solution with integral equations. Considering the analysis 

presented for the previous figures of Fig. 3.6-3.8, this is an expected result, and it 

further demonstrates the robustness of the method developed in this thesis.  

 

Figure 3.9 : Scattering cross section for the sphere with linearly varying profile, 

illuminated by a plane wave travelling in the negative z-direction. Solid line 

corresponds to the solution with integral equations with max 10N  , dots to solution 

with max 5N  , gray dashed line to the solution with MoM, with a cell size of 0.1m , 

and black dashed line to the solution with MoM, with a cell size of 0.067m . E-plane 

values are given in  0,180  , H-plane in  180,360  . 
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Figure 3.10 : Scattering cross section for the Eaton lens, illuminated by a plane wave 

travelling in the negative z-direction. Solid line corresponds to the solution with 

integral equations, gray dashed line to the solution with MoM, with a cell size of 

0.15m , and black dashed line to the solution with MoM, with a cell size of       

0.05m . E-plane values are given in  0,180  , H-plane in  180,360  . 

Note that in Fig. 3.9, for the smaller cell size of 0.067m , the result of MoM slightly 

approaches to the solution with integral equations. To further analyze the effect of 

MoM meshing, consider the Eaton lens described by      

2

( ) .r

r
r

a


 
  
 

 (3.85) 

The scattering cross section will be calculated with the integral equations using the 

same parameters as the case with linearly varying profile. For the MoM, two different 

discretizations will be used: First, a discretization into 136  cells with a size of 0.15m

Second, a discretization into 4224  cells with a cell size of 0.05m . The results are 

presented in Fig. 3.10. Expectedly, as the cell size decreases, the results obtained via 

MoM approach to the solution with integral equations. This proves that for 

symmetrical spheres, the method developed in this thesis presents a more efficient and 

accurate alternative to the classical numerical techniques such as MoM.   
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3.2.3.3 The field variation inside the lenses 

The geometrical theory of optics provides a reliable model for predicting the field 

picture inside well-known lenses such as Luneburg lens [32]. Therefore, as another 

test for the applicability of the method, the variation of the interior electric field on the 

surfaces of some special lenses will be calculated via reduced integral equations. For 

all examples in this sub-section, the integrals are discretized by 30  points, and the 

value of maxN  is chosen as max 20N   to guarantee accuracy. Apart from the Eaton lens 

defined in (3.85), the well-known Luneburg lens described by        

2

( ) 2r

r
r

a


 
   

 
 (3.86) 

and the Maxwell fish-eye lens defined as       

2
2

4
( )

1

r r

r

a

 
  
  
   

 

(3.87) 

will be analysed. First, we will investigate the behaviours of the lenses in the case of 

excitement by a plane wave propagative along the negative z-direction with a 

frequency of 300f MHz . In Fig. 3.11, the magnitude of the total electric field 

normalized with respect to the incoming field, / iE E , on the surface is plotted for a 

Luneburg lens and an Eaton lens with radii of 2a m . For the Luneburg lens, as 

predicted by the optical model, the maximum value of the field is measured on the 

   axis, around the focal point of the lens [32]. Since it has a single focal point, it 

focuss the plane wave into its focal point which is located on the opposite side. On the 

other hand, the Eaton lens acts as a reflactor, and bends the incoming wave. Therefore, 

it creates a stronger field around the plane of 2  , compared to the region 2   

As a second example of plane wave excitation, the same value of / iE E  is plotted 

for the Luneburg lens and the Maxwell fish-eye lens are plotted in Fig. 3.12. The 

parameters are the same as the ones used in the previous figure. It is clear that the fish-

eye lens produce an evenly distributed field picture. Unlike Luneburg lens, Maxwell 

fish-eye lens has two focal points [32]. Therefore, in the case plane wave excitation, it 
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acts as a scatterer and spreads the incoming field in all directions evenly. It is clear that 

for plane wave excitation, the results are compatible with optical theory. The 

simulations demonstrate that the method can be effectively used to obtain the interior 

field variation not only in the radial direction, which was investigated in the section 

3.2.3.1, but also in the tangential direction.   

 

Figure 3.11 : Normalized magnitude of the interior field ( / iE E ) on the surface of 

Eaton lens (solid line), and Luneburg lens (dashed line), induced by a plane wave 

travelling in the negative z-direction. 

 

Figure 3.12 : Normalized magnitude of the interior field ( / iE E ) on the surface of 

Maxwell fish-eye lens (solid line), and Luneburg lens (dashed line), induced by a 

plane wave travelling in the negative z-direction. 
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In the second part of this sub-section, we will produce the interior field variation on 

the surfaces of the lenses, in the case of excitation by a dipole. First, the Luneburg and 

the Maxwell fish-eye lenses will be compared. Two lenses with radii of 2a m  are 

illuminated by an infinitesimal horizontal electric dipole situated just above the surface 

along the pozitive z-axis. The ratio of the field magnitudes / iE E  for both lenses are 

plotted in Fig. 3.13. Since the Luneburg lens has a single focal point it distribute the 

field evenly in the region 2  . That is, the dipole is stuated in the focal point. On 

the other hand, the Maxwell lens has two focal points, and thus, it focuses the field 

created by the dipole in one focal point, to the other one located along the    axis. 

The second example, presented in Fig. 3.14, compares the behaviour of the Eaton lens 

with Luneburg lens. The ratio of / iE E , calculated for both lenses in the same 

configuration as the previous example, demontrates that the wave bending effect of 

the Eaton lens is not as effective as the plane wave excitation. Since the Eaton lens is 

designed as a reflector for the plane wave, this is an expected result. Nevertheless, 

comparison with Luneburg lens shows that it still supresses the field in the region 

2  . In general, the analysis of the lenses provides another verification for the 

effectiveness of the method.  

 

Figure 3.13 : Normalized magnitude of the interior field ( / iE E ) on the surface of 

Maxwell fish-eye lens (solid line), and Luneburg lens (dashed line), induced by an 

infinitesimal dipole on the surface along the positive z-axis. 
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Figure 3.14 : Normalized magnitude of the interior field ( / iE E ) on the surface of 

Eaton lens (solid line), and Luneburg lens (dashed line), induced by an infinitesimal 

dipole on the surface along the positive z-axis. 

