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RESIDUAL STRENGTH ESTIMATION AND IMPERFECTION
MODELLING FOR PLASTICALLY DEFORMED STIFFENERS

SUMMARY

Accurate modelling of the deflection curve of a member is essential to assess
strength calculations, furthermore a well predicted residual stress distribution
presents a better result for residual strength assessment. In a real-time simulation to
obtain these results in a desired accuracy demands computer utilization with finite
element analysis and modelling. Additionally, measurement of residual stresses is
not affordable for every case considering the need of equipment and crew to conduct
measurements so they need to be predicted. In this study a new method is proposed
for curve fitting of the deflection curve discretization by means of fixed curvature
segments employing G* tangential continuity. The method uses nodal coordinates
and inclination at the 1% node to fit segments through nodes with a fixed curvature
within using only either measured or predicted imperfection curve.

Additionally, the method presents the methodology to use curvatures for residual
strength assessment employing moment-curvature relationship explained within
Euler-Bernoulli beam theory. Since its known that any curvature of a beam leads to
strains in fibers, and strains lead to stresses; area integration of the stresses through
section leads to the subjected or resultant moment. Using the mentioned relationship
for any metarial model or composition of materials for any type of section the
moment-curvature relationship can be obtained directly. Thus, it will be possible to
predict the reduction in moment carrying capacity due to the damages of the structure
considering the residual curvatures and possibly loaded moment could be predicted
using moment-curvature diagram.

In the thesis, mesh independency study for the proposed imperfection modelling
method is conducted by evaluation of the modelling for 3 different cases and these
results are compared to analytical curvature value. For validation of model in
prediction of residual curvatures the results are compared with a commercial FEA
program, ANSYS using a loading-unloading simulation of a beam for the given
moments. It has been seen that proposed method can be used for modelling of any
kind of imperfection and assessment of residual strength of beams.

XXi






PLASTIK SEKIL DEGISTIRMEYE MARUZ KALMIS STIFNERLERIN
MUKAVEMET KAPASITESININ VE KALICI SEKIL
DEGISTIRMELERININ TAYINi

OZET

Gergek uygulamalardaki bir kiris elemanin dogrultusu higbir zaman miikemmel
degildir ve bu baslangi¢ sehimlerinin nihai mukavemet, burkulma ve moment tagima
kapasitesi gibi mukavemet hesaplarinda bu sehimlerin yer almasi hesaplamalarin
gegerliligi agisindan 6nem arz etmektedir. Yapilardaki sehimler genel olarak iki
kategoriye ayrilabilmektedir, bunlardan biri iiretim sathasindaki yiiksek sicaklik
farklar1 ve zorlanmis sekil verme sebebi ile olusurken, diger bir sebebi ise kullanim
aninda meydana gelen ani ve elastik sinir disindaki yiiklemeler ve tiirevleri sebebiyle
olabilmektedir. Tiirii fark etmeksizin her iki sehim sebebiyle yapida artik
gerilmelerin olustugu hali hazirda bilinmektedir. Plastik sekil degistirmeler kalici
olsa dahi, artik gerilmeler zaman gectikce veya 1s1l tavlama ile giderilebilmektedir.
Artik gerilmelerin giderilmesi siireci icerisinde yapmin artitk gerilmelerin
mertebesine bagli olarak mukavemet 6zelliklerinin farkli olacagi, yapisal sehimlerin
gdz Online alinmasi1 gerektigi goriilebilmektedir. Baslangi¢ sehimleri temelli bu
mukavemet problem, hem artik gerilmeleri gozeterek hem de gozetmeksizin
¢oziilebilecek bir durumdadir.

Baslangic sehimlerinin tayininde gercek Olclimler ile belirlenen veriler yer
alabilseydi bu veriler mukavemet hesaplarinda etkin olarak kullanilabilirdi. Ancak
Ol¢iim yonteminin kolay uygulanamayisi, gerektirdigi maliyet ve ¢aba sebebiyle
bunun yerine literatiirde yaygin olarak karsilasilan baslangi¢ sehimlerinin burkulma
modlarinin superpozisyonu seklinde tayin edilmesi daha kullanishdir . Baglangic
sehimlerinin Ol¢limii veya belirlenmesinin yansira bu sehimlerin mukavemet
hesaplarinda nasil yer edinecegi veya kullanilacagi bu ¢alismada onerilen yontem ile
gosterilmistir.

