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AN ADAPTIVE MODAL PUSHOVER ANALYSIS PROCEDURE TO
EVALUATE THE EARTHQUAKE PERFORMANCE OF HIGH-RISE
BUILDINGS

SUMMARY

Today, in light of the advances in structural design/systems and high strength
materials, as well as innovative structural concepts, a rapid growth in the construction
of tall buildings within urban areas is taking place. Force-based linear design
procedures have given way to a performance-based design approach. In this context,
the Pacific Earthquake Engineering Research Center (PEER) is leading the Tall
Buildings Initiative (TBI), which has developed safe and convenient written guidelines
containing principles for the performance-based design of tall buildings, as well as
having funded and coordinated a range of short- to intermediate-term projects between
2006 and 2009. Meanwhile, participants in the TBl—namely, the Los Angeles Tall
Buildings Structural Design Council (LATBSDC), the Structural Engineers
Association of Northern California (SEAONC) and the Council of Tall Buildings and
Urban Habitat (CTBUH)—have published guidelines about the performance-based
design of tall buildings. PEER published a document entitled “Guidelines for
Performance-Based Seismic Design of Tall Buildings”, which describes performance-
based design principles and characteristic criteria for tall buildings. In parallel with
these international developments, a draft code for the design of tall buildings in
Istanbul, known as “Yiiksek Yapilar Deprem Yonetmeligi”, was published in 2008.

A consensus has been reached about the necessity of performing a three-dimensional
(3D) nonlinear time history analysis (NTHA) with biaxial components of ground
motions in the final design of tall buildings. Nonetheless, some difficulties in
implementing NTHA exist, on the basis that it is a complex and time consuming
process faced with many uncertainties. For this reason, there is a need to develop
analyzing methods that are both quick and with a reasonable degree of accuracy with
respect to NTHA.

The nonlinear static procedure (NSP) has become a practical analytical tool to estimate
seismic demands of building-type structures. Most NSPs are precisely designated as
conventional pushover analyses, in which an invariant lateral force distribution
corresponding to the fundamental mode shape is subjected to the structure. However,
applicability of conventional pushover analysis is limited to low-rise buildings without
vertical or torsional irregularities, the behavior of which is not affected by higher
modes. Multimode pushover analysis procedures are approximate methods, which can
overcome the drawbacks of conventional NSPs by taking account of higher mode
effects as well as obtain results that are closer to NTHA when compared with
conventional NSPs.

In this thesis, a variant of modal pushover analysis (VMPA-A), which is capable of
taking account of the higher mode effects, is developed for use in the performance-
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based evaluation of tall buildings. The so-called DOC3D-v2, which is a MATLAB-
based computer program, was developed to implement VMPA in order to analyze 3D
frame and/or shear wall-type structural systems. DOC3D-v2 takes into account
concentrated and distributed plasticity for the frame-type elements, as well as
considers the second-order effects of axial loads on the members. Furthermore, the
beam-column element of DOC3D-v2 considers the nonlinear interaction of shear-
flexural deformations. The applicability of the physical substructuring approach is one
of the substantial features of DOC3D-v2 for reducing the computation time.

The suggested procedure is based on an iterative process, in which secant stiffness is
used both at the element level and in the modal response. VMPA diverges from the
existing modal pushover analyses for the following reasons: i) In the adaptive version
(VMPA-A), mode-compatible adaptive forces are applied to the structure at each
iteration step. In this way, the compatibility of force and displacement vectors may be
satisfied. For the non-adaptive case (VMPA), the force vector is invariant during the
analysis process. ii) The application of the equal displacement rule, in combination
with secant stiffness-based linearization, eliminates the necessity to produce a capacity
diagram for each mode. The analysis is performed for a unique displacement for each
mode.

The algorithm of VMPA-A is handled in respect of two-dimensional (2D) and 3D
structural systems. The algorithm for the planar system is implemented in the spectral
displacement-spectral acceleration (S¢-Sa) format. The displacement-controlled
algorithm determines the single ordinate of the modal capacity diagram, which
corresponds to the target displacement demand for the n" mode (San p, Sanp) by
reducing elastic spectral acceleration (San_e) to converge with plastic acceleration
(San_p). To verify the success of the suggested procedure, nine- and 20-story LA SAC
buildings are analyzed, with the resulting demands compared with several existing
procedures, such as the extended N2, MPA (modal pushover analysis) and MMPA,
while NTHAs are performed for two different sets of acceleration records. The first
set consists of 44 strong ground motion records, which are downloaded from the PEER
NGA Database for the ground acceleration level (ag=0.75g). The second set is taken
from the European Database and consists of 20 strong ground motion records, which
are analyzed for four different acceleration levels (ag= 0.10, 0.50, 0.75, 1.00g). The
evaluated demand parameters are story displacements, drifts, shear forces and the
distribution of column and beam curvatures. VMPA-A yields enhanced results in terms
of story drifts, especially for the 20-storey LA building, compared with the other
methods. Although the story displacements and drifts are largely consistent with
NTHA results, conservative estimates are obtained for the story shear forces.

The 2D algorithm is extended for use with 3D structures in relation to bidirectional
ground motions. The theoretical background of VMPA-A has a lot of similarities with
MPA. Nonetheless, MPA has some deficiencies such as i) invariant load patterns
compatible with an n-mode shape, which corresponds to the linear elastic eigenvalues
applied to the structure, and ii) the MPA procedure, which is applied separately for the
x and y components of the ground motion. For each case, the demand parameters of
interest are combined by a CQC combination rule. Next, the effects of two ground
motion components are combined using an SRSS combination rule. Applying modal
combination rules twice may cause erroneous results. These drawbacks are eliminated
in VMPA-A for the following reasons: i) the use of adaptive force patterns, due to the
changes in the dynamic characteristics with increasing structural damage, provides the
compatibility of force and displacement vectors for each three-degree-of-freedom (x,y
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ve 0;); ii) the VMPA method is implemented in relation to the hybrid spectrum, whose
abscissas and ordinates have no physical meaning, namely ' S, +I' S, and

r. s.+I_S_,respectively. The slope of the spectrum for a specific vibration mode

nx “ax ny Yay!’
corresponds to the eigenvalue of the mode, as with the Sg-Sa spectrum. The two
orthogonal components of the ground motion can be taken into account
simultaneously. As a natural consequence of this, the two-time application of modal
combination rules is reduced to one in VMPA-A.

A 45-story coupled shear wall (SW) system is used as a calibration example for 3D
VMPA-A. Thirty historical earthquake acceleration records, including fault normal
and fault parallel components that are scaled according to the ASCE 7.05 spectrum
within the selected period range, are used and compared with the VMPA results. The
results obtained from the average of NTHAs are compared with those of VMPA-A.
The predictions obtained for the lateral displacement and drift in the weak direction
are in close agreement with the mean of the NTHA. However, some discrepancy is
encountered in the perpendicular direction. Conservative estimates are reached for the
story shear forces’ weak direction and the corresponding overturning moments. The
predictions in perpendicular direction, story shear forces and overturning moments are
better, with the exception of lower stories. Although the ultimate tension and
compression strains for two representative SW parts are consistent with the NTHA
results at the lower stories, where nonlinear behavior occurs, the relative differences
are quite high for the upper part of the structure. Similar results are obtained for the
curvature distribution of the coupling beams.

The third application of VMPA is on an existing 21-story, reinforced concrete
building, with three basements, one ground floor and 17 typical floors, under
bidirectional ground motion. Thirty ground motions are selected from the PEER NGA
database, then scaled in accordance with the 2007 Turkish Earthquake Code spectrum
with consideration to the location and soil conditions of the building, for use in
NTHAs. Here, cracked rigidities are used for SWs. This reflects the predictions of
lateral drifts and displacements with respect to the average of the NTHA in both
orthogonal directions. Similarly, with the 45-story example, conservative estimates
have been reached for story shears and overturning moments. First mode behavior
dominates the story overturning moments, especially at lower stories. Again, similar
to the 45-story example, although the nonlinear strains of selected SW fibers are in
close agreement with NTHA in lower stories, the errors increase in the upper parts.
The curvatures are successfully estimated and first mode response governs the total.
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YUKSEK BINALARIN DEPREM PERFORMANSININ
DEGERLENDIRILMESI iCiN BIR UYARLAMALI MODAL iTME
ANALIZi YONTEMI

OZET

Teknolojik gelismeler, yiiksek performansli malzemelerin kullanimi, mimarlik ve yap1
miithendisligindeki yenilik¢i arayislar dolayisiyla yiiksek binalarin kullanimi giin
gectikce yayginlagmaktadir. Yiiksek binalarin tasariminda, daha onceki dénemde
kullanilan dayanim esasli dogrusal tasarim yaklasimi yerine giiniimiizde performansa
dayali tasarim yaklasimi yayginlagsmistir. Bu baglamda, Pacific Earthquake
Engineering Research Center (PEER) Tall Buildings Initiative isimli bir
organizasyonu olusturarak, depreme karsi dayanikli yiiksek binalarin performans
esasli tasarimini konu alan yonetmeliklerin olusturulmasi amaciyla, 2006-2009 yillari
arasinda ¢ok sayida yayin yapmistir. Bu calismalar kapsaminda, Tall Buildings
Initiative olusumunda yer alan Los Angeles Tall Buildings Structural Design Council
(LATBSDC), Structural Engineers Association of Northern California (SEAONC) ve
Council of Tall Buildings and Urban Habitat (CTBUH) isimli kuruluslar performans
esaslt tasarim konusunda degisik c¢aligmalar yayimlamiglardir. PEER, 2010 yilinda
yayimladigr Guidelines for Performance-Based Seismic Design of Tall Buildings
isimli caligmada yiiksek yapilarin performans esasl tasarimina yonelik prensipleri ve
kosullar1 iceren bir dokiimani olusturmustur. Ulkemizde bu gelismelere paralel olarak,
2008 yilinda Istanbul Biiyiiksehir Belediyesi tarafindan il sinirlari igerisinde insa
edilecek yiiksek yapilarin tasarim prensiplerini iceren Yiiksek Yapilar Deprem
Yonetmeligi 'nin taslak metni yayimlanmstir.

Biitiin bu ¢alismalarda, yiliksek binalarin kesin tasarimi asamasinda iki dogrultuda
etkiyen yer hareketi i¢in ii¢ boyutlu dogrusal olmayan zaman tanim alaninda
cOziimlemeler yapilmasi gerektigi konusunda fikir birligine ulagilmistir. Buna karsin,
zaman tanim alaninda yapilacak ¢ozlimlemelerin kompleks, zaman alict ve bazi
belirsizlikleri icermesi dolayisiyla, kullaniminda zorluklar bulunmaktadir. Ozellikle
On tasarim ve hesap kontrollerinin yapilmas1 agamalarinda, hizli ve yaklasik sonuglar
tiretebilen diger yontemlerin de kullanilmasina gereksinim duyulmaktadir.

Dogrusal olmayan statik c¢oziimleme yontemleri (NSPs), binanin kat hizalarinda
etkitilen ve analiz boyunca aralarindaki oranlar degismeyen yatay atalet kuvvetleri ile
secilen karakteristik bir yerdegistirmenin degisimini ortaya koymaktadir. Deprem
istemine bagli olarak belirlenen bir yerdegistirme hedefinde eleman i¢ kuvvet ve
deformasyon durumlari degerlendirilmektedir. Geleneksel olarak birinci mod sekli ile
uyumlu atalet kuvvetlerinin kullanildig1 bu ¢oziimleme yonteminin diisey kesitte ya da
planda diizensizlikler iceren ve/veya ileri titresim modlarinin etkili olabildigi yap1
sistemlerinde kullanimi uygun olmayabilmektedir. Cok modlu dogrusal olmayan statik
¢coziimleme teknikleri; ileri titresim modlarinin etkisini daha iyi dikkate alarak
geleneksel NSP’lerin yetersizligini ortadan kaldirabilen, boylelikle dogrusal olmayan
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zaman tanim alaninda gergeklestirilen hesaplarda elde edilen sonuglara daha yakin
sonuglar iiretebilen yaklasik yontemlerdir.

Bu tez calismasinda; yiiksek binalarin deprem performansinin degerlendirilmesi igin,
ileri titresim modlarinin etkisini de dikkate alabilen uyarlamali bir modal itme analizi
yontemi (VMPA-A) oOnerilmistir. Bu yontemin ger¢ek yapi sistemlerinde sayisal
olarak uygulanabilmesi icin, DOC3D_v2 isimli bir yazilim gelistirilmistir.
DOC3D v2 yazilimi, lic boyutlu ¢ergeve ve/veya perde tipi tasiyici sistemlerin
malzeme ve geometri degisimi bakimindan dogrusal olmayan c¢oziimlemesini
yapabilen, yayili ve y1g1li plastisite seceneklerinin bulundugu, serbest titresim analizi,
zaman tanim alaninda dogrusal ¢6ziimleme 6zelliklerini de iceren MATLAB tabanl
bir yazilimdir. Yazilimda kullanilan dogrusal olmayan birim ¢ubuk eleman egilme ve
kayma sekildegistirmelerini ve bunlarin birbirleri ile olan etkilesimini dikkate
alabilmektedir. Fiziksel alt sistem kullanimi segenegi yazilimin ¢oziim siiresini
kisaltan diger bir 6nemli 6zelligidir.

Kolon-kiris tiirii gubuk elemanlarin dogrusal olmayan davranisini géz oniine almak
lizere literatiirden alinan bir konsol eleman gelistirilerek bu tez ¢aligmasinda
kullanilmastir. Ilk haliyle yerdegistirme ve kuvvet ydnteminin beraber kullanilmast ile
iretilmis olan eleman birim kuvvet matrisi, bu calismada sadece kuvvet yontemi
kullanilarak hesaplanmaktadir. Eleman birim kuvvet matrisi terimleri, yeterli sayida
parcaya boliinmils ¢ubugun ardisik diigiim noktalarinin arasindaki goreli ¢cokme ve
donme farklarindan yararlanilarak hesaplanmaktadir. Orjinal durumda kullanilan
ikinci mertebe etkilerinin esdeger kesme kuvveti ¢iftine doniistiiriilerek uygulanmasi
yolu terk edilerek; bunun yerine sekil degistirmis eksende virtiiel is teoremi
uygulanmistir. Yeni oOzellikler katilarak gelistirilen birim elemanin dogrulugunu
kontrol etmek amaciyla, malzeme bakimindan dogrusal ancak geometri degisimi
bakimindan dogrusal olmayan sayisal 6rnekler tizerinde irdelemeler yapilmistir. S6z
konusu karsilastirmalarda; “kesin ¢oziim olarak™”, egilme etkisinin tek basina
bulundugu 6rneklerde Bernoulli-Navier hipotezi, kesme ve egilme etkilerinin birlikte
bulundugu orneklerde ise Timoshenko kirisi hipotezi esas almarak olusturulan
diferansiyel denklemlerin ¢oziimlerinden elde edilen sonuclar kullanilmistir.

Malzeme bakimindan dogrusal olmayan ¢dzlimlemede; sanal rijitliklerin se¢imi icin
dogrusallagtirma teknigi olarak baslangi¢ kirigi yontemi kullanilmistir. Egilme-kayma
etkilesimini dikkate almak iizere, literatlirde yer alan bir makro model gelistirilerek
kullanilmistir. Bu modelde, artan egrilik siinekligine bagli olarak kesme kuvveti-
kayma acis1 iligkisinin zarfi degismektedir. DOC3D v2 yazilimina adapte edilen
egilme-kayma etkilesimi 6zelligini dogrulamak iizere, farkli kesme agiklik oranlarina
sahip 3 adet kolon eleman kullanilmistir. Tersinir tekrarl statik yiikler etkisinde
denenen bu kolonlarin kesme agiklik oranlar1 (Ls/h) 10.0, 3.2 ve 1.33’tiir. Bu degerler
sirastyla, kirilma esnasinda sekildegistirmeler iizerinde egilme, kesme-egilme
etkilesimi ve kesme davranisinin hakim oldugu durumlara kars1 gelmektedir.

DOC3D v2 yazilimina ekelenen bir diger 6nemli 6zellik de dogrusal olmayan perde
davranigin1 dikkate alabilen ii¢ boyutlu diisey ¢ubuk elemanlardan olusan perde
modelidir (3D MVLEM). Bu model, perde kesiti planda yeterli sayida life boliinerek
tanimlanan yatay bir kayma yay1 igermektedir. Perdenin egilme ve eksenel davranisi
diisey yaylar, kayma davranisi ise yatay yay ile temsil edilmektedir. Diisey yaylara
dogrusal olmayan beton ve ¢elik malzeme davranis modelleri tanimlanabilmektedir.
Perde u¢ bélgelerinde sargili beton modeli, perde goévdesinde ise sargisiz beton
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malzeme modeli kullanilabilmektedir. 3D MVLEM kat bazinda alt ve iist ugta
tanimlanan 6 serbestlik derecesi ile ifade edilmektedir. Modelde, artan egrilige bagh
olarak tarafsiz eksenin basing bolgesi i¢inde ilerlemesi dikkate alinabilmektedir.
Programa adapte edilen perde davranis modelinin dogrulanmasi i¢in literatiirde yer
alan deneysel esashi dikdortgen ve T kesitli perdeler iizerinde karsilastirmalar
yapilmugtir.

Matris yerdegistirme yontemini esas alan DOC3D_v2 yaziliminin 3 boyutlu sistemler
tizerindeki dogrulamalar1 SAP2000 ve Perform3D yazilimlari vasitasiyla yapilmstir.
Bu kapsamda, tiggen bir kat planina sahip olan tek katli bir ¢ergeve 6rnegi kullanilmas,
dogrusal ¢6ziimleme algoritmasinin dogrulugu tespit edilmistir.

Iki eksenli egilme ve eksenel kuvvet etkisinde olan dikdortgen kesitli kolonlarin
moment egrilik iliskilerinin olusturulabilmesi i¢gin DOC3D v2 yaziliminda bir alt
program gelistirilmistir. Segilen bir kolonda, farkli eksenel yiik diizeyleri ve degisik
asal eksen dogrultular1 i¢in elde edilen sonuglar literatiirde yer alan XTRACT yazilimi
sonuglart ile karsilastirilmistir. Bu alt programin iirettigi sonuglar, DOC3D v2
yazilimimin ihtiya¢ duydugu P-My-My mafsal &zelliklerine kars1 gelmektedir. Uggen
kat planli 6rnekte, kolonlara P-Mx-My mafsallar1 atanarak depremin planda farkl
acilarla (6p=0°, 30°, 45°, 60°, 90°) etkimesi durumu g6zoniine alinarak itme analizleri
gerceklestirilmis, elde edilen sonuglar Perform3D yazilimi sonuglart ile
karsilastirilmustir.

DOC3D_v2 yaziliminda sadece kuvvet kontrollii ¢éziimleme algoritmas1 degil, ayni
zamanda yerdegistirme kontrollii ¢6zlim algoritmas1 da yer almaktadir. Bu 6zellik
sayesinde, birinci ya da ikinci mertebe limit yiik diizeyine erisildikten sonraki agamada
yakinsama problemi olusmadan ¢oziim {iretilebilmektedir. Malzeme ve geometri
degisimi bakimindan dogrusal olmayan cok serbestlik dereceli bir kolon 6rnegi
tizerinde kuvvet ve yerdegistirme kontrollii analiz algoritmalar karsilagtiriimistir.

Gok modlu bir itme analizi turi olan modal itme analizinin (MPA) farkli bir
uygulamasi olarak uyarlamali modal itme analizi yontemi (VMPA) gelistirilmistir.
VMPA, baslangi¢ kirisi yontemini eleman bazinda ve modal davranig diizeyinde
kullanan iteratif bir yontemdir. Bu yontemi MPA’dan ayiran baslica 6zellikler soyle
siralanabilir: i. Uyarlamali uygulamada (VMPA-A), ardisik yaklasima dayali hesabin
her bir adiminda, anlik titresim mod bigimleri ile uyumlu atalet kuvveti dagilimlari
esas alinmaktadir. Boylece, her iterasyon adiminda kuvvet ve yerdegistirme vektorleri
arasindaki uyum saglanabilmektedir. Uyarlamali olmayan uygulamada (VMPA) ise,
MPA yontemine benzer sekilde kuvvet vektorii ¢oziim boyunca degismemektedir. ii.
Esit yerdegistirme kuralinin baglangi¢ kirisi yontemine dayali sanal rijitlikler ile
kullanilmast durumunda, kapasite egrilerinin tamaminin ¢izilmesi gereksinimi ortadan
kalkmaktadir. Tek bir hedef yerdegistime istemi i¢in ¢éziimleme yapilmaktadir.

Bu ¢aligmada, VMPA-A yonteminin algoritmasi iki ve li¢ boyutlu yap1 sistemleri i¢in
ayri ayr1 ele alinmustir. Diizlem sistemler igin gelistirilen algoritma spektral
yerdegistirme (Sq) — spektral ivme (Sa) ortaminda uygulanmaktadir. Yerdegistirme
kontrollii algoritmada, modal kapasite diyagraminda n. mod i¢in baslangigta belli olan
modal yerdegistirme istemi (San p) ve ona karsi gelen spektral ivme (San_p), elastik
spektral ivmeden (Sane) hareketle, ardisik yaklasima dayali bir algoritma ile
hesaplanmaktadir. Iki boyutlu algoritmanin dogrulugunu tartismak amaciyla 9 ve 20
katli Los Angeles SAC binalar iizerinde analizler gerceklestirilmis ve elde edilen
degisik yapisal istem biyiiklikleri i¢in karsilastirmalar yapilmistir. Bu
dogrulamalarda, literatiirde yer alan iki farkli deprem kayit grubu gergeklestirilen
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zaman tanim alanindaki dogrusal olmayan hesapta kullanilmistir. Kayit grubunun ilki
Avrupa veritabanindan alinan 20 kuvvetli tarihsel depremi, ikincisi ise PEER NGA
veritabanindan alinan 44 tarihsel depremi igermektedir. Avrupa veritaban1 depremleri
dort farkli yer ivmesi seviyesi (ag=0.10, 0.50, 0.75 ve 1.00 g) i¢in, PEER NGA
veritaban1 depremleri ise tek bir ivme seviyesi (ag=0.75g) i¢in analiz edilmistir.
Karsilagtirilan yapisal istem biiytikliikleri kat 6telenmeleri, goreli kat otelenmeleri
orani, kat kesme kuvvetleri, devrilme momentleri ve segilen eleman sekildegistirme
degerleridir. VMPA-A yontemi 6zellikle kat goreli kat 6telenmeleri agisindan oldukca
iyi sonuclar vermektedir. Kat kesme kuvvetleri icin ise glivenli tarafta kalacak daha
biiyiik degerler elde edilmistir. VMPA ve VMPA-A tarafindan {iretilen goreli kat
Otelenmeleri, literatiirde bulunan diger cok modlu yontemlerden N2, MPA ve MMPA
sonuclart ile de karsilastirilmistir. Yirmi katli Ornekte, bu calismada gelistirilen
VMPA-A yonteminin daha iyi sonu¢ verdigi gézlemlenmistir.

Ug boyutlu yapi sistemleri icin gelistirilen algoritmada, yapiya planda cift dogrultuda
etkiyen deprem durumu caligilmistir. VMPA-A yOnteminin teorik alt yapisi MPA
yontemi ile biiyiik benzerlik icermektedir. Buna karsin, MPA yonteminin aksayan bazi
Ozellikleri, gelistirilen algoritma ile ortadan kaldirilmaktadir. Coziim gelistirilen
konular sunlardir: i. Yapiya etkiyen atalet kuvvetlerinin analiz boyunca sabit olmasi
durumu ii. Deprem yer hareketinin yapi planinda iki dik dogrultudaki etkisinin es
zamanli olarak tanimlanmasi yerine, iki bagimsiz yiikleme olarak tanimlanip
sonuglarin sonradan birlestirilmesi durumu. VMPA-A’de gelistirilen ¢oziimler soyle
siralanabilir: i. Gergeklesen yapisal hasar nedeniyle degisen dinamik karakteristiklerin
uyarlamali olarak dikkate alinmasi sayesinde sec¢ilen bir diigiim noktasindaki her ii¢
serbestlik icin (x,y ve 0;) kuvvet ve yerdegistirme vektorleri arasindaki uyumun
salamig olmasi. 1.VMPA-A, apsis ve ordinati swastyla I S, +T S, ve

r.sS,+r,S, olan, fiziksel bir anlam tagimayan bir hibrit spektral format {izerinde

nx “ax ny Yay
uygulanmaktadir. Bu hibrit spektrumun belirli bir periyoda karsi gelen egimi, S¢- Sa
iliskisinde oldugu gibi, ilgili periyoda kars1 gelen agisal frekansin karesine esittir. Bu
spektrum kullanilarak, planda iki dik dogrultuda etkiyen deprem hareketi birlikte
dikkate alinabilmektedir. Bunun dogal sonucu olarak, MPA’de iki kez uygulanmak
zorunda olunan modal birlestirme islemleri, VMPA-A’de bire diismektedir.

U¢ boyutlu VMPA-A’in dogrulamasi, 45 katli tasiyict sistemi perde ve bag
kirislerinden olusan bir tagiyici sistem iizerinde yapilmistir. Faya paralel ve faya dik
bilesenlerinin ivime spektrumlarinin geometrik ortalamasi, ASCE 7.05 spektrumuna
uyacak bicimde o6lceklendirilmis 30 adet deprem kayd:i ile ¢alisilmistir. Deprem
kayitlar1 icin uygulanan zaman tanim alaninda dogrusal olmayan ¢oziimleme
sonuglariin ortalamalar1 ile VMPA-A sonuglar karsilagtirlmistir. Tagiyici sistemin
zaylf dogrultusunda kat Gtelenmeleri ve goreli kat Otelenmelerinin blyuk olgude
ortiistiigli gozlemlenmistir. Buna karsin, dik dogrultuda sonuglar arasinda farkliliklar
bulunmaktadir. Zayif dogrultudaki kat kesme kuvvetleri ve karsi gelen devrilme
momentleri karsilagtirildiginda, giivenli tarafta kalan biiylik degerler elde edilmistir.
Dik dogrultuda ise, alt katlar disinda kat kesme kuvvetleri ve devrilme momentleri
daha iyi sonug¢ vermistir. Segilen perde liflerindeki en biiyiik basing ve ¢ekme
sekildegistirmeleri gozoniine alindiginda, dogrusal olmayan davranigin yogun oldugu
alt katlarda cok yakin sonuglar elde edilirken, iist katlarda goreli farklar biiytiktiir. Bag
kirislerindeki egrilikler bakimindan analiz sonuglar1 basarilidir.

