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DIRECT AND INVERSE SCATTERING PROBLEMS RELATED TO THE
SPHERICALLY LAYERED MEDIA

SUMMARY

The direct and inverse scattering problems related to radially inhomogeneous spheres
have interesting mathematical properties alongside practical value. In the direct
scattering problem, the acoustic or elecromagnetic parameters of the spherical
scatterer, which are arbitrary functions of the radial distance only, are assumed to be
known; and the aim of the problem is to determine the scattered field in the whole
space. On the other hand, for the inverse problem, these parameters constitute the
unknowns of the problem, and they are determined through the value of the scattered
field supposed to be measured on a measurement surface in the outside region. For the
solution of the direct scattering problem, different techniques, with certain advantages
and limitations, exist in the literature. The analytical techniques such as dyadic
Green’s function are only valid for certain types of profile, whereas numerical solution
techniques such as method of moments have limited accuracy and they are in general
computationally expansive. For the inverse problem, established methods such as
Newton’s method or the contrast source inversion technique can be applied directly to
the three dimensional problem; however, the computational effort necessary for this
type of procedure will put a limit to its practical value. Therefore, it can be concluded
that the problems involving radially inhomogeneous spherical scatterer is still open to
contributions.

In this thesis, a method to reduce the original three dimensional acoustic and
electromagnetic problems into one dimensional forms has been developed. It has been
demonstrated that such a method would be compatible with the available alternatives,
and it will require less computational effort than the three dimensional solution
techniques. It should be noted that although the orginal problem is a three dimensional
one, the homogeneity along the angular direction enables one to replace it with one
dimensional object and data equations involving only radial functions. For this
dimension reduction procedure, the orthogonality of the spherical harmonics over the
unit spherical surface have been used.

In the acoustic case, the scalar acoustic field has been expressed as a series expansion
in terms of scalar spherical harmonics. Since those are functions of the angular terms,
and the geometry is spherically symmetrical, their orthogonality is preserved within
the original three dimensional object equation. Therefore, it is possible to eliminate the
angular terms via orthogonality relation, and to obtain one dimensional reduced
integral equations involving the coefficients of the series expansion for the acoustic
field. For the solution of the direct scattering problem these coefficients can be
determined by a simple discretization of the one dimensional integrals along the radial
direction. On the other hand, a Newton based iterative scheme has been formulated for
the solution of the inverse scattering problem. In this formulation, the one dimensional
equations are solved using an initial guess for the unknown parameters, and the
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coefficients of the measured scattered field constitute the data that is used to update
the initial guess iteratively.

The procedure for the electromagnetic case is similar to the acoustic one. However,
since the problem is a vectorial one in this case, the electric field is expanded in terms
of vector spherical harmonics. These vectorial functions also satisfy the orthogonality
condition over a spherical surface, therefore it is possible to reduce the vectorial
electric field integral equation into a system of one dimensional integral equations.
The integrals once again will only contain the scalar coefficients of the series
expansion for the electric field, which are functions of the radial distance only. The
resulting system of equations can be solved simultaneously to obtain the coefficients.
The Newton based algorithm that was used in the acoustic case can be adapted to
electromagnetic inverse problem in a straightforward manner. Therefore, same
technique will be applied for the solution of the electromagnetic profile inversion
problem.

The results of the numerical tests demonstrate that the method is quite reliable for
determining the interior and scattered field in the case of acoustic or electromagnetic
direct scattering problem. It is compatible with alternative methods, and it is
computationally effective. Unlike analytical techniques which can only be used for
piecewise homogeneous spheres, the method can be easily adapted to any kind of
profile.Moreover, its accuracy is higher compared to the computationally more
expansive numerical techniques. Therefore it is safe to assume that it can be used for
practical applications involving complex scatterers such as head models. The acoustic
or electromagnetic scattering problems involving radially inhomogeneous spheres are
frequently encountered in the research fields such as biomedical engineering or
material science. The method developed in this thesis can be reliably used in these
problems.

For the inverse problem, the method yielded quite satisfactory results for slowly
varying continuous profiles, provided that an appropriate initial guess is chosen. Other
than the initial guess for the unknown acoustic or electromagnetic parameters, the most
important point that effects the outcome of the method is the initial parameters of the
iterative process itself. Through various numerical tests, the optimal values of these
parameters have been determined and presented in the thesis. However, it was
observed that even for these values, the success of the method is considerably lower
for more rapidly varying profiles. Especially for layered profiles, the method can only
provide a smoothed approximation. Numerical tests also demonstrated that the method
produces useful results for relatively low contrast values. It should be noted that these
are well-known limitations of Newton based algorithms, and the method performs
reasonably well for an iterative profile inversion technique.

XX



KURESEL TABAKALI CISIMLERE iLIiSKIiN DUZ VE TERS SACILMA
PROBLEMLERI

OZET

Yaricap dogrultusunda inhomojen kiiresel cisimlere iligkin diiz ve ters sacilma
problemleri matematiksel agidan ilgi ¢ekici olmanin yani sira pratik a¢idan da deger
tasir. Diiz sagilma problemlerinde cismin akustik ya da elektromanyetik
parametrelerinin bilindigi kabul edilir. Bu parametreler sadece yarigap dogrultusunda
mesafenin fonksiyonudur. Problemin amac1 kiirenin disindaki bdlgede sagilan alani
hesaplamaktir. Ote yandan bu parametreler ters sacilma problemi icin bilinmeyenleri
olusturur. Bunlarin belirlenmesinde kiirenin disinda bir yiizeyde gergeklestirilen
sacilan alan Ol¢limlerinden yararlanilir. Diiz problemin ¢oziimiinde farkli avantajlari
ve dezavantajlart olan gesitli teknikler gelistirilmistir. Diyadik Green fonksiyonu gibi
analitik teknikler sadece belirli profiller i¢in kullanilabilmektedir, te yandan moment
metodu gibi nimerik tekniklerde basar1 daha diisiiktiir ve islem yiikii gereksinimi de
daha yiksektir. Ters sacilma probleminin ¢oziimii i¢in yaygin olarak kullanilan
Newton metodu veya kontrast kaynak teknigi gibi metotlar dogrudan ii¢ boyutlu
probleme uygulanabilir. Ancak bu yaklasimin gerektirdigi islem yiikii ¢ok yiiksek
oldugundan pratikte uygulanabilirligi stnirhidir. Sonug olarak, kiresel inhomojeniteye
sahip cisimlere iligkin sagilma problemlerinin hala yeni katkilara agik bir konu oldugu
sOylenebilir.

Bu tezde l¢ boyutlu akustik veya elektromanyetik problemi bir boyutlu bir forma
indirgeyecek bir metot gelistirilmistir. Yapilan testlerde goriildiigii lizere bu metot
alternatif tekniklerle uyumludur ve ti¢ boyutlu niimerik ¢6zim ydntemlerine gore daha
az islem yiikii gerektirmektedir. Burada dikkat edilmesi gereken nokta ii¢ boyutlu
olarak formiile edilmis olsa da problemin aslinda bir boyutlu oldugudur. Inhomojenite
sadece yaricap dogrultusunda mevcut oldugundan problemin geometrisi agisal
dogrultularda homojendir, ve bu bilesenler elimine edilebilir. Bu eliminasyon
isleminin temel prensibi akustik ve elektromanyetik problem i¢in aymidir. Her iki
problem i¢in de amaglanan, inhomojeniteden etkilenen yarigap dogrultusundaki
bilesenler ile homojen agisal bilesenlerin birbirlerinden ayristirilmasidir. Bu ayristirma
icin akustik veya elektrik alanin kiiresel koordinat sisteminde birer seri toplami
seklinde ifade edilmesi gerekmektedir. Bu seri toplaminin baz fonksiyonlart harmonik
fonksiyonlardan olusmaktadir. Bu fonksiyonlar alan biiyiikliiklerinin agisal
bilesenlerini temsil etmek i¢in kullanilmistir. Seri toplamlarinin skaler katsayilari ise
sadece yarigap dogrultusunun fonksiyonlaridir. Bilindigi {izere kiiresel koordinat
sisteminde harmonik fonksiyonlar birim kire ylzeyinde ortogonalite kosulunu saglar.
Problemin geometrisi agisal dogrultuda homojen oldugundan bu ortogonalite her
zaman korunur. Iste bu ortogonalite bagintisindan yararlanilarak agisal terimler
elenebilir. Dolayisiyla ii¢ boyutlu cisim ve data denklemleri yerine, sadece yarigap
dogrultusunda degisen bilesenler iceren bir boyutlu integral denklemler olusturulabilir.
Bu temel prensip hem akustik hem de elektromanyetik problemin ¢6zumunde
kullanilabilir. Ancak problemlerin matematiksel yapilar1 farkli oldugundan
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¢Oziimlerinde kullanilacak seri toplamlarinin da farkli yapida olmasi1 gerekmektedir.
Skaler yapidaki akustik problem igin skaler baz fonksiyonlar kullanilmistir. Ote
yandan elektromanyetik alan1 temsil etmek icin vektorel baz fonksiyonlarina ihtiyag
duyulmaktadir. Bu nedenle iki problem ¢oziimleri farkli basliklarda incelenmistir.
Akustik problem ig¢in skaler alan kiiresel harmonikler cinsinden bir seri toplami
formunda ifade edilmistir. Teseral harmonik olarak da adlandirilan bu fonksiyonlar
Legendre fonksiyonlar1 ve trigonometrik fonksiyonlardan olusmaktadir. Dolayisiyla
acisal bilesenlerin ifade edilmesinde kullanilabilirler ve kiire yiizeyinde ortogonal
olduklarindan seri toplami icin baz fonksiyonu gorevi gorebilirler. Daha sonraki
eliminasyon surecinde kuresel simetrik geometriden faydalanilarak U¢ boyutlu
denklemde ortogonalite bagintisi1 vasitasiyla sadelestirme gergeklestirilebilir. Boylece
ortogonalite araciligtyla acisal terimler denklemden elenir ve bir boyutlu integral
denklemler elde edilmis olur. Bu fonksiyonlardaki tiim terimler yarigap
dogrultusundaki mesafenin fonksiyonlaridir. Bunlardan en onemlisi elektrik alani
ifade eden serinin katsayilaridir, ve bu katsayilar integral denklemi c¢ozerek elde
edilebilir. Integral denklemin ¢dziimii, bir boyutlu integrasyon domeninin esit
uzunlukta hiicrelere ayristirilmasi ile gergeklestirilir. Bu hiicreler yeteri kadar kiigiik
secildiginde interaldeki terimlerin hiicre i¢indeki degisimi ihmal edilebilir seviyede
kalir. Bu varsayim altinda integral sadelesir ve ayriklastirma ile integral denklem
matris formuna cevrilir. Bu ayriklastirilmis sistemin ¢dziimii hiicre merkezlerindeki
seri katsayilarin1 verir. Bu seri katsayilar1 elde edildikten kiirenin i¢indeki toplam
akustik alan en basta tanimlanmis seri toplami kullanilarak elde edilebilir. Sagilan
alanin hesaplanmasi da benzer bir yontemle gerceklestirilebilir. Sagilan alan igin
katsayilar, icerideki alan katsayilar1 ve indirgenmis bir boyutlu integral ile dogrudan
elde edilebilir.

Ters problemin ¢ézliimii i¢in bu bir boyuta indirgenmis denklemler kullanilabilir. Bu
calismada alternatif ¢6zim tekniklerinden biri olan klasik Newton metodu
kullanilmistir. Newton metodunun en biiyiik dezavantaji her adimda diiz problemin
¢oziilmesinin getirdigi islem yiikiidiir. Ancak burada kullanilan bir boyutlu denklemler
diiz problemin islemsel ylikiinli olduk¢a azalttigindan ters problemin ¢6zliimii i¢in
Newton temelli temelli iteratif bir algoritmanin kullanilmasi uygundur. Gelistirilen
formiilasyonda integral denklemler alan biiyiikliiglinlin kendisi yerine seri toplami
katsayilarini igerdiginden ters problemin de buna uygun olarak ¢ozilmesi gerekir.
Buna gore kiirenin disinda Olgiilen sagilan alan degerleri kullanilarak sagilan alan
katsayilar1 elde edilir. Bu amagla kiiresel harmonikleri igeren bir niimerik integrasyon
islemi gerceklestirilir. Katsayilar elde edildikten sonra klasik Newton algoritmasi
kullanilir. Bu algoritmada bilinmeyen cisim parametreleri i¢in bir baslangic degeri
belirlenir ve bu deger kullanilarak diiz problem ¢oziiliir. Bu ¢6ziim ile elde edilen
sacilan alan katsayilart ve Ol¢clim sonuclarindan elde edilen katsayilarin
karsilastirilmasi ile baslangic degeri giincellenir. Burada kullanilan denklemler kotii
kosullanmis denklemler oldugundan bir regiilarizasyon tekniginin kullanilmasi
gerekir. Bu c¢alismada en sik kullanilan tekniklerden biri olan Tikhonov
regiilarizasyonu kullanilmistir. Her adimda baslangic degerinin giincellendigi bu
iteratif siire¢ gilincelleme terimi belli bir degerin altina diisiinceye kadar siirdiirtiliir.
Elektromanyetik problem i¢in ¢6ziim akustik duruma benzer sekilde elde edilir. Ancak
elektromanyetik alanlar vektorel oldugundan seri toplami vektor kiiresel hamonikler
kullanilarak tanimlanir. Bu vektorel baz fonksiyonlar: skaler harmonik fonksiyonlar
aracilifiyla tanimlanir ve skaler esdegerlerine benzer sekilde kiiresel ylizeylerde
ortogonalite bagintisin1 saglar. Bu seri toplami i¢in de katsayilar skalerdir ve sadece
yarigap dogrultusunun fonksiyonudur. Elektrik alan bu fonksiyonlar yardimiyla seriye
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acilabilir. Benzer sekilde bos uzayin dyadik Green fonksiyonu da vektorel dalga
fonksiyonlar1 kullanilarak seri toplami seklinde ifade edilebilir. Vektorel dalga
fonksiyonlar1 agisal bilesenleri vektor kiiresel harmonikler, radyal bilesenleri ise
kiiresel Bessel fonsiyonlarindan olusan kiiresel fonksiyonlardir. Bu fonksiyonlar
homojen uzayda elektrik alani1 temsil etmek igin kullanilabilirler. Ancak burada
kiirenin i¢inde yarigap dogrultusunda inhomojenite mevcut oldugundan elektrik alan
vektor kiiresel harmonikler ile seriye acilmistir. Boylece inhomojeniteden etkilenen
radyal bilesen ile homojen agisal bilesenler birbirlerinden ayrismis olur. Dyadik Green
fonksiyonundaki vektorel dalga fonksiyonlar1 ile elektrik alandaki vektor kiiresel
harmoniklerin ortogonalliginden faydalanilarak {i¢ boyutlu vektorel integral denklemi
bir boyutlu integral denklemler sistemine indirgemek mumkindur. Bu integraller de
sadece yarigcap dogrultusunda degisen terimler icerdiginden akustik duruma benzer bir
¢oziim elde edilmis olur. Buradaki en temel fark akustik problemdeki tek denklemin
yerini burada bir denklem sisteminin almasidir. Elektrik alanin katsayilari bu denklem
sisteminin ¢Ozlilmesiyle bulunur ve buradan elektrik alanin gergek ifadesine
gecilebilir. Ters problem igin akustik durumda kullanilan Newton temelli metodun
elektromanyetik probleme de uygulanabilecegi goriilmiistir. Dolayisiyla ayni teknik
hem akustik hem de elektromanyetik ters sagilma probleminin ¢oziimiinde
kullanilacaktir.

Niimerik simiilasyonlardan elde edilen sonuglara gore bu tezde gelistirilen yontem
gerek akustik gerekse elektromanyetik diiz sagilma problemlerinin ¢6zimiinde
giivenle kullanilabilir. Sonuglar yontemin alternatifleriyle uyumlu ve islem yiiki
bakimindan daha verimli oldugunu gostermektedir. Sadece tabakali cisimlerde
kullanilabilen analitik tekniklerin aksine bu metot her tirlii profilde
uygulanabilmektedir. Tabakali cisimlerde dyadik Green fonksiyonu ve analitik ¢6zim
ile yapilan karsilastirmalar seri toplamina yeterli sayida terim eklendiginde yontemin
yiiksek bir dogruluga sahip oldugunu gostermektedir. Stirekli bir fonksiyona sahip
sacicillarda karsilastirma, moment metodu gibi niimerik tekniklerle yapilmistir.
Buradaki karsilagtrimalarda elde edilen sonuglara gore yontemin dogrulugu niimerik
alternatiflere gore daha yuksektir. Daha énemlisi, tek boyuta indirgeme sayesinde (¢
boyutlu ayristirmaya dayali moment metoduna gore verimlilik ¢cok daha ylksektir.
Dolayisiyla, kafa modelleri gibi daha karmasik sacicilar iceren pratik uygulamalarda
burada gelistirilen yontemin giivenle kullanilabilecegi sonucuna varilabilir. Kiiresel
yapilara iliskin akustik ve elektromanyetik sagilma problemleri biyomedikal
mithendisligi gibi aragtirma alanlarinda siklikla karsilagilan problemlerdendir, ve
burada gelistirilen metot rahatlikla bu alanlarda kullanilabilir.

Ters sagilma problemlerinde yontemin 6zellikle degisim hizi diistk, stirekli profiller
icin oldukc¢a basarili sonuglar verdigi goriilmiistiir. Ancak bu basar1 biiyiik 6l¢iide
bilinmeyen parametreler i¢in kullanilan baslangic degerine baglidir. Baslangic degeri
ideal degerden saptiginda yontemin basarisi diismektedir. Bunun disinda yontemin
regiilarizasyon parametresi, sonlandirma esigi, ¢alisma frekans1 gibi diger temel
parametreleri de sonuca biyik oranda etki etmektedir. Newton metodunun bu standart
parametreleri diginda burada gelistirilen yontemde kullanilan seri toplamlarina
eklenecek terim sayis1 da performans iizerinde belirleyici etki yapmaktadir. Cesitli
similasyonlar sonucu bu parametrelerin optimal degerleri tespit edilmis ve tezin
icerisinde belirtilmistir. Bu incelemelerden goriilecegi lizere cismin elektriksel boyutu
belli bir sinirin lstiine ¢iktiginda yontem sonug iiretmekte zorlanmaktadir. Bu durum
incelenecek cismin boyutlarina snirlama getirmektedir. Ayrica optimal degerler
kullanilsa da degisim hiz1 yiiksek profiller i¢in basar1 oranimin diisiik kaldigi
gozlemlenmistir. Ozellikle tabakali cisimler igin yontem keskin gecisleri tespit
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edemeyip ancak yumusatilmis yaklasik bir deger iiretebilmektedir. Y ontemin bir diger
sikintist da kiire ile dig ortam parametreleri arasindaki kontrast degeri yiikseldikge
sonuclardaki hata oraniin artmasidir. Ote yandan biitiin bu sayilanlar Newton temelli
bir teknik i¢in beklenebilecek eksikliklerdir, dolayisiyla yontemin bu tarz bir iteratif
teknige gore yeterli dogrulukta sonuglar trettigini séylemek mumkindir. Burada
gelistirilen indirgeme teknigiyle elde edilen bir boyutlu denklemler farkli ters problem
¢Ozlim teknikleri ile ¢oziilebilir. Bu sekilde Newton temelli yontemlerin getirdigi
kisitlamalar asilabilir.
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1. INTRODUCTION

Inverse scattering problems aiming to determine the acoustical or electromagnetic
parameters of a scatterer via the measurement of the scattered field is a major part of
various research fields such as biomedical engineering, non-destructive material
testing, or remote sensing. In these problems, the scatterer is illuminated by an
incoming field, and the scattered field is measured on a domain outside the scatterer.
The effect of the scattering object on the acoustic or electromagnetic field is analysed
by using the related wave equation to model the incoming and scattered field [1]. The
unknown parameters, which characterize the shape and the material of the scatterer,
are obtained through one of the numerious solution techniques available in the
literature for inverse problems [2]. The non-linearity of the wave equation causes the
inverse problems to include non-linearity, and therefore all solution methods proposed

in the literature involve a linearization technique.

One of the first application of the linear approximation is the Born approximation
method, which provides an approximation of the unknown profile by substituting an
initial guess for the acoustic or electromagnetic parameters into the integral equation
involving the scattered field, namely the data equation [3]. While this approach is
effective for the profiles having low contrast values, other methods are needed for most
practical applications. To this end, iterative methods that can reconstruct profiles with
relatively higher contrast values have been developed [4,5]. A widely used iterative
procedure is the Newton-Kantorovich method, in which the direct scattering problem
is solved in each step using the initial guess updated in the previous step [6-8]. The
need to solve the direct scattering problem in each update considerably increases the
computational effort, especially for 2-D and 3-D problems. The contrast source
inversion method, a modified gradient method, has been developed in order to remove

that requirement [9,10].

The brief review of the inversion techniques presented above, demonstrates that all the
methods involves the solution of the related direct scattering problem. In addition, for
most applications, the scattering field, used as data in the inverse problem, is produced



synthetically, therefore the related direct scattering problem must be solved before the
inverse problem. The aim of the direct scattering problems is to determine the field
scattered by an object, whose shape and material parameters are known. For the case
of an arbitrarily shaped scatterer, one of the most commonly employed method is the
method of moments [11-13]. In [14], the electric field scattered by a 3-D dielectric
object is calculated by a discretization of the scatterer into cubic cells, and the
evaluation of the interior electric field using point matching technique. This approach
can also be adapted to the acoustic scattering problem in a straightforward manner.
However, for electrically large, inhomogeneous 3-D scatterers, MoM becomes
computationally intensive. Hybrid methods, combining MoM with finite element
method, which is more suitable for handling inhomogeneities, are proposed to reduce
computational time [15,16]. Another frequently used approach to create a
computationally effective numerical technique is to employ conjugate gradient method
combined with fast Fourier transform to solve linear equations obtained via MoM

discretization.

The techniques for inverse and direct problems mentioned above can be used for
different type of geometries. For each problem, the form of the equations and the
parameters vary according to the specific geometrical configuration. Therefore,
choosing an appropriate method and adapting it to the problem at hand is of crucial
importance for the solution of the inverse problem. Especially for canonical structures
such as cylindirical or spherical objects, special solutions might be formulated by
taking advantage of the wave form in that geometry. These special solutions are in
general obtained by modifying the equations of the direct and inverse scattering
techniques via analytical or semi-analytical methods available for the related canonical
structures. The details and the advantages of this approach will be presented in the
subsequent sections. The emphasis will be on the geometries with spherical symmetry,
since the main contribution of this work is the development of novel techniques for
the solution of the direct and inverse scattering problems related to radially

inhomogeneous spherical objects.

1.1 Purpose of Thesis

The direct and inverse scattering problems involving canonical structures have been

the subject of numerious publications for their theoretical features, and their usage in



various practical engineering applications. One of the main source of interest is that
for the most problems, the computationally intensive numerical methods cited above
can be replaced by semi-analytical methods. For practical applications, these objects
can be used as models for scatterers that are more complex. Radially inhomogeneous
spherical scatterers constitute an especially important research topic for this matter. In
various works on medical imaging, the human head is modeled as a layered sphere
[17-20]. This approach has been successfully used in the studies on human head
interaction with electromagnetic sources, MRI, impedance tomography, microwave
imaging, and electroencephalography [21-27]. On the other hand, radially
inhomogeneous spheres with continuous profiles are used in the design of dielectric
lenses and metamaterials [28-32]. From these examples, it can be concluded that direct
and inverse problems related to radially inhomogeneous spheres have great value for

practical applications.

Therefore, in this thesis, novel techniques have been developed in order to solve direct
and inverse scattering problems for the radially inhomogeneous spheres. In the first
part, the acoustical problem has been investigated. The sphere is assumed to have
arbitrarily varying compressibility along the radial direction only. The purpose of the
direct scattering problem is to determine the scattered acoustic field outside the sphere,
in the case of a time harmonic point source or plane wave excitation. By taking
advantage of the spherically symmetrical geometry, and the structure of the integral
equations; one can replace the 3-D problem with a 1-D formulation, and therefore
greatly reduce the time consuming complexity of the original problem. The solution
of the related inverse scattering problem is based on the 1-D integral equation
formulation used in the direct scattering problem. This 1-D integral equation is solved
in an iterative fashion via the Newton method. The Newton method is especially
suitable for the 1-D profile inversion problem since the computational complexity
caused by the need to solve the direct scattering problem in each step is significantly

lower compared to the original 3-D structure.

The analysis of the electromagnetic case follows the same plan. First, the direct
scattering problem involving a dielectric sphere with a permittivity and conductivity
varying in the radial direction only, has been solved in a similar fashion. However,
since for the electromagnetic case the field function is vectorial, obtaining the 1-D
formulation is much more challenging compared to the acoustic case. For the solution



of this problem, the spherical vector wave functions, which are the solution of the
vector wave equation in the spherical coordinates, have been used to obtain a system
of a 1-D integral equations. The inverse problem has been solved similarly via Newton
method using this system of integral equations. Finally, for both acoustic and
electromagnetic cases, the accuracy and the performance of the method have been

tested via numerical simuations.

In conclusion, it can be stated that the main purpose of the thesis is, first, to formulate
an efficient semi-analytical method that can be used in the solution of direct scattering
problems for the radially inhomogeneous geometry; and second, to transform the
related 3-D inverse problem into a 1-D profile inversion problem using the same
formulation. The solution of the resulting 1-D inversion problem will then be obtained

via a classical technique such as the Newton method.

