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AN ADAPTIVE MODAL PUSHOVER ANALYSIS PROCEDURE TO 
EVALUATE THE EARTHQUAKE PERFORMANCE OF HIGH-RISE 

BUILDINGS  

SUMMARY 

Today, in light of the advances in structural design/systems and high strength 
materials, as well as innovative structural concepts, a rapid growth in the construction 
of tall buildings within urban areas is taking place. Force-based linear design 
procedures have given way to a performance-based design approach. In this context, 
the Pacific Earthquake Engineering Research Center (PEER) is leading the Tall 
Buildings Initiative (TBI), which has developed safe and convenient written guidelines 
containing principles for the performance-based design of tall buildings, as well as 
having funded and coordinated a range of short- to intermediate-term projects between 
2006 and 2009. Meanwhile, participants in the TBI—namely, the Los Angeles Tall 
Buildings Structural Design Council (LATBSDC), the Structural Engineers 
Association of Northern California (SEAONC) and the Council of Tall Buildings and 
Urban Habitat (CTBUH)—have published guidelines about the performance-based 
design of tall buildings. PEER published a document entitled “Guidelines for 
Performance-Based Seismic Design of Tall Buildings”, which describes performance-
based design principles and characteristic criteria for tall buildings. In parallel with 
these international developments, a draft code for the design of tall buildings in 
Istanbul, known as “Yüksek Yapılar Deprem Yönetmeliği”, was published in 2008.  
A consensus has been reached about the necessity of performing a three-dimensional 
(3D) nonlinear time history analysis (NTHA) with biaxial components of ground 
motions in the final design of tall buildings. Nonetheless, some difficulties in 
implementing NTHA exist, on the basis that it is a complex and time consuming 
process faced with many uncertainties. For this reason, there is a need to develop 
analyzing methods that are both quick and with a reasonable degree of accuracy with 
respect to NTHA.  
The nonlinear static procedure (NSP) has become a practical analytical tool to estimate 
seismic demands of building-type structures. Most NSPs are precisely designated as 
conventional pushover analyses, in which an invariant lateral force distribution 
corresponding to the fundamental mode shape is subjected to the structure. However, 
applicability of conventional pushover analysis is limited to low-rise buildings without 
vertical or torsional irregularities, the behavior of which is not affected by higher 
modes. Multimode pushover analysis procedures are approximate methods, which can 
overcome the drawbacks of conventional NSPs by taking account of higher mode 
effects as well as obtain results that are closer to NTHA when compared with 
conventional NSPs. 
In this thesis, a variant of modal pushover analysis (VMPA-A), which is capable of 
taking account of the higher mode effects, is developed for use in the performance-
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based evaluation of tall buildings. The so-called DOC3D-v2, which is a MATLAB-
based computer program, was developed to implement VMPA in order to analyze 3D 
frame and/or shear wall-type structural systems. DOC3D-v2 takes into account 
concentrated and distributed plasticity for the frame-type elements, as well as 
considers the second-order effects of axial loads on the members. Furthermore, the 
beam-column element of DOC3D-v2 considers the nonlinear interaction of shear-
flexural deformations. The applicability of the physical substructuring approach is one 
of the substantial features of DOC3D-v2 for reducing the computation time. 
The suggested procedure is based on an iterative process, in which secant stiffness is 
used both at the element level and in the modal response. VMPA diverges from the 
existing modal pushover analyses for the following reasons: i) In the adaptive version 
(VMPA-A), mode-compatible adaptive forces are applied to the structure at each 
iteration step. In this way, the compatibility of force and displacement vectors may be 
satisfied. For the non-adaptive case (VMPA), the force vector is invariant during the 
analysis process. ii) The application of the equal displacement rule, in combination 
with secant stiffness-based linearization, eliminates the necessity to produce a capacity 
diagram for each mode. The analysis is performed for a unique displacement for each 
mode. 
The algorithm of VMPA-A is handled in respect of two-dimensional (2D) and 3D 
structural systems. The algorithm for the planar system is implemented in the spectral 
displacement-spectral acceleration (Sd-Sa) format. The displacement-controlled 
algorithm determines the single ordinate of the modal capacity diagram, which 
corresponds to the target displacement demand for the nth mode (Sdn_p, San_p) by 
reducing elastic spectral acceleration (San_e) to converge with plastic acceleration 
(San_p). To verify the success of the suggested procedure, nine- and 20-story LA SAC 
buildings are analyzed, with the resulting demands compared with several existing 
procedures, such as the extended N2, MPA (modal pushover analysis) and MMPA, 
while NTHAs are performed for two different sets of acceleration records. The first 
set consists of 44 strong ground motion records, which are downloaded from the PEER 
NGA Database for the ground acceleration level (ag=0.75g). The second set is taken 
from the European Database and consists of 20 strong ground motion records, which 
are analyzed for four different acceleration levels (ag= 0.10, 0.50, 0.75, 1.00g). The 
evaluated demand parameters are story displacements, drifts, shear forces and the 
distribution of column and beam curvatures. VMPA-A yields enhanced results in terms 
of story drifts, especially for the 20-storey LA building, compared with the other 
methods. Although the story displacements and drifts are largely consistent with 
NTHA results, conservative estimates are obtained for the story shear forces. 
The 2D algorithm is extended for use with 3D structures in relation to bidirectional 
ground motions. The theoretical background of VMPA-A has a lot of similarities with 
MPA. Nonetheless, MPA has some deficiencies such as i) invariant load patterns 
compatible with an nth-mode shape, which corresponds to the linear elastic eigenvalues 
applied to the structure, and ii) the MPA procedure, which is applied separately for the 
x and y components of the ground motion. For each case, the demand parameters of 
interest are combined by a CQC combination rule. Next, the effects of two ground 
motion components are combined using an SRSS combination rule. Applying modal 
combination rules twice may cause erroneous results. These drawbacks are eliminated 
in VMPA-A for the following reasons: i) the use of adaptive force patterns, due to the 
changes in the dynamic characteristics with increasing structural damage, provides the 
compatibility of force and displacement vectors for each three-degree-of-freedom (x,y 
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ve θz); ii) the VMPA method is implemented in relation to the hybrid spectrum, whose 
abscissas and ordinates have no physical meaning, namely Γ + Γnx dx ny dyS S  and
Γ + Γnx ax ny ayS S , respectively. The slope of the spectrum for a specific vibration mode 
corresponds to the eigenvalue of the mode, as with the Sd-Sa spectrum. The two 
orthogonal components of the ground motion can be taken into account 
simultaneously. As a natural consequence of this, the two-time application of modal 
combination rules is reduced to one in VMPA-A.  
A 45-story coupled shear wall (SW) system is used as a calibration example for 3D 
VMPA-A. Thirty historical earthquake acceleration records, including fault normal 
and fault parallel components that are scaled according to the ASCE 7.05 spectrum 
within the selected period range, are used and compared with the VMPA results. The 
results obtained from the average of NTHAs are compared with those of VMPA-A. 
The predictions obtained for the lateral displacement and drift in the weak direction 
are in close agreement with the mean of the NTHA. However, some discrepancy is 
encountered in the perpendicular direction. Conservative estimates are reached for the 
story shear forces’ weak direction and the corresponding overturning moments. The 
predictions in perpendicular direction, story shear forces and overturning moments are 
better, with the exception of lower stories. Although the ultimate tension and 
compression strains for two representative SW parts are consistent with the NTHA 
results at the lower stories, where nonlinear behavior occurs, the relative differences 
are quite high for the upper part of the structure. Similar results are obtained for the 
curvature distribution of the coupling beams. 
The third application of VMPA is on an existing 21-story, reinforced concrete 
building, with three basements, one ground floor and 17 typical floors, under 
bidirectional ground motion. Thirty ground motions are selected from the PEER NGA 
database, then scaled in accordance with the 2007 Turkish Earthquake Code spectrum 
with consideration to the location and soil conditions of the building, for use in 
NTHAs. Here, cracked rigidities are used for SWs. This reflects the predictions of 
lateral drifts and displacements with respect to the average of the NTHA in both 
orthogonal directions. Similarly, with the 45-story example, conservative estimates 
have been reached for story shears and overturning moments. First mode behavior 
dominates the story overturning moments, especially at lower stories. Again, similar 
to the 45-story example, although the nonlinear strains of selected SW fibers are in 
close agreement with NTHA in lower stories, the errors increase in the upper parts. 
The curvatures are successfully estimated and first mode response governs the total. 
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YÜKSEK BİNALARIN DEPREM PERFORMANSININ 
DEĞERLENDİRİLMESİ İÇİN BİR UYARLAMALI MODAL İTME 

ANALİZİ YÖNTEMİ  

ÖZET 

Teknolojik gelişmeler, yüksek performanslı malzemelerin kullanımı, mimarlık ve yapı 
mühendisliğindeki yenilikçi arayışlar dolayısıyla yüksek binaların kullanımı gün 
geçtikçe yaygınlaşmaktadır. Yüksek binaların tasarımında, daha önceki dönemde 
kullanılan dayanım esaslı doğrusal tasarım yaklaşımı yerine günümüzde performansa 
dayalı tasarım yaklaşımı yaygınlaşmıştır. Bu bağlamda, Pacific Earthquake 
Engineering Research Center (PEER) Tall Buildings Initiative isimli bir 
organizasyonu oluşturarak, depreme karşı dayanıklı yüksek binaların performans 
esaslı tasarımını konu alan yönetmeliklerin oluşturulması amacıyla, 2006-2009 yılları 
arasında çok sayıda yayın yapmıştır. Bu çalışmalar kapsamında, Tall Buildings 
Initiative oluşumunda yer alan Los Angeles Tall Buildings Structural Design Council 
(LATBSDC), Structural Engineers Association of Northern California (SEAONC) ve 
Council of Tall Buildings and Urban Habitat (CTBUH) isimli kuruluşlar performans 
esaslı tasarım konusunda değişik çalışmalar yayımlamışlardır. PEER, 2010 yılında 
yayımladığı Guidelines for Performance-Based Seismic Design of Tall Buildings 
isimli çalışmada yüksek yapıların performans esaslı tasarımına yönelik prensipleri ve 
koşulları içeren bir dokümanı oluşturmuştur. Ülkemizde bu gelişmelere paralel olarak, 
2008 yılında İstanbul Büyükşehir Belediyesi tarafından il sınırları içerisinde inşa 
edilecek yüksek yapıların tasarım prensiplerini içeren Yüksek Yapılar Deprem 
Yönetmeliği’nin taslak metni yayımlanmıştır. 
Bütün bu çalışmalarda, yüksek binaların kesin tasarımı aşamasında iki doğrultuda 
etkiyen yer hareketi için üç boyutlu doğrusal olmayan zaman tanım alanında 
çözümlemeler yapılması gerektiği konusunda fikir birliğine ulaşılmıştır. Buna karşın, 
zaman tanım alanında yapılacak çözümlemelerin kompleks, zaman alıcı ve bazı 
belirsizlikleri içermesi dolayısıyla, kullanımında zorluklar bulunmaktadır. Özellikle 
ön tasarım ve hesap kontrollerinin yapılması aşamalarında, hızlı ve yaklaşık sonuçlar 
üretebilen diğer yöntemlerin de kullanılmasına gereksinim duyulmaktadır. 
Doğrusal olmayan statik çözümleme yöntemleri (NSPs), binanın kat hizalarında 
etkitilen ve analiz boyunca aralarındaki oranlar değişmeyen yatay atalet kuvvetleri ile 
seçilen karakteristik bir yerdeğiştirmenin değişimini ortaya koymaktadır. Deprem 
istemine bağlı olarak belirlenen bir yerdeğiştirme hedefinde eleman iç kuvvet ve 
deformasyon durumları değerlendirilmektedir. Geleneksel olarak birinci mod şekli ile 
uyumlu atalet kuvvetlerinin kullanıldığı bu çözümleme yönteminin düşey kesitte ya da 
planda düzensizlikler içeren ve/veya ileri titreşim modlarının etkili olabildiği yapı 
sistemlerinde kullanımı uygun olmayabilmektedir. Çok modlu doğrusal olmayan statik 
çözümleme teknikleri; ileri titreşim modlarının etkisini daha iyi dikkate alarak 
geleneksel NSP’lerin yetersizliğini ortadan kaldırabilen, böylelikle doğrusal olmayan 
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zaman tanım alanında gerçekleştirilen hesaplarda elde edilen sonuçlara daha yakın 
sonuçlar üretebilen yaklaşık yöntemlerdir. 
Bu tez çalışmasında; yüksek binaların deprem performansının değerlendirilmesi için, 
ileri titreşim modlarının etkisini de dikkate alabilen uyarlamalı bir modal itme analizi 
yöntemi (VMPA-A) önerilmiştir. Bu yöntemin gerçek yapı sistemlerinde sayısal 
olarak uygulanabilmesi için, DOC3D_v2 isimli bir yazılım geliştirilmiştir. 
DOC3D_v2 yazılımı, üç boyutlu çerçeve ve/veya perde tipi taşıyıcı sistemlerin 
malzeme ve geometri değişimi bakımından doğrusal olmayan çözümlemesini 
yapabilen, yayılı ve yığılı plastisite seçeneklerinin bulunduğu, serbest titreşim analizi, 
zaman tanım alanında doğrusal çözümleme özelliklerini de içeren MATLAB tabanlı 
bir yazılımdır. Yazılımda kullanılan doğrusal olmayan birim çubuk eleman eğilme ve 
kayma şekildeğiştirmelerini ve bunların birbirleri ile olan etkileşimini dikkate 
alabilmektedir. Fiziksel alt sistem kullanımı seçeneği yazılımın çözüm süresini 
kısaltan diğer bir önemli özelliğidir. 
Kolon-kiriş türü çubuk elemanların doğrusal olmayan davranışını göz önüne almak 
üzere literatürden alınan bir konsol eleman geliştirilerek bu tez çalışmasında 
kullanılmıştır. İlk haliyle yerdeğiştirme ve kuvvet yönteminin beraber kullanılması ile 
üretilmiş olan eleman birim kuvvet matrisi, bu çalışmada sadece kuvvet yöntemi 
kullanılarak hesaplanmaktadır. Eleman birim kuvvet matrisi terimleri, yeterli sayıda 
parçaya bölünmüş çubuğun ardışık düğüm noktalarının arasındaki göreli çökme ve 
dönme farklarından yararlanılarak hesaplanmaktadır. Orjinal durumda kullanılan 
ikinci mertebe etkilerinin eşdeğer kesme kuvveti çiftine dönüştürülerek uygulanması 
yolu terk edilerek; bunun yerine şekil değiştirmiş eksende virtüel iş teoremi 
uygulanmıştır. Yeni özellikler katılarak geliştirilen birim elemanın doğruluğunu 
kontrol etmek amacıyla, malzeme bakımından doğrusal ancak geometri değişimi 
bakımından doğrusal olmayan sayısal örnekler üzerinde irdelemeler yapılmıştır. Söz 
konusu karşılaştırmalarda; “kesin çözüm olarak”, eğilme etkisinin tek başına 
bulunduğu örneklerde Bernoulli-Navier hipotezi, kesme ve eğilme etkilerinin birlikte 
bulunduğu örneklerde ise Timoshenko kirişi hipotezi esas alınarak oluşturulan 
diferansiyel denklemlerin çözümlerinden elde edilen sonuçlar kullanılmıştır. 
Malzeme bakımından doğrusal olmayan çözümlemede; sanal rijitliklerin seçimi için 
doğrusallaştırma tekniği olarak başlangıç kirişi yöntemi kullanılmıştır. Eğilme-kayma 
etkileşimini dikkate almak üzere, literatürde yer alan bir makro model geliştirilerek 
kullanılmıştır. Bu modelde, artan eğrilik sünekliğine bağlı olarak kesme kuvveti-
kayma açısı ilişkisinin zarfı değişmektedir. DOC3D_v2 yazılımına adapte edilen 
eğilme-kayma etkileşimi özelliğini doğrulamak üzere, farklı kesme açıklık oranlarına 
sahip 3 adet kolon eleman kullanılmıştır. Tersinir tekrarlı statik yükler etkisinde 
denenen bu kolonların kesme açıklık oranları (Ls/h) 10.0, 3.2 ve 1.33’tür. Bu değerler 
sırasıyla, kırılma esnasında şekildeğiştirmeler üzerinde eğilme, kesme-eğilme 
etkileşimi ve kesme davranışının hakim olduğu durumlara karşı gelmektedir. 
DOC3D_v2 yazılımına ekelenen bir diğer önemli özellik de doğrusal olmayan perde 
davranışını dikkate alabilen üç boyutlu düşey çubuk elemanlardan oluşan perde 
modelidir (3D MVLEM). Bu model, perde kesiti planda yeterli sayıda life bölünerek 
sadece eksenel rijitliği olan düşey yay grubu ve her katta belirli bir yükseklikte 
tanımlanan yatay bir kayma yayı içermektedir. Perdenin eğilme ve eksenel davranışı 
düşey yaylar, kayma davranışı ise yatay yay ile temsil edilmektedir. Düşey yaylara 
doğrusal olmayan beton ve çelik malzeme davranış modelleri tanımlanabilmektedir. 
Perde uç bölgelerinde sargılı beton modeli, perde gövdesinde ise sargısız beton 
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malzeme modeli kullanılabilmektedir. 3D MVLEM kat bazında alt ve üst uçta 
tanımlanan 6 serbestlik derecesi ile ifade edilmektedir. Modelde, artan eğriliğe bağlı 
olarak tarafsız eksenin basınç bölgesi içinde ilerlemesi dikkate alınabilmektedir. 
Programa adapte edilen perde davranış modelinin doğrulanması için literatürde yer 
alan deneysel esaslı dikdörtgen ve T kesitli perdeler üzerinde karşılaştırmalar 
yapılmıştır. 
Matris yerdeğiştirme yöntemini esas alan DOC3D_v2 yazılımının 3 boyutlu sistemler 
üzerindeki doğrulamaları SAP2000 ve Perform3D yazılımları vasıtasıyla yapılmıştır. 
Bu kapsamda, üçgen bir kat planına sahip olan tek katlı bir çerçeve örneği kullanılmış, 
doğrusal çözümleme algoritmasının doğruluğu tespit edilmiştir.  
İki eksenli eğilme ve eksenel kuvvet etkisinde olan dikdörtgen kesitli kolonların 
moment eğrilik ilişkilerinin oluşturulabilmesi için DOC3D_v2 yazılımında bir alt 
program geliştirilmiştir. Seçilen bir kolonda, farklı eksenel yük düzeyleri ve değişik 
asal eksen doğrultuları için elde edilen sonuçlar literatürde yer alan XTRACT yazılımı 
sonuçları ile karşılaştırılmıştır. Bu alt programın ürettiği sonuçlar, DOC3D_v2 
yazılımının ihtiyaç duyduğu P-Mx-My mafsal özelliklerine karşı gelmektedir. Üçgen 
kat planlı örnekte, kolonlara P-Mx-My mafsalları atanarak depremin planda farklı 
açılarla (θp=0°, 30°, 45°, 60°, 90°) etkimesi durumu gözönüne alınarak itme analizleri 
gerçekleştirilmiş, elde edilen sonuçlar Perform3D yazılımı sonuçları ile 
karşılaştırılmıştır. 
DOC3D_v2 yazılımında sadece kuvvet kontrollü çözümleme algoritması değil, aynı 
zamanda yerdeğiştirme kontrollü çözüm algoritması da yer almaktadır. Bu özellik 
sayesinde, birinci ya da ikinci mertebe limit yük düzeyine erişildikten sonraki aşamada 
yakınsama problemi oluşmadan çözüm üretilebilmektedir. Malzeme ve geometri 
değişimi bakımından doğrusal olmayan çok serbestlik dereceli bir kolon örneği 
üzerinde kuvvet ve yerdeğiştirme kontrollü analiz algoritmaları karşılaştırılmıştır. 
Çok modlu bir itme analizi türü olan modal itme analizinin (MPA) farklı bir 
uygulaması olarak uyarlamalı modal itme analizi yöntemi (VMPA) geliştirilmiştir. 
VMPA, başlangıç kirişi yöntemini eleman bazında ve modal davranış düzeyinde 
kullanan iteratif bir yöntemdir. Bu yöntemi MPA’dan ayıran başlıca özellikler şöyle 
sıralanabilir: i. Uyarlamalı uygulamada (VMPA-A), ardışık yaklaşıma dayalı hesabın 
her bir adımında, anlık titreşim mod biçimleri ile uyumlu atalet kuvveti dağılımları 
esas alınmaktadır. Böylece, her iterasyon adımında kuvvet ve yerdeğiştirme vektörleri 
arasındaki uyum sağlanabilmektedir. Uyarlamalı olmayan uygulamada (VMPA) ise, 
MPA yöntemine benzer şekilde kuvvet vektörü çözüm boyunca değişmemektedir. ii. 
Eşit yerdeğiştirme kuralının başlangıç kirişi yöntemine dayalı sanal rijitlikler ile 
kullanılması durumunda, kapasite eğrilerinin tamamının çizilmesi gereksinimi ortadan 
kalkmaktadır. Tek bir hedef yerdeğiştime istemi için çözümleme yapılmaktadır. 
Bu çalışmada, VMPA-A yönteminin algoritması iki ve üç boyutlu yapı sistemleri için 
ayrı ayrı ele alınmıştır. Düzlem sistemler için geliştirilen algoritma spektral 
yerdeğiştirme (Sd) – spektral ivme (Sa) ortamında uygulanmaktadır. Yerdeğiştirme 
kontrollü algoritmada, modal kapasite diyagramında n. mod için başlangıçta belli olan 
modal yerdeğiştirme istemi (Sdn_p) ve ona karşı gelen spektral ivme (San_p), elastik 
spektral ivmeden (San_e) hareketle, ardışık yaklaşıma dayalı bir algoritma ile 
hesaplanmaktadır. İki boyutlu algoritmanın doğruluğunu tartışmak amacıyla 9 ve 20 
katlı Los Angeles SAC binaları üzerinde analizler gerçekleştirilmiş ve elde edilen 
değişik yapısal istem büyüklükleri için karşılaştırmalar yapılmıştır. Bu 
doğrulamalarda, literatürde yer alan iki farklı deprem kayıt grubu gerçekleştirilen 
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zaman tanım alanındaki doğrusal olmayan hesapta kullanılmıştır. Kayıt grubunun ilki 
Avrupa veritabanından alınan 20 kuvvetli tarihsel depremi, ikincisi ise PEER NGA 
veritabanından alınan 44 tarihsel depremi içermektedir. Avrupa veritabanı depremleri 
dört farklı yer ivmesi seviyesi (ag=0.10, 0.50, 0.75 ve 1.00 g) için, PEER NGA 
veritabanı depremleri ise tek bir ivme seviyesi (ag=0.75g) için analiz edilmiştir. 
Karşılaştırılan yapısal istem büyüklükleri kat ötelenmeleri, göreli kat ötelenmeleri 
oranı, kat kesme kuvvetleri, devrilme momentleri ve seçilen eleman şekildeğiştirme 
değerleridir. VMPA-A yöntemi özellikle kat göreli kat ötelenmeleri açısından oldukça 
iyi sonuçlar vermektedir. Kat kesme kuvvetleri için ise güvenli tarafta kalacak daha 
büyük değerler elde edilmiştir. VMPA ve VMPA-A tarafından üretilen göreli kat 
ötelenmeleri, literatürde bulunan diğer çok modlu yöntemlerden N2, MPA ve MMPA 
sonuçları ile de karşılaştırılmıştır. Yirmi katlı örnekte, bu çalışmada geliştirilen 
VMPA-A yönteminin daha iyi sonuç verdiği gözlemlenmiştir. 
Üç boyutlu yapı sistemleri için geliştirilen algoritmada, yapıya planda çift doğrultuda 
etkiyen deprem durumu çalışılmıştır. VMPA-A yönteminin teorik alt yapısı MPA 
yöntemi ile büyük benzerlik içermektedir. Buna karşın, MPA yönteminin aksayan bazı 
özellikleri, geliştirilen algoritma ile ortadan kaldırılmaktadır. Çözüm geliştirilen 
konular şunlardır: i. Yapıya etkiyen atalet kuvvetlerinin analiz boyunca sabit olması 
durumu ii. Deprem yer hareketinin yapı planında iki dik doğrultudaki etkisinin eş 
zamanlı olarak tanımlanması yerine, iki bağımsız yükleme olarak tanımlanıp 
sonuçların sonradan birleştirilmesi durumu. VMPA-A’de geliştirilen çözümler şöyle 
sıralanabilir: i. Gerçekleşen yapısal hasar nedeniyle değişen dinamik karakteristiklerin 
uyarlamalı olarak dikkate alınması sayesinde seçilen bir düğüm noktasındaki her üç 
serbestlik için (x,y ve θz) kuvvet ve yerdeğiştirme vektörleri arasındaki uyumun 
sağlamış olması. ii.VMPA-A, apsis ve ordinatı sırasıyla Γ + Γnx dx ny dyS S ve 
Γ + Γnx ax ny ayS S  olan, fiziksel bir anlam taşımayan bir hibrit spektral format üzerinde 
uygulanmaktadır. Bu hibrit spektrumun belirli bir periyoda karşı gelen eğimi, Sd- Sa 
ilişkisinde olduğu gibi, ilgili periyoda karşı gelen açısal frekansın karesine eşittir. Bu 
spektrum kullanılarak, planda iki dik doğrultuda etkiyen deprem hareketi birlikte 
dikkate alınabilmektedir. Bunun doğal sonucu olarak, MPA’de iki kez uygulanmak 
zorunda olunan modal birleştirme işlemleri, VMPA-A’de bire düşmektedir. 
Üç boyutlu VMPA-A’in doğrulaması, 45 katlı taşıyıcı sistemi perde ve bağ 
kirişlerinden oluşan bir taşıyıcı sistem üzerinde yapılmıştır. Faya paralel ve faya dik 
bileşenlerinin ivme spektrumlarının geometrik ortalaması, ASCE 7.05 spektrumuna 
uyacak biçimde ölçeklendirilmiş 30 adet deprem kaydı ile çalışılmıştır. Deprem 
kayıtları için uygulanan zaman tanım alanında doğrusal olmayan çözümleme 
sonuçlarının ortalamaları ile VMPA-A sonuçları karşılaştırlmıştır. Taşıyıcı sistemin 
zayıf doğrultusunda kat ötelenmeleri ve göreli kat ötelenmelerinin büyük ölçüde 
örtüştüğü gözlemlenmiştir. Buna karşın, dik doğrultuda sonuçlar arasında farklılıklar 
bulunmaktadır. Zayıf doğrultudaki kat kesme kuvvetleri ve karşı gelen devrilme 
momentleri karşılaştırıldığında, güvenli tarafta kalan büyük değerler elde edilmiştir.  
Dik doğrultuda ise, alt katlar dışında kat kesme kuvvetleri ve devrilme momentleri 
daha iyi sonuç vermiştir. Seçilen perde liflerindeki en büyük basınç ve çekme 
şekildeğiştirmeleri gözönüne alındığında, doğrusal olmayan davranışın yoğun olduğu 
alt katlarda çok yakın sonuçlar elde edilirken, üst katlarda göreli farklar büyüktür. Bağ 
kirişlerindeki eğrilikler bakımından analiz sonuçları başarılıdır. 
Üçüncü bir karşılaştırma örneği olarak, dört bodrum, bir zemin ve 17 normal kattan 
oluşan 21 katlı gerçek bir betonarme binanın deprem performansı irdelenmiştir. Zaman 
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tanım alanında gerçekleştirilen doğrusal olmayan dinamik çözümlemede kullanılmak 
üzere, sözkonusu binanın bulunduğu bölgenin özelliklerine uygun 2007 Deprem 
Yönetmeliğine göre tanımlanan ivme spektrumunu esas alan 30 adet tarihsel deprem 
ivme kaydı PEER NGA veritabanından seçilmiştir. Burada, perdeler için çatlamış kesit 
eğilme rijitliği kullanılmıştır. Böylelikle, binanın birbirine dik doğrultularının herbiri 
için kat ötelenmeleri ve göreli kat ötelenmeleri NTHA sonuçlarına çok yakın değerler 
vermiştir. Kırk beş katlı örnekte olduğu gibi, kat kesme kuvvetleri ile kat devrilme 
momentleri bakımından güvenli tarafta kalan büyük değerler elde edilmiştir. Kat 
devrilme momentleri değerlendirildiğinde, birinci titreşim modunun davranış üzerinde 
baskın olduğu gözlemlenmektedir.Yine 45 katlı örnekte olduğu gibi, seçilen bazı perde 
liflerindeki şekildeğiştirmeler hasarın büyük olduğu bölgelerde NTHA ile yakın 
sonuçlar vermiş, üst katlara çıkıldıkça hata miktarı artmaktadır. Kiriş eğrilikleri 
başarılı olarak değerlendirlmekle birlikte birinci titreşim modunun davranışa hakim 
olduğu kanısına varılmıştır. 
  



xxxviii 
 

 
 
 
 
 
 



1 

1.  INTRODUCTION AND AIM OF THE STUDY 

The complex and time-consuming process of NTHA increases the necessity to develop 

simple analysis methods with reasonable accuracy. In this context, multimode 

pushover methods may be considered as a significant alternative to NTHA. MPA is 

one of the most well-known multimode pushover procedures. The method can be used 

for 3D structures under bidirectional ground motions. The invariant force distribution 

and the consideration of simultaneous bidirectional earthquake loading, as the 

component combination of two separate unidirectional loadings, are the main 

deficiencies of MPA. In this thesis, a variant of modal pushover analysis (VMPA) aims 

to analyze 2D and 3D high-rise buildings subjected to earthquake effects. In addition, 

the rationality of the proposed procedure is discussed in comparison with NTHA, as 

well as the other multimode procedures found in the literature.  