Ucgiincii bir karsilastirma 6rnegi olarak, dért bodrum, bir zemin ve 17 normal kattan
olusan 21 katl gergek bir betonarme binanin deprem performansi irdelenmistir. Zaman
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tanim alaninda gergeklestirilen dogrusal olmayan dinamik ¢oziimlemede kullanilmak
tizere, sozkonusu binanin bulundugu bolgenin 6zelliklerine uygun 2007 Deprem
YoOnetmeligine gore tanimlanan ivme spektrumunu esas alan 30 adet tarihsel deprem
ivme kaydi PEER NGA veritabanindan se¢ilmistir. Burada, perdeler i¢in ¢atlamis kesit
icin kat 6telenmeleri ve goreli kat telenmeleri NTHA sonuglarina ¢ok yakin degerler
vermistir. Kirk bes katl 6rnekte oldugu gibi, kat kesme kuvvetleri ile kat devrilme
momentleri bakimindan guvenli tarafta kalan biiylik degerler elde edilmistir. Kat
devrilme momentleri degerlendirildiginde, birinci titresim modunun davranis tizerinde
baskin oldugu gozlemlenmektedir.Yine 45 katli 6rnekte oldugu gibi, se¢ilen bazi perde
liflerindeki sekildegistirmeler hasarin biiylik oldugu bdlgelerde NTHA ile yakin
sonuclar vermis, list katlara cikildikca hata miktar1 artmaktadir. Kiris egrilikleri
basarili olarak degerlendirlmekle birlikte birinci titresim modunun davranisa hakim
oldugu kanisina varilmstir.
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1. INTRODUCTION AND AIM OF THE STUDY

The complex and time-consuming process of NTHA increases the necessity to develop
simple analysis methods with reasonable accuracy. In this context, multimode
pushover methods may be considered as a significant alternative to NTHA. MPA is
one of the most well-known multimode pushover procedures. The method can be used
for 3D structures under bidirectional ground motions. The invariant force distribution
and the consideration of simultaneous bidirectional earthquake loading, as the
component combination of two separate unidirectional loadings, are the main
deficiencies of MPA. In this thesis, a variant of modal pushover analysis (VMPA) aims
to analyze 2D and 3D high-rise buildings subjected to earthquake effects. In addition,
the rationality of the proposed procedure is discussed in comparison with NTHA, as

well as the other multimode procedures found in the literature.

1.1 General Definitions

The NSP has become a practical analytical tool to evaluate the earthquake
performance of building-type structures. Most NSPs are precisely designated as
conventional pushover analyses, in which an invariant lateral force distribution
corresponding to the fundamental mode shape is subjected to the structure. However,
applicability of the conventional pushover analysis is limited to low-rise buildings
without vertical or torsional irregularities (Krawinkler and Seneviratna, 1997), the

behavior of which is not affected by higher modes.

Due to progressive yielding of the structural members, the dynamic characteristics of
the structure undergo changes; as a result, the distribution of the lateral loads should
be modified. To take into account the changes in dynamic characteristics, several

adaptive pushover methods have been developed.

The higher mode effects are accounted in the multimode methods. The adaptive
versions of the methods may be classified into two groups. The first group is the single-
run pushover analysis, in which the force or displacement distribution is calculated at



each incremental step by combining mode contributions based on the instantaneous
stiffness condition. The second group corresponds to multi-run pushover analysis, in
which the building is separately subjected to mode compatible force vectors, while the
contributions made by the demand parameter of interest are combined using an

appropriate combination rule.

Although the inertia forces are constant in VMPA, the variation of dynamic
characteristics, due to progressive yielding of the structural members, is considered in

its adaptive version, known as VMPA-A.

2D and 3D versions of VMPA-A are introduced in this study. The 2D version is
applied for unidirectional earthquakes, whereas bidirectional earthquake effects may

be accounted for in the 3D version.

1.2 Originality of the Study

VMPA-A diverges from some of the existing multimode pushover analysis procedures
for the following reasons:

i) Mode compatible adaptive forces are applied to the structure at each iteration
step, which provides the compatibility of force and displacement distributions

during analysis procedure.

i1) The application of the equal displacement rule, when combined with secant
stiffness-based linearization, eliminates the necessity to produce a capacity

diagram for each mode.

The implementation of the 2D algorithm is in the S¢-Sa format. The displacement-
controlled algorithm determines the single ordinate of the modal capacity diagram,
which corresponds to the target displacement demand for the n' mode (San_p, San_p) by
reducing elastic spectral acceleration (San_e) in order to converge with the plastic
acceleration (San_p). Meanwhile, a hybrid spectrum is proposed in order to consider the
effects of two planar components of ground motion simultaneously in 3D VMPA. The
linearization process is utilized to convey the ordinates from the elastic hybrid

spectrum to the plastic ones for each mode.

Although double applications of modal combination rules are required in MPA, a

unigue modal combination procedure is sufficient in VMPA.



1.3 Scope

In this study, VMPA is presented for the purposes of evaluating the seismic
performance of the structures. The suggested procedure is based on an iterative
process, in which secant stiffness is used both at the element level and in the modal

response.

The so-called DOC3D-v2 which is a MATLAB-based computer program, was
developed to implement VMPA to analyze nonlinear 3D frame and/or SW-type
structural systems. It considers concentrated and distributed plasticity for the frame
type elements, as well as the second order effects of axial loads on the members. The
applicability of the physical substructuring approach is one of the substantial features
of DOC3D-v2 for reducing the computation time. Free vibrational, as well as linear

time history analysis, algorithms are also implemented in DOC3D-v2.

The verification of the proposed procedure is achieved in relation to the results from
the literature and those obtained using NTHA.

1.4 Structure of the Thesis

The thesis consists of seven independent chapters. General descriptions of the chapters

are listed below:
Chapter 1 comprises the general definitions, originality and scope.

A detailed literature survey about the nonlinear behavior of reinforced concrete

members and multimode pushover analysis is presented in Chapter 2.

Chapter 3 gives information about nonlinear behaviors of some structural elements. A
new beam column element including shear-flexure interaction and the implementation
of a 3D multiple vertical line element are proposed in this chapter. The verification

examples are also included to the chapter.

A matrix displacement-based 3D analysis program is generated in Chapter 4. Elastic
or inelastic response analyses for static loads, free vibration and elastic time history
analyses are the discussed topics in this chapter. A number of verification examples

are studied to evaluate the accuracy of the results produced by the software.



In Chapter 5, the theory relating to VMPA-A is described for 2D and 3D systems. The
developed algorithm is implemented in DOC3D-v2.

Three verification examples are presented in Chapter 6. The resulting demands, such
as story drifts, story shear forces, story displacements, member deformations and

overturning moments, are compared between VMPA and NTHA.

General conclusions of the study are presented in Chapter 7.



2. LITERATURE REVIEW

2.1 Literature About the Modelling of Different Reinforced Concrete Members

Performance-based seismic design necessitates accurate nonlinear element models to
estimate the real behavior of structures. Concentrated and distributed plasticity options
may be used in relation to the model nonlinearity of RC elements (PEER, 2010;
Deierlein, 2010). Although simple hinges are defined at the locations where
nonlinearity is expected in concentrated plasticity, the nonlinearity is spread at
plasticity zones or through the whole element in distributed plasticity models. In
concentrated plasticity models, the element can consist not only of zero length plastic
hinges, but also inelastic springs with hysteretic properties. Distributed plasticity
models may be classified into three groups: the finite length hinge zone, the fiber
formulation and finite element models (Deierlein, 2010). The member ends are defined
as fixed or variable length plasticity zones, in which cross sections are characterized
through moment curvature or explicit fiber-section integrations in the finite length
hinge zone model. The sections, including concrete and steel fibers, are spread through
the element length in the fiber formulation models. Uniaxial material models are
defined in order to capture nonlinear behavior. Once the strains are known at the fiber
sections, the stresses can be calculated using the material constitutive relations.
Suddenly, the forces at the sections are found through numeric integration over cross
sections. The nonlinear shell element models are the most complex, yet the most
realistic, models of all, whereas the calibration of these models via experimental data

is cumbersome.

Devastating earthquakes of the past have shown that old reinforced concrete buildings,
which were built without ductile design requirements and/or low concrete compressive
strength, were prone to collapse or heavy damage. The most dangerous collapse
mechanism is related to shear, which occurs suddenly without flexural yielding
because of insufficient shear strength. Earlier experimental studies revealed that the

shear span ratio (as=Ls/h), which is defined as the ratio of shear span to column depth



for a cantilever column, is the main indication of the failure type. Shear failure mode
is dominated when as < 2.5 and the member is classified as a short column. If as
increases from 2.5 to 5, flexure-shear interaction is observed. Greater values of as

correspond to the flexural-type failure mode (Ceresa et al., 2008).

The evaluation of an existing building’s performance under seismic loads is still
typically achieved by only accounting for the flexural-type response of the members.
Shear-flexural interaction might be imported for some kinds of element, such as short
columns or shear-vulnerable members. To represent shear-flexural interaction, Guner
and Vecchio (2010) developed an analysis procedure using a distributed stress field
model (Vecchio and Collins, 2000), which inherently and accurately accounted for
shear-related effects, coupled with axial and flexural mechanisms, in nonlinear frame
behavior. Shear-flexure interaction has been a popular subject among researchers in
recent years. Xu and Zhang (2011) presented a hysteretic model, consisting of a flexure
and a shear spring coupled at the element level, in which shear-flexure interaction is
considered both at the section and element level. Ceresa et al. (2008) developed a
flexure-shear model for seismic analysis of RC-framed structures according to the
Modified Compression Field Theory (Vecchio and Collins, 1986). An enhanced fiber
stiffness-based element was formulated by Martinelli (2008) to model the effects of
shear-flexure interaction in reinforced concrete elements, which were subjected to

cyclic loading.

In this study, a beam-column element is introduced to account for both flexural and
shear deformations within spread plasticity, based on the Timoshenko Beam Theory.
In this context, the cantilever type base element is divided into meshes, while bending
and shear rigidities are updated at the middle of each sub-element. The flexibility terms
are determined by the summing rotational and transversal displacement differences
between successive points with the use of developed recurrence relations (Yuksel,
1998; Yiiksel and Karadogan, 2009). The previous version (Yiiksel, 1998), which uses
slope deflection equations, together with the force method, taking into account linear
shear behavior, has been modified in the newer version (Strmeli and Yuksel, 2012),
in order that the force method is only considered in relation to nonlinear shear behavior
as well as shear-flexure interaction. Geometric nonlinearity is considered in the

element level. The second order effects are taken into account using the virtual work



principle on the deformed configuration in the new algorithm, rather than using shear
force couples as used in the previous application.

The moment area method was applied by Girgin (1996) to calculate the flexibility

terms of a general beam-column element subjected to various type of effects.

Shear-flexure interaction, which is used in the beam-column element, is based on the
studies of Mergos and Kappos (2008, 2010), in which an empirical relationship is
proposed for evaluating the average shear distortion of reinforced concrete columns at

the onset of stirrup yielding.

The proposed beam-column element is validated against the envelopes of the
experimental results of reinforced concrete columns, subjected to cyclic loading.

Reinforced concrete core walls represent one of the most common lateral load-carrying
systems in reinforced concrete tall buildings (Aydmoglu, 2014; Constantin and Beyer,
2014; Pugh, 2012). These systems consist of T-, U- and L-shaped walls, which are
connected with coupling beams. Although compression-controlled flexural failure is
the most-observed failure mode in the case of bidirectional loading, the behavior of U-
shaped walls is complicated, while the assumption that the “plane section remains
plane after deformation” may not be valid (Constantin and Beyer, 2014). As such,
there is no consensus on the solution for U-shaped walls where they are subjected to

bidirectional loading.

Vuran (2014) described the modeling techniques for RC SWs in detail. SWs can be
modeled not only by beam-column elements with embedded rigid beams, but also with
2D fiber-type nonlinear shell elements, multiple-vertical-line-elements (MVLEMS)
and continuum finite elements. The former model was unable to take into account the
migration of a neutral axis during the analysis. As the MVLEMs and nonlinear shell
elements are composed of macro-fibers, in which the uniaxial material constitutive
relations are defined, the migration of a neutral axis through the section under cyclic
loading can be captured. Although continuum finite element models can be considered
as the most accurate modeling technique, various experimental studies have shown
that they present many difficulties for modeling and calibration. Furthermore, they

require fast and robust computer capabilities in order to decrease analysis time.



2.2 Literature About Multi-mode Pushover Analysis Procedures

Since the 1990s, the nonlinear static procedure (NSP) has become a practical analytical
tool to estimate seismic demands of building type structures. Such regulations as ATC-
40 (1996), FEMA 356 (2000), FEMA 440 (2005) and ASCE/SEI 41.06 (2007),
mandate the implementation of NSP for the performance evaluation of structures. Most
of NSPs are exactly designated as the conventional pushover analysis in which an
invariant lateral force distribution corresponding to the fundamental mode shape is
subjected to the structure. The target displacement demand is basically calculated
using the smoothened design spectrum according to the capacity spectrum method
(CSM, ATC-40) or the displacement coefficient method (FEMA 356). A type of
capacity spectrum method, the N2 method, has been accepted as one of the most
respected analysis methods by researchers (Fajfar and Fischinger, 1988; Fajfar 1999,
2000). However, applicability of the conventional pushover analysis is limited to low-
rise buildings without vertical or torsional irregularities (Krawinkler and Seneviratna,
1997), the behavior of which is not affected by higher modes. The first attempts to
consider higher modes were made by Paret et al. (1996) and Sasaki et al. (1998).
Subsequently, several multi-mode pushover analysis methods have been proposed.
Modal pushover analysis (MPA) is one of the most frequently used procedures among
researchers (Chopra and Goel, 2002, 2004a, 2004b; Chopra et al., 2004; Goel and
Chopra, 2005). In this method, the building is pushed with the lateral load patterns,
which are appropriate with the discrete initial mode shapes, to a predetermined target
displacement of a selected degree of freedom. The displacement demand for each
mode is calculated through the inelastic response spectra or nonlinear time history
analysis (NTHA), which is subjected to bi-linear single degree of freedom (SDOF)
systems determined from the idealized capacity curves. An extension of the N2 method
was proposed to account for higher modes in plan by Fajfar et al. (2005); more
recently, the procedure was used to consider the higher mode effects in elevation by
Kreslin (2010), Kreslin and Fajfar (2010, 2011, 2012). The method offers a more
simplified analysis tool with respect to MPA, which combines basic pushover analysis
with the results of elastic modal analysis. Correction factors are introduced in the
extended N2 method to scale the drift and displacement profiles in elevation and plan
obtained from the single mode pushover analysis to provide the same drift and

displacement profiles with the modal response spectrum analysis. Poursha et al. (2009)



proposed a consecutive modal pushover procedure (CMP) for seismic assessment of
tall buildings, in which the modal pushover analyses are implemented consecutively
using lateral force patterns compatible with linear-elastic mode shapes. The procedure
was applied to asymmetric tall buildings by Poursha et al. (2011). Khoshnoudian and
Kashani (2012) introduced modified consecutive modal pushover analysis (MCMP),

which is based on some modifications to CMP.

The above-mentioned multi-mode pushover procedures use invariant force
distributions. Conversely, due to progressive yielding of the structural members, the
dynamic characteristics of the structure undergo changes; as a result, the distribution
of the lateral loads should be modified. To take into account the changes in dynamic
characteristics, several adaptive pushover methods have been developed. The pioneer
adaptive pushover application, which considers only single-mode behavior, was
proposed by Bracci et al. (1997). Following this study, multi-mode adaptive pushover
procedures were proposed by many researchers, e.g., Elnashai (2001), Aydinoglu
(2003, 2004, 2007), Antonio and Pinho (2004a, 2004b), Kalkan and Kunnath (2006),
Shakeri et al. (2010, 2012), and Abbasnia et al. (2013). The multi-mode adaptive
methods may be classified into two groups. The first group is the single-run pushover
analysis, in which the force or displacement distribution is calculated at each
incremental step by combining mode contributions based on the instantaneous
stiffness condition. The second group corresponds to multi-run pushover analysis, in
which the building is subjected to mode compatible force vectors separately, and the
contributions of demand parameter of interest are combined by an appropriate

combination rule.

As a single-run pushover analysis type, force-based adaptive pushover analysis (FAP)
was proposed by Elnashai (2001) and Antonio and Pinho (2004a). FAP suffers from
the quadratic modal combination rules such as SRSS because the resulting forces are
always positive at all storey levels. To overcome this problem, a modified version of
FAP, namely, displacement-based adaptive pushover analysis (DAP), was developed
by Antonio and Pinho (2004b), wherein the structure is subjected to displacements
rather than forces. In this way, the sign reversal of forces at some storey levels is
implicitly taken into account by structural equilibrium to provide the combined modal
displacement profile. The DAP procedure was successfully applied in predicting the

earthquake demands for structures in comparison with FAP (Antonio and Pinho



2004b). As a modified version of FAP, a storey shear-based adaptive pushover method
known as SSAP was introduced by Shakeri et al. (2010) based on the storey shears
that consider the reversal of sign in the higher modes, unlike the FAP method. The
applied load vector at each step is calculated by subtracting the instantaneous
combined modal shear forces of the consecutive stories. The implementation of the
SSAP method to asymmetric-plan buildings was proposed by Shakeri et al. (2012). In
this method, a lateral force in two translational directions and torques at each step are
calculated by subtracting the combined modal storey shears and the combined modal

storey torques of consecutive stories.

As a multi-run pushover analysis method, the adaptive modal combination (AMC)
method proposed by Kalkan and Kunnath (2006) derives its fundamental shape from
the adaptive pushover procedure of Gupta and Kunnath (2000). The AMC method
combines the capacity spectrum method and the modal pushover procedure without
the necessity for the pre-estimation of the target displacement. An energy-based
methodology using constant-ductility inelastic displacement spectra is utilized to
estimate the dynamic target point. A displacement-based adaptive procedure based on
the effective modal mass combination rule (APAM) was proposed by Abbasnia et al.
(2013) to address the sign reversals in the load vectors compatible with instantaneous
mode shapes. The method uses the same methodology as CSM and AMC to estimate
the target displacement. According to the modal mass combination rule, the load vector
is scaled by a relative mode contribution factor that changes due to variations of
dynamic characteristics. The combination of the modified load vectors is determined
by summing/subtracting the modified load vectors. Each combination is applied to the
structure independently, and the envelope of the results is utilized. However, for both
the AMC and APAM methods, the interactions between the modes due to progressive

yielding are not considered through the analysis process.

An incremental response spectrum analysis (IRSA) approach was proposed by
Aydmoglu (2003, 2004, 2007), in which a piece-wise linear incremental analysis
procedure is conducted between formation of consecutive plastic hinges. As the
backbone curves of modal hysteresis loops, modal capacity diagrams are used to
estimate the modal inelastic displacement demands. The equal displacement rule with
a smoothened elastic response spectrum was reported by Aydinoglu (2003) as being a

practical application of the method. The method uses a non-iterative pushover
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technique, and linear analysis is conducted using an instantaneous tangent stiffness
matrix between formations of two consecutive plastic hinges. At each incremental
pushover step, the structure is subjected to modal displacement or load patterns for the
unit value of an unknown incremental scale factor. Analysis of the response spectrum
is conducted to calculate the increment of the generic response quantity of interest.
The resulting internal forces are then calculated by adding the increments to the
previously obtained forces via the incremental scale factor. After the incremental scale
factors of all potential plastic hinges are calculated, the smallest factor is selected as
the indicator of development of the next plastic hinge. Once the incremental scale
factors are obtained, the other demand parameters of interest are calculated

accordingly.

The implementation of multi-mode NSPs to unsymmetrical plan-buildings has become
prominent in recent years (Chopra and Goel, 2004; Poursha et al., 2011; Shakeri et al.,
2012; Perus and Fajfar, 2005; Marusic and Fajfar, 2005; Kreslin and Fajfar, 2011,
2012; Fajfar et al., 2005). This requires 3D pushover analyses accounting for the

torsional response of the building.

Current tall-building design codes (LATBSDC, 2008; SEAONC, 2007; CTBUH,
2008; PEER, 2009) recommend 2D NTHA in the design of tall buildings. Most
recently, 3D multi-mode pushover procedures have been extended to predict the
earthquake demands of buildings for bidirectional ground motion (Reyes, 2009; Reyes
and Chopra, 2011a, 2011b; Poursha et al., 2014; Fujii, 2011, 2014; Lin and Tsai, 2007,
2008; Lin etal., 2012a, 2012b; Bosco et al., 2012, 2013; Manoukas et al., 2012, 2014).
One of the pioneering procedures which takes the influence of bidirectional ground
motions is MPA (Reyes, 2009, Reyes and Chopra, 2011a, 2011b), but it has two
important shortcomings: 1) Invariant load patterns compatible with an n-mode shape
which corresponds to linear-elastic eigenvalues are applied to structure. When the
inelastic deformations increase, the mode shapes and natural frequencies alter. If one
applies unidirectional ground motion to an unsymmetrical building, the structure may
deflect, not only in the direction of the ground motion but also in the perpendicular
direction of the ground motion. Thus, for example, an x-directional earthquake may
generate x- and y-directional lateral displacements as well as rotations at the center of
mass (CM). Now, the displacement demand for a selected node consists of three DOFs

(namely, x and y translational and z rotational displacements). Therefore, the NSP
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procedure must be performed in order to provide the displacement demands of the
selected node for three DOFs simultaneously. It is impossible to tune the
displacements of three DOFs at the selected node simultaneously when the invariant
load patterns are used. Reyes and Chopra (Reyes and Chopra, 2011a-2011b) choose
the dominant earthquake direction (x or y) of the building as the target DOF to push
and the perpendicular direction are kept free. However, in the case of the application
of adaptive load patterns, two displacement demands can be provided. 2) The MPA
procedure is applied separately for the x and y components of the ground motion. For
each case, the demand parameters of interest are combined by a CQC combination
rule. Next, the effects of two ground motion components are combined by an SRSS
combination rule. The application of modal combination rules twice may cause
erroneous results. Manoukas et al. (Manoukas et al., 2012, 2014) established an
equivalent single-DOF (E-SDOF) system considering multidirectional seismic effects.
Assuming that the x- and y-directional components of the ground motion are

proportional to each other (U, = U, ), this procedure requires only uniaxial pushover

analysis in two directions separately, avoiding the application of a simplified
directional modal combination rule. Nonetheless, the assumption of selecting the
directional scale factor (SF) of x = 0.3 and the proportionality of the two components

of ground motion must be further investigated.

Fujii (2011) developed an NSP to determine the earthquake demands of a multi-story
asymmetric building with bidirectional eccentricity subjected to bidirectional ground
motion. It used two independent and equivalent SDOF models based on the principal
direction of each modal response. The contribution of each modal response is directly
estimated based on the unidirectional response in the principal direction. Recently, this
procedure has been extended to horizontal bidirectional ground motion acting at an

arbitrary angle of incidence (Fujii, 2014).

Lin and Tsai (2008) developed three-DOF modal systems in order to assess the
demands of two-way asymmetric building systems representing two modal
translations and one modal rotation under two-directional ground motions.
Subsequently, Lin and Tsai (2012a, 2012b) also established inelastic response spectra
which are constructed from the inelastic three-DOF modal systems.
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3. NUMERICAL MODELING OF NONLINEAR BEHAVIOR OF THE
STRUCTURAL MEMBERS

Two distinct structural members, namely a beam-column element and a shear wall (3D
MVLEM), are accounted for in this study. The nonlinear beam-column element may
be used for various types of material. However, the MVLEM can only be utilized for

RC structures.

3.1 Beam-Column Element

A beam-column element is introduced here in order to account for both flexural and
shear deformations within the spread plasticity based on the Timoshenko Beam
Theory. A pioneer study about the topic was realized by Cakiroglu (1978) in which
stiffness terms of a beam-column element were determined accounting shear and

flexural deformations.

The flexibility method is used for the derivation of the flexibility and stiffness terms
of the beam-column element. A cantilever is selected as a released system; the
redundant forces (X1 and X2) are shown in Figure 3.1, where L corresponds to the
length of the element and the general load arrangement is the distributed type.

q - - q

TR
N

I,
%]

NAMNNAN

2
7

L L

Figure 3.1 : The beam-column element and the flexibility terms.

The beam-column element is divided into m segments whose lengths are AL=L/m
(Figure 3.2). The n'" segment has three coordinates defined as the left, middle and right
points (XIn, Xmn and Xry). It has flexural and shear rigidities of El, and GAn, which are

defined in the middle of the segment.
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Figure 3.2 : Segments defined on the beam-column element.

3.1.1 Flexibility terms

The flexibility terms defined as fij are determined by summing the rotational and
transversal displacement differences calculated for the sequential segments by using
virtual work theory. In the definition of fij, subscript i defines the location, while
subscript j stands for the reason of the deformation. In this context, the X:=1 case is
used to determine the flexibility terms of f11 and f21; meanwhile, the X>=1 case is used
to determine the flexibility terms of f12 and f22. For the distributed load case (X=0), the
obtained flexibility terms are fio and f.

The application of the distinct load cases are revealed in Figures 3.3 and 3.4. As seen
from the figure, the moment and shear force diagrams M;and T; (j=0,1,2) are divided
into first- and second-order counterparts as Mj = Moj + Mpjand Tj = Toj + Tpj, Where
the moment and shear diagrams Moj, Toj correspond to the first-order terms, while My;

and Tp; correspond to the second-order terms.

The moment and shear force diagrams are discretized for each loading case (j=0,1,2)
at (m+1) nodes. The discrete values are collected in M; and T; vectors as follows:

T _
MT = [M "

J o My Mkmm}

- (3.1)
Ti _|:Ti(1) TJ(z) TJ(n) Tj(m+1):|
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Figure 3.3 : Moment and shear force diagrams for loading cases 1 and 2.
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Figure 3.4 : Moment and shear force diagrams for loading case 0.

General integral equations of virtual work theory are as follows:
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where M, and M, are virtual moment diagrams, and T, and T, are the virtual shear

force diagrams to be used in the calculation of rotational and transversal displacements
at any force segment, as shown in Figure 3.5. Moment diagram M; and shear force
diagram Tjare associated with the j™ load condition. To account for the geometric
nonlinearity, the moment and shear force diagrams are modified in each load step until
the flexibility terms converge to a specific value in successive steps. If one converts
the integral equations given in Equations 3.2 and 3.3 into discrete parts, the flexibility
terms can be defined as the sum of rotational and transversal displacement differences,

as given below:

iy = ;Aeij f= Z;Aé‘ij (3.4)

where A@ijjand Aoij are the rotational and transversal displacement differences at the
i"" segment for the j™ loading condition. In order to calculate A, a unit moment
couple is applied to the boundaries of the i segment. For the calculation of Adij, a unit

force couple is applied at the boundaries of the segment in opposite directions; see
Figure 3.5.

Unit Loading for displacement difference Unit Loading for rotation difference
p AL AL |
7 1 1
7] + + — + —
”
ﬂ £ -'l_ < —] ((’l!’ '\-l(-’ & —
'3 2. k | P, (T,) ’2 27, o4 [Ta)

Figure 3.5 : Unit moment and shear force diagrams for calculating Aﬁij and Aéij.

