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RESIDUAL STRENGTH ESTIMATION AND IMPERFECTION 

MODELLING FOR PLASTICALLY DEFORMED STIFFENERS 

SUMMARY 

Accurate modelling of the deflection curve of a member is essential to assess 

strength calculations, furthermore a well predicted residual stress distribution 

presents a better result for residual strength assessment. In a real-time simulation to 

obtain these results in a desired accuracy demands computer utilization with finite 

element analysis and modelling. Additionally, measurement of residual stresses is 

not affordable for every case considering the need of equipment and crew to conduct 

measurements so they need to be predicted. In this study a new method is proposed 

for curve fitting of the deflection curve discretization by means of fixed curvature 

segments employing G
1
 tangential continuity. The method uses nodal coordinates 

and inclination at the 1
st
 node to fit segments through nodes with a fixed curvature 

within using only either measured or predicted imperfection curve. 

Additionally, the method presents the methodology to use curvatures for residual 

strength assessment employing moment-curvature relationship explained within 

Euler-Bernoulli beam theory. Since its known that any curvature of a beam leads to 

strains in fibers, and strains lead to stresses; area integration of the stresses through 

section leads to the subjected or resultant moment. Using the mentioned relationship 

for any metarial model or composition of materials for any type of section the 

moment-curvature relationship can be obtained directly.  Thus, it will be possible to 

predict the reduction in moment carrying capacity due to the damages of the structure 

considering the residual curvatures and possibly loaded moment could be predicted 

using moment-curvature diagram.  

In the thesis, mesh independency study for the proposed imperfection modelling 

method is conducted by evaluation of the modelling for 3 different cases and these 

results are compared to analytical curvature value. For validation of model in 

prediction of residual curvatures the results are compared with a commercial FEA 

program, ANSYS using a loading-unloading simulation of a beam for the given 

moments. It has been seen that proposed method can be used for modelling of any 

kind of imperfection and assessment of residual strength of beams.  
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PLASTİK ŞEKİL DEĞİŞTİRMEYE MARUZ KALMIŞ STİFNERLERİN 

MUKAVEMET KAPASİTESİNİN VE KALICI ŞEKİL 

DEĞİŞTİRMELERİNİN TAYİNİ 

ÖZET 

Gerçek uygulamalardaki bir kiriş elemanın doğrultusu hiçbir zaman mükemmel 

değildir ve bu başlangıç sehimlerinin nihai mukavemet, burkulma ve moment taşıma 

kapasitesi gibi mukavemet hesaplarında bu sehimlerin yer alması hesaplamaların 

geçerliliği açısından önem arz etmektedir. Yapılardaki sehimler genel olarak iki 

kategoriye ayrılabilmektedir, bunlardan biri üretim safhasındaki yüksek sıcaklık 

farkları ve zorlanmış şekil verme sebebi ile oluşurken, diğer bir sebebi ise kullanım 

anında meydana gelen ani ve elastik sınır dışındaki yüklemeler ve türevleri sebebiyle 

olabilmektedir. Türü fark etmeksizin her iki sehim sebebiyle yapıda artık 

gerilmelerin oluştuğu hali hazırda bilinmektedir. Plastik şekil değiştirmeler kalıcı 

olsa dahi, artık gerilmeler zaman geçtikçe veya ısıl tavlama ile giderilebilmektedir. 

Artık gerilmelerin giderilmesi süreci içerisinde yapının artık gerilmelerin 

mertebesine bağlı olarak mukavemet özelliklerinin farklı olacağı, yapısal sehimlerin 

göz önüne alınması gerektiği görülebilmektedir. Başlangıç sehimleri temelli bu 

mukavemet problem, hem artık gerilmeleri gözeterek hem de gözetmeksizin 

çözülebilecek bir durumdadır. 

Başlangıç sehimlerinin tayininde gerçek ölçümler ile belirlenen veriler yer 

alabilseydi bu veriler mukavemet hesaplarında etkin olarak kullanılabilirdi. Ancak 

ölçüm yönteminin kolay uygulanamayışı, gerektirdiği maliyet ve çaba sebebiyle 

bunun yerine literatürde yaygın olarak karşılaşılan başlangıç sehimlerinin burkulma 

modlarının superpozisyonu şeklinde tayin edilmesi daha kullanışlıdır . Başlangıç 

sehimlerinin ölçümü veya belirlenmesinin yansıra bu sehimlerin mukavemet 

hesaplarında nasıl yer edineceği veya kullanılacağı bu çalışmada önerilen yöntem ile 

gösterilmiştir. 

Temel olarak plastik deformasyon sebebiyle oluşan artık gerilmeler plastik gerilme 

dağılımından, boşaltma gerilme dağılımının çıkartılması ile elde edilebilmektedir. 