1.1 General Definitions 

The NSP has become a practical analytical tool to evaluate the earthquake 

performance of building-type structures. Most NSPs are precisely designated as 

conventional pushover analyses, in which an invariant lateral force distribution 

corresponding to the fundamental mode shape is subjected to the structure. However, 

applicability of the conventional pushover analysis is limited to low-rise buildings 

without vertical or torsional irregularities (Krawinkler and Seneviratna, 1997), the 

behavior of which is not affected by higher modes.  

Due to progressive yielding of the structural members, the dynamic characteristics of 

the structure undergo changes; as a result, the distribution of the lateral loads should 

be modified. To take into account the changes in dynamic characteristics, several 

adaptive pushover methods have been developed.  

The higher mode effects are accounted in the multimode methods. The adaptive 

versions of the methods may be classified into two groups. The first group is the single-

run pushover analysis, in which the force or displacement distribution is calculated at 
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each incremental step by combining mode contributions based on the instantaneous 

stiffness condition. The second group corresponds to multi-run pushover analysis, in 

which the building is separately subjected to mode compatible force vectors, while the 

contributions made by the demand parameter of interest are combined using an 

appropriate combination rule. 

Although the inertia forces are constant in VMPA, the variation of dynamic 

characteristics, due to progressive yielding of the structural members, is considered in 

its adaptive version, known as VMPA-A. 

2D and 3D versions of VMPA-A are introduced in this study. The 2D version is 

applied for unidirectional earthquakes, whereas bidirectional earthquake effects may 

be accounted for in the 3D version. 

1.2 Originality of the Study  

VMPA-A diverges from some of the existing multimode pushover analysis procedures 

for the following reasons:  

i) Mode compatible adaptive forces are applied to the structure at each iteration 

step, which provides the compatibility of force and displacement distributions 

during analysis procedure.  

ii) The application of the equal displacement rule, when combined with secant 

stiffness-based linearization, eliminates the necessity to produce a capacity 

diagram for each mode. 

The implementation of the 2D algorithm is in the Sd-Sa format. The displacement-

controlled algorithm determines the single ordinate of the modal capacity diagram, 

which corresponds to the target displacement demand for the nth mode (Sdn_p, San_p) by 

reducing elastic spectral acceleration (San_e) in order to converge with the plastic 

acceleration (San_p). Meanwhile, a hybrid spectrum is proposed in order to consider the 

effects of two planar components of ground motion simultaneously in 3D VMPA. The 

linearization process is utilized to convey the ordinates from the elastic hybrid 

spectrum to the plastic ones for each mode.  

Although double applications of modal combination rules are required in MPA, a 

unique modal combination procedure is sufficient in VMPA. 
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1.3 Scope 

In this study, VMPA is presented for the purposes of evaluating the seismic 

performance of the structures. The suggested procedure is based on an iterative 

process, in which secant stiffness is used both at the element level and in the modal 

response.  

The so-called DOC3D-v2 which is a MATLAB-based computer program, was 

developed to implement VMPA to analyze nonlinear 3D frame and/or SW-type 

structural systems. It considers concentrated and distributed plasticity for the frame 

type elements, as well as the second order effects of axial loads on the members. The 

applicability of the physical substructuring approach is one of the substantial features 

of DOC3D-v2 for reducing the computation time. Free vibrational, as well as linear 

time history analysis, algorithms are also implemented in DOC3D-v2. 

The verification of the proposed procedure is achieved in relation to the results from 

the literature and those obtained using NTHA. 

1.4 Structure of the Thesis 

The thesis consists of seven independent chapters. General descriptions of the chapters 

are listed below: 

Chapter 1 comprises the general definitions, originality and scope. 

A detailed literature survey about the nonlinear behavior of reinforced concrete 

members and multimode pushover analysis is presented in Chapter 2. 

Chapter 3 gives information about nonlinear behaviors of some structural elements. A 

new beam column element including shear-flexure interaction and the implementation 

of a 3D multiple vertical line element are proposed in this chapter. The verification 

examples are also included to the chapter. 

A matrix displacement-based 3D analysis program is generated in Chapter 4. Elastic 

or inelastic response analyses for static loads, free vibration and elastic time history 

analyses are the discussed topics in this chapter. A number of verification examples 

are studied to evaluate the accuracy of the results produced by the software. 
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In Chapter 5, the theory relating to VMPA-A is described for 2D and 3D systems. The 

developed algorithm is implemented in DOC3D-v2. 

Three verification examples are presented in Chapter 6. The resulting demands, such 

as story drifts, story shear forces, story displacements, member deformations and 

overturning moments, are compared between VMPA and NTHA.  

General conclusions of the study are presented in Chapter 7. 
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2.  LITERATURE REVIEW 

2.1 Literature About the Modelling of Different Reinforced Concrete Members 

Performance-based seismic design necessitates accurate nonlinear element models to 

estimate the real behavior of structures. Concentrated and distributed plasticity options 

may be used in relation to the model nonlinearity of RC elements (PEER, 2010; 

Deierlein, 2010). Although simple hinges are defined at the locations where 

nonlinearity is expected in concentrated plasticity, the nonlinearity is spread at 

plasticity zones or through the whole element in distributed plasticity models. In 

concentrated plasticity models, the element can consist not only of zero length plastic 

hinges, but also inelastic springs with hysteretic properties. Distributed plasticity 

models may be classified into three groups: the finite length hinge zone, the fiber 

formulation and finite element models (Deierlein, 2010). The member ends are defined 

as fixed or variable length plasticity zones, in which cross sections are characterized 

through moment curvature or explicit fiber-section integrations in the finite length 

hinge zone model. The sections, including concrete and steel fibers, are spread through 

the element length in the fiber formulation models. Uniaxial material models are 

defined in order to capture nonlinear behavior. Once the strains are known at the fiber 

sections, the stresses can be calculated using the material constitutive relations. 

Suddenly, the forces at the sections are found through numeric integration over cross 

sections. The nonlinear shell element models are the most complex, yet the most 

realistic, models of all, whereas the calibration of these models via experimental data 

is cumbersome.  

Devastating earthquakes of the past have shown that old reinforced concrete buildings, 

which were built without ductile design requirements and/or low concrete compressive 

strength, were prone to collapse or heavy damage. The most dangerous collapse 

mechanism is related to shear, which occurs suddenly without flexural yielding 

because of insufficient shear strength. Earlier experimental studies revealed that the 

shear span ratio (αs=Ls/h), which is defined as the ratio of shear span to column depth 
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for a cantilever column, is the main indication of the failure type. Shear failure mode 

is dominated when αs < 2.5 and the member is classified as a short column. If αs 

increases from 2.5 to 5, flexure-shear interaction is observed. Greater values of αs 

correspond to the flexural-type failure mode (Ceresa et al., 2008). 

The evaluation of an existing building’s performance under seismic loads is still 

typically achieved by only accounting for the flexural-type response of the members. 

Shear-flexural interaction might be imported for some kinds of element, such as short 

columns or shear-vulnerable members. To represent shear-flexural interaction, Guner 

and Vecchio (2010) developed an analysis procedure using a distributed stress field 

model (Vecchio and Collins, 2000), which inherently and accurately accounted for 

shear-related effects, coupled with axial and flexural mechanisms, in nonlinear frame 

behavior. Shear-flexure interaction has been a popular subject among researchers in 

recent years. Xu and Zhang (2011) presented a hysteretic model, consisting of a flexure 

and a shear spring coupled at the element level, in which shear-flexure interaction is 

considered both at the section and element level. Ceresa et al. (2008) developed a 

flexure-shear model for seismic analysis of RC-framed structures according to the 

Modified Compression Field Theory (Vecchio and Collins, 1986). An enhanced fiber 

stiffness-based element was formulated by Martinelli (2008) to model the effects of 

shear-flexure interaction in reinforced concrete elements, which were subjected to 

cyclic loading. 

In this study, a beam-column element is introduced to account for both flexural and 

shear deformations within spread plasticity, based on the Timoshenko Beam Theory. 

In this context, the cantilever type base element is divided into meshes, while bending 

and shear rigidities are updated at the middle of each sub-element. The flexibility terms 

are determined by the summing rotational and transversal displacement differences 

between successive points with the use of developed recurrence relations (Yüksel, 

1998; Yüksel and Karadoğan, 2009). The previous version (Yüksel, 1998), which uses 

slope deflection equations, together with the force method, taking into account linear 

shear behavior, has been modified in the newer version (Sürmeli and Yüksel, 2012), 

in order that the force method is only considered in relation to nonlinear shear behavior 

as well as shear-flexure interaction. Geometric nonlinearity is considered in the 

element level. The second order effects are taken into account using the virtual work 
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principle on the deformed configuration in the new algorithm, rather than using shear 

force couples as used in the previous application.  

The moment area method was applied by Girgin (1996) to calculate the flexibility 

terms of a general beam-column element subjected to various type of effects.    

Shear-flexure interaction, which is used in the beam-column element, is based on the 

studies of Mergos and Kappos (2008, 2010), in which an empirical relationship is 

proposed for evaluating the average shear distortion of reinforced concrete columns at 

the onset of stirrup yielding. 

The proposed beam-column element is validated against the envelopes of the 

experimental results of reinforced concrete columns, subjected to cyclic loading.  

Reinforced concrete core walls represent one of the most common lateral load-carrying 

systems in reinforced concrete tall buildings (Aydınoğlu, 2014; Constantin and Beyer, 

2014; Pugh, 2012). These systems consist of T-, U- and L-shaped walls, which are 

connected with coupling beams. Although compression-controlled flexural failure is 

the most-observed failure mode in the case of bidirectional loading, the behavior of U-

shaped walls is complicated, while the assumption that the “plane section remains 

plane after deformation” may not be valid (Constantin and Beyer, 2014). As such, 

there is no consensus on the solution for U-shaped walls where they are subjected to 

bidirectional loading. 

Vuran (2014) described the modeling techniques for RC SWs in detail. SWs can be 

modeled not only by beam-column elements with embedded rigid beams, but also with 

2D fiber-type nonlinear shell elements, multiple-vertical-line-elements (MVLEMs) 

and continuum finite elements. The former model was unable to take into account the 

migration of a neutral axis during the analysis. As the MVLEMs and nonlinear shell 

elements are composed of macro-fibers, in which the uniaxial material constitutive 

relations are defined, the migration of a neutral axis through the section under cyclic 

loading can be captured. Although continuum finite element models can be considered 

as the most accurate modeling technique, various experimental studies have shown 

that they present many difficulties for modeling and calibration. Furthermore, they 

require fast and robust computer capabilities in order to decrease analysis time. 
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2.2 Literature About Multi-mode Pushover Analysis Procedures 

Since the 1990s, the nonlinear static procedure (NSP) has become a practical analytical 

tool to estimate seismic demands of building type structures. Such regulations as ATC-

40 (1996), FEMA 356 (2000), FEMA 440 (2005) and ASCE/SEI 41.06 (2007), 

mandate the implementation of NSP for the performance evaluation of structures. Most 

of NSPs are exactly designated as the conventional pushover analysis in which an 

invariant lateral force distribution corresponding to the fundamental mode shape is 

subjected to the structure. The target displacement demand is basically calculated 

using the smoothened design spectrum according to the capacity spectrum method 

(CSM, ATC-40) or the displacement coefficient method (FEMA 356).  A type of 

capacity spectrum method, the N2 method, has been accepted as one of the most 

respected analysis methods by researchers (Fajfar and Fischinger, 1988; Fajfar 1999, 

2000).  However, applicability of the conventional pushover analysis is limited to low-

rise buildings without vertical or torsional irregularities (Krawinkler and Seneviratna, 

1997), the behavior of which is not affected by higher modes. The first attempts to 

consider higher modes were made by Paret et al. (1996) and Sasaki et al. (1998). 

Subsequently, several multi-mode pushover analysis methods have been proposed. 

Modal pushover analysis (MPA) is one of the most frequently used procedures among 

researchers (Chopra and Goel, 2002, 2004a, 2004b; Chopra et al., 2004; Goel and 

Chopra, 2005). In this method, the building is pushed with the lateral load patterns, 

which are appropriate with the discrete initial mode shapes, to a predetermined target 

displacement of a selected degree of freedom. The displacement demand for each 

mode is calculated through the inelastic response spectra or nonlinear time history 

analysis (NTHA), which is subjected to bi-linear single degree of freedom (SDOF) 

systems determined from the idealized capacity curves. An extension of the N2 method 

was proposed to account for higher modes in plan by Fajfar et al. (2005); more 

recently, the procedure was used to consider the higher mode effects in elevation by 

Kreslin (2010), Kreslin and Fajfar (2010, 2011, 2012). The method offers a more 

simplified analysis tool with respect to MPA, which combines basic pushover analysis 

with the results of elastic modal analysis. Correction factors are introduced in the 

extended N2 method to scale the drift and displacement profiles in elevation and plan 

obtained from the single mode pushover analysis to provide the same drift and 

displacement profiles with the modal response spectrum analysis. Poursha et al. (2009) 
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proposed a consecutive modal pushover procedure (CMP) for seismic assessment of 

tall buildings, in which the modal pushover analyses are implemented consecutively 

using lateral force patterns compatible with linear-elastic mode shapes. The procedure 

was applied to asymmetric tall buildings by Poursha et al. (2011). Khoshnoudian and 

Kashani (2012) introduced modified consecutive modal pushover analysis (MCMP), 

which is based on some modifications to CMP. 

The above-mentioned multi-mode pushover procedures use invariant force 

distributions. Conversely, due to progressive yielding of the structural members, the 

dynamic characteristics of the structure undergo changes; as a result, the distribution 

of the lateral loads should be modified. To take into account the changes in dynamic 

characteristics, several adaptive pushover methods have been developed. The pioneer 

adaptive pushover application, which considers only single-mode behavior, was 

proposed by Bracci et al. (1997). Following this study, multi-mode adaptive pushover 

procedures were proposed by many researchers, e.g., Elnashai (2001), Aydınoğlu 

(2003, 2004, 2007), Antonio and Pinho (2004a, 2004b), Kalkan and Kunnath (2006), 

Shakeri et al. (2010, 2012), and Abbasnia et al. (2013). The multi-mode adaptive 

methods may be classified into two groups. The first group is the single-run pushover 

analysis, in which the force or displacement distribution is calculated at each 

incremental step by combining mode contributions based on the instantaneous 

stiffness condition. The second group corresponds to multi-run pushover analysis, in 

which the building is subjected to mode compatible force vectors separately, and the 

contributions of demand parameter of interest are combined by an appropriate 

combination rule. 

As a single-run pushover analysis type, force-based adaptive pushover analysis (FAP) 

was proposed by Elnashai (2001) and Antonio and Pinho (2004a). FAP suffers from 

the quadratic modal combination rules such as SRSS because the resulting forces are 

always positive at all storey levels. To overcome this problem, a modified version of 

FAP, namely, displacement-based adaptive pushover analysis (DAP), was developed 

by Antonio and Pinho (2004b), wherein the structure is subjected to displacements 

rather than forces. In this way, the sign reversal of forces at some storey levels is 

implicitly taken into account by structural equilibrium to provide the combined modal 

displacement profile. The DAP procedure was successfully applied in predicting the 

earthquake demands for structures in comparison with FAP (Antonio and Pinho 
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2004b). As a modified version of FAP, a storey shear-based adaptive pushover method 

known as SSAP was introduced by Shakeri et al. (2010) based on the storey shears 

that consider the reversal of sign in the higher modes, unlike the FAP method. The 

applied load vector at each step is calculated by subtracting the instantaneous 

combined modal shear forces of the consecutive stories. The implementation of the 

SSAP method to asymmetric-plan buildings was proposed by Shakeri et al. (2012). In 

this method, a lateral force in two translational directions and torques at each step are 

calculated by subtracting the combined modal storey shears and the combined modal 

storey torques of consecutive stories. 

As a multi-run pushover analysis method, the adaptive modal combination (AMC) 

method proposed by Kalkan and Kunnath (2006) derives its fundamental shape from 

the adaptive pushover procedure of Gupta and Kunnath (2000). The AMC method 

combines the capacity spectrum method and the modal pushover procedure without 

the necessity for the pre-estimation of the target displacement. An energy-based 

methodology using constant-ductility inelastic displacement spectra is utilized to 

estimate the dynamic target point. A displacement-based adaptive procedure based on 

the effective modal mass combination rule (APAM) was proposed by Abbasnia et al. 

(2013) to address the sign reversals in the load vectors compatible with instantaneous 

mode shapes. The method uses the same methodology as CSM and AMC to estimate 

the target displacement. According to the modal mass combination rule, the load vector 

is scaled by a relative mode contribution factor that changes due to variations of 

dynamic characteristics. The combination of the modified load vectors is determined 

by summing/subtracting the modified load vectors. Each combination is applied to the 

structure independently, and the envelope of the results is utilized. However, for both 

the AMC and APAM methods, the interactions between the modes due to progressive 

yielding are not considered through the analysis process. 

An incremental response spectrum analysis (IRSA) approach was proposed by 

Aydınoğlu (2003, 2004, 2007), in which a piece-wise linear incremental analysis 

procedure is conducted between formation of consecutive plastic hinges. As the 

backbone curves of modal hysteresis loops, modal capacity diagrams are used to 

estimate the modal inelastic displacement demands. The equal displacement rule with 

a smoothened elastic response spectrum was reported by Aydınoğlu (2003) as being a 

practical application of the method. The method uses a non-iterative pushover 
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technique, and linear analysis is conducted using an instantaneous tangent stiffness 

matrix between formations of two consecutive plastic hinges. At each incremental 

pushover step, the structure is subjected to modal displacement or load patterns for the 

unit value of an unknown incremental scale factor. Analysis of the response spectrum 

is conducted to calculate the increment of the generic response quantity of interest. 

The resulting internal forces are then calculated by adding the increments to the 

previously obtained forces via the incremental scale factor. After the incremental scale 

factors of all potential plastic hinges are calculated, the smallest factor is selected as 

the indicator of development of the next plastic hinge. Once the incremental scale 

factors are obtained, the other demand parameters of interest are calculated 

accordingly. 

The implementation of multi-mode NSPs to unsymmetrical plan-buildings has become 

prominent in recent years (Chopra and Goel, 2004; Poursha et al., 2011; Shakeri et al., 

2012; Perus and Fajfar, 2005; Marusic and Fajfar, 2005; Kreslin and Fajfar, 2011, 

2012; Fajfar et al., 2005). This requires 3D pushover analyses accounting for the 

torsional response of the building. 

Current tall-building design codes (LATBSDC, 2008; SEAONC, 2007; CTBUH, 

2008; PEER, 2009) recommend 2D NTHA in the design of tall buildings. Most 

recently, 3D multi-mode pushover procedures have been extended to predict the 

earthquake demands of buildings for bidirectional ground motion (Reyes, 2009; Reyes 

and Chopra, 2011a, 2011b; Poursha et al., 2014; Fujii, 2011, 2014; Lin and Tsai, 2007, 

2008; Lin et al., 2012a, 2012b; Bosco et al., 2012, 2013; Manoukas et al., 2012, 2014). 

One of the pioneering procedures which takes the influence of bidirectional ground 

motions is MPA (Reyes, 2009, Reyes and Chopra, 2011a, 2011b), but it has two 

important shortcomings: 1) Invariant load patterns compatible with an nth-mode shape 

which corresponds to linear-elastic eigenvalues are applied to structure. When the 

inelastic deformations increase, the mode shapes and natural frequencies alter. If one 

applies unidirectional ground motion to an unsymmetrical building, the structure may 

deflect, not only in the direction of the ground motion but also in the perpendicular 

direction of the ground motion. Thus, for example, an x-directional earthquake may 

generate x- and y-directional lateral displacements as well as rotations at the center of 

mass (CM). Now, the displacement demand for a selected node consists of three DOFs 

(namely, x and y translational and z rotational displacements). Therefore, the NSP 
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procedure must be performed in order to provide the displacement demands of the 

selected node for three DOFs simultaneously. It is impossible to tune the 

displacements of three DOFs at the selected node simultaneously when the invariant 

load patterns are used. Reyes and Chopra (Reyes and Chopra, 2011a-2011b) choose 

the dominant earthquake direction (x or y) of the building as the target DOF to push 

and the perpendicular direction are kept free. However, in the case of the application 

of adaptive load patterns, two displacement demands can be provided. 2) The MPA 

procedure is applied separately for the x and y components of the ground motion. For 

each case, the demand parameters of interest are combined by a CQC combination 

rule. Next, the effects of two ground motion components are combined by an SRSS 

combination rule. The application of modal combination rules twice may cause 

erroneous results. Manoukas et al. (Manoukas et al., 2012, 2014) established an 

equivalent single-DOF (E-SDOF) system considering multidirectional seismic effects. 

Assuming that the x- and y-directional components of the ground motion are 

proportional to each other ( = gx gyu uκ ), this procedure requires only uniaxial pushover 

analysis in two directions separately, avoiding the application of a simplified 

directional modal combination rule. Nonetheless, the assumption of selecting the 

directional scale factor (SF) of κ = 0.3 and the proportionality of the two components 

of ground motion must be further investigated. 

Fujii (2011) developed an NSP to determine the earthquake demands of a multi-story 

asymmetric building with bidirectional eccentricity subjected to bidirectional ground 

motion. It used two independent and equivalent SDOF models based on the principal 

direction of each modal response. The contribution of each modal response is directly 

estimated based on the unidirectional response in the principal direction. Recently, this 

procedure has been extended to horizontal bidirectional ground motion acting at an 

arbitrary angle of incidence (Fujii, 2014). 

Lin and Tsai (2008) developed three-DOF modal systems in order to assess the 

demands of two-way asymmetric building systems representing two modal 

translations and one modal rotation under two-directional ground motions. 

Subsequently, Lin and Tsai (2012a, 2012b) also established inelastic response spectra 

which are constructed from the inelastic three-DOF modal systems. 
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3.  NUMERICAL MODELING OF NONLINEAR BEHAVIOR OF THE 

STRUCTURAL MEMBERS 

Two distinct structural members, namely a beam-column element and a shear wall (3D 

MVLEM), are accounted for in this study. The nonlinear beam-column element may 

be used for various types of material. However, the MVLEM can only be utilized for 

RC structures.  

3.1 Beam-Column Element 

A beam-column element is introduced here in order to account for both flexural and 

shear deformations within the spread plasticity based on the Timoshenko Beam 

Theory. A pioneer study about the topic was realized by Çakıroğlu (1978) in which 

stiffness terms of a beam-column element were determined accounting shear and 

flexural deformations.  

The flexibility method is used for the derivation of the flexibility and stiffness terms 

of the beam-column element. A cantilever is selected as a released system; the 

redundant forces (X1 and X2) are shown in Figure 3.1, where L corresponds to the 

length of the element and the general load arrangement is the distributed type. 

 

Figure 3.1 : The beam-column element and the flexibility terms. 

The beam-column element is divided into m segments whose lengths are ∆L=L/m 

(Figure 3.2). The nth segment has three coordinates defined as the left, middle and right 

points (Xln, Xmn and Xrn). It has flexural and shear rigidities of EIn and GAn, which are 

defined in the middle of the segment. 
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Figure 3.2 : Segments defined on the beam-column element. 

Flexibility terms 

The flexibility terms defined as fij are determined by summing the rotational and 

transversal displacement differences calculated for the sequential segments by using 

virtual work theory. In the definition of fij, subscript i defines the location, while 

subscript j stands for the reason of the deformation. In this context, the X1=1 case is 

used to determine the flexibility terms of f11 and f21; meanwhile, the X2=1 case is used 

to determine the flexibility terms of f12 and f22. For the distributed load case (X=0), the 

obtained flexibility terms are f10 and f20.  

The application of the distinct load cases are revealed in Figures 3.3 and 3.4. As seen 

from the figure, the moment and shear force diagrams Mj and Tj (j=0,1,2) are divided 

into first- and second-order counterparts as Mj = M0j + Mpj and Tj = T0j + Tpj, where 

the moment and shear diagrams M0j, T0j correspond to the first-order terms, while Mpj 

and Tpj correspond to the second-order terms. 

The moment and shear force diagrams are discretized for each loading case (j=0,1,2) 

at (m+1) nodes. The discrete values are collected in Mj and Tj vectors as follows: 

 (1) (2) ( ) ( 1)

(1) (2) ( ) ( 1)

... ...

... ...

+

+

 =  
 =  

n m

n m

T
j j j j j

T
j j j j j

M M M M M

T T T T T
  (3.1) 
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Figure 3.3 : Moment and shear force diagrams for loading cases 1 and 2. 

 

Figure 3.4 : Moment and shear force diagrams for loading case 0. 

General integral equations of virtual work theory are as follows: 
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f dx dx

EI x GA x
 (3.3) 

where Mθ  and ∆M  are virtual moment diagrams, and Tθ  and ∆T  are the virtual shear 

force diagrams to be used in the calculation of rotational and transversal displacements 

at any force segment, as shown in Figure 3.5. Moment diagram Mj and shear force 

diagram Tj are associated with the jth load condition. To account for the geometric 

nonlinearity, the moment and shear force diagrams are modified in each load step until 

the flexibility terms converge to a specific value in successive steps.  If one converts 

the integral equations given in Equations 3.2 and 3.3 into discrete parts, the flexibility 

terms can be defined as the sum of rotational and transversal displacement differences, 

as given below: 

1 2
1 1

                            
m m

j ij j ij
i i

f fθ δ
= =

= ∆ = ∆∑ ∑  (3.4) 

where ∆θ ij and ∆δ ij are the rotational and transversal displacement differences at the 

ith segment for the jth loading condition. In order to calculate ∆θ ij, a unit moment 

couple is applied to the boundaries of the ith segment. For the calculation of ∆δ ij, a unit 

force couple is applied at the boundaries of the segment in opposite directions; see 

Figure 3.5. 

 

Figure 3.5 : Unit moment and shear force diagrams for calculating ijθ∆  and ijδ∆ .  

The flexibility term fij consists of the second-order flexural and shear deformations,     

fij = fij_M + fij_T, where fij_M is the contribution of flexural deformations and fij_T 
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corresponds to the shear deformations. The flexural flexibility terms are listed in Table 

3.1. In these equations, m corresponds to the number of segments, i defines segment 

ID, EIi is flexural rigidity of the segment, ∆L stands for the segment length, q is 

intensity of distributed load, P is the axial compression force acting on the beam-

column, and xm(i), xl(i)  and xr(i) are the middle, left and right point coordinates of the ith 

segment. 

Table 3.1 : Flexural flexibility terms. 
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The flexibility terms related to shear deformations are listed in Table 3.2, where GAi 

is the effective shear rigidity of the ith segment. 
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Table 3.2 : Flexural terms related to shear. 
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The flexibity term f11_T is calculated from virtual work theory by assuming that virtual 

moments work with shear-related curvatures due to the second-order effects, as shown 

Equation 3.17.  

''
11_

0 0 0 0

1L L L L

T T
T Tf M y dx T dx M dx T dx

GA x GAθ θ θ θγ ∂   = + = +   ∂   ∫ ∫ ∫ ∫  (3.17) 

where  ′′∂ ∂ =T x P y  and the equation is re-arranged by: 

11
11_

0

′′′
= = =∫

L
L

T
P y P fP yf dx

GA GA GA
 (3.18) 

The equation above only considers nonlinearity due to the second-order effects. If 

material nonlinearity is also taken into account, Equation 3.18 can be defined in terms 

of discrete rotation differences ( 1∆ iθ ) as given in Equation 3.11. 

The flexibility term f21_T is obtained from virtual work theory as: 
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Equation 3.19 can be defined in terms of the discrete rotation differences as given in 

Equation 3.12.

 

The flexibility terms due to loading case 2 (X2=1) are as follows:  
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Equations 3.20 and 3.21 can be defined in terms of the discrete rotation and 

displacement differences as given in Equations 3.13 and 3.14.

 

The flexibility terms (f10_T, f20_T), due to loading case 0 (X=0), are calculated by using 

virtual work theory:  
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Equations 3.22 and 3.23 can be defined in terms of the discrete rotation and 

displacement differences as given in Equations 3.15 and 3.16.

 

3.1.1.1 Validation of flexibility terms 

The differential equations corresponding to the Bernoulli Navier Hypothesis and the 

Timoshenko Beam Theory are utilized for the validation of the flexibility terms 
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presented in Chapter 3.1.1. The results of the analytical solutions of some flexibility 

terms are compared with the results obtained from the suggested numerical solutions.  