3.2.3.4 The case with an internal source 

The applicability of the method for the cases in which the dipole is located inside the 

sphere will be considered in this section. Straightforward adaptation by changing the 

radial functions of the coefficients of the incident field given in (3.46)-(3.48) does not 

work, since the incident field has a singularity at the location of the dipole. Therefore, 

the series for the electric field inside the sphere does not converge in a vicinity of the 

dipole. It is clear that a mathematically rigorous solution cannot be formed based on 

the analysis presented in this thesis. However, numerical simulations demonstrate that 

the method still produces useful results, by simply jumping over the singularity caused 

by the internal source. To this end, an appropriate radial meshing must be constructed 

in a way that places the source point in a boundary between two adjacent cells. This 

placement guarantees that the incident field evaluated in the cell centers, albeit large, 

will be finite. Since the series does not converge aroung the dipole, the value of maxN  

greatly effects the results. The numerical example will demonstrate that point. 

For the simulation, consider the two-layered sphere defined in (3.80). The sphere is 

assumed to have a radius of 1a m . The x-oriented infinitesimal dipole is located at 

the point 0x  , 0y  , 0.3z m . Therefore, the radial dependency of the coefficients 
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for the incoming field given in (3.46)-(3.49) must be altered for 0.3r m . For 

example, for the coefficients ( )i

nm r , the radial function (1)

0 0( ) ( )n d nh k z j k r  must be 

replaced by (1)

0 0( ) ( )n n dh k r j k z , for dr z . The reaason for this alteration can be seen 

by analysing (3.40)-(3.42). The integrals are discretized by 30  points, to satisfy the 

requirement about the meshing stated above. For the comparison, the dyadic Green’s 

function for a two-layered sphere with a source located in the inner layer will be used. 

The formulation of this function can be found in [45]. The total field along the radial 

direction has been calculated using different values of maxN  for both methods to show 

the effect of the internal source on the convergence rate. The results presented in Fig. 

3.15 demonstrate that there is an agreement between two methods outside the vicinity 

of the dipole. Also, different values of maxN  do not cause any variation in this region, 

showing that the series converge at these points. On the other hand, in the vicinity of 

the dipole the series fails to converge even for very large truncation numbers. It can be 

concluded that the method provides useful results outside the vicinity of the dipole, 

however, a more rigorous formulation must be developed for the case with an internal 

source. 

 

Figure 3.15 : Magnitude of the total field inside a two-layered sphere with an 

internal source located at 0.3r m , dots corresponds to the solution with        

integral equations, and circles to the dyadic Green’s function. 
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3.3 Inverse Scattering Problem 

In this section, the solution of the 1-D electromagnetic profile inversion problem in 

spherical coordinates will be developed. Similar to the acoustic case, the aim of this 

section is to develop a method to reconstruct the unknown profile, which is assumed 

to be a function of the radial distance only. The reconstruction process will use the 

scattered field measured on a spherical surface outside the sphere as the data. The 1-D 

reduced integral equations that were formulated in the previous section for the solution 

of the direct scattering problem will be reused here as reduced object and data 

equations. Therefore, the original 3-D problem will be reduced to 1-D form as in a 

manner similar to the direct scattering problem. It is clear that the electromagnetic 

inverse problem has a similar structure to the acoustic one. As a result of this similarity, 

the solution will be modeled after the formulation developed in the section 2.3.2. The 

iterative Newton’s method will be used to reconstruct the electromagnetic parameters, 

and the Tikhonov regularization will be used to obtain a stable solution. Therefore, the 

theoretical background presented in the section 2.3.1 is also relevant for the problem 

analysed in this section, and it will not be repeated here. In the first part of this section, 

we will formulate the inverse problem, and its iterative solution via the Newton’s 

method. In the second part, some numerical simulations will be presented to 

demonstrate the validity of the formulation. The content of this section is also available 

in [69], in a more compact form. A time dependence of i te   is assumed and omitted 

throughout the entire section.  

3.3.1 The formulation and the solution of the inverse scattering problem 

Consider the dielectric sphere of radius a , denoted by D  in Fig. 3.16. The permittivity 

( )r , and the conductivity ( )r  of the sphere are assumed to be arbitrary functions of 

radial distance only. These parameters also constitute the unknowns of the inverse 

scattering problem. On the other hand, the magnetic permeability 0  is considered 

constant throughout the whole space. The region outside the sphere is assumed to be 

free space region characterized by a constant wave number 0 0 0k    . The sphere 

is illuminated by an infinitesimal horizontal electric dipole located at the point 0x  , 

0y  , dz z  , dz a . The current moment of the dipole is denoted by 0C .  
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Figure 3.16 : The geometry of the electromagnetic inverse scattering problem. 

 In Fig. 3.16,   represents a spherical surface of radius mr , where the scattered field 

is assumed to be measured. Therefore, the aim of the inverse problem is to determine 

the electromagnetic parameters of the spherical scatterer via the measurement of the 

scattered field on the surface  .  To this end, the reduced object equations (3.74)-

(3.76), and the reduced data equations (3.78)-(3.79) will be used to formulate a 1-D 

inversion algorithm. Note that, the unknown parameters determine the object function 

( )v r  appearing in those equations, and the main objective of the iterative process will 

be to reconstruct ( )v r , which is defined in (3.37), starting from an initial guess.  

It is clear that the coefficients of the scattered field, nmA  and nmB , constitute the data 

of the inverse problem. However, those coefficients cannot be measured directly, and 

they should be obtained from the measured scattered field. To this end, the 

orthogonality of the vector spherical harmonics over the unit spherical surface can be 

used. Since the scattered field is assumed to be measured over a spherical surface with 

radius mr , by multiplying the scattered field with the complex conjugate *

1 ( , )nm  A , 

and integrating over  , one obtain the integral 

2

* 2

1

0 0

( ) ( , ) sin .s

nm mr d d

 

     E r A  (3.88) 
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By using (3.27) to represent ( )s
E r , and taking the orthogonality relation into account, 

the integral is transformed into       

2

* 2 (1) 2

1 0

0 0

2

*

1 1

0 0

( ) ( , ) sin ( 1) ( )
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 (3.89) 

Since the integral on the right hand side is a direct application of the orthogonality 

relation, the coefficients nmA  are obtained as        

2
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0 00
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For the coefficients nmB , the same procedure can be applied using *

2 ( , )nm  A  or 

*

3 ( , )nm  A . Using *

2 ( , )nm  A  yields        
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(3.91) 

and by *

3 ( , )nm  A , one obtains        
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( ) ( , )sin
( 1) ( )

sm
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k r
B d d
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 
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  E r A  (3.92) 

In practical applications, the scattered field is measured at a finite number of discrete 

points. Therefore, the integrals in (3.90)-(3.92) should be evaluated numerically. In the 

numerical simulations that will be presented in the next section, the Simpson’s rule 

have been used for this purpose. Also it should be noted that, in the simulations, the 

values of  nmB  obtained via (3.91) and (3.92) have been slightly different due to the 

errors in numerical integration, and the additive noise in the measured data. Therefore, 

the arithmetic average of two values has been used.  
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3.3.1.1 Newton based iterative solution 