1.2 Literature Review

Numerous publications on the direct scattering problems related to the spherical
scatterers can be found in the literature. For the acoustic case, a formulation based on
the integro-differential equation for the field scattered by 3-D inhomogeneous objects
has been given in [33]. The effect of variable density, which is an important factor for
acoustic scattering formulations, has been analysed in this work, and it has been
concluded that the problem cannot be reduced to a classical Schwinger-Lippmann
integral equation in the case of variable density. Because of this condition, most of
solutions proposed for the acoustic scattering problems involve scatterers with
constant density. Similarly, in this thesis, the spherical scatterer is assumed to have
only variable compressibility along the radial direction. An FFT based adaptive
integral method has been developed for large inhomogeneous scatterers in [34]. In this
work the formulation is once again is based on 3-D integral equations. A method to
reduce the scalar wave equation into a 1-D form by the use of scalar harmonics and
the Dini series has been presented in [35]. The solution is obtained under the
assumption of constant density throughout the whole space. It has been shown in this
work that the acoustic field can be expressed as series expansion in terms of spherical
harmonics, and a 1-D formulation can be obtained by using the orthogonality of these
functions. The mathematical properties of the spherical harmonics and the scalar wave

function can be found in [36]. The extension of the solution presented in [35] to the



case of inhomogeneous density in given in [37]. Another important tool for the direct
scattering problem related to the canonical structures are Green’s functions related to
the particular geometry. For spherical scatterers, the Green’s function of the scalar
wave equation for the radially inhomogeneous sphere has been obtained in [38]. In this
work the closed form expressions are obtained for special compressibility functions
such as Nomura-Takaku distributions. On the other hand, the closed form of the
Green’s function for linearly inhomogeneous medium is given in [39]. It is clear from
this analysis that the different solutions for the direct scattering problem for radially
inhomogeneous spheres is available in the literature. In this thesis, a novel formulation,
which is easy to implement, and more suitable to be applied in the inverse scattering

problems, will be developed.

The number of works on the subject of acoustic inverse scattering problem for the
inhomogeneous spheres is much more limited compared to the direct scattering case.
For the planarly stratified media, a method to reconstruct the density profile has been
presented in [40]. In this work, the solution is obtained using the classical Born
approximation. Similarly, in [41], the 1-D inverse scattering problem for a radially
inhomogeneous sphere has been solved in order to reconstruct the density profile. The
solution is obtained using Gelfand-Levitan method for the equations of Born
approximation. In [42], the method of near field acoustical tomography has been
applied in order to reconstruct the 3-D acoustical parameters. On the other hand, in
[43], the CSI method has been used to determine the variation of the density and
compressibility within a 3-D scatterer. A general review of the techniques used in the
acoustic inverse scattering problems can be found in [44]. Considering the limitation
of the Born approximation regarding the contrast values, it can be concluded that the
1-D profile inversion problem related to the radially inhomogeneous spheres is still
open to contributions. It should be noted that the 3-D solutions require an unnecessary
computational effort, which can be avoided by transforming the problem into a 1-D
form. Therefore, the main goal of the thesis regarding the acoustic case is to obtain an

effective inversion scheme base on the solution of the related direct scattering problem.

For the electromagnetic direct scattering problem related to radially inhomogeneous
sphere, various analytical or semi-analytical methods are available in the literature for
the solution of the problem. In the case of piecewise homogeneous layered spheres,

the dyadic Green’s function constitute a powerful technique that can be used in order



to obtain the scattered or interior electric field [45]. These functions are constructed as
series expansions in terms of spherical vector wave functions, and the coefficients of
these expansions are obtained using the boundary conditions. Construction of the
dyadic Green’s functions for the chiral or bianisotropic media can also be found in the
literature [46,47]. On the other hand, as it is demonstrated in [48], the construction of
the dyadic Green’s function for the spheres with continuously varying radial profile is
much more challenging. In [49], for continuous profiles, two differential equations
have been formulated to determine the radial component of the electric field. However,
only for a few special profiles, these differential equations can be solved analytically.
Therefore, for most of the cases, numerical differentiation techniques must be
employed to supplement the analytical method. In addition, as these differential
equations involve the derivative of the electromagnetic parameters, the method
developed in [48,49] can only be applied for the differentiable profiles. Therefore, a
method that can be used for the spheres with arbitrarily varying profiles cannot be
based on dyadic Green’s functions. On the other hand, different semi-analytical
methods using similar series expansions is available in the literature. In [50], a method
based on the expension of the scalar free-space Green’s function in terms of spherical
vector wave functions is presented. Similar to the acoustic case, this expansion is
combined with a radial expansion in terms of the Dini series. As stated above, the
spherical vector wave functions are the solution of the vector wave equation in the
spherical coordinate system, and they are orthogonal over the unit spherical surface
[51-53]. In this thesis, these functions and their angular parts, the vector spherical
harmonics, have been used to formulate a 1-D integral equation system for the solution
of the electromagnetic direct scattering problem. The detailed mathematical analysis

of the vector spherical harmonics can be found in [54].

For the 1-D electromagnetic profile inversion problems, different techniques have
been used to reconstruct 1-D variation of the profile. Especially for planar and
cylindrical profiles, various works can be found in the literature. For the planar
profiles, the Riccati type differential equation has been used to develop an analytical
reconstruction technique [55,56]. However, this technique cannot be adapted to the
other corrdinate systems in a straightforward manner [57]. Therefore as an alternative,
Born approximation has been used for stratified cylindrical medium in [58]. As
expected for a method based on Born approximation, the solution is valid only for low



contrast values. For relatively higher contrast values, solutions based on renormalized
source type integral equation approach, and distorted Born approximation have been
developed for cylindrical medium [59,60]. Finally, a more effective approach based
on iterative Newton method is presented in [61], to reconstruct an arbitrarily varying
radial profile. Publications related to spherical profile inversion are less numerous in
the literature. A technique based on the inversion of the Riccati-similar non-linear
differential equations has been developed in [62], in order to reconstruct continuously
varying radial profile. On the other hand, a method to determine the electromagnetic
parameters and the radii of a layered sphere has been proposed in [63]. Therefore, it
can be concluded that the inverse problem involving the reconstruction of arbitrarily
varying spherical profile is still open to contribution. In this thesis, a Newton type
method based on the 1-D integral equation system has been developed in order to

reconstruct moderately high contrast values.

1.3 Hypothesis and Main Contributions

Considering the analysis presented in the previous sections, the hypothesis of this
thesis can be stated as follows: The 3-D direct and inverse scattering problems related
to the radially inhomogeneous spheres can be transformed into a 1-D form by taking
advantage of the spherical symmetry, and using appropriate series expansions for the
interior and scattered field. Through this 1-D equation system, efficient techniques for
the solution of direct and inverse problems might be formulated. Although this
approach can be applied to both acoustic and electromagnetic problems, the process of
dimension reduction must be different for the two cases, considering the mathematical
structures of related wave equations. Therefore, in this thesis, the acoustic and the
electromagnetic problems will be analysed separately. However, it should be noted

that the general principles of the solutions for both cases are of similar nature.

For the scalar acoustic case, the direct scattering problem involve determining the
scalar scattered field in the presence of the time harmonic point source excitation. The
problem is originally formulated by the use of the 3-D integral equation. The density
is considered constant throughout the whole space, and the compressibility of the
sphere is assumed to vary along the radial direction only. Although it limits the
practical value of the method, the assumption of the constant density is a necessary

condition for the goal of dimension reduction. It can be shown that the 3-D integral



equation can be reduced to a 1-D form by expressing the angular dependency of the
field quantities in terms of the spherical harmonics. The orthogonality of the spherical
harmonics over the unit spherical surface enables one to form a series expansion for
any function that is integrable over the spherical domain. Note that as a result of the
spherical symmetry, the orthogonality of the spherical harmonics is preserved
throughout the entire space. Therefore, the resulting system constitutes of 1-D integral
equations containing the series coefficients of the field quantities and the acoustical
profile. This system is solved via a simple discretization of the integration domain
along the radial direction to determine the coefficients for the scattered field, and then
the scattered field itself. The performance of the method is tested by comparing the
results with alternative techniques such Green’s function for the layered spheres, and
the MoM for continuous profiles. These numerical simulations demonstrate that the
method is suitable for various profiles, and can also be used in the inverse scattering
problems reliably.

For the formulation of the acoustic inverse problem, same 1-D reduced integral
equations will be used. Note that since the acoustical profile is a function of the radial
distance only, it is not effected by this reduction, and remains unchanged throughout
the entire formulation. The two integral eqautions can be named as the reduced object
and the reduced data equations. For the inverse problem the acoustical profile is the
unknown, the aim is to reconstruct this function via measurement of the scattered field
outside the sphere. The coefficients of the measured scattered field constitute the data
of the inverse problem. The resulting inverse problem is solved in an iterative fashion
via Newton method, by starting from an initial estimate of the acoustical profile. In
each step of the iteration, the coefficients of the interior field is updated using the
object equation. Since this step is similar to the direct scattering problem, it is a well-
posed problem. However, the update of the object function via the data equation is
severely ill-posed, and the inversion can be achieved via a regularization technique. In
this work, the well-known Tikhonov regularization has been employed to obtain a
stable update amount for the acoustical profile [64]. The proposed method has ben
tested using various continuous and layered profiles. The results show that the method
is capable of reconstructing continuous and layered profiles, provided that an

appropriate initial guess is chosen for the unknown profile.



The electromagnetic direct scattering problem is similarly formulated by the 3-D
electric field integral equation involving the free space dyadic Green’s function. The
interior electric field and the scattered field are then expanded in terms of the vector
spherical harmonics, which form the angular components of the vector wave functions,
and therefore, are also orthogonal over unit spherical surface [54]. The main reason to
choose these functions as basis for series expansion is to separate angular parts from
the radial one, which is affected by the inhomogeneity. On the other hand, the free
space dyadic Green’s function is expanded in terms of the vector wave functions [53].
By substituting these expansions into to 3-D integral equation, and using the
orthogonality of the basis functions, one can obtain a system of 1-D integral equations
containing only radial functions. These integral equations are well-posed, and the
kernels of the integrals are smooth functions. Therefore, similar to the acoustic case
they can be solved via a discretization along the radial direction. The solution of this
sytem provides the coefficients of the interior electric field. The scattered field can be
obtained in a similar fashion by transforming the related integral equation outside the
sphere. The dimension reduction greatly reduce the computational complexity of the
original problem. The comparison of the method with 3-D alternatives such as MoM
demonstrates that the method provides higher accuracy and efficiency for the solution
of scattering problems related to the radially inhomogeneous spheres. Also the
mathematical structure of the 1-D integral equations makes the method suitable for

various applications including inverse scattering problems.

It should be noted that the main advantage of the formulation developed in this thesis
compared to the existing 1-D formulations given in [49,50] lies in the fact that the
electromagnetic parameters remain unaffected from the reduction process. The 1-D
integral equations have the same form for any type of profiles, and they do not contain
any differential operator applied on the electromagnetic parameters. Furthermore, the
series expansion do not involve any of the electromagnetic parameters. Therefore, the
method is especially suitable for the inverse scattering problems. The reduced 1-D
integral equations once again constitute the reduced object and data equations. Similar
to the acoustic case, the inverse problem is solved via iterative Newton method. First,
using the initial guess for the profile, the system designated as the reduced object
equations is solved to obtain the coefficients of the approximate interior electric field.
For 3-D problems, this step is the most computationally intensive part of the iterative



process; however, the necessary computational effort is significantly decreased
through the dimension reduction. Hence, the Newton method is especially suitable for
the 1-D profile inversion problems. In the next step, the non-linear data equations,
which involves the coefficients of the series expansion instead of the scattered field
itself, are linearized. As the linearized data equations contain compact operators, they
are ill-posed. Therefore, they are solved using the Tikhonov regularization to update
the unknown profile. The numerical simulations demonstrate that the method can be
effectively used in the reconstruction of the continuous profiles, and although it fails
to detect sharp transitions, still provides an approximation for the piecewise
homogeneous layered profiles. However, as expected for a Newton based method, the

success clearly depends on the choice of initial parameters.
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2. ACOUSTIC CASE

2.1 Purpose

In this section, the acoustic direct and inverse scattering problem related to radially
inhomogeneous spheres will be analysed. First, the direct scattering problem will be
solved through a dimension reduction process. The main goal of this process, as stated
before, is to obtain 1-D integral equations instead of the original 3-D formulation of
the problem. To this end, the orthogonality properties of the spherical harmonics will
be used. In the second part, the solution of the related inverse problem will be
developed using the aforementioned reduced 1-D integral equations. For the inversion
process the classical Newton algorithm will be used, that is an iterative process,
starting by an initial guess, will reconstruct the unknown acoustic profile. The content
of this section has been presented in a more compact form in [65]. Here, the
formulation of the method will be demonstrated in a more detailed manner. A time

dependence e 'is assumed and omitted throughout the entire section.

2.2 Direct Scattering Problem

In this sub-section, we will first present a brief analysis of the spherical harmonics.
The dimension reduction process is based on the mathematical properties of these
functions, and therefore a theoretical background should be presented before the
demonstration of the formulation. The second part will be the main body of this sub-
section, and will include the formulation of the problem. After the scattering problem
is first formulated, the dimension reduction process will be developed using the
spherical harmonics. Via this reduction process, one can replace the 3-D integral
equation with reduced 1-D integral equations by expressing the interior and scattered
field in terms of the appropriate spherical harmonic function. The solution of the direct
scattering problem will be obtained using these integral equations. Finally, in the third
part, the success of the method developed in the previous section will be tested via

numerical simulations. The results will be compared with alternative methods such as

11



Green’s function or MoM. Furthermore, through these simulations, the effects of the
essential parameters of the method, such as truncation number for series expansions,

will be analysed.

2.2.1 Spherical harmonics

In this sub-section, the basis functions that will be used in the series expansions for the
field values will be introduced. These functions compose the solution of the scalar
Helmholtz equation in the spherical coordinate system. Therefore in the first part, the
expression of the wave functions in the spherical coordinates will be given. In the next
part, the orthogonality of these spherical functions will be demonstrated. The
orthogonality of these functions enables one to form series expansions over the unit
spherical surface. The mathematical properties of the series expansions will also be
presented in the same sub-section. Finally, in the last part, some wave transformations
that will be needed in the subsequent sections will be presented. The mathematical
demonstration of this sub-section summarizes the detailed analysis given in [36] with

a slightly modified notation.
2.2.1.1 The wave functions

The scalar Helmholtz equation is written in the spherical coordinates as:

10( .0y 1 0. 6‘(//] 1 v |,
S| =+ 2 lsingY |4—=—_ Y k2 =0
r? ér( arj rzsin¢960( 00 ) vsineop (2.1)

Typically the solution of (2.1) is obtained via the method of seperation of variables.

Therefore, the wave function is expressed in terms of elementary functions:

v =R(NH 0)D(¢) 2.2)

By substituting this expression into (2.1), and proceeding with the seperation
procedure, one can obtain three seperated equations for the variables.

d gaR 2,2
E[r 5J+[k r*—n(n+1)[R=0 (2.3)
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1 o(. ,oH m?
———|sin@— [+| n(n+1)— H=0
sineae( aej [( ) sinze} (2.4)

d?®
dg?

+m?d=0 (2.5)

The solutions of (2.3) are called spherical Bessel functions, and they are defined in

terms of the ordinary Bessel functions as

b, (kr) = /%Bml(kr) (2.6)

To represent a field inside the sphere, the functions jn (kl’) must be used because this

is the only spherical Bessel function which is finite at r =0. On the other hand, the

spherical Hankel functions of the first kind h'”(kr) must be used to represent an

outward travelling field to satisfy radiation condition for I — 00,

The solutions of (2.4) are the associated Legendre functions P, (C0S€) and Q. (cos6)
Since all other associated Legendre functions have singularities at =0 and #=r;

in order to have a finite wave function on the interval 06[0,7r], the functions

an (cosd) , with N being an integer, must be used in the final form of . Finally,

(2.5) is the well known harmonic equation, and the solution will be expressed in this

thesis as a linear combination of ™ and e™, with M being an integer.

Therefore, the final form of the wave functions that can be used in the representation
of the scalar fields in the spherical coordinates can now be written. For the fields inside

the spheres including the origin, the elementary wave function is given as

Vo = o (KPP (cos O)e™ 2.7
whereas for outward travelling waves the proper form is

Vo = (k)P (cos O)e™ 2.8)
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Here, M and N are integers. Therefore, the general solution of the Helmholtz equation
in the spherical coordinates system can be written as a linear combination of the

elementary wave functions as

v=2.2.Con¥m (2.9)

with Cnm being scalar constants. The expressions presented in (2.7) and (2.8)

demonstrate that the angular components of any scalar field in a spherically

symmetrical geometry can be expressed as a series expansion in terms of the functions

P"(cosé) and e“™, which will be the subject of the next sub-section.

2.2.1.2 The orthogonality relationships

In this sub-section, we will first state the orthogonality relationship regarding the
associated Legendre functions and the harmonic functions. The proof of these
relationships can be found in [36]. Then we will define the form of the series expansion
that will be used in the dimension reduction procedure. The proof of these relationships
can be found in [36].

First, the harmonic functions e*™ satisfy the well known orthogonality relationship

on the domain ¢ €[0,2x]:

o . 0 m#-n
img Aing —
.([e edg {27: m=-n (2.10)

Similar to the harmonic functions, the Legendre polynomials form an orthogonal set
in the interval @€ [0,72']. The orthogonality relationship for these polynomials are
given as

0 n=l

.[Pn(cose)- P(cos@)sinfdd =1 2 0 (2.11)
0 2n+1

Finally, to form a complete orthogonal set over the unit spherical surface a
combination of associated Legendre functions and the harmonic functions must be

used. First, let us state the orthogonality relationship for the Legendre functions:
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. 0 n,m#=p,q
anm(cose)- P (cos)sinod g = 2 (n+m)! — (2.12)
0 2n+1(n—m)! m=p4

The combination Pn‘m‘ (cos 19)eiim¢j are called spherical harmonics or tesseral harmonics,

and the related orthogonality relationship can be determined by combining (2.10) and
(2.12) as

2r & 0 nvmi p.—q
j j P (cos6) Pfl(cos9) €™ e singdadg =1 4r (n-+|m]!
_— n,m=p,—q
00 2n+1(n—|m)! (2.13)

It is clear from (2.13) that any function f(0,¢) that is integrable over the domain

[0, 7]x[0,27] can be expressed as a series expansion in terms of spherical harmonics

as
f(0,¢) = Zw: Zn: f 2n+l (n—|m): P (cos9)e™
g™ 4z (ntjmf)t " (2.14)
Here, fnm are the scalar coefficients of the series expansion. These coefficients can

be determined using the orthogonality relationship (2.13). By multiplying both side

with qu‘ (cos6)e' | and integrating over the unit spherical surface, one obtains

2z

f = !]: f(6,4) P™(cos®)e ™ sinodod g (2.15)

The series expansion defined by (2.14) and (2.15) can be used to express the angular

dependence of the scalar fields in the spherical coordinate system.

2.2.1.3 The wave transformations

In this sub-section, we will first obtain the acoustic plane wave as a series expansion
in terms of the spherical wave functions. This expression will be used as an alternative
for the point source excitation. Secondly, a similar expansion for the acoustic field
created by a point source will be presented. The addition theorem for the spherical
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Hankel functions will also be derived through the procedure. This theorem constitutes
an important part of the dimension reduction process. The more detailed presentation

of the derivation procedures can be found in [36].

First, for the acoustic plane wave travelling in the negative z direction, expressed as

e ", the series expansion have the form
e =e " =% "3 j,(kr)P,(cos ) (2.16)
n=0

Here, 4, are scalar coefficients of the series expansion. The radial dependence should

be expressed in terms of spherical Bessel functions ], (Kr') to avoid having singularity

at r =0. Moreover, since the plain wave is independent of ¢, the harmonic functions
are excluded from the series expansion. To obtain the coefficients @, , both sides of

the (2.15) is multiplied by F, (cos ), and integrated over the interval 6 € [O, 7z]. Then

considering the orthogonality relationship given in (2.11), we obtain

je"k”"an (cos)sin@do = 22a
0

nil Jn (kr) (2.17)

By evaluating this integral, the coefficients are determined as

a, =(-i)"(2n+1) (2.18)

Subtituting this expression into (2.16) yields the series expansion for the acoustic plane

wave travelling in the negative z direction:

0

e =" (-i)" (2n+1) j, (kr)P,(cos ) (2.19)

n=0
Secondly, the series expansion for the field created by a point source located at I,
defined as

eik\r—rs\

ik|r—r,| (2.20)
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7 field point
r(r,60,9)

source point

l} (rwes’qﬁs)

X

Figure 2.1 : The source and the field points in the spherical coordinates.

will be expanded in terms of the spherical wave functions. Considering the asymptotic
formula for the spherical Hankel functions

@) (_i)n+1 ikr
hy (kr)=-——¢ (2.21)
kr
it is clear that the field given by (2.20) can also be expressed via spherical Hankel

functions as

ik|r—r]

e
ik|r—r,|

= hél) (k|r—rs|) (2.22)

Now, consider the geometry given in Fig. 2.1. Since the field created by the point
source is symmetric around the vector I, the angular wave functions, the Legendre

polynomials, can be expressed in terms of the angle ¢ which is defined as
0S¢ =Cos 6 cos b, +singsin b, cos(p—4,) (2.23)

To avoid singularity at r =0, and to satisfy the radiation condition for I' =0, the

radial dependence for the series expansion should be of the form jn(kr)hlfl)(krs) for

r<r, and j,(kr,)h®(kr) for r>r,. The angular dependence will be expressed by

the Legendre polynomials. Therefore, the expansion have the form
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S°C, RO (k) j, (k)P (cos&)  r<r,

W (kjr—r,)=1"" (2.24)
S'C, hO (kr) j, (kr)P,(cosd) 1>,
n=0

Here, C, are the scalar coefficients. By receding the source to infinity, the field can be

made equivalent to a plane wave. Therefore, replacing the spherical Hankel functions
by the asymptotic formula (2.21), and comparing the resulting expression with (2.19)

yields the coefficients as determined as
Cn =2n+1 (2.25)

Finally, the Legendre polynomials P,(C0S&) can be expressed in terms spherical

harmonics P"(cos@)e™ as

P.(cosé) = Z EE I ||; | P‘m‘ (cos9) Pn‘m‘ (cos@,)e™? ) (2.26)

The final form of the addition theorem for the spherical Hankel functions is obtained
by substituting (2.25) and (2.26) into (2.24):

> (Zn”)(”_'m')!hé”(krs)jn(kr)
I LB
S0 3 LD o)k

n=0 m=-n (n+| |)' (227)

xP" (cos )P (cos 4, )e™ )  r<r,
xP"(cos )P (cos §,)e™? ) r>t

S

2.2.2 Solution of the direct scattering problem

In the first part of this sub-section, the general formulation of the direct scattering
problem will be presented. After the introduction of the acoustic wave equation in the
original form, the necessary simplifications will be stated. After the formulation, in the
second part, the dimension reduction process will be explained in detail. The 3-D
integral equation, introduced in the first part, will be reduced to a 1-D integral equation

18



along the radial direction. The solution of the direct scattering problem is obtained by

a simple discretization of these reduced integral equations.

2.2.2.1 Formulation of the problem

Consider the sphere with radius d, denoted by D in Fig. 2.2, whose acoustic
parameters, the density po(r) and the compressibility b(r), are functions of radial

distance r only. The sphere is illuminated by a time harmonic point source of strength

P), situated at the point (l’s,é’s,¢s), I,>a. The region outside the sphere is

characterized by a constant wave number k, = co,/pobO , Py and bo being the density

and the compressibility of the outside region respectively. Here, @ is the operating

angular frequency of the point source.

point source
o £, (1,0,.9,)

Figure 2.2 : The geometry of the direct scattering problem.

The incident field u' (I’) satisfies the scalar wave equation
AU'(r)+kou'(r) ==Rs(r-r,) (2.28)
Taking (2.22) into account, the solution of (2.28) can be written as

ik,P, e kP
4 iky|r—r,| 4x

ui(r, o, ) = h& (k|r —r,]) (2.29)
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The total field u(r), on the other hand, satisfies the following wave equation:
1 __ =5 B
Au(r) —%Vp(l’) -Vu(r)+k“(rju(r)=-R,o(r-r,) (2.30)
Here, the density 5(r) and the wave number K(r) are defined as

_ p, r>a
p(r) ={p(r) f<a (2.31)

and

ko r>a

k(r) _{a) '_p(r)b(r) r <l (2.32)

respectively. The aim of the direct scattering problem is to determine the total field

u(r) by solving (2.30), for the given functions of p(r) and b(r). The main purpose

of this thesis is to solve this problem by first formulating Schwinger-Lippmann type
integral equations, and then reducing these equations into a 1-D form. However, as
stated in [33], in the case of variable density, the problem cannot be easily reduced to
Schwinger-Lippmann integral equations. Therefore, to make the problem more

manageable, the density will be considered constant throughout the whole space, that
is p(I) = p, . Although it limits the practicality of the solution, this assumption makes

the dimension reduction process possible. For constant density, the term vV (r) in

(2.30) vanishes, and the equation becomes similar to (2.28).

At this point, we can define the scattered field as the difference of the total field and
the incoming field:

u(r)=u(r)-u'(r) (2.33)

Using this expression in (2.30) under the assumption of constant density yields

Afu () +u* () ]+ [u' (1) +u (1) ] = ~Ro(r =) ~[ k(1) k] Ju(r) 234
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Considering the wave equation for the incoming field given in (2.28), the equation for
the scattered field can be obtained via (2.34) as

AU* (r) + ko (r) = —kgv(r)u(r) (2.35)
Here, the function v(r) is the object function, and it is defined as

k*(r)

2
0

v(r) =

-1 (2.36)

Itis clear from (2.36) that v(r) takes the value of zero outside the sphere. The solution
of (2.35) can be formulated using the related Green’s function g(r,r’), which is the

fundamental solution of the equation:

Ag(r,r')+ksg(r,r) =—5(r-r’ (2.37)

The solution of (2.37) yields

iko|r—r'|

e

e

(2.38)
Comparing (2.35) with (2.37) demonstrates that the scattered field U(r) can be

expressed as a convolution integral containing the Green’s function g(r,r’):

us(r) =k? i g(r,rV(ru(rdv’  |r|>a (2.39)

This equation shows that when the total field u(r) inside the sphere is known, the
scattered field at any point outside the sphere can be determined. (2.39) is known as
data equation in the inverse scattering problems, where the measured value of the
scattered field constitutes the data of the problem. Now, in order to determine the
equation for the total field inside the sphere, let us substitute (2.39) into (2.33) to obtain

u(r) =u'(r) +k2 f g(r,rV(riur)dv’  |rjeD (2.40)
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This equation is a Fredholm integral equation of the second type, that should be solved
to determine the total field inside the sphere. This equation is called the object
equation. The solution of the direct scattering problem involves the solution of (2.40)
for a given object function (acoustic profile). The scattered field is then evaluated at a
measurement region outside the sphere using (2.39). A commonly used solution
technique is MoM, where the 3-D spherical scatterer is discretized into smaller cells,
and the integral equation is evaluated using point matching technique [14]. However,
it should be noted that, because of the spherically symmetrical geometry, the problem
can be reduced to a 1-D form along the radial direction. Such a reduction would
decrease the necessary computational effort, and would also simplify the solution of
both direct and inverse scattering problem. Therefore, in the next sub-section, the 3-D
object and data equations, given in (2.40) and (2.39) respectively, will be reduced to a
1-D form using the mathematical properties of the spherical harmonics introduced in
the previous sub-section.