Temel olarak plastik deformasyon sebebiyle olusan artik gerilmeler plastik gerilme
dagilimindan, bosaltma gerilme dagiliminin ¢ikartilmasi ile elde edilebilmektedir.
Yiikleme ge¢misinin bilinmedigi bir durumda baglangic sehimleri veya plastik
deformasyonlara bakilarak artik gerilmeleri tayin etmek miimkiin olmadig: igin,
literatiirde baslangic sehimlerinin siddetine bakilarak yaklasim yapan yontemler
mevcuttur. Ancak bu yontem kalici deformasyonlar/ baslangic sehimleri tahmin
edilen burkulma mod sekilleri ile ortiismediginde bu yaklasim dogru bir iliski
gostermemektedir. Ayrica kalici sekil degistirmeye ugramis yapinin sonlu elemanlar
analizi ile artik gerilmelerini tayin etmek miimkiindiir . Bunun yansira, son
zamanlarda calisilmakta olan tersine sonlu elemanlar yontemi ile mevcut
deformasyonlar ile gerilmeleri iligskilendirebilse de plastik gerilme-sekil degistirme
iliskisini hakkinda heniliz bir ¢6ziim sunmamaktadir. Her ne kadar hasarli veya
hasarsiz artik gerilme Slgme sistemleri ve yontemleri mevcut ise de bu yontemlerin
hem zahmetli olusu hem de ekipman kullanimi dolayisiyla bir ekip ve O6denek
gerektirdiginden akademik veya 6zel durumlar disinda kullanilmasi maliyet ve
zaman acisinda uygulanabilir degildi.
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Bu c¢alismada, mevcut bilinen bir baslangi¢ sehimi, egrilikleri temel alan bir
yaklagimla modellenmis, ayrica bu model artik gerilmelerin tayini i¢in moment-
egrilik iligkisi cercevesinde kullanilmistir. Bu modelleme sathasinda temel olarak
bilinmesi gereken hususlar diigimsel koordinatlar ve ilk diiglimdeki donme
degeridir. Ancak ilk diiglimdeki donme degerinin bilinmedigi durumlarda ,ya model
mutlak olarak donmenin olmadigi noktadan eslenik olarak kurulmali, yada diger sinir
sart1 bilinerek bu sinir sartinin empoze edilmesi ile ilk diigiimdeki iteratif-deneme
yontemleriyle bulunmasi gerekmektedir. Tez kapsaminda yapilan uygulamarda ,hem
simetrik Ozelliklerinden dolay1 eslenik yar1 model, hem de asimetriden dolayi iteratif
yontem ile egriliklerin tayini yapilmistir. Ayrica tez kapsaminda kullanilan baslangi¢
sehim modellenme yOonteminin agdan bagimsizlik ¢alismasi ylriitiilmistiir. Agdan
bagimsizlik ¢aligmasi analitik olarak belirlenen bir baslangi¢ sehiminin farkli diigiim
sayilarinda ayriklastirilarak, hesaplanan egrilik degerlerinin analitik olarak bulunan
egrilik degeri ile karsilastirilmasi ile gerceklestirilmistir.

Diigliimsel koordinatlardan egrilik degerleri ile iliskilendiren formiilasyon tez
kapsaminda egrisel koordinat ekseni iizerinden tayin edilmis ve asagidaki sekilde
elde edilmistir. Ilgili denklem kullanilarak, sadece diigiimsel koordinatlarin ve
baslangi¢ diigiimiindeki dénme degerinin bilinmesi ile G' egim siirekliligine uyan
yay parcalarinin birlesimi ile ¢cokme egrisini temsil etmek miimkiindiirBurada

Zsin(tan‘l iig —e(s)J

Ac(s)