The formulation of the iterative process follows the same steps that were used in 

section 2.3.3.2 for the acoustic problem. However, unlike acoustic problem, in the 

electromagnetic case there are two data equations. Moreover, these equations, namely 

(3.78) and (3.79), are independent. Therefore, the object function ( )v r  can be 

reconstructed independently via the system formed by (3.74)-(3.78), or the the one 

formed by (3.75)-(3.76), (3.79). Hence, in the iterative process, two different update 

amounts are obtained for the object function ( )v r  in each step. Expectedly, the system 

formed by (3.75)-(3.76), (3.79) is more effective, since it also carries the information 

obtained from the radial component through the functions 3 ( , )nm  A  and the 

coefficients ( )nm r . However, numerical simulations suggest that using the average of 

the two independent update amounts improves the accuracy of the reconstruction in 

most cases. Therefore, unless stated otherwise, in the numerical examples that will be 

presented in the next section, the average value will be used to update the object 

function at the end of each step. 

Now, to formulate the iterative scheme, let us state the data equations (3.78) and (3.79) 

in a compact form:     

nmF v A   (3.93) 

nmF v B   (3.94) 

Here, the operators F  and F  are defined as    

3
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( ) ( ) ( )
( 1)

a

n nm

ik
F v j k r v r r r dr

n n
     


  (3.95) 
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0 0

( ) ( )
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( ) ( ) ( )
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n nm

ik
F v r r j k r
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ik j k r r v r r dr

 




     

    


 (3.96) 
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It is clear that, in order to solve (3.93) and (3.94), the values of the coefficients of the 

interior electric field, ( )nm r , ( )nm r , ( )nm r  must be obtained. Therefore, to produce 

the initial values of those coefficients, denoted by (0) ( )nm r , (0) ( )nm r , (0) ( )nm r , the direct 

scattering problem must be solved by substituting the initial guess for the object 

function, denoted by (0) ( )v r , into the reduced object equations (3.74)-(3.76). The 

solution of the direct scattering problem is explained in the previous section in detail. 

After obtaining the coefficients of the interior electric field, the non-linear data 

equations are linearized:      

nmF v F v A     (3.97) 

 nmF v F v B     (3.98) 

Here, v  and v  represent the independent update amounts for the object function. 

These functions will be obtained by inverting the linearized equations (3.97) and 

(3.98). F
  and F

  denotes the Fréchet derivatives of the related operators. The open 

form of these terms are given as     

3
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 

 
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      

    


 (3.100) 

Note that, as a result of discretization of the integrals in the object and data equations, 

all the terms appearing in (3.97)-(3.98) are matrices. Therefore, the solution would be 

obtained by inverting the matrices formed by F
  and F

 , to determine  v  and v  

However, as explained in the section 2.3.1, the Fréchet derivatives are linear compact 

operators, and hence, the equations (3.97)-(3.98) are ill-posed. To produce a stable 
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solution, a regularization technique must be used. Similar to the acoustic case, the 

Tikhonov regularization will be used here to obtain the update amount as    

(1) * 1 * (0)( ) ( )T nmv I F F F A F v            (3.101) 

(1) * 1 * (0)( ) ( )T nmv I F F F B F v            (3.102) 

Here, 
T  is the regularization parameter, and I  is the identity matrix of the appropriate 

dimension.  

As an alternative formulation, the update amounts can be expressed in terms of some 

basis functions ( )p r  as     

1

( ) ( )
P

p p

p

v r a r




   (3.103) 

where   denotes either   or   [1]. In this case, the linearized equations (3.97)-

(3.98) are replaced by      

(0)

1

( ) ( )
P

p p nm

p

a F r A F v

 


      (3.104) 
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1

( ) ( )
P

p p nm

p

a F r B F v

 


      (3.105) 

and solved via Tikhonov regularization to obtain the scalar coefficients pa
 and pa

 

[1]. Note that, in this formulation, the matrix forms of the F
  in (3.101) and (3.102) 

are replaced by the matrix product pF
  for the Tikhonov regularization.  

For both alternatives the initial step is completed by updating the object function      

(1) (0)
( ) ( )

( ) ( )
2

v r v r
v r v r

  
   (3.106) 

The iterative process is continued until the 2  norm of the ratio ( ) / ( )v r v r  becomes 

smaller than a predefined threshold S .  
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3.3.2 Numerical simulations 

Some numerical tests have been conducted to assess the performance of the method 

for the electromagnetic case. The results will be presented in three parts: In the first 

sub-section, three different profiles, slowly varying, oscillating, and piecewise layered, 

will be reconstructed using different initial guesses for the object functions. In the 

second part, the independence of the reduced object functions will be analysed. Two 

different profiles will be constructed via ( )v r  and ( )v r  independently, then the 

results will be compared with those obtained via (3.106). In the final part, the 

alternative formulation described in (3.103)-(3.105) will be used to determine update 

amounts. The results obtained via three different basis functions ( )p r  will be 

presented in the sub-section. In all sub-sections, the error metric, defined in (2.86), will 

be given as a measure of the success of the reconstruction. 

For all examples, the radius of the dielectric sphere is chosen as 0.1a m . The incident 

field is created by an infinitesimal horizontal electric dipole with a current moment 

0 0.1C  ,  located at the point 0x  , 0y  , 0.11z m . The operating frequency is 

chosen as 600f MHz . The radius of the measurement surface   is assumed to be 

0.12mr m . To make the simulations more realistic, a %5  additive noise is added to 

the scattered field. That is, a random term of 2
0.05 ni rs e



E  is added to each vectorial 

component denoted by  . Here,   represents one of , ,r   ; and nr ’s are uniformly 

distributed random numbers.  

For the parameters of the Newton’s method, the regularization parameter is chosen as 

0.5 /T itn  , itn  being the number of iterations. The reasons for decreasing the value 

of T  was discussed in the section 2.3.3.1, and that discussion is also valid for the 

electromagnetic case. For similar reasons, the optimal value determined in the acoustic 

case will be reused here as the value of the stopping threshold, that is S  is chosen as 

310S
 . For the solution of the direct scattering problem, the integrals in (3.74)-

(3.76) and (3.77)-(3.78) are evaluated by a discretization of 30  points. Moreover, 

unless stated otherwise, the truncation number for the series expansions representing 

the interior and scattered electric fields is chosen as max 3N  .   
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3.3.2.1 The performance test with different profiles 

As a first example, the Luneburg lens defined in (3.86) will be reconstructed. The 

initial guesses for the object function are chosen as (0) ( ) 0.75v r  , (0) ( ) 1v r   and 

(0) ( ) 1.25v r  . The results presented in Fig. 3.17 demonstrate that the method is 

capable of reconstructing slowly varying profiles accurately, provided that an 

appropriate initial guess is chosen. Expectedly, the best result is obtained for the initial 

guess of (0) ( ) 1v r   in 9  iterative steps. The error for this case is calculated as 

2

36.2 10e   , which indicates excellent agreement between the reconstructed and 

exact profiles. For the remaining initial values, the iterative process lasted for 11 steps, 

and the error metric is calculated as 2 0.15e  . The increase in the error demonstrates 

the importance of the initial guess for the performance of the method.  