A rectangular cross section with dimensions of 600×300mm is selected as an example. 

The modulus of elasticity is E=28,000 MPa, the shear modulus is G=11,667 MPa, the 

bending and shear rigidities are EI=151,200 kNm2, GA=2,100,000 kN and the axial 

compression force (P) is selected as 1,000 kN.  The flexibility terms and the 

corresponding relative differences are presented for 11 distinct released systems, 

which have different lengths (L=0.5 m, 1 m, 2 m …. 10 m). The released systems are 

divided into 200 segments. 

i. Accounting only for flexural deformations 

The Bernoulli-Navier Hypothesis, which is used for the validation of flexural 

flexibility terms, is based on the assumption that plane sections remain plain and 

perpendicular to the neutral axis after deformation. 

The released system and related differential equations for the two loading cases (X1=1, 

X2=1) are tabulated in Table 3.4. The flexibility terms correspond to the initial values 

(x=0) of the elastic curve, as shown in Table 3.3. 

Table 3.3 : The analytical solution of flexibility terms for unit loading. 
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Table 3.4 : The solution of differential equations for the unit loadings. 
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  − + − + +    

 

Rotation ( )21_
1 cos( )sin( ) sin( ) cos( )My f k kL kx k kL kx
P

 ′ = − + − + 
 

 22 _

22 _

sin( )cos( ) sin( )

cos( ) 1sin( ) cos( )

M

M

L kLy k f kL kx
P Pk

L kLk f kL kx
P Pk P

  ′ = − − + + +    
  − + − +    

 

( )M EI y x′′= ( )M EI y x′′= −
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The analytical solution of the flexibility terms f21_M, f11_M, f12_M, f22_M  are compared 

with the numerical solution. The relative differences are listed in Tables 3.5 and 3.6. 

It can be seen that the maximum relative difference is in the range of 10-6. 

Table 3.5 : The relative differences for the flexibility terms of  f21_M and  f11_M.   

L f21_M 

 (analytical) 
f21_M 

(numerical) Relative     
Difference 

f11_M  
(analytical) 

f11_M 

(numerical) Relative       
Difference (m) (m) (m) (radiant) (radiant) 

0.5 -8.2729E-07 -8.2729E-07 3.4471E-09 3.3087E-06 3.3087E-06 3.4437E-09 

1 -3.3160E-06 -3.3160E-06 1.3817E-08 6.6284E-06 6.6284E-06 1.3763E-08 

2 -1.3375E-05 -1.3375E-05 5.5729E-08 1.3345E-05 1.3345E-05 5.4871E-08 

3 -3.0518E-05 -3.0518E-05 1.2716E-07 2.0245E-05 2.0245E-05 1.2277E-07 

4 -5.5348E-05 -5.5348E-05 2.3061E-07 2.7429E-05 2.7429E-05 2.1654E-07 

5 -8.8778E-05 -8.8778E-05 3.6987E-07 3.5021E-05 3.5021E-05 3.3487E-07 

6 -1.3212E-04 -1.3212E-04 5.5038E-07 4.3164E-05 4.3164E-05 4.7603E-07 

7 -1.8724E-04 -1.8724E-04 7.7980E-07 5.2044E-05 5.2044E-05 6.3787E-07 

8 -2.5672E-04 -2.5672E-04 1.0689E-06 6.1901E-05 6.1901E-05 8.1779E-07 

9 -3.4429E-04 -3.4429E-04 1.4327E-06 7.3062E-05 7.3061E-05 1.0127E-06 

10 -4.5531E-04 -4.5530E-04 1.8935E-06 8.5986E-05 8.5986E-05 1.2188E-06 

The released system with external loading (X=0) and the related equations are 

tabulated in Table 3.7. The flexibility terms correspond to the initial values (x=0) of 

the elastic curve, as shown in Table 3.8. 

Table 3.6 : The relative differences for the flexibility terms of f21_M and f11_M.   

L f22_M(analytical) f22_M (numerical) Relative  
Difference 

f12_M (analytical) f12_M(numerical) Relative 
Difference (m) (m) (m) (radiant) (radiant) 

0.5 2.7576E-07 2.7576E-07 3.4470E-09 -8.2729E-07 -8.2729E-07 3.4469E-09 

1 2.2104E-06 2.2104E-06 1.3815E-08 -3.3160E-06 -3.3160E-06 1.3817E-08 

2 1.7825E-05 1.7825E-05 5.5704E-08 -1.3375E-05 -1.3375E-05 5.5729E-08 

3 6.0976E-05 6.0976E-05 1.2703E-07 -3.0518E-05 -3.0518E-05 1.2716E-07 

4 1.4733E-04 1.4733E-04 2.3021E-07 -5.5348E-05 -5.5348E-05 2.3061E-07 

5 2.9511E-04 2.9511E-04 3.6890E-07 -8.8778E-05 -8.8778E-05 3.6987E-07 

6 5.2638E-04 5.2638E-04 5.4837E-07 -1.3212E-04 -1.3212E-04 5.5038E-07 

7 8.6900E-04 8.6900E-04 7.7605E-07 -1.8724E-04 -1.8724E-04 7.7980E-07 

8 1.3594E-03 1.3594E-03 1.0624E-06 -2.5672E-04 -2.5672E-04 1.0689E-06 

9 2.0469E-03 2.0469E-03 1.4223E-06 -3.4429E-04 -3.4429E-04 1.4327E-06 

10 3.0011E-03 3.0011E-03 1.8773E-06 -4.5531E-04 -4.5530E-04 1.8935E-06 
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Table 3.7 : The solution of differential equations for the external loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading Case 0 

Free 

Body 

Diagram 

 
Diff. Eq.  

Moments 2
20( ) 2M P f y q x= − − −  

Diff. Eq. 
Arranged 

2
2 2 2 2

20                  
2
k q Py k y k f x k

P EI
′′ + = + =  

Solution 2cos( ) sin( )h py y y A kx B kx C Dx Ex= + = + + + +  

Boun. Con. (0) 0      (0) 0 y y′= =  

Elastic 
Curve 

2

20 _ 2

2
2

20 _ 20 _2 2

sin( ) cos( ) cos( )
2

sin( ) cos( ) sin( )
2 2

M

M M

qL q qLy kL kL f kx
Pk PPk

q qL qL q qkL f kL kx f x
P Pk PPk Pk

  
= + − + −  

  
  

+ − − + − + − +  
  

 

Rotation 

2

20 _ 2

2

20 _ 2

sin( ) cos( ) ( )sin( )
2

sin( ) cos( ) cos( )
2

M

M

qL q qLy kL kL f k kx
Pk PPk

q qL qL qkL f kL k kx x
P Pk PPk

  
′ = + − + − −  

  
  

+ − − + − +  
  

 

Table 3.8 : The analytical solution of the flexibility terms of f10_M and f20_M. 

20 _ 2

tan( ) 1 1(0) 1  
2 cos( )M

q kL Lf y L
P k k kL

   = = − + −   
    

 (3.28) 

2

10 _ 20 2(0) ( )sin( ) cos( )
2M

q qL qLf y k kL f kL
Pk P P

 
′= = − − + − 

 
 (3.29) 

The comparision made for the flexibility terms of  f10_M and f20_M are listed in Table 

3.9 for 11 distinct released systems having different lengths. One can conclude that the 

maximum relative difference between the Bernoulli Navier Hypothesis and the 

suggested numerical procedure is around 10-6. 

( )M EI y x′′= −
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Table 3.9 : Relative differences for the flexibility terms of f20_M and  f10_M. 

L 
f20_M 

(analytical) 
f20_M  

(numerical) 
Relative 

Difference 
 

f10_M  
(analytical) 

f10_M 
(numerical) 

Relative 
Difference 

 (m) (m) (m) (radiant) (radiant) 

0.5 1.0341E-06 1.0341E-06 3.3093E-09 -2.7578E-06 -2.7578E-06 3.4470E-09 

1 1.6577E-05 1.6577E-05 1.3808E-08 -2.2112E-05 -2.2112E-05 1.3820E-08 

2 2.6730E-04 2.6730E-04 5.5688E-08 -1.7849E-04 -1.7849E-04 5.5777E-08 

3 1.3711E-03 1.3711E-03 1.2695E-07 -6.1158E-04 -6.1158E-04 1.2740E-07 

4 4.4148E-03 4.4148E-03 2.2995E-07 -1.4812E-03 -1.4812E-03 2.3139E-07 

5 1.1046E-02 1.1046E-02 3.6826E-07 -2.9757E-03 -2.9757E-03 3.7178E-07 

6 2.3624E-02 2.3624E-02 5.4702E-07 -5.3272E-03 -5.3272E-03 5.5435E-07 

7 4.5456E-02 4.5456E-02 7.7353E-07 -8.8332E-03 -8.8332E-03 7.8718E-07 

8 8.1172E-02 8.1171E-02 1.0580E-06 -1.3888E-02 -1.3888E-02 1.0815E-06 

9 1.3732E-01 1.3732E-01 1.4152E-06 -2.1033E-02 -2.1033E-02 1.4531E-06 

10 2.2338E-01 2.2338E-01 1.8665E-06 -3.1039E-02 -3.1039E-02 1.9246E-06 

ii. Accounting for flexural and shear deformations together 

The shear and flexure deformations are accounted for based on the Timoshenko Beam 

Theory, in which plane sections remain plain after deformation but are not 

perpendicular to the neutral axis. The total deflection can be defined in terms of shear 

and flexural deformations.  

The differential equations and corresponding solution functions for laod cases 1 and 2 

are given in Table 3.11. The unknown flexibility terms are the values of initial points 

(x=0) of the elastic curve and rotation equations, as shown in Table 3.10.   

Table 3.10 : The analytical solution of the flexibility terms for unit loading due to 
combined moment and shear effects.  

11 21
1(0) sin( ) ′= = + 

 
f y f k kL

P
 (3.30) 

21
1 1(0) 1

cos( )
 

= = − 
 

f y
P kL

 (3.31) 

12 22
cos( ) 1(0) sin( ) ′= = − + − + 

 
L kLf y f k kL
P P P

 (3.32) 

22
1 tan( )(0)   = = − 

 
kLf y L

P k
 (3.33) 
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Table 3.11 : The solution of differential equations for unit loadings in the case of combined moment and shear effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading Case 1 Loading Case 2 

Curvature M Ty y y′′ ′′ ′′= +  

Diff. Eq. M d Ty
EI dx GA

 ′′ = −  
 

 M d Ty
EI dx GA

 ′′ = − +  
 

 

Moments 21( ) 1M P f y= − +  22( )M P f y x= − − −  

Shear Force T P y′= − ⋅  1T P y′= ⋅ +  

Diff. Eq. 
Arranged 

2 2 2
21

1                  
1

Py k y k f k
PP EI

GA

 ′′ + = + =     − 
 

 2 2 2
22                  

1

x Py k y k f k
PP EI

GA

 ′′ + = + =     − 
 

 

Solution cos( ) sin( )h py y y A kx B kx C Dx= + = + + +  

Boun. Con. (0) 0      (0) 0 y y′= =  

Elastic 
Curve ( )21

1 cos( ) cos( ) sin( )sin( ) 1y f kL kx kL kx
P

 = − + + − 
 

 22

22 22

sin( )cos( ) cos( )

cos( )sin( ) sin( )

L kLy f kL kx
P Pk

L kL xf kL kx f
P Pk P

  = − + + +    
  − + − + +    

 

Rotation ( )21
1 cos( )sin( ) sin( ) cos( )y f k kL kx k kL kx
P

 ′ = − + − + 
 

 22

22

sin( )cos( ) sin( )

cos( ) 1sin( ) cos( )

L kLy k f kL kx
P Pk

L kLk f kL kx
P Pk P

  ′ = − − + + +    
  − + − +    
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The comparisons between the Timoshenko Beam Theory and the suggested numerical 

procedure for the flexibility terms of f21, f11, f12 and f22 are presented in Tables 3.12 and 3.13. 

The maximum relative difference obtained from the 11 released systems with different lengths 

is around 10-6.  

Table 3.12 : The relative differences for the flexibility terms of  f11 and  f21.   

L f21 
(analytical) 

f21 
(numerical) 

Relative     
Difference 

f11 
 (analytical) 

f11 
(numerical) 

Relative       
Difference 

(m) (m) (m)  (radiant) (radiant)  

0.5 8.2768E-07 -8.2768E-07 3.4485E-09 3.3103E-06 3.3103E-06 3.4482E-09 
1 3.3176E-06 -3.3176E-06 1.3823E-08 6.6315E-06 6.6315E-06 1.3816E-08 

2 1.3381E-05 -1.3381E-05 5.5755E-08 1.3352E-05 1.3352E-05 5.5633E-08 

3 3.0533E-05 -3.0533E-05 1.2722E-07 2.0254E-05 2.0254E-05 1.2660E-07 

4 5.5375E-05 -5.5375E-05 2.3072E-07 2.7443E-05 2.7443E-05 2.2875E-07 

5 8.8823E-05 -8.8823E-05 3.7005E-07 3.5038E-05 3.5038E-05 3.6521E-07 

6 1.3219E-04 -1.3219E-04 5.5067E-07 4.3186E-05 4.3186E-05 5.4054E-07 

7 1.8734E-04 -1.8734E-04 7.8023E-07 5.2072E-05 5.2072E-05 7.6127E-07 

8 2.5687E-04 -2.5687E-04 1.0695E-06 6.1935E-05 6.1935E-05 1.0367E-06 

9 3.4450E-04 -3.4450E-04 1.4336E-06 7.3105E-05 7.3105E-05 1.3804E-06 

10 4.5560E-04 -4.5560E-04 1.8947E-06 8.6040E-05 8.6040E-05 1.8124E-06 

Table 3.13 : The relative differences for the flexibility terms of  f12 and  f22. 

L f22 
(analytical) 

f22  
(numerical) 

Relative  
Difference 

f12 
(analytical) 

f12 
(numerical) 

Relative 
Difference 

(m) (m) (m)  (radiant) (radiant)  

0.5 2.7589E-07 2.7589E-07 3.4485E-09 -8.2768E-07 -8.2768E-07 3.4487E-09 

1 2.2115E-06 2.2115E-06 1.3822E-08 -3.3176E-06 -3.3176E-06 1.3823E-08 

2 1.7834E-05 1.7834E-05 5.5731E-08 -1.3381E-05 -1.3381E-05 5.5755E-08 

3 6.1006E-05 6.1006E-05 1.2710E-07 -3.0533E-05 -3.0533E-05 1.2722E-07 

4 1.4741E-04 1.4741E-04 2.3033E-07 -5.5375E-05 -5.5375E-05 2.3072E-07 

5 2.9526E-04 2.9526E-04 3.6909E-07 -8.8823E-05 -8.8823E-05 3.7005E-07 

6 5.2666E-04 5.2666E-04 5.4866E-07 -1.3219E-04 -1.3219E-04 5.5067E-07 

7 8.6947E-04 8.6947E-04 7.7647E-07 -1.8734E-04 -1.8734E-04 7.8023E-07 

8 1.3602E-03 1.3602E-03 1.0630E-06 -2.5687E-04 -2.5687E-04 1.0695E-06 

9 2.0482E-03 2.0482E-03 1.4231E-06 -3.4450E-04 -3.4450E-04 1.4336E-06 

10 3.0031E-03 3.0030E-03 1.8786E-06 -4.5560E-04 -4.5560E-04 1.8947E-06 

The released system with the external distributed load is studied in Table 3.14. The differential 

equations and the corresponding solutions are listed in this table. The flexibility terms are the 

initial values of the elastic curve, as shown in Table 3.15. 
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Table 3.14 : The solution of differential equations for the external loading in the case of 
combined moment and shear effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading Case 0 

Diff. Eq.  ′′ = − +  
 

M d Ty
EI dx GA

 

Moments 2
20( ) 2= − − −M P f y q x   

Shear Force ′= ⋅ +T P y qx   

Diff. Eq. 
Arranged 

2 2 2 2
20                 

2 1

EI q q Py k y k f x k
PGA P P EI

GA

 ′′ + = + + =     − 
 

 

Solution 2cos( ) sin( )h py y y A kx B kx C Dx Ex= + = + + + +  

Boun. Con. (0) 0      (0) 0 y y′= =  

Elastic 
Curve 

2

20 2

2

20 2

2
20 2

sin( ) cos( ) cos( )
2

sin( ) cos( ) sin( )
2

2

qL q EI q qLy kL kL f kx
Pk P GA PPk

q EI q qL qLkL f kL kx
P GA P PkPk

q q EI qf x
P GA PPk

  
= + − − + −  

  
  

+ − + − + −  
  

+ − + +

 

Rotation 

2

20 2

2

20 2

sin( ) cos( ) ( )sin( )
2

sin( ) cos( ) cos( )
2

qL q EI q qLy kL kL f k kx
Pk P GA PPk

q EI q qL qL qkL f kL k kx x
P GA P Pk PPk

  
′ = + − − + − −  

  
  

+ − + − + − +  
  

 

Table 3.15 : The analytical solution of the flexibility terms of f10 and  f20.  

 20 2

tan( ) 1 1(0) 1  
2 cos( )

q kL L EIf y L
P k k GA kL

     = = − + − −     
     

  (3.34) 

 
2

10 20 2(0) sin( ) cos( )
2

q EI q qL qLf y f kL kL k
P GA Pk P Pk

  
′= = − − + − −  

  
  (3.35) 

Similar comparisions are presented in Table 3.16 for f10 and f20 due to the combined effects. 

The results obtained for the 11 distinct elements show that the maximum relative difference is 

around 10-4. 
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Table 3.16 : The relative differences for the flexibility terms of f10 and  f20.  

L 

f20 
(analytical) 

f20  
(numerical) 

Relative 
Difference 

 

f10  
(analytical) 

f10 
(numerical) 

 
Relative 

Difference 
  (m) (m) (radiant) (radiant)  

0.5 2.2264E-06 2.2261E-06 1.4760E-04 -7.5259E-06 -7.5246E-06 1.7463E-04 
1 2.1362E-05 2.1357E-05 2.4666E-04 -3.1672E-05 -3.1646E-05 8.0859E-04 

2 2.8670E-04 2.8661E-04 2.9666E-04 -1.9780E-04 -1.9762E-04 9.0500E-04 

3 1.4157E-03 1.4153E-03 3.0868E-04 -6.4105E-04 -6.4045E-04 9.2812E-04 

4 4.4967E-03 4.4953E-03 3.1368E-04 -1.5214E-03 -1.5200E-03 9.3532E-04 

5 1.1180E-02 1.1176E-02 3.1667E-04 -3.0277E-03 -3.0248E-03 9.3706E-04 

6 2.3826E-02 2.3819E-02 3.1900E-04 -5.3923E-03 -5.3872E-03 9.3621E-04 

7 4.5750E-02 4.5735E-02 3.2114E-04 -8.9131E-03 -8.9048E-03 9.3383E-04 

8 8.1588E-02 8.1561E-02 3.2332E-04 -1.3985E-02 -1.3972E-02 9.3036E-04 

9 1.3790E-01 1.3786E-01 3.2566E-04 -2.1152E-02 -2.1132E-02 9.2602E-04 

10 2.2418E-01 2.2410E-01 3.2822E-04 -3.1184E-02 -3.1155E-02 9.2097E-04 

3.2 Shear-Flexure Interaction 

Shear-flexure interaction, which is effective in the behavior of the short RC beams and columns, 

is studied with reference to Mergos and Kappos (2008, 2010). According to these studies, a 

shear force-shear distortion envelope is generated due to the current curvature ductility demand 

(µ); see Figure 3.6b. If the current ductility µ is smaller than three, there is no interaction 

between shear and flexure, such that the shear capacity curve is bilinear with cracking and 

ultimate points, as shown in Figure 3.6a, where Vcr, Vy and Vu0 are respectively cracking, 

flexural yielding and ultimate shear strengths (yielding of the transverse reinforcement), while 

and γcr, γy and γu are the respective corresponding shear distortions. Meanwhile, GA0 is the 

initial shear rigidity and GA1 is the post-cracking rigidity for the undegraded case. The case of 

γu < γµ=3 corresponds to shear dominant behavior, which can be observed in short columns and 

beams etc. (see Figure 3.6b).  For increasing curvature ductility demands (µ>3),  shear strength 

reduces as shown in the figure. The shear forces Vµ=3, Vµ=7 and Vµ=15 correspond to the ductility 

demands µ=3, µ=7, µ=15, while γµ=3, γµ=7 and γµ=15 are the corresponding shear distortions, 

respectively. If the curvature ductility demand is between three and seven, the post-cracking 

rigidity (GA1) reduces to GA2 and, for 7<µ<15, GA1 reduces to GA3. For other cases, post-

cracking rigidity is equal to GA1. 

The cracking shear strength for a RC beam-column is given by Sezen and Moehle (2004) as 

follows: 
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 0
0

1              
/

= + =
⋅

ctm cr
cr cr

s ctm g

f VPV A
L h f A GA

γ   (3.36) 

where fctm is the mean concrete tensile strength, P is compressive axial load, αs=Ls/h is the shear 

span ratio, Ag is the gross sectional area of the cross section and G is the elastic shear modulus. 

A0=0.8Ag is the effective area, which takes into account a parabolic shear stress distribution 

along the depth of the cross section. The cracking shear distortion is then calculated by Equation 

3.36. 

 
 

a) Undegraded case      b) Degraded case 
Figure 3.6 :  Shear distortion-shear force envelopes.  

The ultimate shear strength is given by Priestley et al. (1994) with the following formula: 

 ( ) ( )cot
0.8 tan

′⋅ ⋅ −
= ⋅ ⋅ + ⋅ + w yw

u v c g c

A f d d
V k f A P

s
ϕ

α   (3.37) 

where fc is the concrete compressive strength, Aw is the transverse reinforcement area, fyw is the 

transverse reinforcement yield strength, ϕ  is the angle between the column axis and the 

direction of the diagonal compression struts, which is suggested as 35°; meanwhile, d - d' is the 

distance that is parallel to the applied shear between the centers of the longitudinal 

reinforcement, s is the spacing of the transverse reinforcement, and αc is the angle between the 

column axis and the line joining the centers of the flexural compression zones at the top and 

bottom of the column. The factor kv is a parameter that is dependent on the curvature ductility 

demand, as shown in Figure 3.7. 
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The ultimate shear distortion is determined by using the truss analogy approach, which was 

proposed by Park and Paulay (1975) and Kowalsky et al. (1995). It is calculated by using 

Equation 3.38.  

 2 3
0

cot 1
cot sin cos cot

 
= + + 

 

w ywcr
uo

s w c

A fV s
GA s E A E b

ϕ
γ

ϕ ϕ ϕ ϕ
  (3.38) 

 

Figure 3.7 :  kv factors. 

where Es and Ec are respectively the modulus of elasticity of concrete and steel, while b is the 

width of the cross section. Mergos and Kappos (2008) proposed two modification factors to 

account for the axial load and the column aspect ratio for deriving ultimate shear distortion. 

The first modification factor,ψ , takes into account the influence of the axial load and is given 

by: 

( )1 1.03                          = − ⋅ = g cP A fψ ν ν  (3.39) 

The second modification factor, λ,  represents the influence of the column aspect ratio and is 

given by the following expression: 

5.41 1.13 1 = − ⋅ ≥ 
 

sL
h

λ   (3.40) 

where Ls is the shear span length and h is height of the cross section. 

The resulting ultimate shear distortion is then calculated as: 

=u uoγ ψ λ γ   (3.41) 

The implementation of shear-flexure interaction is shown in Figure 3.8. Herein, the dashed line 

corresponds to the undegraded case, while Vi is the shear force at the ith analysis step where 
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flexural yielding previously occurred. The shear force difference (∆V) is the difference between 

Vi and Vcr. The term ∆degVc is the difference between Vi0 and the ultimate shear strength (Vi), 

which is derived from the current curvature ductility. 

The steps of the analysis are also shown in Figure 3.8.  Each intermediate step i consists of three 

sub-steps. In the first sub-step, the shear force 0
iV and 0

iγ is calculated.  In the following sub-

step, the undegraded shear capacity corresponding to 0
iγ is calculated. The bending moment Mi 

and the corresponding effective flexural rigidity EIi are defined by the secant stiffness method 

from moment-curvature relations; see Chapter 4.6. Depending on the current curvature ductility 

demand (µ), Vi and the corresponding iγ are determined at the last sub-step of ith step. The 

resulting effective shear rigidity for the next step (i+1) is GAeff(i+1) , see Equation 3.42.  

 

Figure 3.8 : Implementation of shear-flexure interaction. 

1
1

deg                   GA
i

c i
i eff

i

V V V
GA

γ
γ+

∆ + ∆
∆ = =  (3.42) 

Experimental validation 

To validate the success of the developed algorithm, three column specimens, which were 

exposed to cyclic loading, were utilized. The first example demonstrates flexure critical 

behavior, the second one has shear-flexure behavior and the collapse mechanism of the third 

one is shear-dominated. 
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3.2.1.1 Flexure critical example 

The selected flexure critical column (Karadoğan et al., 2009) was tested under quasi-static 

cyclic loading. The cross section and elevation of the specimen are illustrated in Figure 3.9. 

The axial load applied is 365 kN. The concrete compressive strength is 45 MPa, the yield (fyl) 

and ultimate strengths (fsu) of the longitudinal reinforcement are 540 MPa and 658 MPa, the 

yield strength of the transverse reinforcement (fyw) is 476 MPa. The section consists of eight 

longitudinal bars with a diameter of 20 mm. The diameter of the lateral reinforcement is 8 mm. 

The shear span ratio (αs)  is equal to 10.0, which corresponds to the flexure critical failure mode. 

 

Figure 3.9 : The elevation and cross section of the column.  

The gradually increasing lateral displacements are acted on at the top of the column. The 

corresponding shear force at the base of the column vs. the top displacement is illustrated in 

Figure 3.10, together with the experimental hystresis. Although there is some divergence in the 

decending branches, the simulated envelope curve significantly predicts the response of the 

column.  
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Figure 3.10 : Force vs. displacement relations of the flexure critical column example.  

3.2.1.2 Shear-flexure critical example 

The shear-flexure critical column example is taken from Lynn et al. (1996). The column has 

dimensions of 457×457 mm, as shown in Figure 3.11 and its height is 1,473 mm. The 

corresponding shear span ratio is αs =3.22. The section consists of eight longitudinal bars with 

a diameter of 25.4 mm. The diameter of the lateral reinforcement is 9.53 mm. 

  

Figure 3.11 :  The cross section of the shear-flexure critical specimen. 

The axial load is 503 kN. The concrete compressive strength is 41 MPa, the yield (fyl) and 

ultimate strength (fsu) of the longitudinal reinforcement is 331 MPa and 496 MPa, respectively. 

The yield strength of the transverse reinforcement (fyw) is 400 MPa.  

The lateral displacement acting on top of the column is increased gradually and the obtained 

shear force at the column base vs. the top displacement is given, together with the experimental 

hysteresis, as shown in Figure 3.12.  
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Figure 3.12 :  Force vs. displacement relations of the shear-flexure critical example. 

3.2.1.3 Shear-critical example 

The shear-critical column example is taken from Aboutaha et al. (1999). The column has 

sectional dimensions of 457×914 mm, as shown in Figure 3.13, and has a height of 1,219 mm. 

Therefore, the shear span ratio is αs =1.33. The section consists of 16 longitudinal bars with a 

diameter of 25.4 mm and a transversal reinforcement of 9.53 mm in diameter. 

 

Figure 3.13 :  The cross section of the shear critical specimen. 

There is no axial load on the specimen. The concrete compressive strength is 16 MPa, while 

the yield (fyl) and ultimate (fsu) strengths of the longitudinal reinforcement are 434 MPa and 690 

MPa, respectively. The yield strength of the transverse reinforcement (fyw) is 400 MPa.  

Similar to the previous example, the lateral displacements are gradually increased at the top of 

the column. The obtained shear force at the column base with varying top displacements are 

illustrated in Figure 3.14. 
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Figure 3.14 :  Force vs. displacement relations of the shear critical example. 

3.3 Shear Walls 

The three-dimensional multiple-verticle-line-element-model (3D MVLEM) is implemented in 

this study. Shear-related failure modes are not considered. The following subchapters look at 

the derivation of the stiffness matrix of the 3D MVLEM and the validation studies.   

 Implementation of 3D MVLEM to shear walls 

The MVLEM was first proposed by Vulcano et al. (1988). The 3D version (3D MVLEM) was 

developed by Kante (2005) and Fishinger et al. (2004), and it was adapted to OPENSEES. In 

the current study, 3D MVLEM, which has some differences from Kante’s approach is adapted 

to DOC3D_v2. 