Yükleme geçmişinin bilinmediği bir durumda başlangıç sehimleri veya plastik 

deformasyonlara bakılarak artık gerilmeleri tayin etmek mümkün olmadığı için, 

literatürde başlangıç sehimlerinin şiddetine bakılarak yaklaşım yapan yöntemler 

mevcuttur. Ancak bu yöntem kalıcı deformasyonlar/ başlangıç sehimleri tahmin 

edilen burkulma mod şekilleri ile örtüşmediğinde bu yaklaşım doğru bir ilişki 

göstermemektedir. Ayrıca kalıcı şekil değiştirmeye uğramış yapının sonlu elemanlar 

analizi ile artık gerilmelerini tayin etmek mümkündür . Bunun yansıra, son 

zamanlarda çalışılmakta olan tersine sonlu elemanlar yöntemi ile mevcut 

deformasyonlar ile gerilmeleri ilişkilendirebilse de plastik gerilme-şekil değiştirme 

ilişkisini hakkında henüz bir çözüm sunmamaktadır. Her ne kadar hasarlı veya 

hasarsız artık gerilme ölçme sistemleri ve yöntemleri mevcut ise de bu yöntemlerin 

hem zahmetli oluşu hem de ekipman kullanımı dolayısıyla bir ekip ve ödenek 

gerektirdiğinden akademik veya özel durumlar dışında kullanılması maliyet ve 

zaman açısında uygulanabilir değildi. 
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Bu çalışmada, mevcut bilinen bir başlangıç sehimi, eğrilikleri temel alan bir 

yaklaşımla modellenmiş, ayrıca bu model artık gerilmelerin tayini için moment-

eğrilik ilişkisi çerçevesinde kullanılmıştır. Bu modelleme safhasında temel olarak 

bilinmesi gereken hususlar düğümsel koordinatlar ve ilk düğümdeki dönme 

değeridir. Ancak ilk düğümdeki dönme değerinin bilinmediği durumlarda ,ya model 

mutlak olarak dönmenin olmadığı noktadan eşlenik olarak kurulmalı, yada diğer sınır 

şartı bilinerek bu sınır şartının empoze edilmesi ile ilk düğümdeki iteratif-deneme 

yöntemleriyle bulunması gerekmektedir. Tez kapsamında yapılan uygulamarda ,hem 

simetrik özelliklerinden dolayı eşlenik yarı model, hem de asimetriden dolayı iteratif 

yöntem ile eğriliklerin tayini yapılmıştır. Ayrıca tez kapsamında kullanılan başlangıç 

sehim modellenme yönteminin ağdan bağımsızlık çalışması yürütülmüştür. Ağdan 

bağımsızlık çalışması analitik olarak belirlenen bir başlangıç sehiminin farklı düğüm 

sayılarında ayrıklaştırılarak, hesaplanan eğrilik değerlerinin analitik olarak bulunan 

eğrilik değeri ile karşılaştırılması ile gerçekleştirilmiştir. 

Düğümsel koordinatlardan eğrilik değerleri ile ilişkilendiren formülasyon tez 

kapsamında eğrisel koordinat ekseni üzerinden tayin edilmiş ve aşağıdaki şekilde 

elde edilmiştir. İlgili denklem kullanılarak, sadece düğümsel koordinatların ve 

başlangıç düğümündeki dönme değerinin bilinmesi ile G
1
 eğim sürekliliğine uyan 

yay parçalarının birleşimi ile çökme eğrisini temsil etmek mümkündürBurada  
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Aynı yöntem dolu kirişten daha farklı moment-eğrilik ilişkisi sunan I profil kirişi için 

incelenmiş, fiktif oluşturulmuş bir durum için kalıcı şekil değiştirmelerin tayin edilip 

artık mukavemet kapasitesinin belirlenmesi ve kirişin hasarlı durumdaki moment-

eğrilik ilişkisinin sunulması şeklinde gerçekleştirilmiştir. Farklı malzeme 

modellerinin uygulanabilirliğinin gösterilmesi amacıyla hem elastik- mükemmel 

plastik, hem de elastik – plastik malzeme ile uygulanmış , farklı iki modelde de 

moment-eğrilik ilişkisi elde edilmiş, ayrıca jenerik bir profil enkesiti için hesap 

yapabilen bir algoritma tez sonunda ek olarak sunulmuştur. 

Kirişlerin eğilmesi probleminde sabit eğriliğe sahip bir kiriş parçasında oluşacak 

gerilme değerleri ,y değeri fiberlerin tarafsız eksenden eğilme doğrultusundaki 

mesafesi olmak üzere aşağıdaki şekilde elde edilmektedir. Burada  y  değeri ilgili 

fiberdeki birim şekil değiştirmeyi temsil etmekte, S fonksiyonu ise ilgili birim şekil 

değiştirmeyi gerilme ile ilişkilendiren fonksiyondur. Lineer malzeme modeli için bu 

fonksiyon Elastisite modeli ile yazılabilmekte iken lineer olmayan malzeme 

modelinin dahil edilebilmesi amacıyla fonksiyon olarak seçilmiştir.     