 

Figure 3.17 : Exact and the reconstructed values of the object function for the 

Luneburg lens with three different initial guesses for the object function. 
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Previous example shows that the method is capable of reconstructing slowly varying 

profiles. It is clear that more more rapidly varying profiles the success rate will be 

lower. To test this assumption, a profile with sinusoidally varying real, and linearly 

varying imaginary part will be reconstructed as the second case. The profile is defined 

as       

( ) 1.5 0.5cos 3 1r

r r
r i

a a
 

   
      

   
 (3.107) 

The initial guesses are chosen as (0) ( ) 1.25 0.75v r i  , (0) ( ) 1.5 1v r i   and 

(0) ( ) 1.75 1.25v r i  . The results presented in Fig. 3.18 demonstrate that the method 

is capable of reconstructing an approximate oscillating profile. However, the 

difference between the exact and the reconstructed profiles is much greater compared 

to the case with Luneburg lens. On the other hand, the reconstruction of the imaginary 

part, depicted in Fig. 3.19, is much more accurate, since it is slowly varying. The 

itarative process lasted for 14  iterations for each initial guess, and the lowest error 

value is obtained as 2 0.23e   for the initial guess of (0) ( ) 1.5 1v r i  . This example 

demonstrates that the success of the reconstruction process decreases as the oscillation 

of the profile increases. For more rapidly oscillating profiles, the method fails to 

converge to a useful result.  

 

Figure 3.18 : The real part of the exact and the reconstructed values of the object 

function for the sinusoidally varying profile with three different initial guesses. 
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Figure 3.19 : The linearly varying imaginary part of the exact and the reconstructed 

values of the object function for the sinusoidally varying profile with three different 

initial guesses. 

The reconstruction of piecewise homogeneous layered profiles is more challenging, 

due to the discontinuities in the layer boundaries. Since the reconstruction is made by 

continuous radial functions, only an approximation can be obtained for these profiles. 

As an example of piecewise homogeneous profiles, consider the three layered sphere 

described by       

3 0.3 0 / 0.33

( ) 3.8 0.9 0.33 / 0.66

2.4 0.6 0.66 / 1

r

i r a

r i r a

i r a



  


   
   

 (3.108) 

The initial guesses for this profile are chosen as (0) ( ) 1.75 0.2v r i  , (0) ( ) 2 0.3v r i   

and (0) ( ) 2.25 0.4v r i  . For these initial values, the iterative process converged in 16  

15  and 14  iterations respectively. The results for the real part given in Fig. 3.20, and 

those for the imaginary part given in Fig. 3.21 shows that although the method 

expectedly fails to detect sharp transitions, it nevertheless provides a smoothed 

approximation. The error levels for three initial guesses are calculated as 2 0.13e  , 

2 0.14e   and 2 0.17e   respectively. The close values indicate that choosing the 

most suitable initial guess does not guarantee a rapid convergence in the case of 
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layered profiles. However, it should be noted that the method fails to converge when 

the initial guess deviates too far from the ideal value. For all types of profiles, the 

choice of initial parameters determines the success of the method. 

 

Figure 3.20 : The real part of the exact and the reconstructed values of the object 

function for the three layered profile with three different initial guesses. 

 

Figure 3.21 : The imaginary part of the exact and the reconstructed values of the 

object function for the three layered profile with three different initial guesses. 
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3.3.2.2 Reconstruction via independent data equations 

For all the examples analysed in the previous sub-section, the average value defined 

in (3.106) has been used. However, as indicated in the section 3.3.1.1, the reduced data 

equations (3.78) and (3.79) are independent, and the object function can also be 

reconstructed by using only one of them. That is, the update functions v  and v  

can be obtained by using the scattered field coefficients nmA  and nmB  respectively. 

Then, the update of the object function in the end of each iterative step will be made 

using either v  or v  independently. Here, we will present two examples to 

compare this approach with the one used in the previous sub-section.  

As the first example, the Maxwell fish-eye lens defined in (3.87) will be used for the 

comparison. For this case, the profile is reconstructed using three different update 

amounts, namely v , v , and the average of both. For all recontructions, the initial 

guess is chosen as (0) ( ) 3v r  . As seen in Fig. 3.22, the reconstruction with v , which 

is lasted 6  iterations, provides only a rough approximation of the actual profile. The 

reason is that, as stated in the section 3.3.1.1, the system formed by (3.74)-(3.78) does 

not carry the information provided by the radial component. On the other hand, the 

reconstruction using v , that is by the system of (3.75)-(3.76), (3.79), provides a 

much better approximation. This result demonstrates that the reconstruction process 

using the average value defined in (3.106) is dominated by the system (3.75)-(3.76), 

(3.79). Nevertheless, using the average value provides the best result of the 

reconstruction. The error for the average value is calculated as 2 0.01e  , whereas for 

the update via v , it is determined as 2 0.03e  . It can be concluded that the 

additional information provided by the update amount v  slightly increases the 

success of the method.  

It should be noted that although this improvement is meaningful in the case of slow 

variation, it is relatively insignificant for the rapidly oscillating profiles. Consider the 

sinusoidally varying profile defined in (3.107). In Fig. 3.23 and 3.24, the real and the 

imaginary parts of the reconstructed profiles are presented. It is clear that the update 

via the average value and via v  produced similar results. The error rates are given 
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as 2 0.27e   for the average value, and  2 0.26e   for the update amount v . 

Moreover, the iterative process for v  lasted only 8  steps, whereas for the average 

value, the result is obtained in 14  iterations. It can be concluded that for more 

challenging profiles, reconstruction via the system of system (3.75)-(3.76), (3.79) 

might be a more efficient alternative.  

 

Figure 3.22 : Exact and the reconstructed values of the object function for the 

Maxwell fish-eye lens obtained via three different update amounts. 

 

Figure 3.23 : The real part of the exact and the reconstructed values of the object 

function for the sinusoidally varying profile with three different update amounts. 
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Figure 3.24 : The imaginary part of the exact and the reconstructed values of the 

object function for the linearly varying profile with three different update amounts. 