In the mathematical model, shear wall cross-section is divided into n vertical strut elements 

having only axial stiffness. The geometry of the ith vertical strut is defined by the xi and yi 

coordinates based on the distance to the COG of the cross-section, and the stiffness of each strut 

is a function of the concrete and rebar area (Ac, As) and the corresponding nonlinear material 

constitutive models. Two horizontal springs are utilized between successive floors at a specific 

ratio of story height (cx = cy = 0.4hM) in order to simulate the shear behavior. The bending and 

compression-tension behavior are provided by n vertical spring elements with stiffnesses k1, k2, 

…, kn, and the shear behavior is considered by two horizontal springs with the stiffness of kHx 

and kHy (Figure 3.15). 
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Figure 3.15 :  3D MVLEM for a U-shaped shear wall example. 

The axial stiffness of the ith vertical strut is calculated in terms of the instantaneous secant 

stiffness of the materials, as follows: 

 ( ) ( ) ( ) ( )( ) ( )

_ sec _ sec
= +

k k

c c s si ii i
i

M M

E A E A
k

h h
  (3.43) 

where hM is the height of MVLEM, ( )( )

_ sec

k

c i
E and ( )( )

_ sec

k

s i
E  are the instantaneous secant 

modulus of the concrete and steel, respectively, and ( )c i
A  and ( )s i

A  are the area of the concrete 

and steel of the ith vertical strut, respectively. The instantaneous secant modulus of the materials 

are determined from the constitutive relations: 

 ( ) ( )( ) ( )
( ) ( )

_ sec _ sec( ) ( )( ) ( )                     = =
k k

c sk ki i
c i s ik k

i i

E E
σ σ
ε ε

  (3.44) 

where ( )k
iε  is the instantaneous axial strain, ( )( )k

c i
σ and ( )( )k

s i
σ  are the corresponding concrete 

and steel stresses calculated from the related constitutive relations. Similar to the 3D beam-

column elements, 3D MVLEM consists of six DOF at each end. The corresponding end 

displacements are given in Equation 3.45: 

 
 

 ( ) ( )
δ  =  

k kT
Xi Yi Zi Xi Yi Zi Xj Yj Zj Xj Yj Zjδ δ δ θ θ θ δ δ δ θ θ θ   

  

(3.45) 

 
 

0.6 h 

0.4 h 

hM 
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After the displacement vector ( )δ k  is determined, the axial deformation vector ( )u k
A  is expressed 

based on the principle “plane sections remain plane after deformation” for both orthogonal axes: 

( ) ( )u a δ=k k
A   

[ ]( )( )
1 2 . . . .u = kk

A A A Ai Anu u u u   
(3.46) 

where a is a geometrical transformation matrix: 

 

1 1 1 10 0 1 0 0 0 1 0
. . . . . . . . . . . .
0 0 1 0 0 0 1 0
. . . . . . . . . . . .
0 0 1 0 0 0 1 0

i i i i

n n n n

y x y x

y x y x

y x y x

− − 
 
 
 = − − −
 
 
 − − − 

a  

 

(3.47) 

The average axial strain for the ith vertical strut is calculated as follows: 

 
( )

( ) =
k

k i
i

u
h

ε  (3.48) 

The stresses ( )( )k
c i

σ  and ( )( )k
s i

σ  are then calculated from the related material constitutive 

models. The axial force of the ith vertical strut is then determined as: 

  ( ) ( ) ( ) ( )( ) ( )( ) = +k kk
i c c s si i i i

f A Aσ σ   (3.49) 

The deformation vector of the horizontal springs  =  
T

H Hx Hyu u u   is a function of δ  and a 

transformation matrix bM : 

  ( ) ( )u b δ=k T k
H M   (3.50) 

 
1 0 0 0 0 1 0 0 0 (1 ) 0
0 1 0 0 0 0 1 0 (1 ) 0 0

b
− − 

=  − − − − 

x M x MT
M

y M y M

c h c h
c h c h

  (3.51) 

 

The stiffness matrix of 3D MVLEM in the global coordinates is presented in Figure 3.16. The 

matrix has the dimensions of 12×12. In stiffness matrix of KMVLEM, GJ refers to torsional 

stiffness of the MVLEM. 
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Figure 3.16 : Stiffness matrix of 3D MVLEM. 
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Verification of the MVLEM algorithm and discussion of the results 

Two slender walls from the literature (Thomsen and Wallace, 2004) are selected in 

order to verify the implemented 3D MVLEM model. The first example has a 

rectangular cross-section (RW2) and the second one has a T-shaped cross-section 

(TW2). The cross-sections of the SWs are demonstrated in Figure 3.17. The height of 

the SWs is 3.66 m and the thickness is 102 mm. The longitudinal reinforcement at the 

wall heads is 8-#3 (d = 9.54 mm) and the web is #2 (d = 6.53mm). The transverse 

reinforcement at different parts of the SWs is illustrated in Figure 3.17. 

The RW2 and TW2 SWs are subjected to constant axial forces of 378 kN and 730 kN, 

respectively, which are almost equal to 0.07-0.075Ag fc’. Cyclic-type loading is applied 

in the lateral direction. 

Constitutive models of the materials are taken from the calibrations conducted by 

Orakcal et al. (2006). The constitutive models are presented in Figure 3.18. The 

tension-softening model is not considered in the study. 

Rectangular SW of RW2 is divided into 8×8 = 64 vertical line elements. Meanwhile, 

TW2 SW consists of 169 vertical line elements, namely 17×8 = 136 elements at the 

flange and 3×11 = 33 elements at the web of the section. The tributary area of each 

vertical line element is separated by dashed lines, as shown on Figure 3.17. Four equal 

lengths of 3D MVLEMs are defined along the height of the SWs. The material 

properties are different between the flange and the web because of the confinement 

effect (Figure 3.18). 

Displacement-controlled NSP is applied to the SWs in both directions by the 

developed computer program, DOC3D_v2. The analytically obtained shear force vs. 

the top displacement curves are presented together with the experimental hysteresis 

(Figure 3.19). 
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a – RW2               

 
b – TW2 

Figure 3.17 :  Cross-sections of the specimen. 

 

Figure 3.18 : Material constitutive models. 
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a – RW2                                                        

 
b – TW2 

Figure 3.19 : Comparison of the experiment and the analytical results. 

Figure 3.19 demonstrates that the developed software gives very close agreement with 

the experimental data for RW2 in both directions and for TW2 when the flange is in 

compression. The experimental data shows that non-uniform strain distribution exists 

on the flange when it is subjected to tension. The edge confinement regions have 

relatively low strains compared with the web of the section. Therefore, the software 

yields a bigger analytical capacity in this direction compared with the experimental 

data. 
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4.  DEVELOPMENT OF A COMPUTER PROGRAM (DOC3D_v2) FOR 

NONLINEAR ANALYSIS OF 3D HIGH-RISE BUILDINGS 

In this chapter, an algorithm capable of taking into account geometrical and material 

nonlinearity is developed in order to analyze three-dimensional (3D) structural 

systems based on the matrix displacement method. The local, special and global axis 

definitions and their transformation operations are implemented in line with Tezcan 

(1970). The flexibility terms derived in Chapter 3.1.1 are generalized here for 3D 

behavior.  

4.1 General Structure and Linear Analysis Procedure 

Element local axis and degree-of-freedom at joints 

The local axis system of a 3D frame element is demonstrated in Figure 4.1 using the 

coordinates of x, y and z, where y corresponds to the longitudinal axis of the frame 

element, and where x and z are the principal axes of the member. The global axis 

system is defined by X, Y and Z. 

In order to determine the position of x and z local axes in the cross section, one should 

utilize a new axis system, namely a special axis system.  This new system is defined 

by x0, y0 and z0 definitions. β  is the rotation angle between the x-z and x0-z0 axes to 

define x0 direction position, which is parallel to the plane of XY.   

Twelve-degrees-of-freedom (12-DOFs) exist in the frame element; six of them are 

used in the ith end and six of them are used for the jth end of the member. The assigned 

numbers to the DOFs are illustrated in Figure 4.2.  
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Figure 4.1 : Definitions of local, special and global axes. 

 

Figure 4.2 : The DOFs of the spatial frame element. 

Stiffness matrix and the loading vector of the spatial frame element 

The nonlinear stiffness matrix of the 3D element is determined by using the inverse of 

the flexibility matrices generated for two distinct cases: i) bending about the x axis and 

ii) bending about the z axis.  The flexibility matrices fx and fz, consisting of the right 

end displacements, are given with the following matrices:  
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9 _ 9 9 _10 7 _ 7 7 _12

10 _ 9 10 _10 12 _ 7 12 _12
x z

f f f f
f f f f

   
= =   

   
f                       f  (4.1) 

The free body diagrams, corresponding to the flexibility terms in the yz and xy planes, 

are illustrated in Figures 4.3 and 4.4, respectively.  

  

Figure 4.3 :  The flexibilty terms in the yz plane (bending about the x axis). 

 

Figure 4.4 : The flexibilty terms in the xy plane (bending about the z axis). 

The inverse of the flexibility matrices corresponds to the stiffness terms at the right 

end side of the frame element, which are given in Equation 4.2.  

9 _ 9 9 _10 7 _ 7 7 _121 1

10 _ 9 10 _10 12 _ 7 12 _12
f k                   f k  x x z z

k k k k
k k k k

− −   
= = = =   

   
 (4.2) 

The stiffness terms in the xy plane for the left end of the frame element, due to the unit 

right end deformations, are calculated by using the member equilibrium equations; see 

Equations 4.3-4.6, Figure 4.5.  

6 _12 12 _12 7 _12= − + ⋅k k k L   (4.3) 

1_12 7 _12= −k k   (4.4) 

6 _ 7 12 _ 7 7 _ 7= − + ⋅ +k k k L P   (4.5) 
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1_ 7 7 _ 7= −k k   (4.6) 

 

Figure 4.5 : The stiffness terms in the xy plane due to the unit deformations (right 
side). 

The stiffness terms in the yz plane for left end of the frame element, due to the unit 

right end deformations, are calculated by using the member equilibrium equations; see 

Equations 4.7-4.10, Figure 4.6.  

 

Figure 4.6 :  The stiffness terms in yz plane due to unit deformations (right side). 

4 _10 10 _10 9 _10= − − ⋅k k k L   (4.7) 

3_10 9 _10= −k k   (4.8) 

4 _ 9 10 _ 9 9 _ 9= − − ⋅ −k k k L P   (4.9) 

3_ 9 9 _ 9= −k k   (4.10) 

Some of the stiffness terms in the member stiffness matrix can be determined from the 

symmetry. There are given in Equation 4.11:  

12 _1 1_12 7 _1 1_ 7 10 _ 3 3_10

9 _ 3 3_ 9 12 _ 6 6 _12 7 _ 6 6 _ 7

10 _ 4 4 _10

                                                 

                                                         

                       

k k k k k k

k k k k k k

k k

= = =

= = =

= 9 _ 4 4 _ 9    k k=

 (4.11) 
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The stiffness terms in the xy plane for the left end of the frame element, due to the unit 

left end deformations, are calculated by using the member equilibrium equations; see 

Equations 4.12-4.15, Figure 4.7.  

 

Figure 4.7 :  The stiffness terms in the xy plane due to unit deformations (left side). 

6 _ 6 12 _ 6 7 _ 6= − + ⋅k k k L   (4.12) 

1_ 6 7 _ 6= −k k   (4.13) 

6 _1 12 _1 7 _1= − + ⋅ −k k k L P   (4.14) 

1_1 7 _1= −k k   (4.15) 

The stiffness terms in the yz plane for the left end of the frame element, due to the unit 

left end deformations, are calculated by using the member equilibrium equations; see 

Equations 4.16-4.19, Figure 4.8.  

 

Figure 4.8 :  The stiffness terms in the yz plane due to unit deformations (left side). 

4 _ 4 10 _ 4 9 _ 4= − − ⋅k k k L   (4.16) 

3_ 4 9 _ 4= −k k   (4.17) 

4 _ 3 10 _ 3 9 _ 3= − − ⋅ +k k k L P   (4.18) 

3_ 3 9 _ 3= −k k   (4.19) 

The axial and torsional stiffness of the frame element is given in Equations 4.20 and 

4.21, in which EA and GJ are the axial and torsional rigidities, respectively.   
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2 _ 2 8_8 2 _8 8_ 2= = − = − =
EAk k k k
L

  (4.20) 

5_ 5 11_11 5_11 11_ 5= = − = − =
GJk k k k
L

  (4.21) 

The 12×12 rigidity matrix for the spatial frame element is illustrated in Figure 4.9. 

Herein,  

• A, B and C are stiffness terms in the xy plane at the right end of the frame 

element due to unit deformations at the right end side 

•  D, E and F are rigidity terms in the yz plane at the right end of the frame 

element due to unit deformations at the right end side.  

• G and H are the axial and torsional rigidities.  

By using the submatrix framed with broken lines, the member equilibrium equations 

and the property of symmetry are used to determine the whole stiffness matrix. The 

application of the equilibrium equations are also denominated in the figure. The first, 

second, third and fifth rows of the stiffness matrix are simply obtained by multiplying 

(-1) of 7th, 8th, 9th and 11th rows, respectively.  

The loading of the beam column element, subjected to a uniformly distributed load on 

the xy and yz planes, is shown in Figure 4.10.  

The required flexibility terms (f7_0, f9_0, f10_0, f12_0) to determine the loading terms of 

the base element are shown in Figure 4.11. 

The loading terms are then calculated for the xy and yz planes by using Equations 4.22 

and 4.23, where the stiffness matrices are determined previously for the frame element.  

9 _ 0 9 _ 9 9 _10 9 _ 0

10 _ 0 10 _ 9 10 _10 10 _ 0xyz

P k k f
P k k f

     
= − ⋅     

     
 (4.22) 

7 _ 0 7 _ 7 7 _12 7 _ 0

12 _ 0 12 _ 7 12 _12 12 _ 0xyz

P k k f
P k k f

     
= − ⋅     

     
 (4.23) 
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Figure 4.9 :  The stiffness matrix of the spatial frame. 
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Figure 4.10 : Terms of the loading matrix.  

 

Figure 4.11 :  The flexibility terms for the distributed loads in two planes. 

The remaining loading terms are determined by the member equlibrium equations; see 

Equations 4.24-4.27. 

1_ 0 7 _ 0 xP P q L= − − ⋅  (4.24) 

3_ 0 9 _ 0 zP P q L= − − ⋅  (4.25) 

2

4 _ 0 10 _ 0 9 _ 02
zq LP P P L⋅

= − − − ⋅  (4.26) 

2

6 _ 0 12 _ 0 7 _ 02
xq LP P P L⋅

= − + + ⋅  (4.27) 

Transformation from the local to the global axis 

The directional cosines are utilized to transform the force vector from the global axis 

(PX, PY, PZ) to the local axis system (Px, Py, Pz). The terms of the directional cosines 

matrix are (lx, mx, nx) (ly, my, ny)  and (lz, mz, nz) as shown in Figure 4.12.  

If one knows the forces on the global axis system, the forces on the local axis system 

can be determined by using Equation 4.28. 
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Figure 4.12 :  Directional cosines. 

          P t P
x x x x X

y y y y Y xyz XYZ

z z z z Z

P l m n P
P l m n P
P l m n P

     
     = ⋅ = ⋅     
          

 (4.28) 

where t  is the directional cosines matrix. If forces on the local axis system are known, 

the forces on the global axis system is determined by transposing the directional 

cosines matrix. This matrix is also the inverse of the directional cosines matrix.  

            P t P
X x y z x

T
Y x y z y XYZ xyz

Z x y z z

P l l l P
P m m m P
P n n n P

    
    = ⋅ = ⋅    
        

 (4.29) 

In a similar way, the displacement at the global coordinates can be transformed to the 

local coordinates by multiplying the vector by the directional cosines matrix.  

xyz XYZ= ⋅d t d   (4.30) 

The directional cosines of ly, my ve ny are determined in terms of the frame coordinates 

as follows:   

                
− − −

= = =j i j i j i
y y y

X X Y Y Z Z
l m n

L L L
  (4.31) 
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Directional cosines related to the other axes are (lx, mx, nx, lz, mz, nz), which are 

determined by using the orthogonality and normality conditions. They are given with 

according to the following formula:  

2
2

0

1t                      =

y y

x x x

y y y y y y y

z z z y y y y

m l
l m n Q Q
l m n l m n Q n
l m n l n m n

Q
Q Q

 
−       = = −       − −  

 (4.32) 

The force vector, defined in the frame local axis, is first transformed to the frame 

special axis. After that, the operation about the global axis transformation is executed. 

Equation 4.33 represents the relations between the local and special frame axis in 

which 1t matrix consists of directional cosines terms; see Equation 4.34. 

0 0 01P t Pxyz x y z= ⋅  (4.33) 

The definition of β is illustrated in Figure 4.12.  

1

cos 0 sin
0 1 0

sin 0 cos

β β

β β

− 
 =  
  

t       (4.34) 

The relation between the special and global axis systems is given in Equation 4.35.  

0 0 0 2P t P= ⋅x y z XYZ   (4.35) 

Hence, one can write the following equation between the local and global axis systems. 

The matrix of  1 2t t t=  is the general transformation matrix for joints. 

1 2P t t P t P= =xyz XYZ XYZ   (4.36) 

An exceptional case exists for the vertical oriented members in the calculation of 2t ; 

see Equation 4.37.  
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2

0 0
0 0
0 1 0

y

y

n
n

 
 =  
 − 

t   (4.37) 

The transformation of the force vector from global coordinates to local coordinates is 

as follows: 

12 1 12 12 12 1P T P=x x x
xyz XYZ  (4.38) 

The transformation operation matrix for the general spatial frame element (T ) is given 

in Equation 4.39. 

12 120 0 0
0 0 0
0 0 0
0 0 0

t
t

T
t

t

 
 
 =
 
 
 

x

 (4.39) 

Stiffness matrix and load vectors in the global coordinates and solution of 

the equilibrium equations 

The stiffness matrix of the spatial frame element in global coordinates is determined 

by:  

k T k T= T
XYZ xyz   (4.40) 

The loading matrix in the global coordinates ( )0P m

XYZ
 is transformed from the loading 

matrix in the local coordinates ( )0P m

xyz
 by multiplying it with the transformation matrix 

from the left. 

( ) ( )0 0P T P=m m

XYZ xyz
  (4.41) 

The system stiffness matrix S and loading vector P0 is generated by placing the frame 

stiffness and loading matrices transformed to the global coordinates to the appropriate 

locations of the corresponding matrix, as shown in Figure 4.13. 
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Figure 4.13 :  Establishment of system stiffness and loading matrices. 

The set of linear equilibrium equations for the solution of unknown displacements are 

obtained by Equation 4.42.

 

0S d P Q+ =   (4.42) 

where Q is nodal load vector and, d is the unknown displacement vector. 

After the solution of the set of equilibrium equations, the end forces of the mth frame 

element are calculated by using Equations 4.43 and 4.44.  

( ) ( ) ( ) ( ) ( ) ( )0P k d k d P= + +
m m mm m m

i i i i i j j iXYZ XYZ XYZXYZXYZ XYZ
  (4.43) 

( ) ( ) ( ) ( ) ( ) ( )0P k d k d P= + +
m mm m mm

j j i i j j j jXYZXYZ XYZ XYZXYZ XYZ
  (4.44) 

where ( )0P m
i XYZ

and ( )0P
m

j XYZ
are the mth frame element ith and jth fixed end force vectors; 

( )d m
i XYZ

and ( )d
m

j XYZ
are the mth frame element ith and jth end displacement vectors in the 

global coordinates; and ( )k
m

ii XYZ
, ( )k

m

i j XYZ
, ( )k

m

j i XYZ
 and ( )k

m

j j XYZ
are 6×6 submatrices 

in the element stiffness matrix ( )k m

XYZ
 as follows: 
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( )
( ) ( )
( ) ( )
k k

k
k k

 
 =
 
  

m m

ii i jm

XYZ m m

ji j j XYZ

  (4.45) 

The mth frame element ith and jth end forces in the local coordinates is transformed by 

multiplying the transformation matrix (T ) from the left. 

( ) i i

j j

P P
P T

P P
   

= =   
   

m m
m

xyz
xyz XYZ

 (4.46) 

In order to modify the sign of the some end forces, for the purpose of providing 

appropriate positive sign convention rules for the internal forces in the structural 

analysis, the following operations are executed (see Equation 4.47).    

( )

1
1

1
1
1
1

P

−   
   −   
     = ×   −   
   −
   

−    

i
x

i

i
mz

ii xyz
x
i

b
i
z

T
N
T
M
M
M

                     ( )

1
1
1

1
1
1

P

   
   
   
   −  = ×   
   
   
   
    

j
x

j

j
mz

jj xyz
x
j

b
j

z

T
N
T
M
M
M

 (4.47) 

For the ith end of the frame element, i
xT and i

zT are shear forces in the x and z direction, 

respectively, and iN is axial force; i
xM and i

zM  are the bending moment about the x 

and z axes, respectively, and i
bM is torsional moment. A similar definition is true for 

the jth end of the frame element.  

The moments and shear forces at a specific cross section, which has a distance of “y” 

from the ith end, are calculated by using the following equations:   

2

( )
2

= + +i i
x x z z

yM y M T y q   (4.48) 

( ) = −i
x x xT y T q y   (4.49) 

2

( )
2

= + −i i
z z x x

yM y M T y q   (4.50) 

( ) = +i
z z zT y T q y   (4.51) 
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A computer program for the structural analysis (DOC3D_v2) 

The algorithm presented in the previous chapters is implemented using a computer 

program, called DOC3D_v2 which analyzes 3D frame and/or shear wall type structural 

systems. The program was written in MATLAB. Some special features of MATLAB 

for matrix operations are utilized in the analyses.  

The verification of the algorithm 

A triangular shaped one story reinforced concrete building is selected for the 

verification of the 3D algorithm and computer code (Figure 4.14). The story height is 

3.5 m; the plan dimensions are 3.0 m, 4.0 m and 5.0 m. The cross-sectional dimensions 

of columns and beams are identical, with dimensions of 30×60cm. The modulus of 

elasticity of concrete is 30,000 MPa, the flexural rigidities for the section are 93,750 

kNm2 and 33,750 kNm2 for the strong and weak axes, respectively. The axial rigidity 

is EA=4,500,000 kN and torsional rigidity is GJ=35,213 kNm2. The shear 

deformations are neglected in the analysis.  

The problem is solved by DOC3D_v2, with the results compared with those obtained 

from SAP2000. The joint and frame numbers for both of the programs are shown in 

Figure 4.15.  

 

Figure 4.14 :  3D view of the structure having a triangular plan. 
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Figure 4.15 :  The joints and frame element identification numbers.  

The external loads acting on the joints and frame elements are shown in Figure 4.16. 

The frame elements are subjected to 10 kN/m and 5 kN/m distributed loading in the 

strong and weak directions, respectively; see Figure 4.16, Table 4.1.    

The local axis definitions are different for the two analysis programs. The differences 

are as follows: 

i.  For the columns, default axis 2 in SAP2000 coincides with the x axis of 

DOC3D_v2 program, whereas axis 3 in SAP2000 corresponds to the 

negative z axis. 

ii. For the beams, axis 2 in SAP2000 coincides with the z axis in DOC3D_v2, 

whereas axis 3 corresponds to the x axis in DOC3D_v2.   

Table 4.1 :   The distributed loads for two programs.    
    Frame 

Type 
Frame No. Sap2000 DOC3D 

Axis 2 Axis 3 x axis z axis 

            

Column 
1 10 5 10 -5 

2 10 5 10 -5 

3 10 5 10 -5 

      

Beam 
4 -10 5 5 -10 

5 -10 5 5 -10 

6 -10 5 5 -10 
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Figure 4.16 :  The distributed (left) and concentrated (right) loads acting on the 
structure.   

The displacements obtained in the linear analysis are tabulated in Table 4.2 and 4.3. 

Table 4.2 :  Comparison of displacements. 
    Joint No. Ux(m) Uy(m) Uz(m) 

SAP2000 DOC3D SAP2000 DOC3D SAP2000 DOC3D 

       
4 0.003967 0.003967 0.000190 0.000190 -0.000387 -0.000387 

5 0.003974 0.003974 -0.000217 -0.000217 -0.000291 -0.000291 

6 0.004438 0.004438 -0.000201 -0.000202 0.000040 0.000040 
       

The exact same results are obtained from the two programs. Hence, the first check 

about the algorithm and computer program are satisfied.  

Table 4.3 : Comparision of rotations. 
    Joint No. θx (rad) θy (rad) θz (rad) 

SAP2000 DOC3D SAP2000 DOC3D SAP2000 DOC3D 

       
4 0.000022 0.000022 0.000280 0.000280 -0.000334 -0.000334 

5 -0.000018 -0.000018 0.000179 0.000179 -0.000153 -0.000153 

6 0.000372 0.000372 0.000717 0.000717 0.000189 0.000189 
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The member end forces obtained from the two programs, which are defined by their 

individual force definitions, are compared in Tables 4.4-4.7.   

Table 4.4 : Comparison of shear and normal forces at the ith end of frame elements. 
        Frame  

Type 

Frame 

No. 

Sap2000 DOC3D Sap2000 DOC3D Sap2000 DOC3D 

V2 Tx V3 Tz P N 

        

Column 
1 50.338 50.338 14.733 14.733 -497.112 -497.112 

2 52.087 52.087 2.243 2.243 -374.281 -374.281 

3 47.575 47.575 20.524 20.524 51.393 51.393 
          V3 Tx V2 Tz P N 

Beam 
4 2.649 2.649 17.668 -17.667 11.292 11.292 

5 13.379 13.379 -26.614 26.614 17.094 17.094 

6 13.308 13.308 -14.78 14.78 -27.667 -27.667 

Table 4.5 :  Comparison of moments at the ith end of frame elements. 
        Frame 

Type 

Frame 

No. 

Sap2000 DOC3D Sap2000 DOC3D Sap2000 DOC3D 

M2 Mx T My M3 Mz 

        

Column 
1 14.9962 -14.9970 -3.3565 -3.35621 70.3779 -70.3779 

2 -5.8038 5.80416 -1.5425 -1.54238 72.4593 -72.4593 

3 15.7559 -15.7558 1.8971 1.896822 69.7490 -69.74907 
          V3 Tx V2 Tz P N 

Beam 
4 44.6725 44.6721 -0.4635 -0.4634 -5.5549 5.5552 

5 -17.4335 -17.4338 4.7354 4.7350 10.5410 -10.5411 

6 5.0574 5.0578 3.9377 3.9374 8.9114 -8.9114 

Table 4.6 :  Comparison of shear and normal forces at the jth end of frame elements. 
        Frame  

Type 

Frame 

No. 

Sap2000 DOC3D Sap2000 DOC3D Sap2000 DOC3D 

V2 Tx V3 Tz P N 

        

Column 
1 15.338 15.339 -2.767 -2.767 -497.112 -497.112 

2 17.087 17.087 -15.257 -15.257 -374.281 -374.281 

3 12.575 12.575 3.024 3.024 51.393 51.393 
          V3 Tx V2 Tz P N 

Beam 
4 -12.351 -12.351 47.668 -47.667 11.292 11.292 

5 -6.621 -6.621 13.386 -13.386 17.094 17.094 

6 -11.692 -11.692 35.221 -35.221 -27.667 -27.667 
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Table 4.7 :  Comparison of moments at the jth end of frame elements. 
        Frame 

Type 

Frame 

No. 

Sap2000 DOC3D Sap2000 DOC3D Sap2000 DOC3D 

M2 Mx T My M3 Mz 

        

Column 
1 -5.9451 5.9453 -3.3565 -3.3562 -44.5567 44.5568 

2 16.97 -16.9704 -1.5425 -1.5424 -48.5951 48.5952 

3 -25.4516 25.4518 1.8971 1.8968 -35.5121 35.5117 
          V3 Tx V2 Tz P N 

Beam 
4 -53.3305 -53.3301 -0.4635 -0.4634 8.9985 -8.9987 

5 9.0211 9.0216 4.7354 4.7349 -2.9762 2.9764 

6 -46.0442 -46.0448 3.9377 3.9374 4.8733 -4.8732 

One can easily conclude that the results obtained from DOC3D_v2 for elastic cases 

are exactly the same as those obtained from SAP2000.  

4.2 Substructuring 

The application of matrix displacement methods to large structures necessitates 

solving a significant set of equations. Especially in the case of nonlinear analysis, the 

execution time may be very long. Substructuring techniques, with their capability of 

reducing the duration of the analysis by using smaller size matrices, are effectively 

used in the fast nonlinear algorithms. In these methods, the structures are divided into 

a number of substructures. As the boundaries may be specified arbitrarily, physical 

partitioning is preferred in this study for the sake of simplicity. At first, the matrix 

displacement method is implemented for each substructure separately, assuming all of 

the common boundaries (joints) with adjacent substructures are completely fixed. 

Then, all of the boundaries are relaxed simultaneously. The equilibrium equations are 

solved for the boundary joints considering the fixed end forces at the boundaries; in 

turn, the actual displacements at the boundaries are obtained. Thus, size of the stiffness 

matrix gets smaller with respect to the complete structure. With known boundary 

displacements and substructure loading, the displacements at the internal joints of the 

substructures can be found (Przemieniecki, 1968). An application of substructuring 

was utilized by Yüksel (1998) for 3D orthogonal structures that are divided vertical 

and horizontal substructures. 