  '[   ] y S y     

Her fiberde gerilmenin bilindiği durumda, kesite ilgili eğrilik değerinde etkiyen 

momentin değeri aşağıdaki fonksiyon ile bulunabilmektedir. Burada B(y) fonksiyonu 

düşey kesit doğrultusunca kalınlık değişimini temsil etmekte, herhangi bir kesitin 

birim adım fonksiyonları vasıtasıyla tanımlanması sağlayabilmektedir.  

   '( ) ,    
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Herhangi bir eğriliğe sahip bir kiriş parçası üzerindeki yükleme kaldırıldığında 

üzerine oluşacak kalıcı deformasyonlar doğrudan eğrilikler kullanılmasıyla, elastik 

eğrinin yüklenmiş durumdaki eğrilikten çıkartılmasıyla bulunabilmektedir. Tersi bir 

durumda başlangıç sehimleri üzerinden hesaplanmış eğriliklere sahip kiriş parçasına 

boşaltma öncesi yüklenmiş olan moment artık eğrilik noktasından lineer yükleme 

çizgisine  paralel çizginin moment-eğrilik eğrisi ile kesiştiği yer olarak aşağıdaki 

denklemde belirtildiği üzere bulunabilmektedir. 

( ) 0artıkEIM      

Yapısal elemanların çökme eğrisinin doğru modellenmesi ve temsil edilmesi 

mukavemet hesaplarının isabetli bir şekilde yapılması ve artık gerilmelerin tayini 

sebebiyle önem arz etmektedir. Gerçek zamanlı bir sonlu elemanlar simülasyonunda 

bu işlemlerin gerçekleştirilmesi hem hesaplama zamanı hem de modelleme süreci 

sebebiyle pratik ve uygulanabilir değildir. Bu çalışmada herhangi bir çökme eğrisinin 

eğrilik bazında elemanlarla ayrıklaştırarak, ayrıca eğim sürekliliğin sağlanması da 

gözetilerek modellenmesini sağlayan yeni bir yöntem önerilmiştir. Bunlara ek olarak 

önerilen yöntem ile Euler-Bernoulli kiriş teorisinde mevcut olan moment-eğrilik 

ilişkisinin kullanılarak artık gerilmelerin tayini ve artık mukavemet hesaplarının 

yapılabilirliği sunulmuştur. Sonuçlar dikdörtgen kesitli bir kiriş ve elastik-mükemmel 

plastik malzeme modeli ayrıca I kesitli bir kiriş ve  için sonlu elemanlar analizi ile 

karşılaştırılmış ve önerilen yöntem doğrulanmıştır.  

  



xxvi 

  



1 

 INTRODUCTION  1. 

Axis of a real beam member is not perfectly straight, and it is essential to take into 

account the effect of imperfection when compression forces are considered (Schafer 

& Pekoz 1998). These imperfections can be classified into two categories: 

imperfections generated from manufacturing processes, and permanent deformations 

generated from inelastic bending of the structure, caused by accidents, extreme 

waves or any type of impact loads. It is clear that both types of imperfection make 

residual stresses on the structure. Even if the plastic strains are permanent, the 

residual stresses after a plastic deformation will disappear by time or by heat 

treatment. During this normalizing period, residual strength behaviour of the 

structure will be different from the stress free condition. Therefore, it is very 

necessary to consider the effect of residual stresses for a reliable strength calculation 

after rebound of an inelastic loading. This imperfection based residual strength 

problem can be studied with or without residual stresses. 

The predictions would be much accurate if the actual measurements were used for 

the imperfection, but common approach is to predict the imperfection geometry 

according to the buckling modes of the structure (Pastor 2013). Additionally it is 

possible to obtain magnitude of imperfections through measurement procedures and 

adapting the corresponding measurement into strength calculations.Furthermore a 

method to fit curves for a beam deflection is presented in the study. 

 

Figure 1.1 . Residual stress distribution in plastically deformed section subjected to 

bending moment. 
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Fundamentally, residual stresses are obtained by subtracting the rebound stresses 

from the inelastic stress distribution, as shown in Figure 1.1, which requires the 

plastic stress distribution to be known.  If the loading history is unknown, there are 

some prediction methods for residual stress distribution, depending on the 

magnitudes of the imperfections (Schafer & Pekoz 1998), but these methods does not 

show a good correlation if the deflection pattern is not similar with the predicted 

buckling mode (Pastor, 2013 and Schafer & Pekoz, 1998). Additionally, permanent 

deformed configuration can be simulated by using a finite element analysis (FEA) 

with solid elements, which is generally a time-consuming process (Pastor, 2013). 

Furthermore, there are several destructive or non-destructive measurement methods 

for detecting imperfection and residual stresses, to be later used as input data for 

FEA ; these methods, however, are not practical considering the required effort and 

duration for measurement. 