3.3.2.3 Series expansion for the update amounts 

In this sub-section, the alternative formulation using series expansion to represent the 

update amounts, outlined in (3.103)-(3.105), will be analysed. As explained in the 

section 3.3.1.1, the update amounts can be expressed in terms of some basis functions, 

and the linearized data equations can be solved to determine the coefficients of the 

series expansions. Note that two different series, although with the same basis 

functions, will be used to represent v  and v  separately, and the final update will 

be done using the average value of v  and v  as indicated in (3.106).Three 

different basis functions will be used for the analysis: the harmonic functions defined 

as       

2

( ) , 0, 1, 2...
r

i p
a

p r e p


      (3.109) 

the Bessel functions        

0( ) , 0,1,2...p p

r
r j k p

a

 
   

 
 (3.110) 

and the Dini series        
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( ) , 0,1,2...p n p

r
r j p

a

 

   
 

 (3.111) 

In (3.11), p  represents the p-th root of the equation        

( ) ( ) 0n n nx j x t j x    (3.112) 

where nt  being any real number. Similar to maxN , the truncation number for the series 

expansion (3.103), denoted as maxP , can be considered as an additional parameter. 

Numerical tests with different profiles suggest that the optimal value for this 

formulation is max 5N  , instead of max 3N   which was used in the previous sub-

sections. For the series with harmonic basis functions, the value of maxP  is chosen as 

max 5P  . On the other hand for the Bessel functions and the Dini series, the value of 

max 10P   will be used.  

As the first example, the sinusoidally varying profile defined in (3.107) will be 

reconstructed using the basis functions (3.109)-(3.111). The initial guess for the object 

function is chosen as (0) ( ) 1.5 1v r i  . The results presented in Fig. 3.25 and 3.26 

demonstrate that the choice of basis functions strongly effects the performance of the 

method. The reconstruction via Dini series provided a major improvement compared 

to the previous results that was given in Fig. 3.18 and 3.19. The error metric is 

decreased from 2 0.23e   to 2 0.12e   by the use of these basis functions. On the 

other hand, the error is calculated as 2 0.24e   for harmonic functions and 2 0.30e 

for the Bessel functions. The results demonstrate that the choice of appropriate basis 

functions determine the success of this formulation. 

However, it should be noted that, for every type of profiles, different basis functions 

provide the best results. To show this, the three layered sphere, defined in (3.108), will 

be reconstructed using the same basis functions as the previous example. The initial 

value for the object function is chosen as (0) ( ) 2 0.3v r i   for this example. As seen 

in Fig. 3.27 and 3.28, the outcome does not parallel the results obtained for the 

sinusoidally varying profile. The highest error is obtained for the Dini series as 
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2 0.20e  . On the other hand, the Bessel functions provided the best outcome with an 

erro rate of 2 0.12e  . Note that this value does not present a significant improvement 

from the results, obtained in the section 3.3.2.1, with an error of 2 0.14e  . The 

analysis demonstrates the difficulty of predicting the best basis function for specific 

configurations. The performance of this alternative formulation must be checked 

seperately for each profile.  

 

Figure 3.25 : The real part of the exact and the reconstructed values of the object 

function for the sinusoidally varying profile with three different basis functions. 

 

Figure 3.26 : The imaginary part of the exact and the reconstructed values of the 

object function for the linearly varying profile with three different basis functions. 
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Figure 3.27 : The real part of the exact and the reconstructed values of the object 

function for the three layered sphere with three different basis functions. 

 

Figure 3.28 : The imaginary part of the exact and the reconstructed values of the 

object function for the three layered sphere with three different basis functions. 
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4.  CONCLUSIONS   

Direct and inverse scattering problems related to the radially inhomogeneous spheres 

have been analysed. It has been demonstrated that the original 3-D problems can be 

transformed into 1-D forms by taking advantage of the spherical symmetry. First, 

under the assumption of constant density throughout the space, the acoustic problem 

has been expressed in terms of the scalar object and data equations having 3-D 

structures. For the acoustic case, the dimension reduction has been achieved by 

expressing the scalar acoustic field as a series expansion in terms of the scalar spherical 

harmonics. The angular terms are then eliminated using the orthogonality relation over 

the unit spherical surface. This approach enables one to formulate 1-D integral 

equations involving the coefficients of the series expansions only. The direct scattering 

problem can be solved by a simple discretization of these integrals along the radial 

direction. On the other hand, for the solution of the inverse problem, a Newton based 

iterative scheme has been constructed, and tested using various profiles.  

The procedure for the electromagnetic problem is similar to the acoustic case. 

However, since it is a vectorial problem, the formulation of the 1-D equations is much 

more challenging. Therefore, instead of scalar harmonic functions, the vector spherical 

harmonics have been used to express the vectorial electric field inside the sphere. It 

has been proven that by using the orthogonality of these functions with the vector wave 

functions in the expanded form of the free space dyadic Green’s function, it is possible 

to replace the 3-D electric field equation with a system of 1-D reduced integral 

equations. Similar to the acoustic case, these equations contain the scalar coefficients 

of the interior electric field, they can be solved simply by a discretization procedure. 

It can be concluded that although the mathematical operations, and the functions 

involved in the procedure are different, the resulting reduced integral equations have 

similar forms in the acoustic and electromagnetic cases. Therefore, a similar iterative 

scheme have been used in the solution of the electromagnetic inverse problem.  

The numerical simulations for the direct scattering problem demonstrate that the 

method developed in this thesis is quite reliable for determining the interior and the 
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scattered field, for both acoustic and electromagnetic cases. The well-posedness and 

the simple mathematical structures of the reduced integral equations make the 

implementation of the method easier for different types of problems. Comparisons 

with alternative analytical techniques show that the method is compatible with the 

analytical solution and the dyadic Green’s function for layered profiles, which proves 

its accuracy. Moreover, it has been demonstrated that its performance is superior to 

the alternative numerical techniques such as MoM, in terms of accuracy and required 

computational effort. Therefore, it can be concluded that, it can be used effectively in 

the cases involving complex scatterers such as head models, or metamaterial lenses. 

However, it should be noted here that the constant density assumption puts serious 

limitations on the use of the method in practical applications. Further research is 

needed to develop a method to solve the acoustic problem with variable density. On 

the other hand, no such limitation exists for the electromagnetic case; the method can 

be employed as it is in the research fields such as biomedical engineering. 