2.2.2.2 Dimension reduction for the integral equations

In this sub-section the reduced object and data equations will be obtained. To this end,
the series expansion defined by (2.14) and (2.15) will be used to express the total field
and the incoming field. The main aim of this sub-section is to obtain integral equations
involving the series expansion coefficients instead of the field values themselves.

Therefore, we first introduce the series expansions of similar form as (2.14) for the

fields u(r), U*(r) and U'(r):

_ N A 2n+1(n_|m|)! m| im
u(r,6,¢)—§mznunm(r) 4r (n+|m|)!Pn (cos@)e™ (2.41)
: B ey 2041 (0= [m)! i
- (r191¢)_;m;nunm(r) Ax (n+|m|)!Pn (cosO)e"™ (2.42)
i _ © N i 2n+1(n_|m|)! m| img
U(r,0,¢)—§m;unm(r) o (n+|m|)!Pn (cosB)e (2.43)

Note that the coefficients of the series expansions U (r), G (r), and G (r) are

functions of radial distance only, since the angular dependence is expressed by the
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spherical harmonics. These coefficients will appear in the final form of the reduced

integral equations. We also expand the Green’s function g(r,r’) using the addition

theorem given in (2.27), and by taking (2.22) into account:

N ik (2n+1)(n- |m|) o
g(r1r) (k0r<)hn (k0r>)
Zn ; mzn (n+|m)! (2.44)

X Pn‘m‘ (cos8)P" (cos )e™

Here, r_ and r_stand for the smaller and larger term of the pair r, r’ respectively. In

order to reduce the object equation (2.40) into a 1-D form, let us multiply both sides

of the equation by P"(cos H)e'i"“’sin@, and integrate over the unit spherical surface.

Since this operation is equivalent to the integration defined in (2.15), the resulting

equation involves the coefficients U, (r) and G} (r):

0y (1) = 0 (1) + kH[ ot r')v(r')u(r')dv}
00olD (2.45)
x P"(cos 6) sin Ge ™ d od ¢

It is clear from (2.45) that, to complete the series expansion, the terms g(r,r") and
u(r’) in the volume integral should also be expanded. Therefore, we substitute the
expression given for g(r,r") in (2.44) into (2.45) to transform the integral in the

equation into the form

J?]E J. (2n +1)(n_ |m|) (k0r<)hn£l)(k0r>)Pﬁ\rﬁ\ (COS 0)
00 7T n= Om (m +| |)' (2.46)
P (cos )e™* “v(r )u(r',@',¢)dv' } P"(cos ) sin ge ™ dod ¢

Here, the subscripts N and M are used to distinguish the expansion for the Green’s
function from the previous integration with the spherical harmonics denoted by n and

m . The volume integral within the braces can be written in a more open form as

(2.47)
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Note that the integration of the terms involving &', ¢' over the unit spherical surface,
that is, over the domain [0, 7]x[0, 2], yields the coefficients U, (r), since the kernel

of the integral has the same form as (2.15). Therefore, (2.47) becomes

L = (2n +1)(n |m|) k h(l) k nA r !Zd ’
Jan > ey e rI G V() ()1 e -

xPI" (cos §)e™

Through this procedure the integral has been reduced to a 1-D form. However, to
complete the reduction process, all angular terms must be eliminated from the original
object equation. To this end, we subsititute (2.48) into (2.45) to further take advantage
of the orthogonality relationship. At this point, the object equation has the form

00 =, )+ 3 5 EDO!

n=0 m=-n (n+|m|)'
3

E T (Kor )N (K V() (r)r dr’ (2.49)

The last integral in (2.49) is a direct application of the orthogonality relationship for

the spherical harmonics given in (2.13):

2r 0 n,miﬁ,l’ﬁ

‘ \m\ img —img — .
”P (cos@) P"(cos9)e™ e ™ sin@dddp =1 4x (7 +|m))! o (2.50)
00 20 +1 (7 —|mi)!

It should be noted that, since for any n,m=n,m the integral takes the value of zero,
all the terms of the series expension in (2.49) are zeros except for n,m=n,m,
Therefore, the series expansion on n,m can be removed from the final form of the

object equation which is obtained as
Gy (F) = Ui (1) +1K3 [ Jo (KPR (ko V(F),, (F)r 2 1< 251)
0

(2.51) can be considered as the reduced object equation. The dimension reduction for

the data equation (2.39) follows the same procedure, and can be achieved in a
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straightforward manner. Therefore, we give the final form of the coefficients of the

scattered field as
3 (1) = kS (kor) [ Jo (kP W(r Yy, (F)F2dr” 1 >a (252)
0

Note that, in the region outside the sphere, the field point r has greater value than the
source point r’. Therefore, the radial dependence of the scattered field is always

expressed in terms of spherical Hankel functions of the first kind.

Through the dimension reduction process, the original system, formed by (2.39) and
(2.40), is replaced by the reduced integral equations (2.51) and (2.52). By solving these
reduced integral equations, one can obtain the series expansion coefficients for the
interior field and the scattered field. The actual field values can be then determined by
substituting these coefficients into the series expansions defined in (2.40) and (2.41).
Note that the solution of the system formed by (2.51)-(2.52) can be achieved via a

simple discretization of the interval r e[O,a], since the kernels of the integrals are

smooth functions. The details of the discretization procedure is presented in Appendix
A. In the next sub-section, some numerical simulations will be presented to assess the

performance of the proposed solution. However, before concluding this sub-section,
we will present the open expression of the coefficients for the incoming field a! (r),
to complete the dimension reduction formulation.

The coefficients of the incoming field

First, the coefficients for the point source located at the point (r,,6,,4,), as indicated

in Fig. 2.1, will be determined. The field created by this source is expressed as

(FF) U6 _ kP & (2n+1)(n—|m)! . o rh (k
u (r r) u (r ¢) 472_ ;n;n (n+|m|)| Jn( 0r<) n ( 0r>) (253)

x PI" (cos ) PI" (cos 6, )e™ )

Here, P, is the strength of the source, and r_, r_stand for the smaller and larger term
of the pair r, r, respectively. Expectedly, this expression has the same form as the

Green’s function g(r,r’). The coefficients G} (r) are defined by the integral

25



2r

G, (r) = [ [u'(r,6,) P (cos6)e "™ sino dod ¢ (2.54)

Substituting (2.53) into (2.54) yields

A ik, P, (2r+1)(M - |m|)! . B
Gt (r) = 200 k.r Yh® (k r )P (cos @, )e ™
nm( ) 47Z' ;m:_ﬁ (n+|m|)| ( 0 <) n ( 0 >) n ( s)
2r @
X j _[ P (cos 8)e™ PI" (cos #) e ™ sin 6 d6d ¢ (2.55)
00

The subscripts N and M are used once again to distinguish the series expension from
the integration of (2.54). It is clear that (2.55) has the same form as (2.49), and the
angular integral is identical to the orthogonality relationship (2.50). Therefore, the final

form of the coefficients U} (r) for the point source can be written as
7 (1) = ko Jn (Kor )Y (o, )R (cos 6,)e ™™ (2.56)

where r_ =min(r,r,) and r, =max(r,r,).

Another widely used form for the incoming field is the acoustic plane wave. Therefore,
we will also obtain the coefficients for the plane wave travelling in the negative z
direction. The expression of this field was already given as a series expansion in (2.19)
as

00

u'(r,6,¢)=e"" = (i) (2n+1) j,(k,r)P,(cos6) (2.57)

n=0

Multiplying both sides of (2.57) by Prlm‘(cose) e™ and integrating over the unit

spherical surface yields

2r

L (r) = j j )" (27 +1) j, (k,r) P, (cos 8) P" (cos 6)
= (2.58)
xe 'm¢sm¢9d9d¢ }

Considering the identity
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P,(u) = PR’ (u) (2.59)

and the orthogonality relationship for the Legendre functions given in (2.12), the

integration on the interval € [0, 7:] in (2.58) can be determined as

. 0 nnm=0

P (cos®@) P™(cos@)sin0do =

J R (cos6) B (cos0) 2 om0 (2.60)
2n+1

It is clear from (2.60) that, as a result of the orthogonality, the series terms for i = n

in (2.58) will not have any contribution to the integration. Also for m=0, the

coefficients Uy, (r) will be zeros. As the integration on the interval ¢ <[0,27] yields

T mé g g 0 m#=0
Je™=15,  meo (2.61)

the final form of the coefficients for the acoustic plane wave travelling in the negative

z direction is obtained as

N 0 m=0
Uy (1) = () 4ri(kr)  m=0 (2.62)

2.2.3 Numerical simulations

In this sub-section, we will represent the results of the numerical simulations in order
to validate the accuracy of the method proposed in the previous sections. These
simulations will involve comparisons with alternative techniques available in the
literature for different configurations. Since the analytical method can be considered
as the gold standard among these alternatives, it will be frequently employed in the
comparisons. However, an analytical solution is only available for piecewise
homogeneous layered spheres. Therefore, for continuous profiles, the comparisons
will be made using the results already published in the literature, and the frequently
used numerical technique MoM. In the first part of the sub-section, the calculation of
the values of the total field inside the sphere by (2.51) will be compared with the
alternatives. The effect of the change in the operating frequency, and the number of

the terms involved in the series expansions (2.41)-(2.43) will also be analysed. In the
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second part, the simulations will involve the calculation of the scattered field outside
the sphere using (2.52), for continuous and layered profiles. The accuracy of the results
presented in that section also demonstrates that the method can be reliably used in the

inverse scattering problems that will be investigated in the next part of the thesis.

2.2.3.1 Comparisons for the total field inside the sphere

For the comparison with the analytical expression, first a two layered piecewise

homogeneous sphere described by

= (2.63)

will be considered. Here, b, is the compressibility of the surrounding medium which

Is characterized by a constant wave number k, =w./b,p, =20. The radius of the
sphere is chosen as a=0.1m, and it is illuminated by a time harmonic point source
situated at the point defined by r, =0.2m, 6, =z/3, ¢, = z/2. The total field inside
the sphere, as a function of the radial distance r, is assumed to be measured on the
line defined by & =¢= /6. The field values are calculated by the reduced integral

equation (2.51), and the analytical solution explained in Appendix B. For the solution,
the integral in (2.51) is discretized by 30 points. The results presented in Fig. 2.3

demonstrate excellent agreement between two methods.

It is clear from the results that, the field inside the sphere is slowly varying along the
radial direction. It is an expected result, since the value k,a, which represents the
electrical size of the sphere, is rather small for this example. Therefore, in this example
number of terms included in the series expansions (2.41) and (2.43) is chosen as
N,.« =5. The higher order terms, which correspond to more rapidly varying
harmonics, do not have a significant contribution to the total field. Accordingly, adding
more terms do not change the final solution, since the related coefficients have
considerably smaller values compared to the lower order terms. In the next example,

the results for the cases with significantly larger k, values will be considered to further

demonstrate this point.
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Figure 2.3 : Real and imaginary parts of the total field inside a two layered sphere,
solution with the reduced integral equation and the analytical expression (k, = 20).
First, for the same configuration analysed in the previous example, the wave number
of the outside region will be increased to k, =100. The results presented in Fig. 2.4
demonstrate that, since the variation of the field would be greater for an electrically
larger sphere, more terms should be added to the series expansion. Comparing the
results obtained by the analytical solution, with those obtained by the integral

equations for N_. =5 proves that the number of terms included in the previous
example is inadequate for this example. Increasing the number of termsto N, =10

significantly reduces the difference, however a perfect match does not occur for this
case either. On the other hand, as seen in Fig. 2.5, the agreement between two methods
Is once again established when the number of terms is increased to N, =15.
Moreover, note that adding further terms do not effect the outcome, since the results
for N, =20 also displays an excellent agreement with the analytical result.
Therefore, it can be concluded that the method produces stable results when the
number of terms included in the series expansion is sufficiently large. As final example
to illustrate this point, and to assess the performance of the method, the same problem
is solved for k, =200. The simulations presented in Fig. 2.6, demonstrate that for this

wave number value, the agreement is reached when the limit is chosenas N, =25.

It is clear from the analysis that the method developed in this thesis shows good
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agreement with the analytical solution in the case of layered spheres. Moreover, it is
suitable to be used in the direct scattering problems involving electrically large

spheres, provided that appropriate parameters are chosen.
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Figure 2.4 : Real and imaginary parts of the total field inside a two layered sphere,
solution with the reduced integral equation for N, =5 and N_, =10 (k, =100).
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Figure 2.5 : Real and imaginary parts of the total field inside a two layered sphere,
solution with the reduced integral equation for N, =15 and N, =20 (k, =100).
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Figure 2.6 : Real and imaginary parts of the total field inside a two layered sphere,
solution with the reduced integral equation for N, =20 and N, =25 (k, =200).

For the continuous profiles, an analytical solution does not exist. Therefore, the
accuracy of the method for these types of the profiles is tested by comparisons with
the results presented in the available publications. In [35], the magnitude of the total
field inside a sphere described by

b(r) . T
bo —5+5a (264)

has been calculated for different k,a values. The sphere is illuminated by an acoustic

plane wave propagating along the negative z direction, and the field inside the sphere

is assumed to be measured on a line in the xy plane. Here, we have produced the
results for the same configuration, using the integral equation (2.51). For all k,a
values, the wave number is chosen as k,=21, and the radius a is changed

accordingly. The number of terms included in the series expansion is identical for all

cases to the number chosen in [35]; for example, the number is chosen as N, =27
for k,a=16.8. For larger k,a values of 8.4 and 16.8, the integrals are discretized by

60 points to further increase the accuracy. The results presented in Fig. 2.7 show a
quite good agreement with those presented in [35]. Therefore, it can be concluded that

the method can also be reliably used for the spheres with continuously varying profiles.
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Figure 2.7 : The field variation inside the sphere described by b(r)/b, =5+5(r/a),
for different k,a values: (1) k,a=2.1; (2) k,a=4.2; (3) k,a=84; (4) k,a=16.8.

2.2.3.2 Comparisons for the scattered field outside the sphere

After determining the total interior field via (2.51), the scattered field can be evaluated
at any point outside the sphere using (2.52). The comparisons for the scattered field
can be made using the analytical expression as well as numerical techniques. In this
sub-section, we will use the MoM solution developed in [14] as an alternative
technique alongside the analytical solution. In this method, the 3-D object equation
(2.40) is solved by a discretization of the inhomogeneous 3-D scatterer into cubic cells.
A brief presentation of the MoM formulation for the acoustic case can be found in
Appendix C.

As a first example, the field scattered by the two-layed sphere defined in (2.63) will
be considered. The point source is supposed to be located at the point by r, =0.25m,
6. =r/3, ¢, =n/2, and the measurement line is defined by r,, =0.2m, 0, =7/2,
¢, €[0,27]. The sphere has a radius of a=0.1m, and the wave number of the outside
region is chosen as k,=8x. The scattered field is calculated by three different

methods: the reduced integral equation (2.52), the analytical expression and MoM. The
results presented in Fig. 2.8 show good agreement between three methods, although a
perfect match does not occur. For this simulation, the integral in (2.52) is discretized

by 30 points, and the number of terms for the series expansions in(2.41)-(2.43) is
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chosen as N, =10, considering the electrical size of the sphere. On the other hand,

for MoM, the sphere is discretized into 15x15x15 cubic cells. The agreement between
analytical solution and the integral equation method is expected, considering
previously demonstrated agreement for the interior field. The results show that for
moderate size and contrast values, MoM also provides a reliable alternative. The limits

of the agreement with MoM will be tested in the next example.
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magnitude of the scattered field

Figure 2.8 : The magnitude of field scattered by a two layered sphere, calculated by
three methods. Measurement region: r,. =0.2m, 6,.. =7/2, ¢, €[0,2x]; k, =87 .

However, before analysing different configurations, the behaviour of the coefficients
for the series expansions should be discussed. Since the measurement have been made

at a constant radial distance r =r,_, the variation of the coefficients for the scattered

field, d,,,(r,.) , can be observed more easily compared to case involving calculations
of the interior field as a function of radial distance. Therefore, in Fig 2.9, the magnitude

of the coefficients for m=0; that is

., (r,)| for n=1,2,..,10; has been presented.
The terms with m=0 are chosen over remaining coefficients because those are the
most dominant terms that form the scattered field. It is clear from the results that the
contribution of the terms decreases rapidly as the index term n grows, and for n>5,
the effect of the related term becomes negligeable. This observation is in accord with

the results for the interior field presented in the previous sub-section.
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Now, to test the performances of the methods in the case of electrically larger sphere,
the same configuration as the previous example will be analysed after changing the

wave number of the outside region to k, =200. Similar to the case of interior field,
the number of terms in the series expansions is increased to N_. =30 in order to

handle the relatively rapid variation of the field inside and outside the sphere. In Fig
2.10, the results obtained via three different methods are compared. It is clear from the
results that, while the solution with the integral equation and the analytical expression
display considerable agreement, the solution with MoM diverges substantially from
other calculations. This result shows that the discretization into 15x15x15 cubic cells
IS not adequate to obtain a reliable solution for a sphere of this size. Therefore, for the
results presented in Fig 2.11, a discretization into 25x25x25 cubic cells has been
used for the solution with MoM. The comparison with the previous results of the
remaining methods demonstrate a significant improvement; however, the level of
agreement is still lower compared to the other two methods. This is an expected result,
considering that the analytical solution and the solution with the integral equations are
designed specifically for the spherical geometry, whereas the cubic cell discretization
of MoM can only approximately represent the spherical scatterer. In conclusion, the
agreement between the method developed in this thesis, and the analytical solution
shows that the method can be reliably used in order to determine the field scattered by

spheres with layered profiles. On the other hand, MoM, which is the only altenative to
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be used in the comparisons for continuous profiles, have a relatively limited accuracy,
especially for electrically larger scatterers. Therefore, in the examples involving

continuous profiles, a general agreement should be expected instead of a perfect match.
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Figure 2.10 : The magnitude of field scattered by a two layered sphere, calculated
by three methods (k, = 200). The number of terms for the solution with the integral

equations is N, =30, the discretization for MoM involves 15x15x15 cubic cells.
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Figure 2.11 : The magnitude of field scattered by a two layered sphere, calculated
by three methods (k, = 200). The number of terms for the solution with the integral

equations is N, =30, the discretization for MoM involves 25x25x25 cubic cells.
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As a first example for the continuous profiles, the linearly varying profile defined in
(2.64) will be analysed. In order to make the comparison with MoM feasible, the wave
number of the outside region is chosen as k, =8z, and the radius of the sphere is

determined as a=0.1m. For the solution with integral equation, the number of

included terms is chosenas N, =10, and 15x15x15 cubic cell discretization is used
for MoM. The measurement region is the arc defined by r, =0.2m, 6, €[0,7],

@, = 0. Two different sources have been used for the excitation of the scattered field.

In Fig 2.12, the scattered field in the case of point source excitation has been calculated
via the integral egautions and MoM. The point source is situated at the point

r,=0.25m, 0, =7x/3, ¢, =x/2. On the other hand, the results for the case of plane

wave excitation is presented in Fig 2.13. The plane wave is assumed to be travelling
along the negative z direction. For both cases, the results show good agreement,
however, a perfect match does not occur. Although the sphere is electrically small, this
divergence can be expected, considering the relatively high contrast between the
sphere and the outside region. Therefore, relatively low contrast values should be used
to obtain better matching results.
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012

magnitude of the scattered field
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Figure 2.12 : The field scattered by the sphere described by b(r)/b, =5+5(r/a) in

the case of point source excitation, calculated by the integral equations and MoM.
Measurement region: r,,, =0.2m, 8, €[0,7], ¢,, =0; (k, =87).
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Figure 2.13 : The field scattered by the sphere described by b(r)/b, =5+5(r/a) in
the case of plane wave excitation, calculated by the integral equations and MoM.
Measurement region: r,,, =0.2m, 8, €[0,7], ¢,, =0; (k, =87).

Since the data for the inverse scattering problems, i.e. the scattered field, will be
produced using MoM in order to prevent inverse crime, obtaining accurate results for
the scattered field is crucially important. Therefore, profiles with relatively lower
contrast values should be used in order to increase the accuracy and the level of
agreement between two methods. To this end, we will first consider the well-known
Luneburg lens described by b(r) /b, =2—(r/a)* which has a slowly varying smooth
profile. The sphere with a radius a=0.1m is illuminated by the point source located

at the point r, =0.25m, 6, =x/3, ¢, = /2. The outside region is characterized by

the wave number k, =87, and the scattered field is assumed to be measured on the

line is defined by r, =0.2m, 6, =7/2, ¢, €[0,27]. Same parameters as the

previous example with the linear profile have been used for the solutions with the
integral equations and MoM. The results presented in Fig. 2.14 demonstrate that for

slowly changing smooth profiles, the methods show perfect agreement.

Secondly, an oscillating profile described by b(r)/bo:1.5+O.5003(37zr/a) IS

analysed using the same configuration. Although the variation of this profile is
considerably greater than Luneburg lens, the methods nevertheless demonstrate
perfect agreement as seen in Fig. 2.14. Therefore, it can be concluded that for relatively

low contrast values, MoM can be reliably used to produce data for the inverse
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problems. Moreover, it is clear from the examples presented in this section that the
method based on the reduced integral equations yields accurate results in the

calculations of the interior and the scattered field for various types of profiles.
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Figure 2.14 : The field scattered by the Luneburg lens, calculated by the integral
equations and MoM. Measurement region: r, =0.2m, 6, =7/2, ¢, €[0,2x].
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Figure 2.15 : The field scattered from the sphere of b(r)/b, =1.5+0.5cos(3zr / a),
calculated by the integral equations and MoM. Measurement region: r, . =0.2m,
Hobs :72./2’ ¢obs 6[0,272']; (kO :87[)'
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2.3 Inverse Scattering Problem

In this section, the solution of the 1-D profile inversion problem in spherical
coordinates will be developed. As stated in the introduction, the aim of this problem is
to reconstruct the acoustical profile, which is a function of the radial distance only, via
a measurement of the scattered acoustic field on a certain domain outside the sphere.
Although this can be considered as a 3-D problem, it can be reduced into a 1-D form
by the dimension reduction process demonstrated in the previous sections. Therefore,
the original 3-D inverse scattering problem will be restated in a 1-D form through the
system formed by the reduced integral equations (2.51) and (2.52). The detailed
formulation of the problem, and its solution via a Newton based iterative scheme will
be presented in the second part of this section. However, before the development of
the solution, a brief discussion of the theoretical features of the inverse problems,
alongside the related concepts of ill-posedness and non-linearity, will be given in the
first part. Finally, the section will be concluded in the third part where the results of

numerical simulations testing the effectiveness of the method will be presented.

2.3.1 Theoretical background

The main difficulty in the solution of the inverse scattering problems lies in the
inherent non-linearity and the ill-posedness of the problems [2]. The measured data,
that is the scattered field, always contain errors; and due to the ill-posedness, even
small deviations in the measured field can cause large errors in the reconstructed
profile [2]. Therefore, a typical solution would involve a linearization process such as
Born approximation, and a regularization technique such as Tikhonov regularization,
in order to obtain a stable solution. In short, the main aim of the solution techniques is

to obtain useful approximate solutions instead of an exact solution [2].

In this sub-section, we will first give the mathematical definition of the ill-posedness,
and then discuss the regularization procedures that are used to obtain approximate
solutions for the ill-posed problems. The entire section can be considered as a summary
of the rigorous treatment of these subjects presented in [2]. Therefore, for the
mathematical proofs and the systematic analysis of the concepts mentioned in this

section, readers should refer to sections four and five of the book [2].
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The definition of well-posedness posited in [66] states that for an operator

A:Uc X >V c X, from a subset U of a normed space X into a subset V of a

normed space Y , the equation

Ap =1 (2.65)

is called well-posed if A:U —V is bijective and the inverse operator A™*:V —Uis

continuous. Otherwise the equation is called ill-posed [2]. This definition of well-

posedness has three components. First, a solution should exist forall f eV , thatis A
must be surjective. Second, the solution should be unique, that is A must be injective.
Finally, A™ should be continuous, that is the solution ¢ must depend continuously
on the data f . The last condition guarantees that small perturbations in the measured

data will cause small errors in the solution of the problem. However, for most inverse
scattering problems, this condition can not be satisfied, and hence these problems are
clasified as ill-posed problems. Typically, completely continuous operator equations
of the first kind are ill-posed [2]. The linearized form of the reduced data equation
(2.52), which is a Fredholm integral equation of the first kind, involves linear compact
operators. As the linear compact operators are continuous, the inverse problem that is
analysed in this thesis is ill-posed [2]. The ill-posedness implies that a straightforward
inversion will result in an instable solution with a large error, since the measured data
is assumed to contain random noise. Therefore, special techniques, called
regularization methods, should be used to obtain a stable approximate solution of the

inverse problem [2].

The regularization methods aims to solve the equation (2.65) for a right hand side with

error denoted as f°, satisfying

[f7-f|<s (2.66)

where ¢ is the error level [2]. It is clear that the solution ¢° of the equation with f°
will be an approximate solution. To obtain this stable approximate solution the inverse
operator A™ must be replaced by an approximate linear operator R:Y — X [2]. That
is, for the normed spaces of X ,Y and the bounded linear operator A: X —Y ;afamily

of bounded linear operators R, :Y — X, >0, with the property
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imR,Ap=¢ (2.67)

forall ¢ € X , isaregularization scheme for A; here « is the regularization parameter

[2]. It is from (2.67) that the approximate solution ¢’ is given by

9" =R, 1° (2.68)

Considering (2.66) and (2.68), the resulting error can be stated as
le® - ¢ < SIRI+IR, Ap—gl| (2.69)

The first term in the right hand side of (2.69) shows the effect of the perturbations in

the measured data, and the second term is the result of the replacing inverse operator
A" with the regularization sheme R,. As for ¢ —»0, R, — A™; the second part of

the error decreases for smaller values of the regularization parameter o [2]. However,
this choice will increase the instability of the solution, and hence will result in an
increase in the first part of the error [2]. Different criteria, such as Morozov’s
discrepancy principle, are used to choose an optimal value for « . In the solution of
the inverse problem analysed in this thesis, we have chosen to decrease the value of
o in each step of the iterative process. This decision is based on the assumption that
in each step the difference between the actual and the approximate solutions will
decrease, and therefore the stability of the solution will increase. Since a lower value
of « increases the accuracy, whereas a higher value improves the stability; it is safe to
assume that relatively smaller values of « will be more beneficial as the number of

iterations increases. The initial value of « is determined by trial and error.