A recently developed method, inverse FEM (Tessler & Spangler, 2003, 2005), 

determines the stress distribution using displacements and is adopted for ship 

structures (Kefal & Oterkus, 2016). However, this method is currently available for 

the elastic region and cannot offer representation of the plastic deformation. 

 Purpose of Thesis  1.1

The motivation of this study is to find a simple and robust method for residual 

strength calculation of beam type structures that have permanent deflection and when 

the loading history is unknown; only the material properties and initial imperfection 

are required as input for the proposed method. 

The main ideas of the method is quite straightforward: as the deflections can be 

obtained by using curvatures, curvatures can be obtained from the deflections. Thus, 

initial curvature can be calculated from the initial geometry, and since curvature 

represents the strain distribution, stress values can be calculated from the strain using 

the constitutive relations, consequently giving the internal forces from the 

equilibrium relations. Briefly, if the curvature is known, bending moment can be 

calculated, and vice-versa. Bending moment-curvature relationship can be derived 

either as a function or as a diagram.Finally, The proposed method presents a solution 

to obtain deflections through a known loading, by the derivation of the curvatures 

either by graph or substition into moment-curvature function. In reverse, with a 
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known deflection or imperfection the corresponding moments of loading can be 

obtained by derivation of the curvatures with the proposed curve –fitting method. 

Validation of the proposed method was achieved with the comparison of an FEA 

procedure where plastic moment deformation from the proposed method has been 

introduced prior to a rebounding process. The resultant permanent deflections along 

a rectangular cross section beam has been compared and it is seen that proposed 

method performs an appropiate correlation with the results obtained in FEA. 

 Literature Review 1.2

Residual stress and imperfections exist on any structure, as a result of manufacturing 

processes or repairing after breakage and collisions. Cold forming has been indicated 

as the reason of residual stress distribution over thickness. Even though residual 

stresses introduced intentionally in some structures which is surely known to subject 

either tension or compression loads; ship structures aren’t subjected to stress 

variation in a single direction, rather than that, subjects to a cyclic load over a large 

range both in compression and tension. As a result, it is significant to have an idea 

about residual stress on cold formed members. Looking through past studies to 

understand this phenomenon was needed. 

Pastor et al (2012) has suggested the actual manufacturing process of cold forming to 

be modelled by FEA, residual stress along with initial imperfections have transferred 

to the nonlinear buckling analysis (Progressive Collapse Analysis) to initiate a 

buckling mode by modelling an actual, realistic progress instead of the statistical 

methods. Schafer and Pekoz (1998) have emphasized that distribution and magnitude 

of residual stress in cold formed profiles, as well as the longtidunal imperfections, 

takes a significant place to define buckling mode shapes of the profile. They have 

shown that profiles, which is cold formed, characterizes a variable longitudinal 

imperfection wave lengths which better to be seen in transformed frequency 

spectrum. They have shown in a set of nonlinear finite element analysis that residual 

stress and imperfection magnitude of cold formed steels affect buckling behavior. 

Within this study, it has shown that KDT can be used to obtain residual stresses both 

in elastic and plastic region as well as can present imperfections which can be used 

as initial state in nonlinear buckling analysis. 
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In last decades there has been new regulations offered to ship owners, which is hull 

monitoring in three levels. First level indicates the motion data to be analyzed on 

board, while the second level indicates stresses on ship’s hull to be monitored 

instantly and post-processed for awareness of crew. It has been noted in ABS 

regulations (2014) that, monitoring system has threshold levels which indicates 

warnings, so that actions may be taken and safety at sea has achieved. In order to 

achieve the prediction, DNV regulations (2011) require ships over 180 meters to be 

equipped with monitoring systems, which also involves the structural health 

monitoring; this includes the strain-gauges located at amidships, as near as possible 

to amidships at bottom and top, and quarterly lengths at the deck, and at also 

starboard and port in all the cases. Determination of the residual stress distribution 

remained after the collision or freak wave encounter can be used to predict the 

remaining load carrying capacity of the structure. Thus, it would help monitoring 

systems to predict a threshold which is in safe region of structural health state of the 

hull. Cai, Jiang and Lodejiwks (2015) discussed that load carrying capacity of 

structures were underestimated due to removal of plastically deformed areas in 

determination of residual strength in the ship structures and in contrast, 

overestimated due to ignoring residual stresses at initial stage. The corresponding 

research considers both residual stresses and initial deformations and investigates the 

local behavior for a stiffened plate laid between primary girders subjected to an 

impact load which simulates weigh fall over deck, to estimate residual stresses and 

imperfections for nonlinear buckling analysis. 