O(s)=

Ayn1 yontem dolu kiristen daha farkli moment-egrilik iliskisi sunan I profil kirisi i¢in
incelenmis, fiktif olusturulmus bir durum igin kalic1 sekil degistirmelerin tayin edilip
arttk mukavemet kapasitesinin belirlenmesi ve kirisin hasarli durumdaki moment-
egrilik iligkisinin sunulmast seklinde gergeklestirilmistir. Farkli malzeme
modellerinin uygulanabilirliginin gosterilmesi amaciyla hem elastik- miikemmel
plastik, hem de elastik — plastik malzeme ile uygulanmis , farkli iki modelde de
moment-egrilik iliskisi elde edilmis, ayrica jenerik bir profil enkesiti i¢in hesap
yapabilen bir algoritma tez sonunda ek olarak sunulmustur.

Kiriglerin egilmesi probleminde sabit egrilige sahip bir kiris pargasinda olusacak
gerilme degerleri ,y degeri fiberlerin tarafsiz eksenden egilme dogrultusundaki
mesafesi olmak iizere asagidaki sekilde elde edilmektedir. Burada @y degeri ilgili
fiberdeki birim sekil degistirmeyi temsil etmekte, S fonksiyonu ise ilgili birim sekil
degistirmeyi gerilme ile iligkilendiren fonksiyondur. Lineer malzeme modeli i¢in bu
fonksiyon Elastisite modeli ile yazilabilmekte iken lineer olmayan malzeme
modelinin dahil edilebilmesi amaciyla fonksiyon olarak se¢ilmistir.

o(y)=-S[®y]

Her fiberde gerilmenin bilindigi durumda, kesite ilgili egrilik degerinde etkiyen
momentin degeri asagidaki fonksiyon ile bulunabilmektedir. Burada B(y) fonksiyonu
diisey kesit dogrultusunca kalinlik degisimini temsil etmekte, herhangi bir kesitin
birim adim fonksiyonlar1 vasitasiyla tanimlanmasi saglayabilmektedir.

Ybottom
Mexternal (S) = j B(y)O'(S, y)ydA

Yiop
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Herhangi bir egrilige sahip bir kiris parcasi ilizerindeki yiikleme kaldirildiginda
lizerine olusacak kalic1 deformasyonlar dogrudan egrilikler kullanilmasiyla, elastik
egrinin yliklenmis durumdaki egrilikten ¢ikartilmasiyla bulunabilmektedir. Tersi bir
durumda baslangi¢ sehimleri lizerinden hesaplanmis egriliklere sahip kiris parcasina
bosaltma Oncesi yiiklenmis olan moment artik egrilik noktasindan lineer yiikleme
cizgisine paralel ¢izginin moment-egrilik egrisi ile kesistigi yer olarak asagidaki
denklemde belirtildigi izere bulunabilmektedir.

M (®)—Eld,. =0

artk

Yapisal elemanlarin ¢okme egrisinin dogru modellenmesi ve temsil edilmesi
mukavemet hesaplarinin isabetli bir sekilde yapilmasi ve artik gerilmelerin tayini
sebebiyle 6nem arz etmektedir. Gergek zamanli bir sonlu elemanlar simiilasyonunda
bu islemlerin gerceklestirilmesi hem hesaplama zamani hem de modelleme siireci
sebebiyle pratik ve uygulanabilir degildir. Bu ¢alismada herhangi bir ¢okme egrisinin
egrilik bazinda elemanlarla ayriklastirarak, ayrica egim siirekliligin saglanmasi da
gozetilerek modellenmesini saglayan yeni bir yontem Onerilmistir. Bunlara ek olarak
Onerilen yontem ile Euler-Bernoulli kiris teorisinde mevcut olan moment-egrilik
iliskisinin kullanilarak artik gerilmelerin tayini ve artik mukavemet hesaplarinin
yapilabilirligi sunulmustur. Sonuglar dikdortgen kesitli bir kiris ve elastik-miikemmel
plastik malzeme modeli ayrica I kesitli bir kiris ve ig¢in sonlu elemanlar analizi ile
karsilastirilmis ve 6nerilen yontem dogrulanmastir.
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1. INTRODUCTION