Finally, before concluding this sub-section, we will introduce the formal definition of
the well-known Tikhonov regularization scheme that will be employed in the solution
of the inverse problem in the following sections. The theorem states that for a compact

linear operator A: X —Y , the operator al + A"A: X — X is bijective for o >0, and

has a bounded inverse [2]. Here, | is the identity operator, and A" is the adjoint of the

operator of the A. More importantly, if A is injective, then

R, =(al + A*A)_lA* (2.70)
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describes the Tikhonov regularization scheme [2]. (2.70) will be used as the
regularization technique in the Newton based iterative inversion algorithm, which will

later be used in the solution of the 1-D profile inversion problem.

It should be noted that the reduced data equation (2.52) is a non-linear equation. The

Newton’s method involves replacing a non-linear equation denoted as [2]

Fv)=u° (2.71)

by a linearized equation
F\v)+Fqg=u® (2.72)

The details of this procedure will be explained in the next section. In (2.72), F' denotes
the Fréchet derivative of the completely continuous operator F . As stated in [2], for
a completely continuous, Fréchet differentiable operator F , the derivative F' is also
compact. Therefore, the linearized equation (2.72) involves compact operators, and
hence it is ill-posed [2]. In conclusion, the ill-posedness is not affected by the
linearization, and regularization techniques will be used in the Newton based solution

scheme that will be developed in the next section.

2.3.2 The solution of the inverse scattering problem

In the first part of this section the 1-D profile inversion problem will be formulated.
The formulation will be based on the configuration of the direct scattering problem,
which is already presented in the previous sections. The measurement domain and the
method to obtain data for the inversion procedure will also be specified in this part. In
the second part of the section, a Newton based iterative solution will be developed in
order to reconstruct the unknown acoustic profile of the spherical scatterer. The
solution will involve the linearization of the non-linear system formed by the equations

(2.51)-(2.52) according to the principles explained in the previous sub-section.

2.3.2.1 Formulation of the problem

Consider the geometry given in Fig. 2.16. Similar to the direct scattering problem, the
sphere with radius a is illuminated by a time harmonic point source located at the

point (r,,6,,4,), r, >a. The density p, is considered constant throughout the whole

42



space, and the outside region is characterized by a constant wave number k, = w,/b,p,

The compressibility inside the sphere, denoted as b(r), is a function of the radial

distance only, and it constitutes the unknown of the inverse scattering problem.

Source

.‘\ ...... Py ])h ( ’.: . H.- . ¢v )

measurement . b\
surface

Figure 2.16 : The geometry of the inverse scattering problem.

The scattered field is assumed to be measured on a spherical surface denoted by T"
with radius b, b>a. Therefore, the aim of the 1-D profile inversion problem is to
reconstruct the unknown object function v(r) via the measurement of the scattered
field on the surface I' outside the sphere. Considering this formulation, the reduced

integral equations that defines the problem will be restated here for the sake of
presentation:

Gy () = 0l (1) +1KE [, (KT NS (gl ()G, (F)F 2 < 2.73)
0

i (b) = ikh® (kob)f Jo (KrW(r)a _ (ryr’*dr’  r=b (2.74)
0

As stated before, (2.73) is the reduced object equation, and (2.74) is called as the
reduced data equation. Note that the data equation is defined on the measurement
domain I". (2.73) and (2.74) form a non-linear system of equations for the unknowns

v(r) and 4. (r), since the coefficients of the interior field U . (r) are themselves

dependent on v(r), as seen in (2.73). Therefore, the solution should involve a
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linearization technique; and as declared before, a Newton based iterative scheme will

be formulated in the next sub-section in order to determine the object function v(r).
However, it should be noted that, in this formulation the coefficients of the scattered
field G, (b) constitute the measured data of the inverse problem instead of the

measured field itself. Since those coefficients cannot be measured directly, they should

be evaluated using the measured value of the scattered field on the spherical surface
I". Using the integration defined in (2.15) for series expansion coefficients, U (b)

can be obtained as

2r

i, (b) = [ [u*(b,0,4) R (cos0)e ™ sin o dod ¢ (2.75)

where u®(b,8,¢) represents the actual scattered field measured on I'. In practical

applications, the scattered field can be measured on a finite number of points, and
therefore the integral in (2.75) should be evaluated numerically. In the numerical
simulations, we used the Simpson’s rule for the evaluation of the integral over the
spherical surface. At this point, the non-linear system of equations and the data that
will be used in the inversion process have been introduced. Therefore, in the next sub-
section, the Newton based iterative scheme will be developed.

2.3.2.2 Newton based iterative solution

In order to present the iterative scheme, let us write (2.73) and (2.74) in a more compact

form similar to (2.71):
Ki=u (2.76)
Lv=4d (2.77)
Ka =0 =ik [ j, (& r)h® (Kot (1), (r)r2dr’ (2.78)
0

Lv = iksh® (kb) [ J, (Kot W(r")d,, (r')r"*dr’ (2.79)
0
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Then, we begin the iterative process by choosing an initial guess, denoted as v (r),

for the object function. The reduced object equation (2.73) can be solved using this

initial guess in order to obtain the initial values of the coefficients of the interior field,
that is U =G (r) . This step is identical to the solution of the direct scattering problem,

and in the compact notation of (2.76)-(2.77), it corresponds to the inversion of the

operator [I —K]. Here, | represents the identity matrix with appropriate dimensions.

After solving the direct scattering problem via (2.76), the non-linear data equation

(2.77) is linearized by expanding the operator L into a Taylor series around the initial

guess v(@:
Lv® + Lov(r) =u° (2.80)

Note that the resulting equation is of the same form as (2.72). In (2.80), ov(r) is the
update amount of the object function v(r). Therefore, the aim is to solve linearized
equation (2.80) for sv(r), in order to update the initial guess v\*(r) . Here, L, is the

Fréchet derivative of the operator L, which is defined as
L,ov= ikjhf)(kob).[ §, (Ko rov(ra© (r'yr?dr’ (2.81)
0
Now, the update amount Ssv(r) can be obtained by solving (2.80) via inversion of the
equation
L,ov=0°—Lv® (2.82)

However, as stated in the previous section, the Frechet derivative L, is a compact

operator and (2.82) is ill-posed. Therefore, the Tikhonov regularization will be used to
obtain a stable solution for the inversion process. Considering the formulation given

in (2.70), the expression for the update amount is determined as

ovt = (al + Lg La)_l L; @ - LV(O)) (2.83)

Here, « is the regularization parameter, and L, is the conjugate transpose of the

matrix form of the operator L,. Note that the matrix elements of the operators are
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obtained by discretizing the integrals according to the point matching technique. That

is, similar to solution of the direct scattering problem, the unknowns v(r) and u(r)
are assumed to have constant values at each sub-domain of the integration domain

re [0, a] . Finally, at the end of each iterative step, the object function is updated using

the equation

Another important parameter of the Newton’s method is the stopping threshold for the
iterative process. In this thesis, the iterative process is continued until the condition

—m <€ (2.85)

is satisfied. Here, & is a pre-determined threshold, and |l5v!? /v?| is the ¢* norm of

the ratio ov'” /v at the jth iteration.

2.3.3 Numerical simulations

In order to test the validity of the inversion scheme developed in the previous section,
numerical tests involving spherical scatterers with various profiles have been
performed. In all simulations, the sphere is assumed to have a radius of a=0.1m, and
it is illuminated by a time-harmonic point source located at the point r,=0.25,
0,=n13, ¢.=n12. The measurement surface IT", is chosen as the spherical surface
with radius b=0.2m. It should be noted that in order to avoid inverse crime, the
scattered field is synthetically produced via MoM, following the formulation given in
e'>" is added to the scattered

the Appendix C. Furthermore, a random term of 0.05|u®

field to model a more realistic measurement scenario with 5% noise level. Here, r.’s

are normally distributed random numbers. The coefficients of the scattered field which
constitute the data of the inverse problem are obtained by substituting this noise-added
scattered field into the integral given in (2.75). The integrals in the reduced object and
data equations are discretized by 30 points in all configurations. As demonstrated in
the examples for the direct scattering problem, this choice yields satisfactory results

for a reasonably large frequency range.
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In the first part of this section, the overall performance of the method will be tested
using piecewise homogeneous and continuous profiles. In order to demonstrate the
robustness of the method, same parameters will be used for different scenarios. In the
second part, the effect of these parameters (e.g. regularization parameter, stopping
threshold) on the success of the method will be analysed using different profiles. The
dependence of the results on operating frequency will also be demonstrated in the same

part.

2.3.3.1 Performance evaluation of the method

In this sub-section, numerical simulations involving four different profiles (two
layered piecewise homogeneous, Luneburg lens, sinusoidally varying, and linearly
varying) will be presented in order to demonstrate the validity of the inversion method.
As stated above, the tests will be performed using identical parameters for all profiles
to show the versatility of the inversion scheme. Therefore, for all simulations in this
sub-section, the region outside the sphere is assumed to be characterized by the wave

number k, =8z . The number of terms included in the series expansions for the field
values is chosen as N, ., =3. Note that adding more term increases not only the

computational cost of each iterative step, but also the instability of the inversion
scheme. Therefore, N, can also be considered as an additional regularization
parameter. The remaining parameters of the Newton based method, namely the
Tikhonov regularization parameter « and the stopping threshold &, are chosen
according to the principles explained in the previous sections. Choosing lower values
for o increases both the accuracy of the inversion, and the instability of the solution.
As the ill-posedness of the inversion operation is assumed to decrease in each step,
smaller values of « would be more suitable as the number of iteration increases.
Therefore, in all configurations the regularization parameter is determined as

a=0.1/i, i, being the number of iterations. The stopping threshold for the iterative

process is chosen as & =107, that is the procedure is continued until the ¢ norm of

the ratio ov'” /v becomes smaller than 107, The convergence history graph of the

¢% norm |[sv /v?| versus the number of iterations is presented in Fig. 2.17 for each

investigated profile. In the figure, the ¢ norms are given in logarithmic scale in order
to better depict the variations in smaller scales. For each case in this section, the actual
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profile will be reconstructed using three different initial guesses v©(r) for the object

function. As a measure of the performance of the method, an ¢ error metric

Viee =V

rec  Vexact ”

v

exact ”

€. =

(2.86)

iIs defined using the exact and reconstructed profiles.
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Figure 2.17 : The convergence history graph of the ¢ norm of ov/v? (in
logorithmic scale) for four different profiles.

As a first example, the two layered piecewise homogeneous sphere defined in (2.63)

will be analysed. The three different initial guesses are chosen as v®(r)=0.4,

v@(r)=0.5, and v (r) =0.6. For these values, the iterative process lasted for 18,

16, and 12 iterations respectively. As the exact and reconstructed profiles depicted in
Fig. 2.18 suggest, although the method is not capable of catching the sharp transition,
it nonetheless provides a smoothed approximation of the actual profile. This is an
expected result, considering that we are trying to approximate a piecewise continuous
functions via pulse basis functions. This also explains the relatively low rate of
convergence for the two layered profile compared to the continuous profiles as seen in

Fig. 2.17. The lowest error metric is obtained as e, =0.16 for the optimal initial guess

of v{%(r)=0.5. The error increases to e, =0.18 for v\”(r)=0.6, and to e, =0.23
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for v%(r) =0.4. This results demonstrate that the success of the method is dependent
on the choice of the initial guess. It should be also noted that, when the initial guess
further diverges from the optimal value, the method fails to converge to a meaningful
result. This is a common problem for Newton based algorithms.
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Figure 2.18 : Exact and reconstructed values of the object function for a two layered
sphere with three different initial guesses.

In the second example, the profile of the Luneburg lens described by

b(r) , (rY
b, - (a) (287)

0

will be reconstructed using the initial guesses of v”(r)=0.75, v®(r)=1, and
v@(r)=1.25. The results are obtained in 12 iterations for v (r)=1, and in 13

iterations for v@(r)=0.75 and v”(r)=1.25. The results presented in Fig. 2.19
demonstrate that for slowly varying smooth profiles, the method is very effective. For

the initial estimate of v (r) =1, the error is calculated as e , =9.1x10°. Expectedly,

as the initial guess deviates from the optimal value, the error starts to increase. For

v@(r)=0.75, the error metric is obtained as e, =0.16, and for v (r)=1.25 as

e, =0.13. Nevertheless, these values show that the method performs better for

smooth profiles, even with sub-optimal guesses, compared to piecewise homogeneous

49



profiles. The relatively rapid convergence of ¢* norm for Luneburg lens seen in Fig.
2.17 also proves the efficiency and the reliability of the method for slowly varying

continuous profiles.
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Figure 2.19 : Exact and reconstructed values of the object function for the Luneburg
lens with three different initial guesses.

For the third example, the method is used to reconstruct a sinusiodally varying profile

described by

b(r) 3zr
b —l.5+0.5COS(?] (288)

0

In this case, the initial guesses for the object function are chosen as v (r) =0.75,
v@(r)=1, and v%(r) =1.25. The results presented in Fig. 20 shows that the method

is capable of reconstructing an approximate oscillating profile, however, the error is
much larger compared to the slowly varying profile of the Luneburg lens. This results

demonstrate that rapid variation of the profile restricts the success of the reconstruction

process, even for continuous profiles. The error metrics are calculated as e, =0.22

for v@(r)=1, and e, =0.23 for the other two guesses. The close values of error

metrics, and the relatively irregular convergence curve in Fig. 2.17 are also caused by
the rapid oscillation of the profile. However, it should be noted that the error level is

not independent of the initial guess. Similar to the previous cases, it increases as the
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initial value differs from the optimal value of v{” (r) =1. For example, when the initial
guess is chosen as v\?(r) =1.5, the method still produces a relevant result, however,
the error increases to e, =0.35. For more rapidly oscillating profiles, the method

either diverges or needs more iterations to converge.
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Figure 2.20 : Exact and reconstructed values of the object function for a sphere
described by b(r) /b, =1.5+0.5cos(3zr / a) with three different initial guesses.

When the compressibility of the outside region is greater than the compressibility
inside the inhomogeneous sphere, the object function takes negative values. To test the
performance of the method in this type of configurations, we analyse a linearly varying

profile described by

as the fourth example. For this case, the initial guesses are chosen as v@(r)=—-0.4,

v@(r)=-0.5, and v@(r) =—0.6. The results presented in Fig. 2.21 demonstrate that

the method is also useful in the configurations involving scatterers with
compressibility smaller than the outside medium. As expected for a slowly varying

smooth profile, the error is relatively low. The metrics are calculated as e, = 0.08 for

v@(r)=-05, e, =0.11 for v®(r)=-0.4, and e, =0.19 for v (r)=-0.6. For

o1



similar reasons, the result for the optimal guess of v? (r) = —0.5 converges faster than

the other profiles as seen in Fig. 2.17. However, for the remaining sub-optimal guesses
the convergence rate, presented in Fig. 2.22, drops significantly. This further
emphasizes that not just the accuracy but also the efficiency of the method depends on
the initial guess. On the other hand, it should be noted that similar drops in the
convergence rate do not occur for sub-optimal guesses of the other profiles analysed
in this section. In conclusion, due to the ill-posed nature of the problem, the

convergence rate is not entirely predictable.
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Figure 2.21 : Exact and reconstructed values of the object function for a sphere
described by b(r)/b, =0.5+0.5(r / a) with three different initial guesses.

From these examples, it is concluded that the method is reliable for continuous
profiles, and provides a useful approximation for a piecewise homogeneous layered
profile. However, the success of the method is clearly dependent on the choice of initial
guess, which is an expected result for a Newton based iterative scheme. Another
limitation that should be mentioned is the limitation on the contrast value of the
scatterer. When the contrast between the compressibility of the sphere, and that of the
outside region becomes too large, the method fails to produce useful results. Since the
non-linearity increases significanly for profiles with large contrasts, the linearization
procedure becomes inadequate for these cases. The last point to consider, that is the
effect of the initial parameters on the outcome, will be analysed in the next sub-section.
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Figure 2.22 : The convergence history graph of the /2 norm of 6v”/v(? (in log
scale) for three different initial guesses v (r) . The sphere has a linearly varying
profile described by b(r) /b, =0.5+0.5(r/a).

2.3.3.2 The effect of the initial parameters

In this sub-section, the effects of four different initial parameters (k,, N,.., ¢, and

&) on the performance and the outcome of the method will be investigated. In order
to analyse each parameter seperately, a single parameter will be altered for each

configuration. For the remaining parameters, the values that are used in the previous
sub-section (k,=8z, N, . =3, a=01/i, £=10°) will remain unchanged.
Different profiles will be used in each case to avoid repetition, and to emphasize the
particular effects of the related parameters.

First, in order to analyse the effect of the operating frequency, the two layered sphere
defined in (2.63) will be reconstructed using different values for k,. The results
obtained for three different values, k, =4~ , k, =87, and k, =127, are plotted in Fig.
2.23. For all simulations, the initial value of the object function is chosen as
v@(r)=0.5. Note that the electrical size of the spherical scatterer is determined by
the term k,a . Therefore, changing the operating frequency, and thus the value k,, is
equivalent to changing the radius of the sphere. The result for k, =4z shows that, for

this value, the size of the sphere is too low for a meaningful reconstruction. On the

53



other hand, as the frequency increases, the reconstructed profile starts to reflect the

actual profile. For k, =127, the error is calculated as e, =0.12, which is lower than
the previously calculated error for k, =87z . However, further increase in the electrical
size negatively effects the performance of the method. Although the result is not shown
here, the error for k, =167 is obtained as e, =0.15. More importantly, as shown in
Fig. 2.24, the result significantly diverges from the actual profile for k, =20z . Note

that this result is obtained in 85 iterations. For even higher values, the method fails to

converge. Considering the relation between the electrical size and the term N, ,

analysed in the direct scattering section, one might argue that increasing the value of

N__ could improve the performance of the method for higher frequency. However,

max
as it will be demonstrated below, the regularizing effect of N, is crucial, and an
increase in this value causes the method to further diverge due to the ill-posedness.
These results demonstrate that an optimal value for k, must be found to maximize the

performance of the method. However, it should be noted that this optimal value might

be different for different profiles.
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Figure 2.23 : Exact and reconstructed values of the object function for a two layered
sphere with three different k, values.
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Figure 2.24 : Exact and reconstructed values of the object function for a two layered
sphere with k, =20~ .

As a second case, the effect of N the number of terms included in the series

expansions, will be analysed using the linearly varying profile defined in (2.89). The
initial guess of the object function is determined as v®(r)=-0.5. The exact and

reconstructed profiles for N =1 and N_, =2 are presented in Fig. 2.25. Note that

the lowest order term of the series is denoted by the index n=0, therefore, for

N, =1, the terms with indices n=0 and n =1 are included. As demonstrated in Fig.

2.9, the lower order terms make the greatest contribution to the final result. Thus, even

for N, =1, the method produces a useful approximation. The error for this case is
calculated as e, =0.11. On the other hand, adding more terms still improves the
results at this point. For N, =2, the error metric is determined as e, =0.09. In Fig.

2.26, the results for N, =3 and N, . =4 is given. From the comparison with the

previous figure, it is clear that the variation of the reconstructed profile, that is the
fitting ability, increases with the number of terms. However, after the optimal value of

N,.. =3, the error starts to increase due to the over-fitting. For N, =4, the error is
calculated as e, =0.10, whereas it was determined as e, =0.08 for N __ =3.

Moreover, for N, =4, the results are obtained in 18 iterations. These results

demonstrate that the perturbance caused by the added noise in the data is especially
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effective on the higher order terms, and adding more terms increases the instability of
the problem. Indeed, the method fails to converge for N, =5. Itis clear that N__,

acts as an additional regularization parameter, and even relatively low values are

adequate to produce useful results, especially for slowly varying profiles.

object function v(r)
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Figure 2.25 : Exact and reconstructed values of the object function for a sphere
described by b(r)/b, =0.5+0.5(r/a) with N, =1and N, =2.

object function v

Figure 2.26 : Exact and reconstructed values of the object function for a sphere
described by b(r)/b, =0.5+0.5(r/a) with N, =3 and N, =4.
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One of the most important parameter of the inverse problems is the regularization
parameter « . As stated in the section 2.3.1, in this thesis, it has been determined by
trial and error, instead of Morozov’s principle, for the sake of practicality. Since the
error level is strongly affected by this parameter, as a third case, sinusoidally varying
profile defined in (2.88) is reconstructed using different values for « . First, in order
to test the assumption that smaller values will be more beneficial as the number of

iterations increase, we have reconstructed the profile using o =0.1/i,, and the

constant value of a=0.1. The comparison of the results presented in Fig. 2.27

demonstrate that the reconstruction for « =0.1/1i, is more accurate compared to the
reconstruction with constant value. The error «=0.1/i, is measured as e, =0.23,
whereas for « = 0.1 the value is calculated as e, =0.39. Clearly, lower regularization

parameters increased the accuracy of the inversion procedure, while maintaining the
stability. To better elucidate this point, in Fig. 2.28, higher values have been used for

the reconstruction. Defining the regularization parameter as « =0.5/i, actually
improved the result, the error for this case is calculated as e, =0.19. However, it

should be noted that the iterative process lasted for 34 iterations. This is an expected
result considering that higher values of «slowed the convergence initially by
increasing the error in the inversion procedure. On the other hand, this choice also
increased the stability of the problem. It should be noted that the possibility of
obtaining a significantly divergent result, which is caused by the ill-posedness of the
problem, diminishes considerably for larger values of «. The result for &« =0.5
demonstrates this point. Although the accuracy is too low, the method nevertheless
converged to a useful solution in 9 iterations. These examples suggest that lowering
the value of « in each iteration is a sensible strategy for this inversion scheme.
However, when the initial value of « is too low, further decrease might cause the
regularization scheme to fail to stabilize the problem. In this case, the outcome will be

a divergent result like the one presented in Fig. 2.29 for « =0.01/i,. This result is

obtained in 119 iterations. It is clear that the error caused by the instability was the
dominant factor in this case. On the other hand, the fixed value of « =0.01 produced

the best recontruction for the sinusoidally varying profile. The error for this value is

calculated as e, =0.08. Although this result suggests that a low constant value for «

might be the best choice, further tests with close values demonstrate the
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unpredictability of the outcome. For the constant value of a =0.05, the error is

calculated as e, =0.33. Similarly, reconstruction with the even smaller value of
a =0.001 yielded an error of e, =0.38. In conclusion, choosing an optimal value for

a is a highly challenging task, and requires numerous simulations for each profile.
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Figure 2.27 : Exact and reconstructed values of the object function for a sphere
described by b(r)/b, =1.5+0.5cos(3zr /a) with =0.1/i, and o =0.1.
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Figure 2.28 : Exact and reconstructed values of the object function for a sphere
described by b(r)/b, =1.5+0.5cos(3zr /a) with & =0.5/i, and a=0.5.
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Figure 2.29 : Exact and reconstructed values of the object function for a sphere
described by b(r) /b, =1.5+0.5cos(3zr /a) with & =0.01/i, and ¢ =0.01.
Finally, the effect of the stopping threshold &is analysed using the Luneburg lens
defined in (2.87). The effect of choosing a higher value for ¢ is predictable. The

accuracy of the result would be expected to drop alongside the number of iterations.
Indeed, although the results are not presented here, reconstruction with a threshold of

£ =107 yielded a slightly higher error level of e, =0.02 compared to the previous

simulation with &£ =107, On the other hand, the number of iterative steps decreased to
7 iterations. However, lowering the value of ¢ does not always result in a more
accurate reconstruction. In Fig. 2.30, the reconstructions of the Luneburg lens using
the thresholds £ =10"° and ¢ =10" are compared with the actual profile. It is clear
from the figure that £ =10~ provided a better reconstruction. The error for £ =10"°

is calculated as e, =0.05, which is higher than the values obtained by using ¢ =10

or £ =10". As the figure suggests a prolonged iterative process causes unnecessary
variations in the reconstructed profile. More importantly, as the convergence history
graph presented in Fig. 2.31 demonstrates, the convergence rate drops significantly
when the threshold is too low. The iterative process lasted for 192 iterations in this
case. It should be noted that for rapidly varying profiles, the method fails to produce a
result for the threshold of £=10"°. Even for the slowly varying linear profile, the

result converged in 418 iterations, and yielded an error of e, =0.12, aslightly higher
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value than the one obtained with the threshold £ =10". These results show that, like
other parameters, an optimal value must be chosen for & in order to increase the
performance of the reconstruction process. In conclusion, the outcome of the method

developed in this thesis is highly dependent on the choice of the initial parameters.
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Figure 2.30 : Exact and reconstructed values of the object function for the Luneburg
lens with £ =107 and £ =10"°.
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Figure 2.31 : The convergence history graph of the /2 norm of sv/v? (in
logorithmic scale) for the Luneburg lens with £ =107 and £ =10"°.
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3. ELECTROMAGNETIC CASE

3.1 Purpose

In this section, the electromagnetic direct and inverse scattering problem related to
radially inhomogeneous spheres will be analysed. Similar to the acoustic case, we will
first formulate the solution of the direct scattering problem through a dimension
reduction process. Since the electromagnetic problem is a vectorial one, this process
will employ vectorial basis functions instead of the scalar spherical harmonics used in
the solution of the acoustic problem. Because of this difference, the reduction process
will result in a system of reduced integral equations instead of a single object and a
single data equation. However, it should be noted that the main approach of the
process, namely obtaining 1-D integral equations using series expansions and
orthogonality relations, remains the same; therefore, the formulation and the solution
of the direct scattering problem will follow a similar outline as the acoustic case. In
the second part, the solution of the related inverse problem will be developed using
this system of reduced 1-D integral equations. Since the nature of the problems are
similar, the classical Newton algorithm will be used once again for solving the inverse
problem. The effect of replacing a single data equation with a system of equations will
also be discussed in the same part. A time dependence e'*'is assumed and omitted

throughout the entire section.