Requirements in structural health monitoring lead to emergence of different methods 

to be applied. Kefal, Oterkus (2016) has suggested Inverse Finite Element Method to 

be applied for the case of stress and displacement monitoring of Panamax 

containership. Four node quadrilateral inverse elements (iQS4) were used to model 

parallel midbody of the ship and iFEA has been conducted to obtain corresponding 

stress-displacement distribution along the section. They have shown that stress and 

displacements over parallel midbody, equipped with adequate number of strain gauge 

rosettes, could be obtained by iFEM within a range of accuracy. 

Residual stresses may not appear only with cold forming, naturally they exist in a 

structural member subjected to load which leads to yielding at any point, followed by 

an elastic spring back explained by Timoshenko (1930). Shakedown theorems 
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explain that a structure subjected to cyclic large range loads have a limit where 

structure stays in a state where deformations stay in elastic range, or form a 

hysteresis curve within plastic range. Jones (1975) suggested the concept of 

shakedown limit that can be used instead of ultimate strength as failure criteria for 

hull girder, since the major loads acting on hull girder consist of wave loads acting 

not monotonically but cyclic. He, furthermore, modelled ship structure as beam 

ignoring the buckling phenomena occurs at the plates . Residual stresses could 

indicate where material yields first, either in tension or compression, therefore a well 

predicted residual stress in hull girder inevitably leads to a well predicted shakedown 

limit. Beam-column model doesn’t account for local buckling, hence a model which 

accounts for local plate buckling in prediction of should have been investigated. 

Zhang, Paik and Jones (2016) investigated shakedown limit for Suezmax-Class 

double-hull tanker considering buckling effect on compressive elements. They have 

shown that a structure, consists of subcomponents, such as hull girder could have 

shakedown limit. Further, they assessed that a hull girder might fail before reaching 

to assumed ultimate strength subjected cyclic loads leading to shakedown. 
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 CONCEPT OF THE MODEL 2. 

 Main Concept of Deflection Modelling 2.1

Elastica is the one of the best nonlinear theory for the finite strain calculations of 

beam deflection, where large deflection approach becomes ineffective. Elastica 

method describes a formulation for the deflection curve using slopes of the curve in 

curvilinear coordinate system as follows as shown in Figure 2.1 

 cos
dx

s
ds

                (2.1) 

 sin
dy

s
ds

               (2.2) 

Where 𝜃(𝑠) starting slope of the segment, ∆𝑦(𝑠) is vertical displacement at the ends 

of the segment, ∆𝑥(𝑠) is vertical displacement at the ends of the segment. 

 

Figure 2.1 Deflection curve of a 1-D structure. 

If we take the integration of eq. 2.1 and eq. 2.2, following expression for the 

locations of the deflection curve can be defined as follows, where ∆𝑠 presents length 

of the segment. 
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     sin  

s s

s

y s s y s s ds


                 (2.3) 

     cos  

s s

s

x s s x s s ds


                 (2.4) 

Moreover, curvature (𝛷(𝑠)) expression gives us the following relation: 

 
d

s
ds


                (2.5) 

By taking the integration of the Eq. 2.5, change in the slope values can be calculated 

in terms of curvature values in curvilinear system as given in Eq. 2.6. with the 

assumption that curvature is constant during ∆𝑠,along a segment. 

     s s s s s                  (2.6) 

The displacement formulations Equation 2.7 and Equation 2.8 can be obtained by 

submitting Equation 2.6 into Equation 2.3 and Equation 2.4. as follows:  

 
 

   
1

cos cosy s s s s
s

      
             (2.7) 

 
 

   
1

sin sinx s s s s
s

      
            (2.8) 

It is essential to know the slope at the first segment for the starting point of the 

numerical calculation so that the rest of slopes can be obtained, it could be either 

obtained by using the other boundary condition or using a conjugate model which the 

beam is modelled as starting from extremum point (ie. symmetry) of deflection 

where where slope angle is known to be zero at any condition . Slope angles at the 

following segments can be calculated from Equation 2.6 using current the curvature 

value of the segment. Finally, displacements of the segment can be calculated using 

Equation 2.7 and Equation 2.8.   

With an available deflection curve, curvature distribution becomes available to be 

obtained through explained procedure, in reverse the deflection can be obtained by 

using set of equations relating the curvature and spatial coordinates of the deflection. 
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 Imperfection Modelling 2.2

If a beam element with initial deflection is discretized into finite number of segments 

and nodes, it is assumed that each segment may have a different curvature but 

curvature does not change within the segment as seen in Figure 2.2. Displacements at 

each node are known or can be measured (Tayyar 2012).  

From the geometric considerations slope angle of the chord (𝜑(𝑠)) can be expressed 

as follows: 

   
   

 
1tan

2

s y s
s s

x s


  

 
  


                 (2.9) 

From Equation 2.9, ∆𝜃 can be obtained as follows: 

 
 

 
 12 tan

y s
s s

x s
 

 
     

           (2.10) 

 

Figure 2.2 Geometry of a segment displacement. 