Axis of a real beam member is not perfectly straight, and it is essential to take into
account the effect of imperfection when compression forces are considered (Schafer
& Pekoz 1998). These imperfections can be classified into two categories:
imperfections generated from manufacturing processes, and permanent deformations
generated from inelastic bending of the structure, caused by accidents, extreme
waves or any type of impact loads. It is clear that both types of imperfection make
residual stresses on the structure. Even if the plastic strains are permanent, the
residual stresses after a plastic deformation will disappear by time or by heat
treatment. During this normalizing period, residual strength behaviour of the
structure will be different from the stress free condition. Therefore, it is very
necessary to consider the effect of residual stresses for a reliable strength calculation
after rebound of an inelastic loading. This imperfection based residual strength
problem can be studied with or without residual stresses.

The predictions would be much accurate if the actual measurements were used for
the imperfection, but common approach is to predict the imperfection geometry
according to the buckling modes of the structure (Pastor 2013). Additionally it is
possible to obtain magnitude of imperfections through measurement procedures and
adapting the corresponding measurement into strength calculations.Furthermore a

method to fit curves for a beam deflection is presented in the study.
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Figure 1.1 . Residual stress distribution in plastically deformed section subjected to
bending moment.



Fundamentally, residual stresses are obtained by subtracting the rebound stresses
from the inelastic stress distribution, as shown in Figure 1.1, which requires the
plastic stress distribution to be known. If the loading history is unknown, there are
some prediction methods for residual stress distribution, depending on the
magnitudes of the imperfections (Schafer & Pekoz 1998), but these methods does not
show a good correlation if the deflection pattern is not similar with the predicted
buckling mode (Pastor, 2013 and Schafer & Pekoz, 1998). Additionally, permanent
deformed configuration can be simulated by using a finite element analysis (FEA)
with solid elements, which is generally a time-consuming process (Pastor, 2013).
Furthermore, there are several destructive or non-destructive measurement methods
for detecting imperfection and residual stresses, to be later used as input data for
FEA ; these methods, however, are not practical considering the required effort and

duration for measurement.

A recently developed method, inverse FEM (Tessler & Spangler, 2003, 2005),
determines the stress distribution using displacements and is adopted for ship
structures (Kefal & Oterkus, 2016). However, this method is currently available for

the elastic region and cannot offer representation of the plastic deformation.

1.1 Purpose of Thesis

The motivation of this study is to find a simple and robust method for residual
strength calculation of beam type structures that have permanent deflection and when
the loading history is unknown; only the material properties and initial imperfection

are required as input for the proposed method.

The main ideas of the method is quite straightforward: as the deflections can be
obtained by using curvatures, curvatures can be obtained from the deflections. Thus,
initial curvature can be calculated from the initial geometry, and since curvature
represents the strain distribution, stress values can be calculated from the strain using
the constitutive relations, consequently giving the internal forces from the
equilibrium relations. Briefly, if the curvature is known, bending moment can be
calculated, and vice-versa. Bending moment-curvature relationship can be derived
either as a function or as a diagram.Finally, The proposed method presents a solution
to obtain deflections through a known loading, by the derivation of the curvatures

either by graph or substition into moment-curvature function. In reverse, with a



known deflection or imperfection the corresponding moments of loading can be
obtained by derivation of the curvatures with the proposed curve —fitting method.
Validation of the proposed method was achieved with the comparison of an FEA
procedure where plastic moment deformation from the proposed method has been
introduced prior to a rebounding process. The resultant permanent deflections along
a rectangular cross section beam has been compared and it is seen that proposed

method performs an appropiate correlation with the results obtained in FEA.

1.2 Literature Review

Residual stress and imperfections exist on any structure, as a result of manufacturing
processes or repairing after breakage and collisions. Cold forming has been indicated
as the reason of residual stress distribution over thickness. Even though residual
stresses introduced intentionally in some structures which is surely known to subject
either tension or compression loads; ship structures aren’t subjected to stress
variation in a single direction, rather than that, subjects to a cyclic load over a large
range both in compression and tension. As a result, it is significant to have an idea
about residual stress on cold formed members. Looking through past studies to

understand this phenomenon was needed.