3.2 Direct Scattering Problem

In this sub-section, we will first give a brief presentation of the vector spherical
harmonics and the vector wave functions. These functions will provide the vectorial
basis functions that will be used in the series expansion of the electric field and the
free space dyadic Green’s function. The same orthogonality relationships that were
demonstrated in the acoustic section will form the mathematical foundation for the
formulation of the vector spherical harmonics. The second part will be the main body
of this sub-section, and will include the formulation of the problem. After the

scattering problem is first formulated, the dimension reduction process will be
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developed using the aforementioned vector spherical harmonics. Via this reduction
process, one can replace the 3-D integral equation with a system of reduced 1-D
integral equations by expressing the interior and scattered electric field in terms of the
vector spherical harmonics. The solution of the direct scattering problem will be
obtained using this system of integral equations. Finally, in the third part, the success
of the method developed in the previous section will be tested via numerical
simulations. The results will be compared with alternative methods such as dyadic
Green’s function or MoM. The content of this section has been presented in a more
compact form in [67]. Here, the formulation of the method will be demonstrated in a

more detailed manner.

3.2.1 Vectorial basis functions

In this sub-section, the basis functions that will be used in the series expansions for the
interior and scattered electric field will be introduced. These functions compose the
solution of the vector wave equation in the spherical coordinate system. The solution
of this equation can be formulated using the scalar harmonics, which form the solution
of scalar Helmholtz equation. Therefore, the orthogonality relationships related to
scalar harmonics will be reused in this section to develop the orthogonality conditions
necessary for the series expansions. In the first sub-section, we will introduce the
vector spherical harmonics that will be used as the basis functions of the series
expansion for the electric field. The orthogonality of these functions over the unit
spherical surface will be demonstrated, and the terms of a series expansion with
vectorial basis functions will be defined. This series expansion will be used to express
the vectorial electric field. The main goal of the dimension reduction process is to
obtain 1-D integral equations containing the scalar coefficients of the series expansion
for the interior electric field. In the second part, the spherical vector wave functions
will be obtained using the vector spherical harmonics. The vector wave functions
constitute the formal solution of the Helmholtz equation in the spherical coordinates.
That is, in the source free homogeneous medium, the electric field can be expressed in
terms of these functions. Therefore, as it will be demonstrated in the next sections, the
scattered field outside the sphere can be expanded in terms of vector wave functions.
On the other hand, because of the radial inhomogeneity, the field inside the sphere can
only be expressed in terms of the vector spherical harmonics. Finally, the expansion

of the free space dyadic Green’s function will also be presented in the second part.
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3.2.1.1 Vector spherical harmonics

As stated in [54], the solution of the Maxwell equations in the spherical coordinates
can be expressed via some vector-valued functions, which later will form the basis for
the series expansion of the electric field in the source free homogeneous medium. The
vector spherical harmonics are defined in [54] in order to construct these vector-valued
solutions. Moreover, as it will be demonstrated in the subsequent sections, these
harmonics can also be effectively used to represent the angular part of the electric field
within the radially inhomogeneous spherical scatterer. Therefore, the definition of the
vector spherical harmonics and the analysis of their their mathematical properties is a
prerequisite to formulating the solution of the direct scattering problem via a
dimension reduction process. A detailed analysis of the subject can be found in [54].
Here, we will present a brief summary, involving the definitions and the essential

orthogonality relations, of the comprehensive treatment given in [54].

The vector spherical harmonics are based on the scalar spherical harmonics that have
been used in the solution of the acoustic problem. For the sake of presentation, we will

first express the scalar harmonics in a more compact form as

_ (2n+1)(n_m)! m img __ m img
Y., (0,0) = \/ d(n s m)! P"(cos@)e™ =C_ P"(cosb)e (3.1)
where C, . isthe normalization factor. The following relations hold for negative values
of indice m:
Yn,—m (0’ ¢) = (_1)mYn’;n (9’ ¢) (3.2)
8 0, -)" Y 0,

Here, Y (0,4) represents the complex conjugate. From the orthogonality relations
already established in the acoustic section, it is clear that Y, (&,¢) are orthonormal

over the unit spherical surface, that is these functions satisfy the orthogonality

condition
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2r 7

j j Yo (0, 0N, (60, 8)sin 0O = 6,5, (34)

where & is the Kronocker delta. Taking (3.4) into account, a series expansion in terms

of the scalar harmonics can be defined for the vectorial electric field E(r) satisfying

the Maxwell equations
Vx(VxE(r)) -k E(r) =0 (3.5)

in a source free homogeneous medium. Here, k, denotes the wave number of the

medium. However, as indicated in [54], such a series would have vector-valued
coefficients, and therefore would be unsuitable for the dimension reduction process.
In order to have a series expansion with scalar coefficients, a set of vector-valued basis
functions that are orthonormal over the unit spherical surface must be defined [54].
The vector spherical harmonics constitute such a set of basis functions. These vector-

valued functions are defined by using scalar harmonics as:

1
A, (0,0)= N VX[rY,.(6,9)] (3.6)
1
Ay (0,9) = m r VY. (6,9) (3.7)
A3nm (9' ¢) = rYnm (6' ¢) (38)

Alternatively, these functions can be expressed in terms of the unit vectors 7, 6, ¢ of

the spherical coordinates system:

1 1 9
Alnm (97¢) - m{3|n9 a¢ nm(g ¢)€ Ynm(H ¢)¢} (39)
1
Aan(0,¢)=ﬂ{ = Yo (0,8)0+ P ¢ Yo (6, ¢)¢} (3.10)
Az (0,8) =Y, (0, 9)F (3.11)
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Considering (3.2) and (3.3), the forms of the vector spherical harmonics for negative

values of m are determined by

A n(6,6)=(D"A,(6,6) (3.12)

where 7 =1,2,3. Before stating the orthogonality condition related to the vector
spherical harmonics, one more orthogonality relation for the associated Legendre
functions must be established. Using (2.12) and the formula for the derivative of
Legendre functions available in [36], following equations can be obtained:

OR"(c0s0) ORy'(cos0) o B (€0S0) By (C0sO) | o1 g -
0 20 00 sing sin@
2n(n+1)(n+m)! .
@n+1)(n-m)t ™
j{ R (cosO) By (0s0) | B(c0s6) By (050) | i g (3.14)
) 00 sin@ sin@ 00 |

The orthogonality of the vector spherical harmonics over a spherical surface can be
easily demonstrated using (3.13)-(3.14) and the orthogonality relations previously

stated in (2.10)-(2.13). The resulting orthogonality relation can be expressed as

'~ nn"~ mm’

o9
ot—y

A (0,H)A,. (0,4)sinododg =555 (3.15)

(3.15) demonstrates that vector spherical harmonics constitute a set of vector-valued
functions orthonormal over the unit spherical surface. Therefore, a series expansion

for the vectorial electric field can be formulated as

EM) =3 (e (VA (0. 8) + B (N A (0.9) .
n=0 m=—n 3.16
7o (DA (0. ))

It should be noted that the scalar coefficients «,,.(r), 5., (r), 7., (r) are functions of

the radial distance only. Therefore, this series expansion is especially suitable for

expressing the electric field inside the radially inhomogeneous spherical scatterer. By
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isolating the radial variation which is affected by the inhomogeneity, the orthogonality
of angular ones can be preserved. The dimension reduction process will be executed
by taking advantage of this orthogonality, and the main aim of the process will be to
obtain a system of 1-D integral equations involving the coefficients of the electric field.
On the other hand, in the homogeneous region, that is outside the sphere, the radial
dependance can be determined by solving (3.5). These solutions will be obtained in

the next sub-section.

3.2.1.2 Spherical vector wave functions

In this sub-section, we will formulate the solutions of the vector wave equation defined
in (3.5), in the source free homogeneous medium. Similar to the previous sub-section,
the formulation will follow the one presented in [54], with a slightly modified notation.
The solutions, named spherical vector wave functions, will later be used in the
expansion of the 3-D free space dyadic Green’s function, and the incoming vectorial
electric field in the spherical coordinates. It is clear from the discussion presented in
the previous section that the angular components of these vector wave functions will
be formed by the vector spherical harmonics. Therefore, in this section, the radial
dependence of the vector wave functions will be determined. To this end, the
expansion for the electric field given in (3.16) should be substituted into the wave

equation (3.5). The resulting equation can be stated in an open form as

Vx(VxE(r)) -k2E(r) = i Z —(M] A (0,9)

n=0 m=—n

_ (rﬁnm(r)),_ynm(r)\/n(n+1) ' _(ranm(r))'
r ] A2nm (0’¢) rz Alnm (0!¢)

, — (3.17)
_ (rﬂnm(r)) _7:m(r) n(n+1) (Agnm (0’¢)+ ’n(n+1)A3nm (0’¢))
+ n(r;;l'l) a,, (NA,,, (0, ¢)}— kozi i {anm(l’)Alnm 0,9)

+ B (N A (0,8) + 7, (DA,,(0,8)} =0

Using the orthogonality of the vector spherical harmonics demonstrated in the previous

sub-section, separated equations can be obtained for the coefficients «, . (r), £,,(r),
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7. (). Multiplying both sides of the equation by complex conjugates of vector

*

spherical harmonics A__(6,¢) in order, and integrating over unit spherical surface

Thm

yields three differential equations for the coefficients:

d( ,d 2.2
E( Eanm(f)]—n(n+1)anm(r)+kof Uy (r) =0 (3.18)
a rziﬂ (r) —r«/n(n+1)i (N +kir’p _(r)=0
dr dl’ nm dr)/nm 0 nm (319)
D) (B (1) =10+, (1) K, (1) =0 320)

Note that the coefficients g, . (r) and y,,(r) are coupled in (3.19) and (3.20),
indicating that the final solution will involve both coefficients, and the related vector
spherical harmonics A, (0,9), A, (0,¢). On the other hand, (3.18) is an

independent equation, and its solution yields spherical Bessel functions. In conclusion,
the solutions of (3.18)-(3.20) are obtained as

e, (1) = 2,,(kr) (3.21)
1 d
ﬂnm(r) ZQE(an (kor)) (3.22)
k
Yam (1) =4/N(N+1) % (3.23)

where z, (k,r) denotes either j, (k,r) or h’(k,r) depending on the type of wave, that
is the region where the solution is defined. It is clear that for radiating scattered field,
the radial dependency should be represented by h®(k,r) in order to satisfy the

radiation condition at infinity. Using the results given in (3.21)-(3.23), and considering

the fact that the coefficients g, (r) and y,,(r) are coupled, the spherical vector wave

functions can be determined as [53]
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M. (k) =n(n+1) 7, (K1) Ay, (6. 6) (3.24)

Ny (k1) =D (12, 0,1) A (0,9)

(3.25)
+ n(n +1) % A3nm (61 ¢)

0

Since the angular component of the wave functions are composed of spherical
harmonics, these functions are also orthogonal over the unit spherical surface, and they
form a complete set. Note that the functions defined in (3.24)-(3.25) have zero
divergence. Therefore, a third vector wave functions should be included in the
representation of the electric field in the source region. This additional vector wave
function is defined as

L (k7) = V1D 2,1 g 6.9
d 0 (3.26)

1
+ Ea(zn (ko r)) A3nm (9’ ¢)

For the formulation used in this thesis, the function L, (k,r) would not be needed,

since the field inside the sphere will be represented by the series expansion given in
(3.16), instead of one that uses vector wave functions. On the other hand, the scattered
field can be expanded in terms of vector wave functions, since the region outside the
sphere is assumed to be homogeneous. Therefore, the scattered field will be expressed

by a series expansion of the form

EN=Y Z {ARME (K, 1) + B, NS (k1) | (3.27)

n=0 m=—-n

where A and B, are scalar constant coefficients. In (3.27), the superscript (1)

signals that the radial dependence is expressed by spherical Hankel functions h® (k,r)

in order to represent out-going scattered field. The free-space dyadic Green’s function
can also be expanded in terms of the vector wave functions in the spherical coordinates
as [53]
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G(rr)

{ (Ko P)M (ko)

nOm —n

. , 13 ,
Nnm(kor)Nnm(kOr )}_Fé‘(r_r)

0

(3.28)

In (3.28) the radial functions z (k,r) of the vector wave functions denote either

jo (ko) or h®(k,r ), where r_and r_ represent the smaller and the larger of the pair

r,r' respectively. This expansion will be used in the dimension reduction process.

A final point to note is that in the literature, slightly different formulations are used in
the definition of vector wave functions. In [51] and [52], linear combinations of
trigonometric functions cos(mg) and sin(mg) are used to represent the angular
dependence. Since these textbooks will be frequently referred in the subsequent
sections, their definition of vector wave functions should be presented here. In [51],

Stratton defined these functions as

sin mg
(k r)= +Sln z,(k,r)P" (cos@)[ sm¢}0

(3.29)
0 cosmeg \
—zn(kor)%Pn (cosé’)(Sin m¢)¢

0

(o) =20 (PP (eoso) [C?’S mﬂf
K.r n

. sinmg
1 d Smg )\ -
+k - —(rz,(k, r)) P"(cos e)(smmje (3.30)
LM d mg) -
k r3|n<9dr<rz (k, r))P (cos&)[ Sm¢)¢

where the subscripts e and o refer to even and odd functions respectively. The free
space dyadic Green’s function can be alternatively defined by a series expansion in
terms of these even and odd vector wave functions. Such an expansion is provided in
[52] by Tai:
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~ eo ' _ﬁ RN _ 2n+1 (n—m)!
Co (r,r)—4ﬂ_§mzzo(2 5°)n(n+1) (n+m)!

M2 (kDM (k) +NP (NN, (k1) r>1’

X (3.31)
M, (kNM® (k,r')+N, (k,HIND (kr) r<r’
where
5 - 1 m=0
""10 m=0 (3.32)

Since it includes neither the functions L, (k,r) nor the last term in (3.28) with dyad

ff, c:;g"(r, r') is not valid in the source region [53]. However, it should be noted that,
outside source region, the expansion given in (3.31) is equivalent to the one introduced
in (3.28). Therefore, both forms of free space dyadic Green’s function can be used in
the formulation of direct scattering problem, although (=30(r, r') will be more

frequently employed in this thesis. The correspondance of the even and odd functions
defined in (3.29)-(3.30) to the vector wave functions introduced in (3.24)-(3.25), and
will be used throughout this thesis, is determined in [68] as

1 m

><enm (kO r) = m(xnm (ko r) + (_1) Xn,—m(ko r)) (333)
1 m

Xonm (kO r) - 2|C (Xnm (kO r) _(_1) Xn,—m(kO r)) (334)

nm

where X represents either M or N, and C, = denotes the normalization factor defined

in (3.1).

3.2.2 Solution of the direct scattering problem

In the first part of this sub-section, the general formulation of the direct scattering
problem will be presented. We will define the electromagnetic vectorial problem in its
original 3-D form, and then introduce the electric field integral equation that will be

reduced to a 1-D form. The series expansion for the incoming field will also be
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constructed in this section. The details of the dimension reduction process will be
presented in the second part. The main aim of that process is to obtain 1-D integral
equations involving scalar coefficients of the series expansion for the electric field.
Unlike the acoustic problem, the 3-D object equation cannot be reduced to a single 1-
D equation; instead, it will be replaced by a system of reduced integral equations.
Solution of the direct scattering problem will be obtained by solving this system via a

discretization of the integration domain.
3.2.2.1 Formulation of the problem

Consider a dielectric spherical object with radius @, denoted by D in Fig. 3.1, whose

permittivity &(r), and conductivity o(r) are arbitrarily varying functions of radial
distance r only. The magnetic permeability .., is considered constant throughout the

whole space. The region outside the sphere is assumed to be described by a constant

wave number k, = w./e 14, , & being the free space dilectric constant, and « the

operating angular frequency of the source. The sphere is illuminated by a infinitesimal

horizontal electric dipole with a current moment C, pointed in the x-direction, located

at the point x=0, y=0, z=2,,(z, >a).

Dipole
> CD (0: 07 Zd )

&, 1,,0=0

L4

Figure 3.1 : The geometry of the direct scattering problem.
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The total electric field inside sphere, E(r), satisfies the electric field integral equation

E(r)=E'(r) +k’ l G,(r,F)V(FE(r)d  reD (3.35)

where E'(r) represents the incoming electric field. Similarly, the scattered field

outside the sphere can be expressed by

E* (1) =k: [ Go(r, P WV(IME)Y  [r]>a (3.36)

Similar to the acoustic case, the function v(r") appearing in (3.35) and (3.36) denotes

the object function that is defined as

k2
v(r) = k(zr) -1 (3.37)

where k*(r) = o®u,e(r) +iwu,o(r) inside the sphere, and k*(r) =kZ in the outside
region. It is clear that (3.35) and (3.36) have similar forms as (2.40) and (2.39)
respectively. Therefore, (3.35) can be named as the 3-D electromagnetic object
equation, and (3.36) is called as the data equation. One can obtain the electric field
anywhere in the space by solving the system formed by these equations, via a
numerical technique such as MoM [14]. However, since the electromagnetic problem
is a vectorial one, the computational effort required for solving 3-D problem is even
higher than the acoustic case. Therefore, a dimension reduction process will be applied
in this thesis to replace 3-D equations by 1-D reduced integral equations. To this end,

the electric field E(r) and the free space dyadic Green’s function (:30(r,r’) will be

expressed as series expansions. Although the approach will be similar to the one used
for the solution of the acoustic problem, the technique must be altered to suit the
vectorial problem. The details of the procedure will be explained in the next sub-

section.

It should be noted that in order to complete the expansion of (3.35), the incoming
electric field must also be expressed as a series expansion, and the coefficients of this

expansion must be determined before solving the system of reduced object and data
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equations that will be produced by the dimension reduction process. To this end, the
incident field will be expressed as a series expansion in a form similar to the interior

electric field:

E(1)=3 3 (@ () As (0,0) + By (VA (0,9)
n.:O m=-n (338)
+ 7rl1m (r)Asnm (01 ¢)}

Note that an expansion in terms of vector wave functions, like the one introduced in
(3.27), can also be used, since the calculation of the incident field assumes a

homogenous space characterized by k,. The form of (3.38) is chosen to match the

expansion of the interior electric field, and to simplify the structures of the reduced
equations that will be formed in the next sub-section.

First, we will obtain the coefficients for the infinetesimal horizontal electric dipole
depicted in Fig 3.1. The series expansion of the field created by this source is
developed in [52]. Here, the results will be reproduced, and the process will be
presented in a more detailed fashion. Following the notation of [52], (3.31) will be
used as the free-space dyadic Green’s function. The current density of the x-oriented

dipole situated at r'=z,, & =0, ¢'=0 is defined as [52]

o(r'—z,)0(60'-0)5(¢'—0) 2

J(r)=C, Zsing’ (3.39)

The field induced by this dipole can be determined by a convolution integral involving

the free space dyadic Green’s function that yields [52]

E'(r) =iou, [ G (r, F)I(r)AV' = iop,C,GY (r, 1) - X (340

Considering that in (3.40)
% =cos@'sing’f +cos @' cos g’ O —sin ¢’ , (3.41)

and r’ :(zd,o, O) in spherical coordinates, it is clear that only the 0 components of

e
0

M, (k,r") and N, (k,r") will make a contribution to the final form of (3.40); the
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remaining components do not survive the scalar product with X. Moreover, since

¢' =0, the outcome of the functions M, (k,r") and N, (k,r") will be zero due to

enm onm

the term sin ¢’. Therefore, the expression of incident field becomes

iy —Ko@Co A o 2n+1 (n—m)!
Emn= y ;%(2 5°)n(n+1) (n+m)!

(3.42)
X Mo (ko 1) ME, (k1) |+ Ny (ko P) [ NS (K1) |

where [M‘” (kor’)]g and [N(l) (kor’)l9 denote the & components of the respective

functions. Note that in (3.42) only the case of r <r’ is taken into account, since r' =z,
and for the region inside the sphere r <z, . The final point to consider is the behaviour
of the associated Legendre functions for 8" =0. Calculating the limit values of the
terms with &' in [ M) (kor’)]e and | N) (kor’)]e yields

onm enm

0
. , — P"(cos &)
F(cos®) _ i, 00 = lim i,an(COSG')

lim ]
0-0"  sind’ 0'—0" cos o’ 0'>0" 00
& 0 (3.43)
_Jn(n+) m—1
2
0 m=0,1

onm enm

(3.43) demonstrates that only for m=1, [M‘” (kor')]g and [N(l) (kor’)l9 takes non-

zero finite values. Therefore, the series with indice m disappears from (3.42), and the

equation simplifies to [52]

—k,01,Cy < 2n+1

E'(r)= h® (Kyzg )M g (Ko T
(1) == 2 U (ko2 Mo (ko)
1 d o an (3.44)
+ kOZd W(rhn (kor ))rl:Zd Nenl(kor)}

Although (3.44) completes the series expansion of the incident field for an

infinitesimal horizontal dipole, it is not yet suitable for determining the coefficients
al (r), B (r)and y! (r) that will be used in the solution of the reduced direct

scattering problem. To this end, the series expansion in (3.44) should be restated using
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the vector wave functions defined in (3.24)-(3.25). Using the identity established in
(3.33) and (3.34), the incident field can be expressed as

i ka),u 2n+1 .
E'(r)=—=—7¢ —ih®(k,z, )M _(k,r
(r) 2 47rn(n+1){ (k24 My (1)

IO (ko2 )M, (ko) +—— 3 (Ph® (k7))
! r

Ny (Kor) (3.45)

0%d r'=z4

Nn,—l(ko r)}

r'=z4

—H%(r’h?(kor’))
0 ~d

Considering the expressions of the vector wave functions given in (3.24)-(3.25), the
coefficients of the incident field for x-oriented inifnitesimal horizontal electric dipole

can be determined from (3.45) as

; ik, a1,C ’2n+1 .
anm(r): 2 ;0 : 472_ hrgl)(kozd)Jn(kOr) m:_l’l (346)

i K.wu,C, [2n+1 1 d ;-
frn(r) = —m =20 01/ o ar (M)

r'=zy

1 d (3.47)
——(rj. (k.r m=-11
X kor dr( Jn( 0 ))
i koa)ﬂoco 2n +l l d 1t (1)
r=-m r'h (K, r
7m (1) 2 \4zn(n+1) kyz, dr’ ar (7 G ))r,_zd
(3.48)

xn(n +1)# m=-11

ol

It should be clear that for any m = —1,1, the coefficients are all zeros.

Another frequently used incident field is the plane wave excitation. Therefore, we will
also present the coefficients for an x-polarized plane wave travelling in the z direction.
The series expansion for this incident field has been obtained by Stratton in [51], using
even and odd vector wave functions. As noted in [51], the divergence of the electric
field excited by an x-polarized plane wave is zero, therefore the functions L, (k,r)
are not needed for the expansion. Moreover, to avoid having singularity in the origin

the functions j,(k,r) must be used to express the radial component [51]. Therefore,

the expansion would have the form
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n

E()=e2=3Ya M, (kr)+b,N, (kr

nm
n=1 m=0

(3.49)

The scalar coefficients a_,, and b, can be determined using the orthogonality
relations. Considering the expression X given in (3.41), and the ¢ dependence of the
vector wave functions; it is clear that only M, (k,r) and N, (k,r) will have non-

zero contributions [51]. Therefore, using the series expansion for the plane wave

introduced in (2.16), the coefficients can be determined as [51]

_ 2n+1in
" n(n+1) (3.50)
_2n+1
by = n(n+1)( i) (3.51)

Once again through the equivalence demonstrated in (3.33)-(3.34), the final form of
the coefficients for the x-polarized plane wave travelling along the positive z direction

can be stated as

U (N =1"" (20 +1) J,(kr)  m=-11 (3.52)
Bi(r)=mi""Jz(2n +1)k_lr%(rj”(k°r)) m=-11 (3.53)
7ha (1) =mi™/z(2n+1)/n(n +1)k—1Ir jn(kor) m=-11 (3.5)

0

Similar to the case with dipole, for any m = —1,1, the coefficients are all zeros.

3.2.2.2 Dimension reduction for the object and data equations

In this sub-section the reduced object and data equations will be obtained. To this end,
the series expansion defined by (3.16) and (3.38) will be used to express the total field
and the incoming field respectively. Similar to the acoustic case, the main aim of this
sub-section is to obtain 1-D integral equations involving the series expansion
coefficients instead of the field values themselves. As the expansion defined in (3.16)

contains three separate coefficients «,,,(r), £,,(r), 7..(r); three equations will be
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needed to determine the coefficients of the interior field. Therefore, the vectorial object
equation (3.35) will be replaced by a system consisting of three reduced 1-D integral
equations. Similarly, using (2.27) to represent scattered field, two independent 1-D

integral equations will be obtained as reduced data equations.

In order to take advantage of the orthogonality relations, let us substitute the expansion
for the interior field given in (3.16), and the one for the dyadic Green’s function

(:30(r, r') given in (3.28) into the object equation (3.35). For the sake of compactness,

we will analyze the integral appearing on the right-hand side of (3.35) in three parts as

l Gy (1, F)V(FE(r)V =1, +1,+1 (3.55)

where 1, 1,, and |, represent the parts containing the terms «, (NA,,,(6,9),
L. (DA, (6,9),and y,.(rA,,, (0, ¢) of the expansion for the interior electric field

respectively. Therefore, the open form of the integral 1, is defined as

- = ﬁ 1 * [} * 2
' H'k(’z;‘n n(+1) | M (k)M (ko) + Ny (kg )N () |
oo v (3.56)
~—3(r- r’)} Y { (MA@ ) pv(r)dv
n=0 m=-n
where the indices M, M are used to distinguish the expansion of the dyadic Green’s

function from the expansion for the interior electric field. In order to obtain the 1-D
expression of (3.56), the structures of M__(k,r)M._(k,r") and N__(k,r)N;_(k,I")
must be analyzed. Note that the form of the dyad for m <0 should be investigated
separately. Considering (3.12), the expression of the first dyad can be determined as
Mﬁ"m‘(kor’)M; (k,r) for m<0. Now, let us state the dyad M, (k,r)M.(k,r") in

i

matrix form as

0 0 0
M (kor)M;m(kor’) =10 MM, MM, (3.57)
0 MM, MM,
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where the elements MM, and MM ,; are defined as

v - JTHD (ko r)h? (ko)
PR +1) j, (k)R (k,r)
[Aun (0.9, A (@.4)],  m>0 (3.58)

x| A 0.9)] [ A(@.8)] m<0
and

W LGRSV G (NS
Y@+, (ke F RO (kT

XA (0.0)], [ A (@.4)],  m20 (3.59)

x| Al 0.9) ] | Ay (0, ¢’)L m<0

In (3.58) and (3.59), the signs [D]g and [D]¢ denote the & and ¢ components of the
related functions respectively. The remaining matrix elements MM, and MM, can

be written in a similar fashion. Since the vector wave functions M, (k,r) do not have
an f component, the related matrix elements are all zeros. To comlete the matrix

notation, we also express the term ¢, (r')A,,,(0',¢") as a matrix:

U (M)A (0, 8) =[0 A, aA,] (3.60)

Here the term oA, can be expressed in an open form as

anm(r’)[Amm (‘9’1¢')]0 m=>0

Aom 0L (1) (=D [A;"m‘(ﬁ',d)}g m<0 (3.61)

The remaining term, aA, in (3.60), can be expressed in a similar form using ¢

component. In order to obtain the kernel of the integral 1, one can use the matrices

introduced in (3.57) and (3.60). It is clear that the result of the matrix product will be

a vector whose components are given by
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0 O 0 0 0
0 MM, MMy, | aA, |=| MA, (3.62)

0 MM, MM, ||l aA, MA

99 ¢

where the open form of the § component, denoted as MA, , can be stated as

(T +2) j (Ko FR (Ko )t (1) [ Ay (6,6)],
M(T+D) Jr (kT (KT )y ()| Avy i (0:9) | (<)
A (0.8 A (6',4))  M20
(A (0,8 Ay (0,6)]  M<O

MA, =

(3.63)

Once again, the ¢ component MA ; will not be stated here, since its form is similar to

(3.63). It is clear from (3.63) that, for any M= m and N # n, the result of the integral

I, will be zero due to the orthogonality of the functions A, over unit spherical

surface. Therefore the series expansion of the dyadic Green’s function éo (r,r’) with

terms n,m can be discarded. Moreover, the analysis presented above demonstrates
that the dyad N__(k,r)N-_(k,r") and the term with ff will not have any contribution

to I, since the functions A _, are orthogonal, and A, have no radial component.