Physically reciprocal of the curvature is equal to the radius of the curvature. The 

equation of the curvature is defined as a function of chord length (∆𝑐) , and slope 

angle (∆𝜃) from geometric considerations as follows: 
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 

 

 

2sin
21

s

s
r c s

 
 
   


            (2.11) 

By substituting Eq. 2.10 into Eq. 2.11, curvature of the segment can be defined in 

terms of the displacements  and the starting slope (𝜃(𝑠)) angle of the segment as 

follows. 

 

 
 

 

 

12sin tan
y s

s
x s

s
c s


 

   
 


            (2.12) 

Using the Eq.12, it is possible to model curve from curvatures, which obeys G
1
 type 

continuity. It essential to know the first segment slope angle to start the calculation. 

Therefore, slope angle of the deflection curve should be measured or iteratively 

obtained with consideration of the boundary conditions or the numerical calculation 

should be started from extremum point of the deflection curve.  

 Curvature-External Load Relationship  2.3

Following expressions are limited with elastic perfectly plastic material model and 

rectangular cross section structure to achieve closed form equations for a plain 

presentation. Complex material models and different cross sections can be easily 

adapted numerically (Tayyar et al., 2014, Tayyar, 2016).  

Elastic stress behaviour at fibres is defined as follows according to the curvature 

value as follows: where y and E represents the location of the fibre from centroid of 

the cross section and elasticity modulus of the material, respectively. 

     y E y                (2.13) 

Critical value of the y where outer fibre starts yielding due to curvature value can be 

submitted from Eq. 13, where σ0 represents yielding stress of the material as follows: 

 0 /  cry E               (2.14) 

Equilibrium of external moments with stress distribution or resultant of the internal 

forces can be calculated as follows: 
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   ,    externalM s s y ydA              (2.15) 

Moment-curvature can be obtained by submitting Eq. 2.13 and Eq. 2.14 into Eq. 2.15  

 

2
2 

2

2 2
2

0 

2 2

                                        
2

      2              
2

cr

cr cr

h

cr

h

y h

cr

y y

h
E y dA y

M

h
E y dA y dA y








  


  

     





 

.            (2.16) 

Fully plastic moment: Mp and critical moment: Mo value where yielding starts for a 

rectangular bar is given as follows: 

2

0 0 / 6M bh             (2.17) 

01.5 pM M             (2.18) 

Therefore, moment value can be defined in terms of Mo value as follows:  

  0 M a aM              (2.19) 

itical value of a  is unity and curvature values can be obtained in terms of Mo value 

from Eq. 2.16 and Eq. 2.14 as follows: where e  and p  represents elastic and 

inelastic curvature values, respectively.  

 

0

0

2

2 2
      1.5

6 4

e cr

p cr

a a a
Eh

a

a a
Eh a






   


  

    
 

         

(2.20) 

 Spring-back Mechanism 2.4

Curvatures after the unloading can be calculated just by subtracting the elastic 

curvature values for the loads from the inelastic curvature values as seen in Figure 

2.3.  



12 

 

Figure 2.3 Spring-back mechanism of a member in terms of curvature- moment 

relationship. 

If the a value is smaller than 1, curvature should be calculated based on elastic 

deformation. And, for the greater values of the a than unity, plastic formulations 

should be taken. During a plastic loading process, if the load is unloaded from the 

system, there should exist a plastic strain and plastic curvature. Because behaviour of 

the unloading process will be elastic, residual curvature can be calculated with 

following formula. 

       0
0 0 0 0

0

2 2

  6 4
residual p ea a a a

E h a

  
        

           (2.21) 

 Residual Strength Calculations 2.5

Strength calculations where residual stresses are neglected is very simple and new 

curvature can be calculated as the summation of initial curvature from Eq. 2.12 with 

curvature comes from new loading represented with 𝑎1 as follows: 

 
 

 
1

1

1

                              1 1

                  1  1 1.5

initial e

new

initial P

a a
a

a a

  
  

   
.          (2.22) 
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It should be noticed that second order effects are very sensitive when compression 

forces are considered in Eq. 2.22.  Curvature formulation is still Eq.20 where 𝑎𝑐𝑟=1. 

If residual stress values want to be taken into account, the moment or 𝑎0 value 

should be determined from roots of Eq. 2.20, where initial curvature values from Eq. 

2.12 is submitted.   

0
0 0

0

2  2
        1    1.5

  6 4 
initial a a

E h a

  
       

                      (2.23) 

Now, critical value yields to 𝑎0value and new criteria can be expressed as follows: 

 
   

   
0 1 0

1

0 1 0

                                 1

                     1 1.5

initial e

new

initial P

a a a a
a

a a a a

  
  

   
         (2.24) 
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 VALIDATION AND APPLICATION 3. 

 Mesh Independency of Imperfection Modelling 3.1

Mesh independency of the proposed imperfection modelling has been done using a 

analytically known curve and comparing the curvatures with the values calculated 

from the proposed method.  