Pastor et al (2012) has suggested the actual manufacturing process of cold forming to
be modelled by FEA, residual stress along with initial imperfections have transferred
to the nonlinear buckling analysis (Progressive Collapse Analysis) to initiate a
buckling mode by modelling an actual, realistic progress instead of the statistical
methods. Schafer and Pekoz (1998) have emphasized that distribution and magnitude
of residual stress in cold formed profiles, as well as the longtidunal imperfections,
takes a significant place to define buckling mode shapes of the profile. They have
shown that profiles, which is cold formed, characterizes a variable longitudinal
imperfection wave lengths which better to be seen in transformed frequency
spectrum. They have shown in a set of nonlinear finite element analysis that residual
stress and imperfection magnitude of cold formed steels affect buckling behavior.
Within this study, it has shown that KDT can be used to obtain residual stresses both
in elastic and plastic region as well as can present imperfections which can be used

as initial state in nonlinear buckling analysis.



In last decades there has been new regulations offered to ship owners, which is hull
monitoring in three levels. First level indicates the motion data to be analyzed on
board, while the second level indicates stresses on ship’s hull to be monitored
instantly and post-processed for awareness of crew. It has been noted in ABS
regulations (2014) that, monitoring system has threshold levels which indicates
warnings, so that actions may be taken and safety at sea has achieved. In order to
achieve the prediction, DNV regulations (2011) require ships over 180 meters to be
equipped with monitoring systems, which also involves the structural health
monitoring; this includes the strain-gauges located at amidships, as near as possible
to amidships at bottom and top, and quarterly lengths at the deck, and at also
starboard and port in all the cases. Determination of the residual stress distribution
remained after the collision or freak wave encounter can be used to predict the
remaining load carrying capacity of the structure. Thus, it would help monitoring
systems to predict a threshold which is in safe region of structural health state of the
hull. Cai, Jiang and Lodejiwks (2015) discussed that load carrying capacity of
structures were underestimated due to removal of plastically deformed areas in
determination of residual strength in the ship structures and in contrast,
overestimated due to ignoring residual stresses at initial stage. The corresponding
research considers both residual stresses and initial deformations and investigates the
local behavior for a stiffened plate laid between primary girders subjected to an
impact load which simulates weigh fall over deck, to estimate residual stresses and

imperfections for nonlinear buckling analysis.

Requirements in structural health monitoring lead to emergence of different methods
to be applied. Kefal, Oterkus (2016) has suggested Inverse Finite Element Method to
be applied for the case of stress and displacement monitoring of Panamax
containership. Four node quadrilateral inverse elements (iQS4) were used to model
parallel midbody of the ship and iFEA has been conducted to obtain corresponding
stress-displacement distribution along the section. They have shown that stress and
displacements over parallel midbody, equipped with adequate number of strain gauge

rosettes, could be obtained by iFEM within a range of accuracy.

Residual stresses may not appear only with cold forming, naturally they exist in a
structural member subjected to load which leads to yielding at any point, followed by

an elastic spring back explained by Timoshenko (1930). Shakedown theorems



explain that a structure subjected to cyclic large range loads have a limit where
structure stays in a state where deformations stay in elastic range, or form a
hysteresis curve within plastic range. Jones (1975) suggested the concept of
shakedown limit that can be used instead of ultimate strength as failure criteria for
hull girder, since the major loads acting on hull girder consist of wave loads acting
not monotonically but cyclic. He, furthermore, modelled ship structure as beam
ignoring the buckling phenomena occurs at the plates . Residual stresses could
indicate where material yields first, either in tension or compression, therefore a well
predicted residual stress in hull girder inevitably leads to a well predicted shakedown
limit. Beam-column model doesn’t account for local buckling, hence a model which
accounts for local plate buckling in prediction of should have been investigated.
Zhang, Paik and Jones (2016) investigated shakedown limit for Suezmax-Class
double-hull tanker considering buckling effect on compressive elements. They have
shown that a structure, consists of subcomponents, such as hull girder could have
shakedown limit. Further, they assessed that a hull girder might fail before reaching

to assumed ultimate strength subjected cyclic loads leading to shakedown.