1nm

Therefore, after putting the vectorial components together for m<0 and m>0 by

taking (3.12) into account, the integral 1, can be restated as

=33 A (0.0)] N1+ ], (k7B (ko )ty (V)

n=0 m=-n

. (3.64)
X[ [ A (0.4)-An (0, 4)sin0'd0'd g
00

It is clear that the last integral in (3.64) is a direct application of the orthogonality
relation. Therefore, the final 1-D form of the integral can be obtained by carrying the

integration over the unit spherical surface:
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Ia = i i ikO'A‘lnm (0’ ¢)

=0 m=-n

=1

(3.65)
X

n(n-+1) J, (ko) (kg ety (F)V(r)r dr

O

Note that the functions A, (6,¢) appearing in (3.65) are functions of r coordinates
instead of r’. This term will be eliminated in later stages by using the orthogonality
condition for r coordinates.

Next, for the integrals |, and 1, the procedure will be similar. It is clear that for these

integrals the dyad M_.(k,r)M_(k,r") will not make any contribution due to the

orthogonality. Hence, this time we should express N__(k,r)N__(k,r") as a matrix in

order to obtain 1-D forms of the integrals:

NN, NN, NN

rr

ré
(kor)N;m(kor’) =| NN, NN, MM, (3.66)
NN, MM MM

N

nm

gr 90 99

Note that all the matrix elements are non-zeros, since the vector wave functions

N, (K,r) contains both A, and A, . We will state some of the terms in (3.66) in

nm 2nm

open form in order to illucidate the matrix structure. Expectedly, the angular part of

the term NN,, consists solely of the functions A, :

(M +1)°

" kZrr’
% A3ﬁm (9’ ¢)A;ﬁm (9!1 ¢l) m > 0
A;ﬁ,\m\ (‘9' ¢)A3ﬁm (0', ¢,) m<0

NN Jn (ko (ko)

(3.67)

Similarly, for the terms NN,,, NN, NN, NN, the angular parts will be formed

by the & and ¢ components of the functions A, . Since the structure of these terms
are very similar to those presented in (3.58)-(3.59), they will not be stated here. On the
other hand, the remaining terms are the results of the coupling between the functions

A, and A,  withinthe dyad N__(k,r)N-_(k,r’), and they will effect the outcome

2nm 3nm
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of the dimension reduction process by causing the 1-D reduced integral equations to

be dependent. The open form of the terms

h® (k, N2 [r; (k1) ]

[n(n +1)]
Nro = kirr' |,
ﬁ(kOr)_ 'h (k r'
o ¥ J (3.68)
Ao (0.9 Ay (04) ], M20
A;ﬁ,\m\ (‘9’¢)[A2ﬁy‘m‘ @' ¢')L m<0
and
o i ' @
NNgr :—[ﬁ(ﬁ2+:|,-—)]2 Jﬁ(kor) rh (k r)
kyrr (l)(k I‘)— Fi (kg r)
(3.69)

O

(A (0.9 ], Ay (0'.4)
A (0:8)] Agyn(0.9) m<0

X

clearly demonstrate the coupling effect. In (3.68), the term h® (k, r) [rj (kor )}
must be used for r >r’, and jn(kor)ﬁ[r’hn‘”(kor')] for r <r'. Similarly, in (3.69),

- ] a (1) (l) ] a -
b (Ko )a[r hs (kor)] and h:” (k,r )E[r Jﬁ(kor)] must be chosen for the cases of
r>r"and r<r’ respectively. In order to obtain the 1-D form of the integral 1, one

must express the vectorial functions £, (r')A,,.(0',¢") as a matrix in a form similar

to (3.60), and repeat the procedure outlined in (3.62)-(3.65) by using (3.67) instead of
(3.62). By applying the orthogonality relations for angular terms, the final form of the

integral is obtained as
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Iﬁ :i i A3nm(9 ¢)I n(n+1)

=0 m=-n kor

h (k, r)— r'j. (K, r)
B (K )V(r)rdr’
13

=]

X
O —y v

J'n(kor) [ (k) |

(3.70)
o N i a
# 2, X A 0,00 [ S
XE[&hr&l)(k0r>)]ﬂnm(r’)v(r’)r'dr'

First term in (3.70) which contains A, ., (6,4), is the result of the terms NN, and

NN,, in (3.66). Note that the term with the dyad ff in Czao(r, r') had no effecton I,

since the functions A, _(6,¢) have no radial component.

2nm

Finally, to obtain the 1-D form of 1, one mustuse y,,(r")A;,,(¢',¢') alongside (3.66)

in a fashion similar to the previous integrals. However, since the functions A,  have

3nm

a radial component, the additional ff term in (:30(r,r’) must be taken into account. It

is clear that the integration of y,.(r')A,,,(6".¢") ,i.e. 7., (r)Y,, (€', ¢")f , with the dyad

ff will yield a vectorial function with f component. Considering the mathematical

properties of the Dirac delta function, the result of the integral can be calculated as

IEZ 2 Y (Mo (8,8 V(r)S(r -r)dv' =

onOm el

(3.71)
Z z ViEI;) ynm(r)ASnm (0’¢)

n=0 m=—-n

Note that the left hand side of (3.71) consists solely of functions of r coordinates due
to the integration with Dirac delta function. Therefore, the contribution of this term in
the final form of the reduced object equations will be different from the other terms.
Adding the left hand side of (3.71) to the result of the integration with the dyad

N (k,r)N-_(k,r") yields the 1-D form of the integral I, as
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=33 A 0.

n=0 m=-n 0

) ~ O !
o | InCr) =[P (o) o
xj 5 Vo (CIV(r)rdr
° hn‘l’(kor')—[rjn(kor)] (3.72)

DWSOTELE] [ICSINCES

v(r)

><ynm(r )V(r ) r'dr +Z Z A3nm (0 ¢)

n=0 m=-n

> Yo (1)

Similar to |, the first term with A, (0, ¢) reflects the effect of the coupling, and it

2nm

is a result of the terms NN, and NN, in (3.66). On the other hand, the last term in

(3.72) stems from (3.71).

At this point, the series expansions for all terms in (3.35) is completed. The vector
spherical harmonics appearing in the series expansions are all functions of r
coordinates, and therefore they can be eliminated using orthogonality relations. Before
that operation, we represent the expanded form of the object equation by substituting
(3.16), (3.38), (3.65), (3.70), and (3.72) into (3.35):

Z {anm (r)Alnm (6’ ¢) + ﬂnm (r)Aan (0! ¢) + 7nm (r)ABnm (0’ ¢)} =

0 m=—n

i {ar:m (r)Alnm (9’ ¢) + ﬂr:m (r)Aan (9’ ¢)+ 7/rl1m (r)A3nm (91 ¢)}

m=—

M Is

1l
o

n

#5300 100+ (I (et (VT
n 0

0r .
h® (ko 1) = [ 1, (ko) | 3.73)
| -
+§ mzn A3nm (6 ¢) - a - ,
iGN o[ Gor) |
BuOWONE 35 A 0D 1] 0r)]
[0 ) B WA+ S 3 A 0. PN
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(k) =[O .
; Yo (EW(OFAE DS AL (6,4)
1 o)1 1 (or)]

a
8|
0

X {wj‘ hrfl) (kO r.>) jn (kO r<)7/nm (r’)V(r,)rldr, + ynm (r)v(r)}

Note that each term in (3.73) consists of a vector spherical harmonic A_ . (6,4),
coefficients of series expansions for interior or incident electric fields, and a 1-D
integral along the radial direction. Therefore, to obtain a completely 1-D formulation,
the vector spherical harmonics must be eliminated. Since each A___(8,¢) in (3.73) is

afunction of r coordinates, orthogonality relations can be applied in a straightforward
manner to achieve this objective. That is, by multiplying both sides of (3.73) with the

complex conjugate of each A_ _(6,¢) separately, and integrating over the unit

nm

spherical surface; one can obtain three 1-D integral equations for the coefficients

a,.(r), B.@r), and y. (r). We first apply this procedure with the function

*

A, (0,9) to obtain the first reduced object equation

1nm
o, (r)=a},(r)+ ikgjn(n +1) j, (Ko )N (ko 1) @y, (F)V(r ) *dr’ (3.74)
0

(3.74), contains only the coefficients «,,(r), since it is the only coefficient that is

related to the vector wave functions M., (k,r) . Note that the form of the reduced 1-D
integral equation (3.74) is similar to the acoustic reduced object equation (2.51).
Therefore, one can determine the coefficients «,,,(r) by solving (3.74) independently
through discretization of the interval r’e[O,a], in a fashion identical to the one

presented for the acoustic case in Appendix A. For the remaining coefficients, the
procedure will be similar. However, due to the coupling effect demonstrated earlier,

separate equations for each coefficient cannot be formed. Now, to produce the second
reduced object equation, let us apply the same procedure with the function A’ (6, 4)

to obtain
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ﬂnm(r) ﬂnm(r) TO

O

SIS

7D s r) =[]

Xﬁnm(rr)v(rr)rrdr!_i_ II(O a (375)
(0] ' H
0| h (kor)a[rjn(kor)J
xy . (rv(r)rdr’
Finally, using A, (0,4), the third reduced object equation can be formed as
yi (r) Ik n(n+1) ()] H l; No'Ay!
ry=-"m2=4 h” (K, T K,r ryv(r’)r'dr
=1 o ) L CISIN I
ik (D) ¢ hn(l)(kof)—,[r’jn(kor')] (3.76)
SRl Vs j or B (r)v(r)rdr’
[v(r)+1]r 3

H a N~ 1) i
Jn(kO r)?[r hn (kOr ):I

The term [v(r)+1] appearing in (3.76) stems from the term with ff dyad in (:30(r,r’)

As demonstrated in (3.71), that term makes a contribution in the r coordinates for the

coefficient y,,(r), which is reflected in the last term of (3.73). It is clear from the

appearance of the coefficients g, (r') and 7,,(r") in both equations that, (3.75)-

(3.76) are coupled, and form a system of equations. Therefore, the discretization

procedure of Appendix A should be slightly altered. For a discretization into P sub-

interval, the coefficient matrix will be of the form K :[Kﬂﬁ K,

K, KW]. Here,
these four sub-matrices are of size PxP. The elements of K, and K, will be
determined from the integrals in (3.75) containing A, . (r") and y,.(r") respectively.
Similarly, K ; and K will be formed using the integrals in (3.76). It is clear that K

will have a size of 2P x2P, and solving the resulting discretized equation would

provide the coefficients g, (r) and y,,(r) simultaneously.

Therefore, one can solve the system of reduced object equations (3.74)-(3.76) to obtain

the coefficients of the interior electic field e, (r), S,,(r), and . (r). After

determining the coefficients, it is possible to calculate the total electric field inside the
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sphere using (3.16). Note that the coefficients a, (r), B (r), and y! (r) appearing

in (3.74)-(3.76) are the coefficients of the incident field. The open forms of these
coefficients were given in (3.46)-(3.48) for the infinitesimal horizontal electric dipole,
and in (3.52)-(3.54) for the x-polarized plane wave. Finally, for the scattered field the
3-D vectorial data equation (3.36) must be transformed in a manner similar to (3.35).

Since both equations have similar structures, the related dimension reduction processes

would be identical. Note that in the region outside the sphere r >r’, since ' €[0,a];
and the object function v(r) is zero. Considering these conditions, the expanded form

of (3.36) can be written for |r|>a as

E*(r)= Z Z ik2A,, (0,)h (k, r)J.n(n +1) j, (K, rv(r")

n=0 m=-n

Xet,, (1)rdr’ +z z Ao (0, ¢)

n=0 m=-n

% 0 (k]

T [0 S NEI Y A, (0 ¢)@

n=0 m=-n

(3.77)
—[rh® (k1) j (K F) 7 WA Y S A (019)

n=0 m=-n

h(l)(k r) j ', (ko) By (V)

oy/N(n+1)
r

33 A0 B0 i ) 7 (W

n=0 m=-n

By comparing (3.77) with the series expansion for the scattered field defined in (3.27),
one can form the reduced data equations for the scalar coefficients A, and B, of the

scattered field:

ik, 7

A ZTL (ko PV ety (F) 20l (3.78)
2 ik? or.,
= N ——=—=—1 1, (k1
l{ﬂ"m( )«/n(n+1) 5f'[ htlor)] (3.79)

kg o (Ko ) 7 () ()P
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(3.78)-(3.79) constitute the reduced data equations. After solving the reduced object
equations, determining the coefficients of the interior field, one can obtain the
coefficients of the scattered field using these equations. The scattered field itself can

be then calculated easily via (3.27).

3.2.3 Numerical simulations

In this sub-section, some numerical examples will be presented in order to test the
validity of the method developed in the previous sub-sections. The result obtained by
the method developed in this thesis will be compared with established alternative
methods such as dyadic Green’s function or MoM. We will present the results in four
sub-sections. In the first part, the interior electric field calculated via the reduced
integral equations (3.74)-(3.76) will be compared with the field obtained via dayadic
Green’s function. In the second part, the comparison with MoM will be performed for
the scattered field. The advantages, in terms of efficiency and accuracy, of the method
developed in this work will be demonstrated through this comparison. In the third sub-
section, the field inside well-known lenses such as Luneburg or Eaton lens will be
reconstructed using the reduced integral equations. The agreement of the results with
the established characteristics of the lenses further proves the applicability of the
method. Finally, in the fourth part, a special case with a dipole located inside the sphere
will be analysed. As it will explained in that sub-section, although a rigorous
mathematical formulation that removes the singularity cannot be developed, the
method nevertheless provides an effective tool for determining the field distribution
outside the vicinity of the source.

3.2.3.1 The comparison with the dyadic Green’s function

Consider a two-layered piecewise homogeneous sphere described by

3.8+1.8i, 0<r/a<05
-] /

24+12i, 05<r/a<l (3.80)
where
&(r) io(r)
g (r)=—>+
") & W&, (3.81)
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denotes the complex relative dielectric constant of the material. The magnetic
permeability g, considered constant throughout the whole space. The radius of the
sphere is chosen as a=1m and it is illuminated by a dipole positioned right above the
surface along the positive z direction. The outside region is assumed to be a
homogeneous medium characterized by the free space parameters of ¢, and ,. As
stated in the previous sections, dyadic Green’s functions can be used reliably in order
to determine the interior and the scattered field for layered spheres. The formulation
of the dyadic Green’s function for a two layered sphere, developed in [52], is presented
in Appendix D. Here, the result obtained by the reduced integral equations will be
compared with the results produced via dyadic Green’s function. For the first case the

operating frequency is chosen as f =300 MHz. The variation of the magnitude of the
electric field components inside the sphere, on the line defined by 8=¢=7/4, is

calculated via both methods. The results depicted in Fig. 3.2 show an excellent
agreement between two techniques. The number of terms n included in the series

expansion for the interior electric field is determined as N, =15. The reduced

integral equations (3.74)-(3.76) are discretized into 30 points along the radial

direction.
4 . . . ,
w2 M
0 i i i i
0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1
10
5|
D “ " M M L
0 0.2 0.4 0.6 0.8 1
r/'a

Figure 3.2 : Magnitude of the total field inside the two-layered sphere, solid line
corresponds to the solution with integral equations, and circles to the dyadic
Green’s function (k,a=27,N_, =15).
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Note that for the parameters a=1m and f =300 MHz used in the previous example
the value k,a is determined as k,a =2 . This parameter denotes the electrical size of
the sphere. In the section 2.2.3.1 of the acoustic case, it was demonstrated that number
of terms included in the series expansions must be increased as higher operating
frequencies are used. The same necessity also exists for the electromagnetic case.
Higher values of N, must be chosen for electrically larger spheres. To demonstrate

this, the same configuration as the previous example will be repeated for the operating

frequency of f =955 MHz. This value is chosen in order to replicate the value of
k,a =20, which was used for the acoustic example analysed in Fig. 2.6. To make the
comparison exact, the value of N_. ischosenas N, . =25. In the acoustic case, an

almost perfect agreement with the analytical solution was obtained for this value.
However, as shown in Fig. 3.3, the results obtained via reduced integral equations
differs considerably from those produced via the dyadic Green’s function. Actually,

even for higher values of N__ , a perfect match does not occur. The results presented

max !

in Fig. 3.4 demonstrate that for N, =75, there is good agreement between two

methods, however the level of agreement is lower compared to acoustic case. It can be
concluded from these simulations that the complexity of the electromagnetic problem

is higher compared to the acoustic one.

10

- . . Tooos .
w5} 0004 1
0 i M L L
0 0.2 0.4 0.6 0.8 1
10
w5} ) ;
= M(@
0 " " A A [+]
0 0.2 0.4 0.6 0.8 1
20 . . - .
w® 10 M
- o
0 . i . A 20
0 0.2 0.4 0.6 0.8 1

rla

Figure 3.3 : Magnitude of the total field inside the two-layered sphere, solid line
corresponds to the solution with integral equations, and circles to the dyadic
Green’s function (k,a=20,N,_, =25).
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Figure 3.4 : Magnitude of the total field inside the two-layered sphere, solid line
corresponds to the solution with integral equations, and circles to the dyadic
Green’s function (k,a=20,N,, =75).

3.2.3.2 Calculation of the scattered field

The dyadic Green’s function can also be used to calculate the scattered field outside
the sphere. Therefore, we will first calculate the scattered field for the configuration
used in the first example of the previous sub-section. The integrals in (3.74)-(3.76) and
those in (3.78)-(3.79) are discretized by 30 points. The number of terms included in
the series expansions for the interior field and the scattered field are both chosen as

N,.. =15, since the working frequency is assumed to be f =300MHz. The

scattering cross section defined as

5|2

N H 2
Ocs = limdzr Ef (3.82)

is calculated for different values of 8, 0 [O, 71'], in the H-plane (¢ =7/2), and in the

E-plane (¢ =0). For each investigated case, the scattering cross section is presented

with the E-plane and the H-plane shown in the same figure, and plotted from =0 to
0 =180, and from =180 to #=360, respectively. The results given in Fig. 3.5
demonstrate that the method is in agreement with the dyadic Green’s function, and can

be reliably used for layered profiles.
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Figure 3.5 : Scattering cross section for the two layered sphere illuminated by a dipole,
solid line corresponds to the solution with integral equations, and circles to the dyadic

Green’s function. E-plane values are given in 9 €[0,180], H-plane in 6 [180,360].

As stated in the introduction, constructing the dyadic Green’s functions for continuous
profiles is much more challenging. Therefore, for this type of profiles, the comparison
must be made using alternative numerical techniques. In this sub-section, the MoM
formulation developed in [14] will be used for the comparison. A brief presentation of
the formulation can be found in Appendix E. However, before proceeding with the
comparison, the consistency and the robustness of the method developed in this thesis
must be established. To this end, we will first analyze the behaviour of the scattered
field coefficients in the configuration that will subsequently be used for the comparison
with MoM.

For the first case of continuous profiles, consider the linearly varying profile described

by
ry . r
gr(r):(Z—gJH(l—gJ. (3.83)

In order to reduce the computational effort for MoM simulation that will be performed
later, the radius of the sphere is chosen as is a=0.5m, and accordingly the integrals

are discretized by 15 points. The sphere is illuminated by an x-polarized plane wave
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propagating along the minus z-direction with a frequency of f =300 MHz. Since the
electrical size of the sphere is smaller, lower values can be used for the term N, . To

prove this point, the coefficients of the scattered field must be analyzed. To better
depict the behaviour of the coefficients in the far field, let us use the set of coefficients

a, (1), B (r),and y..(r) instead of the scalar coefficients A, B, of the scattered

field. That is, instead of (3.27), a series expansion in the form of (3.16) will be used:

E ) =3 3 (i (VA (0.0) + B (DA (60.9)
n=0 m=-n (384)
+ Vo (N A, (6, ¢)}

Note that the radial components of the vector wave functions M® (k,r) and N® (k,r)

m

in (3.27) will be represented by the coefficients «, . (r), B..(r),and y;. (r) in (3.84).

This form is preferred in order to demonstrate the behaviour of the y: (r)A,,.(0,9),

which represent the f component of the scattered field. Since we are investigating the
scattering cross section, the far field pattern of the scattered field should be used.
Therefore, the values of the coefficients at a sufficiently far radial distance of

r =300m, that is the values of «,,(r =300), £; (r =300), and y,,(r =300), will be

depicted in Fig. 3.6 and 3.7. Note that only the coefficients for m=1 are presented
since for m=+1 the coefficients are all zeros, and the values for m=—1 have the

same magnitude as the coefficients with m=1.

The coefficients «;,(r =300) and S, (r =300) are presented in the same graph in Fig.
3.6, since their magnitude are of the same scale. That shows that the vector spherical

harmonics A

1nm

0,9) and A, (6,4) make similar contribution to the § and ¢

2nm

components of the scatered field. On the other hand, as depicted in Fig. 3.7, the
magnitudes of the coefficients y,,(r =300) are far lower. This is an expected result

considering the fact that the far field pattern is dominated by the tangential

components. Therefore the functions A, (8,¢), which represent the f component,

3nm

do not make any significant contribution to the scattered field in the far field region.
Also note that for n>5, the values of coefficients are preactically zero. This suggests

that N =5 is an efficient choice. For any value lower than 5, there will be an error
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in the scattered field, as demonstrated in Fig. 3.8. For this figure, the scattering cross
section of the sphere with linearly varying profile is calculated with the reduced

integral equations using N, =3 and N_. =5. The difference between two results

demonstrates that the coefficients with indices n=4 and n=5 make non-zero
contributions to the scattered field. On the other hand, as expected, adding more terms

with indices n>5 do not effect the outcome. This will be demonstrated in Fig. 3.9.
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Figure 3.6 : The magnitude of the coefficients «,,(r =300) and £;,(r =300) of the
field scattered by a sphere with linearly varying profile.
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Figure 3.7 : The magnitude of the coefficients y;,(r =300) of the field scattered by
a sphere with linearly varying profile.
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Figure 3.8 : Scattering cross section for the sphere with linearly varying profile,
illuminated by a plane wave travelling in the negative z-direction. Solid line
corresponds to the solution with N =5, and dashed line to the solution with

N, = 3. E-plane values are given in 8 €[0,180], H-plane in 6 [180,360].

After establishing the optimal parameters of the solution with integral equations, we
can proceed to the comparison with MoM. In the method descibed in [14], the entire
volume of the scatterer is discretized into cubic cells, and the electric field in the
centres of those cells are evaluated by solving 3-D vectorial electric field equation via
method of moments. Two different discretizations have been employed for this

example. First, the dimensions of the cubic cells are chosen as 0.1m, which
corresponds to the ratio of 4,/10, A, being the wavelength of the free space. This is
a commonly used measure in MoM applications. By this choice, the sphere is
discretized into 552 cells, therefore the number of unknowns, the electric field vector
components, is 1656. Secondly, a cell dimension of 0.067m is used for finer meshing.

For this case, the number of cells and unknowns are 1791 and 5373 respectively.
On the other hand, with a discretization into 15 points, and the optimal value of
N,.x =5, the number of unknowns is determined as 450 for the solution with integral

equations. Note that this value indicates the number of interior electric field
coefficients that will be used in (3.77). Only the coefficients with indices m=+1 are

taken into account, since the remaining coefficients are all zeros. For an electrically
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larger sphere, the difference in the required computational effort would be greater as a
result of the higher complexity of the MoM algorithm, which uses a 3-D discretization
scheme. The scattering cross sections calculated via the reduced integral equations and
MoM are plotted in Fig. 3.9. Unlike the method based on 1-D integral equations, or
dyadic Green’s function, which are designed specifically for symmetrical spheres, the
cubic discretization only approximately represents the spherical geometry. Therefore
a perfect match does not occur, although the methods are compatible in general. An

important point to note is the excellent agreement between the results with N =5
and N_, =10 for the solution with integral equations. Considering the analysis

presented for the previous figures of Fig. 3.6-3.8, this is an expected result, and it

further demonstrates the robustness of the method developed in this thesis.
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Figure 3.9 : Scattering cross section for the sphere with linearly varying profile,
illuminated by a plane wave travelling in the negative z-direction. Solid line

corresponds to the solution with integral equations with N . =10, dots to solution
with N, =5, gray dashed line to the solution with MoM, with a cell size of 0.1Im,

and black dashed line to the solution with MoM, with a cell size of 0.067m. E-plane
values are given in 6 €[0,180], H-plane in 6 €[180,360].
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Figure 3.10 : Scattering cross section for the Eaton lens, illuminated by a plane wave
travelling in the negative z-direction. Solid line corresponds to the solution with
integral equations, gray dashed line to the solution with MoM, with a cell size of

0.15m, and black dashed line to the solution with MoM, with a cell size of

0.05m. E-plane values are given in 6 [0,180], H-plane in 6 €[180,360].