For the inverse problem, the numerical simulations in general have produced quite 

satisfactory results. However, the typical limitations of the Newton based algorithms 

have been also observed. The performance of the method for layered profiles should 

be improved before implementing it in practical problems. Moreover, as the contrast 

between the scatterer and the surrounding medium increases, the linearization process 

inherent in the Newton method starts to fail, and produces divergent results. Therefore, 

the method can only be used effectively for profiles having relatively low contrast 

values. However, it should be noted here that, all the reconstructions in this thesis are 

performed with a single source and a single operating frequency to demonstrate the 

basic structure of the method. In practical applications, using multiple sources and 

frequencies could increase the quality of the reconstruction process. Another drawback 

of the method is the dependence of the outcome on the initial guess for the unknown 

profile. In this regard, techniques such as back propagation algorithm can be adapted 

to the inversion scheme in order to obtain a suitable initial value for the iterative 

process. In addition, for both acoustic and electromagnetic cases, other inversion 

techniques, such as contrast source inversion method, might be adapted to the reduced 

object and data equations obtained in this thesis. These methods could potentially 

perform better than the Newton based iterative technique, and thus increase the 

practical value of the inverse problem.  
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APPENDIX A: The discretization procedure for the reduced integral equations 

of the acoustic case 

As stated in the section 2.2.2.2, one can determine the coefficients of the series 

expansion for the interior acoustic field by solving the reduced object equation (2.51) 

via a discretization of the interval  0,r a . After obtaining the coefficients of the 

interior field, the reduced data equation (2.52) can be solved in a similar manner, in 

order to determine the scattered field coefficients. Here, the details of discretization 

procedure, and the final discretized forms of the equations will be presented. 

Let us assume that the interval  0,r a  discretized into P  sub-intervals of equal 

length  . For each sub-interval represented by the indice , 1,2,..,j j P ; jr  denotes 

the center, and 1,j jd d   denote the lower and the upper limits of the sub-interval 

respectively. Then, the discretized form of (2.51) can be written for any cell center jr  

as  

1
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Here, r  and r stand for the smaller and larger term of the pair jr , r  respectively. 

Since for any p j , p jr r  and for any p j , p jr r ; (A.1) can be expressed in a 

more open form as  
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The last integral on the left hand side of (A.2) represents the self-contribution of the 

sub-interval j , and this term should be analysed independently. For all integrals, if the 

length   of the sub-intervals are small enough, the variation of the spherical Bessel 

functions, and that of the object function ( )v r  within the sub-interval can be 

considered negligible. Under this assumption the integration becomes straightforward, 

and letting 1 2( , )I  denotes the operator    

2

1

3 3
2 2 1

1 2( , )
3

I r dr
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(A.2) becomes    
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 (A.4) 

The integral in the term representing self-contribution can be evaluated in a similar 

manner by further discretizing the sub-interval into two halves. In this case, the integral 

can be aproximated by     
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Once again, under the assumption of negligible variation, the integrals can be removed:  
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Substituting (A.6) into (A.4) yields the final discretized form of (2.51) as      
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(A.7) 

(A.7) can easily be converted into a matrix form. The procedure is similar to the MoM 

application with point matching technique. Considering that the values ˆ ( )i

nm ju r  are 

known, after forming the P P  coefficient matrix, one can obtain the values of the 

coefficients ˆ ( )nm ju r  at the center of each sub-interval by a matrix inversion operation. 

(The reader should refer to Appendix C for a more detailed demonstration of the 

technique applied to a similar problem.) The elements of the coefficient matrix K  can 

be stated as   
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and    
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The unknown coefficients ˆ ( )nm ju r  can be determined in a 1P  matrix form, denoted 

as ˆ
nmU , by the following matrix operation     

 
1 ˆ ˆi

nm nmI K U U


   (A.10) 

where ˆ i

nmU  represents the 1P  matrix form of the coefficients ˆ ( )i

nm ju r , and I  denotes 

the identity matrix. 

The discretization procedure for the reduced data equation (2.52) is similar. Since for 

any r a , r r ; there is no self-contribution, and the resulting discretized form can 

be obtained as 
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It should be noted that the coefficients ˆ ( )nm pu r  appearing in (A.11) are the coefficients 

of the interior electric field determined by solving the discretized object equation 

(A.10). It is clear from (A.11) that no matrix operation is necessary for calculating the 

coefficients ˆ ( )s

nmu r  of the scattered field.                                                                                                      
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APPENDIX B: The analytical expression of the acoustic field for two layered      

piecewise homogeneous sphere 

Consider the geometry for the two layered sphere presented in Fig. B.1. The acoustic 

field in each region, described by the wave numbers 0k , 1k and 2k , can be expressed 

analytically as series expansions in terms of elementary wave functions. To this end, 

we first formulate the total field   
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2

3
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 (B.1) 

where ( , , )iu r    is the incoming field defined in (2.53).  

Expectedly, the series expansions for the remaining field terms in (B.1) will be of 

similar nature:  
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In these equations, nma , nmb , nmc , nmd  are scalar coefficients that will be determined 

using the boundary conditions. Note that, the main difference in the series expansions 

are the radial dependence of the wave functions. The radial dependence of  1( , , )u r    

must be expressed by Hankel functions of the first kind to satisfy the radiation 

condition. On the other hand, for 3( , , )u r   , the Bessel functions must be chosed to 

avoid singularity at 0r  . 
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Figure B.1 : The geometry for the two-layered sphere with a point source. 

An acoustic field must satisfy two boundary conditions at an interface between two 

media [70]. First, the pressure, that is the acoustic field u , must be continuous; and 

secondly, the normal component of the particle velocity, that is (1/ )( / )u n   , must 

be continuous. Here,   is the density of the medium, and / n   stands for the normal 

derivative. For the interfaces r a  and r b , these boundary conditions are stated as 

1 2( , , ) ( , , ) ( , , )iu b u b u b        (B.5) 

2 3( , , ) ( , , )u a u a     (B.6) 

 1 2

0 1

1 1i

r b r b

u u u
r r  

 
    

 (B.7) 

   2 3

1 2

1 1

r a r a

u u
r r  

 


 
 (B.8) 

Through these equations, one can form the necessary linear equation system to 

determine the coefficients nma , nmb , nmc , nmd . Considering the angular terms are 

identical for all series expansion of the field values, the equations (B.5)-(B.8) can be 

written in open form as  

(1) (1) (1)

0 0 0 1 1( ) ( ) (cos ) ( ) ( ) ( )sm im

n n s n s nm n nm n nm nj k b h k r P e a h k b b h k b c j k b
 
    (B.9) 
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(1)

1 1 2( ) ( ) ( )nm n nm n nm nb h k a c j k a d j k a   (B.10) 

(1)

0 0

0

(1) (1)

0 1 1

1

1
( ) ( ) (cos )

1
( ) ( ) ( )

sm im

n n s n s

nm n nm n nm n

j k b h k r P e

a h k b b h k b c j k b






 


      
  

 (B.11) 

(1)