The equilibrium equations given in Equation 4.42 is rearranged as follows:  
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0
ˆ= − =S d Q P Q   (4.52) 

where S  is the stiffness matrix and, d  represents the vector of displacements 

corresponding to external forces Q̂ . The nodal force vector is denoted by Q , while

0P  refers to the distributed loading vector.  

In the following analysis, the structure is divided into substructures by introducing 

interior boundaries. The vector of boundary displacements, which are common to the 

substructures, is denoted by db , while the vector of interior displacements is di . If the 

corresponding effective external forces are denoted by vectors ˆ
bQ  and ˆ

iQ , Equation 

4.52 can be written in partitioned form as: 

ˆ

ˆi

S S d Q
=

S S d Q

    
    

      

bb bi b b

ib i i i

  (4.53) 

The total displacements of the structure can be calculated from the superposition of 

two vectors, such that: 

( ) ( )d d d= +α β  (4.54) 

where ( )d α denotes the vector of displacements due to Q̂ i with db  =0, while ( )d β

represents the necessary corrections to the displacements ( )d α to allow for boundary 

displacements db  with ˆ
iQ =0. Thus Equation 4.54 may also be written as 

 
( ) ( )

( ) ( )

d d d
d   

d d d
     

= = +     
     

b b b

boundaries boundariesi i i
fixed relaxed

α β

α β   

  

  

(4.55) 

where the final term represents the correction due to boundary relaxation and, where, 

by definition: 

( )d 0=b
α   (4.56) 

Similarly, corresponding to displacements ( )d b
α and ( )d b

β , the external forces Q can be 

seperated into 
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( ) ( )ˆ ˆ ˆQ Q Q= +α β   (4.57) 

or 

( ) ( )

( ) ( )

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ
Q Q Q

Q
Q Q Q

     
= = +     

          

b b b

i i i

α β

α β
  (4.58) 

where, by definition: 

 ( ) ( )ˆ ˆ ˆ 0Q Q          Q= =i i i
α β   

  

(4.59) 

The equilibrium equation due to the boundary fixed case is: 

 
( ) ( )( )

( )( ) ( ) ( )

ˆ ˆ

ˆ ˆ
S S Q S S 0 Qd

=     =
S S S S dd Q Q

         
→         

             

bb bi b bb bi bb

ib ii ib ii ii i i

α αα

αα α α
  

  

  

(4.60) 

From the second row of the matrices given in Equation 4.60, ( )di
α is determined as 

( ) 1 ( )ˆd S Q−=i ii i
α α   

 

(4.61) 

The external force vector ( )Q̂b
α  is then determined from the first line of Equation 4.60. 

 ( ) 1ˆ ˆR̂ Q S S Q−= =b b bi ii i
α   

  

  

  

(4.62) 

It should be noted that R̂ b represents boundary reactions necessary to maintain d 0=b  

when the interior forces Q̂ i are applied. When the substructure boundaries are relaxed, 

the displacements ( )d β  can also be determined from Equation 4.53: 

 
( )( ) ( ) ( )

( ) ( )( )

ˆ ˆ
ˆ

bb bi b bb bib b b

ib ii ib iii ii

ββ β β

β ββ

         
→         

          

S S Q S Sd d Q=     =
S S S Sd d 0Q

  

  

(4.63) 

From the second row of Equation 4.63, ( )di
β is determined as: 

( ) 1 ( )d S S d−= −i ii ib b
β β   

    

(4.64) 

The boundary stiffness matrix S b  is then determined from the first row of Equation 

4.63: 
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( ) ( ) ( ) ( ) 1 ( ) ( )ˆ ˆS d S d Q   S d S S S d Q−+ = → − =bb b bi i b bb b bi ii ib b b
β β β β β β  

  

  

(4.65) 

( ) 1 ( ) ( )ˆS  d S S S S d Q− = − = b b bb bi ii ib b b
β β β  

  

  

(4.66) 

The boundary nodal force vector can then be determined from Equation 4.62: 

 ( ) ( ) 1ˆ ˆ ˆ ˆ ˆF̂ Q Q Q Q S S Q−= = − = −b b b b b bi ii i
β α   

  

  

(4.67) 

The stiffness matrix of the rth substructure, regarded as a free body, can be divided into 

 
( ) ( )

( )
( ) ( )

r r
r bb bi

r r
ib ii

 
=  

 

S S
S

S S
  (4.68) 

where the superscript r denotes the rth substructure and the subscripts b and i refer to 

the boundary and interior displacements, respectively. Due to the symmetry of the 

stiffness matrix ( )S r
bi is a transpose of ( )S r

ib . By use of the above stiffness matrix the 

substructure displacements ( )d r can be related to the external forces ( )Q̂ r  by the 

equation: 

 
( )( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ
ˆ

ˆ
QS S d

S  d Q       
S S d Q

    
= → =     

      

rr r r
br r r bb bi b

r r r r
ib ii i i

  

  

  

(4.69) 

When the substructure boundaries on the complete structure are fixed, the boundary 

fixing must be sufficient to restrain rigid body DOF on each substructure considered 

separately. The substructure interior displacements and boundary reactions due to 
( )Q̂ r
i  when ( )d 0=r

b  can be determined from Equations 4.61 and 4.62. 

 ( ) ( ) 1( ) ( ) ( )ˆd S Q
−

=r r r
boundariesi ii i
fixed

  (4.70) 

 ( ) 1( ) ( ) ( ) ( )ˆR̂ S S Q
−

=r r r r
b bi ii i   

  

  

(4.71) 

where the matrix inversion of ( )S r
ii is permissible because the boundary fixing restrains 

all rigid body DOF. 

Before considering “matching” of displacements on common boundaries, it is 

necessary to evaluate the substructure stiffness associated with the displacements   
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( )d r
b . To determine these stiffness matrices, Equation 4.66 is applied to the rth 

substructure,and it follows immediately that: 

( ) 1( ) ( ) ( ) ( ) ( )S S S S S
−

= −r r r r r
b bb bi ii ib   (4.72) 

which will be used subsequently to assemble the boundary-stiffness matrix S b for the 

complete structure. 

The boundary forces and displacements are related by the equation  

 ( ) ( ) ( )ˆS d Q=r r r
b b b   

  

  

(4.73) 

Having determined the boundary stiffness ( )S r
b and the reactions ( )R̂ r

b due to the 

specified interior loading, we then relax all boundaries simultaneously with the 

exception of a number of selected displacements, which serve to form a reference 

datum for the complete structure. When the boundaries are relaxed, the boundary 

reactions and any external forces applied on the boundaries will not be in balance; 

therefore, the boundary relaxation will induce boundary displacements of such 

magnitude as to satisfy equilibrium at each joint on the boundary. To calculate these 

boundary displacements, the complete structure can be regarded as an assembly of 

substructures subjected to external loading.  The external loading vector between two 

substructures are: 

( ) ( ), 1 , 1( ) ˆF̂ R Q+ += − +∑r r r rr
b b b

r
  (4.74) 

where the summation implies the addition of the corresponding boundary reactions for 

the fixed boundaries, while Q̂ b  is the loading matrix for external forces applied on the 

boundaries; the negative sign with ( )R r
b  is used to change the boundary reactions into 

externally applied forces, as indicated by Equation 4.74.  

The equations of equilibrium in terms of boundary displacements for the complete 

structure can now be written as  

 ˆS d Q=b b b   

  

  

(4.75) 
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where S b is obtained by placing the submatrices  ( )S r
b  in their correct positions in the 

larger framework of the boundary stiffness matrix for the complete structure and 

summing all the overlapping terms. Elimination of a sufficient number of 

displacements to restrain rigid body DOF for the complete structure ensures that the 

matrix S b  is non-singular and, therefore, the boundary displacements d b  can be 

determined from  

 1 ˆd S Q−=b b b   

  

(4.76) 

Having determined the boundary displacements on each substructure from Equation 

4.76, we can analyze the substructures separately under the external loading ( )Q̂ r
i , 

together with the known boundary displacements ( )d r
b . From Equation 4.69, it follows 

that the substructure interior displacements ( )d r
i , which are due to the forces ( )Q̂ r

i and 

boundary displecements ( )d r
b , are given by 

 ( ) ( ) ( ) 1( ) ( ) ( ) ( ) ( )d d S S d
−

= −r r r r r
boundaries boundariesi i ii ib b
relaxed fixed

  

  

  

(4.77) 

The substructuring algorithm presented above (Przemieniecki, 1968) is exemplified 

for a three story representative frame as shown in Figure 4.17.  

The structure is opposed to horizontal forces, with distributed loading existing on each 

beam. It is partitioned into three substructures as shown below. Joints 4, 5 and 6 split 

substructures 1 and 2; joints 7 and 8 separate substructures 2 and 3. The boundary 

nodal force vectors are shown with vectors (1,2)Q̂ b  and (2,3)ˆ
bQ . The vector (1,2)Q̂ b is the 

summation of nodal boundary forces on joints 4 and 6; while (2,3)ˆ
bQ is the one on joint 

7.  
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Figure 4.17 : A representative example for substructuring. 

  

Figure 4.18 : Substructures, boundary stiffness matrices. 

(1)Q̂ i , (2)Q̂ i  and (3)Q̂ i are the inner force vectors; this accounts for the nodal forces and 

distributed loading. The boundary reactions for the fixed case between substructure 2 

and 3 are expressed as (2)R b and (3)R b . Then, to calculate boundary displacements, the 

resultant boundary force vector (2,3)F̂ b  should be determined. 

(2,3)ˆ
bQ  

(1,2)Q̂ b  

(3)ˆ
iQ  

(2)ˆ
iQ  

(1)ˆ
iQ  
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Figure 4.19 : Resultant boundary forces. 

The boundary stiffness matrices are given as follows: 

(1)
bS

44 45

54 55 56

65 66

0

0

 
 =  
  

k k
k k k

k k
 

  (2)Sb

44 47

55 58

66

74 77 78

85 87 88

0 0 0
0 0 0
0 0 0 0

0 0
0 0

 
 
 
 =
 
 
  

k k
k k

k
k k k

k k k

 

(3)Sb
77 78

87 88

 
=  

 

k k
k k

 

The assembly of 5×5 boundary stiffness matrices of substructures bS  is given as: 

bS

(1 2) (2)
44 45 47
(2) (1 2)
54 55 58

(1 2)
66

(2 3) (3)
74 77 78

(3) (2 3)
85 87 88

0 0
0 0

0 0 0 0
0 0

0 0

+

+

+

+

+

 
 
 
 =
 
 
  

k k k
k k k

k
k k k

k k k

 

The boundary force vector is given as: 

 (1,2) (2,3)ˆ ˆ ˆF  =  
T

b b bF F   

The flowchart of the sub-program about substructuring in DOC3D_v2 is presented in 

Figure 4.20. The subprogram is activated by the user selecting a key parameter. The 

substructuring feature of DOC3D_v2 is exemplified in Chapters 6.2 and 6.3. The total 

analysis time for the problems is drastically shorten by using substructuring. 

(2,3)Q̂ b  

(3)R b  

(2)R b  

(2,3) (2) (3) (2,3)ˆ
b b b b= − − +F R R Q  
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Figure 4.20 : The algorithm for substructuring. 
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4.3 Free Vibration Analysis 

The second order differential equation to solve the free vibration of the linear MDOF 

system is as follows (Chopra, 1995): 

0mu k u+ =   (4.78) 

where u and u  are displacement and acceleration vectors in the time domain. The nth 

mode response can be defined in modal coordinates: 

( ) ( )u =n n nt q t φ   

  

(4.79) 

where ( )nq t  is nth mode modal coordinate and nφ is corresponding mode vector. The 

known solution of Equation 4.78 in the modal coordinates is given by: 

( ) cos( ) sin( )= +n n n n nq t A t B tω ω   (4.80) 

where nω is natural frequency of the nth mode, while nA and nB  are integration 

constants. If Equations 4.79 and 4.80 are combined, the physical displacement is 

governed by: 

( )( ) cos( ) sin( )u = +n n n n n nt A t B tφ ω ω   (4.81) 

Substituting Equation 4.81 with Equation 4.78 and using orthogonality conditions 

gives: 

2 ( )m k 0 − + = n n n nq tω φ φ   (4.82) 

The left part of Equation 4.82 must be equal to 0, then the equation becomes: 

2k 0n nω φ − =    (4.83) 

The nontrivial solution of Equation 4.83 exists when 

2det 0k nω − =    (4.84) 

Equation 4.84, known as the characteristic equation, gives the eigenvalues of the 

system. If Equation 4.83 is solved for each eigenvalue, the eigenvectors (mode shape 

vectors) are obtained. An independent subroutine is added to DOC3D_v2 to perform 
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the free vibration analysis. The standard function eig in MATLAB is utilized to 

achieve the eigen value analysis.  

4.4 Linear Time History Analysis 

A linear time history analysis algorithm, based on the central difference method 

(Chopra, 1995), is adapted in DOC3D_v2. The application of the central difference 

method for SDOF and MDOF systems is described in this chapter. 

Central difference method for SDOF systems 

The equation of motion for a linear SDOF system, subjected to arbitrary excitation is 

as follows:  

 1 1 1 1 1 1 1m c k p ( )+ + = u u u t   (4.85) 

where m1 is mass, c1 is the viscous damping coefficient, k1 is the stiffness, 1u , 1u and 

1u  are displacement, velocity and acceleration of the SDOF system, respectively. In 

the central difference method, time derivatives of the displacement (velocity and 

acceleration) at the ith step are assumed to be equal to the following equations:  

 
( )

1( 1) 1( 1) 1( 1) 1( ) 1( 1)
1( ) 1( ) 2

2
            

2
+ − + −− − +

= =
∆ ∆

 

i i i i i
i i

u u u u u
u u

t t
  

  

  

  

(4.86) 

where ∆t is the constant time step. If Equation 4.85 is rearranged by substituting 

expressions for velocity and acceleration:  

 
( )

1( 1) 1( ) 1( 1) 1( 1) 1( 1)
1 1 1 1( ) 1( )2

2
m c k p

2
+ − + −− + −

+ + =
∆∆

i i i i i
i i

u u u u u
u

tt
  

  

(4.87) 

In this equation, when it is supposed that 1( 1)−iu  and 1( )iu are known, the displacement 

for the next step can be calculated as:  

 
( ) ( ) ( )

1 1 1 1 1
1( 1) 1( ) 1( 1) 1 1( )2 2 2

m c m c 2mp k
2 2+ −

     
+ = − − − −     

∆ ∆∆ ∆ ∆          
i i i iu u u

t tt t t
  

   

(4.88) 

or 
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1( 1) 1( )
ˆ ˆk p+ =i iu   (4.89) 

where 

 
( )

1 1
1 2

m ck̂
2

 
= + 

∆∆  tt
  (4.90) 

and 

( ) ( )
1 1 1

1( ) 1( ) 1( 1) 1 1( ) 1( ) 1 1( 1) 1 1( )2 2
m c 2mp̂ p k p

2 − −

   
= − − − − = − −   

∆∆ ∆      
i i i i i i iu u a u b u

tt t
  

  

  

(4.91) 

The unknown 1( 1)+iu  is then given by 

1( )
1( 1)

1

p̂
k̂

i
iu + =  (4.92) 

For the first time step (i=0), assuming that the initial displacement and velocity ( 1(0)u , 

1(0)u ) are known, 1( 1)−u can be determined from velocity and acceleration expressions 

in Equation 4.86 by eliminating 1(1)u : 

( ) ( )2

1( 1) 1(0) 1(0) 1(0)2−

∆
= − ∆ + 

t
u u t u u   (4.93) 

Here, initial acceleration ( 1(0)u ) is calculated from the solution of the equation of 

motion at time i=0:  

1(0) 1 1(0) 1 1(0)
1(0)

1

p c u k u
u

m
− −

=


  (4.94) 

Some stability requirement is required for the time step: 

1

N

t
T π
∆

<  (4.95) 

NT is the natural vibration period of the Nth mode. 
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Central difference method for MDOF systems 

The solution of the N differential equations for the MDOF system is given in matrix 

form: 

( )mu cu k u p+ + =  t   (4.96) 

Where m, c, k are the mass, damping and dynamic stiffness matrices of the structure. 

The displacement, velocity and acceleration responses are defined as u,u andu ,  

respectively. The arbitrarily varying force vector is donated by p(t). 

The displacement vector can be defined in terms of modal coordinates for sufficient 

number of modes (J):  

1
( ) ( ) ( )mu Φqφ

=

≅ =∑
J

n n
n

t q t t   (4.97) 

Using this transformation, the equation of motion is written by N uncoupled equations: 

( )m m m m m m mM q C q K q P+ + =  t   (4.98) 

where Φ  is the eigenvector matrix, Pm(t) is the modal force vector, Mm , Cm and Km  

are the modal mass, damping and stiffness matrices, respectively. The displacement, 

velocity and accelerations in modal coordinates are mq , mq and mq , respectively. 

( ) ( )m m m mM Φ mΦ         C Φ cΦ       K Φ k Φ       P Φ p= = = =T T T Tt t  (4.99) 

Herein, the central difference method developed for the SDOF system is implemented 

for MDOF systems in modal coordinates. The single terms m1, c1, k1, 1u , 1u  , 1u , 1k̂  

and 1p̂ are transformed into matrix/vectoral form, such as Mm, Cm, Km, mq , mq , mq  

, K̂  and P̂ .  

An independent subroutine about linear time history analysis is generated in 

DOC3D_v2. The subroutine reads the acceleration data from a file. The previously 

obtained mode shape vectors are utilized to calculate the Mm, Cm, Km matrices and

( )mP t . The flow chart is given in Figure 4.21. 
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Figure 4.21 : The algorithm of the central difference method. 
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) 1
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1
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ˆ ˆ
i i

−
+ =mq K P  

( )
( )
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1 1 2
2i i i i i i it t
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∆ ∆
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4.5 Moment-Curvature Analysis Algorithm for RC Rectangular Columns 

Subjected to Biaxial Bending  

An algorithm, which accounts for the biaxial bending and axial force interaction for 

rectangular RC columns, is developed. The rectangular cross section is divided into 

fibers in both of the orthogonal directions. Additional fibers, including the rebars, must 

also be defined in the section.  Material constitutive relations (concrete, steel etc.) can 

be assigned to the corresponding fiber. The coordinates of xi and zi are the distances 

between the ith fiber and the COG of the cross section (Figure 4.22). The algorithm 

searches the location of the neutral axis based on the known axial load, neutral axis 

direction and curvature (κ).  Once the location is determined, the bending moments 

with respect to the x and z axes (Mx, Mz), as well as the combined bending moment 

(Mθ) and corresponding deformations on each fiber, can be calculated.    

The equation written for the neutral axis (z) is given in Equation 4.100. 

 0                tan( )+ + = → = − + → = +
a c cax by c z x z x
b b b

θ   (4.100) 

 

Figure 4.22 : Sectional analysis for biaxial bending and typical stress-strain 
diagrams. 
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where tan( )θ  is the slope of the line. The coordinates of the ith fiber are xi and zi. The 

distance of the ith fiber to the neutral axis is obtained from: 

 
( )

_ 2 2 2 2

tan( )

tan( ) 11

+ + − + ++ +
∆ = = =

+ +  + 
 

i i
i ii i

fiber i

a cx z cx zax bz c b b b
a b a

b

θ

θ
  

     

   

      

   

(4.101) 

The strain of the ith fiber (εi) can be expressed based on the assumption that the plane 

sections remain plane after deformation: 

_i fiber iε κ= ∆   (4.102) 

Based on the constitutive relations, the stress of the ith fiber: 

( )i iσ σ ε=   (4.103) 

The ith fiber concrete or steel stresses will be defined as σci or σsi, respectively. An 

iterative algorithm is carried out to determine the location of the neutral axis. At each 

iteration step, the location of the neutral axis is assumed and, depending on this 

location, it is written as: 

1 1
0           0

c sn n

c s ci ci si si
i i

F F P A A Pσ σ
= =

+ + = + + =∑ ∑  (4.104) 

where P is axial load on the section, Aci and Asi are concrete and rebar areas of the ith 

fiber, and Fc and Fs  are internal forces related to concrete and steel, respectively.   The 

iteration is carried out until the equilibrium is satisfied. The internal forces Mx, Mz and 

Mθ in the equilibrium condition is calculated as follows: 

1 1
+ = -

= =

 
= + 

 
∑ ∑

c sn n

x cx sx ci ci ci si si si
i i

M M M A z A zσ σ   (4.105) 

 
1 1

 
= =

= + = +∑ ∑
c sn n

z cz sz ci ci ci si si si
i i

M M M A x A xσ σ   (4.106) 

1 1
 

c sn n

ci ci ci si si si P
i i

M A A Pθ σ σ
= =

= ∆ + ∆ + ∆∑ ∑  (4.107) 
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where Mcx and Mcz are the contributions of concrete, and Msx and Msz are the 

contributions of steel to Mx  and Mz, respectively. The coordinates xci and zci refer to 

concrete fibers, while xsi and zsi refer to the coordinates of steel fibers. The relative 

distances between neutral axis and concrete fibers, steel fibers and axial loads are ci∆ , 

si∆ and P∆ , respectively. 

The x and y components of the curvatures are calculated as: 

cos ( )          sin ( )= =x zκ κ θ κ κ θ   (4.108) 

where θ  is the angle between inclined neutral axis and x axis, see Figure 4.22.  

4.6 Nonlinear Static Procedure (NSP) 

NSP is applied for the purposes of pushover analysis, in which invariant or variant 

lateral load distributions corresponding to fundamental vibrational mode shapes are 

utilized. Force- or displacement-controlled analysis algorithms are developed in this 

study. The following chapter defines the displacement-controlled algorithm which is 

a successive application of the force-controlled algorithm. 

Displacement-controlled analysis algorithm 

The displacement-controlled analysis procedure starts with the selection of a DOF as 

the target displacement (D) to push the structure. The schematic view of the procedure 

is illustrated in Figure 4.23. The capacity curve of the structure is demonstrated by the 

first figure, while the related moment curvature relation of a typical RC cross section 

is given in the second one. The linearization technique applied herein is secant stiffness 

method. The steps of the applied displacement-based analysis algorithm are given as 

follows: 

In the first step, linear analysis with initial rigidities is conducted. For a selected load 

parameter (F1), the resulted displacement (d1) is calculated. Analysis is repeated for a  

predefined constant load parameter (F0) and the corresponding d0
1 is  marked. This is 

a relatively small constant load parameter, like F0=0.0001 kN, in order to consider the 

effects of gravity loads only. If the two coordinates (d0
1 , F0)  and (d1 , F1) are connected 

by a straight line and in lieu of linear interpolation, the load F2 corresponding to target 

displacement (D) is determined.   The first step is conducted with the flexural rigidity 
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of EI1 for the typical section. The next step is the calculation of the internal force 

(M2
(1)) and curvature demand (κ(1)=M2

(1)/EI1), which is determined by linearization of 

the constitutive relations. The resulting bending rigidity to be used for the next step is 

EI2.  

 
Figure 4.23 : Application of the displacement-controlled analysis algorithm. 



78 

In the second step, which uses effective rigidity EI2, two analyses have been performed 

with two loads F0 and F2, such that the displacement demands d0
2 and d1 are obtained. 

If two coordinates (d0
2 , F0) and (d1 , F1) are connected by a straight line and in lieu of 

linear interpolation, the load F3 corresponding to target displacement (D) is 

determined. The second step is conducted with the flexural rigidity of EI2 for the 

typical section. The next step is the calculation of the internal forces (M2
(2)) and 

curvature demand (κ(2)=M2
(2)/EI2), which is determined by linearization of the 

constitutive relations. The resulted bending rigidity to be used for the next step is EI3. 

The analysis is carried out until the load parameters (Fi-1 and Fi) and displacements   

(di-1 and di) obtained between succesive two steps are sufficiently close to each other. 

The resulting point for a specific displacement (D) and the corresponding base shear 

of F is demonstrated in Figure 4.23. 

P-Mx-My hinge definitions 

The interaction between axial force (P) and bi-axial moment (Mx and My) can be 

considered in DOC3D_v2 by using P-Mx-My hinge definitions. Since large structures 

have too many columns, it is a very time consuming process to re-calculate moment-

curvature relations for all column hinges at each linearization step, due to changes in 

axial force and/or the angle of the biaxial curvature vector (θ ). A two-stage 

interpolation procedure by the predetermined moment-curvature relations is 

implemented in DOC3D_v2. For each column section, a total of  Plevel × θlevel moment-

curvature analyses are performed before the execution of nonlinear analysis, with the 

results saved on the disc where Plevel and θlevel stand for the number of axial load levels 

and number of angles, respectively.  The number of θlevel separate folders (Figure 4.24) 

are defined for each individual angle. Each folder consists of the number of Plevel 

moment-curvature files (Figure 4.25), in which moment vs. curvature data exist. 

The default number of axial load levels is selected as 50, which is in the range of  95% 

of the compression and tensile axial load capacities. Assuming that the column cross 

section is symmetrical, θ level is selected as 10, which is defined between the angles of 

0° and 90° (Figure 4.24). The total number of 50×10=500 moment-curvature relations 

are stored in the text files. Each file includes moment vs. curvature relations in respect 

of the x and z axis, as well as those around the inclined axis. Unconfined and, confined 

concrete and steel strain- stress data also exist in these files.  
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Figure 4.24 : Folders for different inclination angles. 

 

Figure 4.25 : Number of Plevel moment-curvature text files for a specific inclination 
angle.  

In order to determine which moment curvature relation is used for any column section 

at the  kth  iteration step, the axial load (P) and curvature angle (θ ) at the related  P-

Mx-My hinge are calculated. Then, upper and lower bounds of the axial load and 

curvature angle (Pu, Pl , θu ,θl) are determined from the existing axial loads (Plevel) 

angles (θ level). These bounds correspond to Pl <P< Pu and θl <θ <θu. The first stage of 

the interpolation procedure is applied for P at the lower bound and upper bound of the 

curvature angles (θl and θu) and is given for the following formulas:  

 ( )P −
= + ⋅ −

−
l u l

l l l l

P P Pl

u l

P PM M M M
P Pθ θ θ θ   

  

(4.109) 

 ( )P −
= + ⋅ −

−
l u l

u u u u

P P Pl

u l

P PM M M M
P Pθ θ θ θ   

  

(4.110) 
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where P
l

Mθ and P
u

Mθ  are the bending moment values corresponding to axial load (P) 

for θ l and θ u, respectively. l

l

PMθ  and l

u

PMθ  are the bending moments corresponding to 

Pl for θ l and θ u , respectively. u

l

PMθ  and u

u

PMθ are the bending moments corresponding 

to Pu for θ l and θ u, respectively. 

The second stage of the interpolation procedure is applied for curvature angle θ for 

constant axial load (P) and is given as follows:  

 ( )P P P P−
= + ⋅ −

−l u l

l

u l

M M M Mθ θ θ θ
θ θ
θ θ

  (4.111) 

where PMθ  is the resulting bending moment corresponding to P-θ couple. 

4.7 Verification Examples 

Verification of the moment-curvature algorithm 

To verify the moment-curvature program, a rectangular section with dimensions of 

600×400 mm (Figure 4.26) is selected. The longitudinal reinforcement is 8φ20 and the 

transverse reinforcement is φ8/100mm. The thickness of the clear cover, where the 

unconfined concrete model is assigned, is 20 mm. In the program, Mander confined 

and unconfined concrete models as well as a parabolic strain hardening steel model 

are utilized in the example. The verification is accomplished by comparing the results 

of the program with those of the XTRACT  (2006) cross sectional analysis program, 

which is commonly known.  

 

Figure 4.26 : Definition of confined-unconfined concrete fibers and rebars for a 
typical RC cross section.  
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The material constitutive models are demonstrated in Figure 4.27.  

 

Figure 4.27 : Mander unconfined-confined concrete and steel material models. 

Four distinct axial load levels (P= 0, 1,000, 3,000, 5,000 kN) and three neutral axis 

angles (θ=0°, 45°, 90°) are studied in the verification. The axial load of 5,000 kN 

corresponds to 80% of the axial load carrying capacity of the cross section. The results 

are demonstrated in Figures 4.28 to Figure 4.31. Perfect matches are observed for the 

axial forces 0 kN, 1,000 kN and 3,000 kN. However some deviations are obtained in 

the post-yielding range in the case of the 5,000 kN axial load. 

 

Figure 4.28 : P=0 kN for θ=0°, 45°, 90°. 
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Figure 4.29 : P=1,000 kN for θ=0°, 45°, 90°. 

 

Figure 4.30 : P=3,000 kN for θ=0°, 45°, 90°. 
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Figure 4.31 : P=5,000 kN for θ=0°, 45°, 90°. 

Verification of NSP through moment-hinges 

The developed 3D nonlinear algorithm is tested with Perform3D software for the 

triangular shaped one story building (Figure 4.32), which was studied in Chapter 4.1.6. 