The flexibility term fij consists of the second-order flexural and shear deformations,

fij = fi_m + fi_1, where fi_m is the contribution of flexural deformations and fjj 7
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corresponds to the shear deformations. The flexural flexibility terms are listed in Table
3.1. In these equations, m corresponds to the number of segments, i defines segment
ID, El; is flexural rigidity of the segment, AL stands for the segment length, q is
intensity of distributed load, P is the axial compression force acting on the beam-
column, and Xmg), Xy and Xy are the middle, left and right point coordinates of the i*"

segment.
Table 3.1 : Flexural flexibility terms.
m (M, + M, )AL
f _ 1(i) 1(i+1)
Y Z 21, (3.5)
2 2
f _Zm: _(2M1<i>+M1<i+1>)AL _"2(M1<i—1>+M1<1>)AL -
21 M
< 6El, = 2EI (3.6)
f :Zm: (MZ(i)+M2(i+l))AL
12_M - 2El (3.7)
2 2
; _Zm: _(2M2(i>+M2<i+1))AL _"2(M2<J—1)+M2<J>)AL -
22 M T
— 6EI o 2l , (3.8)
- g AL (Xr(l) Xl(l)) (MPO(i)+MPO(i+1))AL
ho_uw .;El [ e Lab - 6 =) (3.9)
I q | (LAL)? N ( () x,(,)) |
E—Ii T_LALXm(l) m)+(Xr(i)—Xl(i)) §+T T
_N '>2qAL z__ r(i—l)‘xlau—l)_(M G + Mgy )AL
f207M _; z . L LALXm(J 1) 6 2E|H + (310)
(ZMPO )+MPO(|+1))AL2
6EI,

The flexibility terms related to shear deformations are listed in Table 3.2, where GA;

is the effective shear rigidity of the it segment.
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Table 3.2 : Flexural terms related to shear.

L PAG

T i1

T GA (3.11)
- PAS,
Z (3.12)
i1
L PAG,
Z (3.13)

0 AL + PA§
22T Z

& (3.14)
u PA@IO qAL
fio a (3.15)
n | gAL(L =X, )+PAS,
f =
20T Z{ GA (3.16)

The flexibity term f11_1 is calculated from virtual work theory by assuming that virtual
moments work with shear-related curvatures due to the second-order effects, as shown
Equation 3.17.

i i 1 o7 = (T
11-|— j dX+J.T9]/dX J.M a& dX+J.T6 a dx (317)

0 0 0

where 0T /dx=Py" and the equation is re-arranged by:

L

P y"dX: Py _Pf
GA GA GA (3.18)

fll_T =

0

The equation above only considers nonlinearity due to the second-order effects. If

material nonlinearity is also taken into account, Equation 3.18 can be defined in terms

of discrete rotation differences (A&, ) as given in Equation 3.11.

The flexibility term f21_t is obtained from virtual work theory as:
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0

Equation 3.19 can be defined in terms of the discrete rotation differences as given in
Equation 3.12.

The flexibility terms due to loading case 2 (X»>=1) are as follows:

h 1 a7 [Py . _Py(L) _Pf
dx = 12
for { (GA axj "= -([GA "“Tea o (3.20)
o C1+Py  L+Py(L)
fo r '([T (GAjd __([ GA dx = GA (3.21)

Equations 3.20 and 3.21 can be defined in terms of the discrete rotation and

displacement differences as given in Equations 3.13 and 3.14.

The flexibility terms (f1o_T, f20_1), due to loading case 0 (X=0), are calculated by using

virtual work theory:

(= (10T ;

f10 T :!Mg(a&JdX-FI[TQ (—jdx
co (1 0

flo_T:.([Me(aa_(Py"‘q(L X))j (3.22)
S (1 Pf,—qL

fo.=[1]=—(Py" dx=—=uo 1=

o= Py - -l

(T Lq(L-x)+PYy’ qL2/2 +Pf
foo 1 :.[TA (_dez_[q( ) dx = ( ) = (3.23)
0

GA GA

Equations 3.22 and 3.23 can be defined in terms of the discrete rotation and

displacement differences as given in Equations 3.15 and 3.16.
3.1.1.1 Validation of flexibility terms

The differential equations corresponding to the Bernoulli Navier Hypothesis and the

Timoshenko Beam Theory are utilized for the validation of the flexibility terms
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presented in Chapter 3.1.1. The results of the analytical solutions of some flexibility

terms are compared with the results obtained from the suggested numerical solutions.

A rectangular cross section with dimensions of 600x300mm is selected as an example.
The modulus of elasticity is E=28,000 MPa, the shear modulus is G=11,667 MPa, the
bending and shear rigidities are EI=151,200 kNm?, GA=2,100,000 kN and the axial
compression force (P) is selected as 1,000 kN. The flexibility terms and the
corresponding relative differences are presented for 11 distinct released systems,
which have different lengths (L=0.5m, 1 m, 2 m .... 10 m). The released systems are

divided into 200 segments.
I. Accounting only for flexural deformations

The Bernoulli-Navier Hypothesis, which is used for the validation of flexural
flexibility terms, is based on the assumption that plane sections remain plain and

perpendicular to the neutral axis after deformation.

The released system and related differential equations for the two loading cases (X1=1,
X>=1) are tabulated in Table 3.4. The flexibility terms correspond to the initial values

(x=0) of the elastic curve, as shown in Table 3.3.

Table 3.3 : The analytical solution of flexibility terms for unit loading.

£ =y :(%+ o jksin(kL) (3.2

= Y(0) = %(Cosim —1] (3.25)

fro v =Y(0)= %(tanl((kl') - Lj (3.26)

A e 621
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Table 3.4 : The solution of differential equations for the unit loadings.
Loading Case 2

Loading Case 1

PVZLI

Free
P
Body fan [ T
Diagram
Moments M=P(fy y-y)+1 M =-P(f,, y —Yy)-Xx
Diff. Eq. ) k2 p , k2 )
Arranged YKy =Kty t K== VKT =K Ty + X e ==
Solution y =Y, +Y, = Acos(kx) + Bsin(kx) + C + Dx
Boun. Con. y(0)=0 y'(0)=0
sin(kL)
; y= ( f jcos(kL) }cos(kx) +
'E::'Sf\tl': y =—[ for +%)(cos(kL) cos(kx) +sin(kL) sin(kx) —1) { 2 Pk
KL)
fo s n(kL) -0 [inog + 1, +
Pk -
1 y = [—(fzz y +£)cos(kL)+M}sin(kx)+
Rotation y’:—( fo +Ej(—k cos(kL)sin(kx) + k sin(kL) cos(kx)) - P Pk
l{ (fzz y Ljsin(kl.)-%}cos(kxp%
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The analytical solution of the flexibility terms fo1_m, fi1_m, f12 m, f22 M are compared

with the numerical solution. The relative differences are listed in Tables 3.5 and 3.6.

It can be seen that the maximum relative difference is in the range of 10°®.

Table 3.5 : The relative differences for the flexibility terms of f mand fi1_m.

L for.w for_w Relative fro fro_w Relative
(analytical) (numerical) ) (analytical) (numerical) )

m) m) m) Difference (radiant) (radiant) Difference

0.5 -8.2729E-07 -8.2729E-07 3.4471E-09 3.3087E-06 3.3087E-06 3.4437E-09
1 -3.3160E-06 -3.3160E-06 1.3817E-08 6.6284E-06 6.6284E-06 1.3763E-08
2 -1.3375E-05 -1.3375E-05 5.5729E-08 1.3345E-05 1.3345E-05 5.4871E-08
3 -3.0518E-05 -3.0518E-05 1.2716E-07 2.0245E-05 2.0245E-05 1.2277E-07
4 -5.5348E-05 -5.5348E-05 2.3061E-07 2.7429E-05 2.7429E-05 2.1654E-07
5 -8.8778E-05 -8.8778E-05 3.6987E-07 3.5021E-05 3.5021E-05 3.3487E-07
6 -1.3212E-04 -1.3212E-04 5.5038E-07 4.3164E-05 4.3164E-05 4.7603E-07
7 -1.8724E-04 -1.8724E-04 7.7980E-07 5.2044E-05 5.2044E-05 6.3787E-07
8 -2.5672E-04 -2.5672E-04 1.0689E-06 6.1901E-05 6.1901E-05 8.1779E-07
9 -3.4429E-04 -3.4429E-04 1.4327E-06 7.3062E-05 7.3061E-05 1.0127E-06
10 -4.5531E-04 -4.5530E-04 1.8935E-06 8.5986E-05 8.5986E-05 1.2188E-06

The released system with external loading (X=0) and the related equations are

tabulated in Table 3.7. The flexibility terms correspond to the initial values (x=0) of

the elastic curve, as shown in Table 3.8.

Table 3.6 : The relative differences for the flexibility terms of f21_ mand fi1 m.

L

f22_m(analytical)  f22_m (numerical)  Relative fi2 m (analytical)  fi2 m(numerical)  Relative
(m) (m) (m) Difference (radiant) (radiant) Difference
0.5 2.7576E-07 2.7576E-07 3.4470E-09 -8.2729E-07 -8.2729E-07 3.4469E-09
1 2.2104E-06 2.2104E-06 1.3815E-08 -3.3160E-06 -3.3160E-06  1.3817E-08
2 1.7825E-05 1.7825E-05 5.5704E-08 -1.3375E-05 -1.3375E-05 5.5729E-08
3 6.0976E-05 6.0976E-05 1.2703E-07 -3.0518E-05 -3.0518E-05  1.2716E-07
4 1.4733E-04 1.4733E-04 2.3021E-07 -5.5348E-05 -5.5348E-05 2.3061E-07
5 2.9511E-04 2.9511E-04  3.6890E-07 -8.8778E-05 -8.8778E-05  3.6987E-07
6 5.2638E-04 5.2638E-04 5.4837E-07 -1.3212E-04 -1.3212E-04 5.5038E-07
7 8.6900E-04 8.6900E-04  7.7605E-07 -1.8724E-04 -1.8724E-04  7.7980E-07
8 1.3594E-03 1.3594E-03 1.0624E-06 -2.5672E-04 -2.5672E-04 1.0689E-06
9 2.0469E-03 2.0469E-03 1.4223E-06 -3.4429E-04 -3.4429E-04  1.4327E-06
10 3.0011E-03 3.0011E-03 1.8773E-06 -4.5531E-04 -4.5530E-04 1.8935E-06

22



Table 3.7 : The solution of differential equations for the external loading.

Loading Case 0

q q
Free —— — 1
Body
Diagram
Diff. Eq. M = —Ely"(x)
Moments M = —P(f, —y)—qx/2
Diff. Eq. . kg p
Arranged y +k2y=k2f20+5x2 k2 ==
Solution Yy =Y, + Y, = Acos(kx) + Bsin(kx) + C + Dx + Ex?®
ML po,a At
Elastic y= |: Pk sin(kL) + COS(kL)( fZO_M + PK? 2P ]:| cos(kx)
Curve f )
+{—Sin(kl-)( foo v — quz + CZIPJ gk COS(kL)}sm(kx)+ fo u _%4.2%)(2
q q
y' = —S|n(kL)+cos(kL) 20 vt = (=k)sin(kx)
Rotation Pk Pk? 2P

{—sin(kL)( oo i — qu2 + ‘;;j gt cos(kL)}kcos(kx)+—x

Table 3.8 : The analytical solution of the flexibility terms of fio m and f2o_wm.

g [tk Ly 1f 1
fzo_M—y(O)—P{L( ” 2j+k2(1 COS(kL)H (3.28)
, : 9 ) gL
flO_M:y(O):(—k)sm(kL)(fzo el ij F,COS(kL) (3.29)

The comparision made for the flexibility terms of fio m and foo_m are listed in Table
3.9 for 11 distinct released systems having different lengths. One can conclude that the
maximum relative difference between the Bernoulli Navier Hypothesis and the

suggested numerical procedure is around 107,
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Table 3.9 : Relative differences for the flexibility terms of foo m and fio m.

fa0_m fa0_m Relative fio_m fio_m Relative
L (analytical) (numerical) Difference (analytical) (numerical) Difference

(m) (m) (m) (radiant) (radiant)

0.5 1.0341E-06 1.0341E-06 3.3093E-09 -2.7578E-06 -2.7578E-06  3.4470E-09
1 1.6577E-05 1.6577E-05 1.3808E-08 -2.2112E-05 -2.2112E-05 1.3820E-08
2 2.6730E-04 2.6730E-04 5.5688E-08 -1.7849E-04 -1.7849E-04  5.5777E-08
3 1.3711E-03 1.3711E-03 1.2695E-07 -6.1158E-04 -6.1158E-04 1.2740E-07
4 4.4148E-03 4.4148E-03 2.2995E-07 -1.4812E-03 -1.4812E-03 2.3139E-07
5 1.1046E-02 1.1046E-02 3.6826E-07 -2.9757E-03 -2.9757E-03  3.7178E-07
6 2.3624E-02 2.3624E-02 5.4702E-07 -5.3272E-03 -5.3272E-03  5.5435E-07
7 4.5456E-02 4.5456E-02 7.7353E-07 -8.8332E-03 -8.8332E-03 7.8718E-07
8 8.1172E-02 8.1171E-02 1.0580E-06 -1.3888E-02 -1.3888E-02 1.0815E-06
9 1.3732E-01 1.3732E-01 1.4152E-06 -2.1033E-02 -2.1033E-02 1.4531E-06

10 2.2338E-01 2.2338E-01 1.8665E-06 -3.1039E-02 -3.1039E-02 1.9246E-06

ii. Accounting for flexural and shear deformations together

The shear and flexure deformations are accounted for based on the Timoshenko Beam

Theory, in which plane sections remain plain after deformation but are not

perpendicular to the neutral axis. The total deflection can be defined in terms of shear

and flexural deformations.

The differential equations and corresponding solution functions for laod cases 1 and 2

are given in Table 3.11. The unknown flexibility terms are the values of initial points

(x=0) of the elastic curve and rotation equations, as shown in Table 3.10.

Table 3.10 : The analytical solution of the flexibility terms for unit loading due to

combined moment and shear effects.

f,=y(0)= (%+ fﬂjksin(kL) (3.30)

£, =y(0) :%(Wlku‘lJ (331)
f,=y'(0)= —( f,y +%jksin(kL)—%PkL)+% (3.32)
f, = y(0) =%(%— Lj (3.33)
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Table 3.11 : The solution of differential equations for unit loadings in the case of combined moment and shear effects.

Loading Case 1 Loading Case 2
Curvature y'=yu +VYy
Diff. Eq. v :M_E(Lj y = _M+1(L)
El dx\GA El  dx\GA
Moments M =P(f,—-y)+1 M =-P(f,, —y)—x
Shear Force T=-P-y T=P-y+1
Diff. Eq. y”+k2y:k2(f21+£j L y"+k2y:k2(f22+ij k? = P
Arranged P El (1_'3) P El (1_'3)
GA GA
Solution Yy =Y, +Y, = Acos(kx) + Bsin(kx) +C + Dx
Boun. Con. y(0)=0 y'(0)=0
L sin(kL)
i y= —[f +—J cos(kL) +—} cos(kx) +
'E::'Sf\tl': y= —[ f,, +%} (cos(kL) cos(kx) +sin(kL) sin(kx) —1) { Z,i P (kL)Pk
. cos . X
{—( f, +Fjsm(kL)—T}sm(kx)+ T, +F
1 y' = —k{—( f +£jcos(kL) +M}sin(kx) +
Rotation y' = —( fy +Ej(—k cos(kL)sin(kx) + k sin(kL) cos(kx)) P Pk

k {-( f, +%)sin(kL) —%} cos(kx) +%
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The comparisons between the Timoshenko Beam Theory and the suggested numerical
procedure for the flexibility terms of f21, fi1, fi2 and f22 are presented in Tables 3.12 and 3.13.
The maximum relative difference obtained from the 11 released systems with different lengths

is around 107,

Table 3.12 : The relative differences for the flexibility terms of fizand fo1.

L le_ le_ Relative i1 _ fn_ Relative
(analytical) (numerical) Difference (analytical) (numerical) Difference

(m) (m) (m) (radiant) (radiant)

0.5 8.2768E-07 -8.2768E-07 3.4485E-09 3.3103E-06 3.3103E-06  3.4482E-09
1 3.3176E-06 -3.3176E-06 1.3823E-08 6.6315E-06 6.6315E-06  1.3816E-08
2 1.3381E-05 -1.3381E-05 5.5755E-08 1.3352E-05 1.3352E-05  5.5633E-08
3 3.0533E-05 -3.0533E-05 1.2722E-07 2.0254E-05 2.0254E-05  1.2660E-07
4 5.5375E-05 -5.5375E-05 2.3072E-07 2.7443E-05 2.7443E-05  2.2875E-07
5 8.8823E-05 -8.8823E-05 3.7005E-07 3.5038E-05 3.5038E-05  3.6521E-07
6 1.3219E-04 -1.3219E-04 5.5067E-07 4.3186E-05  4.3186E-05  5.4054E-07
7 1.8734E-04 -1.8734E-04 7.8023E-07 5.2072E-05 5.2072E-05  7.6127E-07
8 2.5687E-04 -2.5687E-04 1.0695E-06 6.1935E-05 6.1935E-05  1.0367E-06
9 3.4450E-04 -3.4450E-04 1.4336E-06 7.3105E-05 7.3105E-05  1.3804E-06

10 4.5560E-04 -4.5560E-04 1.8947E-06 8.6040E-05 8.6040E-05  1.8124E-06

Table 3.13 : The relative differences for the flexibility terms of fi2 and foo.

L fzz. fzz' Relative f12. f12. Relative
(analytical) (numerical) Difference (analytical) (numerical) Difference

(m) (m) (m) (radiant) (radiant)

0.5 2.7589E-07 2.7589E-07 3.4485E-09  -8.2768E-07 -8.2768E-07  3.4487E-09
1 2.2115E-06 2.2115E-06 1.3822E-08  -3.3176E-06  -3.3176E-06  1.3823E-08
2 1.7834E-05 1.7834E-05 5.5731E-08  -1.3381E-05 -1.3381E-05  5.5755E-08
3 6.1006E-05 6.1006E-05 1.2710E-07  -3.0533E-05 -3.0533E-05  1.2722E-07
4 1.4741E-04 1.4741E-04 2.3033E-07  -5.5375E-05  -5.5375E-05  2.3072E-07
5 2.9526E-04 2.9526E-04 3.6909E-07  -8.8823E-05 -8.8823E-05  3.7005E-07
6 5.2666E-04 5.2666E-04 5.4866E-07  -1.3219E-04  -1.3219E-04  5.5067E-07
7 8.6947E-04 8.6947E-04 7.7647E-07  -1.8734E-04  -1.8734E-04  7.8023E-07
8 1.3602E-03 1.3602E-03 1.0630E-06  -2.5687E-04 -2.5687E-04  1.0695E-06
9 2.0482E-03 2.0482E-03 1.4231E-06  -3.4450E-04 -3.4450E-04  1.4336E-06
10 3.0031E-03 3.0030E-03 1.8786E-06  -4.5560E-04 -4.5560E-04  1.8947E-06

The released system with the external distributed load is studied in Table 3.14. The differential
equations and the corresponding solutions are listed in this table. The flexibility terms are the
initial values of the elastic curve, as shown in Table 3.15.
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Table 3.14 : The solution of differential equations for the external loading in the case of
combined moment and shear effects.

Loading Case 0

Diff. Eq. y=-M, i T
El  dx
Moments M =—P(f,, —y)—qx*/2
Shear Force T=P-y+gx
Diff. Eq. y' +k’y =k? [f20+EI 4,8 x) ki P
Arranged GAP 2P El (1_'3)
GA
Solution y =Yy, +Y, = Acos(kx) + Bsin(kx) +C + Dx + Ex?
Boun. Con. y(0)=0 vy'(0)=0

2
y= {g—tsin(kL) + cos(kL)(— f, —ﬂﬂ+i—£ﬂcos(kx)

PGA Pk’ 2P
Elastic El 12 L
Curve {—sin(kL){ foo+ g = P?(Z + ZPJ gk cos(kL)}sm(kx)
+f20 - q2 +ﬂﬂ+ix2
Pk PGA 2P
oL El L2
y =[%sm(kL)+cos(kL)[—fzo _%@+%_ ‘;P H( K)sin(kx)
Rotation

{—sin(kL)[ £+ g 3\ Piz + ‘;;J gt cos(kL)}kcos(kx)+—x

Table 3.15 : The analytical solution of the flexibility terms of fio and f2o.

_yoy=9| (fenkt) LY (1 El), 1
‘y(o)‘p[L( K 2)“{1& GA)(l cos(kL)H (3.34)
, El 12) . L

~y'(0) :(L_fm g GA+%—Z—Pjsm(kL)—%cos(kL)]k (3.35)

Similar comparisions are presented in Table 3.16 for fip and f2o due to the combined effects.
The results obtained for the 11 distinct elements show that the maximum relative difference is

around 10,
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Table 3.16 : The relative differences for the flexibility terms of fio and fao.

f0 fo Relative fio flo. Relative
L (analytical) (numerical) Difference (analytical) (numerical) Difference
(m) (m) (radiant) (radiant)

05  2.2264E-06 2.2261E-06 1.4760E-04 -7.5259E-06  -7.5246E-06  1.7463E-04
1 2.1362E-05 2.1357E-05 2.4666E-04 -3.1672E-05  -3.1646E-05  8.0859E-04
2 2.8670E-04 2.8661E-04 2.9666E-04 -1.9780E-04 -1.9762E-04  9.0500E-04
3 1.4157E-03 1.4153E-03 3.0868E-04 -6.4105E-04 -6.4045E-04  9.2812E-04
4 4.4967E-03 4.4953E-03 3.1368E-04 -1.5214E-03  -1.5200E-03  9.3532E-04
5 1.1180E-02 1.1176E-02 3.1667E-04 -3.0277E-03 -3.0248E-03  9.3706E-04
6 2.3826E-02 2.3819E-02 3.1900E-04 -5.3923E-03 -5.3872E-03  9.3621E-04
7 4.5750E-02 4.5735E-02 3.2114E-04 -8.9131E-03  -8.9048E-03  9.3383E-04
8 8.1588E-02 8.1561E-02 3.2332E-04 -1.3985E-02  -1.3972E-02  9.3036E-04
9 1.3790E-01 1.3786E-01 3.2566E-04 -2.1152E-02 -2.1132E-02  9.2602E-04

10 2.2418E-01 2.2410E-01 3.2822E-04 -3.1184E-02  -3.1155E-02  9.2097E-04

3.2 Shear-Flexure Interaction

Shear-flexure interaction, which is effective in the behavior of the short RC beams and columns,
is studied with reference to Mergos and Kappos (2008, 2010). According to these studies, a
shear force-shear distortion envelope is generated due to the current curvature ductility demand
(n); see Figure 3.6b. If the current ductility wis smaller than three, there is no interaction
between shear and flexure, such that the shear capacity curve is bilinear with cracking and
ultimate points, as shown in Figure 3.6a, where V¢, Vy and Vo are respectively cracking,
flexural yielding and ultimate shear strengths (yielding of the transverse reinforcement), while
and yer, vy and yy are the respective corresponding shear distortions. Meanwhile, GAq is the
initial shear rigidity and GA is the post-cracking rigidity for the undegraded case. The case of
Yu < yu=3 COrresponds to shear dominant behavior, which can be observed in short columns and
beams etc. (see Figure 3.6b). For increasing curvature ductility demands (u>3), shear strength
reduces as shown in the figure. The shear forces V=3, V=7 and V=15 correspond to the ductility
demands pu=3, u=7, u=15, while y,=3, yu=7 and y,=15 are the corresponding shear distortions,
respectively. If the curvature ductility demand is between three and seven, the post-cracking
rigidity (GA1) reduces to GA2 and, for 7<u<15, GA: reduces to GAs. For other cases, post-
cracking rigidity is equal to GA:.

The cracking shear strength for a RC beam-column is given by Sezen and Moehle (2004) as

follows:
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f P \Y)
V, =—em_ 1y — e
cr LS /h fctm ] Ag AO Ver GAb (336)

where fetm IS the mean concrete tensile strength, P is compressive axial load, as=Ls/h is the shear
span ratio, Ag is the gross sectional area of the cross section and G is the elastic shear modulus.
Ao=0.8Aq is the effective area, which takes into account a parabolic shear stress distribution
along the depth of the cross section. The cracking shear distortion is then calculated by Equation
3.36.

\% \%
R 7
~16A, GA
1\{[:15_ ,'l 1
Vy N/ : GrA3
Vus3[ 1GA,
Vot
Vel o
GA, |
v 10 | Y
Tl s N s
a) Undegraded case b) Degraded case

Figure 3.6 : Shear distortion-shear force envelopes.

The ultimate shear strength is given by Priestley et al. (1994) with the following formula:

-f_-(d—-d")cot
vu=kv-ch-(0.8Ag)+P-tanozc+Av VW(S Jeote (3.37)

where fc is the concrete compressive strength, Aw is the transverse reinforcement area, fyw is the

transverse reinforcement yield strength, ¢ is the angle between the column axis and the
direction of the diagonal compression struts, which is suggested as 35°; meanwhile, d - d' is the
distance that is parallel to the applied shear between the centers of the longitudinal
reinforcement, s is the spacing of the transverse reinforcement, and o is the angle between the
column axis and the line joining the centers of the flexural compression zones at the top and
bottom of the column. The factor ky is a parameter that is dependent on the curvature ductility

demand, as shown in Figure 3.7.

29



The ultimate shear distortion is determined by using the truss analogy approach, which was
proposed by Park and Paulay (1975) and Kowalsky et al. (1995). It is calculated by using
Equation 3.38.

v, A, f,cote s 1
7uo = + 2 + H 3 (338)
GA, S E, A, cotp® E_bsing’cosgcote
k.,
A
0.29
0.10
0.05
. "l'K

3 7 15
Figure 3.7 : ky factors.

where Es and E. are respectively the modulus of elasticity of concrete and steel, while b is the
width of the cross section. Mergos and Kappos (2008) proposed two modification factors to
account for the axial load and the column aspect ratio for deriving ultimate shear distortion.

The first modification factor, i , takes into account the influence of the axial load and is given

by:
w=1-1.03-v v=P/(A1.) (3.39)

The second modification factor, A4, represents the influence of the column aspect ratio and is

given by the following expression:

LS
A :5'41_1'13'(Tj >1 (3.40)

where Ls s the shear span length and h is height of the cross section.

The resulting ultimate shear distortion is then calculated as:

Yo =V AV (3.41)

The implementation of shear-flexure interaction is shown in Figure 3.8. Herein, the dashed line

corresponds to the undegraded case, while Vi is the shear force at the i analysis step where
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flexural yielding previously occurred. The shear force difference (4V) is the difference between
Vi and Ver. The term AdegVc is the difference between Vip and the ultimate shear strength (Vi),

which is derived from the current curvature ductility.

The steps of the analysis are also shown in Figure 3.8. Each intermediate step i consists of three

sub-steps. In the first sub-step, the shear force V."and »’is calculated. In the following sub-

step, the undegraded shear capacity corresponding to »”is calculated. The bending moment M;

and the corresponding effective flexural rigidity El; are defined by the secant stiffness method

from moment-curvature relations; see Chapter 4.6. Depending on the current curvature ductility
demand (u), Vi and the corresponding y; are determined at the last sub-step of i step. The

resulting effective shear rigidity for the next step (i+1) is GAesfi+1) , See Equation 3.42.

AdegVe

Figure 3.8 : Implementation of shear-flexure interaction.