1 1 2

1 2

1 1
( ) ( ) ( )nm n nm n nm nb h k a c j k a d j k a

 
    
 

 
(B.12) 

It is clear that the coefficients can be obtained via (B.9)-(B.12) by basic algebraic 

operations. The final forms are    

2 3

2 3 1 4

nmb
 

   



 (B.13) 

1 3

2 3 1 4

nmc
 

   
 


 (B.14) 

(1)

1 1 1(1)

0

1
( ) ( )

( )
nm nm n nm n

n

a b h k b c j k b
h k b

      (B.15) 

(1)

1 1

2

1
( ) ( )

( )
nm nm n nm n

n

d b h k a c j k a
j k a

     
(B.16) 

where 

(1)

1 0 0( ) ( ) (cos ) sm im

n n s n sj k b h k r P e
  

  (B.17) 

(1)

2 0 0

0

1
( ) ( ) (cos ) sm im

n n s n sj k b h k r P e
 



     (B.18) 

(1) (1)

3 1 0 2 0

0

1
( ) ( )n nh k b h k b  


    (B.19) 
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(1) (1)

1 2 1 2 1

2 1

1 1
( ) ( ) ( ) ( )n n n nj k a h k a j k a h k a

 
    (B.20) 

2 2 1 2 1

2 1

1 1
( ) ( ) ( ) ( )n n n nj k a j k a j k a j k a

 
    (B.21) 

(1) (1) (1) (1)
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0 1

1 1
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 
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APPENDIX C: Method of moments solution for the scattered acoustic field  

The MoM solution for the electromagnetic field scattered by a 3-D inhomogeneous 

object can be found in [14]. Here, a brief explanation of the solution for the acoustic 

scattered field, which is a scalar version of the electromagnetic solution, will be 

presented. For the detailed derivation of the mathematical formulation, the reader 

should refer to [14]. 

The method aims to solve the 3-D object equation given in (2.40) by discretizing the 

scatterer into N  cubic cells. If the sizes of the cells are small enough compared to the 

operating wavelength, the field and the object function ( )v r  inside each cell can be 

considered constant. By this assumption, mu , the field value at the center of the cell 

denoted by m  (1 m N  ), can be determined by    

2

0

1
,

( ) ( , )

n
m n

N
i

m m n n

n
r r

u u k v r u g dv




   
r= r =

r r  (C.1) 

Here, i

mu  is the value of the incoming field at the center of cell m , and the pair mr , nr  

denotes the centers of the cells m , n . Also, for the integral of the Green’s function in 

(C.1), the integration region n  is the volume of the source cell n . It is clear that, a 

linear equation system, consisting of N  equations with scalar coefficients, can be 

formed via (B.1), and the field values at the center of each cell can be determined by 

a matrix inversion operation involving the known values of the incoming field:    

 
1 iI K U U


   (C.2) 

Here, 
iU  and U  are 1N  matrices, whose elements are the values of the incoming 

field and the total field at the cell centers respectively. I  is the identity matrix, and K  

is the N N  coefficient matrix, whose elements are given by   

2

0

,

( ) ( , )

n
m n

mn n

r r

K k v r g dv
 

  
r= r =

r r  (C.3) 
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Once the interior field is determined using (C.2), the scattered field at any point fr   

outside the sphere can be easily obtained by evaluating   

2

0

1
,

( ) ( ) ( , )

n
f n

N

f n n

n
r r

u k v r u g dv




  
r= r =

r r r  (C.4) 

in a similar manner to (C.1). Therefore, the main challenge is to integrate the Green’s 

function over the region n  to determine the coefficients mnK . Although the 

discretization is made using cubic cells in order to better represent the shape of the 

scatterer, a spherical cell allows one to evaluate the integration analytically. To this 

end, the integration volume n  is assumed to be a sphere with radius eqa . Here, eqa is 

the radius of the sphere having equivalent volume to the cubic cell with side length a     

1

33

4
eqa a



 
  
 

 (C.5) 

We will first evaluate the integral for the case of a singular cell, that is m n . This 

case is called singular because r and r  are in the same cell, and the Green’s function 

has a singularity at r = r . By using the expression for the Green’s function given in 

(2.44), and considering the mathematical properties of the spherical harmonics the 

integral can be formulated as   

(1) 2

0 0 0 0 0

(1) 2

0 0 0 0 0

0

( , ) ( ) ( )

( ) ( )

eq

n

a

r

r

g dv ik j k r h k r r dr

ik h k r j k r r dr



    

  

 



r r

 (C.6) 

Using the asymptotic formulas    

  0(1)

0 0

0

ik ri
h k r e

k r
   (C.7) 

and    
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  0
0 0

0

sin k r
j k r

k r
  (C.8) 

one can obtain the final form of the integral for the singular cell:    

  0

02

0

1
( , ) 1 1eq

n

ik a

eqg dv ik a e
k



     
  r r  (C.9) 

For the non-singular cells, that is for the case of m n , r  is outside of the integration 

region, and r  is always greater than r . Therefore, the integration becomes   

(1) 2

0 0 0 0 0

0

( , ) ( ) ( )

n

r

g dv ik h k r j k r r dr


     r r  (C.10) 

Again, considering the asymptotic formulas (C.7)-(C.8), the result of the integration 

for non-singular cells can be written as    

0

0

02

0 0

4 sin
( , ) cos

4

m n

n

ik
eq eq

eq

eq m n

a k a e
g dv k a

k k a






 
    

  


r r

r r
r r

 (C.11) 

where 
m nr r  is the Euclidean distance between the centers of the cells m , n . Thus, 

the elements of the coefficient matrix K  has been determined:    

  0

0

0

0

0

0

( ) 1 1

sin
( ) cos

eq

m n

ik a

n eq

ikmn
eq

eq n eq

eq m n

v r ik a e m n

K k a e
a v r k a m n

k a



    
  


   
   

   

r r

r r

 (C.12) 

Note that, for scattering field, measurement point fr  is always outside the sphere. 