The columns and beams are divided into segments in order to consider the distributed 

nonlinearity in members. The length of the segments for columns and beams are 35 

cm and 50 cm, respectively. Each column is loaded with a 500 kN axial load on top, 

while the beams are unloaded. Although the Perform3D model consists of internal 

joints through the beam and column elements, DOC3D_v2 has only six joints to define 

the geometry of the structure, see Figure 4.32. DOC3D_v2 is capable of dividing the 

elements into equal segments by using the developed beam-column element; see 

Chapter 3.  

The moment-curvature relations of the column and beam sections are generated with 

the developed moment-curvature program and are shown in Figures 4.33 and 4.34. 

Due to the necessity in Perform3D to define the idealized moment-curvature relations, 

the idealized forms of the relations are given in the figure. 
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 Figure 4.32 : Nonlinear models (left: Perform3D, right: DOC3D_v2) of the structure 
having triangular plan. 

 

Figure 4.33 :  The moment-curvature relation for the strong axis of the beam (left) 
and column (right). 

 

Figure 4.34 :  The moment-curvature relation for the weak axis of the beam (left) 
and column (right). 
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The pushover analyses are carried out in the X and Y direction. Base shear vs. top 

displacement relations were obtained from the two programs. A good correlation exists 

between the programs in two distinct directions; see Figure 4.35.  

 

Figure 4.35 :  Comparison of the capacity curves in two directions. 

The top displacement vs. curvature relations for Column #1 for X and Y directional 

pushover analyses are also compared between Perform3D and DOC3D_v2 (Figure 

4.36). The results of DOC3D_v2 are in close agreement with Perform3D.  

 

Figure 4.36 :  Top displacement vs curvature relations for column 1. 

Verification of NSP through P-Mx-My hinges 

To evaluate the accuracy of P-Mx-My hinge definitions, the triangular-shaped building 

example is used again. P-Mx-My hinge definitions are made for each segment of the 

columns. The verification is accomplished for four distinct axial load levels (0, 500, 

1,500, 2,500 kN) and five different lateral load orientations (θp =0°, 30°, 45°, 60° and 

90°). The results of the analyses performed for θp =0°and θp =90° are given Figure 
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4.37 as pushovers X and Y, respectively. For each case, capacity curves are compared 

for the two software programs, DOC3D_v2 and Perform3D. The second-order 

analyses performed by DOC3D_v2 are also added to the diagrams.  

In the case of low axial load, two programs give very similar results. The increasing 

axial load level causes some discrepancy between the programs after the yielding point 

is achieved. However, the results show that the errors are found within acceptable 

limits. Nevertheless, the reason for the difference must be further investigated. The 

deviations between the results of the two programs, especially in the X direction may 

be related to the limitations in the fiber definitions in Perform3D.  

 

 

Figure 4.37 : Capacity curves obtained for various vertical load intensities. 

Base shear vs. top displacement relations generated for θp  =30°, 45° and 60° are given 

in Figures 4.38-4.40. 
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Figure 4.38 : Capacity curves obtained for the case of θp =30°. 
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Figure 4.39 : Capacity curves obtained for the case of θp=45°. 
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Figure 4.40 : Capacity curves obtained for the case of θp =60°. 
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Verification of the second-order analysis routine of the algorithm 

To evaluate the success of the second-order analysis routine of the algorithm, a 

cantilever column shown in Figure 4.41 is analyzed. Three different moment-curvature 

relations are used for the designated parts of the columns.  

In the nonlinear static analysis, the lateral load parameter α is varied gradually while 

the vertical forces remain constant. The analyses are performed with two alternative 

controlling modes, namely, force control and displacement control; the corresponding 

lateral load parameter and top displacement relations are drawn in Figure 4.42. 

Although analyzing the force control capability ends when it reaches the ultimate load 

carrying capacity of the system, there is no limitation in the case of displacement 

control.  

 

Figure 4.41 : The cantilever column and its constitutive relations.  
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Figure 4.42 : Comparison of the results of force and displacement controlled 
algorithms. 
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5.  A VARIANT OF MODAL PUSHOVER ANALYSIS (VMPA) 

5.1 Two Dimensional Analysis Algorithm 

The theory behind the proposed algorithm for two dimensional problems is based on 

the solution of the equation of motion in terms of the modal coordinates and the 

application of an appropriate mode-superposition method to predict the demand 

parameter of interest. In this context, the essential information will be presented in the 

next chapters for VMPA-A, in which eigen-value analysis is repeated for each 

individual step of the nonlinear analysis. VMPA, which is a special case of VMPA-A, 

uses invariant vibrational mode shapes that depend on the initial stiffness of the 

structural members. 

Equations of motion 

The equation of motion for a building subjected to horizontal earthquake ground 

motion can be written in terms of the instantaneous dynamic characteristics due to 

progressive yielding of the structural members: 

( ) ( )( ) ( ) ( ) ( )mu c u k u m+ + = −  

k k
gt t t u tι   

  

(5.1) 

where u(t) corresponds to the displacement vector relative to the ground, ( )gu t  is the 

horizontal ground motion acceleration, ι  is the influence vector that is used for 

defining the direction of ground motion, m represents the mass matrix, and c(k) and k(k) 

are the instantaneous damping and secant stiffness matrices for 2D structural systems, 

respectively. 

Expansion of the equation of motion in modal coordinates 

Although the solution of the equation of motion could be provided via step-by-step 

integration methods, mode-superposition method is a rational alternative. Aydınoğlu 

(2003) reported two important advantages of the mode-superposition method: i. 
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freedom in assigning the modal damping ratios in each mode and ii. superior accuracy 

obtained in the solution of the modal SDOF systems. 

If right hand side of the equation of motion (Equation 5.1) is expanded as the 

summation of modal inertia force distributions, then the following equation is 

obtained: 

 ( ) ( )

1 1
( ) ( ) ( ) ( )m S s M 

= =

− = = = Γ∑ ∑   

N N
k k

g g n g n n g
n n

u t u t u t u tι φ   (5.2) 

where S  is the spatial distribution of the effective earthquake force vectors, and sn is 

the contribution of the nth mode to the total, ( )k
nφ and ( )Γ k

n are the instantaneous mode 

shape vector and modal participation factor for the nth mode, respectively. 

The equation of motion is rearranged in terms of the modal coordinates. The expansion 

of physical displacement to modal coordinates for the nth mode contribution is as 

follows: 

( )( ) ( )= k
n n nu t q tφ   (5.3) 

( )nq t is the modal displacement for nth mode. If both sides of Equation 5.1 are 

multiplied by ( )k T
nφ and divided by effective mass of nth mode ( ( ) ( )M= k T k

n n nM φ φ ), then 

the following is obtained: 

 ( )2( ) ( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = −Γ  

k k k k
n n n n n n n gq t ξ q t q t u tω ω   (5.4) 

where ( )k
nξ denotes the damping ratio of the system, and ( )k

nω is the instantaneous 

natural vibration frequency. 

If one writes Equation 5.4 for the SDOF system using ( )nd t  to denote the horizontal 

displacement, then the following equation is obtained: 

 ( )2( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
n n n n n n gd t ξ d t d t u tω ω   (5.5) 

Modal displacements could be defined in terms of the solution of the SDOF system, 

( )( ) ( )= Γ k
n n nq t d t   (5.6) 

Physical displacements could then be expressed as: 
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( ) ( )( ) ( )= Γ k k
n n n nu t d tφ   (5.7) 

In Equation 5.5, the last term on the left hand side could be considered as the 

instantaneous pseudo acceleration response ( ( ) ( )k
na t ) of the nth mode. If Equation 5.5 

is re-arranged, then the modal response of each mode could be expressed as:  

( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
n n n n n gd t ξ d t a t u tω   (5.8) 

The incremental form of Equation 5.8 was established by Aydınoğlu (2003), and 

solution of the equation was constructed in ADRS format, namely, modal hysteresis 

loops. The envelope of the modal hysteresis loops corresponds to the modal capacity 

diagram, which demonstrates the structure’s capacity for each mode in a demand 

dependent manner. 

Equal displacement rule for calculating earthquake demands 

To calculate the displacement demand for the SDOF systems, the equal displacement 

rule is the simplest and most rational method to use compared to the capacity spectrum 

method, the displacement coefficient method, and NTHA. In the equal displacement 

rule, inelastic spectral displacement is assumed to be equal to elastic spectral 

displacement of SDOF system subjected to earthquake ground motion. However, some 

limitations exist on the applicability of the method. The method could only be 

implicated for far-fault earthquake records and perhaps some near-fault records, which 

do not include the impulsive forward directivity effects. Furthermore, the dominant 

natural period of the structure should be greater than the corner period. Some existing 

procedures in the literature such as MPA (Chopra and Goel, 2002) and IRSA 

(Aydinoglu, 2003) have also used the rule in their simplified versions. PMPA (Reyes 

and Chopra, 2011b), the simplified version of MPA, considers linear elastic response 

contributions of higher modes. The target displacement of inelastic SDOF system for 

each mode is estimated by multiplying the displacement of the corresponding linear 

system with the inelastic deformation ratio of CRn. Aydınoğlu (2003) states that in mid- 

to high-rise structures, the effective initial periods of the first few modes are likely to 

be longer than the characteristic period of the elastic spectrum and therefore those 

modes automatically qualify for the equal displacement rule. Similar to the mentioned 

studies, VMPA utilize the equal displacement rule to estimate earthquake displacement 
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demands. The foremost drawback of the proposed procedure is the limitation related 

with the applicability of the equal displacement rule for some structural systems. 

Consequently, VMPA should be used carefully for those structural systems.  

The solution procedure 

The nonlinear structural analysis algorithms mostly use tangent stiffness, and require 

the determination of the capacity curve till a predetermined target displacement 

demand. The MPA method needs capacity curves in the form of modal displacement 

(Sd) vs. modal pseudo-acceleration (Sa), (ADRS). Subsequently, modal displacement 

demands are calculated via NTHA using these curves. In the current study, a variant 

of Modal Pushover Analysis (VMPA) is proposed as a new application of MPA. In 

VMPA, by the application of the equal displacement rule together with the secant 

stiffness based linearization technique, the nonlinear analysis is limited only to the 

target displacement points for individual modes without the necessity of the 

determination of full capacity curve that diverges from MPA. A displacement 

controlled algorithm is utilised to calculate the plastic modal capacity (San_p) 

corresponding to target displacement (Sdn_p) in the ADRS format, for a specific 

earthquake level. 

The adaptive version of VMPA, which is called VMPA-A, considers the variation of 

dynamic characteristics due to progressive yielding of the structural members. 

A MATLAB based computer program, the so-called DOC3D-v2, was developed to 

implement VMPA to analyse three-dimensional frame and/or shear-wall type 

structural systems.  DOC3D-v2 takes into account concentrated and distributed 

plasticity for the frame type elements as well as considering the second-order effects 

of axial loads on the members. Furthermore, the beam-column element of DOC3D-v2 

considers the nonlinear interaction of shear-flexural deformations, (Surmeli and 

Yuksel, 2012). The applicability of the physical sub-structuring approach is one of the 

substantial features of DOC3D-v2 for reducing the computation time. 

The main distinctions of VMPA from the existing procedures are presented as follows: 

1. One of the promising features of VMPA is to have the procedure applied for the 

determination of the plastic spectral acceleration (San_p). In this approach, the full 

modal capacity curve for each vibrational mode does not need to be obtained. 
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2. The secant stiffness method is used in VMPA for the linearization of nonlinear 

constitutive models, which may have the horizontal and/or descending branches. 

3. Adaptive and non-adaptive versions of VMPA could be applied simply by the 

assignment of a key parameter. Application of the adaptive version is critical, 

especially for high-rise and irregular buildings. 

The focal shortcoming of VMPA is the disregard of the modal interaction in the 

nonlinear range, as is the case for some other procedures. 

The developed algorithm is described on a representative example with 3 DOFs. The 

steps of the procedure are as follows: 

i. The initial eigenvalue analysis is conducted by using the gross stiffnesses of the 

structural members; based on the analysis, the mode shapes ( (1)
nφ ), natural 

frequencies ( (1)
nω ) and modal participation factors ( (1)

nΓ ) are obtained. The 

superscript (1) denotes the definition of the first iteration step; the superscript 

will be defined as k for the succeeding statements. The nonlinear static analysis 

for gravity loads is performed, and the demand parameters of interest ( gR ) is 

obtained.  

ii. The equal displacement rule is applied in ADRS format, and the modal 

displacement demands for each mode are obtained, Figure 5.1. The initial step 

of the procedure is to draw the smoothened design spectrum. The modal 

displacement demands (Sdn_p) and the consistent spectral accelerations (San_e) are 

attained from the intersection of the ADRS curve, with the lines having slopes 

of ( )2(1)
nω . Sdn_p is the target modal displacement demand, which does not change 

during analysis. 

iii. Target physical displacement demand at the mth degree of freedom is determined 

for each mode using Equation 5.9. 

( ) ( ) ( )
_

k k k
mn mn g m n n dnD D Sφ= + ⋅Γ ⋅  (5.9) 
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The target displacement of ( )k
mnD  is instantly updated at each linearization step 

(k), as demonstrated in Figure 5.2. In Equation 5.9, Dmn_g is the displacement 

demand due to gravity loading. 

 

Figure 5.1 :  Application of the equal displacement rule in ADRS format. 

 

Figure 5.2 :  Target displacements for each mode at kth linearization step. 

iv. The mode compatible force vectors obtained from elastic spectral accelerations 

are defined by Eq. 10.  

( ) ( ) ( ) ( )
0 _m k k k k

n n n n an eQ s Sφ= = Γ  (5.10) 

The visual representations of spatial force distributions for the kth step are 

illustrated in Figure 5.3. For the first step, spectral accelerations of (1) (1) (1)
1 2 3, , a a aS S S   
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are taken as equal to the elastic spectrum ordinates of a1_e a2_e a3_e, ,S S S , Figure 

5.1. 

 

Figure 5.3 :  The horizontal force patterns for modes at kth step.  

v. A displacement controlled algorithm is used to calculate the inelastic spectral 

accelerations conforming to the target displacements for each mode. The static 

equilibrium for the kth linearization step is given in Equation 11. 

( ) ( ) ( ) ( )
0S D P Q+ =k k k k

n n n n   (5.11) 

where ( ) ,S k
n

( )
0P k

n and ( )Q k
n  are the instantaneous static stiffness matrix, distributed 

loading vector and nodal load vector (which provides target displacement at the 

reference DOF for nth mode), respectively. The nodal load vector ( )Q k
n can be 

defined in a scaled form of the instantaneous force distribution vector for nth 

mode, ( )
0Q k

n  , as follows: 

( ) ( ) ( )
0Q Q= ⋅k k k

n n nα   (5.12) 

vi. The secant stiffness based linearization procedure is implemented in the 

analysis. The procedure is used not only for moment-curvature relations but also 

for strain-stress relationships for fibre elements, (Figure 5.4).  At each iteration 

step, effective rigidities of the any section or fibre ( ( ) ,k
nEI ( )k

nE ) are attained from 

the constitutive relations. 
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Figure 5.4 :  The application of secant-stiffness method in moment-curvature and 
stress-strain relations. 

vii. After each linearization step (k>1), eigenvalue analysis is repeated and the 

instantaneous mode shapes ( ( )k
nφ ), natural frequencies ( ( )k

nω ) and modal 

participation factors ( ( )Γ k
n ) are defined. 

viii. The steps iii to vii are repeated until the parameter of ( )k
nα is sufficiently close 

between the successive steps. The final ( )p
nα corresponds to the desired load 

parameter. The kth iteration step is presented in Figure 5.5. For the given 

example, the first two modes behave nonlinearly, and the third one is in the linear 

range. 
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Figure 5.5 :  An intermediate step in the ADRS spectrum. 

The last step in the iteration is presented in Figure 5.6. The resulting natural 

frequencies and plastic accelerations are presented as ( )p
nω and _ ,an pS respectively. 

 
Figure 5.6 :  The final iteration step in the ADRS spectrum. 

The loading parameters are defined by Equations. 5.13 and 5.14 for the non-

adaptive (VMPA) and adaptive (VMPA-A) cases, respectively. These 

parameters correspond to the ratio of plastic to elastic base shear forces. It should 

be noted that a mass normalized procedure is utilized here and modal mass of nth 

mode for any step ( )( ) ( )k T k
n nφ φM is made equivalent to unity. 
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( ) ( )( )
( ) ( )( )

2( ) ( ) ( )
_ _( )

2( ) ( ) ( ) __

/

/

e T e T e
n n n an p an pp

n
e T e T e an en n n an e

S S
SS

φ ι φ φ
α

φ ι φ φ
= =

M M

M M
 (5.13) 

( ) ( )( )
( ) ( )( )

( )
( )

2 2( ) ( ) ( ) ( )
_ _( )

22 ( )( ) ( ) ( )
__

/

/

p T p T p p T
n n n an p n an pp

n e Te T e T e
n an en n n an e

S S

SS

φ ι φ φ φ ι
α

φ ιφ ι φ φ
= =

M M M

MM M
  (5.14) 

ix. Any demand parameter (Rn) of interest for the nth mode, such as displacement, 

drift, internal force, curvature, fibre strains, etc., can be calculated as: 

+=n n g gR R  -R   (5.15) 

x. The processes of steps iii-ix are repeated for the desired number of modes (N). 

xi. The SRSS modal combination rule is applied, and the resulting demand 

parameter of interest, R, is obtained as: 

( )2= g nR R  + R   (5.16) 

xii. The axial force-moment interaction is considered, not only for the discrete modal 

pushover an alyses but also for the combination of axial loads on the columns. 

After the combined axial force (P) is calculated, the plastic moment (Mp) is 

determined from the interaction curve, Figure 5.7a. The plastic moment is used 

to construct the moment–curvature relation. The combined moment (M) is 

calculated as a value corresponding to the combined curvature of PMκ , Figure 

5.7b. 

 

  
a. Axial force-moment 

interaction curve 
b. The moment corresponding to the 

combined curvature ( PMκ ) 

Figure 5.7 :  Combined internal forces and curvatures. 
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xiii. Once the combined moments are determined at the moment plastic hinges of the 

members, the corresponding shear forces are calculated by using the member 

equilibrium equations, Figure 5.8 and Equation 5.17. 

 

Figure 5.8 :  End forces of a frame element. 

2 2
i j i j

i j

M M M MqL qLT                      T
L L
+ +

= + = −  (5.17) 

Detailed flow-chart of the algorithm is presented in Figure 5.9. 

5.2 Three Dimensional Analysis Algorithm 

Equation of motion  

The equation of motion for a building subjected to two components of horizontal 

earthquake ground motion can be formed in terms of instantaneous dynamic 

characteristics due to the progressive yielding of structural members: 

 ( ) ( )( ) ( ) ( ) - ( ) - ( )Mu +C u +K u = M M   

k k
x gx y gyt t t u t u tι ι   (5.18) 

where ( )u t  corresponds to a displacement vector relative to the ground, ( )gxu t  and 

( )gyu t  are the horizontal ground motion acceleration components, xι and yι  are 

influence vectors which are used for defining the direction of the ground motion, and 

M  represents the mass matrix and can be expressed by sub-matrices as follows: 

 
0 0 0

0 0 0
0 0 0 0

     
     = = =     
          0

m 1
M m                                    1

I
x yι ι   (5.19) 

where ( )C k  and ( )K k  are instantaneous damping and secant stiffness matrices, 

respectively. The superscript (k) corresponds to kth step of the analysis process. 
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Figure 5.9 :  Flow-chart of the proposed 2D analysis algorithm. 
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Expansion of the equation of motion in modal coordinates 

If the right-hand side of the equation of motion (Equation 5.18) is expanded as the 

summation of modal inertia force distributions, the following equation could be drawn: 

( )( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )

=

− − = + = +∑M M S S s s     

N
k k

x gx y gy x gx y gy nx gx ny gy
n

u t u t u t u t u t u tι ι   (5.20) 

 

( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( )
, 0

( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( )
, 0

   
   = = Γ = Γ   
      

   
   = = Γ = Γ   
      

s m
s s M m          

s I

s m
s s M m

s I

k k
xn x xn

k k k k k k
nx yn x nx n nx yn

k k
n x n

k k
xn y xn

k k k k k k
ny yn y ny n ny yn

k k
n y n

θ θ

θ θ

φ
φ φ

φ

φ
φ φ

φ

  (5.21) 

where Sx  and S y  are the spatial distributions of the effective earthquake force vectors, 

snx  and sny  are the contribution of the nth mode, and Γnx  and Γny  are the modal 

participation factors for the nth mode of the x and y components of the ground motion, 

respectively. The mode shape vector is defined as nφ  , and xnφ  , ynφ and nθφ   correspond 

to the x and y translational components and z to the rotational component of the vector, 

respectively. 

The equation of motion could be rearranged in terms of the modal coordinates. The 

expansion of physical displacement to the modal coordinates is as follows: 

( )( ) ( )=nu k
n nt q tφ   (5.22) 

where  ( )nq t is the modal displacement for the nth mode. If the rigid diaphragm 

assumption is considered, the nth mode displacement vector ( )un t   can be divided into 

three sub-vectors which have N terms. N is number of stories of the building, uxn and 

u yn  are sub-vectors for the translational displacements in the x and y directions, and 

u nθ  is the sub-vector for torsional displacement. 
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 
 =  
  

u
u u

u

xn

n yn

nθ

 (5.23) 

If Equation 5.18 is defined in terms of the modal coordinates and both sides of the 

equation are multiplied by ( )k T
nφ   and divided into ( ) ( )Mk T k

n nφ φ , then Equation 5.24 is 

achieved. 

 ( )2( ) ( ) ( ) ( ) ( )( ) 2 ( ) ( ) ( ) ( )+ + = −Γ − Γ   

k k k k k
n n n n n n nx gx ny gyq t q t q t u t u tξ ω ω   (5.24) 

where ( )k
nξ  stands for the damping ratio of the system and ( )k

nω  is the instantaneous 

vibration frequency.  

If one benefits from the solution of a single component of ground motion (SDOF), the 

displacement demands can be calculated from Equations 5.25 and 5.26: 

( )2( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
nx n n nx n nx gxd t d t d t u tξ ω ω   (5.25) 

 ( )2( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
ny n n ny n ny gyd t d t d t u tξ ω ω   (5.26) 

where nxd  and nyd  stand for displacement vectors corresponding to two horizontal 

components of ground motion. In Equations. 5.25 and 5.26, the last term on the left-

hand side could be considered as an instantaneous pseudo-acceleration response ( ( )k
nxa   

or ( )k
nya ) of the nth mode. If Equations 5.25 and 5.26 are re-arranged; the modal response 

of each mode could be expressed as: 

( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
nx n n nx nx gxd t d t a t u tξ ω   (5.27) 

( ) ( ) ( )( ) 2 ( ) ( ) ( )+ + = − 



k k k
ny n n ny ny gyd t d t a t u tξ ω   (5.28) 

The solution of Equations 5.27 and 5.28, as SDOF systems, yields the maximum modal 

displacement demands nxD  and nyD . The corresponding modal coordinates for each 

mode could be determined by Equation 5.29: 

( ) ( )
,max = Γ + Γk k

n nx nx ny nyq D D   (5.29) 

Thus, physical displacements can be expressed by Equation. 5.30: 
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( ) ( ) ( ) ( )
,max = Γ + Γk k k k

n nx n nx ny n nyu D Dφ φ   (5.30) 

Implementation of 3D VMPA for bi-directional ground motions  

The adaptation of VMPA to 3D buildings and the implementation of 3D VMPA for 

bidirectional ground motions will be described via a representative un-symmetric 

building, as shown in Figure 5.10. Herein, although the symmetrical distribution of the 

lateral load-carrying elements in the plan is supplied, some eccentricity exists because 

of the non-uniform distribution of mass. 

gyu        

 

Figure 5.10 : A representative 3D structure having frame and shear wall type lateral 
load resisting system. 

The steps of the procedure are given as follows: 

i. The initial eigenvalue analysis is conducted by using the gross stiffnesses of the 

structural members; based on the analysis, mode shapes (1)( ),nφ natural 

frequencies (1)( )nω , modal participation factors ( (1)Γn ) and modal participation 

mass ratios ( )nM   are obtained. The superscript (1) denotes the definition of the 

first iteration step; the superscript will be defined as k for the succeeding 

Y 
Z 

X 
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statements. The nonlinear static analysis for gravity loads is performed, and the 

demand parameters of interest ( gR ) are obtained. The modes are sorted from 

largest-to-smallest modal participation mass ratios in the x, y and torsional 

directions individually. Each x-directional, y-directional and torsional mode is 

termed as a triple, and a sufficient number of mode triples should be selected in 

order to predict the earthquake demands accurately. 

ii. As an improvement to the previous version of VMPA, which is used for a single 

component of ground motion, the equal displacement rule is not applied in 

ADRS format. The method is implemented to hybrid axes-couples, namely 

nx dx ny dyS SΓ + Γ   and nx ax ny ayS SΓ + Γ for the x and y axes, respectively. The 

implementation of the equal displacement rule to the first triple of modes, which 

includes the first x- and y-translational and θ-torsional modes, is shown in Figure 

5.11. Since the modal participation factors of nxΓ  and nyΓ  are different for each 

mode, the equal displacement rule is applied to different hybrid spectrums for 

each mode. The hybrid spectrum apsis nx dx ny dyS SΓ + Γ  to be used for calculating 

the physical displacement demands and the consistent spectral ordinate 

nx ax ny ayS SΓ + Γ  to be used for the inertia forces are attained from the intersection 

of the hybrid curve, with the lines having slopes of (1) 2( )nω . In the figure, (1) 2
1( ) ,xω  

(1) 2
1( )yω  and (1) 2

1( )θω  are the initial eigenvalues of first x- and y-translational and 

θ-torsional modes, respectively. 

 

Figure 5.11 : Application of the equal displacement rule in the hybrid spectrum 
format. 
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iii. The target physical displacement demands at node m should be determined for 

each mode as follows: 

( )( ) ( ) ( ) ( )
_ _ _ _ _

k k k k
mn x mn gx mn x nx dn x ny dn yD D S Sφ= + ⋅ Γ ⋅ + Γ ⋅   (5.31) 

( )( ) ( ) ( ) ( )
_ _ _ _ _

k k k k
mn y mn gy mn y nx dn x ny dn yD D S Sφ= + ⋅ Γ ⋅ + Γ ⋅  (5.32) 

( )( ) ( ) ( ) ( )
_ _ _ _ _

k k k k
mn mn g mn nx dn x ny dn yD D S Sθ θ θφ= + ⋅ Γ ⋅ + Γ ⋅  (5.33) 

where _mn gxD , _mn gyD and _mn gD θ  are the x- and y-translational and θ -rotational  

displacement components of node m due to gravity-loading. The target 

displacements of _mn xD , _mn yD  and _mnD θ  are instantly updated at each 

linearization step (k). The contributions of the first triple of modes to the total 

displacement demand in the representative building are shown schematically in 

Figure 5.12. 

Total Deflection First X Direct. 
Mode 

First Y Direct. 
Mode 

First Torsional 
Mode 

     

Figure 5.12 : Contributions of the first triple of the modes to the total displacement. 

iv. The mode-compatible force vectors obtained from the elastic spectral 

accelerations are as follows: 

( )( ) ( ) ( ) ( ) ( )
0 _ _Mk k k k k

nx nx xn nx an ex ny an eyQ s S Sφ= = Γ ⋅ + Γ ⋅  (5.34) 

( )( ) ( ) ( ) ( ) ( )
0 _ _Mk k k k k

ny ny yn nx an ex ny an eyQ s S Sφ= = Γ ⋅ + Γ ⋅  (5.35) 

( )( ) ( ) ( ) ( ) ( )
0 _ _M k k k k k

n n n nx an ex ny an eyQ s S Sθ θ θφ= = Γ ⋅ + Γ ⋅  (5.36) 

The superscript (k) corresponds to the linearization step. For each linearization 

step (k >1), an eigenvalue analysis is repeated and the instantaneous mode-shape 

vector ( ( )k
nφ ) is determined. 
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v. A displacement-controlled algorithm is employed to calculate inelastic hybrid 

spectrum ordinates for the target displacement, which has three DOF, namely

_mn xD , _mn yD  and _mnD θ  for each mode. It is difficult to push the structure to 

the three components of the target displacement demand simultaneously with a 

single loading parameter. As such, the DOF of the building to be used in the 

pushover analysis is selected as the direction in which the maximum modal 

participation mass ratio is obtained. The remaining DOFs are kept free in VMPA. 