_ AV +AdegV, Vv,
A= CAdg,, = . (3.42)

3.2.1 Experimental validation

To validate the success of the developed algorithm, three column specimens, which were
exposed to cyclic loading, were utilized. The first example demonstrates flexure critical
behavior, the second one has shear-flexure behavior and the collapse mechanism of the third

one is shear-dominated.
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3.2.1.1 Flexure critical example

The selected flexure critical column (Karadogan et al., 2009) was tested under quasi-static
cyclic loading. The cross section and elevation of the specimen are illustrated in Figure 3.9.
The axial load applied is 365 kN. The concrete compressive strength is 45 MPa, the yield (fy1)
and ultimate strengths (fsu) of the longitudinal reinforcement are 540 MPa and 658 MPa, the
yield strength of the transverse reinforcement (fyw) is 476 MPa. The section consists of eight
longitudinal bars with a diameter of 20 mm. The diameter of the lateral reinforcement is 8 mm.

The shear span ratio (o) is equal to 10.0, which corresponds to the flexure critical failure mode.

P
l F
e
- 400
g
=
=
=
-+
400 mm
,.% 750 E
N s
ol =
=1
Uy
hf
1500 48

Figure 3.9 : The elevation and cross section of the column.

The gradually increasing lateral displacements are acted on at the top of the column. The
corresponding shear force at the base of the column vs. the top displacement is illustrated in
Figure 3.10, together with the experimental hystresis. Although there is some divergence in the

decending branches, the simulated envelope curve significantly predicts the response of the

column.
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Figure 3.10 : Force vs. displacement relations of the flexure critical column example.
3.2.1.2 Shear-flexure critical example

The shear-flexure critical column example is taken from Lynn et al. (1996). The column has
dimensions of 457x457 mm, as shown in Figure 3.11 and its height is 1,473 mm. The
corresponding shear span ratio is as =3.22. The section consists of eight longitudinal bars with

a diameter of 25.4 mm. The diameter of the lateral reinforcement is 9.53 mm.

$op = 9.525 mm

8¢1on: = 25.4 mm

457 mm

457 mm
Figure 3.11 : The cross section of the shear-flexure critical specimen.

The axial load is 503 kN. The concrete compressive strength is 41 MPa, the yield (fy) and
ultimate strength (fsu) of the longitudinal reinforcement is 331 MPa and 496 MPa, respectively.

The yield strength of the transverse reinforcement (f,w) is 400 MPa.

The lateral displacement acting on top of the column is increased gradually and the obtained
shear force at the column base vs. the top displacement is given, together with the experimental
hysteresis, as shown in Figure 3.12.
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Figure 3.12 : Force vs. displacement relations of the shear-flexure critical example.
3.2.1.3 Shear-critical example

The shear-critical column example is taken from Aboutaha et al. (1999). The column has
sectional dimensions of 457x914 mm, as shown in Figure 3.13, and has a height of 1,219 mm.
Therefore, the shear span ratio is as =1.33. The section consists of 16 longitudinal bars with a

diameter of 25.4 mm and a transversal reinforcement of 9.53 mm in diameter.

=0.,525 mm

-

166,.,,= 25.4 mm

457 mm

) 914 mm ]

Figure 3.13 : The cross section of the shear critical specimen.

There is no axial load on the specimen. The concrete compressive strength is 16 MPa, while
the yield (fy) and ultimate (fs) strengths of the longitudinal reinforcement are 434 MPa and 690

MPa, respectively. The yield strength of the transverse reinforcement (fyw) is 400 MPa.

Similar to the previous example, the lateral displacements are gradually increased at the top of
the column. The obtained shear force at the column base with varying top displacements are

illustrated in Figure 3.14.
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Figure 3.14 : Force vs. displacement relations of the shear critical example.
3.3 Shear Walls

The three-dimensional multiple-verticle-line-element-model (3D MVLEM) is implemented in
this study. Shear-related failure modes are not considered. The following subchapters look at
the derivation of the stiffness matrix of the 3D MVLEM and the validation studies.

3.3.1 Implementation of 3D MVVLEM to shear walls

The MVLEM was first proposed by Vulcano et al. (1988). The 3D version (3D MVLEM) was
developed by Kante (2005) and Fishinger et al. (2004), and it was adapted to OPENSEES. In
the current study, 3D MVLEM, which has some differences from Kante’s approach is adapted
to DOC3D_v2.

In the mathematical model, shear wall cross-section is divided into n vertical strut elements
having only axial stiffness. The geometry of the i vertical strut is defined by the x; and vi
coordinates based on the distance to the COG of the cross-section, and the stiffness of each strut
is a function of the concrete and rebar area (Ac, As) and the corresponding nonlinear material
constitutive models. Two horizontal springs are utilized between successive floors at a specific
ratio of story height (cx = ¢y = 0.4hw) in order to simulate the shear behavior. The bending and
compression-tension behavior are provided by n vertical spring elements with stiffnesses ki, k2,
..., kn, and the shear behavior is considered by two horizontal springs with the stiffness of kex
and kuy (Figure 3.15).
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Figure 3.15 : 3D MVLEM for a U-shaped shear wall example.

The axial stiffness of the i vertical strut is calculated in terms of the instantaneous secant

stiffness of the materials, as follows:

(L), (B s

(k)

(k)

where hw is the height of MVLEM, (E, ) and (E, ) are the instantaneous secant

modulus of the concrete and steel, respectively, and (A,). and (A,). are the area of the concrete

and steel of the i*" vertical strut, respectively. The instantaneous secant modulus of the materials

are determined from the constitutive relations:

(k) (k)
(O-c )i (O_s )i (3.44)

(B ) = (B )l =
c_sec/i gi(k) s_sec/i 5i(k)

. . . . k k .
where & is the instantaneous axial strain, (o) and (o, )" are the corresponding concrete

and steel stresses calculated from the related constitutive relations. Similar to the 3D beam-
column elements, 3D MVLEM consists of six DOF at each end. The corresponding end
displacements are given in Equation 3.45:

(x)
o' :[§Xi Oi Oy Oy Oy 06y 5><j 5Yj 521' exj'

0 (3.4
6, 0,]° G
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After the displacement vector 6% is determined, the axial deformation vector u$" is expressed

based on the principle “plane sections remain plane after deformation” for both orthogonal axes:

Ul =a 5%

uld =[uy Uy, - Uy .. U]

where ais a geometrical transformation matrix:
00 1 -y x 0001wy -x O
a=|0 0 -1 -y, x 0001 vy -x O (3.47)

n n

00 -1 -y, x, 0001y -x 0
The average axial strain for the i vertical strut is calculated as follows:

()
OB

0= (3.48)

The stresses (o, )i(k) and (o, )i(k) are then calculated from the related material constitutive

models. The axial force of the i™" vertical strut is then determined as:

(9 =(00)” (A), +(e.)" (A), (3.49)
The deformation vector of the horizontal springs u,, =[uHX Uy, " is a function of & and a

transformation matrixb,, :
u) =b/, o (3.50)

100 0 <¢h, 0 -1 00 0 d-c.h,)
bL=[ ) ) (3.51)

0 1 0 —ch, 0 0 0 -1 0 —(@-c/hy) 0 0
The stiffness matrix of 3D MVLEM in the global coordinates is presented in Figure 3.16. The
matrix has the dimensions of 12x12. In stiffness matrix of Kmviem, GJ refers to torsional
stiffness of the MVLEM.
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Figure 3.16 : Stiffness matrix of 3D MVLEM.
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3.3.2 Verification of the MVLEM algorithm and discussion of the results

Two slender walls from the literature (Thomsen and Wallace, 2004) are selected in
order to verify the implemented 3D MVLEM model. The first example has a
rectangular cross-section (RW2) and the second one has a T-shaped cross-section
(TW2). The cross-sections of the SWs are demonstrated in Figure 3.17. The height of
the SWs is 3.66 m and the thickness is 102 mm. The longitudinal reinforcement at the
wall heads is 8-#3 (d = 9.54 mm) and the web is #2 (d = 6.53mm). The transverse

reinforcement at different parts of the SWs is illustrated in Figure 3.17.

The RW2 and TW2 SWs are subjected to constant axial forces of 378 kN and 730 kN,
respectively, which are almost equal to 0.07-0.075A4 f¢’. Cyclic-type loading is applied

in the lateral direction.

Constitutive models of the materials are taken from the calibrations conducted by
Orakcal et al. (2006). The constitutive models are presented in Figure 3.18. The
tension-softening model is not considered in the study.

Rectangular SW of RW?2 is divided into 8x8 = 64 vertical line elements. Meanwhile,
TW2 SW consists of 169 vertical line elements, namely 17x8 = 136 elements at the
flange and 3x11 = 33 elements at the web of the section. The tributary area of each
vertical line element is separated by dashed lines, as shown on Figure 3.17. Four equal
lengths of 3D MVLEMs are defined along the height of the SWs. The material
properties are different between the flange and the web because of the confinement
effect (Figure 3.18).

Displacement-controlled NSP is applied to the SWs in both directions by the
developed computer program, DOC3D_v2. The analytically obtained shear force vs.
the top displacement curves are presented together with the experimental hysteresis
(Figure 3.19).
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Figure 3.17 : Cross-sections of the specimen.
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Figure 3.18 : Material constitutive models.
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Figure 3.19 : Comparison of the experiment and the analytical results.

Figure 3.19 demonstrates that the developed software gives very close agreement with
the experimental data for RW2 in both directions and for TW2 when the flange is in
compression. The experimental data shows that non-uniform strain distribution exists
on the flange when it is subjected to tension. The edge confinement regions have
relatively low strains compared with the web of the section. Therefore, the software
yields a bigger analytical capacity in this direction compared with the experimental

data.
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4. DEVELOPMENT OF A COMPUTER PROGRAM (DOC3D_v2) FOR
NONLINEAR ANALYSIS OF 3D HIGH-RISE BUILDINGS

In this chapter, an algorithm capable of taking into account geometrical and material
nonlinearity is developed in order to analyze three-dimensional (3D) structural
systems based on the matrix displacement method. The local, special and global axis
definitions and their transformation operations are implemented in line with Tezcan
(1970). The flexibility terms derived in Chapter 3.1.1 are generalized here for 3D

behavior.

4.1 General Structure and Linear Analysis Procedure

4.1.1 Element local axis and degree-of-freedom at joints

The local axis system of a 3D frame element is demonstrated in Figure 4.1 using the
coordinates of x, y and z, where y corresponds to the longitudinal axis of the frame
element, and where x and z are the principal axes of the member. The global axis

system is defined by X, Y and Z.

In order to determine the position of x and z local axes in the cross section, one should
utilize a new axis system, namely a special axis system. This new system is defined
by Xo, Yo and zo definitions. £ is the rotation angle between the x-z and Xo-zo axes to

define xo direction position, which is parallel to the plane of XY.

Twelve-degrees-of-freedom (12-DOFs) exist in the frame element; six of them are
used in the i™ end and six of them are used for the j end of the member. The assigned
numbers to the DOFs are illustrated in Figure 4.2.
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Figure 4.1 : Definitions of local, special and global axes.

Figure 4.2 : The DOFs of the spatial frame element.
4.1.2 Stiffness matrix and the loading vector of the spatial frame element

The nonlinear stiffness matrix of the 3D element is determined by using the inverse of
the flexibility matrices generated for two distinct cases: i) bending about the x axis and
ii) bending about the z axis. The flexibility matrices fx and f;, consisting of the right

end displacements, are given with the following matrices:
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f o= f9_9 f9_10 f = 1E7_7 1:7_12
g f1079 f10710 ’ f1277 f12712 (4'1)
The free body diagrams, corresponding to the flexibility terms in the yz and xy planes,
are illustrated in Figures 4.3 and 4.4, respectively.

X

Figure 4.4 : The flexibilty terms in the xy plane (bending about the z axis).

The inverse of the flexibility matrices corresponds to the stiffness terms at the right
end side of the frame element, which are given in Equation 4.2.

k K k k
fX71 — kX - 9_9 9_10 j| f271 — kZ :|: 7_7 7_12 j|
|: k10_9 I(10_10 I(12_ 7 k12_12 (4' 2)
The stiffness terms in the xy plane for the left end of the frame element, due to the unit

right end deformations, are calculated by using the member equilibrium equations; see
Equations 4.3-4.6, Figure 4.5.

Ks 1o =—Kip 1o +K; 5L 4.3)
k1_12 = _k7_12 (4.4)
Ks 7 =—kyp 7 +K; ;- L+P (4.5)

45



Figure 4.5 : The stiffness terms in the xy plane due to the unit deformations (right
side).
The stiffness terms in the yz plane for left end of the frame element, due to the unit
right end deformations, are calculated by using the member equilibrium equations; see
Equations 4.7-4.10, Figure 4.6.

Figure 4.6 : The stiffness terms in yz plane due to unit deformations (right side).

Ky 10 =Ko 10— Ko 10°L 4.7)
Ks 10 ==K 10 (4.8)

K, o =Ky o—K; o L—P (4.9)
Ky o =—K; 4 (4.10)

Some of the stiffness terms in the member stiffness matrix can be determined from the
symmetry. There are given in Equation 4.11:

k k k K

121 ™ 12 71K 7 10_3 — M3 10
k9_3 = k3_9 k12_6 = k6_12 k?_e = ke_7 (4.11)
k10_4 = k4_10 k9_4 = k4_9
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The stiffness terms in the xy plane for the left end of the frame element, due to the unit
left end deformations, are calculated by using the member equilibrium equations; see
Equations 4.12-4.15, Figure 4.7.

Figure 4.7 : The stiffness terms in the xy plane due to unit deformations (left side).

Ko o =Ky o+ 4L (4.12)
Ki 6=k (4.13)

Ke s =Ky +k; ;- L—P (4.14)
ki s =k 4 (4.15)

The stiffness terms in the yz plane for the left end of the frame element, due to the unit
left end deformations, are calculated by using the member equilibrium equations; see
Equations 4.16-4.19, Figure 4.8.

y

. koo T,
Figure 4.8 : The stiffness terms in the yz plane due to unit deformations (left side).
Ky 4 =Ky 4K 4L (4.16)
Ky o =K, 4 (4.17)
Ky 3=—Kp 3—Kg 5 L+P (4.18)
Ky 3 =—Kg (4.19)

The axial and torsional stiffness of the frame element is given in Equations 4.20 and

4.21, in which EA and GJ are the axial and torsional rigidities, respectively.
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EA
k2_2 = k8_8 = _kz_s = _k8_2 = T (4.20)

GJ
k5_5 = k11_11 = _k5_11 = _k11_5 = T (4.21)
The 12x12 rigidity matrix for the spatial frame element is illustrated in Figure 4.9.

Herein,

e A, B and C are stiffness terms in the xy plane at the right end of the frame

element due to unit deformations at the right end side

e D, E and F are rigidity terms in the yz plane at the right end of the frame

element due to unit deformations at the right end side.
e G and H are the axial and torsional rigidities.

By using the submatrix framed with broken lines, the member equilibrium equations
and the property of symmetry are used to determine the whole stiffness matrix. The
application of the equilibrium equations are also denominated in the figure. The first,
second, third and fifth rows of the stiffness matrix are simply obtained by multiplying

(-1) of 7", 8" 9™ and 11" rows, respectively.

The loading of the beam column element, subjected to a uniformly distributed load on
the xy and yz planes, is shown in Figure 4.10.

The required flexibility terms (f7_o, fo_o, f10_0, f12_0) to determine the loading terms of
the base element are shown in Figure 4.11.

The loading terms are then calculated for the xy and yz planes by using Equations 4.22

and 4.23, where the stiffness matrices are determined previously for the frame element.

Po_o __ k9_9 k9_1o . fg_o
_PlO_O Juy2 _k10_9 k10_10_ i flO_O_ (4.22)
| P, o | __ | k7_7 k7_12 | . [ f7_o |
_PlZ_O Juyz _k12_7 k12_12 1L le_O_ (4.23)
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Figure 4.9 : The stiffness matrix of the spatial frame.

49

-10+9%L £(N)
-11

-12+7*L £ (N)



Figure 4.11 : The flexibility terms for the distributed loads in two planes.

The remaining loading terms are determined by the member equlibrium equations; see
Equations 4.24-4.27.

Pl_O = _P7_0 =0y L (4.24)

Pa_o = _Pg_o —-q,- L (4.25)
q,-L* 4.26

I:)4_0 = _P10_0 - 2 - P9_o L ( )
gL 4.27

P6_0 = _P12_O "'T"’ P7_o L ( )

4.1.3 Transformation from the local to the global axis

The directional cosines are utilized to transform the force vector from the global axis
(Px, Py, Pz) to the local axis system (Px, Py, Pz). The terms of the directional cosines

matrix are (Ix, mx, nx) (ly, my, ny) and (lz, mz, nz) as shown in Figure 4.12.

If one knows the forces on the global axis system, the forces on the local axis system
can be determined by using Equation 4.28.
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Figure 4.12 : Directional cosines.

I:)x Ix mx nx I:)X
Py - Iy m, ny - I:)Y nyz =t I:)XYZ (4.28)
Pz Iz mz nz PZ

where t is the directional cosines matrix. If forces on the local axis system are known,
the forces on the global axis system is determined by transposing the directional

cosines matrix. This matrix is also the inverse of the directional cosines matrix.

P L, P,
R|=|m m, m,[|P Pz =t7-P,, (4.29)
P, n, n, n, P,

In a similar way, the displacement at the global coordinates can be transformed to the

local coordinates by multiplying the vector by the directional cosines matrix.

dxyz =t dXYZ (4.30)

The directional cosines of ly, my ve ny are determined in terms of the frame coordinates

as follows:

| =—1 "1 m=——1o= n="t" (4.31)
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Directional cosines related to the other axes are (lx, mx, nx, I, mz; nz), which are
determined by using the orthogonality and normality conditions. They are given with

according to the following formula:

mo by
I, m,  n Q Q
—_ 2
L=, m n = | m, ny, Q=y1-ny (4.32)
I, m, n, I,n m, N
vy Ty Yy Q
L Q Q ]

The force vector, defined in the frame local axis, is first transformed to the frame
special axis. After that, the operation about the global axis transformation is executed.

Equation 4.33 represents the relations between the local and special frame axis in

which t, matrix consists of directional cosines terms; see Equation 4.34.

nyz = tl' PxO YoZo (433)

The definition of gis illustrated in Figure 4.12.

cosp 0 -sing
t= 0 1 0 (4.34)
sing 0 cosp

The relation between the special and global axis systems is given in Equation 4.35.

“Pyvz (4.35)

X0 Yo Zo = tz

Hence, one can write the following equation between the local and global axis systems.

The matrix of t=t,t, is the general transformation matrix for joints.

Py =1t Py, =Py, (4.36)

An exceptional case exists for the vertical oriented members in the calculation of t,;

see Equation 4.37.
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n, 0 O
t,={0 0 n, (4.37)
0 -1 0

The transformation of the force vector from global coordinates to local coordinates is

as follows:

12x1 _ g 12x12 12x1
nyz =T PXYZ (4 . 38)

The transformation operation matrix for the general spatial frame element (T ) is given

in Equation 4.39.

12x12

=
Il

(4.39)

O O O ~
o O ~+ O
o —~+ O O
~ O O O

4.1.4 Stiffness matrix and load vectors in the global coordinates and solution of
the equilibrium equations

The stiffness matrix of the spatial frame element in global coordinates is determined

by:
kXYZ = -FT kxyz -F (440)

The loading matrix in the global coordinates (PO)m is transformed from the loading

XYZ

matrix in the local coordinates (P, )Tyz by multiplying it with the transformation matrix

from the left.
(P)az =T (P, (4.41)

The system stiffness matrix S and loading vector Pq is generated by placing the frame
stiffness and loading matrices transformed to the global coordinates to the appropriate

locations of the corresponding matrix, as shown in Figure 4.13.
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Figure 4.13 : Establishment of system stiffness and loading matrices.

The set of linear equilibrium equations for the solution of unknown displacements are

obtained by Equation 4.42.

Sd+P0=Q (442)
where Q is nodal load vector and, d is the unknown displacement vector.

After the solution of the set of equilibrium equations, the end forces of the m" frame

element are calculated by using Equations 4.43 and 4.44.

(PI )r;YZ - (kii ):YZ (di )r;vz +(kij ):YZ (dj ):Yz + ( P0i )r;vz (4'43)
(Pi )anYZ - (kii ):YZ (di )r;YZ +(kjj ):YZ (dj )::YZ + ( POJ )ZYZ (4.44)
where (P, )., and (P, ):YZ are the m™" frame element i and j™ fixed end force vectors;

(d;)y, and (d, )ZYZ are the m™ frame element i and j" end displacement vectors in the

m

global coordinates; and (k”)ZYZ , (kij) (kii)::yz and (k“):YZ are 6x6 submatrices

xyz'

in the element stiffness matrix (k):YZ as follows:
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(4.45)

The m" frame element i and j™ end forces in the local coordinates is transformed by

multiplying the transformation matrix (T ) from the left.

(P)TYZ{E‘T =T‘m (4.46)

j Xyz j XYZ
In order to modify the sign of the some end forces, for the purpose of providing
appropriate positive sign convention rules for the internal forces in the structural

analysis, the following operations are executed (see Equation 4.47).

-I-Xi -1 ij 1

Tzi m 1 TZJ m _1

M i~ ( Pl )xyz X -1 M i - ( Pj )xyz x 1 (447)
M, -1 M,

M -1 M,

For the i*" end of the frame element, T,'and T,' are shear forces in the x and z direction,
respectively, and N ' is axial force; M 'and M are the bending moment about the x

and z axes, respectively, and Mbi is torsional moment. A similar definition is true for

the j* end of the frame element.

The moments and shear forces at a specific cross section, which has a distance of *“y”
from the i end, are calculated by using the following equations:

2

l\/lx(y)=M;+T;y+qzy7 (4.48)
T.(Y=T/-q,y (4.49)
Mz(y)=MZi+TXiy—qu72 (4.50)
T,(y)=T'+q,y (4.51)
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4.1.5 A computer program for the structural analysis (DOC3D_v2)

The algorithm presented in the previous chapters is implemented using a computer
program, called DOC3D_v2 which analyzes 3D frame and/or shear wall type structural
systems. The program was written in MATLAB. Some special features of MATLAB

for matrix operations are utilized in the analyses.
4.1.6 The verification of the algorithm

A triangular shaped one story reinforced concrete building is selected for the
verification of the 3D algorithm and computer code (Figure 4.14). The story height is
3.5 m; the plan dimensions are 3.0 m, 4.0 m and 5.0 m. The cross-sectional dimensions
of columns and beams are identical, with dimensions of 30x60cm. The modulus of
elasticity of concrete is 30,000 MPa, the flexural rigidities for the section are 93,750
kNm? and 33,750 kNm? for the strong and weak axes, respectively. The axial rigidity
is EA=4,500,000 kN and torsional rigidity is GJ=35,213 kNm? The shear
deformations are neglected in the analysis.

The problem is solved by DOC3D_v2, with the results compared with those obtained
from SAP2000. The joint and frame numbers for both of the programs are shown in
Figure 4.15.

S530x60

—

400 cm

—

S30x60| 300 cm | S30x60

Figure 4.14 : 3D view of the structure having a triangular plan.
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Figure 4.15 : The joints and frame element identification numbers.

The external loads acting on the joints and frame elements are shown in Figure 4.16.
The frame elements are subjected to 10 KN/m and 5 kN/m distributed loading in the

strong and weak directions, respectively; see Figure 4.16, Table 4.1.

The local axis definitions are different for the two analysis programs. The differences

are as follows:

I. For the columns, default axis 2 in SAP2000 coincides with the x axis of
DOC3D_v2 program, whereas axis 3 in SAP2000 corresponds to the

negative z axis.

ii. For the beams, axis 2 in SAP2000 coincides with the z axis in DOC3D_v2,
whereas axis 3 corresponds to the x axis in DOC3D_v2.

Table 4.1 : The distributed loads for two programs.

Frame Erame No. Sap2000 DOC3D
Type AXis 2 Axis 3 X axis z axis
1 10 5 10 -5
Column 2 10 5 10 -5
3 10 5 10 -5
4 -10 5 5 -10
Beam 5 -10 5 5 -10
6 -10 5 5 -10
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10 kN/m,

5 kN/m

Figure 4.16 : The distributed (left) and concentrated (right) loads acting on the

structure.

The displacements obtained in the linear analysis are tabulated in Table 4.2 and 4.3.

Table 4.2 : Comparison of displacements.

Joint No. Ux(m) Uy(m) Uz(m)
SAP2000 DOC3D SAP2000 DOC3D SAP2000 DOC3D
4 0.003967 0.003967 0.000190 0.000190  -0.000387 -0.000387
5 0.003974 0.003974 -0.000217 -0.000217  -0.000291 -0.000291
6 0.004438 0.004438 -0.000201 -0.000202  0.000040  0.000040

The exact same results are obtained from the two programs. Hence, the first check

about the algorithm and computer program are satisfied.

Table 4.3 : Comparision of rotations.

Joint No. O« (rad) Oy (rad) 0; (rad)
SAP2000 DOC3D SAP2000 DOC3D SAP2000 DOC3D
4 0.000022 0.000022 0.000280 0.000280  -0.000334 -0.000334
5 -0.000018 -0.000018 0.000179 0.000179  -0.000153 -0.000153
6 0.000372 0.000372 0.000717 0.000717 0.000189  0.000189
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The member end forces obtained from the two programs, which are defined by their

individual force definitions, are compared in Tables 4.4-4.7.

Table 4.4 : Comparison of shear and normal forces at the i end of frame elements.

Frame Frame Sap2000 DOC3D  Sap2000 DOC3D  Sap2000 DOC3D
Type No. V2 Tx V3 Tz P N
1 50338  50.338 14733 14733  -497.112  -497.112
Column 2 52087  52.087 2.243 2243 374281 -374.281
3 47575 47575 20524 20524  51.393  51.393
Vs Tx V2 T, P N
4 2.649 2.649 17668  -17.667 11292  11.292
Beam 13.379 13379  -26614 26614  17.094  17.094
6 13308 13308  -14.78 1478 -27.667  -27.667

Table 4.5 : Comparison of moments at the i end of frame elements.

Frame Frame Sap2000 DOC3D  Sap2000 DOC3D  Sap2000 DOC3D
Type No. M2 Mx T My Ms M:
1 149962  -14.9970  -3.3565  -3.35621  70.3779  -70.3779
Column 2 -5.8038  5.80416  -15425  -1.54238 724593  -72.4593
3 157559  -15.7558  1.8971  1.896822  69.7490  -69.74907
Vs Tx V2 T, P N
4 446725 446721 04635 04634  -55549  5.5552
Beam -17.4335  -17.4338 47354 47350 105410  -10.5411
6 50574 50578 39377 39374 89114  -8.9114

Table 4.6 : Comparison of shear and normal forces at the j™ end of frame elements.

Frame Frame Sap2000 DOC3D  Sap2000 DOC3D  Sap2000 DOC3D
Type No. V2 Tx V3 T P N
1 15338  15.339 -2.767 2767 -497.112  -497.112
Column 2 17.087  17.087  -15257  -15257  -374.281 -374.281
3 12575 12575 3.024 3.024 51.393  51.393
Vs T« V2 T P N
4 -12.351  -12.351 47668  -47.667 11292  11.292
Beam -6.621 -6.621 13386 -13.386  17.094 17.094
6 11692  -11.692 35221  -35221  -27.667  -27.667
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Table 4.7 : Comparison of moments at the j* end of frame elements.