Note that in Fig. 3.9, for the smaller cell size of 0.067m, the result of MoM slightly
approaches to the solution with integral equations. To further analyze the effect of

MoM meshing, consider the Eaton lens described by

£.(r) =(£] . (3.85)

The scattering cross section will be calculated with the integral equations using the
same parameters as the case with linearly varying profile. For the MoM, two different
discretizations will be used: First, a discretization into 136 cells with a size of 0.15m
Second, a discretization into 4224 cells with a cell size of 0.05m. The results are
presented in Fig. 3.10. Expectedly, as the cell size decreases, the results obtained via
MoM approach to the solution with integral equations. This proves that for
symmetrical spheres, the method developed in this thesis presents a more efficient and

accurate alternative to the classical numerical techniques such as MoM.
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3.2.3.3 The field variation inside the lenses

The geometrical theory of optics provides a reliable model for predicting the field
picture inside well-known lenses such as Luneburg lens [32]. Therefore, as another
test for the applicability of the method, the variation of the interior electric field on the
surfaces of some special lenses will be calculated via reduced integral equations. For
all examples in this sub-section, the integrals are discretized by 30 points, and the

value of N__ ischosenas N . =20 to guarantee accuracy. Apart from the Eaton lens

defined in (3.85), the well-known Luneburg lens described by

a

e.(r) = 2—[£j (3.86)

and the Maxwell fish-eye lens defined as

y 14
[1 +(rﬂ (3.87)
a

will be analysed. First, we will investigate the behaviours of the lenses in the case of

(1) =

excitement by a plane wave propagative along the negative z-direction with a

frequency of f =300MHz. In Fig. 3.11, the magnitude of the total electric field
normalized with respect to the incoming field, |E|/‘E“ , on the surface is plotted for a

Luneburg lens and an Eaton lens with radii of a=2m. For the Luneburg lens, as
predicted by the optical model, the maximum value of the field is measured on the
6 = axis, around the focal point of the lens [32]. Since it has a single focal point, it
focuss the plane wave into its focal point which is located on the opposite side. On the
other hand, the Eaton lens acts as a reflactor, and bends the incoming wave. Therefore,

it creates a stronger field around the plane of 8 = /2, compared to the region 6 > /2

As a second example of plane wave excitation, the same value of |E|/‘E“ is plotted

for the Luneburg lens and the Maxwell fish-eye lens are plotted in Fig. 3.12. The
parameters are the same as the ones used in the previous figure. It is clear that the fish-
eye lens produce an evenly distributed field picture. Unlike Luneburg lens, Maxwell

fish-eye lens has two focal points [32]. Therefore, in the case plane wave excitation, it

97



acts as a scatterer and spreads the incoming field in all directions evenly. It is clear that
for plane wave excitation, the results are compatible with optical theory. The
simulations demonstrate that the method can be effectively used to obtain the interior
field variation not only in the radial direction, which was investigated in the section

3.2.3.1, but also in the tangential direction.

270

Figure 3.11 : Normalized magnitude of the interior field (|E|/‘E“) on the surface of

Eaton lens (solid line), and Luneburg lens (dashed line), induced by a plane wave
travelling in the negative z-direction.
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Figure 3.12 : Normalized magnitude of the interior field (|E| / ‘Ei‘) on the surface of

Maxwell fish-eye lens (solid line), and Luneburg lens (dashed line), induced by a
plane wave travelling in the negative z-direction.
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In the second part of this sub-section, we will produce the interior field variation on
the surfaces of the lenses, in the case of excitation by a dipole. First, the Luneburg and
the Maxwell fish-eye lenses will be compared. Two lenses with radii of a=2m are

illuminated by an infinitesimal horizontal electric dipole situated just above the surface

along the pozitive z-axis. The ratio of the field magnitudes |E| / ‘E“ for both lenses are

plotted in Fig. 3.13. Since the Luneburg lens has a single focal point it distribute the
field evenly in the region @ > z/2. That is, the dipole is stuated in the focal point. On

the other hand, the Maxwell lens has two focal points, and thus, it focuses the field
created by the dipole in one focal point, to the other one located along the 8 =7 axis.

The second example, presented in Fig. 3.14, compares the behaviour of the Eaton lens
with Luneburg lens. The ratio of |E|/|E'|, calculated for both lenses in the same
configuration as the previous example, demontrates that the wave bending effect of
the Eaton lens is not as effective as the plane wave excitation. Since the Eaton lens is
designed as a reflector for the plane wave, this is an expected result. Nevertheless,
comparison with Luneburg lens shows that it still supresses the field in the region
6> /2. In general, the analysis of the lenses provides another verification for the

effectiveness of the method.
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Figure 3.13 : Normalized magnitude of the interior field (|E|/‘Ei‘) on the surface of

Maxwell fish-eye lens (solid line), and Luneburg lens (dashed line), induced by an
infinitesimal dipole on the surface along the positive z-axis.
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Figure 3.14 : Normalized magnitude of the interior field (|E|/ |E'|) on the surface of

Eaton lens (solid line), and Luneburg lens (dashed line), induced by an infinitesimal
dipole on the surface along the positive z-axis.

3.2.3.4 The case with an internal source

The applicability of the method for the cases in which the dipole is located inside the
sphere will be considered in this section. Straightforward adaptation by changing the
radial functions of the coefficients of the incident field given in (3.46)-(3.48) does not
work, since the incident field has a singularity at the location of the dipole. Therefore,
the series for the electric field inside the sphere does not converge in a vicinity of the
dipole. It is clear that a mathematically rigorous solution cannot be formed based on
the analysis presented in this thesis. However, numerical simulations demonstrate that
the method still produces useful results, by simply jumping over the singularity caused
by the internal source. To this end, an appropriate radial meshing must be constructed
in a way that places the source point in a boundary between two adjacent cells. This
placement guarantees that the incident field evaluated in the cell centers, albeit large,

will be finite. Since the series does not converge aroung the dipole, the value of N,

greatly effects the results. The numerical example will demonstrate that point.

For the simulation, consider the two-layered sphere defined in (3.80). The sphere is
assumed to have a radius of a=1m. The x-oriented infinitesimal dipole is located at

the point x=0, y=0, z=0.3m. Therefore, the radial dependency of the coefficients
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for the incoming field given in (3.46)-(3.49) must be altered for r>0.3m. For

example, for the coefficients «! (r), the radial function h®(k,z,)j. (k,r) must be

replaced by h®(k,r) j,(k,z,), for r>z,. The reaason for this alteration can be seen

by analysing (3.40)-(3.42). The integrals are discretized by 30 points, to satisfy the
requirement about the meshing stated above. For the comparison, the dyadic Green’s
function for a two-layered sphere with a source located in the inner layer will be used.
The formulation of this function can be found in [45]. The total field along the radial

direction has been calculated using different values of N, for both methods to show

the effect of the internal source on the convergence rate. The results presented in Fig.
3.15 demonstrate that there is an agreement between two methods outside the vicinity

of the dipole. Also, different values of N, do not cause any variation in this region,

showing that the series converge at these points. On the other hand, in the vicinity of
the dipole the series fails to converge even for very large truncation numbers. It can be
concluded that the method provides useful results outside the vicinity of the dipole,

however, a more rigorous formulation must be developed for the case with an internal

source.
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Figure 3.15 : Magnitude of the total field inside a two-layered sphere with an
internal source located at r =0.3m, dots corresponds to the solution with
integral equations, and circles to the dyadic Green’s function.
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3.3 Inverse Scattering Problem

In this section, the solution of the 1-D electromagnetic profile inversion problem in
spherical coordinates will be developed. Similar to the acoustic case, the aim of this
section is to develop a method to reconstruct the unknown profile, which is assumed
to be a function of the radial distance only. The reconstruction process will use the
scattered field measured on a spherical surface outside the sphere as the data. The 1-D
reduced integral equations that were formulated in the previous section for the solution
of the direct scattering problem will be reused here as reduced object and data
equations. Therefore, the original 3-D problem will be reduced to 1-D form as in a
manner similar to the direct scattering problem. It is clear that the electromagnetic
inverse problem has a similar structure to the acoustic one. As a result of this similarity,
the solution will be modeled after the formulation developed in the section 2.3.2. The
iterative Newton’s method will be used to reconstruct the electromagnetic parameters,
and the Tikhonov regularization will be used to obtain a stable solution. Therefore, the
theoretical background presented in the section 2.3.1 is also relevant for the problem
analysed in this section, and it will not be repeated here. In the first part of this section,
we will formulate the inverse problem, and its iterative solution via the Newton’s
method. In the second part, some numerical simulations will be presented to
demonstrate the validity of the formulation. The content of this section is also available
in [69], in a more compact form. A time dependence of e is assumed and omitted

throughout the entire section.
3.3.1 The formulation and the solution of the inverse scattering problem

Consider the dielectric sphere of radius a, denoted by D in Fig. 3.16. The permittivity

£(r), and the conductivity o(r) of the sphere are assumed to be arbitrary functions of
radial distance only. These parameters also constitute the unknowns of the inverse

scattering problem. On the other hand, the magnetic permeability ., is considered
constant throughout the whole space. The region outside the sphere is assumed to be
free space region characterized by a constant wave number k, = a),/goyo . The sphere

is illuminated by an infinitesimal horizontal electric dipole located at the point x=0,

y=0, z=12,, z, >a. The current moment of the dipole is denoted by C,.
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Figure 3.16 : The geometry of the electromagnetic inverse scattering problem.

In Fig. 3.16, I represents a spherical surface of radius r,, where the scattered field
is assumed to be measured. Therefore, the aim of the inverse problem is to determine
the electromagnetic parameters of the spherical scatterer via the measurement of the
scattered field on the surface I". To this end, the reduced object equations (3.74)-
(3.76), and the reduced data equations (3.78)-(3.79) will be used to formulate a 1-D
inversion algorithm. Note that, the unknown parameters determine the object function

v(r) appearing in those equations, and the main objective of the iterative process will

be to reconstruct v(r), which is defined in (3.37), starting from an initial guess.

It is clear that the coefficients of the scattered field, A, and B, constitute the data

of the inverse problem. However, those coefficients cannot be measured directly, and
they should be obtained from the measured scattered field. To this end, the
orthogonality of the vector spherical harmonics over the unit spherical surface can be

used. Since the scattered field is assumed to be measured over a spherical surface with

radius r., by multiplying the scattered field with the complex conjugate A;.(6,4),

and integrating over I", one obtain the integral

2

| ]EES (r)- AL, (0,9)r2 sin0dod . (3.89)
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By using (3.27) to represent E*(r), and taking the orthogonality relation into account,

the integral is transformed into

2z

!

E*(r)-A;,.(0,9)r’singdadg = A n(n+1)h® (k,r )r’

O ey

(3.89)

2r

% [ [ A (0.9)- AL, (0,6)sin 0d0dg,

Since the integral on the right hand side is a direct application of the orthogonality

relation, the coefficients A, are obtained as

l 2r . . )
= T kr ! ! E*(r)-A. _(6,¢)sin6dod¢ (3.90)

A

For the coefficients B,_, the same procedure can be applied using A’ .(0,4) or

nm?

A (0,4).Using A} (0,4) yields

3nm

k,r 2 \ .
B = O HES(r)-A (0,4)sin 6dod g
nm a i 2nm 391
(D [P ] o (3.91)
and by A} _(6,4), one obtains
k,r s . .
B, = om E°(r)-A,,.(0,4)sinodod
nm n(n +1)hr§1)(k0rm) _([ '([ ( ) 3nm( ¢) ¢ (392)

In practical applications, the scattered field is measured at a finite number of discrete
points. Therefore, the integrals in (3.90)-(3.92) should be evaluated numerically. In the
numerical simulations that will be presented in the next section, the Simpson’s rule
have been used for this purpose. Also it should be noted that, in the simulations, the

values of B, obtained via (3.91) and (3.92) have been slightly different due to the

errors in numerical integration, and the additive noise in the measured data. Therefore,

the arithmetic average of two values has been used.
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3.3.1.1 Newton based iterative solution

The formulation of the iterative process follows the same steps that were used in
section 2.3.3.2 for the acoustic problem. However, unlike acoustic problem, in the
electromagnetic case there are two data equations. Moreover, these equations, namely
(3.78) and (3.79), are independent. Therefore, the object function v(r) can be
reconstructed independently via the system formed by (3.74)-(3.78), or the the one
formed by (3.75)-(3.76), (3.79). Hence, in the iterative process, two different update
amounts are obtained for the object function v(r) in each step. Expectedly, the system
formed by (3.75)-(3.76), (3.79) is more effective, since it also carries the information

obtained from the radial component through the functions A, (8,¢) and the

3nm

coefficients y,. (r). However, numerical simulations suggest that using the average of

the two independent update amounts improves the accuracy of the reconstruction in
most cases. Therefore, unless stated otherwise, in the numerical examples that will be
presented in the next section, the average value will be used to update the object

function at the end of each step.

Now, to formulate the iterative scheme, let us state the data equations (3.78) and (3.79)

in a compact form:
Fv=A, (3.93)

Fyv =B, (3.94)

Here, the operators F, and F,, are defined as

Fav=—,n;k— [/ (kW) ()2 (3.95)

and

F,V = jﬂnm()ﬁar[m)] a0

k] J, (Ko T") 7 (F) V(P )rF’
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It is clear that, in order to solve (3.93) and (3.94), the values of the coefficients of the

interior electric field, «,,(r), B,.(r), 7., (r) must be obtained. Therefore, to produce

the initial values of those coefficients, denoted by 2 (r), B9 (r), »?(r), the direct
scattering problem must be solved by substituting the initial guess for the object
function, denoted by v®(r), into the reduced object equations (3.74)-(3.76). The

solution of the direct scattering problem is explained in the previous section in detail.

After obtaining the coefficients of the interior electric field, the non-linear data

equations are linearized:
Fv+Fov, =A, (3.97)
Fp Vv + Fﬂryé‘vﬂy =B (3.98)

Here, ov, and 6v,, represent the independent update amounts for the object function.

These functions will be obtained by inverting the linearized equations (3.97) and

(3.98). F, and F; denotes the Frechet derivatives of the related operators. The open

form of these terms are given as

ke f.

\/7 [/ 52 (ko F)OV, (F)arly) ()r2dr (3.99)

and

£y 0, = [ (A9 i)
50V, I{ ,—6[ ] 100

+ik3 J, (koT") 7 (r)} 8V, (r)rdr”

Note that, as a result of discretization of the integrals in the object and data equations,
all the terms appearing in (3.97)-(3.98) are matrices. Therefore, the solution would be
obtained by inverting the matrices formed by F; and F, , to determine v, and 6v,,

However, as explained in the section 2.3.1, the Fréchet derivatives are linear compact

operators, and hence, the equations (3.97)-(3.98) are ill-posed. To produce a stable
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solution, a regularization technique must be used. Similar to the acoustic case, the
Tikhonov regularization will be used here to obtain the update amount as

oV, = (e | +FF) TR (A, —FVv?) (3.101)
M — B =Y =L 0)
5Vﬂ17 =(og 1+ Fs Fﬂy) lFﬂy (B — Fyv ") (3.102)

Here, «; isthe regularization parameter, and | is the identity matrix of the appropriate

dimension.

As an alternative formulation, the update amounts can be expressed in terms of some

basis functions @ (r) as

ov,(r) =Zpla?fq>p(r) (3.103)

where y denotes either o or Sy [1]. In this case, the linearized equations (3.97)-

(3.98) are replaced by

;aﬁ [Fi@,(n)]= (A, ~FV) (3.104)
;afy [F,@,(1) ]= (B, ~F,v®) (3.105)

and solved via Tikhonov regularization to obtain the scalar coefficients a; and a§7
[1]. Note that, in this formulation, the matrix forms of the F/ in (3.101) and (3.102)

are replaced by the matrix product F,;@  for the Tikhonov regularization.

For both alternatives the initial step is completed by updating the object function

ov,(r)+ov,,(r)
2

V(l) (r) — V(O) (r) + (3106)

The iterative process is continued until the ¢* norm of the ratio Sv(r)/v(r) becomes

smaller than a predefined threshold & .
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3.3.2 Numerical simulations

Some numerical tests have been conducted to assess the performance of the method
for the electromagnetic case. The results will be presented in three parts: In the first
sub-section, three different profiles, slowly varying, oscillating, and piecewise layered,
will be reconstructed using different initial guesses for the object functions. In the
second part, the independence of the reduced object functions will be analysed. Two

different profiles will be constructed via ov, (r) and 6v, (r) independently, then the

results will be compared with those obtained via (3.106). In the final part, the
alternative formulation described in (3.103)-(3.105) will be used to determine update
amounts. The results obtained via three different basis functions @ (r) will be

presented in the sub-section. In all sub-sections, the error metric, defined in (2.86), will

be given as a measure of the success of the reconstruction.

For all examples, the radius of the dielectric sphere is chosen as a =0.1m. The incident
field is created by an infinitesimal horizontal electric dipole with a current moment

C,=0.1, located at the point x=0, y=0, z=0.11m. The operating frequency is
chosen as f =600MHz . The radius of the measurement surface I' is assumed to be

r, =0.12m. To make the simulations more realistic, a %5 additive noise is added to

the scattered field. That is, a random term of 0.05 e'?™" is added to each vectorial

E

component denoted by y . Here, y represents one of r,0,¢; and r,’s are uniformly
distributed random numbers.

For the parameters of the Newton’s method, the regularization parameter is chosen as
o, =0.5/itn, itn being the number of iterations. The reasons for decreasing the value
of o was discussed in the section 2.3.3.1, and that discussion is also valid for the
electromagnetic case. For similar reasons, the optimal value determined in the acoustic
case will be reused here as the value of the stopping threshold, that is ¢ is chosen as
&, =107, For the solution of the direct scattering problem, the integrals in (3.74)-

(3.76) and (3.77)-(3.78) are evaluated by a discretization of 30 points. Moreover,
unless stated otherwise, the truncation number for the series expansions representing

the interior and scattered electric fields is chosenas N, =3.
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3.3.2.1 The performance test with different profiles

As a first example, the Luneburg lens defined in (3.86) will be reconstructed. The
initial guesses for the object function are chosen as v (r)=0.75, v@(r)=1 and
v@(r)=1.25. The results presented in Fig. 3.17 demonstrate that the method is

capable of reconstructing slowly varying profiles accurately, provided that an

appropriate initial guess is chosen. Expectedly, the best result is obtained for the initial

guess of v@(r)=1 in 9 iterative steps. The error for this case is calculated as
e, =6.2x107, which indicates excellent agreement between the reconstructed and

exact profiles. For the remaining initial values, the iterative process lasted for 11 steps,

and the error metric is calculated as e, =0.15. The increase in the error demonstrates

the importance of the initial guess for the performance of the method.
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Figure 3.17 : Exact and the reconstructed values of the object function for the
Luneburg lens with three different initial guesses for the object function.
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Previous example shows that the method is capable of reconstructing slowly varying
profiles. It is clear that more more rapidly varying profiles the success rate will be
lower. To test this assumption, a profile with sinusoidally varying real, and linearly
varying imaginary part will be reconstructed as the second case. The profile is defined

as

& (r) :1'5+0'5008(3ﬂ£j+i(1_£j (3.107)

The initial guesses are chosen as v (r)=1.25+0.75i, v@(r)=1.5+1 and

v@(r) =1.75+1.25i . The results presented in Fig. 3.18 demonstrate that the method

is capable of reconstructing an approximate oscillating profile. However, the
difference between the exact and the reconstructed profiles is much greater compared
to the case with Luneburg lens. On the other hand, the reconstruction of the imaginary
part, depicted in Fig. 3.19, is much more accurate, since it is slowly varying. The

itarative process lasted for 14 iterations for each initial guess, and the lowest error
value is obtained as e, =0.23 for the initial guess of v@(r) =1.5+1i. This example
demonstrates that the success of the reconstruction process decreases as the oscillation

of the profile increases. For more rapidly oscillating profiles, the method fails to

converge to a useful result.
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Figure 3.18 : The real part of the exact and the reconstructed values of the object
function for the sinusoidally varying profile with three different initial guesses.
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Figure 3.19 : The linearly varying imaginary part of the exact and the reconstructed
values of the object function for the sinusoidally varying profile with three different
initial guesses.

The reconstruction of piecewise homogeneous layered profiles is more challenging,
due to the discontinuities in the layer boundaries. Since the reconstruction is made by
continuous radial functions, only an approximation can be obtained for these profiles.
As an example of piecewise homogeneous profiles, consider the three layered sphere
described by

3+03i  0<r/a<0.33
£(r)=138+09i 0.33<r/a<0.66 (3.108)
24+06i  0.66<r/a<l

The initial guesses for this profile are chosen as v (r) =1.75+0.2i, v (r) =2+0.3i
and v@(r) = 2.25+0.4i. For these initial values, the iterative process converged in 16

15 and 14 iterations respectively. The results for the real part given in Fig. 3.20, and
those for the imaginary part given in Fig. 3.21 shows that although the method
expectedly fails to detect sharp transitions, it nevertheless provides a smoothed

approximation. The error levels for three initial guesses are calculated as e, =0.13,

e.=0.14 and e, =0.17 respectively. The close values indicate that choosing the

most suitable initial guess does not guarantee a rapid convergence in the case of
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layered profiles. However, it should be noted that the method fails to converge when
the initial guess deviates too far from the ideal value. For all types of profiles, the

choice of initial parameters determines the success of the method.
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Figure 3.20 : The real part of the exact and the reconstructed values of the object
function for the three layered profile with three different initial guesses.
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Figure 3.21 : The imaginary part of the exact and the reconstructed values of the
object function for the three layered profile with three different initial guesses.
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3.3.2.2 Reconstruction via independent data equations

For all the examples analysed in the previous sub-section, the average value defined
in (3.106) has been used. However, as indicated in the section 3.3.1.1, the reduced data

equations (3.78) and (3.79) are independent, and the object function can also be

reconstructed by using only one of them. That is, the update functions dv, and ov,,

can be obtained by using the scattered field coefficients A, and B, respectively.
Then, the update of the object function in the end of each iterative step will be made
using either ov, or ov, independently. Here, we will present two examples to

compare this approach with the one used in the previous sub-section.

As the first example, the Maxwell fish-eye lens defined in (3.87) will be used for the

comparison. For this case, the profile is reconstructed using three different update

amounts, namely v, , év, , and the average of both. For all recontructions, the initial

guess is chosen as v® (r) = 3. As seen in Fig. 3.22, the reconstruction with v, , which

is lasted 6 iterations, provides only a rough approximation of the actual profile. The
reason is that, as stated in the section 3.3.1.1, the system formed by (3.74)-(3.78) does

not carry the information provided by the radial component. On the other hand, the

reconstruction using &v,,, that is by the system of (3.75)-(3.76), (3.79), provides a

much better approximation. This result demonstrates that the reconstruction process
using the average value defined in (3.106) is dominated by the system (3.75)-(3.76),
(3.79). Nevertheless, using the average value provides the best result of the

reconstruction. The error for the average value is calculated as e, =0.01, whereas for
the update via 6V, , it is determined as e, =0.03. It can be concluded that the

additional information provided by the update amount oV, slightly increases the

success of the method.

It should be noted that although this improvement is meaningful in the case of slow
variation, it is relatively insignificant for the rapidly oscillating profiles. Consider the
sinusoidally varying profile defined in (3.107). In Fig. 3.23 and 3.24, the real and the
imaginary parts of the reconstructed profiles are presented. It is clear that the update

via the average value and via 6V, produced similar results. The error rates are given
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as e, =0.27 for the average value, and e, =0.26 for the update amount 6v,, .

Moreover, the iterative process for ov,, lasted only 8 steps, whereas for the average

value, the result is obtained in 14 iterations. It can be concluded that for more
challenging profiles, reconstruction via the system of system (3.75)-(3.76), (3.79)
might be a more efficient alternative.

object function v(r)
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0.5 x recons with both . )
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Figure 3.22 : Exact and the reconstructed values of the object function for the
Maxwell fish-eye lens obtained via three different update amounts.
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Figure 3.23 : The real part of the exact and the reconstructed values of the object
function for the sinusoidally varying profile with three different update amounts.
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Figure 3.24 : The imaginary part of the exact and the reconstructed values of the
object function for the linearly varying profile with three different update amounts.

3.3.2.3 Series expansion for the update amounts

In this sub-section, the alternative formulation using series expansion to represent the

update amounts, outlined in (3.103)-(3.105), will be analysed. As explained in the

section 3.3.1.1, the update amounts can be expressed in terms of some basis functions,

and the linearized data equations can be solved to determine the coefficients of the

series expansions. Note that two different series, although with the same basis

functions, will be used to represent év, and 6V, separately, and the final update will

be done using the average value of 6v, and o6v,, as indicated in (3.106).Three

different basis functions will be used for the analysis: the harmonic functions defined

as

the Bessel functions

r

ch(r):jp(kog), =012,

and the Dini series
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@ (r)= Jn(ﬂp éj p=012. (3.111)

In (3.11), 4, represents the p-th root of the equation
X J, () +t, ,(x) =0 (3.112)

where t, being any real number. Similarto N, , the truncation number for the series

max !

expansion (3.103), denoted as P,. , can be considered as an additional parameter.

ax !

Numerical tests with different profiles suggest that the optimal value for this

formulation is N, =5, instead of N _, =3 which was used in the previous sub-
sections. For the series with harmonic basis functions, the value of P, is chosen as
P..« =5. On the other hand for the Bessel functions and the Dini series, the value of

P..x =10 will be used.

As the first example, the sinusoidally varying profile defined in (3.107) will be
reconstructed using the basis functions (3.109)-(3.111). The initial guess for the object

function is chosen as v®(r) =1.5+1i. The results presented in Fig. 3.25 and 3.26
demonstrate that the choice of basis functions strongly effects the performance of the
method. The reconstruction via Dini series provided a major improvement compared
to the previous results that was given in Fig. 3.18 and 3.19. The error metric is

decreased from e,=02310¢e,=012 by the use of these basis functions. On the
other hand, the error is calculated as e.=024 for harmonic functions and e, =0.30

for the Bessel functions. The results demonstrate that the choice of appropriate basis

functions determine the success of this formulation.