If the adaptive version (VMPA-A) is considered, the displacement and force 

vectors are updated at each loading stage. Therefore, all of the three 

displacements’ demands can be provided. The equilibrium equation for the kth 

linearization step is as follows: 

( ) ( ) ( ) ( )
0

k k k k
n n n n+ =S D P Q   (5.37) 

where ( )k
nS , ( )

0
k

nP  and ( )k
nQ  are the instantaneous static stiffness matrix, member 

load vector and nodal load vector (which provides target displacements at the 

reference DOFs for the nth mode) respectively. The nodal load vector ( )k
nQ  can 

be defined in a scaled form of instantaneous force distribution for the nth mode 
( )
0
k
nQ as follows: 

( ) ( ) ( )
0

k k k
n n nα=Q Q   (5.38) 

The loading parameter ( )k
nα is expressed as the ratio at which target displacement 

is achieved for a specific intensity of motion. 

vi. The secant stiffness-based linearization procedure is implemented in the 

nonlinear analysis. The procedure is used not only for moment-curvature 

relations but also for strain-stress relationships for fiber elements (Figure 5.4). 

At each iteration step, effective rigidities for any given section or fiber                               

( ( ) ( ),k k
n nEI E ) are attained from the constitutive relations. 

vii. After each linearization step (k>1), the eigenvalue analysis is repeated and the 

instantaneous mode shapes ( ( )k
nφ ) and natural frequencies ( )( )k

nω are defined. 

viii. Steps iv to vii are repeated until the parameter of ( )k
nα  is sufficiently close 

between the successive steps. The final ( )p
nα  corresponds to the desired load 
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parameter. The kth iteration step on the hybrid spectrum format is presented in 

Figure 5.13a. 

 
a- An intermediate step 

 
b- Determination of loading parameter 

Figure 5.13 : The utilization of hybrid spectrum for 3D VMPA. 

For the example given, the first x- and y-translational modes behave nonlinearly 

and the first torsional mode is in the linear range. The last steps in the iterations 

for the first triple of modes are presented in Figure 5.13b. 

The loading parameter ( )p
nα  in VMPA is determined by Equation 5.39: 

_ _( )

_ _

nx an px ny an pyp
n

nx an ex ny an ey

S S
S S

α
Γ ⋅ + Γ ⋅

=
Γ ⋅ + Γ ⋅

  (5.39) 

For the adaptive version (VMPA-A), the same parameter is calculated by Equation 

5.40: 



112 

 
( ) ( )
( ) ( )

2( ) ( ) ( )
_ _( )

2( ) ( ) ( )
_ _

p T p p
n nx an px ny an pyp

n e T e e
n nx an ex ny an ey

S S

S S

φ ι
α

φ ι

Γ ⋅ + Γ ⋅
=

Γ ⋅ + Γ ⋅

M

M
  (5.40) 

The DOF, where ( )p
nα  is calculated, is decided as the one having the largest 

modal participation mass ratio. The determination of ( )p
nα in 3D algorithm is 

similar to the 2D algorithm. The parameter corresponds to the ratio of plastic to 

elastic base shear forces calculated for the dominant direction. 

ix. Any demand parameter (Rn) of interest for the nth mode, such as displacement, 

drift, internal force, curvature, fiber strains, etc., can be obtained by Equation 

5.41: 

n n g gR R R+=  -   (5.41) 

where n gR +   and gR  stand for the demands obtained from the pushover 

analysis with gravity-loading and single gravity load analysis, respectively. 

x. The resulting demand parameter of interest, R , is calculated by the SRSS 

combination rule: 

( )2
g nR R R=  +   (5.42) 

xi. Eight distinct analyses corresponding to varying directions of selected DOFs (x, 

y and θz) have to be performed in order to determine the unfavorable condition, 

Table 5.1, see Fig.5.10. For instance, the first pushover may be applied for the 

positive directions of x, y and θz. 

Table 5.1 : The directions of selected DOFs.  

Loading x y θz 
1 positive positive positive 
2 negative positive positive 
3 positive negative positive 
4 negative negative positive 
5 positive positive negative 
6 negative positive negative 
7 positive negative negative 
    

Detailed flow-chart of the algorithm is presented in Figure 5.14. 
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Figure 5.14 : Flow-chart of the proposed 3D Analysis Algorithm. 
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( )
( )
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k k k k
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Figure 5.14 (Continued) :  Flow-chart of the proposed 3D Analysis Algorithm.
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6.  VERIFICATION EXAMPLES 

6.1 9 and 20-Storey SAC Steel Buildings 

The test structures are 9-storey and 20-storey steel frame buildings, which were 

designed for the Los Angeles (LA) region in the SAC Phase II project, Gupta and 

Krawinkler (1999). Kreslin and Fajfar (2011) also studied the buildings to demonstrate 

the validity of the extended N2 method against the results of response history analyses. 

The modelling assumptions and the selected earthquake record sets defined in the 

paper are taken as the basis for this paper. The results of VMPA and VMPA-A are 

compared with NTHA, MPA and the extended N2 method. 

The buildings consist of two perimeter frames in each orthogonal direction as well as 

the gravity frames. For simplicity, instead of using 3D models of the lateral load-

resisting part of the structure, only the perimeter frames in the north-south direction 

are modelled. The preferred model is designated as the M1 model by Gupta and 

Krawinkler (1999). In this model, the nonlinearities are taken into account with plastic 

hinges at the beam and column ends without rigid end offsets, and the behaviour of 

the panel zones are not considered. The elevations and sectional dimensions of the 

perimeter frames are presented in Figure 6.1. The yield strengths of the columns and 

the beams are taken as 397 MPa and 339 MPa, respectively. The columns are pinned 

at the base.  The column splices are arranged at 1.83 m above some of the storey levels. 

In the 9-storey building, the right end of the beams between the E and F axes are simply 

hinged. All other connections are fixed. The columns are arranged in the strongest 

direction, except the F axis.  The ground level is restrained in the lateral direction to 

represent concrete foundation walls. 

In the 20-storey building, all of the connections are fixed, except the bottom ends of 

the second basement columns. The beams are also simply connected to the columns at 

this level. The ground floor and first basement levels are laterally restrained against 

horizontal displacements. The columns of the A and F axes have tube sections. More 

details are found elsewhere, Gupta and Krawinkler (1999). 
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PERFORM-3D V5.0 (CSI, 2012) software is used to model and analyse the test 

buildings.  Bilinear elasto-plastic hinges are used at the member ends to represent the 

concentrated plasticity. The beams were modelled with simple moment hinges.  PMM 

hinges are defined on the columns to represent the interaction between the axial force 

and the bending moments.  Due to relatively low axial force intensities on the columns, 

second-order effects are neglected similar to the study conducted by Kreslin and Fajfar 

(2011). The critical Rayleigh damping ratio of 5% with characteristic elastic periods 

of the first and third modes are utilised in NTHA. The periods, modal participation 

factors and effective mass ratios are tabulated in Table 1 for the test buildings. 

Table 6.1 :  SAC (LA) buildings. 

Mode 
# 

Period T  
(s) 

Effective Mass 
(%) 

Participation Factor 
(Γ) 

9 St 20 St 9 St 20 St 9 St 20 St 

1 2.27 3.82 83.1 80.0 -61.24 -66.53 
2 0.85 1.32 10.9 11.8 22.14 25.50 
3 0.49 0.77 3.7 3.5 -12.95 -13.89 
4  0.54  1.8  9.86 
5  0.41  1.0  -7.38 
  ∑= 97.7 98.1   

Assessment of VMPA 

The assessment of the VMPA procedure is achieved by comparing the results of the 

procedure with those obtained from the NTHA. The evaluated demand parameters are 

storey displacements, drifts, shear forces and the distribution of column and beam 

curvatures. 

The first step in the verification involves the 9-Storey LA Building subjected to the El 

Centro record.  Subsequently, the average of the NTHA results of two sets of ground 

motions are compared with the VMPA results for the benchmark structures.  The 

differences between the results of the VMPA procedure and the results of the MPA, 

MMPA and extended N2 will be presented.  The results obtained from the adaptive 

and non-adaptive versions of the VMPA are also assessed. 

6.1.1.1 Evaluation for a specific earthquake 

Two sets of analyses were performed using VMPA for 1.5 × El Centro ground motion. 

In the first set, the equal displacement rule is implemented to determine the 
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displacement demand of the reference DOF for each mode. In the second set, the 

combined displacement demand in VMPA is made equivalent to the ultimate 

displacement demand obtained from NTHA at the reference DOF. 

 

 
 

Seismic mass per perimeter frame (kNs2/m) 

Level 9 Storey Level 20 Storey 

Ground 483 Ground 266 

1st 505 1st 282 

2nd-8th 495 2nd-19th 276 

9th 535 20th 292 

Entire 
structure 

above 
ground 

4500 

Entire 
structure 

above 
ground 

5538 

 

  SAC Buildings (all dimensions in meters). 

Chopra and Goel (2002) also studied the 9-storey LA Building with 1.5 × El Centro 

ground motion to validate the MPA procedure against the NTHA results. The NTHA 

analysis was performed without considering gravity loads, and a 2% critical damping 

ratio was used, unlike the other NTHA results presented in the proceeding chapters. 

Considering the same structural and dynamic characteristics as Chopra and Goel 

(2002), the adaptive (VMPA-A) and non-adaptive (VMPA) procedures are conducted, 

and the resulting demands are compared. Figure 6.2 shows the results of the equal 
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displacement rule, and Figure 6.3 illustrates the results of the case in which the top 

storey displacement is tuned to the NTHA result. 

From the application of the equal displacement rule procedure, a 26% relative error is 

obtained at the top displacement compared with the NTHA results. The displacements 

at the lower stories are relatively similar in both cases. The MPA method provides 

better displacement demands for all stories in comparison with the VMPA procedure 

using the equal displacement rule. 

 

 

 Demands determined from the equal displacement rule.  

Although the maximum relative errors for storey drifts obtained from the VMPA 

procedure using the equal displacement rule is higher than those of the MPA, in 

general, the estimation of VMPA provides better results, especially for the lower and 

upper stories. The predictions of the storey drifts in the second set are excellent 

between the 3rd and 7th stories. For the remaining part, reasonable differences are 

observed. 
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  Demands determined from the imposed top displacement comes from the 
NTHA.  

The prediction of storey shears obtained from VMPA using the equal displacement 

rule is sufficient for all storeys. VMPA-A provides better results with respect to the 

non-adaptive analysis. Superior estimates for the storey shears are observed for the 

second set of analyses. 

The curvatures at the bottom end of the columns positioned at the C axis are plotted in 

Figure 6.2 and Figure 6.3. The equal displacement rule produces good results; the 

second set yields better results, except for the 4th storey. 

As another comparison, the curvatures of the outer beams are poorly predicted for both 

of the analyses sets. Chopra and Goel (2002) also represented plastic rotations of the 

outer beams determined from MPA. However, VMPA uses curvature type plastic 

hinges, and the total curvatures are considered. 

For comparison, the relative differences for any of the demand parameters are 

determined by Equation 5.42. 

 100VMPA NTHA
RE

NTHA

R Rr
R

−
= ×  (6.1) 
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where REr is the relative difference for the response quantity of interest (R), and VMPAR  

and NTHAR are the analysis results obtained from VMPA and NTHA, respectively. 

Figure 6.4 demonstrates the relative differences between the beam total curvatures 

obtained from VMPA and NTHA for two different sets of analyses. The relative plastic 

rotation differences between the results of MPA and NTHA are also presented in 

Figure 6.4. The relative differences obtained are large for the MPA and VMPA 

procedures. The most successful procedure is the second set of analyses performed by 

VMPA. In general, due to limited plasticity for the level of earthquake, VMPA and 

VMPA-A produced comparable results. 

 

   

Beam Plastic Rotation Error Equal Displacement Rule Top Storey displacement scaled 
to NTHA Results 

MPA VMPA, VMPA-A 

  Relative Differences of beam plastic rotations and total curvature demands.  

6.1.1.2 Evaluations for two sets of earthquakes 

Two earthquake sets are used in the study, namely PEER NGA and European Database 

Earthquake sets (Appendix A). VMPA is applied to 9- and 20-storey LA buildings to 

compare the various demands obtained from the NTHAs performed using the PEER 

NGA and European Database Earthquakes, as well as the other NSPs. The target top 

displacement demands, which are utilised in VMPA and the other NSPs for each 

earthquake set, are chosen as the average of the results of NTHAs. 

9-storey SAC (LA) building 

The average of maximum top displacements obtained from NTHAs are 0.80 m for the 

I3 intensity of the NGA database earthquakes and 0.13 m, 0.58 m, 0.77 m and 1.02 m 

for the I1, I2, I3 and I4 intensities of European Database earthquakes, respectively. To 
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provide these displacements to be used in the VMPA method, Sa and Sd couples are 

scaled with a single scale factor of 0.79 for I3 intensity of the NGA database 

earthquakes, and the factors of 1.075, 0.953, 0.847 and 0.836 are used for the I1, I2, I3 

and I4 intensities of the European Database Earthquakes, respectively. The execution 

of VMPA and VMPA-A to the 9-storey SAC building is illustrated in Figure 6.5. The 

elastic spectrum in ADRS format for the scaled version of the median European 

Database Earthquakes are demonstrated with the curves of increasing darkness. The 

curve of the scaled version of the median PEER NGA is presented in purple. The 

application of equal displacement rule for each case is shown with hollow markers on 

the spectrums. After performing the linearization process of VMPA, the elastic 

spectral accelerations for each mode (San_e), identified by the hollow markers, reduce 

to the plastic spectral ordinates (San_p), as indicated by the filled markers. An advantage 

of VMPA is that calculation of the other ordinates of modal capacity curves is not 

required. The capacity curves are plotted in bold dashed lines. In fact, the analyses are 

performed for only five unique target displacements for each mode. As seen from the 

figure, although the VMPA results indicate that the first three modes are in nonlinear 

range, the third mode is linear in VMPA-A. Additionally, the post yield slopes in the 

second mode are quite different. 

 
a) VMPA 

 Spectral acceleration vs. spectral displacement of the 9-storey SAC building. 
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b) VMPA-A 

Figure 6.5 (Continued) : Spectral acceleration vs. spectral displacement of the 9-
storey SAC building. 

The response parameters calculated for 20 European Database Earthquakes with 

increasing intensities are represented in Figures. 6.6, 6.7, 6.8 and 6.9. The bold black 

line corresponds to the average of the response parameters for the earthquakes. The 

dashed black lines denote the maximum and minimum of the related response 

parameter obtained for the earthquake set. The area painted in grey shows the range 

between minus and plus one standard deviation of the average. The dashed red and 

blue lines correspond to the results of VMPA-A and VMPA, respectively.  

The relative errors for the displacement responses are lower than 20% for all 

intensities.  If storey drifts are considered, then the relative errors are in the range of 

15% to 30% in VMPA. Although VMPA-A produces better results at lower stories 

compared with VMPA, the relative errors of the method are increased by up to 60% at 

the higher stories with the increment of the intensity level. Regarding the storey shears, 

the errors appear to be similar for the storey drifts within a limited value of 40% for 

the I4 level. In fact, the NTHA average ± one standard deviation band is narrower for 

storey shears in comparison with storey drifts. 
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  9-storey SAC LA building subjected to the European Database Earthquakes 
(I1). 
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  9-storey SAC LA building subjected to the European Database Earthqukes 
(I2). 

The column and beam curvatures are mostly within the NTHA average ± one standard 

deviation bands. The predictions determined using VMPA-A are better in comparison 

with VMPA in terms of the column curvatures. This evaluation becomes prominent at 

stories where large column plasticity exists, i.e., at the first and seventh stories.  
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  9-storey SAC LA building subjected to the European Database Earthquakes 
(I3). 

The poorest prediction is for the beam curvatures. Differences exist in the predicted 

beam curvatures, even in the linear case at higher stories. The increasing intensity level 

causes higher relative error on the predictions. 
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  9-storey SAC LA building subjected to the European Database Earthquakes 
(I4). 

Figure 6.10 shows the demands determined from the NTHAs of the I3 intensity of the 

NGA database earthquakes. When compared with the European Database Earthquakes 

(Figure 6.8), the demand predictions of the NGA Database are more successful. The 

main reason for this difference is that the higher modes are more effective in the case 
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of the European Database, Figure 6.5. In particular, for column curvatures, a perfect 

match is observed at the first storey, where the column plasticity is the highest. 

However, the predictions for the column and beam curvatures are insufficient for the 

upper stories. 

 

 

  9-storey SAC LA Building Subjected to the NGA Database Earthquakes (I3). 
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20-storey SAC (LA) building 

The average of maximum top displacements obtained from the NTHAs are 0.94 m for 

the I3 intensity of the PEER NGA and 0.14 m, 0.59 m, 0.78 m and 0.97 m for the I1, 

I2, I3 and I4 intensities of the European Earthquakes, respectively. To provide these 

displacements to be used in VMPA, Sa and Sd couples are scaled with the unique scale 

factor of 0.936 for the I3 intensity of the PEER NGA Earthquakes, and the factors of 

1.095, 0.938, 0.827 and 0.769 for I1, I2, I3 and I4 intensities of European Database 

earthquakes, respectively. The implementation of the VMPA and VMPA-A 

procedures to the 20-storey SAC building is presented in Figure 6.11. As seen from 

the figure, the first three modes are in the nonlinear range. Minor differences are 

perceived for the modal capacity curves between the two types of analyses. 

 
a) VMPA   

 
   b) VMPA-A 

  Spectral acceleration vs. spectral displacement of the 20-Storey SAC 
building. 
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Figures. 6.12, 6.13, 6.14 and 6.15 depict the response parameters calculated from the 

analyses of the 20-Storey LA Building for the European Database Earthquakes. The 

relative errors attained in the displacement responses are lower than 16% for all 

intensities.  If the storey drifts are considered, the errors are increased from 21.7-56% 

when the intensities change from I1 to I4.  

 

 

 

  20-storey SAC LA building subjected to the European Database Earthquakes 
(I1). 
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Generally, the predictions determined from VMPA-A provides more reliable results 

in comparison with VMPA in terms of storey drifts. Regarding the storey shears, 

conservative results are observed for both types of analyses. The errors increase at the 

upper stories by up to 48%. 

 

 

 

  20-storey SAC LA Building subjected to the European Database 
Earthquakes (I2). 
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For the intensity of I4, the column curvatures obtained from VMPA are smaller than 

those of the NTHA at first storey level within a relative error up to 70%.  Although 

predictions of the beam curvatures are successful at lower stories, an error of 80% 

exists at the upper stories. In general, VMPA-A provides better results regarding the 

beam curvatures. 

 

 

  20-storey SAC LA building subjected to the European Database Earthquakes 
(I3). 
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  20-storey SAC LA building subjected to the European Database Earthquakes 
(I4). 

Figure 6.16 shows the demands determined from the NTHAs of I3 intensity of the 

PEER NGA Database. If the storey drifts are considered, then the maximum errors are 

34.7% and 19.2% for VMPA and VMPA-A, respectively. The adaptive version 

provides more reliable results. Similar to the case of the European Database 
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Earthquakes, conservative estimates for storey shears are observed for the PEER NGA 

Database. The general trends of the curvatures are also similar for European 

Earthquakes intensity level of I3. 

 

 

 
 20-storey SAC LA building subjected to the NGA Database Earthquakes (I3). 
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6.1.1.3 Comparisons with the other NSPs 

The comparisons were conducted with the other NSPs, namely MPA, MMPA and 

extended N2. The results of the corresponding NSPs are extracted from the study 

achieved by Kreslin and Fajfar (2011), in which the target displacements at the roof 

level were taken as being equal to the mean values of the roof displacements obtained 

from NTHAs. 

The comparison performed for the storey drift profiles for the 9-Storey SAC Building 

are illustrated in Figures 6.17, 6.18 and 6.19. The extended N2 method generally yields 

the best results in comparison with the other methods. The suggested VMPA procedure 

yield comparable results to those of the other methods. 

  

  

Intensity 1 Intensity 2 

 

 9-storey SAC LA building subjected to the European Database Earthquakes 
(I1 and I2). 
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Intensity 3 Intensity 4 

 
  9-storey SAC LA building subjected to the European Database Earthquakes 

(I3 and I4). 

  

 
  9-storey SAC LA building subjected to the PEER NGA Database 

Earthquakes. 

The comparisons made for the storey drift profiles of 20 Storey SAC Building are 

illustrated in Figures 6.20, 6.21 and 6.22. The best estimates are obtained from the 

VMPA-A method, with a maximum relative error of 33% for the European Database 
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Earthquakes (I4). The maximum difference for the NTHAs decreases to 14.3% for the 

PEER NGA Database Earthquakes. 

  

  

Intensity 1 Intensity 2 

 Comparisons of the 20-storey SAC LA building subjected to the European 
Database Earthquakes (I1 and I2). 

  

  Comparisons of the 20-storey SAC LA building subjected to the European 
Database Earthquakes (I3 and I4). 
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Intensity 3 Intensity 4 

 

Figure 6.21 (Continued) : Comparisons of the 20-storey SAC LA building 
subjected to the European Database Earthquakes (I3 and I4). 

  

 
 Comparisons of the 20-storey SAC LA building subjected to the NGA 

Database Earthquakes.  

Results 

A VMPA was developed to determine the seismic performance of the structural 

systems. The following conclusions are drawn from the study: 

1. VMPA and VMPA-A are applied directly for a specific displacement target, 

which corresponds to a vibrational mode, in lieu of the equal displacement rule. 

Generation of the full modal capacity curves is not required in contrast to 

certain of the NSPs. This lack of requirement to generate the full curves enables 

a significant decrease in the execution time. 
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2. VMPA and VMPA-A produce reliable results in terms of many demand 

parameters for the 9-Storey Building subjected to the 1.5 × El Centro Record. 

The application of the equal displacement rule yields similar results as the case 

in which the top storey displacements are tuned to the average of the NTHAs.  

3. For the 9-Storey Building, comparable results are obtained compared to the 

results of the average of the NTHAs performed for European Database 

Earthquakes in terms of storey drifts and storey shear forces. The accuracy 

tends to decrease with an increasing intensity of ground motion. The accuracy 

of the predictions for beam and column curvatures are relatively low compared 

with the other demand parameters. When PEER NGA Database Earthquakes 

(I3) are considered, more reliable results are observed, especially for column 

curvatures. The achievement of VMPA is partially better than VMPA-A.  

4. For the 20-Storey Building, the storey drifts determined from VMPA are quite 

consistent at the lower stories with respect to the results of the NTHAs. Some 

discrepancy is found in the upper stories. VMPA-A yields better results than 

VMPA in terms of the storey drifts compared. The lateral displacement profile 

is consistent spectacularly with the results of the NTHA. The applications of 

VMPA and VMPA-A produce more conservative results in terms of the storey 

shear forces. The obtained column curvatures at the lower stories, where large 

plasticity is observed, is in the range of the mean ± standard deviation of the 

NTHA results for both of the earthquake sets. Although relatively high 

accuracy is obtained for the beam curvatures at the lower stories, relatively 

large discrepancies are observed at the upper stories. 

5. When the storey drifts obtained from VMPA and VMPA-A were compared 

with the existing NSP procedures for the 9-Storey Building, no advantage was 

observed between VMPA and VMPA-A. However, for the 20-Storey Building, 

the estimates for the storey drift profile are superior for VMPA-A. 

6. The accuracy of VMPA and VMPA-A may be affected by the selected 

acceleration record sets, similar to the other NSPs. 

7. Similar to the other NSPs, VMPA and VMPA-A are approximate procedures. 

Because of these procedures’ limitations, they must be used carefully.  



139 
 

6.2 45-Storey RC Coupled Shear Wall System 

Modelling of a 45-storey coupled shear wall system 

The selected 45-story coupled SW system is taken from the study conducted by 

Aydinoğlu (2014). In the cross-section, it is composed of two U-shaped SWs 

connected by two coupling beams. The SW cross-section and the perspective are 

shown in Figure 6.23. The height of the building is 180 m with 4 m equal story heights. 

In contradistinction to Aydinoğlu (2014), some eccentricity is given to the CM at each 

story. The accidental eccentricity corresponds to 10% of the plan dimensions of the 

coupled SW system, which is supposed to be 5% of the building plan dimensions. Fig. 

6 is given to the CM at each story. The material quality for the concrete is C45 (fc = 45 

MPa) and for steel it is S420 (fy = 420 MPa). The longitudinal reinforcements of the 

coupling beams are diagonally located along the length. 

 

 Cross-section and perspective view of the RC coupled SW system. 

Y 

X 

Z 
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The developed DOC3D_v2 (Surmeli and Yuksel, 2015) in which the VMPA-A 

procedure is employed and the well-known Perform3D_v5 (2012) are the programs 

utilized in the analysis of the 3D coupled SW system. To represent 3D behavior of the 

coupled SW system; although nonlinear rectangular fiber shell elements are used in 

Perform3D, each rectangular arm of the SWs is modeled with one 3D MVLEM in 

DOC3D_v2. The details can be followed from Figure 6.24. 

             
a- DOC3D_v2  

 
b- Perform 3D  

 Structural models prepared for 2 different programs. 
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In the structural models prepared for DOC3D_v2 and Perform3D, the first 10 stories 

from the bottom are divided into two parts along the story heights to better represent 

the nonlinear behavior of the structure. 

In Perform3D, the shear wall element has no in-plane rotational stiffness at its nodes. 

To specify a moment-resisting connection between a beam and a wall, it must be 

imbedded a beam element in SW. The bending stiffness of the imbedded element is 

arranged to represent the stiff connection of SW and beam.  On the other hand, in 

DOC3D_v2 the rigid beams are involved at story levels to define the U-shaped 

geometry of SW and to make connections with coupling beams.  

There exist distinct modeling techniques in the literature (Hindi and Hasan, 2004; 

Aydınoğlu, 2014) to model nonlinear behavior of the coupling beams.  Hindi and 

Hasan used confined bundles to model diagonally reinforced coupling beams based on 

strut and tie analogy.  

However, the moment hinge approach is utilized here due to its simplicity against the 

other techniques. Curvature-type plastic hinges at both ends of the coupling beams are 

defined in this approach. The effects of the concrete and strain hardening of the steel 

on the beam capacity are neglected. The moment capacity of the coupling beams at the 

ends of the members is calculated by using the tension and compression force couples 

at the yield stage by using Equation 6.2 (Figure 6.25). The effective stiffness is defined 

as 0.10 of the initial stiffness. 

 ( )coss yM A f dα=   (6.2) 

 

 

 Modeling of the coupling beam. 

The yield moment of the hinge is calculated as 1,798 kNm. The plastic hinge definition 

is quite different in the two programs. The Perform3D program uses zero-length 

curvature-type hinges at the locations where the plasticity is expected, and the frame 

element is assumed to be elastic for the remaining part. Whereas DOC3D_v2 utilizes 
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the instantaneous secant flexural stiffness in the plastic hinge length, and the remaining 

part of the frame element is within the elastic range. In order to provide for the 

consistency between the two programs, a preliminary first-mode pushover analysis is 

performed. The plastic hinge length is determined by the formula given by Paulay and 

Priestly (1992). The formula yields a value of 0.36 m: 

 0.08 0.022p b yL L d f= +   (6.3) 

where Lp = the plastic zone length, L = the length of the cantilever (the distance to the 

inflection point in a beam or column), db = the reinforcing bar diameter and fy = the 

steel yield stress. 

Due to aspect ratio (height/length) and the arrangements of lateral reinforcement of the 

exemplified SWs, shear deformations and shear-related failure modes are ignored by 

assigning high shear stiffness to the linear shear springs (kHx and kHy) in 3D MVLEMs. 

The second-order effect of vertical loads, which is not included in the existing form of 

3D MVLEM, is neglected in the analyses. An assumption of a rigid diaphragm is made 

for each story. The translational mass and rotational mass of inertia for each story level 

is taken as m = 1,200 kNs2/m and I0 = 64,800 kNs2m, respectively. The structural 

system carries only its own weight, which corresponds to 10% of the SWs’ axial load 

capacities. Modal analyses are performed for the two programs, and the natural periods 

and the corresponding effective modal mass ratios obtained by DOC3D_v2 for four 

mode triples are given in Table 6.2. The relative differences between two programs 

are negligible. 

Table 6.2 : Natural periods and modal participation mass ratios of the example. 

Mode            
No Direction T             

(sec) 
Mx                 
(%) 

My                 
(%) 

Mθz                
(%) 

1 X1 3.674 66.150   
2 Y1 3.402 

 
 62.490  

3 X2 0.866 17.890  0.840 
4 θ1 0.754 0.270 0.025 72.560 
5 Y2 0.584  19.050 0.095 
6 X3 0.401 5.110  0.019 
7 X4 0.250 2.700  0.034 
8 θ2 0.234  1.680 7.940 
9 Y3 0.228  4.780 2.720 
11 Y4 0.130  2.990 0.500 
13 θ3 0.124  0.330 4.450 
16 θ4 0.0788  0.130 2.660 



143 
 

The critical Rayleigh damping ratio of 5% with characteristic elastic periods of the 

first and third modes is utilized in the NTHAs. 

To check the success of the two models prepared in DOC3D_v2 and Perform3D, 

pushover analyses were performed in two orthogonal directions. The pushover curves 

corresponding to the first modes are very close to one another. However, some 

discrepancy is observed for the second modes (Figure 6.26). Perform3D could not 

converge up to a target displacement value for the second modes. 