Frame Frame Sap2000 DOC3D  Sap2000 DOC3D  Sap2000 DOC3D

Type No. M2 Mx T My M3 M:
1 50451 59453  -33565  -3.3562  -44.5567  44.5568
Column 16.97  -16.9704  -1.5425  -1.5424  -48.5951  48.5952
3 254516 254518  1.8971 1.8968  -355121 355117

V3 Tx V2 Tz P N

-53.3305  -53.3301 -0.4635 -0.4634 8.9985 -8.9987
9.0211 9.0216 4.7354 4.7349 -2.9762 2.9764
6 -46.0442  -46.0448 3.9377 3.9374 4.8733 -4.8732

Beam

(4]

One can easily conclude that the results obtained from DOC3D_v2 for elastic cases

are exactly the same as those obtained from SAP2000.

4.2 Substructuring

The application of matrix displacement methods to large structures necessitates
solving a significant set of equations. Especially in the case of nonlinear analysis, the
execution time may be very long. Substructuring techniques, with their capability of
reducing the duration of the analysis by using smaller size matrices, are effectively
used in the fast nonlinear algorithms. In these methods, the structures are divided into
a number of substructures. As the boundaries may be specified arbitrarily, physical
partitioning is preferred in this study for the sake of simplicity. At first, the matrix
displacement method is implemented for each substructure separately, assuming all of
the common boundaries (joints) with adjacent substructures are completely fixed.
Then, all of the boundaries are relaxed simultaneously. The equilibrium equations are
solved for the boundary joints considering the fixed end forces at the boundaries; in
turn, the actual displacements at the boundaries are obtained. Thus, size of the stiffness
matrix gets smaller with respect to the complete structure. With known boundary
displacements and substructure loading, the displacements at the internal joints of the
substructures can be found (Przemieniecki, 1968). An application of substructuring
was utilized by Yiksel (1998) for 3D orthogonal structures that are divided vertical

and horizontal substructures.

The equilibrium equations given in Equation 4.42 is rearranged as follows:
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Sd=Q-P,=Q (4.52)

where S is the stiffness matrix and, d represents the vector of displacements
corresponding to external forces (3 . The nodal force vector is denoted by Q, while

P, refers to the distributed loading vector.

In the following analysis, the structure is divided into substructures by introducing
interior boundaries. The vector of boundary displacements, which are common to the

substructures, is denoted by d, , while the vector of interior displacements is d.. If the

corresponding effective external forces are denoted by vectors Qb and Q;, Equation

4.52 can be written in partitioned form as:

Sbb Sbi db = QAb (453)
S SiLd; Q;
The total displacements of the structure can be calculated from the superposition of
two vectors, such that:

d:d(a)+d(ﬁ) (4.54)

where d “ denotes the vector of displacements due to Q,with d, =0, while d "

represents the necessary corrections to the displacements d “to allow for boundary

displacements d, with Qi =0. Thus Equation 4.54 may also be written as

d d (@ d®
d=| " |=| " + " 455
|:di j| |:di(a) l}pur&daries |:di(ﬁ) }boundaries ( )

relaxed

where the final term represents the correction due to boundary relaxation and, where,

by definition:

di =0 (4.56)

Similarly, corresponding to displacements d “’andd (”, the external forces Q can be

seperated into
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Q=Q®+Q® (4.57)

 [8]_[e], [
Q[Q”QHJ -

where, by definition:

or

éi(a) = QAi éi(ﬁ) =0 (4.59)

The equilibrium equation due to the boundary fixed case is:

Sbb Sbi d éa) — Ab(a) N Sbb Sbi 0 — (?b(a) (460)
Sib Sii di(a) Qi(a) Sib Sii di(a) Qi “
From the second row of the matrices given in Equation 4.60, d.“’ is determined as
d”=5;'Q (4.61)
The external force vector éb“) is then determined from the first line of Equation 4.60.
Rb:Qt()a):Sbi Sﬁlqi (4.62)
It should be noted that R , represents boundary reactions necessary to maintain d, =0

when the interior forces Q, are applied. When the substructure boundaries are relaxed,

the displacements d *’ can also be determined from Equation 4.53:

S, S, |[d®” Q %) S, S, |[d® 3 (B)
bb b lzﬂ) — Ab N bb b IZ,B) — Qb (4.63)
S SiJLd QY S Si]ld 0
From the second row of Equation 4.63, d.*”’ is determined as:

d i(ﬂ): -S ﬁl Syd Eaﬂ) (4.64)

The boundary stiffness matrix S is then determined from the first row of Equation

4.63:
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Sy d k()ﬂ)-l_ S,d i(ﬂ): Qt(;ﬁ) — S, d gﬁ)_ Sy S ﬁl S, d éﬁ): Qéﬂ) (4.65)
Sbdt()ﬂ):[sbb_sbiSﬁlsideéﬂ): At(aﬂ) (4.66)

The boundary nodal force vector can then be determined from Equation 4.62:

F, =QY=Q,-Q{"=Q,-5, S;'Q, (4.67)
The stiffness matrix of the r'" substructure, regarded as a free body, can be divided into
(r) ()
50 {S % S } (4.68)
S ib S ii

where the superscript r denotes the r'" substructure and the subscripts b and i refer to

the boundary and interior displacements, respectively. Due to the symmetry of the

stiffness matrix S is a transpose of S . By use of the above stiffness matrix the

substructure displacements d " can be related to the external forces Q' by the

equation:

r r r 5 (1)
SO ¢ (r):(jm N Séb) Séi) d é) =| <P (4.69)
SO s |dm Qw

When the substructure boundaries on the complete structure are fixed, the boundary
fixing must be sufficient to restrain rigid body DOF on each substructure considered

separately. The substructure interior displacements and boundary reactions due to

Q™ when d (=0 can be determined from Equations 4.61 and 4.62.

(d i(r) )boundaries = (S i(ir) )_1 QA i(r) (470)

fixed
RP=s12(si7) QY @)
where the matrix inversion of S i(i” is permissible because the boundary fixing restrains

all rigid body DOF.

Before considering “matching” of displacements on common boundaries, it is
necessary to evaluate the substructure stiffness associated with the displacements
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dt()”. To determine these stiffness matrices, Equation 4.66 is applied to the r™"

substructure,and it follows immediately that:

-1
sP=s{-sy(sP) sy 472
which will be used subsequently to assemble the boundary-stiffness matrix S, for the
complete structure.

The boundary forces and displacements are related by the equation

SPdP=Q" (4.73)

Having determined the boundary stiffness S(”and the reactions R(”due to the

specified interior loading, we then relax all boundaries simultaneously with the
exception of a number of selected displacements, which serve to form a reference
datum for the complete structure. When the boundaries are relaxed, the boundary
reactions and any external forces applied on the boundaries will not be in balance;
therefore, the boundary relaxation will induce boundary displacements of such
magnitude as to satisfy equilibrium at each joint on the boundary. To calculate these
boundary displacements, the complete structure can be regarded as an assembly of
substructures subjected to external loading. The external loading vector between two

substructures are:

If E)r,r+1): _Z Rér) + Qgr,ml) (4.74)
where the summation implies the addition of the corresponding boundary reactions for

the fixed boundaries, while (j p 1S the loading matrix for external forces applied on the

boundaries; the negative sign with Rf)') is used to change the boundary reactions into

externally applied forces, as indicated by Equation 4.74.

The equations of equilibrium in terms of boundary displacements for the complete

structure can now be written as

Spdp=Q, (4.75)
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where S is obtained by placing the submatrices S f)” in their correct positions in the

larger framework of the boundary stiffness matrix for the complete structure and
summing all the overlapping terms. Elimination of a sufficient number of

displacements to restrain rigid body DOF for the complete structure ensures that the
matrix S, is non-singular and, therefore, the boundary displacements d, can be

determined from

d,=S,'Q, (4.76)
Having determined the boundary displacements on each substructure from Equation
4.76, we can analyze the substructures separately under the external loading Q i(r),

together with the known boundary displacementsd (. From Equation 4.69, it follows

that the substructure interior displacements d ', which are due to the forces Q {” and

boundary displecements d (", are given by

(d i(r) )boundaries = (d i(r) )boundaries _<S i(ir) )_1 S |(t:) d ér) (4.77)

relaxed fixed

The substructuring algorithm presented above (Przemieniecki, 1968) is exemplified

for a three story representative frame as shown in Figure 4.17.

The structure is opposed to horizontal forces, with distributed loading existing on each
beam. It is partitioned into three substructures as shown below. Joints 4, 5 and 6 split
substructures 1 and 2; joints 7 and 8 separate substructures 2 and 3. The boundary

nodal force vectors are shown with vectors Q "? andQ*®. The vector Q" is the

summation of nodal boundary forces on joints 4 and 6; while Q*¥is the one on joint

7.
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Figure 4.17 : A representative example for substructuring.

EywernsrnnnNny (5(3)
10 11 '
Substructure 3
. 7 8
2,3
Q' —
T T T e (j_(z)
7 3 9 =
Substructure 2
4 5 6
(35)1,2)__, .
T iy ~
& (6]
4 5 6 Qi
Substructure 1

Figure 4.18 : Substructures, boundary stiffness matrices.

QP, QP and QW are the inner force vectors; this accounts for the nodal forces and

distributed loading. The boundary reactions for the fixed case between substructure 2

and 3 are expressed as R? and R(¥. Then, to calculate boundary displacements, the

resultant boundary force vector F ** should be determined.
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Figure 4.19 : Resultant boundary forces.

The boundary stiffness matrices are given as follows:

I(44 k45 0
S = ky Ky ke
0 k65 k66
_k44 O k47 O |
0 kg 0 0 kg
$?=0 0 ks 0 O
k74 O 0 k77 k78
L O k85 0 k87 k88_

5@ _ {kw k78:|
b Key  Keg

The assembly of 5x5 boundary stiffness matrices of substructures S, is given as:

ka? kig 0k, 0
key kg? 0 0 kg
S,=| 0 0 k& o0 0
ky 00 kY ki
| 0 kg 0 ki kg

The boundary force vector is given as:
T _ [ 22 [£23)
I:b - [Fb I:b ]

The flowchart of the sub-program about substructuring in DOC3D _v2 is presented in
Figure 4.20. The subprogram is activated by the user selecting a key parameter. The
substructuring feature of DOC3D_v2 is exemplified in Chapters 6.2 and 6.3. The total

analysis time for the problems is drastically shorten by using substructuring.
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Figure 4.20 : The algorithm for substructuring.
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4.3 Free Vibration Analysis

The second order differential equation to solve the free vibration of the linear MDOF

system is as follows (Chopra, 1995):

where uand i are displacement and acceleration vectors in the time domain. The n

mode response can be defined in modal coordinates:

u,(t) =d,(t) 4, (4.79)

where g, (t) is n™ mode modal coordinate and ¢, is corresponding mode vector. The

known solution of Equation 4.78 in the modal coordinates is given by:

g, (t) = A, cos(a,t) + B, sin(a,t) (4.80)

where @, is natural frequency of the n™ mode, whileA and B, are integration

constants. If Equations 4.79 and 4.80 are combined, the physical displacement is

governed by:

u, (t) =4, (A, cos(a,t) + B, sin(a,t)) (4.81)

Substituting Equation 4.81 with Equation 4.78 and using orthogonality conditions

gives:

| ~wimg, +k¢, ]q,()=0 (4.82)

The left part of Equation 4.82 must be equal to 0, then the equation becomes:

(k- ]¢,=0 (4.83)
The nontrivial solution of Equation 4.83 exists when

det[k—aﬂ =0 (4.84)

Equation 4.84, known as the characteristic equation, gives the eigenvalues of the
system. If Equation 4.83 is solved for each eigenvalue, the eigenvectors (mode shape

vectors) are obtained. An independent subroutine is added to DOC3D_v2 to perform
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the free vibration analysis. The standard function eig in MATLAB is utilized to

achieve the eigen value analysis.

4.4 Linear Time History Analysis

A linear time history analysis algorithm, based on the central difference method
(Chopra, 1995), is adapted in DOC3D_v2. The application of the central difference
method for SDOF and MDOF systems is described in this chapter.

4.4.1 Central difference method for SDOF systems

The equation of motion for a linear SDOF system, subjected to arbitrary excitation is

as follows:

m, b, +¢, U, + Kk, u, =p(t) (4.85)

where mz is mass, c1 is the viscous damping coefficient, ki is the stiffness, U, u,and

u, are displacement, velocity and acceleration of the SDOF system, respectively. In

the central difference method, time derivatives of the displacement (velocity and

acceleration) at the i'" step are assumed to be equal to the following equations:

. _ ul(i+l) _ul(i—l) . ul(i+l) - 2u1(i) +u1(i—1)
Yo =7 o0 Wy = (at) (4.86)

where At is the constant time step. If Equation 4.85 is rearranged by substituting

expressions for velocity and acceleration:

ul(i+1) - 2u1(i) + ul(i—l) ic U1(i+1) - ul(i—l)
2 1
( At) 2At

+ klul(i) = Py (4-87)

1

In this equation, when it is supposed that U;;_;) and U, are known, the displacement

for the next step can be calculated as:

m c m c 2m
{(Atl)z +2_Alt} Uygisgy) = Pagi) {WZ_&[] Uy 1y [kl W] 10 (4.88)

or
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kul(i+l) = ﬁl(i) (4.89)

where

ko= oy (4.90)
Co(at)® 24t

and

N m c 2m
Py = Py — {W - Z_Alt} Uiy = [kl - W} Uy = Pagy =@ Uy gy —brthy  (4.91)

The unknown Uy 4, is then given by

Uiy = (4.92)

For the first time step (i=0), assuming that the initial displacement and velocity (U,
Uy ) are known, Uy can be determined from velocity and acceleration expressions

in Equation 4.86 by eliminating U, :

. ALY
Uy(gy = Uyg) — At (ul(O) ) + (T) Uy o) (4.93)

Here, initial acceleration (Ul(o)) is calculated from the solution of the equation of

motion at time i=0:

Pyoy —C L11(0) -k, Uo) (4.94)

m

Uy =
Some stability requirement is required for the time step:

At < 1 (4.95)
T, =«

T, is the natural vibration period of the N™ mode.
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4.4.2 Central difference method for MDOF systems
The solution of the N differential equations for the MDOF system is given in matrix
form:

mi+cu+ku=p(t) (4.96)

Where m, c, k are the mass, damping and dynamic stiffness matrices of the structure.
The displacement, velocity and acceleration responses are defined as u,uand,

respectively. The arbitrarily varying force vector is donated by p(t).

The displacement vector can be defined in terms of modal coordinates for sufficient
number of modes (J):

J
ut) = > ¢.0,() =®q,, (1) (4.97)
n=1
Using this transformation, the equation of motion is written by N uncoupled equations:
Mm qm+Cm qm+Km qm :Pm(t) (498)

where ® is the eigenvector matrix, Pm(t) is the modal force vector, Mm , Cm and Km

are the modal mass, damping and stiffness matrices, respectively. The displacement,

velocity and accelerations in modal coordinates areq,,, q,, and q,, , respectively.

M =®0'm® C,=0c® K =0'k® P (1)=0"p(t) (4.99)

m

Herein, the central difference method developed for the SDOF system is implemented
for MDOF systems in modal coordinates. The single terms mq, c1, ki, u,, U, , U, IA<1
and p, are transformed into matrix/vectoral form, such as Mm, Cm, Km, q.,, 4., G,
K and P.

An independent subroutine about linear time history analysis is generated in

DOC3D_v2. The subroutine reads the acceleration data from a file. The previously

obtained mode shape vectors are utilized to calculate the Mm, Cm, Km matrices and

P (t). The flow chart is given in Figure 4.21.
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Figure 4.21 : The algorithm of the central difference method.
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4.5 Moment-Curvature Analysis Algorithm for RC Rectangular Columns

Subjected to Biaxial Bending

An algorithm, which accounts for the biaxial bending and axial force interaction for
rectangular RC columns, is developed. The rectangular cross section is divided into
fibers in both of the orthogonal directions. Additional fibers, including the rebars, must
also be defined in the section. Material constitutive relations (concrete, steel etc.) can
be assigned to the corresponding fiber. The coordinates of x; and z; are the distances
between the i fiber and the COG of the cross section (Figure 4.22). The algorithm
searches the location of the neutral axis based on the known axial load, neutral axis
direction and curvature (x). Once the location is determined, the bending moments
with respect to the x and z axes (Mx, M), as well as the combined bending moment

(Me) and corresponding deformations on each fiber, can be calculated.

The equation written for the neutral axis (z) is given in Equation 4.100.

a_ ¢ c
ax+by+c - Z bx+b — z=tan( )x+b (4.100)

~
Z
7 A
|| ! |
:1‘ [ ,.1
Confined [ | 3( i
Concrete = | \
¥
ERr Y2 -
__../g(]. |
o P
o 4 14
&?j‘- mhm '/\'I' 1 /
< :1’ r ?1 II?F: o7
‘é |1 | A 1] =3
Unconfined
Concrete

Figure 4.22 : Sectional analysis for biaxial bending and typical stress-strain
diagrams.
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where tan(@) is the slope of the line. The coordinates of the i*" fiber are xi and zi. The

distance of the i fiber to the neutral axis is obtained from:

a c
_|ax;+bz; +¢| p Ay _ —tan(@)x, +Zi+%

fiber _i — \/m = \/@72_‘_1 = (tan(e))2+1 (4.101)

A

The strain of the i"" fiber (&) can be expressed based on the assumption that the plane

sections remain plane after deformation:

& = KA fgr | (4.102)

Based on the constitutive relations, the stress of the i fiber:

o,=0(s) (4.103)

The i fiber concrete or steel stresses will be defined as i or osi, respectively. An
iterative algorithm is carried out to determine the location of the neutral axis. At each
iteration step, the location of the neutral axis is assumed and, depending on this

location, it is written as:

F+E+P=0 Yo, A+Y o A +P=0 (4.104)
i=1 i=1

where P is axial load on the section, A and Asi are concrete and rebar areas of the i
fiber, and Fc and Fs are internal forces related to concrete and steel, respectively. The
iteration is carried out until the equilibrium is satisfied. The internal forces My, M; and

Mo in the equilibrium condition is calculated as follows:

Mx = Mcx+Msx: -(zo-ci A%i Zci +Zo-si Asi Zsij (4105)
i=1 i=1
Mz = Mcz + Msz = Zaci A\:i Xci +Zasi A&i Xsi (4106)
i=1 i=1
M, = Zo-ci Ai Ay +ZUsi AjAg+PA, (4.107)
i=1 i=1
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where Mcx and Mc; are the contributions of concrete, and Msx and Mg; are the
contributions of steel to My and M, respectively. The coordinates x.i and z. refer to

concrete fibers, while xsi and zsi refer to the coordinates of steel fibers. The relative

distances between neutral axis and concrete fibers, steel fibers and axial loads are A,

Agand A, respectively.

The x and y components of the curvatures are calculated as:
K, =k C0S(0) K, = kSin (6) (4.108)

where @ is the angle between inclined neutral axis and x axis, see Figure 4.22.

4.6 Nonlinear Static Procedure (NSP)

NSP is applied for the purposes of pushover analysis, in which invariant or variant
lateral load distributions corresponding to fundamental vibrational mode shapes are
utilized. Force- or displacement-controlled analysis algorithms are developed in this
study. The following chapter defines the displacement-controlled algorithm which is

a successive application of the force-controlled algorithm.

4.6.1 Displacement-controlled analysis algorithm

The displacement-controlled analysis procedure starts with the selection of a DOF as
the target displacement (D) to push the structure. The schematic view of the procedure
is illustrated in Figure 4.23. The capacity curve of the structure is demonstrated by the
first figure, while the related moment curvature relation of a typical RC cross section
is given in the second one. The linearization technique applied herein is secant stiffness
method. The steps of the applied displacement-based analysis algorithm are given as

follows:

In the first step, linear analysis with initial rigidities is conducted. For a selected load
parameter (F1), the resulted displacement (d1) is calculated. Analysis is repeated for a
predefined constant load parameter (Fo) and the corresponding dot is marked. This is
a relatively small constant load parameter, like Fo=0.0001 kN, in order to consider the
effects of gravity loads only. If the two coordinates (do, Fo) and (dz , F1) are connected
by a straight line and in lieu of linear interpolation, the load F> corresponding to target

displacement (D) is determined. The first step is conducted with the flexural rigidity
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of Ely for the typical section. The next step is the calculation of the internal force
(M2M) and curvature demand (k®=M>W/El,), which is determined by linearization of
the constitutive relations. The resulting bending rigidity to be used for the next step is
Els.

‘Base Shear (kN)

FI“ ....................
qu ______________________
N
1:0.. Top Displacement (m)
! S >
dg D d q,
R Moment (kNm)
__________ ()
’ EI
LT
Curvature(1/m)
K(‘:) Kgéf >

Figure 4.23 : Application of the displacement-controlled analysis algorithm.

77



In the second step, which uses effective rigidity El>, two analyses have been performed
with two loads Foand F2, such that the displacement demands do? and d; are obtained.
If two coordinates (do? , Fo) and (d1 , F1) are connected by a straight line and in lieu of
linear interpolation, the load Fz corresponding to target displacement (D) is
determined. The second step is conducted with the flexural rigidity of El, for the
typical section. The next step is the calculation of the internal forces (M2®) and
curvature demand (k®=M2@/El,), which is determined by linearization of the

constitutive relations. The resulted bending rigidity to be used for the next step is Els.

The analysis is carried out until the load parameters (Fi.1 and F;) and displacements
(di1 and d;) obtained between succesive two steps are sufficiently close to each other.
The resulting point for a specific displacement (D) and the corresponding base shear
of F is demonstrated in Figure 4.23.

4.6.2 P-Mx-My hinge definitions

The interaction between axial force (P) and bi-axial moment (My and My) can be
considered in DOC3D_v2 by using P-Mx-My hinge definitions. Since large structures
have too many columns, it is a very time consuming process to re-calculate moment-
curvature relations for all column hinges at each linearization step, due to changes in
axial force and/or the angle of the biaxial curvature vector (8). A two-stage
interpolation procedure by the predetermined moment-curvature relations is
implemented in DOC3D_v2. For each column section, a total of Plevel X Ojevel moment-
curvature analyses are performed before the execution of nonlinear analysis, with the
results saved on the disc where Piever and Bievel stand for the number of axial load levels
and number of angles, respectively. The number of Oievel Separate folders (Figure 4.24)
are defined for each individual angle. Each folder consists of the number of Pievel

moment-curvature files (Figure 4.25), in which moment vs. curvature data exist.

The default number of axial load levels is selected as 50, which is in the range of 95%
of the compression and tensile axial load capacities. Assuming that the column cross
section is symmetrical, & evel IS selected as 10, which is defined between the angles of
0° and 90° (Figure 4.24). The total number of 50x10=500 moment-curvature relations
are stored in the text files. Each file includes moment vs. curvature relations in respect
of the x and z axis, as well as those around the inclined axis. Unconfined and, confined

concrete and steel strain- stress data also exist in these files.
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[E] okN_mkapa
[E] 70kM_mkapa
[E] 155kN_mkapa
|=] 240kN_mkapa
[E] 326kM_mkapa
[E] -334kM_mkapa
|Z] 411kN_mkapa
2] 496kN_mkapa
[E] 581k_mkapa
[E] 667kN_mkapa
|=] -669kN_mkapa
[E] 752kM_mkapa
[E] 837kN_mkapa
|=] 923kN_mkapa
[E] -1003kN_mkapa
[E] 1008KN_mkapa
[E] 1093kN_mkapa
=] 1179kN_mkapa
[E] 1264kN_mkapa
[E] 1348kN_mkapa
|=] 1434kN_mkapa
2] 1520kN_mkapa
[E] 1605kN_mkapa
[E] 1690kN_mkapa
|=] 1776kN_mkapa
[E] 1861kN_mkapa
[E] 1946KkN_mkapa
|=] 2031kN_mkapa
[E] 2117kN_mkapa
[E] 2202kN_mkapa
[E] 2287kN_mkapa
2] 2373KkN_mkapa

9 24saLm

bans

Figure 4.25 : Number of Piever moment-curvature text files for a specific inclination

In order to determine which moment curvature relation is used for any column section

at the k™ iteration step, the

Mx-My hinge are calculated.
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axial load (P) and curvature angle (@) at the related P-
Then, upper and lower bounds of the axial load and

,@) are determined from the existing axial loads (Pievel)

curvature angles (é and @4,) and is given for the following formulas:

M;:M;

P _M"P
M, =M,

PR

PR

u

2R )

a

PR
R, —R

u

+

(Mgpuu —
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where M;I’ and M;u are the bending moment values corresponding to axial load (P)
for 61 and &, respectively. M;I" and M;j are the bending moments corresponding to
P, for 8, and 8y, respectively. M;:“ and M;:“ are the bending moments corresponding
to Py for &y and Ay, respectively.

The second stage of the interpolation procedure is applied for curvature angle & for

constant axial load (P) and is given as follows:

P+‘9_‘9|

M, =M; o
u |

My =M/ ) (4.111)
where l\/lg is the resulting bending moment corresponding to P-& couple.

4.7 Verification Examples

4.7.1 Verification of the moment-curvature algorithm

To verify the moment-curvature program, a rectangular section with dimensions of
600x400 mm (Figure 4.26) is selected. The longitudinal reinforcement is 820 and the
transverse reinforcement is $8/100mm. The thickness of the clear cover, where the
unconfined concrete model is assigned, is 20 mm. In the program, Mander confined
and unconfined concrete models as well as a parabolic strain hardening steel model
are utilized in the example. The verification is accomplished by comparing the results
of the program with those of the XTRACT (2006) cross sectional analysis program,

which is commonly known.

Z ~unconfined concrete
I TT T T
S 4NN L 4 * |
- | confined concrete
7 I é H = X
2| ¥ 1
0. 2 f ]
X B =
| i | \? L ]
400 mm

L L

Figure 4.26 : Definition of confined-unconfined concrete fibers and rebars for a
typical RC cross section.
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The material constitutive models are demonstrated in Figure 4.27.
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Figure 4.27 : Mander unconfined-confined concrete and steel material models.

Four distinct axial load levels (P= 0, 1,000, 3,000, 5,000 kN) and three neutral axis
angles (6=0°, 45°, 90°) are studied in the verification. The axial load of 5,000 kN
corresponds to 80% of the axial load carrying capacity of the cross section. The results
are demonstrated in Figures 4.28 to Figure 4.31. Perfect matches are observed for the
axial forces 0 kN, 1,000 kN and 3,000 kN. However some deviations are obtained in

the post-yielding range in the case of the 5,000 kN axial load.
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Figure 4.28 : P=0 kN for 6=0°, 45°, 90°.
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Figure 4.30 : P=3,000 kN for 6=0°, 45°, 90°.
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Figure 4.31 : P=5,000 kN for 6=0°, 45°, 90°.

4.7.2 Verification of NSP through moment-hinges

The developed 3D nonlinear algorithm is tested with Perform3D software for the
triangular shaped one story building (Figure 4.32), which was studied in Chapter 4.1.6.
The columns and beams are divided into segments in order to consider the distributed
nonlinearity in members. The length of the segments for columns and beams are 35
cm and 50 cm, respectively. Each column is loaded with a 500 kN axial load on top,
while the beams are unloaded. Although the Perform3D model consists of internal
joints through the beam and column elements, DOC3D_v2 has only six joints to define
the geometry of the structure, see Figure 4.32. DOC3D_v2 is capable of dividing the

elements into equal segments by using the developed beam-column element; see

Chapter 3.
The moment-curvature relations of the column and beam sections are generated with

the developed moment-curvature program and are shown in Figures 4.33 and 4.34.
Due to the necessity in Perform3D to define the idealized moment-curvature relations,

the idealized forms of the relations are given in the figure.
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Figure 4.32 : Nonlinear models (left: Perform3D, right: DOC3D_v2) of the structure
having triangular plan.
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Figure 4.33 : The moment-curvature relation for the strong axis of the beam (left)
and column (right).