A Half sinus wave with a magnitude of 100 and expressed in following formula; 

100*Sin(0.5* * / 500)x   0 500x               (3.1) 

Comparison of results have been proposed in the Table 3.1 and accuracy of 20 

division of segments have been decided to be used for the current case . 

Table 3.1 Comparison of relative difference between different divisions. 

Analytical 20 Division % 10 Division % 5 Division % 

0.00093866 0.000940 0.13548 0.000953 1.5502 0.00097 4.03505 

0.00078847 0.000785 -0.47941 0.000809 2.6554 0.00085 7.31361 

0.00056900 0.000559 -1.70890 0.00059 3.7150 0.00065 12.2152 

0.00030499 0.000302 -1.14336 0.000335 9.7252 0.00040 31.3725 

 Application of a Bar with I Section   3.2

In thesis the analytical relationships have been proposed for a bar with rectangular 

section where integrals could be evaluated analytically. In a different case where 

material model changes or shape of section varies than simple and analytical 

expression the evluation should be done numerically, thus relationship between 

moment-curvature should be expressed. Since moment should be numerically 

evaluated based on integration through section, it could be easily obtained by 

employing simple algorithms but reverse relation from curvature to moment, or 

residual curvature to moment should be obtained using graphical relationships or by 

expressing the moment-curvature curve into polynomial form. 
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In the application the material model has chosen to be elastic-plastic with strain 

hardening and the strain-stress relationship has drawn in Figure 3.1. With a yield 

stress of 350 Mpa and elasticity modulus of 200000 Mpa. 

 

Figure 3.1 Stress-Strain relationship of the material. 

Employing Equation 2.15 and 2.13 , moment value can be evaluated at any curvature 

using numerical integration. Moment- curvature relationship for corresponding I 

section with dimensions of 100 mm wide flange and 10 mm thickness and 100 mm 

wide web and 10 mm thickness presented in Figure 3.2. 
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Figure 3.2 Moment-Curvature relationship of the section with the presented 

material. 

In order to calculate subjected moment so that the residual curvature would appear at 

the measured value , the moment-curvature curve should be either expressed in 

closed form. ( )M  is the function that represents the closed form, the expression to 

find the moment can be expressed as below. 

( ) 0artıkEIM                   (3.2) 

This formula can be shown in the diagram as below , to find the residual curvature 

for a moment, or vice versa. Where 1st curve shows procedure to find the sujected 

moment to lead into residual curvature, 2nd curve shows the unloading where a 

moment leads to residual curvature. 

 

Figure 3.3 Rebounding process and calculation of the subjected moment. 

 Validation of Proposed Model 3.3

It is challenging to find out corresponding deflected curve or loading history from a 

permanently deflected curve with FEM. Therefore, moment (𝑎0) distribution of the 

rectangular bar for inelastic bending is going to define via proposed method and is 

going to implement to FEM. Results are going to compared after unloading process 

with FEM.   
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 A numerical application for a rectangular bar is examined for validation of the 

method. Main dimensions of the bar are “10 mm X 10 mm” with a 1000 mm length 

and material is elastic perfectly plastic with 200000 N/mm
2
 Elasticity modulus and 

300 N/mm
2
 yield stress. It is assumed that initial imperfection of the defection curve 

is in sine form. Result of plastic and residual deflections of the half length of the 

structure for a 0.1 L mid-span deflection are given in Figure 3.1, simulated from the 

proposed method. Simplified simulation is available in appendix. 

Furthermore, comparison of the proposed method with the FEM is been presented in 

Table 3.1,  difference of the proposed method is given in percentage of the error 

,varies from the FEM results by 3% in the largest amax achieved. And percentage of 

error is seen to be varying with the amax  value. 

Table 3.2 Comparison of FEM results with the proposed method, plastic 

deformation. 

 

 

Proposed 

δplastic/L 

FEM 

    δplastic/L 

Proposed 

δresidual/L 

FEM 

δresidual/L 
%Error amax 

0.0453 0.0454 0.002 0.0020 0.4800 1.1758 

0.0582 0.0583 0.01 0.0100 -0.2105 1.3150 

0.0709 0.0706 0.02 0.0199 -0.2200 1.3796 

0.0925 0.0925 0.04 0.0398 -0.3822 1.4339 

0.1543 0.1508 0.1 0.0969 -3.0306 1.4780 
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Figure 3.4 Comparison of plastic and residual deformation on the span. 
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 CONCLUSION 4. 

Curve modelling method from curvatures is expressed for numerical calculation. 

Curvature modelling from deflection curve locations is introduced using geometric 

relations. Moment calculation formulas from curvatures of an elastic perfectly plastic 

rectangular bar is obtained, and formulations of curvatures for the given moment 

values of an elastic perfectly plastic rectangular bar is submitted from that formulas. 

Validity of the proposed method is shown with FEM comparison. Remaining 

strength capacity of the structure is defined for the plastically deformed structures. 