However, it should be noted that, for every type of profiles, different basis functions
provide the best results. To show this, the three layered sphere, defined in (3.108), will

be reconstructed using the same basis functions as the previous example. The initial

value for the object function is chosen as v (r) = 2+0.3i for this example. As seen

in Fig. 3.27 and 3.28, the outcome does not parallel the results obtained for the

sinusoidally varying profile. The highest error is obtained for the Dini series as
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e, =0.20. On the other hand, the Bessel functions provided the best outcome with an
erro rate of e , =0.12. Note that this value does not present a significant improvement

from the results, obtained in the section 3.3.2.1, with an error of e.=014. The

analysis demonstrates the difficulty of predicting the best basis function for specific
configurations. The performance of this alternative formulation must be checked

seperately for each profile.
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Figure 3.25 : The real part of the exact and the reconstructed values of the object
function for the sinusoidally varying profile with three different basis functions.
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Figure 3.26 : The imaginary part of the exact and the reconstructed values of the
object function for the linearly varying profile with three different basis functions.
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4. CONCLUSIONS

Direct and inverse scattering problems related to the radially inhomogeneous spheres
have been analysed. It has been demonstrated that the original 3-D problems can be
transformed into 1-D forms by taking advantage of the spherical symmetry. First,
under the assumption of constant density throughout the space, the acoustic problem
has been expressed in terms of the scalar object and data equations having 3-D
structures. For the acoustic case, the dimension reduction has been achieved by
expressing the scalar acoustic field as a series expansion in terms of the scalar spherical
harmonics. The angular terms are then eliminated using the orthogonality relation over
the unit spherical surface. This approach enables one to formulate 1-D integral
equations involving the coefficients of the series expansions only. The direct scattering
problem can be solved by a simple discretization of these integrals along the radial
direction. On the other hand, for the solution of the inverse problem, a Newton based

iterative scheme has been constructed, and tested using various profiles.

The procedure for the electromagnetic problem is similar to the acoustic case.
However, since it is a vectorial problem, the formulation of the 1-D equations is much
more challenging. Therefore, instead of scalar harmonic functions, the vector spherical
harmonics have been used to express the vectorial electric field inside the sphere. It
has been proven that by using the orthogonality of these functions with the vector wave
functions in the expanded form of the free space dyadic Green’s function, it is possible
to replace the 3-D electric field equation with a system of 1-D reduced integral
equations. Similar to the acoustic case, these equations contain the scalar coefficients
of the interior electric field, they can be solved simply by a discretization procedure.
It can be concluded that although the mathematical operations, and the functions
involved in the procedure are different, the resulting reduced integral equations have
similar forms in the acoustic and electromagnetic cases. Therefore, a similar iterative

scheme have been used in the solution of the electromagnetic inverse problem.

The numerical simulations for the direct scattering problem demonstrate that the

method developed in this thesis is quite reliable for determining the interior and the
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scattered field, for both acoustic and electromagnetic cases. The well-posedness and
the simple mathematical structures of the reduced integral equations make the
implementation of the method easier for different types of problems. Comparisons
with alternative analytical techniques show that the method is compatible with the
analytical solution and the dyadic Green’s function for layered profiles, which proves
its accuracy. Moreover, it has been demonstrated that its performance is superior to
the alternative numerical technigques such as MoM, in terms of accuracy and required
computational effort. Therefore, it can be concluded that, it can be used effectively in
the cases involving complex scatterers such as head models, or metamaterial lenses.
However, it should be noted here that the constant density assumption puts serious
limitations on the use of the method in practical applications. Further research is
needed to develop a method to solve the acoustic problem with variable density. On
the other hand, no such limitation exists for the electromagnetic case; the method can
be employed as it is in the research fields such as biomedical engineering.

For the inverse problem, the numerical simulations in general have produced quite
satisfactory results. However, the typical limitations of the Newton based algorithms
have been also observed. The performance of the method for layered profiles should
be improved before implementing it in practical problems. Moreover, as the contrast
between the scatterer and the surrounding medium increases, the linearization process
inherent in the Newton method starts to fail, and produces divergent results. Therefore,
the method can only be used effectively for profiles having relatively low contrast
values. However, it should be noted here that, all the reconstructions in this thesis are
performed with a single source and a single operating frequency to demonstrate the
basic structure of the method. In practical applications, using multiple sources and
frequencies could increase the quality of the reconstruction process. Another drawback
of the method is the dependence of the outcome on the initial guess for the unknown
profile. In this regard, techniques such as back propagation algorithm can be adapted
to the inversion scheme in order to obtain a suitable initial value for the iterative
process. In addition, for both acoustic and electromagnetic cases, other inversion
techniques, such as contrast source inversion method, might be adapted to the reduced
object and data equations obtained in this thesis. These methods could potentially
perform better than the Newton based iterative technique, and thus increase the
practical value of the inverse problem.
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APPENDIX A: The discretization procedure for the reduced integral equations

of the acoustic case

As stated in the section 2.2.2.2, one can determine the coefficients of the series

expansion for the interior acoustic field by solving the reduced object equation (2.51)

via a discretization of the interval r e[O, a]. After obtaining the coefficients of the

interior field, the reduced data equation (2.52) can be solved in a similar manner, in
order to determine the scattered field coefficients. Here, the details of discretization

procedure, and the final discretized forms of the equations will be presented.

Let us assume that the interval r e[O, a] discretized into P sub-intervals of equal
length AZ. For each sub-interval represented by the indice j, j=1,2,..,P; r; denotes
the center, and d;,d;,, denote the lower and the upper limits of the sub-interval

respectively. Then, the discretized form of (2.51) can be written for any cell center r,

as

p+1

0 (1) =Y | 3, ()N (e W) (P2 =, (1) (A1)

_ld

Here, r_ and r_stand for the smaller and larger term of the pair r;, r' respectively.

Since forany p<j, r,<r; and forany p>j, r,>r;; (A.1) can be expressed in a

more open form as

anm<rj>—ik§h§“(korj)i T i (kP V() ()
ik k) Y. j (ko W), (1)1 A2)

p=j+l d,

A
—ik$ I Jo (Kr DD (ko r v(rya, (r’yrdr’ =a! (r;)
d

i
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The last integral on the left hand side of (A.2) represents the self-contribution of the

sub-interval j, and this term should be analysed independently. For all integrals, if the
length A/ of the sub-intervals are small enough, the variation of the spherical Bessel
functions, and that of the object function v(r) within the sub-interval can be
considered negligible. Under this assumption the integration becomes straightforward,

and letting 1,(¢,,¢,) denotes the operator

N ( r'%dr’ hh
Wy f5) = _[ r==3 (A3)

4

(A.2) becomes

j-1
Up (1) = ikjhn(”(korj)z o (Kor v (r )b, (r )1, (d ), d L)
p=1
~ikZj, )Z h® (k,r rv(r,)a,, (r,)1,(d,.d ;) (Ad)
p=j+l .
dj+l

V() (1) [ (Ko )RS (ot )r2dr =, (1))

dj

The integral in the term representing self-contribution can be evaluated in a similar
manner by further discretizing the sub-interval into two halves. In this case, the integral

can be aproximated by

d.

j+l

[ a(eor)n® (eor Jr2dr = h (kyr) [ i (or)r
d; d;

dj+1

+a(n) [ 1% (korrdr’

r

(A.5)

i

Once again, under the assumption of negligible variation, the integrals can be removed:
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d.

. i . A/
I Jn(kor<)hrgl)(kor>)r “dr' = hrgl)(korj)Jn |:k0 (rj _7j:| IA(dj’rj)

dj

Af (A9)
+jn(k0rj)hr§1) [ko [rj +?H IA(rj,dM)
Substituting (A.6) into (A.4) yields the final discretized form of (2.51) as
j-1
O (1)K ()2 o oty VT, D (1 1 (0.
p=!
P
=ikg Jo (kory) 2 1 (kor, (T, )l ()1, ()
p=j+l
(A7)

ikgv(rj)anm(rj){hrgl)(korj)jn |:k0 (rj _A?fj:| IA(dj 1 rj)
+ jy (ko {ko (rj +A?€H 1, (r;, dj+1)} =0, (1)

(A.7) can easily be converted into a matrix form. The procedure is similar to the MoM

application with point matching technique. Considering that the values U’ (r;) are

nm

known, after forming the P x P coefficient matrix, one can obtain the values of the

coefficients U, (r;) at the center of each sub-interval by a matrix inversion operation.

(The reader should refer to Appendix C for a more detailed demonstration of the
technique applied to a similar problem.) The elements of the coefficient matrix K can

be stated as

ip

— ikoshrgl)(korj)jn (kOrp)V(rp)IA(dpidpﬂ) J > p
ik j, (kor ) (ko W(r )1, (d,d ) j<p (A.8)

and
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K, = iké’v(rj){hrgl)(korj)jn {ko (rj —%H 1,(d;,r;)

) A/ }
+Jn(korj)h§“[ko(n +7ﬂ 1, (r;,d jﬂ)} j=p

The unknown coefficients U, (r;) can be determined ina Px1 matrix form, denoted

(A.9)

as U__, by the following matrix operation

nm'’

(1-K)'Ui =U, (A.10)

where U represents the P x1 matrix form of the coefficients Up(r;), and | denotes

the identity matrix.

The discretization procedure for the reduced data equation (2.52) is similar. Since for
any r>a, r>r'; there is no self-contribution, and the resulting discretized form can

be obtained as
P
L,jr?m (r) = |k§hr$1) (kor)z jn (kOrp )V(rp)anm (rp)l A (d p’ d p+1) (All)
p=1

It should be noted that the coefficients U, (r,) appearing in (A.11) are the coefficients

of the interior electric field determined by solving the discretized object equation

(A.10). It is clear from (A.11) that no matrix operation is necessary for calculating the

coefficients U (r) of the scattered field.
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APPENDIX B: The analytical expression of the acoustic field for two layered
piecewise homogeneous sphere

Consider the geometry for the two layered sphere presented in Fig. B.1. The acoustic
field in each region, described by the wave numbers k,, k; and k,, can be expressed

analytically as series expansions in terms of elementary wave functions. To this end,

we first formulate the total field

u'(r,8,¢)+u,(r,0,4) r>b
u(r,8,¢) = u,(r,6,¢) a<r>b (B.1)
Uy (r,0,9) r<a

where u'(r,8,¢) is the incoming field defined in (2.53).

Expectedly, the series expansions for the remaining field terms in (B.1) will be of

similar nature:

i = & (2n+1)(n—|ml)!
- (n+|m!

ul(r191¢) =

a,,h® (k,r)P" (cos 9)e™ (B.2)

nmn

(0.9 =05 3 L0 MDYy 1 k) + oy i)

n=0 m=-n (n +|m|)' (B3)
x Pn"”‘ (cos@)e™

0. (r.0.4) = i 3 2n+1(n- |m|)

ar S&T (ne|m)! (k,r)P"(cos 9)e™ (B.4)

nm Jn

In these equations, a_., b.., C,,, d,. are scalar coefficients that will be determined

nm? nm ? nm?

using the boundary conditions. Note that, the main difference in the series expansions
are the radial dependence of the wave functions. The radial dependence of u,(r,8,¢)
must be expressed by Hankel functions of the first kind to satisfy the radiation

condition. On the other hand, for u,(r,8,¢), the Bessel functions must be chosed to

avoid singularity at r =0.
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point source
.PO (l" 9 ¢5)

52752

Figure B.1 : The geometry for the two-layered sphere with a point source.

An acoustic field must satisfy two boundary conditions at an interface between two
media [70]. First, the pressure, that is the acoustic field u, must be continuous; and

secondly, the normal component of the particle velocity, that is (1/ p)(éu/on), must
be continuous. Here, o is the density of the medium, and &/ on stands for the normal

derivative. For the interfaces r=a and r =b, these boundary conditions are stated as

u'(b,8,8) +u,(b,0,4) = u,(b,6,¢) (B.5)
u,(a,d,¢)=u,(a6,¢) (B.6)
or ; 10
——|u'+u =——|u
100 ar |: 1:| r=b pl ar [ 2] r=b (B.7)
10 10
;15[“2] . Zzg[us] . (B.8)

Through these equations, one can form the necessary linear equation system to

determine the coefficients a,,, b, C,,, d,,. Considering the angular terms are

nm?
identical for all series expansion of the field values, the equations (B.5)-(B.8) can be

written in open form as

nm-n

in (kD) (ko1 )R (c0s 8, )e ™ +a, b (ki) =b,,h{” (kb) +C,p , (kD) (B.9)
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bnm hrsl) (kla) + Cnm jn (kla) = dnm jn (kza) (BlO)

2T (DN (k1) P (cos 0, )e ™™

0

: 1 , (B.11)
+a,h (k) | = ;[bnmhﬁl’ (D) + Gy 1 (D) |
1

1 (l)( =y l =y
=] B (k@) + Gy () | =— 0 i ) (6.12)

1 P ’

It is clear that the coefficients can be obtained via (B.9)-(B.12) by basic algebraic
operations. The final forms are

b, =2 (8.13)
a,0, - a,a, '
» 47
R — (B.14)
1 .
=y Lo (600 (60) - ®19
1 1 :
o =~y Lo (620 + S o (Ki2) (B.16)
where
A= (kI (ot )R (cos 6 )e ™ B.17)
B =[O ) B s )™ | ®19
Py |
l 1) 1
Ps= _p_0ﬂ1hr§ " (kob) + B,0{" (k;b) (B.19)
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1., 1. :
oy =, (ka)h? (ka)-— j, (ka)h” (ka)

P> P

1., . 1. -
0y =— Jn (kza)Jn (kla)__ Jn (kZa) Jn (kla)

) P

== (kB )+ (kD) (k)

0 1

1 A ’ 1 -
a, ==, (kb)h? (ko) + = j, (kb)h? (k;b)

o Pr
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APPENDIX C: Method of moments solution for the scattered acoustic field

The MoM solution for the electromagnetic field scattered by a 3-D inhomogeneous
object can be found in [14]. Here, a brief explanation of the solution for the acoustic
scattered field, which is a scalar version of the electromagnetic solution, will be
presented. For the detailed derivation of the mathematical formulation, the reader
should refer to [14].

The method aims to solve the 3-D object equation given in (2.40) by discretizing the
scatterer into N cubic cells. If the sizes of the cells are small enough compared to the
operating wavelength, the field and the object function v(r) inside each cell can be

considered constant. By this assumption, u, , the field value at the center of the cell

denoted by m (1<m< N), can be determined by

N
Uy = Uy, + Y kV(T,)U, I g(r,r’av’ (C.1)
n=1

Tn r=r,,r'=r,

Here, u, is the value of the incoming field at the center of cell m, and the pair r_,r,
denotes the centers of the cells m, n. Also, for the integral of the Green’s function in
(C.1), the integration region 7, is the volume of the source cell n. It is clear that, a
linear equation system, consisting of N equations with scalar coefficients, can be

formed via (B.1), and the field values at the center of each cell can be determined by

a matrix inversion operation involving the known values of the incoming field:
(1-K)"u'=U (C2)

Here, U' and U are N x1 matrices, whose elements are the values of the incoming
field and the total field at the cell centers respectively. 1 is the identity matrix, and K

isthe Nx N coefficient matrix, whose elements are given by

K. =kiv(r) I g(r,r’)av’ (C.3)

Tn r=r, r'=r,
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Once the interior field is determined using (C.2), the scattered field at any point r,

outside the sphere can be easily obtained by evaluating

N
u(r,) =Y ksv(r,)u, Ig(r,r’)dv' (C.4)
n=1

tn r=r r'=r,

in a similar manner to (C.1). Therefore, the main challenge is to integrate the Green’s
function over the region z, to determine the coefficients K, . Although the
discretization is made using cubic cells in order to better represent the shape of the
scatterer, a spherical cell allows one to evaluate the integration analytically. To this

end, the integration volume z, is assumed to be a sphere with radius a,, . Here, a,, is

the radius of the sphere having equivalent volume to the cubic cell with side length a

3 %3
aeq = (Ejg a (C.5)

We will first evaluate the integral for the case of a singular cell, that is m=n. This
case is called singular because rand r’ are in the same cell, and the Green’s function
has a singularity at r = r’. By using the expression for the Green’s function given in
(2.44), and considering the mathematical properties of the spherical harmonics the
integral can be formulated as

B
[ a(r,rav’ =ik, jo(kor) [ B (kr)r2dr’

. (C.6)
+ik, hél) (k, r)j Jo (K, r')r'*dr’
0
Using the asymptotic formulas
@) — I ikor
hy (kor)——@e (C.7)

and
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. sink,r
o (kor)=—=2
0\ "o ) kI (C.8)

one can obtain the final form of the integral for the singular cell:
Ig(r r’)dv’:i (1-ikya, )e"* -1
; ’ ké 0™"eq (C.9

For the non-singular cells, that is for the case of m=n, r is outside of the integration

region, and r is always greater than r'. Therefore, the integration becomes
r
[ a(rrav =ikoh (k1) ] Jo(k,r)r“dr’ (c.10)
7, 0

Again, considering the asymptotic formulas (C.7)-(C.8), the result of the integration

for non-singular cells can be written as

4ra_ | sink,a
oo 80

iko[ry =]
K2 —C0s koaeq:l (C.11)
0

08y 4rlr, —r|

where |r, —r.| is the Euclidean distance between the centers of the cells m,n. Thus,

the elements of the coefficient matrix K has been determined:

v(rn)[(l— ik, a,, )¢ —1} m=n
Ko = sinkja,, glolfm i (C.12)
a,,v(r,) —Coskya,, |[-——— m=n
anq |rm - rn|

Note that, for scattering field, measurement point r, is always outside the sphere.

Therefore, the integral in (C.4) should be evaluated according to the formulation
obtained for non-singular cells in (C.11). Thus, the open form of (C.4) can be

expressed as
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N sink, oty -
u(r;) = v(r au, [—k " X _cos koaeq]— (C.13)
n=1 -

0 ™"eq

where u, is the total field at the center of the cell denoted by n, which is obtained by

solving (C.2). Similar to (C.11), ‘rf —r,| denotes the Euclidean distance between the

measurement point and the center of the cell n.
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APPENDIX D: The dyadic Green’s function for a two layered sphere illuminated
by an infinitesimal horizontal electric dipole

Consider the geometry for the two layered sphere presented in Fig. D.1. The entire
space consists of three piecewise homogeneous regions, which are characterized by
the wave numbers k;, k,and k,. The dyadic Green’s function can be constructed in
each layer using the even and odd vector wave functions defined in (3.29)-(3.30). The
details of the derivation procedure can be found in [52]. Here, a brief outline of the

formulation and the resulting functions will be presented. Let us first define the dyadic

Green’s functions for each layer as

égm (r,r)= C:3§° (r,r)+ ég;) (r,r') r>a (D.1)
GO, r)=C&(r,r+G@(r,r) axzrzb (D.2)
GO, r)=GE(r,r) r<b (D.3)

-, Dipole

- C,(0,0,z;)
a
k ” X
3 k2 k

Figure D.1 : The geometry for the two-layered sphere with an x-oriented dipole
situated along the z-axis.

The function (:38" (r,r") in (D.1) represents the free space dyadic Green’s function that

was defined in (3.31) in terms of the even and odd vector wave functions. Note that
the definitions of the dyadic Green’s functions, given in (D.1)-(D.3), indicates that the

source is located in the region outside the sphere, since the term C:5§°(r, r") is included
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in the expression of c:;gl)(r, r'), i.e. the function that represents the field in the region

r>a. C=;§°(r, r') represents the field created by the source in the case of homogeneous

space, and it is only term that has a singularity. The open expressions of the remaining
functions in (D.1)-(D.3) can also be formulated in terms of the even and odd vector

wave functions:

GO (1,1 = ZZ(‘ 2n+1 (n—m)!

7 =1 m=0 n(n+1) (n+m)!
A\M (k r)M<1 (k,r')+B, N<1 (& r)N (k, r)] (D-4)

Ggil)(r ()= Lklizn:(z‘(so) 2n+1 (n—m)!

7T h=1 m=0 n(n +1) (n+m)!
x|C. M, (k,r)M? (kr)+D,N, (k,r)N% (klr')} (D.5)

(=3§151)(r,r’)— zz( ~ 2n+1 (n—m)!

o o n(n+1) (n+m)!
x| E,ME (MY (1) +F N (DN (K, r')] (D6)

ik, 2n+1 (n-m)!
G (r,r) = : AL
w (0= nzllmzo %) n(n+1) (n+m)!

x| K

M, (kMY (kr)+L N, (knNY (klr')} (D.7)

Note that in all equations, the radial dependence of r’ is expressed in terms of spherical
Hankel functions because the source is located in the outmost layer. On the other hand,

the radial functions involving r should be chosen appropriately for each layer. For

Eg};’ (r,r"), which represents the scattered field, the spherical Hankel functions have
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been used to satisfy the radiation condition; whereas for ég%;)(r,r') the spherical

Bessel functions must be chosen to avoid having singularity in the origin. The eight
scalar coefficients (A,, B,, C., D,,E,, F,, K,, L,)appearing in (D.4)-(D.7) can be

determined using the boundary conditions on the surfaces r=a and r =b. The well-

known boundary conditions

and

R R 1. 1.
NxH, =NxH,=>—NxVxE =—nNxVxE,
Hy Hy

can be expressed in terms of the dyadic Green’s functions as

PxGE(r,r)=FxGP(rr) r=a

ir><V><G H(rr)=— rxVxG(Zl)(r ) r=a
Hy

PxGE(r,r)=ixG™(r,r') r=b

L xvxG®(r,r) =2 pxvVxEE(rr)  r=b

Hy M

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

From these equations eight algebraic equations can be formed in order to determine

the eight unknown coefficients:

in(ka) + AR (ka) =C, j, (k,a) + E 1y (k,a)

k[1 o Or .«

—{k—a—[rj (k)] _a%a[rhé)(km] }

k, [C, o E. 014
{k—a— fj, (K, r)]r_a+@5[rhn“(k2r)}r_a}
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L 9
ke or

0
p. —[ P kn) ]

)

1a
(D.16)
D, G
h® (k
{k or T k r)] zaar[r ( r)]r_a}
ﬁ[ j» (k) + B,h® (ka) | = El[Dn j» (k,2) + Fh (k)| (D7)
1
C, jn(k;0) + E,h” (k;b) = K, j, (k;b) (D.18)
k, [C 0. E, 01,0 k, K 0
22320 2 (n)] = —[ th®(k,r) }— r, (Ksr)
ﬂz{kzbar[ \ ]r—b kzbar[ g :|r—b ﬂskb@ [ ]—b (D.19)
0. F o
= i (kr —n Z i rh®(k.r =— rj (k.r
ol hln] spalmien] =5 2 [rite YN (0.20)
Koy ) K |
u_[Dan(kZb)-l_Fnhn (kzb)]:_Lan(ksb) (D21)
2 3

The coefficients can be determined by solving the linear equation system of (D.14)-
(D.21). After formulating the dyadic Green’s functions, one can easily obtain the

electric field in each layer, by following the procedure outlined in (3.39)-(3.44) in a
straightforward manner. First, replacing Ge"(r r') with G‘“)(r r') in the integral

defined in (3.40) yields the scattered field outside the sphere as

—k,ouCy = 2n+1

E*(r) = h (k,zg )MS) (k,
() == L (A (2Mes ()
B (C.22)
+——(rh® (K, r’ NO (k! r>a
g 6n) Nk

Note that the expression has a similar form to E'(r) defined in (3.44). The main

difference is the form of radial functions, which are necessarily altered to satisfy the

radiation condition at infinity. The field expressions in the remaining layers can be
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obtained in a similar manner. For the inner layer of the sphere, the final form of the

total electric field is determined as sphere as

—kouCy < 2n+1
() == = o (K (2 )M o)
n=1

p d(h“&r»

o Neu (K1)} r<b
1 ~d

r'=z

Finally, the total electric field in the outer layer of the sphere:

-k,ouC, < 2n+1

E(r)= C,h (k z, )M, (k1) + E b (k2 )ME), (K,
()= Ly O (62 Mo or) + EY (2 M ko)
D, d F, d
+— —(rh® (k,r’ N, (k1) +———(rh®k,r’
2 g &O) Nalen+2-ga(miGen)
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APPENDIX E: Method of moments solution for the scattered electromagnetic
field

The MoM solution for 3-D electromagnetic scattering problem is developed and
presented in [14]. In Appendix B, the same solution was adapted to the acoustic case.
Here, we will present the formulation for the electromagnetic problem without
explaining the derivation procedure. The detailed demonstration of the method and the

derivation of the equations can be found in [14].

Unlike the acoustic case, the electromagnetic problem is a vectorial one. Therefore,
for a scatterer which is discretized into N cubic cells, the number of knowns, namely
the vectorial components (3N x1) of the interior electric field, is 3N . Accordingly,

the principal equation of the MoM solution, (C.2) in the acoustic case, becomes

(1-K)"E'=E (E1)
where E' and E are 3N x1 matrices, whose elements are the vectorial components (

E, E,, E,) of the incident electric field and the total electric field at the cell centers

respectively. Accordingly, the coefficient matrix K becomes a 3N x3N matrix for

the electromagnetic case.

The derivation of the elements of the coefficient matrix is based on the results
presented in Appendix C for the acoustic case. Since the free space dyadic Green’s

function is defined in term of the scalar Green’s function as

= ! 1 !
Go(r,r):{l +FVV}g(r,r), (E.2)
the expressions of its nine scalar components can be formed using g(r,r’):

= 1 ¢ :
Gy (1) =iopy (O +:7 500N T) - P.A=123, (E:3)
Oapaq

Similar to (C.3), the elements of the matrix K are formulated as
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K2 =kov(r,) [ G (r.r)dv’

tn r=r,.r'=r,

(E.4)

Taking (E.3) into account, it is clear that the result of the integral in (E.4) can be

derived via the integration of g(r,r’), given in (C.9) and (C.11) for singular cells and

non-singular cells respectively. Therefore, the elements of the coefficient matrix K

can be stated for the singular cells:

0 m=n,p#(Q

Pq _

K= _
" kozv(rn)(%[Z(l— ik,a)e"* —3]) m=n,p=q
and for non-singular cells:

ie‘kf —k’R?-3ikR +3

K kéV(rn)C3{

K2 4r R®
ikR
x(X; = X2)(X, _Xq)+47zR} m#n,p#q
) 1 e¥ikR-1 . .,
KM =k,v(r,)C {k_jg o — (X, —X;)
X _3ik+i—k—2 + 2 m=n,p=q
R R® R®| 4zR '

where C*is a scalar coefficient defined as

cio 47zaeq {sin koaeq cosk a }

2 0eq
k0 kO aeq

and R is the the Euclidean distance between the centers of the cells m,n:

R=[(%, ~ %)’ + (Y = Vo)’ + (2, ~2,)°?
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