Therefore, the integral in (C.4) should be evaluated according to the formulation 

obtained for non-singular cells in (C.11). Thus, the open form of (C.4) can be 

expressed as   
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0

0

0

1 0

sin
( ) ( ) cos

f nikN
eq

f n eq n eq

n eq f n

k a e
u v r a u k a

k a





 
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  


r r

r
r r

 (C.13) 

where nu  is the total field at the center of the cell denoted by n , which is obtained by 

solving (C.2). Similar to (C.11), f nr r  denotes the Euclidean distance between the 

measurement point and the center of the cell n . 
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APPENDIX D: The dyadic Green’s function for a two layered sphere illuminated 

by an infinitesimal horizontal electric dipole 

Consider the geometry for the two layered sphere presented in Fig. D.1. The entire 

space consists of three piecewise homogeneous regions, which are characterized by 

the wave numbers 1k , 2k and 3k . The dyadic Green’s function can be constructed in 

each layer using the even and odd vector wave functions defined in (3.29)-(3.30). The 

details of the derivation procedure can be found in [52]. Here, a brief outline of the 

formulation and the resulting functions will be presented. Let us first define the dyadic 

Green’s functions for each layer as    

(11) (11)

3 0 3( ) ( ) ( )eo

s r a    G r,r G r,r G r,r  (D.1) 

(21) (21) (22)

3 3 3( ) ( ) ( )s s a r b     G r,r G r,r G r,r  (D.2) 

(31) (31)

3 3( ) ( )s r b  G r,r G r,r  (D.3) 

 

Figure D.1 : The geometry for the two-layered sphere with an x-oriented dipole 

situated along the z-axis. 

The function 0 ( )eo G r,r  in (D.1) represents the free space dyadic Green’s function that 

was defined in (3.31) in terms of the even and odd vector wave functions. Note that 

the definitions of the dyadic Green’s functions, given in (D.1)-(D.3), indicates that the 

source is located in the region outside the sphere, since the term 0 ( )eo G r,r  is included 
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in the expression of (11)

3 ( )G r,r , i.e. the function that represents the field in the region 

r a . 0 ( )eo G r,r  represents the field created by the source in the case of homogeneous 

space, and it is only term that has a singularity. The open expressions of the remaining 

functions in (D.1)-(D.3) can also be formulated in terms of the even and odd vector 

wave functions:     

(11) 1
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1 0

(1) (1) (1) (1)
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 
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G r,r
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Note that in all equations, the radial dependence of r  is expressed in terms of spherical 

Hankel functions because the source is located in the outmost layer. On the other hand, 

the radial functions involving r  should be chosen appropriately for each layer. For 

(11)

3 ( )s
G r,r , which represents the scattered field, the spherical Hankel functions have 
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been used to satisfy the radiation condition; whereas for (31)

3 ( )s
G r,r  the spherical 

Bessel functions must be chosen to avoid having singularity in the origin. The eight 

scalar coefficients ( nA , nB , nC , nD ¸ nE , nF , nK , nL )appearing in (D.4)-(D.7) can be 

determined using the boundary conditions on the surfaces r a  and r b . The well-

known boundary conditions     

1 2
ˆ ˆn n E = E  (D.8) 

and      

1 2 1 2

1 2

1 1
ˆ ˆ ˆ ˆn n n n

 
    H = H E = E  (D.9) 

 can be expressed in terms of the dyadic Green’s functions as     

(11) (21)

3 3
ˆ ˆ( ) ( )r r r a    G r,r G r,r  (D.10) 

(11) (21)

3 3

1 2

1 1
ˆ ˆ( ) ( )r r r a

 
    G r,r G r,r  (D.11) 

(21) (31)

3 3
ˆ ˆ( ) ( )r r r b    G r,r G r,r  (D.12) 

(21) (31)

3 3

2 3

1 1
ˆ ˆ( ) ( )r r r b

 
    G r,r G r,r  (D.13) 

 From these equations eight algebraic equations can be formed in order to determine 

the eight unknown coefficients:     
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The coefficients can be determined by solving the linear equation system of (D.14)-

(D.21). After formulating the dyadic Green’s functions, one can easily obtain the 

electric field in each layer, by following the procedure outlined in (3.39)-(3.44) in a 

straightforward manner. First, replacing 0 ( )eo G r,r  with (11)

3 ( )s
G r,r  in the integral 

defined in (3.40) yields the scattered field outside the sphere as      
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 (C.22) 

Note that the expression has a similar form to ( )i
E r  defined in (3.44). The main 

difference is the form of radial functions, which are necessarily altered to satisfy the 

radiation condition at infinity. The field expressions in the remaining layers can be 
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obtained in a similar manner. For the inner layer of the sphere, the final form of the 

total electric field is determined as  sphere as      
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Finally, the total electric field in the outer layer of the sphere:      
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APPENDIX E: Method of moments solution for the scattered electromagnetic 

field 

The MoM solution for 3-D electromagnetic scattering problem is developed and 

presented in [14]. In Appendix B, the same solution was adapted to the acoustic case. 

Here, we will present the formulation for the electromagnetic problem without 

explaining the derivation procedure. The detailed demonstration of the method and the 

derivation of the equations can be found in [14].  

Unlike the acoustic case, the electromagnetic problem is a vectorial one. Therefore, 

for a scatterer which is discretized into N cubic cells, the number of knowns, namely 

the vectorial components (3 1N  ) of the interior electric field, is 3N . Accordingly, 

the principal equation of the MoM solution, (C.2) in the acoustic case, becomes     

 
1 iI K E E


   (E.1) 

where iE  and E  are 3 1N   matrices, whose elements are the vectorial components (

, ,x y zE E E ) of the incident electric field and the total electric field at the cell centers 

respectively. Accordingly, the coefficient matrix K  becomes a 3 3N N  matrix for 

the electromagnetic case. 

The derivation of the elements of the coefficient matrix is based on the results 

presented in Appendix C for the acoustic case. Since the free space dyadic Green’s 

function is defined in term of the scalar Green’s function as  

0 2

1
( ) ( , ),I g

k

 
    

 
G r,r r r  (E.2) 

the expressions of its nine scalar components can be formed using ( , )g r r :     

2

0 2

0

1
( ) ( ) ( , ) , 1, 2,3.pq

o pq

p q

i g p q
k

 


   
  

G r,r r r  (E.3) 

Similar to (C.3), the elements of the matrix K  are formulated as   
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2

0

,

( ) ( )

n
m n

pq pq

mn n o

r r

K k v r dv
 

  
r= r =

G r,r  (E.4) 

Taking (E.3) into account, it is clear that the result of the integral in (E.4) can be 

derived via the integration of ( , )g r r , given in (C.9) and (C.11) for singular cells and 

non-singular cells respectively. Therefore, the elements of the coefficient matrix K   

can be stated for the singular cells:    

  02

0 0

0 ,

1
( ) 2 1 3 ,

3

pq

mn ik a
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m n p q
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   
       
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 (E.5) 

and for non-singular cells:     
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 (E.7) 

where 3C is a scalar coefficient defined as   

03

02

0 0

4 sin
cos

eq eq

eq

eq

a k a
C k a

k k a

  
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  
 (E.8) 

and R is the the Euclidean distance between the centers of the cells m , n :    

1
2 2 2 2[( ) ( ) ( ) ]m n m n m nR x x y y z z       (E.9) 
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