2. CONCEPT OF THE MODEL

2.1 Main Concept of Deflection Modelling

Elastica is the one of the best nonlinear theory for the finite strain calculations of
beam deflection, where large deflection approach becomes ineffective. Elastica
method describes a formulation for the deflection curve using slopes of the curve in

curvilinear coordinate system as follows as shown in Figure 2.1

dx
E=cos¢9(s) (2.1)

dy .
E—sme(s) (2.2)

Where 6(s) starting slope of the segment, Ay(s) is vertical displacement at the ends

of the segment, Ax(s) is vertical displacement at the ends of the segment.

Figure 2.1 Deflection curve of a 1-D structure.

If we take the integration of eg. 2.1 and eq. 2.2, following expression for the
locations of the deflection curve can be defined as follows, where As presents length

of the segment.



y(s+As)—y(s)=STssin0(§)d§ (2.3)

s
S+As

X(s+As)—x(s)= I cosf(5)ds (2.4)

Moreover, curvature (@ (s)) expression gives us the following relation:

@ (s) =2 (25)

By taking the integration of the Eg. 2.5, change in the slope values can be calculated
in terms of curvature values in curvilinear system as given in Eqg. 2.6. with the

assumption that curvature is constant during As,along a segment.
O(s+As)—-0(s)=D(s)As (2.6)

The displacement formulations Equation 2.7 and Equation 2.8 can be obtained by

submitting Equation 2.6 into Equation 2.3 and Equation 2.4. as follows:

Ay(s)= @%S)[cose(s)—cose(SJrAs)] (2.7)
Ax(s):i[sin O(s+As)-sing(s)] (2.8)

®(s)

It is essential to know the slope at the first segment for the starting point of the
numerical calculation so that the rest of slopes can be obtained, it could be either
obtained by using the other boundary condition or using a conjugate model which the
beam is modelled as starting from extremum point (ie. symmetry) of deflection
where where slope angle is known to be zero at any condition . Slope angles at the
following segments can be calculated from Equation 2.6 using current the curvature
value of the segment. Finally, displacements of the segment can be calculated using

Equation 2.7 and Equation 2.8.

With an available deflection curve, curvature distribution becomes available to be
obtained through explained procedure, in reverse the deflection can be obtained by
using set of equations relating the curvature and spatial coordinates of the deflection.



2.2 Imperfection Modelling

If a beam element with initial deflection is discretized into finite number of segments
and nodes, it is assumed that each segment may have a different curvature but
curvature does not change within the segment as seen in Figure 2.2. Displacements at

each node are known or can be measured (Tayyar 2012).

From the geometric considerations slope angle of the chord (¢(s)) can be expressed

as follows:
AO(s) 1 AY(S)
=60 =t 2.9
P(s)=0(s)+— =t o) (29)
From Equation 2.9, A8 can be obtained as follows:
L AY(8)
AQ(s)=2|tan*——~-¢ 2.10
(s) (an AxX(s) (S)J (2.10)

Figure 2.2 Geometry of a segment displacement.

Physically reciprocal of the curvature is equal to the radius of the curvature. The
equation of the curvature is defined as a function of chord length (Ac) , and slope

angle (A8) from geometric considerations as follows:



2sin[A92(s)]

1
(5) r Ac(s) @1
By substituting Eq. 2.10 into Eq. 2.11, curvature of the segment can be defined in
terms of the displacements and the starting slope (6(s)) angle of the segment as

follows.

25in[tan‘l iigz)—a(s)j
®(s)= () (2.12)

N—"

Using the Eq.12, it is possible to model curve from curvatures, which obeys G* type
continuity. It essential to know the first segment slope angle to start the calculation.
Therefore, slope angle of the deflection curve should be measured or iteratively
obtained with consideration of the boundary conditions or the numerical calculation
should be started from extremum point of the deflection curve.