 

 Pushover curves obtained in the x and y directions. 

VMPA versus NTHA comparisions 

The verification of the 3D VMPA-A procedure is performed by comparing its results 

with those obtained from the NTHAs. A set of analyses are performed with VMPA-A 
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in which the equal displacement rule is utilized to calculate the displacement demands 

in the x and y directions of the reference node for each mode. 

The 30 scaled earthquake records having two components (Appendix B) are imposed 

onto the x and y axes of the building. The fault normal and fault parallel components 

are subjected to the x and y axes respectively. The following demand parameters are 

considered in the study: story displacements, drifts, shear forces, overturning 

moments, maximum compression-tension strains at some SW fibers, and the 

distribution of the coupling beam curvatures. 

Four modal triples consisting of the x, y and θz displacement components are utilized 

in the analyses. The triples are selected by considering the modal mass participation 

ratios. The hybrid spectrum ordinates are determined by using the average spectrums 

of the fault normal and fault parallel components of the ground motions. The top 

displacement demands for each mode are listed in Table 6.3 based on the hybrid 

spectrum (SdxΓx+ SdyΓy). 

Table 6.3 : Displacement demands of the coupled SW system. 
 Mode 

Number SdxΓx+ SdyΓy             
Dx             
(m) 

Dy             
(m) 

θz    
(rad) 

X
  

D
ire

ct
io

na
l 

M
od

es
 

     
1 -199.30 -1.4429 0.0168 0.0049 
3 21.60 0.1633 0.0037 0.0084 
6 3.47 0.0231 0.0003 -0.0002 
7 -1.02 0.0070 -0.0002 0.0001 

Y
 

D
ire

ct
io

na
l 

M
od

es
 

2 140.47 -0.0057 1.0953 0.0001 
5 -12.48 -0.0123 -0.1213 0.0002 
9 1.23 -0.0009 0.0072 0.0008 
11 -0.27 -0.0008 -0.0019 0 

θ z
 

D
ire

ct
io

na
l 

M
od

es
 

4 2.94 -0.0017 -0.0011 0.0027 
8 0.77 -0.0010 -0.0033 0.0006 
13 -0.07 -0.0007 0 0.0001 
16 0.01 -0.0007 0 0 
     

SRSS Combination Rule : 1.452 1.102 0.010 

The implementation of the 3D VMPA-A procedure to the coupled SW system which is 

subjected to bidirectional ground motions is depicted in Figure 6.27. The hybrid 

spectrum curves are given separately for the x, y and θz modes. The application of the 

equal displacement rule to the first four mode triples are shown with hollow markers 

on the spectrums. After the linearization process of the VMPA-A method, the elastic 
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hybrid spectrum ordinates for each mode with a hollow marker reduce to the plastic 

spectral ordinates with filled markers.  

 

   

 

 

 Implementation of 3D VMPA-A to the coupled SW system. 
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As an advantage of VMPA, it is not necessary to calculate the other ordinates of the 

modal capacity curves. In fact, the analyses are carried out for only a unique target 

displacement for each mode. As seen from Figure 6.27, VMPA-A shows that first two 

translational (x and y) modes are within the nonlinear range whereas all of the torsional 

modes behave linearly. 

In order to make comparisons, the relative differences for any kind of demand 

parameters are calculated by Equation 6.1. 

The story displacements and drifts are presented in Figure 6.28. The evaluation of all 

of the response parameters are represented by the same graphical format. The solid 

and dashed black lines correspond to the mean of the response parameters and the 

maximum-minimum values obtained from the NTHAs, respectively. The gray-painted 

area shows the range between a minus- and plus-one standard deviation of the average. 

The solid red and dashed blue lines represent the results of VMPA-A in positive and 

negative x directions, respectively. Due to symmetry of the system about the x axis, 

only a solid red line is given as a result of the y-directional pushover analysis. 

 

 

 The comparisons of mean story displacements and story drifts. 

The story displacements in the x direction are well-predicted, and this reflects the story 

drifts. However, a relative difference up to 28% is recorded for the displacement 

responses in the y direction. The similar trend is also observed for the story drifts in 

the same direction. Meanwhile, the results of VMPA-A are in the gray zones in the y 

direction.  
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The story shears and overturning moments are illustrated in Figure 6.29. The diagrams 

are plotted assuming that the x-directional forces generate shear forces in the x 

direction and overturning moments about the y direction. The demands are within the 

range of the mean ± one standard deviation band up to the 24th floor with a maximum 

relative difference of  20%. At the upper part of the system, the relative difference may 

reach 80%. For the case of y-directional loading which produce shear in the y direction 

and overturning moment about the x direction, relatively smaller differences are 

obtained. Although the mean + one standard deviation band is exceeded at some 

stories, the difference is limited to 40% at the upper stories.  

 

 

 Story shears and story moments. 

The parts of the SWs entitled 1X and 6X shown in Figure 6.24b are evaluated in terms 

of their ultimate compressive and tension strains as depicted in Figure 6.30. Although 

the tension strains are reasonably well-predicted up to 12th story where the plasticity 

is observed, the differences exceed the mean + one standard deviation range for the 

remaining part where the elastic response exists. The predictions of the compression 

strains are more successful and the demands are found almost within the range of the 

average + one standard deviation, except for the top stories. 

The curvature distributions of the coupling beams on the left ends are presented in 

Figure. 6.31. A similar trend is observed throughout the solutions. 
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 Ultimate compression and tension strains. 

 

  

 

 

 The comparison of the coupling beam curvatures for the left end. 

Results 

VMPA has been extended to consider 3D buildings subjected to two components of 

ground motions. The procedure has some advantages against MPA. They are: 

i) Although MPA uses the inertia forces which are associated with the x and y 

directions separately as a single earthquake excitation, VMPA considers the 

multi-component of the ground motions directly. In this context, a hybrid 

spectrum is proposed in this paper. It eliminates the necessity of the application 

of modal combination rules twice. 

ii) The invariant force distribution assumption may cause erroneous results, 

especially for the structures under heavy nonlinear actions. As a feature of 
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VMPA-A, adaptive force patterns are applied to the structure at each step. Thus, 

the displacement demands of three DOFs (x, y and rotation about z) and force-

displacement compatibility are provided simultaneously. 

iii) The implementation of the equal displacement rule together with secant 

stiffness-based linearization in the proposed hybrid spectrum format conveys 

the necessity of the nonlinear analysis to a unique displacement demand. It is 

not required to determine the full modal capacity curves for each mode. 

VMPA-A is validated on a 45-story RC coupled SW system by comparing some 

demand parameters with NTHAs. The following conclusions could be drawn: 

1) The predictions obtained through the equal displacement rule for the lateral 

displacement and drift in the x direction are in close agreement with the mean 

of the NTHA. However, some discrepancy is encountered in the y direction.  

2) In general, conservative estimates are reached for story shear forces at X 

direction and the corresponding overturning moments respect to Y direction. 

The predictions in perpendicular direction, story shear forces and overturning 

moments are better except for lower stories.  

3) Although the ultimate tension and compression strains for two representative 

SW parts are consistent with the NTHA results at the lower stories where 

nonlinear behavior occurs, the relative differences are quite high for the upper 

part of the structure. 

4) Similar results are obtained for the curvature distribution of the coupling 

beams.  

5) It should be noted that VMPA or VMPA-A are the approximate analysis 

procedures. Thus, they should be used prudently. 

6.3 An Existing 21-Story Reinforced Concrete Building 

Modeling of an existing 21-story reinforced concrete building 

An existing (i.e., real) 21-story reinforced concrete building, which consists of three 

basements, one ground floor and 17 normal floors, is utilized in this example. The 

floor plans and elevations of the building are shown in Figure 6.32. The total height of 

the building is 68.31 m. The story heights are 3.88 m, 2.75 m, 2.88 m, 3.55 m and 3.25 
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m for the third, second and first basements, ground floor and typical floors, 

respectively.  

The basements are surrounded with RC shear walls. The floor system between axes 

A-B1 and 1-6 is waffle slab, while the other parts are flat slabs with 15 cm thickness. 

The typical cross sections of the structural members are shown between Figures 6.33 

to 6.36. The waffle slab is modeled by fictitious beam strip with 3.60 m in wide, see 

Figure 6.33. The material qualities are examined in the site are as follows:  concrete 

compressive strength is 27 MPa and steel yielding stress is 420 MPa. The firm soil 

type exists underneath the building and the acceleration intensity of the design 

earthquake is defined as PGA=0.4g according to the Turkish Earthquake Code. The 

gravity loads analysis for slabs is given as follows: 

Table 6.4 : The gravity loads for slabs. 
 Loads (kN/m2) 

Load Type Waffle             Flat 
Self weight 5.08 3.75 

Plaster and covering 2.25 2.25 

Live load 2.00 2.00 

∑G+0.3Q 7.93 6.60 

   
The external walls are represented by a distributed load intensity of 5 kN/m. 

Two distinct software programs, namely DOC3D_v2 and Perform3D, are utilized to 

model and analyze the building. The assumptions used for shear walls and beams are 

exactly the same as the example took place in Chapter 6.2. Similar to previous 

example, fiber shell elements and 3D MVLEMs are utilized to represent shear walls 

in Peform3D and DOC3D_v2, respectively. 

Curvature-type plastic hinges are defined at both ends of the beams. The developed 

cross-sectional analysis program is utilized to generate moment-curvature relations for 

the beam elements. The moment curvature relations are idealized in the bilinear form 

and the effective stiffness is the first slope of the first line. A preliminary first-mode 

pushover analysis is accomplished to calibrate the curvatures obtained from 

DOC3D_v2 and Perform3D. Consequently, the results show that the plastic hinge 

definition of zero length elements in Perform3D correspond to 1.5% to 3.5% of the 

beam lengths in DOC3D. Rigid end offset assumption is made for the beam to column 

connections in both programs. 
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 Floor plans and elevations of the existing 21 story RC building. 
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The columns are modeled with fiber cross section elements in Perform3D, whereas 3D 

MVLEM elements are used to model columns in DOC3D. In order to provide double 

curvature on a column due to horizontal loading, each column is meshed into four 3D 

MVLEM through the story heights.   

The second-order effect of vertical loads, which is not included in the existing form of 

3D MVLEM, is neglected in the analyses. The assumption of a rigid diaphragm is 

made for all stories. The translational masses are 344.1, 315.4, 338.4, 342.3 and 321.3 

kNs2/m, while the corresponding rotational masses of inertias are 13,571, 12,440, 

13,345, 13,499 and 126,71 kNs2m for third, second and first basements, ground floor 

and typical floors, respectively.   

Modal analyses are performed in the two programs, in which the concrete modulus of 

elasticity is taken as 0.5 E0, as suggested in ASCE/SEI 41.06 (2007) in the MVLEMs 

used for shear walls and columns. Very similar results are obtained from the two 

programs, which are summarized in Table 6.5. As seen from the table, natural periods 

in the X and Y directions are 1.415 sec and 1.100 sec, respectively.  

The critical Rayleigh damping ratio of 5%, with characteristic elastic periods of 1.5 T1 

and 0.2 T1, is utilized in the NTHAs. The first mode pushover analyses of the system 

are performed in two orthogonal directions.  

Table 6.5 : Natural periods and modal participation mass ratios of the example. 

Mode            
No.. Direction T             

(sec) 
Mx                 
(%) 

My                 
(%) 

Mθz                
(%) 

1 X1 1.415 63.69  0.01 
2 Y1 1.100 

 
 62.61  

3 θ1 0.518   64.55 
4 X2 0.366 15.22  0.43 
5 Y2 0.272  14.43  
6 X3 0.193 5.43  1.38 
7 θ2 0.188 0.34  9.31 
8 Y3 0.133  5.16  
10 θ3 0.121 0.27  0.66 
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Description Cross Section Description Cross Section 

Fictitious beam to 

model waffle slab  

The short beams 

located on 2, 3, 4 

and 5 axes 

 

Beams located 

between  B and C 

axes 
 

Perimeter beams 

for normal floors 

 

Beams located on  

B and B1 axes 
 

Perimeter beams 

for ground floor 

 

 Cross sections and reinforcement details of the beams. 
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Description Cross Section 

L shaped shear 

walls at the corners 

 

U shaped shear 

walls between axes 

1-6 and B-C 

 
 Cross sections and reinforcement details of the shear walls. 
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Description Cross Section 

L shaped shear wall 

located on B1 axis 

 

Shear walls located 

on B axis 

 
 

 Cross sections and reinforcement details of the shear walls. 

 

 
 Cross sections and reinforcement details of the columns (left: Up to 5th 

normal floor, right: 5th to 17th normal floors). 

To check the success of the two models prepared in DOC3D_v2 and Perform3D, first 

mode pushover analyses were performed in two orthogonal directions by DOC3D_v2 

and Perform3D. The capacity curves obtained from two programs are consistent with 

each other. The lateral load capacity in the Y direction is considerably larger than the 

X direction, as expected. 
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 Pushover curves obtained in the X and Y directions. 

Comparisons for VMPA-A and NTHA 

The verification of the 3D VMPA-A procedure is performed by comparing its results 

with those obtained from NTHAs. VMPA-A is performed by using DOC3D_v2, while 

all the NTHAs are achieved in Perform3D. 

The 30 scaled historical earthquake records (Appendix A3), which have two 

components, are imposed onto the X and Y axes of the building. The demand 

parameters considered in the study are: story displacements, drifts, shear forces, 

overturning moments, maximum compression-tension strains at some shear wall 

fibers, and the distribution of the beam curvatures. 

Three modal triples, consisting of X, Y and θz displacement components, are utilized 

in the analyses. The triples are selected by considering the modal mass participation. 
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The hybrid spectrum ordinates, as defined in Chapter 5, are determined by using the 

average spectrums of the X and Y components of the ground motions. The top 

displacement demands for each mode are listed in Table 6.6 based on the hybrid 

spectrum (SdxΓx+ SdyΓy). 

Table 6.6 : Displacement demands of the existing 21-story building. 
 Mode 

No. SdxΓx+ SdyΓy             
Dx             
(m) 

Dy             
(m) 

θz    
(rad) 

X
   

 
D

ire
ct

io
na

l 
M

od
es

 1 29.93 0.6477 0.0043 0.0118 

4 2.68 -0.0452 -0.0055 -0.0002 

6 0.43 -0.0017 -0.0117 -0.0002 

Y
 

D
ire

ct
io

na
l 

M
od

es
 2 24.23 0.0021 -0.5655 -0.0001 

5 1.37 0.0001 0.0215 -3e-6 

8 0.16 0.0004 -0.0092 -3e-6 

θ z
 

D
ire

ct
io

na
l 

M
od

es
 3 0.07 0.0006 -0.0119 -0.0003 

7 0.10 0.0055 -0.0120 0.0007 

10 0.03 0.0042 -0.0121 -0.0008 

SRSS Combination Rule : 1.452 1.102 0.010 

The implementation of the 3D VMPA-A procedure to the building, which is subjected 

to bidirectional ground motions, is depicted in Figure 6.38. The hybrid spectrum 

curves are given separately for the X, Y and θz modes. The application of the equal 

displacement rule to the first three mode triples are shown with hollow markers on the 

spectrums. After the linearization process in VMPA-A, the elastic hybrid spectrum 

ordinates for each mode with a hollow marker reduce to those for the plastic ones with 

filled markers. As seen in Figure 6.38, VMPA-A shows that first two translational (X 

and Y) modes are within the nonlinear range, whereas all of the torsional modes 

behave linearly. 
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 Implementation of 3D VMPA-A in the existing 21-story RC building. 

The story displacements and drifts are presented in Figure 6.39. The evaluation of all 

of the response parameters are represented by the same graphical format. The solid 

and dashed black lines correspond to the mean of the response parameters and the 

maximum-minimum values obtained from the NTHAs, respectively. The gray-painted 

area shows the range between mean ± one standard deviation. The solid red, dashed 

blue and dashed green lines represent the results of VMPA-A, taking into account one, 
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two and three modes, respectively. The story displacements in the X and Y directions 

are well predicted, and this is reflected in the story drifts. Although up to 30% 

divergence was found where intensities are negligible, the error limits are within of 

5% on the top story. It is clear that the contribution of the first mode governs the 

displacement and drift profiles of the structure. The contribution of higher modes is 

relatively small for the displacements and drifts.  

 

 

 The comparisons of mean story displacements and story drifts. 

The story shears and overturning moments are illustrated in Figure 6.40. The diagrams 

are plotted, on the assumption that the X-directional forces generate shear forces in the 

X direction and overturning moments about the Y direction. The single mode pushover 

analysis could not catch the story shear profiles. Although similar trends are observed 

for overturning moments up to ninth story, the relative errors reach  up to 50% on the 

top story. If two or three mode contributions are considered, conservative estimates 

are made for story shears and overturning moments, in general. Story shears in the Y 

direction and the corresponding overturning moments in the X direction are better 

predicted than in the former case. The results confirm the significance of the 

consideration of higher modes. 
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 Story shears and story moments. 

The fibers considered in the comparison for four distinct shear walls are evaluated in 

terms of their ultimate compressive and tension strains, as depicted in Figure 6.41. The 

strains obtained for the ground floor level, where the plasticity is mostly observed, are 

well predicted by single- or multimode pushover analysis results, whereas the single 

mode pushover analysis could not estimate the strains on the upper stories. Although 

tension strains are within the range of the mean ± one standard deviation band in 

general, the limits are exceeded for compression strains on the upper stories where the 

elastic response exists.  

 

     

 Ultimate compression and tension strains. 

The curvature distributions in the bending direction for four beams are evaluated in 

Figure 6.42. Single- and multimode pushover analysis results are very close to each 

other. The multimode pushover analysis results are always in the range of the mean ± 
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one standard deviation band and, generally, the predictions are sufficient for the 

performance evaluation. 

 

      

 The comparison of the curvatures for selected beam sections. 

Results 

VMPA-A is used here for an existing 21-story RC building to verify the method 

against NTHA results by comparing some demand parameters.  The following 

conclusions can be drawn: 

1) The predictions obtained through the equal displacement rule for the lateral 

displacement and drift in both directions are in close agreement with the mean 

of the NTHA.  

2) Conservative results are obtained for the story shears and overturning 

moments, in general. First-mode behavior dominates the story overturning 

moments, especially for the lower stories. 

3) The ultimate tension strains for different shear wall fibers are consistent with 

the results of the NTHAs on the lower stories, where the relatively large 

nonlinear behavior occurs. The compression strains are also well predicted for 

the lower stories.  

4) The beam curvatures are successfully estimated and it is observed that the first-

mode response governs the total. 
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7.  GENERAL RESULTS AND CONCLUSIONS 

A variant of modal pushover analysis (VMPA) is presented to evaluate the seismic 

performance of the structures. A MATLAB based computer program, the so-called 

DOC3D-v2, was developed to implement VMPA to analyse three-dimensional frame 

and/or shear-wall type structural systems. DOC3D-v2 takes into account concentrated 

and distributed plasticity for the frame type elements as well as considering the second-

order effects of axial loads on the frame type elements.  

Various verification subjects have been studied including beam-column element, 

shear-flexure interaction, 3D MVLEM, three dimensional algorithm, displacement 

controlled nolinear algorithm and second order effects. DOC3D-v2 is successfully 

acknowledged all of the tests. 

The originality of the study depends on its divergence from the existing modal 

pushover analyses (MPA) procedure  for the following reasons:  

1- In 3D VMPA-A, mode-compatible adaptive forces are applied to the structure 

at each iteration step. Therefore, the compatibility of force and displacement 

vectors for each three-degree-of-freedom (x,y ve θz) is satisfied.  

2- The application of the equal displacement rule, in combination with secant 

stiffness-based linearization, eliminates the necessity to produce full capacity 

diagram for each mode. The analysis is performed for a unique displacement 

at each mode. 

3- The MPA procedure is applied separately for the x and y components of the 

ground motion. For each case, the demand parameters of interest are combined 

by a CQC combination rule. Next, the effects of two ground motion 

components are combined using an SRSS combination rule.  The use of newly 

proposed hybrid spectrum considers the effects of X and Y components of 

ground motion, simultaneously. As a natural consequence of this, the two-time 

application of modal combination rules is reduced to one in VMPA-A.  

The main pros and cons of the suggested procedure could be listed as follows: 
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1- The execution time of the analysis is relatively short compared with NTHA. 

So, the procedure could be used in the pre-design stages of high rise building.  

2- The procedure could be utilized for a code specific design spectrum. 

3-  The equal displacement rule used in the procedure may affect the accuracy of 

the results due to its limitations.  

Three example buildings namely, 9- and 20-story SAC Steel Buildings, 45 story 

coupled-shear wall system, 21 story existing RC building, have been analyzed to assess 

the success of the proposed algorithm by comparing the analyses results with those of 

NTHAs. The following conclusions can be drawn from these studies: 

1- For 45 story coupled shear wall example, the predictions obtained through the 

equal displacement rule for the lateral displacement and drift in the x direction 

are in close agreement with the mean of the NTHA. However, some 

discrepancy is encountered in the y direction. The predictions for the lateral 

displacement and drift in both of the x and y directions are in close agreement 

with the mean of the NTHA for 21 storey existing RC Building. Therefore 

predictions of displacement demands obtained from the equal displacement 

rule give good results in general within a limit of 30% relative difference.  

2- The good predictions in story displacements may affect the success of the story 

drifts. 

3- VMPA-A has advantages over VMPA in terms of story drifts, especially for 

upper stories for the 20-Story SAC Building. The estimates for the story drift 

profile are also superior for VMPA-A compared with the other well known 

NSPs. 

4- Conservative estimates have been reached for story shears for both VMPA and 

VMPA-A. 

5- It is observed from the 21 storey existing RC building that the first vibrational 

mode governs the overturning moments, especially in the lower stories. 

6- The column curvatures, the ultimate tension and compression strains for 

different SW fibers are consistent with the NTHA results at the lower stories 

where nonlinear behavior occurs, some relative differences exist for the upper 

part of the structures. 



165 
 

7- First mode contribution governs the total response in terms of the beam 

curvatures. 

8- For the 9- and 20-Storey SAC Buildings, the accuracy tends to decrease with 

an increasing intensity of ground motion. The accuracy of the predictions for 

beam and column curvatures are relatively low compared with the other 

demand parameters.  

9- The accuracy of VMPA and VMPA-A may be affected from selecting and 

scaling process of acceleration record sets, similar to the other NSPs. 

Similar to the other NSPs, it should be keep in mind that VMPA and VMPA-A are the 

approximate procedures to evaluate the performance of structures.  
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APPENDIX A  

Ground Motions Used for 9- and 20- Storey SAC Steel Buildings 

Two sets of ground motions are utilised in this study. Four intensities, namely, I1, I2, 

I3 and I4, are introduced based on the different ground acceleration levels (ag) of 0.10, 

0.50, 0.75, and 1.00×g, respectively. 

The first set consists of 44 strong ground motion records, which are taken from the far 

fault set in FEMA-P695 project (2008). Originally, the records were downloaded from 

the PEER NGA Database (2006). The records were scaled so that the median spectral 

acceleration of the earthquake set coincides with the spectral acceleration value of the 

selected design spectrum at the first vibrational mode period of the benchmark 

buildings. The PEER NGA set is scaled only for the I3 intensity. 

The second set is taken from the European Database (Ambraseys et al., 2002) and 

consists of 20 strong ground motion records. The ground motions are simply scaled so 

that the spectral acceleration corresponding to the first mode period coincides with the 

spectral value of the design spectrum at the same period. The selected design spectrum 

is Eurocode 8 (EC8, 2004) for soil type C. 

The spectra drawn for the PEER NGA and the European Database for intensity level 

3 (I3) are presented in Figure A1. 
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Figure A.1 : The scaled ground motion spectra: a) 9-storey and b) 20-storey building. 
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APPENDIX B 

Ground Motions Used for 45-Story RC Coupled Wall System 
Thirty ground motions having two horizontal components, namely fault normal and 

fault parallel, which are selected from 10 different historical earthquakes, are utilized 

in the study. Some features of the earthquakes are listed in Table A.1. 

All of the records are selected from PEER NGA Database (2006). A scaling procedure 

is applied to the original records to match the mean spectral accelerations of the ground 

motions within the selected period range to the specific ASCE 7.05 spectrum. The 

selection and scaling criteria are listed below: 

1- A maximum of 0.30 mean squared error (MSE) is sought for the scaling 

procedure to match the target spectrum between a 0.1 sec and a 10 sec period 

range with a limited SF value of 3.0. 

2- The fault rupture distances (r) are taken to be less than 45 km. 

3- The lowest usable frequency is taken to be 0.12 Hz. 

The short period spectral acceleration (Ss) and 1.0 sec spectral acceleration (S1) of the 

ASCE 7.05 spectrum are 1.55 g and 0.9 g, respectively. The acceleration spectra of the 

fault normal and fault parallel components, their mean spectrums and the target ASCE 

7.05 spectrum, are illustrated together in Figure A.2. 

Table B.1 : Selected historical earthquakes. 

No Earthquake 
Name Date Magnitude 

Number 
of 

Records 
Fault mechanism 

      1 Chi-Chi  20.09.1999 7.62 8 Reverse-Oblique 
2 Imperial Valley 15.10.1979 6.53 7 Strike-Slip 
3 Loma Prieta 18.10.1989 6.90 3 Reverse-Oblique 
4 Cape Mendocino 25.04.1992 7.10 2 Reverse 
5 Duzce 12.11.1999 7.14 2 Strike-Slip 
6 Hector Mine 16.10.1999 7.13 2 Strike-Slip 
7 Superstition Hills 24.11.1987 6.54 2 Strike-Slip 
8 Landers 28.06.1992 7.28 2 Strike-Slip 
9 Kocaeli 17.08.1999 7.51 1 Strike-Slip 
10 Tabas 16.09.1978 7.35 1 Reverse 
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Figure B.1 : Spectrum curves of the selected earthquake records. 

Figures A3 and A4 show the PGA and PGV features of the ground motions after the 

scaling procedure. The horizontal axis expresses the NGA sequence number. The SFs 

used in the scaling procedure and the fault distances (r) are also given on the figures. 

As seen from the figures, the acceleration set consists of an equal number of impulsive 

and non-impulsive types of records. 
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Figure B.2 : PGA of the original records. 
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Figure B.3 : PGV of the records after scaling. 

  



183 
 

APPENDIX C 

Ground Motions Used for the Existing 21-Story RC Building  
Thirty ground motions having two horizontal components, which are selected from 12 

different historical earthquakes, are utilized in this example. Some important features 

of the earthquakes are listed in Table A.2. 

All of the unscaled records are selected from the PEER NGA database (2006). A 

scaling procedure is then applied to the original records to match the mean spectral 

accelerations of the ground motions within the selected period range (0.2-2.0 sec) to 

the specific Turkish Earthquake Code (TEC 2007) design spectrum. The directions of 

the ground motions are not changed during the scaling procedure; in other words, the 

directions of original records remained constant without rotating them to fault-normal 

and fault-parallel components.  

The design spectrum of the TEC (2007) are defined with two characteristic periods 

(Ta, Tb) related to soil type, effective ground acceleration factor (A0) and building 

importance factor (I). The characteristic periods are taken as Ta=0.15 sec, Tb=0.40 sec 

corresponding to the soil type Z2 (firm soil), A0=0.4 and I=1.0. The acceleration 

spectra of the X and Y components, their mean spectrums and the target TEC (2007) 

design spectrum, are all illustrated together in Figure A.5. 

Table C.1 : Selected historical earthquakes. 

No. Earthquake 
Name Date Magnitude No. of 

Records Fault Mechanism 

      1 Chi-Chi  20.09.1999 7.62 5 Reverse-Oblique 
2 Imperial Valley 15.10.1979 6.53 5 Strike-Slip 
3 Loma Prieta 18.10.1989 6.90 2 Reverse-Oblique 
4 Cape 

 
25.04.1992 7.10 1 Reverse 

5 Duzce 12.11.1999 7.14 2 Strike-Slip 
6 Hector Mine 16.10.1999 7.13 1 Strike-Slip 
7 Superstition 

 
24.11.1987 6.54 2 Strike-Slip 

8 Landers 28.06.1992 7.28 2 Strike-Slip 
9 Kocaeli 17.08.1999 7.51 3 Strike-Slip 
10 Friuli 06.05.1976 6.50 1 Thrust 
11 Kobe 17.01.1995 6.90 2 Strike-Slip 
12 Northridge 17.01.1999 6.70 4 Blind Thrust 
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Figure C.1 : Spectrum curves of selected earthquake records. 

Depending on the results obtained from the preliminary NTHAs performed for the 

design level EQE, the structure does not experience nonlinearity because of its existing 

overdesigned capacity. Therefore, it is decided to scale-up the set of EQEs acceleration 

by a scale factor of 2.5.      

Figures A.6 and A.7 show the PGA and PGV features of the unscaled ground motions. 

The horizontal axis in both figures express the station identifier. The SFs used in the 

scaling procedure are also given in Figure A.6.  
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Figure C.2 : PGA of the original records. 
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Figure C.3 : PGV of the original records. 
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