160 200
140 180 P _
—oo= 160 {f ===
=120 =
E E 140
= 80 € 100
g 60 ==-Real g 80 ==-Real
§ 0 —I|dealization o 60 —|dealization
T
0 0
0.1 0.4 0.5 0.6 0.1 0.5 0.€

Curvature (1/m)

Curvature (1/m)

Curvature (1/m)

.2 0.3 0.
Curvature (1/m)
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The pushover analyses are carried out in the X and Y direction. Base shear vs. top

displacement relations were obtained from the two programs. A good correlation exists

between the programs in two distinct directions; see Figure 4.35.
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Figure 4.35 : Comparison of the capacity curves in two directions.
The top displacement vs. curvature relations for Column #1 for X and Y directional
pushover analyses are also compared between Perform3D and DOC3D_v2 (Figure

4.36). The results of DOC3D_v2 are in close agreement with Perform3D.
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Figure 4.36 : Top displacement vs curvature relations for column 1.

4.7.3 Verification of NSP through P-Mx-My hinges

To evaluate the accuracy of P-Mx-My hinge definitions, the triangular-shaped building
example is used again. P-Mx-My hinge definitions are made for each segment of the
columns. The verification is accomplished for four distinct axial load levels (0, 500,
1,500, 2,500 kN) and five different lateral load orientations (&, =0°, 30°, 45°, 60° and

90°). The results of the analyses performed for €, =0°and &, =90° are given Figure
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4.37 as pushovers X and Y, respectively. For each case, capacity curves are compared
for the two software programs, DOC3D_v2 and Perform3D. The second-order
analyses performed by DOC3D _v2 are also added to the diagrams.

In the case of low axial load, two programs give very similar results. The increasing
axial load level causes some discrepancy between the programs after the yielding point
is achieved. However, the results show that the errors are found within acceptable
limits. Nevertheless, the reason for the difference must be further investigated. The
deviations between the results of the two programs, especially in the X direction may

be related to the limitations in the fiber definitions in Perform3D.
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Figure 4.37 : Capacity curves obtained for various vertical load intensities.

Base shear vs. top displacement relations generated for 4, =30°, 45° and 60° are given
in Figures 4.38-4.40.
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Figure 4.38 : Capacity curves obtained for the case of 4, =30°.
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Figure 4.39 : Capacity curves obtained for the case of 4=45°.
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4.7.4 Verification of the second-order analysis routine of the algorithm

To evaluate the success of the second-order analysis routine of the algorithm, a
cantilever column shown in Figure 4.41 is analyzed. Three different moment-curvature

relations are used for the designated parts of the columns.

In the nonlinear static analysis, the lateral load parameter o is varied gradually while
the vertical forces remain constant. The analyses are performed with two alternative
controlling modes, namely, force control and displacement control; the corresponding
lateral load parameter and top displacement relations are drawn in Figure 4.42.
Although analyzing the force control capability ends when it reaches the ultimate load

carrying capacity of the system, there is no limitation in the case of displacement

control.
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Figure 4.41 : The cantilever column and its constitutive relations.
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5. AVARIANT OF MODAL PUSHOVER ANALYSIS (VMPA)

5.1 Two Dimensional Analysis Algorithm

The theory behind the proposed algorithm for two dimensional problems is based on
the solution of the equation of motion in terms of the modal coordinates and the
application of an appropriate mode-superposition method to predict the demand
parameter of interest. In this context, the essential information will be presented in the
next chapters for VMPA-A, in which eigen-value analysis is repeated for each
individual step of the nonlinear analysis. VMPA, which is a special case of VMPA-A,
uses invariant vibrational mode shapes that depend on the initial stiffness of the

structural members.

5.1.1 Equations of motion

The equation of motion for a building subjected to horizontal earthquake ground
motion can be written in terms of the instantaneous dynamic characteristics due to

progressive yielding of the structural members:
mui(t) +c®u(t) +k“u(t) = -mu (t) (5.1)

where u(t) corresponds to the displacement vector relative to the ground, U, (t) is the

horizontal ground motion acceleration, ¢ is the influence vector that is used for

defining the direction of ground motion, m represents the mass matrix, and ¢c® and k®
are the instantaneous damping and secant stiffness matrices for 2D structural systems,

respectively.

5.1.2 Expansion of the equation of motion in modal coordinates

Although the solution of the equation of motion could be provided via step-by-step
integration methods, mode-superposition method is a rational alternative. Aydinoglu

(2003) reported two important advantages of the mode-superposition method: i.
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freedom in assigning the modal damping ratios in each mode and ii. superior accuracy

obtained in the solution of the modal SDOF systems.

If right hand side of the equation of motion (Equation 5.1) is expanded as the
summation of modal inertia force distributions, then the following equation is

obtained:

—muti (t) =St (t) = ZN:snu‘g t) = ZN:FS() M g (t) (5.2)

where S is the spatial distribution of the effective earthquake force vectors, and sy is
the contribution of the n' mode to the total, 4 and '’ are the instantaneous mode

shape vector and modal participation factor for the n'" mode, respectively.

The equation of motion is rearranged in terms of the modal coordinates. The expansion
of physical displacement to modal coordinates for the n'" mode contribution is as

follows:

u, (t) =4 q,(t) (5.3)

g,(t)is the modal displacement for n™ mode. If both sides of Equation 5.1 are

multiplied by ¢ and divided by effective mass of n'" mode (M, = 4" M ¢{), then

the following is obtained:

6, ® + 250004, (1) +(a¥) ¢,() =T Wi, (1) (5.4)

where ¢ denotes the damping ratio of the system, and ©is the instantaneous

natural vibration frequency.

If one writes Equation 5.4 for the SDOF system using d, (t) to denote the horizontal

displacement, then the following equation is obtained:

d, () +2000d, (1) + (o) d, (1) =i, (1) (55)

Modal displacements could be defined in terms of the solution of the SDOF system,

g,(t) =T d, () (5.6)

Physical displacements could then be expressed as:
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u, (1) =T5 ¢{ d, (1) (5.7)

In Equation 5.5, the last term on the left hand side could be considered as the
instantaneous pseudo acceleration response (a' (t)) of the n'™ mode. If Equation 5.5

is re-arranged, then the modal response of each mode could be expressed as:

d, (t) + 2 0, (1) + 4 (1) = =i, (1) (5.8)

The incremental form of Equation 5.8 was established by Aydmoglu (2003), and
solution of the equation was constructed in ADRS format, namely, modal hysteresis
loops. The envelope of the modal hysteresis loops corresponds to the modal capacity
diagram, which demonstrates the structure’s capacity for each mode in a demand

dependent manner.

5.1.3 Equal displacement rule for calculating earthquake demands

To calculate the displacement demand for the SDOF systems, the equal displacement
rule is the simplest and most rational method to use compared to the capacity spectrum
method, the displacement coefficient method, and NTHA. In the equal displacement
rule, inelastic spectral displacement is assumed to be equal to elastic spectral
displacement of SDOF system subjected to earthquake ground motion. However, some
limitations exist on the applicability of the method. The method could only be
implicated for far-fault earthquake records and perhaps some near-fault records, which
do not include the impulsive forward directivity effects. Furthermore, the dominant
natural period of the structure should be greater than the corner period. Some existing
procedures in the literature such as MPA (Chopra and Goel, 2002) and IRSA
(Aydinoglu, 2003) have also used the rule in their simplified versions. PMPA (Reyes
and Chopra, 2011b), the simplified version of MPA, considers linear elastic response
contributions of higher modes. The target displacement of inelastic SDOF system for
each mode is estimated by multiplying the displacement of the corresponding linear
system with the inelastic deformation ratio of Crn. Aydinoglu (2003) states that in mid-
to high-rise structures, the effective initial periods of the first few modes are likely to
be longer than the characteristic period of the elastic spectrum and therefore those
modes automatically qualify for the equal displacement rule. Similar to the mentioned

studies, VMPA utilize the equal displacement rule to estimate earthquake displacement

95



demands. The foremost drawback of the proposed procedure is the limitation related
with the applicability of the equal displacement rule for some structural systems.

Consequently, VMPA should be used carefully for those structural systems.

5.1.4 The solution procedure

The nonlinear structural analysis algorithms mostly use tangent stiffness, and require
the determination of the capacity curve till a predetermined target displacement
demand. The MPA method needs capacity curves in the form of modal displacement
(Sq) vs. modal pseudo-acceleration (Sa), (ADRS). Subsequently, modal displacement
demands are calculated via NTHA using these curves. In the current study, a variant
of Modal Pushover Analysis (VMPA) is proposed as a new application of MPA. In
VMPA, by the application of the equal displacement rule together with the secant
stiffness based linearization technique, the nonlinear analysis is limited only to the
target displacement points for individual modes without the necessity of the
determination of full capacity curve that diverges from MPA. A displacement
controlled algorithm is utilised to calculate the plastic modal capacity (San p)
corresponding to target displacement (Sgn p) in the ADRS format, for a specific

earthquake level.

The adaptive version of VMPA, which is called VMPA-A, considers the variation of

dynamic characteristics due to progressive yielding of the structural members.

A MATLAB based computer program, the so-called DOC3D-v2, was developed to
implement VMPA to analyse three-dimensional frame and/or shear-wall type
structural systems. DOC3D-v2 takes into account concentrated and distributed
plasticity for the frame type elements as well as considering the second-order effects
of axial loads on the members. Furthermore, the beam-column element of DOC3D-v2
considers the nonlinear interaction of shear-flexural deformations, (Surmeli and
Yuksel, 2012). The applicability of the physical sub-structuring approach is one of the
substantial features of DOC3D-v2 for reducing the computation time.

The main distinctions of VMPA from the existing procedures are presented as follows:

1. One of the promising features of VMPA is to have the procedure applied for the
determination of the plastic spectral acceleration (San_p). In this approach, the full
modal capacity curve for each vibrational mode does not need to be obtained.
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2. The secant stiffness method is used in VMPA for the linearization of nonlinear

3.

constitutive models, which may have the horizontal and/or descending branches.

Adaptive and non-adaptive versions of VMPA could be applied simply by the
assignment of a key parameter. Application of the adaptive version is critical,

especially for high-rise and irregular buildings.

The focal shortcoming of VMPA is the disregard of the modal interaction in the

nonlinear range, as is the case for some other procedures.

The developed algorithm is described on a representative example with 3 DOFs. The

steps of the procedure are as follows:

The initial eigenvalue analysis is conducted by using the gross stiffnesses of the

structural members; based on the analysis, the mode shapes (¢rf1)), natural

frequencies (a)r(]l)) and modal participation factors (Fﬁ]l)) are obtained. The

superscript (*) denotes the definition of the first iteration step; the superscript

will be defined as k for the succeeding statements. The nonlinear static analysis
for gravity loads is performed, and the demand parameters of interest (Rg) is

obtained.

The equal displacement rule is applied in ADRS format, and the modal
displacement demands for each mode are obtained, Figure 5.1. The initial step
of the procedure is to draw the smoothened design spectrum. The modal
displacement demands (San_p) and the consistent spectral accelerations (San_¢) are
attained from the intersection of the ADRS curve, with the lines having slopes

2
of(a)r(]l)) . San_p 1S the target modal displacement demand, which does not change

during analysis.
Target physical displacement demand at the m™" degree of freedom is determined

for each mode using Equation 5.9.

D(k) = Dmn_g +¢r$1kn) .rﬁk) 'Sdn (59)
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The target displacement of D is instantly updated at each linearization step

(k), as demonstrated in Figure 5.2. In Equation 5.9, Dmn_g is the displacement

demand due to gravity loading.
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Figure 5.1 : Application of the equal displacement rule in ADRS format.
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Figure 5.2 : Target displacements for each mode at k™ linearization step.

The mode compatible force vectors obtained from elastic spectral accelerations
are defined by Eq. 10.

Qi =5, =T m 48, . (5.10)

The visual representations of spatial force distributions for the k™ step are

illustrated in Figure 5.3. For the first step, spectral accelerations of S,S%, S&
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vi.

are taken as equal to the elastic spectrum ordinates of S, ., S,, .,S,; ., Figure
5.1.
Oy =¢"mI7S, , Oy=¢,mI7S,, OF=¢"ml7S,;,

> — .

Figure 5.3 : The horizontal force patterns for modes at k™" step.

A displacement controlled algorithm is used to calculate the inelastic spectral
accelerations conforming to the target displacements for each mode. The static

equilibrium for the k" linearization step is given in Equation 11.
S®Op® 4 p© —Q® (5.11)

where S%, P,%and Q™ are the instantaneous static stiffness matrix, distributed
loading vector and nodal load vector (which provides target displacement at the
reference DOF for n'™ mode), respectively. The nodal load vector Q™ can be
defined in a scaled form of the instantaneous force distribution vector for n'"

mode, QY , as follows:

Q¥ =af?-Qg) (5.12)

The secant stiffness based linearization procedure is implemented in the
analysis. The procedure is used not only for moment-curvature relations but also

for strain-stress relationships for fibre elements, (Figure 5.4). At each iteration

step, effective rigidities of the any section or fibre (E1%, E%) are attained from

the constitutive relations.
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Figure 5.4 : The application of secant-stiffness method in moment-curvature and
stress-strain relations.

vii. After each linearization step (k>1), eigenvalue analysis is repeated and the

instantaneous mode shapes (¢4!), natural frequencies () and modal
participation factors (I'*)) are defined.
viii.  The steps iii to vii are repeated until the parameter of o is sufficiently close

between the successive steps. The final o{” corresponds to the desired load

parameter. The k" iteration step is presented in Figure 5.5. For the given
example, the first two modes behave nonlinearly, and the third one is in the linear

range.
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Figure 5.5 : An intermediate step in the ADRS spectrum.

The last step in the iteration is presented in Figure 5.6. The resulting natural

frequencies and plastic accelerations are presented as »!” and S respectively.

an_p'!

a3_e
—First Mode
—Second Mode
Saz e —Third Mode

First Step

Spectral Acceleration(S,)

Spectral Displacement(Sy)

Figure 5.6 : The final iteration step in the ADRS spectrum.

The loading parameters are defined by Equations. 5.13 and 5.14 for the non-
adaptive (VMPA) and adaptive (VMPA-A) cases, respectively. These
parameters correspond to the ratio of plastic to elastic base shear forces. It should

be noted that a mass normalized procedure is utilized here and modal mass of n™"

mode for any step (¢rfk” M ¢rfk’) is made equivalent to unity.
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a'® = _ Dan_p (5.13)
((¢n<e)T M ,)2 /(¢rfe)T M ¢ )) S, . San e
ol g )s., germ's, G

(A Me) 1 (4 MG0))s, . (AW,
ix. Any demand parameter (Rn) of interest for the n'" mode, such as displacement,

drift, internal force, curvature, fibre strains, etc., can be calculated as:

R, = Rn+g _Rg (5.15)

X.  The processes of steps iii-ix are repeated for the desired number of modes (N).
xi. The SRSS modal combination rule is applied, and the resulting demand

parameter of interest, R, is obtained as:

R =R, +(R?) (5.16)

xii.  The axial force-moment interaction is considered, not only for the discrete modal
pushover an alyses but also for the combination of axial loads on the columns.
After the combined axial force (P) is calculated, the plastic moment (Mp) is
determined from the interaction curve, Figure 5.7a. The plastic moment is used

to construct the moment—curvature relation. The combined moment (M) is

calculated as a value corresponding to the combined curvature of x,,, , Figure

5.7b.
Moment
[
Axial Force
M_ le
A PM )
M,
P &
| Moment Curvature
Mp Kp Kpum
a. Axial force-moment b. The moment corresponding to the
interaction curve combined curvature ( &y, )

Figure 5.7 : Combined internal forces and curvatures.
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xiii.  Once the combined moments are determined at the moment plastic hinges of the
members, the corresponding shear forces are calculated by using the member

equilibrium equations, Figure 5.8 and Equation 5.17.

q
M, (?JJJJJ_LLLLLLUJ M,
I

I

Figure 5.8 : End forces of a frame element.

T.:Mi+Mj+% T Mi+Mj_q_|_ (5.17)

' L 2 J L 2

Detailed flow-chart of the algorithm is presented in Figure 5.9.

5.2 Three Dimensional Analysis Algorithm

5.2.1 Equation of motion

The equation of motion for a building subjected to two components of horizontal
earthquake ground motion can be formed in terms of instantaneous dynamic

characteristics due to the progressive yielding of structural members:
Mii(t)+C®u(t)+K u(t)=- My, U, (t) - My, U, () (5.18)

where u(t) corresponds to a displacement vector relative to the ground, Ut (t) and

gx
u,(t) are the horizontal ground motion acceleration components,zand iz, are

influence vectors which are used for defining the direction of the ground motion, and

M represents the mass matrix and can be expressed by sub-matrices as follows:
m 0 O 1 0
M=|0 m O =0 1, =1 (5.19)
0 O 0 0

where C* and K® are instantaneous damping and secant stiffness matrices,

respectively. The superscript (k) corresponds to k™ step of the analysis process.
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Figure 5.9 : Flow-chart of the proposed 2D analysis algorithm.
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5.2.2 Expansion of the equation of motion in modal coordinates

If the right-hand side of the equation of motion (Equation 5.18) is expanded as the

summation of modal inertia force distributions, the following equation could be drawn:

N
.. .. _ .. .. _ (k) s (k) s
~Ma, (i, (t) — My Uiy, (1) =S, 1y, (1) +S, g, (t) = D (s, (1) + 550, (1)) (5.20)
n=1
SR _ ]
Sin?x m¢xn
k) _| k) | k) (k) _ (k) (k)
snx - syn,x - an M ¢n - an m ¢yn
k (k)
_Sén),x_ _IO on i
- - _ (5.21)
(k) (k)
an,y m¢xn
k) _ k _1k (k) — (k) (k)
S(ny) - S(yn),y o FT(TY)M ¢n - 1—‘ny m ¢yn
S(k) | (k)
LTony | L 076n |

where S, and S, are the spatial distributions of the effective earthquake force vectors,

s, and s are the contribution of the n™ mode, and T',, and [, are the modal

X

participation factors for the n' mode of the x and y components of the ground motion,
respectively. The mode shape vector is defined as ¢, , and ¢,, , ¢,,and ¢,, correspond

to the x and y translational components and z to the rotational component of the vector,

respectively.

The equation of motion could be rearranged in terms of the modal coordinates. The
expansion of physical displacement to the modal coordinates is as follows:

u,(t) =49, () (5.22)

where ¢, (t)is the modal displacement for the n™ mode. If the rigid diaphragm
assumption is considered, the n" mode displacement vector u_(t) can be divided into
three sub-vectors which have N terms. N is number of stories of the building, u,,and
u,, are sub-vectors for the translational displacements in the x and y directions, and

u,, is the sub-vector for torsional displacement.
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an
u, =| U, (5.23)
an

If Equation 5.18 is defined in terms of the modal coordinates and both sides of the
equation are multiplied by 4" and divided into "M ¢, then Equation 5.24 is

achieved.

2
G, (1) + 26004, () + () q, (1) = T8, 0 -T ¥, ) (5.24)

where &Y stands for the damping ratio of the system and o is the instantaneous

vibration frequency.

If one benefits from the solution of a single component of ground motion (SDOF), the

displacement demands can be calculated from Equations 5.25 and 5.26:

d, (1) + 200 d,, () + (@) d, (&) = i, (1) (5.25)

d,, (1) + 200 d, (0 + (o) d,, ) =t () (5.26)

where d_ and d , stand for displacement vectors corresponding to two horizontal

components of ground motion. In Equations. 5.25 and 5.26, the last term on the left-

hand side could be considered as an instantaneous pseudo-acceleration response (a8l

or a!;) of the n™ mode. If Equations 5.25 and 5.26 are re-arranged; the modal response

of each mode could be expressed as:

doy (1) +2£000d , () +al (t) = i, (t) (5.27)

dy, (1) +2& 00 fd,, (t) +a) (t) = U, (t) (5.28)

The solution of Equations 5.27 and 5.28, as SDOF systems, yields the maximum modal

displacement demands D,, and D, . The corresponding modal coordinates for each

mode could be determined by Equation 5.29:
=D, +IyD, (5.29)

qn,max

Thus, physical displacements can be expressed by Equation. 5.30:
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5.2.3 Implementation of 3D VMPA for bi-directional ground motions

The adaptation of VMPA to 3D buildings and the implementation of 3D VMPA for
bidirectional ground motions will be described via a representative un-symmetric
building, as shown in Figure 5.10. Herein, although the symmetrical distribution of the
lateral load-carrying elements in the plan is supplied, some eccentricity exists because

of the non-uniform distribution of mass.

Figure 5.10 : A representative 3D structure having frame and shear wall type lateral
load resisting system.

The steps of the procedure are given as follows:

i. The initial eigenvalue analysis is conducted by using the gross stiffnesses of the

structural members; based on the analysis, mode shapes (¢4"), natural
frequencies (o) , modal participation factors (I'”) and modal participation

mass ratios (M) are obtained. The superscript (*) denotes the definition of the

first iteration step; the superscript will be defined as k for the succeeding
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statements. The nonlinear static analysis for gravity loads is performed, and the

demand parameters of interest (R;) are obtained. The modes are sorted from

largest-to-smallest modal participation mass ratios in the x, y and torsional
directions individually. Each x-directional, y-directional and torsional mode is
termed as a triple, and a sufficient number of mode triples should be selected in
order to predict the earthquake demands accurately.

ii. As an improvement to the previous version of VMPA, which is used for a single
component of ground motion, the equal displacement rule is not applied in

ADRS format. The method is implemented to hybrid axes-couples, namely

Ly Se+l,, Sy and ' S, +I" S, for the x and y axes, respectively. The

nx ~ax ny “ay
implementation of the equal displacement rule to the first triple of modes, which

includes the first x- and y-translational and &-torsional modes, is shown in Figure
5.11. Since the modal participation factors of I, and T", are different for each
mode, the equal displacement rule is applied to different hybrid spectrums for
each mode. The hybrid spectrum apsis ", S, +I', S, to be used for calculating

the physical displacement demands and the consistent spectral ordinate

[y Sa+1,, S, tobe used for the inertia forces are attained from the intersection

of the hybrid curve, with the lines having slopes of (o). In the figure, (o),

(0)? and (w};)? are the initial eigenvalues of first x- and y-translational and

¢-torsional modes, respectively.

===Mode 1_Y Dir.

=S=Mode 1 X Dir.
=#r—Mode 1 Torsional

l—.m‘. Sar. + rmr Sa-,r

Figure 5.11 : Application of the equal displacement rule in the hybrid spectrum
format.
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Iii. The target physical displacement demands at node m should be determined for
each mode as follows:

Dr(ntw)_x = Dmn_gx + rg;)_x (FS:() ’ Sdn_x + Fs;/) ’ Sdn_y) (531)
Dr(n:)_y = Dmn_gy + rg;)_y (FE:() ’ Sdn_x + r‘s;) : Sdn_y) (532)
Dr(ni;\)_e = Dmn_g@ + ¢r$1i:1)_6 ’ (FE:() : Sdn_x + Fs;) ' Sdn_y) (533)

where D, ., Dy, o and D, ,, are the x- and y-translational and & -rotational

displacement components of node m due to gravity-loading. The target

displacements of D, ,, D, , and D, , are instantly updated at each

linearization step (k). The contributions of the first triple of modes to the total

displacement demand in the representative building are shown schematically in
Figure 5.12.

First X Direct. First Y Direct. First Torsional

Total Deflection Mode Mode Mode

Figure 5.12 : Contributions of the first triple of the modes to the total displacement.

iv. The mode-compatible force vectors obtained from the elastic spectral

accelerations are as follows:

S =5 =M gl (TS, o+ TSy o)) (5.34)
S =8 =M (T8-S, o+ TS, ) (5.35)
éﬁ?? = Sr(uz) =M ¢0(rl:) (FS:() ) San_ex + FS;) : San_ey) (536)

The superscript (k) corresponds to the linearization step. For each linearization

step (k >1), an eigenvalue analysis is repeated and the instantaneous mode-shape

vector (4)) is determined.
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V.

Vi.

A displacement-controlled algorithm is employed to calculate inelastic hybrid
spectrum ordinates for the target displacement, which has three DOF, namely
Do x+ D, and D,, , for each mode. It is difficult to push the structure to
the three components of the target displacement demand simultaneously with a
single loading parameter. As such, the DOF of the building to be used in the
pushover analysis is selected as the direction in which the maximum modal
participation mass ratio is obtained. The remaining DOFs are kept free in VMPA.
If the adaptive version (VMPA-A) is considered, the displacement and force
vectors are updated at each loading stage. Therefore, all of the three
displacements’ demands can be provided. The equilibrium equation for the k™

linearization step is as follows:
k k k k
Sy’ DY + Py =Q.Y (5.37)

where S®, P, and QU are the instantaneous static stiffness matrix, member
load vector and nodal load vector (which provides target displacements at the
reference DOFs for the n'™ mode) respectively. The nodal load vector Q% can
be defined in a scaled form of instantaneous force distribution for the n' mode

() :
Q,, as follows:

QY =a," Q) (5.38)

The loading parameter ! is expressed as the ratio at which target displacement

is achieved for a specific intensity of motion.

The secant stiffness-based linearization procedure is implemented in the
nonlinear analysis. The procedure is used not only for moment-curvature
relations but also for strain-stress relationships for fiber elements (Figure 5.4).
At each iteration step, effective rigidities for any given section or fiber

(E1%, E%) are attained from the constitutive relations.

vii. After each linearization step (k>1), the eigenvalue analysis is repeated and the

instantaneous mode shapes (4 ) and natural frequencies (o) are defined.

viii. Steps iv to vii are repeated until the parameter of «® is sufficiently close

between the successive steps. The final «® corresponds to the desired load
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parameter. The k™ iteration step on the hybrid spectrum format is presented in

Figure 5.13a.

= Mode 1_Y Dir.

=—Mode 1_X Dir.

=#=Mode 1 Torsional

| T F,,, Sqy

rnx de + rnv de.r
a- An intermediate step

B Mode 1_Y Dir
® Mode 1 X Dir
A Model Torsional

rnxsdx + rnv de

b- Determination of loading parameter

Figure 5.13 : The utilization of hybrid spectrum for 3D VMPA.

For the example given, the first x- and y-translational modes behave nonlinearly
and the first torsional mode is in the linear range. The last steps in the iterations

for the first triple of modes are presented in Figure 5.13b.