Calculations are separated into two parts; firstly the geometric calculations based on 

simple usage of curvature values of the structure, second is the moment curvature 

relationship. Moment curvature relationship is depending on the material model and 

equilibrium of internal and external forces over cross-section. Therefore, deflection 

calculation is just a simple numerical calculation of curvatures achieved from 

moment distribution of the system if moment curvature relationship is obtained 

initially. By the way proposed method has the advantage of fast response and may 

become an alternative for hull monitoring. It will be possible to find out loading 

history of an inelastic deformation if the fracture does not occur and residual stresses 

are available. Post buckling analysis for residual stress free initial deflected 

structures can be obtained just by addition of initial curvature to actuated curvature 

due to loading.   
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APPENDICES 

APPENDIX A: Simplified simulation of the beam model 

APPENDIX B: Moment-Curvature calculator mathematica code 
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APPENDIX A  

Calculation table for a 10 mm midspan residual deflection of rectangular bar 

described at chapter 3 for 10 segments is given below. 

Table A.1. Initial curvature and loading history calculation . 

X Y Θ ΔΘ 𝝓𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 A 

0 0.000 0.000    

50 1.231 0.049 0.0492 0.000984 1.4779 

100 4.894 0.097 0.0478 0.000953 1.4769 

150 10.899 0.142 0.0450 0.000893 1.4748 

200 19.098 0.183 0.0410 0.000809 1.4712 

250 29.289 0.219 0.0361 0.000707 1.4658 

300 41.221 0.249 0.0303 0.000590 1.4574 

350 54.601 0.273 0.0241 0.000465 1.4442 

400 69.098 0.291 0.0174 0.000335 1.4224 

450 84.357 0.301 0.0105 0.000202 1.3814 

500 100.000 0.305 0.0035 0.000067 1.2787 

 

Sub calculations of x = 250 is given below: 

Following calculation are for the s where x = 250 

Δy = 29.289 - 19.098 = 10.191 mm 

Δx = 50 mm 

From Eq. 2.10 

Δθ(250) = 1 10.191
2 tan 0.183 0.036054

50

 
  

 
 rad 

θ(250) = 0.183 + 0.036054 = 0.2191 rad 

From Eq. 2.11  

𝜙𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(250) =
2 sin(

0.0361

2
)

√502+10.1912
 = 0.000707 

and from Eq. 2.21. 

0.000707 = −
2 𝜎0

𝐸 ℎ
(√

2

6−4 𝑎0
− 𝑎0)           (1<a≤1.5) 

Where the root of the equation is: a =1.4658 

Therefore, corresponding external moment subjected to the deflection at x = 250 is 

𝑀(𝑎) = 𝑀𝑜 𝑎 =
𝜎0𝑏ℎ2

6
1.4658 =-73287.5 N mm 
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It should be noticed that curve length can be submitted from eq.5 as follows: 

Δ𝑠 =
Δθ

𝜙𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
=0.036054/0.000707 =51.0308 mm 

Table for deflection for the moment distribution above. 

Table A.2. Deflection calculation for the estimated loadings 

X 𝝓 ΔΘ Θ ΔY ΔX 

0   0   

50 0.00143 0.071 0.071 1.785 49.978 

100 0.00140 0.070 0.141 5.324 49.845 

150 0.00134 0.067 0.209 8.770 49.584 

200 0.00125 0.063 0.272 12.062 49.206 

250 0.00115 0.058 0.331 15.143 48.725 

300 0.00103 0.053 0.383 17.961 48.160 

350 0.00090 0.046 0.430 20.470 47.536 

400 0.00076 0.040 0.470 22.628 46.881 

450 0.00062 0.032 0.502 24.399 46.231 

500 0.00045 0.02362 0.525 25.736 45.632 

 

Curvature for the corresponding moment is calculated from Eq. 2.20 as follows: 

𝛷𝑝 = −
2 ×  300

200000 × 10
√

2

6 − 4 × 1.4658
= 0.001146 

Δθ can be obtained from Eq. 2.5 as: 

Δ𝜃 = 0.001146 × 51.0308 = 0.05849 𝑟𝑎𝑑 

And from the previous iteration, if θ at x=200  is equal to 0.272, θ for the curve 

where x=250 will be as follows: 

𝜃(250) = 𝜃(200) + Δ𝜃 = 0.272 + 0.05849 = 0.3306 𝑟𝑎𝑑  

Finally Δx and Δy values can be obtained from Eq. 2.7 and Eq. 2.8, respectively as 

follows: 

Δx =
1

0.001146
[sin(0.3306) − sin(0.272)] = 48.725 𝑚𝑚 

Δy =
1

0.001146
[cos(0.272) − cos(0.3306)] = 15.143 𝑚𝑚 
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APPENDIX B  

 

 

Figure B.1 Mathematica code for calculation of moment. 
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