The loading parameter {” in VMPA is determined by Equation 5.39:

| T TR

n_py (5.39)

an_ey

a® =™
t T Sa et IoyS

nx “an_ex

For the adaptive version (VMPA-A), the same parameter is calculated by Equation

5.40:
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o (4P™Me) (1, +TP-S, ) (5.40)

(¢rEE)T M: )2 (FS;) -5 + FE;) ) San_ey)

The DOF, where «'” is calculated, is decided as the one having the largest

modal participation mass ratio. The determination of «”in 3D algorithm is

similar to the 2D algorithm. The parameter corresponds to the ratio of plastic to
elastic base shear forces calculated for the dominant direction.

ix. Any demand parameter (Rn) of interest for the n" mode, such as displacement,
drift, internal force, curvature, fiber strains, etc., can be obtained by Equation
5.41:

R, =Ri.q Ry (5.41)

where R ., and R, stand for the demands obtained from the pushover

analysis with gravity-loading and single gravity load analysis, respectively.
X. The resulting demand parameter of interest, R , is calculated by the SRSS

combination rule:

R =R, +|(R?) (5.42)

xi. Eight distinct analyses corresponding to varying directions of selected DOFs (X,

y and &) have to be performed in order to determine the unfavorable condition,
Table 5.1, see Fig.5.10. For instance, the first pushover may be applied for the

positive directions of X, y and é.

Table 5.1 : The directions of selected DOFs.

Loading X y 6,

positive  positive  positive
negative  positive  positive
positive  negative  positive
negative  negative  positive
positive  positive  negative
negative  positive  negative
positive  negative  negative

~NoO o1k, wWwN -

Detailed flow-chart of the algorithm is presented in Figure 5.14.
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Figure 5.14 : Flow-chart of the proposed 3D Analysis Algorithm.
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Figure 5.14 (Continued) : Flow-chart of the proposed 3D Analysis Algorithm.
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6. VERIFICATION EXAMPLES

6.1 9 and 20-Storey SAC Steel Buildings

The test structures are 9-storey and 20-storey steel frame buildings, which were
designed for the Los Angeles (LA) region in the SAC Phase Il project, Gupta and
Krawinkler (1999). Kreslin and Fajfar (2011) also studied the buildings to demonstrate
the validity of the extended N2 method against the results of response history analyses.
The modelling assumptions and the selected earthquake record sets defined in the
paper are taken as the basis for this paper. The results of VMPA and VMPA-A are
compared with NTHA, MPA and the extended N2 method.

The buildings consist of two perimeter frames in each orthogonal direction as well as
the gravity frames. For simplicity, instead of using 3D models of the lateral load-
resisting part of the structure, only the perimeter frames in the north-south direction
are modelled. The preferred model is designated as the M1 model by Gupta and
Krawinkler (1999). In this model, the nonlinearities are taken into account with plastic
hinges at the beam and column ends without rigid end offsets, and the behaviour of
the panel zones are not considered. The elevations and sectional dimensions of the
perimeter frames are presented in Figure 6.1. The yield strengths of the columns and
the beams are taken as 397 MPa and 339 MPa, respectively. The columns are pinned

at the base. The column splices are arranged at 1.83 m above some of the storey levels.

In the 9-storey building, the right end of the beams between the E and F axes are simply
hinged. All other connections are fixed. The columns are arranged in the strongest
direction, except the F axis. The ground level is restrained in the lateral direction to

represent concrete foundation walls.

In the 20-storey building, all of the connections are fixed, except the bottom ends of
the second basement columns. The beams are also simply connected to the columns at
this level. The ground floor and first basement levels are laterally restrained against
horizontal displacements. The columns of the A and F axes have tube sections. More

details are found elsewhere, Gupta and Krawinkler (1999).
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PERFORM-3D V5.0 (CSI, 2012) software is used to model and analyse the test
buildings. Bilinear elasto-plastic hinges are used at the member ends to represent the
concentrated plasticity. The beams were modelled with simple moment hinges. PMM
hinges are defined on the columns to represent the interaction between the axial force
and the bending moments. Due to relatively low axial force intensities on the columns,
second-order effects are neglected similar to the study conducted by Kreslin and Fajfar
(2011). The critical Rayleigh damping ratio of 5% with characteristic elastic periods
of the first and third modes are utilised in NTHA. The periods, modal participation

factors and effective mass ratios are tabulated in Table 1 for the test buildings.

Table 6.1 : SAC (LA) buildings.

Period T Effective Mass Participation Factor
Mode s) (%) )
#
9 St 20 St 9 St 20 St 9 St 20 st
1 2.27 3.82 83.1 80.0 -61.24 -66.53
2 0.85 1.32 10.9 11.8 22.14 25.50
3 0.49 0.77 3.7 35 -12.95 -13.89
4 0.54 1.8 9.86
5 0.41 1.0 -7.38
Y= 97.7 98.1

6.1.1 Assessment of VMPA

The assessment of the VMPA procedure is achieved by comparing the results of the
procedure with those obtained from the NTHA. The evaluated demand parameters are
storey displacements, drifts, shear forces and the distribution of column and beam

curvatures.

The first step in the verification involves the 9-Storey LA Building subjected to the El
Centro record. Subsequently, the average of the NTHA results of two sets of ground
motions are compared with the VMPA results for the benchmark structures. The
differences between the results of the VMPA procedure and the results of the MPA,
MMPA and extended N2 will be presented. The results obtained from the adaptive
and non-adaptive versions of the VMPA are also assessed.

6.1.1.1 Evaluation for a specific earthquake

Two sets of analyses were performed using VMPA for 1.5 x EI Centro ground motion.

In the first set, the equal displacement rule is implemented to determine the
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displacement demand of the reference DOF for each mode. In the second set, the

combined displacement demand in VMPA is made equivalent to the ultimate

displacement demand obtained from NTHA at the reference DOF.
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Figure 6.1 : SAC Buildings (all dimensions in meters).

Chopra and Goel (2002) also studied the 9-storey LA Building with 1.5 x EI Centro
ground motion to validate the MPA procedure against the NTHA results. The NTHA

analysis was performed without considering gravity loads, and a 2% critical damping

ratio was used, unlike the other NTHA results presented in the proceeding chapters.

Considering the same structural and dynamic characteristics as Chopra and Goel
(2002), the adaptive (VMPA-A) and non-adaptive (VMPA) procedures are conducted,
and the resulting demands are compared. Figure 6.2 shows the results of the equal
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displacement rule, and Figure 6.3 illustrates the results of the case in which the top

storey displacement is tuned to the NTHA result.

From the application of the equal displacement rule procedure, a 26% relative error is
obtained at the top displacement compared with the NTHA results. The displacements
at the lower stories are relatively similar in both cases. The MPA method provides
better displacement demands for all stories in comparison with the VMPA procedure

using the equal displacement rule.

9 9 9
g ~NTHA 3 g
=VMPA
/ ~VMPA_A 7 7
g v 2 .
24 24 24
3 3 3
2 2 2
1 1 1
0 0 0
0 20 40 60 0 1 2 3 4 0 5000 10000
Storey Displacement (cm) Storey Drift (%) Storey Shears (kN)

9 9

8 8

7 7

6 6

s g5

34 3 4

3 3

2 2

1 1

0 0

0 0.005 0.01 0.015 0 0.01 0.02 0.03 0.04
Column Curv. (1/m) Beam Curv. (1/m)

Figure 6.2 : Demands determined from the equal displacement rule.

Although the maximum relative errors for storey drifts obtained from the VMPA
procedure using the equal displacement rule is higher than those of the MPA, in
general, the estimation of VMPA provides better results, especially for the lower and
upper stories. The predictions of the storey drifts in the second set are excellent
between the 3 and 7™ stories. For the remaining part, reasonable differences are

observed.
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Figure 6.3 : Demands determined from the imposed top displacement comes from the
NTHA.

The prediction of storey shears obtained from VMPA using the equal displacement
rule is sufficient for all storeys. VMPA-A provides better results with respect to the
non-adaptive analysis. Superior estimates for the storey shears are observed for the

second set of analyses.

The curvatures at the bottom end of the columns positioned at the C axis are plotted in
Figure 6.2 and Figure 6.3. The equal displacement rule produces good results; the

second set yields better results, except for the 4™ storey.

As another comparison, the curvatures of the outer beams are poorly predicted for both
of the analyses sets. Chopra and Goel (2002) also represented plastic rotations of the
outer beams determined from MPA. However, VMPA uses curvature type plastic

hinges, and the total curvatures are considered.

For comparison, the relative differences for any of the demand parameters are

determined by Equation 5.42.

_ R\/MPA — RNTHA %100 (6.1)

NTHA

rRE
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where Iy is the relative difference for the response quantity of interest (R), and RVMPA
and Ry are the analysis results obtained from VMPA and NTHA, respectively.

Figure 6.4 demonstrates the relative differences between the beam total curvatures
obtained from VMPA and NTHA for two different sets of analyses. The relative plastic
rotation differences between the results of MPA and NTHA are also presented in
Figure 6.4. The relative differences obtained are large for the MPA and VMPA
procedures. The most successful procedure is the second set of analyses performed by
VMPA. In general, due to limited plasticity for the level of earthquake, VMPA and
VMPA-A produced comparable results.

9 =T ? = VMPA
8 8 L vmpa-l 8 VMPA-A
7 7 7
6 6 6
g5 g5 5
3 4 24 34
3 3 3
2 2 / 2
1 1 1
0 0 0
-100 -50 O 50 100 -100 -50 O 50 100 -100 -50 O 50 100
Plastic Rotation Error (%) Beam Curv. Error (%) Beam Curv. Error (%)
. . . Top Storey displacement scaled
Beam Plastic Rotation Error Equal Displacement Rule P to %TH?A Results
MPA VMPA, VMPA-A

Figure 6.4 : Relative Differences of beam plastic rotations and total curvature demands.
6.1.1.2 Evaluations for two sets of earthquakes

Two earthquake sets are used in the study, namely PEER NGA and European Database
Earthquake sets (Appendix A). VMPA is applied to 9- and 20-storey LA buildings to
compare the various demands obtained from the NTHAs performed using the PEER
NGA and European Database Earthquakes, as well as the other NSPs. The target top
displacement demands, which are utilised in VMPA and the other NSPs for each

earthquake set, are chosen as the average of the results of NTHAsS.

9-storey SAC (LA) building

The average of maximum top displacements obtained from NTHAs are 0.80 m for the
I3 intensity of the NGA database earthquakes and 0.13 m, 0.58 m, 0.77 m and 1.02 m
for the 14, Iz, 13 and 14 intensities of European Database earthquakes, respectively. To
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provide these displacements to be used in the VMPA method, Sa and Sq couples are
scaled with a single scale factor of 0.79 for Iz intensity of the NGA database
earthquakes, and the factors of 1.075, 0.953, 0.847 and 0.836 are used for the Iy, I2, I3
and l4 intensities of the European Database Earthquakes, respectively. The execution
of VMPA and VMPA-A to the 9-storey SAC building is illustrated in Figure 6.5. The
elastic spectrum in ADRS format for the scaled version of the median European
Database Earthquakes are demonstrated with the curves of increasing darkness. The
curve of the scaled version of the median PEER NGA is presented in purple. The
application of equal displacement rule for each case is shown with hollow markers on
the spectrums. After performing the linearization process of VMPA, the elastic
spectral accelerations for each mode (San ¢), identified by the hollow markers, reduce
to the plastic spectral ordinates (San_p), as indicated by the filled markers. An advantage
of VMPA is that calculation of the other ordinates of modal capacity curves is not
required. The capacity curves are plotted in bold dashed lines. In fact, the analyses are
performed for only five unique target displacements for each mode. As seen from the
figure, although the VMPA results indicate that the first three modes are in nonlinear
range, the third mode is linear in VMPA-A. Additionally, the post yield slopes in the
second mode are quite different.
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Figure 6.5 : Spectral acceleration vs. spectral displacement of the 9-storey SAC building.
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Figure 6.5 (Continued) : Spectral acceleration vs. spectral displacement of the 9-
storey SAC building.

The response parameters calculated for 20 European Database Earthquakes with
increasing intensities are represented in Figures. 6.6, 6.7, 6.8 and 6.9. The bold black
line corresponds to the average of the response parameters for the earthquakes. The
dashed black lines denote the maximum and minimum of the related response
parameter obtained for the earthquake set. The area painted in grey shows the range
between minus and plus one standard deviation of the average. The dashed red and
blue lines correspond to the results of VMPA-A and VMPA, respectively.

The relative errors for the displacement responses are lower than 20% for all
intensities. If storey drifts are considered, then the relative errors are in the range of
15% to 30% in VMPA. Although VMPA-A produces better results at lower stories
compared with VMPA, the relative errors of the method are increased by up to 60% at
the higher stories with the increment of the intensity level. Regarding the storey shears,
the errors appear to be similar for the storey drifts within a limited value of 40% for
the 14 level. In fact, the NTHA average + one standard deviation band is narrower for
storey shears in comparison with storey drifts.
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Figure 6.6 : 9-storey SAC LA building subjected to the European Database Earthquakes
(12).
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Figure 6.7 : 9-storey SAC LA building subjected to the European Database Earthqukes

The column and beam curvatures are mostly within the NTHA average + one standard
deviation bands. The predictions determined using VMPA-A are better in comparison
with VMPA in terms of the column curvatures. This evaluation becomes prominent at

stories where large column plasticity exists, i.e., at the first and seventh stories.
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Figure 6.8 : 9-storey SAC LA building subjected to the European Database Earthquakes

The poorest prediction is for the beam curvatures. Differences exist in the predicted

beam curvatures, even in the linear case at higher stories. The increasing intensity level

(Is).

causes higher relative error on the predictions.
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Figure 6.9 : 9-storey SAC LA building subjected to the European Database Earthquakes
(1a).

Figure 6.10 shows the demands determined from the NTHAs of the Iz intensity of the
NGA database earthquakes. When compared with the European Database Earthquakes
(Figure 6.8), the demand predictions of the NGA Database are more successful. The

main reason for this difference is that the higher modes are more effective in the case
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of the European Database, Figure 6.5. In particular, for column curvatures, a perfect
match is observed at the first storey, where the column plasticity is the highest.

However, the predictions for the column and beam curvatures are insufficient for the

upper stories.
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Figure 6.10 : 9-storey SAC LA Building Subjected to the NGA Database Earthquakes (I3).
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20-storey SAC (LA) building

The average of maximum top displacements obtained from the NTHAs are 0.94 m for
the I3 intensity of the PEER NGA and 0.14 m, 0.59 m, 0.78 m and 0.97 m for the Iy,
I2, 13 and I intensities of the European Earthquakes, respectively. To provide these
displacements to be used in VMPA, S, and Sq couples are scaled with the unique scale
factor of 0.936 for the I3 intensity of the PEER NGA Earthquakes, and the factors of
1.095, 0.938, 0.827 and 0.769 for I3, Iz, Is and 4 intensities of European Database
earthquakes, respectively. The implementation of the VMPA and VMPA-A
procedures to the 20-storey SAC building is presented in Figure 6.11. As seen from
the figure, the first three modes are in the nonlinear range. Minor differences are

perceived for the modal capacity curves between the two types of analyses.
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Figure 6.11 : Spectral acceleration vs. spectral displacement of the 20-Storey SAC
building.
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Figures. 6.12, 6.13, 6.14 and 6.15 depict the response parameters calculated from the
analyses of the 20-Storey LA Building for the European Database Earthquakes. The
relative errors attained in the displacement responses are lower than 16% for all
intensities. If the storey drifts are considered, the errors are increased from 21.7-56%

when the intensities change from I to L.
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Figure 6.12 : 20-storey SAC LA building subjected to the European Database Earthquakes
(I2).
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Generally, the predictions determined from VMPA-A provides more reliable results

in comparison with VMPA in terms of storey drifts. Regarding the storey shears,

conservative results are observed for both types of analyses. The errors increase at the

upper stories

by up to 48%.
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Figure 6.13 : 20-storey SAC LA Building subjected to the European Database
Earthquakes (1,).
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For the intensity of l4, the column curvatures obtained from VMPA are smaller than
those of the NTHA at first storey level within a relative error up to 70%. Although
predictions of the beam curvatures are successful at lower stories, an error of 80%
exists at the upper stories. In general, VMPA-A provides better results regarding the

beam curvatures.
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Figure 6.14 : 20-storey SAC LA building subjected to the European Database Earthquakes
(13).
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Figure 6.15 : 20-storey SAC LA building subjected to the European Database Earthquakes
(1a).

Figure 6.16 shows the demands determined from the NTHAs of I3 intensity of the
PEER NGA Database. If the storey drifts are considered, then the maximum errors are
34.7% and 19.2% for VMPA and VMPA-A, respectively. The adaptive version
provides more reliable results. Similar to the case of the European Database

132



Earthquakes, conservative estimates for storey shears are observed for the PEER NGA
Database. The general trends of the curvatures are also similar for European

Earthquakes intensity level of Is.
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Figure 6.16 : 20-storey SAC LA building subjected to the NGA Database Earthquakes (Is).
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6.1.1.3 Comparisons with the other NSPs

The comparisons were conducted with the other NSPs, namely MPA, MMPA and
extended N2. The results of the corresponding NSPs are extracted from the study
achieved by Kreslin and Fajfar (2011), in which the target displacements at the roof
level were taken as being equal to the mean values of the roof displacements obtained
from NTHAs.

The comparison performed for the storey drift profiles for the 9-Storey SAC Building
are illustrated in Figures 6.17, 6.18 and 6.19. The extended N2 method generally yields
the best results in comparison with the other methods. The suggested VMPA procedure

yield comparable results to those of the other methods.
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Figure 6.18 : 9-storey SAC LA building subjected to the European Database Earthquakes

(Isand 1s).
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Figure 6.19 : 9-storey SAC LA building subjected to the PEER NGA Database
Earthquakes.

The comparisons made for the storey drift profiles of 20 Storey SAC Building are
illustrated in Figures 6.20, 6.21 and 6.22. The best estimates are obtained from the
VMPA-A method, with a maximum relative error of 33% for the European Database
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Earthquakes (l4). The maximum difference for the NTHAS decreases to 14.3% for the

PEER NGA Database Earthquakes.
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Figure 6.20 : Comparisons of the 20-storey SAC LA building subjected to the European
Database Earthquakes (11 and I2).
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Figure 6.21 : Comparisons of the 20-storey SAC LA building subjected to the European

Database Earthquakes (I3 and 1s).
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Figure 6.21 (Continued) : Comparisons of the 20-storey SAC LA building
subjected to the European Database Earthquakes (I3 and 14).
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Figure 6.22 : Comparisons of the 20-storey SAC LA building subjected to the NGA
Database Earthquakes.

6.1.2 Results

A VMPA was developed to determine the seismic performance of the structural

systems. The following conclusions are drawn from the study:

1. VMPA and VMPA-A are applied directly for a specific displacement target,
which corresponds to a vibrational mode, in lieu of the equal displacement rule.
Generation of the full modal capacity curves is not required in contrast to
certain of the NSPs. This lack of requirement to generate the full curves enables

a significant decrease in the execution time.
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. VMPA and VMPA-A produce reliable results in terms of many demand
parameters for the 9-Storey Building subjected to the 1.5 x EI Centro Record.
The application of the equal displacement rule yields similar results as the case

in which the top storey displacements are tuned to the average of the NTHAs.

For the 9-Storey Building, comparable results are obtained compared to the
results of the average of the NTHAs performed for European Database
Earthquakes in terms of storey drifts and storey shear forces. The accuracy
tends to decrease with an increasing intensity of ground motion. The accuracy
of the predictions for beam and column curvatures are relatively low compared
with the other demand parameters. When PEER NGA Database Earthquakes
(13) are considered, more reliable results are observed, especially for column
curvatures. The achievement of VMPA is partially better than VMPA-A.

For the 20-Storey Building, the storey drifts determined from VMPA are quite
consistent at the lower stories with respect to the results of the NTHAs. Some
discrepancy is found in the upper stories. VMPA-A yields better results than
VMPA in terms of the storey drifts compared. The lateral displacement profile
is consistent spectacularly with the results of the NTHA. The applications of
VMPA and VMPA-A produce more conservative results in terms of the storey
shear forces. The obtained column curvatures at the lower stories, where large
plasticity is observed, is in the range of the mean + standard deviation of the
NTHA results for both of the earthquake sets. Although relatively high
accuracy is obtained for the beam curvatures at the lower stories, relatively

large discrepancies are observed at the upper stories.

. When the storey drifts obtained from VMPA and VMPA-A were compared
with the existing NSP procedures for the 9-Storey Building, no advantage was
observed between VMPA and VMPA-A. However, for the 20-Storey Building,
the estimates for the storey drift profile are superior for VMPA-A.

. The accuracy of VMPA and VMPA-A may be affected by the selected

acceleration record sets, similar to the other NSPs.

. Similar to the other NSPs, VMPA and VMPA-A are approximate procedures.
Because of these procedures’ limitations, they must be used carefully.
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6.2 45-Storey RC Coupled Shear Wall System

6.2.1 Modelling of a 45-storey coupled shear wall system

The selected 45-story coupled SW system is taken from the study conducted by
Aydinoglu (2014). In the cross-section, it is composed of two U-shaped SWs
connected by two coupling beams. The SW cross-section and the perspective are
shown in Figure 6.23. The height of the building is 180 m with 4 m equal story heights.
In contradistinction to Aydinoglu (2014), some eccentricity is given to the CM at each
story. The accidental eccentricity corresponds to 10% of the plan dimensions of the
coupled SW system, which is supposed to be 5% of the building plan dimensions. Fig.
6 is given to the CM at each story. The material quality for the concrete is C45 (fc = 45
MPa) and for steel it is S420 (fy = 420 MPa). The longitudinal reinforcements of the

coupling beams are diagonally located along the length.
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Figure 6.23 : Cross-section and perspective view of the RC coupled SW system.
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The developed DOC3D_v2 (Surmeli and Yuksel, 2015) in which the VMPA-A
procedure is employed and the well-known Perform3D_v5 (2012) are the programs
utilized in the analysis of the 3D coupled SW system. To represent 3D behavior of the
coupled SW system; although nonlinear rectangular fiber shell elements are used in
Perform3D, each rectangular arm of the SWs is modeled with one 3D MVLEM in
DOC3D_v2. The details can be followed from Figure 6.24.

™~
™~
Coupling™
beam

a- DOC3D_v2

1X 2X 2X 3X 44X 5X 5X 6X
e e
1 B 2
E" eam E
—ir— Nonlinear o —-&-
T Shell Element Rigid T~
T AB T
=T 1=
>l Tl
4
1 1
N__ __(\l
| IES
—l Beam 1 1™
i AR B . S
1X 2X 2X 3X 44X  5X 5X  6X

b- Perform 3D

Figure 6.24 : Structural models prepared for 2 different programs.
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In the structural models prepared for DOC3D_v2 and Perform3D, the first 10 stories
from the bottom are divided into two parts along the story heights to better represent

the nonlinear behavior of the structure.

In Perform3D, the shear wall element has no in-plane rotational stiffness at its nodes.
To specify a moment-resisting connection between a beam and a wall, it must be
imbedded a beam element in SW. The bending stiffness of the imbedded element is
arranged to represent the stiff connection of SW and beam. On the other hand, in
DOC3D_v2 the rigid beams are involved at story levels to define the U-shaped

geometry of SW and to make connections with coupling beams.

There exist distinct modeling techniques in the literature (Hindi and Hasan, 2004;
Aydmoglu, 2014) to model nonlinear behavior of the coupling beams. Hindi and
Hasan used confined bundles to model diagonally reinforced coupling beams based on

strut and tie analogy.

However, the moment hinge approach is utilized here due to its simplicity against the
other techniques. Curvature-type plastic hinges at both ends of the coupling beams are
defined in this approach. The effects of the concrete and strain hardening of the steel
on the beam capacity are neglected. The moment capacity of the coupling beams at the
ends of the members is calculated by using the tension and compression force couples
at the yield stage by using Equation 6.2 (Figure 6.25). The effective stiffness is defined

as 0.10 of the initial stiffness.

Figure 6.25 : Modeling of the coupling beam.

The yield moment of the hinge is calculated as 1,798 kNm. The plastic hinge definition
is quite different in the two programs. The Perform3D program uses zero-length
curvature-type hinges at the locations where the plasticity is expected, and the frame
element is assumed to be elastic for the remaining part. Whereas DOC3D_v2 utilizes
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the instantaneous secant flexural stiffness in the plastic hinge length, and the remaining
part of the frame element is within the elastic range. In order to provide for the
consistency between the two programs, a preliminary first-mode pushover analysis is
performed. The plastic hinge length is determined by the formula given by Paulay and
Priestly (1992). The formula yields a value of 0.36 m:

L, =0.08L +0.022d, f, (6.3)

where Ly = the plastic zone length, L = the length of the cantilever (the distance to the
inflection point in a beam or column), dy = the reinforcing bar diameter and fy = the

steel yield stress.

Due to aspect ratio (height/length) and the arrangements of lateral reinforcement of the
exemplified SWs, shear deformations and shear-related failure modes are ignored by
assigning high shear stiffness to the linear shear springs (knx and Kny) in 3D MVLEMs.

The second-order effect of vertical loads, which is not included in the existing form of
3D MVLEM, is neglected in the analyses. An assumption of a rigid diaphragm is made
for each story. The translational mass and rotational mass of inertia for each story level
is taken as m = 1,200 kNs2/m and lo = 64,800 kNs2m, respectively. The structural
system carries only its own weight, which corresponds to 10% of the SWs’ axial load
capacities. Modal analyses are performed for the two programs, and the natural periods
and the corresponding effective modal mass ratios obtained by DOC3D_v2 for four
mode triples are given in Table 6.2. The relative differences between two programs
are negligible.

Table 6.2 : Natural periods and modal participation mass ratios of the example.

Mode o T Mx My Mo;
No Direction (sec) (%) %) (%)
1 X1 3.674 66.150
2 & 3.402 62.490
3 X2 0.866  17.890 0.840
4 0! 0.754 0.270  0.025 72.560
5 Y? 0.584 19.050 0.095
6 X3 0.401 5.110 0.019
7 X* 0.250 2.700 0.034
8 0? 0.234 1.680 7.940
9 Y3 0.228 4780 2.720
11 & 0.130 2.990 0.500
13 0° 0.124 0.330 4.450
16 o* 0.0788 0.130 2.660
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The critical Rayleigh damping ratio of 5% with characteristic elastic periods of the
first and third modes is utilized in the NTHAS.

To check the success of the two models prepared in DOC3D_v2 and Perform3D,
pushover analyses were performed in two orthogonal directions. The pushover curves
corresponding to the first modes are very close to one another. However, some
discrepancy is observed for the second modes (Figure 6.26). Perform3D could not

converge up to a target displacement value for the second modes.
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Figure 6.26 : Pushover curves obtained in the x and y directions.
6.2.2 VMPA versus NTHA comparisions

The verification of the 3D VMPA-A procedure is performed by comparing its results
with those obtained from the NTHAS. A set of analyses are performed with VMPA-A
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in which the equal displacement rule is utilized to calculate the displacement demands
in the x and y directions of the reference node for each mode.

The 30 scaled earthquake records having two components (Appendix B) are imposed
onto the x and y axes of the building. The fault normal and fault parallel components
are subjected to the x and y axes respectively. The following demand parameters are
considered in the study: story displacements, drifts, shear forces, overturning
moments, maximum compression-tension strains at some SW fibers, and the

distribution of the coupling beam curvatures.

Four modal triples consisting of the x, y and 0, displacement components are utilized
in the analyses. The triples are selected by considering the modal mass participation
ratios. The hybrid spectrum ordinates are determined by using the average spectrums
of the fault normal and fault parallel components of the ground motions. The top
displacement demands for each mode are listed in Table 6.3 based on the hybrid

spectrum (SaxI'x+ Sayl'y).

Table 6.3 : Displacement demands of the coupled SW system.

N'\:r?l%zr Saxt STy (Irjnx) (I%y) (ria)
= 1 1199.30  -1.4429 0.0168 0.0049
xé% 3 2160  0.1633 0.0037 0.0084
23 5 347 00231 0.0003 -0.0002
= 7 1102 00070 -0.0002 0.0001
— 2 14047  -0.0057 1.0953 0.0001
>,§ % 5 1248 -0.0123 -0.1213 0.0002
83 9 123 -0.0009 0.0072 0.0008
o 11 027  -0.0008 -0.0019 0
_ 4 294  -0.0017 -0.0011 0.0027
58 8 0.77  -0.0010 -0.0033 0.0006
°82 13 007  -00007 0  0.001
[a) 16 001  -00007 O 0
SRSS Combination Rule : 1452 1.102 0.010

The implementation of the 3D VMPA-A procedure to the coupled SW system which is
subjected to bidirectional ground motions is depicted in Figure 6.27. The hybrid
spectrum curves are given separately for the X, y and 6; modes. The application of the
equal displacement rule to the first four mode triples are shown with hollow markers

on the spectrums. After the linearization process of the VMPA-A method, the elastic
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hybrid spectrum ordinates for each mode with a hollow marker reduce to the plastic

spectral ordinates with filled markers.
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Figure 6.27 : Implementation of 3D VMPA-A to the coupled SW system.
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As an advantage of VMPA, it is not necessary to calculate the other ordinates of the
modal capacity curves. In fact, the analyses are carried out for only a unique target
displacement for each mode. As seen from Figure 6.27, VMPA-A shows that first two
translational (x and y) modes are within the nonlinear range whereas all of the torsional

modes behave linearly.

In order to make comparisons, the relative differences for any kind of demand

parameters are calculated by Equation 6.1.

The story displacements and drifts are presented in Figure 6.28. The evaluation of all
of the response parameters are represented by the same graphical format. The solid
and dashed black lines correspond to the mean of the response parameters and the
maximum-minimum values obtained from the NTHAS, respectively. The gray-painted
area shows the range between a minus- and plus-one standard deviation of the average.
The solid red and dashed blue lines represent the results of VMPA-A in positive and
negative x directions, respectively. Due to symmetry of the system about the x axis,

only a solid red line is given as a result of the y-directional pushover analysis.
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Figure 6.28 : The comparisons of mean story displacements and story drifts.

The story displacements in the x direction are well-predicted, and this reflects the story
drifts. However, a relative difference up to 28% is recorded for the displacement
responses in the y direction. The similar trend is also observed for the story drifts in
the same direction. Meanwhile, the results of VMPA-A are in the gray zones in the y

direction.
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The story shears and overturning moments are illustrated in Figure 6.29. The diagrams
are plotted assuming that the x-directional forces generate shear forces in the x
direction and overturning moments about the y direction. The demands are within the
range of the mean + one standard deviation band up to the 24" floor with a maximum
relative difference of 20%. At the upper part of the system, the relative difference may
reach 80%. For the case of y-directional loading which produce shear in the y direction
and overturning moment about the x direction, relatively smaller differences are
obtained. Although the mean + one standard deviation band is exceeded at some

stories, the difference is limited to 40% at the upper stories.
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Figure 6.29 : Story shears and story moments.

The parts of the SWs entitled 1X and 6X shown in Figure 6.24b are evaluated in terms
of their ultimate compressive and tension strains as depicted in Figure 6.30. Although
the tension strains are reasonably well-predicted up to 12th story where the plasticity
is observed, the differences exceed the mean + one standard deviation range for the
remaining part where the elastic response exists. The predictions of the compression
strains are more successful and the demands are found almost within the range of the

average + one standard deviation, except for the top stories.

The curvature distributions of the coupling beams on the left ends are presented in

Figure. 6.31. A similar trend is observed throughout the solutions.
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Figure 6.30 : Ultimate compression and tension strains.

45 45
421t 42
391} 39
36 36
33 33
30 30
27 27
> >
24 24
o o
H21 $521
18 18
15 15
12 12
9 9
6 6
3t 31
0 0
Beam1 Curv.(rad/m) Beam2 Curv.(rad/m)
MTHA  ====min, max NTHA +1.0std. NTHA VMPA-A p VMPA-A_n

Figure 6.31 : The comparison of the coupling beam curvatures for the left end.

6.2.3 Results

VMPA has been extended to consider 3D buildings subjected to two components of
ground motions. The procedure has some advantages against MPA. They are:

i) Although MPA uses the inertia forces which are associated with the x and y
directions separately as a single earthquake excitation, VMPA considers the
multi-component of the ground motions directly. In this context, a hybrid
spectrum is proposed in this paper. It eliminates the necessity of the application
of modal combination rules twice.

i) The invariant force distribution assumption may cause erroneous results,

especially for the structures under heavy nonlinear actions. As a feature of
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i)

VMPA-A, adaptive force patterns are applied to the structure at each step. Thus,
the displacement demands of three DOFs (x, y and rotation about z) and force-
displacement compatibility are provided simultaneously.

The implementation of the equal displacement rule together with secant
stiffness-based linearization in the proposed hybrid spectrum format conveys
the necessity of the nonlinear analysis to a unique displacement demand. It is

not required to determine the full modal capacity curves for each mode.

VMPA-A is validated on a 45-story RC coupled SW system by comparing some

demand parameters with NTHAs. The following conclusions could be drawn:

1)

2)

3)

4)

5)

The predictions obtained through the equal displacement rule for the lateral
displacement and drift in the x direction are in close agreement with the mean
of the NTHA. However, some discrepancy is encountered in the y direction.
In general, conservative estimates are reached for story shear forces at X
direction and the corresponding overturning moments respect to Y direction.
The predictions in perpendicular direction, story shear forces and overturning
moments are better except for lower stories.

Although the ultimate tension and compression strains for two representative
SW parts are consistent with the NTHA results at the lower stories where
nonlinear behavior occurs, the relative differences are quite high for the upper
part of the structure.

Similar results are obtained for the curvature distribution of the coupling
beams.

It should be noted that VMPA or VMPA-A are the approximate analysis
procedures. Thus, they should be used prudently.

6.3 An Existing 21-Story Reinforced Concrete Building

6.3.1 Modeling of an existing 21-story reinforced concrete building

An existing (i.e., real) 21-story reinforced concrete building, which consists of three

basements, one ground floor and 17 normal floors, is utilized in this example. The

floor plans and elevations of the building are shown in Figure 6.32. The total height of
the building is 68.31 m. The story heights are 3.88 m, 2.75 m, 2.88 m, 3.55 m and 3.25
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m for the third, second and first basements, ground floor and typical floors,

respectively.

The basements are surrounded with RC shear walls. The floor system between axes
A-B1 and 1-6 is waffle slab, while the other parts are flat slabs with 15 cm thickness.
The typical cross sections of the structural members are shown between Figures 6.33
to 6.36. The waffle slab is modeled by fictitious beam strip with 3.60 m in wide, see
Figure 6.33. The material qualities are examined in the site are as follows: concrete
compressive strength is 27 MPa and steel yielding stress is 420 MPa. The firm soil
type exists underneath the building and the acceleration intensity of the design
earthquake is defined as PGA=0.4g according to the Turkish Earthquake Code. The

gravity loads analysis for slabs is given as follows:

Table 6.4 : The gravity loads for slabs.
Loads (KN/m?)

Load Type Waffle Flat
Self weight 5.08 3.75
Plaster and covering 2.25 2.25
Live load 2.00 2.00
>G+0.3Q 7.93 6.60

The external walls are represented by a distributed load intensity of 5 KN/m.

Two distinct software programs, namely DOC3D_v2 and Perform3D, are utilized to
model and analyze the building. The assumptions used for shear walls and beams are
exactly the same as the example took place in Chapter 6.2. Similar to previous
example, fiber shell elements and 3D MVLEMs are utilized to represent shear walls
in Peform3D and DOC3D_v2, respectively.

Curvature-type plastic hinges are defined at both ends of the beams. The developed
cross-sectional analysis program is utilized to generate moment-curvature relations for
the beam elements. The moment curvature relations are idealized in the bilinear form
and the effective stiffness is the first slope of the first line. A preliminary first-mode
pushover analysis is accomplished to calibrate the curvatures obtained from
DOC3D_v2 and Perform3D. Consequently, the results show that the plastic hinge
definition of zero length elements in Perform3D correspond to 1.5% to 3.5% of the
beam lengths in DOC3D. Rigid end offset assumption is made for the beam to column

connections in both programs.
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Figure 6.32 : Floor plans and elevations of the existing 21 story RC building.
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The columns are modeled with fiber cross section elements in Perform3D, whereas 3D
MVLEM elements are used to model columns in DOC3D. In order to provide double
curvature on a column due to horizontal loading, each column is meshed into four 3D
MVLEM through the story heights.

The second-order effect of vertical loads, which is not included in the existing form of
3D MVLEM, is neglected in the analyses. The assumption of a rigid diaphragm is
made for all stories. The translational masses are 344.1, 315.4, 338.4, 342.3 and 321.3
kNs2/m, while the corresponding rotational masses of inertias are 13,571, 12,440,
13,345, 13,499 and 126,71 kNs?m for third, second and first basements, ground floor
and typical floors, respectively.

Modal analyses are performed in the two programs, in which the concrete modulus of
elasticity is taken as 0.5 Eo, as suggested in ASCE/SEI 41.06 (2007) in the MVLEMSs
used for shear walls and columns. Very similar results are obtained from the two
programs, which are summarized in Table 6.5. As seen from the table, natural periods

in the X and Y directions are 1.415 sec and 1.100 sec, respectively.

The critical Rayleigh damping ratio of 5%, with characteristic elastic periods of 1.5 T
and 0.2 Ty, is utilized in the NTHASs. The first mode pushover analyses of the system
are performed in two orthogonal directions.

Table 6.5 : Natural periods and modal participation mass ratios of the example.

Mode L T Mx My Me;
No. DIrection ey @) %) (%)
1 XU 1415  63.69 0.01
2 YL 1100 62.61
3 o 0518 64.55
4 X2 0366  15.22 0.43
5 Y2 0272 14.43
6 X3 0193 543 1.38
7 e 018 034 9.31
8 Y 0133 5.16
10 o 0121 027 0.66
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Figure 6.33 : Cross sections and reinforcement details of the beams.
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Figure 6.34 : Cross sections and reinforcement details of the shear walls.
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Figure 6.35 : Cross sections and reinforcement details of the shear walls.
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Figure 6.36 : Cross sections and reinforcement details of the columns (left: Up to 5%
normal floor, right: 5" to 17" normal floors).
To check the success of the two models prepared in DOC3D_v2 and Perform3D, first
mode pushover analyses were performed in two orthogonal directions by DOC3D_v2
and Perform3D. The capacity curves obtained from two programs are consistent with
each other. The lateral load capacity in the Y direction is considerably larger than the

X direction, as expected.
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Figure 6.37 : Pushover curves obtained in the X and Y directions.
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6.3.2 Comparisons for VMPA-A and NTHA

The verification of the 3D VMPA-A procedure is performed by comparing its results
with those obtained from NTHAs. VMPA-A is performed by using DOC3D_v2, while

all the NTHASs are achieved in Perform3D.

The 30 scaled historical earthquake records (Appendix A3), which have two
components, are imposed onto the X and Y axes of the building. The demand
parameters considered in the study are: story displacements, drifts, shear forces,

overturning moments, maximum compression-tension strains at some shear wall

fibers, and the distribution of the beam curvatures.

Three modal triples, consisting of X, Y and 6, displacement components, are utilized

in the analyses. The triples are selected by considering the modal mass participation.
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The hybrid spectrum ordinates, as defined in Chapter 5, are determined by using the
average spectrums of the X and Y components of the ground motions. The top
displacement demands for each mode are listed in Table 6.6 based on the hybrid
spectrum (SaxI'x+ Sayl'y).

Table 6.6 : Displacement demands of the existing 21-story building.

Mode Sexlt SayTy Dy Dy 0,

No. (m) (m) (rad)
E 1 29.93 0.6477 0.0043 0.0118
x%é 4 2.68 -0.0452 -0.0055 -0.0002
8 6 0.43 -0.0017 -0.0117 -0.0002
=D 2423 0.0021 -0.5655 -0.0001
54
>-§1§g 5 1.37 0.0001 0.0215 -3e-6
al 8 0.16 0.0004 -0.0092 -3e-6
= 3 0.07 0.0006 -0.0119 -0.0003
aég 7 0.0  0.0055 -0.0120 0.0007
al 10 0.03 0.0042 -0.0121 -0.0008
SRSS Combination Rule : 1452 1.102 0.010

The implementation of the 3D VMPA-A procedure to the building, which is subjected
to bidirectional ground maotions, is depicted in Figure 6.38. The hybrid spectrum
curves are given separately for the X, Y and 6, modes. The application of the equal
displacement rule to the first three mode triples are shown with hollow markers on the
spectrums. After the linearization process in VMPA-A, the elastic hybrid spectrum
ordinates for each mode with a hollow marker reduce to those for the plastic ones with
filled markers. As seen in Figure 6.38, VMPA-A shows that first two translational (X

and Y) modes are within the nonlinear range, whereas all of the torsional modes
behave linearly.
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Figure 6.38 : Implementation of 3D VMPA-A in the existing 21-story RC building.

The story displacements and drifts are presented in Figure 6.39. The evaluation of all
of the response parameters are represented by the same graphical format. The solid
and dashed black lines correspond to the mean of the response parameters and the
maximum-minimum values obtained from the NTHAS, respectively. The gray-painted
area shows the range between mean * one standard deviation. The solid red, dashed
blue and dashed green lines represent the results of VMPA-A, taking into account one,

—Mode 1_x
—Mode 2_x
Mode 3_x

0 5 10 15 20 25 30 35 40
l—'dex+l—'yde (m)
—Mode 1_y
) —Mode 2_y
Mode 3_y

0 5 10 15 20 25 30 35 40
rxsdx+rysdy (m)
i —Mode 1_tetaz
—Mode 2_tetaz
i Mode 3_tetaz
1 T T 1 T
0 0.2 0.4 0.6 0.8 1
IS4+, Sgy (M)

158



two and three modes, respectively. The story displacements in the X and Y directions
are well predicted, and this is reflected in the story drifts. Although up to 30%
divergence was found where intensities are negligible, the error limits are within of
5% on the top story. It is clear that the contribution of the first mode governs the
displacement and drift profiles of the structure. The contribution of higher modes is

relatively small for the displacements and drifts.

21 21 21

14

5 pIL;

i
3 3 3
0 0.2 04 06 08 1 0 0.2 04 06 08 1 0O 05 1 15 2 25 0O 05 1 15 2 25
Story Disp. X Dir.(m) Story Disp. Y Dir.(m) Story Drift X Dir.(%) Story Drift Y Dir.(%)
———NTHA ====-- min, max NTHA +std. NTHA Single Mode Two Modes Three modes

Figure 6.39 : The comparisons of mean story displacements and story drifts.

The story shears and overturning moments are illustrated in Figure 6.40. The diagrams
are plotted, on the assumption that the X-directional forces generate shear forces in the
X direction and overturning moments about the Y direction. The single mode pushover
analysis could not catch the story shear profiles. Although similar trends are observed
for overturning moments up to ninth story, the relative errors reach up to 50% on the
top story. If two or three mode contributions are considered, conservative estimates
are made for story shears and overturning moments, in general. Story shears in the Y
direction and the corresponding overturning moments in the X direction are better
predicted than in the former case. The results confirm the significance of the

consideration of higher modes.
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Figure 6.40 : Story shears and story moments.

The fibers considered in the comparison for four distinct shear walls are evaluated in
terms of their ultimate compressive and tension strains, as depicted in Figure 6.41. The
strains obtained for the ground floor level, where the plasticity is mostly observed, are
well predicted by single- or multimode pushover analysis results, whereas the single
mode pushover analysis could not estimate the strains on the upper stories. Although
tension strains are within the range of the mean + one standard deviation band in
general, the limits are exceeded for compression strains on the upper stories where the

elastic response exists.
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Figure 6.41 : Ultimate compression and tension strains.

The curvature distributions in the bending direction for four beams are evaluated in
Figure 6.42. Single- and multimode pushover analysis results are very close to each

other. The multimode pushover analysis results are always in the range of the mean +
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one standard deviation band and, generally, the predictions are sufficient for the

performance evaluation.
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Figure 6.42 : The comparison of the curvatures for selected beam sections.
6.3.3 Results

VMPA-A is used here for an existing 21-story RC building to verify the method
against NTHA results by comparing some demand parameters. The following

conclusions can be drawn:

1) The predictions obtained through the equal displacement rule for the lateral
displacement and drift in both directions are in close agreement with the mean
of the NTHA.

2) Conservative results are obtained for the story shears and overturning
moments, in general. First-mode behavior dominates the story overturning
moments, especially for the lower stories.

3) The ultimate tension strains for different shear wall fibers are consistent with
the results of the NTHAs on the lower stories, where the relatively large
nonlinear behavior occurs. The compression strains are also well predicted for
the lower stories.

4) The beam curvatures are successfully estimated and it is observed that the first-
mode response governs the total.
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7. GENERAL RESULTS AND CONCLUSIONS

A variant of modal pushover analysis (VMPA) is presented to evaluate the seismic
performance of the structures. A MATLAB based computer program, the so-called
DOC3D-v2, was developed to implement VMPA to analyse three-dimensional frame
and/or shear-wall type structural systems. DOC3D-v2 takes into account concentrated
and distributed plasticity for the frame type elements as well as considering the second-

order effects of axial loads on the frame type elements.

Various verification subjects have been studied including beam-column element,
shear-flexure interaction, 3D MVLEM, three dimensional algorithm, displacement
controlled nolinear algorithm and second order effects. DOC3D-v2 is successfully

acknowledged all of the tests.

The originality of the study depends on its divergence from the existing modal

pushover analyses (MPA) procedure for the following reasons:

1- In 3D VMPA-A, mode-compatible adaptive forces are applied to the structure
at each iteration step. Therefore, the compatibility of force and displacement
vectors for each three-degree-of-freedom (x,y ve 0;) is satisfied.

2- The application of the equal displacement rule, in combination with secant
stiffness-based linearization, eliminates the necessity to produce full capacity
diagram for each mode. The analysis is performed for a unique displacement
at each mode.

3- The MPA procedure is applied separately for the x and y components of the
ground motion. For each case, the demand parameters of interest are combined
by a CQC combination rule. Next, the effects of two ground motion
components are combined using an SRSS combination rule. The use of newly
proposed hybrid spectrum considers the effects of X and Y components of
ground motion, simultaneously. As a natural consequence of this, the two-time

application of modal combination rules is reduced to one in VMPA-A.

The main pros and cons of the suggested procedure could be listed as follows:
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1-

2-

3-

The execution time of the analysis is relatively short compared with NTHA.
So, the procedure could be used in the pre-design stages of high rise building.

The procedure could be utilized for a code specific design spectrum.

The equal displacement rule used in the procedure may affect the accuracy of

the results due to its limitations.

Three example buildings namely, 9- and 20-story SAC Steel Buildings, 45 story

coupled-shear wall system, 21 story existing RC building, have been analyzed to assess

the success of the proposed algorithm by comparing the analyses results with those of

NTHAs. The following conclusions can be drawn from these studies:

1-

For 45 story coupled shear wall example, the predictions obtained through the
equal displacement rule for the lateral displacement and drift in the x direction
are in close agreement with the mean of the NTHA. However, some
discrepancy is encountered in the y direction. The predictions for the lateral
displacement and drift in both of the x and y directions are in close agreement
with the mean of the NTHA for 21 storey existing RC Building. Therefore
predictions of displacement demands obtained from the equal displacement

rule give good results in general within a limit of 30% relative difference.

The good predictions in story displacements may affect the success of the story
drifts.

VMPA-A has advantages over VMPA in terms of story drifts, especially for
upper stories for the 20-Story SAC Building. The estimates for the story drift
profile are also superior for VMPA-A compared with the other well known
NSPs.

Conservative estimates have been reached for story shears for both VMPA and
VMPA-A.

It is observed from the 21 storey existing RC building that the first vibrational

mode governs the overturning moments, especially in the lower stories.

The column curvatures, the ultimate tension and compression strains for
different SW fibers are consistent with the NTHA results at the lower stories
where nonlinear behavior occurs, some relative differences exist for the upper

part of the structures.
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7- First mode contribution governs the total response in terms of the beam

curvatures.

8- For the 9- and 20-Storey SAC Buildings, the accuracy tends to decrease with
an increasing intensity of ground motion. The accuracy of the predictions for
beam and column curvatures are relatively low compared with the other

demand parameters.

9- The accuracy of VMPA and VMPA-A may be affected from selecting and

scaling process of acceleration record sets, similar to the other NSPs.

Similar to the other NSPs, it should be keep in mind that VMPA and VMPA-A are the
approximate procedures to evaluate the performance of structures.
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APPENDIX A

Ground Motions Used for 9- and 20- Storey SAC Steel Buildings

Two sets of ground motions are utilised in this study. Four intensities, namely, 11, I2,
I3 and l4, are introduced based on the different ground acceleration levels (ag) of 0.10,
0.50, 0.75, and 1.00%g, respectively.

The first set consists of 44 strong ground motion records, which are taken from the far
fault set in FEMA-P695 project (2008). Originally, the records were downloaded from
the PEER NGA Database (2006). The records were scaled so that the median spectral
acceleration of the earthquake set coincides with the spectral acceleration value of the
selected design spectrum at the first vibrational mode period of the benchmark
buildings. The PEER NGA set is scaled only for the I3 intensity.

The second set is taken from the European Database (Ambraseys et al., 2002) and
consists of 20 strong ground motion records. The ground motions are simply scaled so
that the spectral acceleration corresponding to the first mode period coincides with the
spectral value of the design spectrum at the same period. The selected design spectrum
is Eurocode 8 (EC8, 2004) for soil type C.

The spectra drawn for the PEER NGA and the European Database for intensity level
3 (I3) are presented in Figure Al.
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APPENDIX B

Ground Motions Used for 45-Story RC Coupled Wall System
Thirty ground motions having two horizontal components, namely fault normal and
fault parallel, which are selected from 10 different historical earthquakes, are utilized

in the study. Some features of the earthquakes are listed in Table A.1.

All of the records are selected from PEER NGA Database (2006). A scaling procedure
is applied to the original records to match the mean spectral accelerations of the ground
motions within the selected period range to the specific ASCE 7.05 spectrum. The

selection and scaling criteria are listed below:

1- A maximum of 0.30 mean squared error (MSE) is sought for the scaling
procedure to match the target spectrum between a 0.1 sec and a 10 sec period
range with a limited SF value of 3.0.

2- The fault rupture distances (r) are taken to be less than 45 km.

3- The lowest usable frequency is taken to be 0.12 Hz.

The short period spectral acceleration (Ss) and 1.0 sec spectral acceleration (S1) of the
ASCE 7.05 spectrum are 1.55 g and 0.9 g, respectively. The acceleration spectra of the
fault normal and fault parallel components, their mean spectrums and the target ASCE
7.05 spectrum, are illustrated together in Figure A.2.

Table B.1: Selected historical earthquakes.

Earthquake . Number .

No Date Magnitude of Fault mechanism
Name
Records

1  Chi-Chi 20.09.1999 7.62 8 Reverse-Oblique
2 Imperial Valley 15.10.1979 6.53 7 Strike-Slip
3 Loma Prieta 18.10.1989 6.90 3 Reverse-Oblique
4 Cape Mendocino 25.04.1992 7.10 2 Reverse
5 Duzce 12.11.1999 7.14 2 Strike-Slip
6  Hector Mine 16.10.1999 7.13 2 Strike-Slip
7  Superstition Hills 24.11.1987 6.54 2 Strike-Slip
8 Landers 28.06.1992 7.28 2 Strike-Slip
9  Kocaeli 17.08.1999 7.51 1 Strike-Slip
10 Tabas 16.09.1978 7.35 1 Reverse
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Figure B.1 : Spectrum curves of the selected earthquake records.
Figures A3 and A4 show the PGA and PGV features of the ground motions after the
scaling procedure. The horizontal axis expresses the NGA sequence number. The SFs
used in the scaling procedure and the fault distances (r) are also given on the figures.
As seen from the figures, the acceleration set consists of an equal number of impulsive

and non-impulsive types of records.
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APPENDIX C

Ground Motions Used for the Existing 21-Story RC Building

Thirty ground motions having two horizontal components, which are selected from 12
different historical earthquakes, are utilized in this example. Some important features
of the earthquakes are listed in Table A.2.

All of the unscaled records are selected from the PEER NGA database (2006). A
scaling procedure is then applied to the original records to match the mean spectral
accelerations of the ground motions within the selected period range (0.2-2.0 sec) to
the specific Turkish Earthquake Code (TEC 2007) design spectrum. The directions of
the ground motions are not changed during the scaling procedure; in other words, the
directions of original records remained constant without rotating them to fault-normal

and fault-parallel components.

The design spectrum of the TEC (2007) are defined with two characteristic periods
(Ta, To) related to soil type, effective ground acceleration factor (Ao) and building
importance factor (1). The characteristic periods are taken as T.=0.15 sec, T»=0.40 sec
corresponding to the soil type Z2 (firm soil), Ao=0.4 and 1=1.0. The acceleration
spectra of the X and Y components, their mean spectrums and the target TEC (2007)

design spectrum, are all illustrated together in Figure A.5.

Table C.1: Selected historical earthquakes.

Earthquake No. of

No. Name Date Magnitude Records Fault Mechanism
1 Chi-Chi 20.09.1999 7.62 5 Reverse-Oblique
2 Imperial Valley 15.10.1979 6.53 5 Strike-Slip
3 Loma Prieta 18.10.1989 6.90 2 Reverse-Oblique
4 Cape 25.04.1992 7.10 1 Reverse
5 Duzce 12.11.1999 7.14 2 Strike-Slip
6 Hector Mine 16.10.1999 7.13 1 Strike-Slip
7 Superstition 24.11.1987 6.54 2 Strike-Slip
8 Landers 28.06.1992 7.28 2 Strike-Slip
9 Kocaeli 17.08.1999 7.51 3 Strike-Slip
10 Friuli 06.05.1976 6.50 1 Thrust
11 Kobe 17.01.1995 6.90 2 Strike-Slip
12 Northridge 17.01.1999 6.70 4 Blind Thrust
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Figure C.1 : Spectrum curves of selected earthquake records.
Depending on the results obtained from the preliminary NTHAs performed for the
design level EQE, the structure does not experience nonlinearity because of its existing
overdesigned capacity. Therefore, it is decided to scale-up the set of EQESs acceleration

by a scale factor of 2.5.

Figures A.6 and A.7 show the PGA and PGV features of the unscaled ground motions.
The horizontal axis in both figures express the station identifier. The SFs used in the

scaling procedure are also given in Figure A.6.
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Figure C.2 : PGA of the original records.
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