2.3 Curvature-External Load Relationship

Following expressions are limited with elastic perfectly plastic material model and
rectangular cross section structure to achieve closed form equations for a plain
presentation. Complex material models and different cross sections can be easily

adapted numerically (Tayyar et al., 2014, Tayyar, 2016).

Elastic stress behaviour at fibres is defined as follows according to the curvature
value as follows: where y and E represents the location of the fibre from centroid of

the cross section and elasticity modulus of the material, respectively.
o(y)=—Edy (2.13)

Critical value of the y where outer fibre starts yielding due to curvature value can be

submitted from Eq. 13, where o represents yielding stress of the material as follows:
Yo =—0,/ (ED) (2.14)

Equilibrium of external moments with stress distribution or resultant of the internal

forces can be calculated as follows:

10



Moermar (3) =1 (s, ) y dA (2.15)

Moment-curvature can be obtained by submitting Eq. 2.13 and Eq. 2.14 into Eq. 2.15

n
i Edy? h
- y“dA Yo >§
“h
M (@)= \ (2.16)

2
~E®Y’dA+2[ —o,ydA ycrsg
Yer

2

N‘?'—'N

Fully plastic moment: M, and critical moment: M, value where yielding starts for a
rectangular bar is given as follows:

M, = o, bh’ /6 (2.17)
M, =15M, (2.18)

Therefore, moment value can be defined in terms of M, value as follows:
M(a)=aM, (2.19)

itical value of a is unity and curvature values can be obtained in terms of M, value

from Eq. 2.16 and Eqg. 2.14 as follows: where ®, and @ represents elastic and

inelastic curvature values, respectively.

20,

D, =g la|<a,
o@-1
d)p:—ﬂ fi a, <|aj<1.5
Eh V6-4a
(2.20)

2.4 Spring-back Mechanism

Curvatures after the unloading can be calculated just by subtracting the elastic

curvature values for the loads from the inelastic curvature values as seen in Figure
2.3.

11



p O

D(ao)

[>—>
Drfac) Defa)

Figure 2.3 Spring-back mechanism of a member in terms of curvature- moment
relationship.

If the a value is smaller than 1, curvature should be calculated based on elastic
deformation. And, for the greater values of the a than unity, plastic formulations
should be taken. During a plastic loading process, if the load is unloaded from the
system, there should exist a plastic strain and plastic curvature. Because behaviour of
the unloading process will be elastic, residual curvature can be calculated with

following formula.

CDresiduaI(ao)zmp(ao)_(be(ao)=_%[ 6—24a0 _ao] (221)

2.5 Residual Strength Calculations

Strength calculations where residual stresses are neglected is very simple and new
curvature can be calculated as the summation of initial curvature from Eq. 2.12 with

curvature comes from new loading represented with a, as follows:

Dot + Do (ai) al<1l
(0)) = . 2.22
o () {d)mmal +®,(a) l<al<15s (2.22)

12



It should be noticed that second order effects are very sensitive when compression

forces are considered in Eq. 2.22. Curvature formulation is still Eq.20 where a_,=1.

If residual stress values want to be taken into account, the moment or a, value

should be determined from roots of Eq. 2.20, where initial curvature values from Eg.

2.12 is submitted.

20, 2
o =——0 ’ -a, 1<|a,| <15 2.23
initial Eh [ 6—45 J <| |< ( )

Now, critical value yields to a,value and new criteria can be expressed as follows:

_ q)initial(a0)+q)e (al) a:I'<a0
q’"ew("’“)‘{ By (20)+ 0y (3,) < al<15 (229
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3. VALIDATION AND APPLICATION

3.1 Mesh Independency of Imperfection Modelling

Mesh independency of the proposed imperfection modelling has been done using a
analytically known curve and comparing the curvatures with the values calculated

from the proposed method.
A Half sinus wave with a magnitude of 100 and expressed in following formula;
100*Sin(0.5* z* x / 500) 0<x<500 (3.1)

Comparison of results have been proposed in the Table 3.1 and accuracy of 20

division of segments have been decided to be used for the current case .

Table 3.1 Comparison of relative difference between different divisions.

Analytical 20 Division % 10 Division % 5 Division %

0.00093866 0.000940 (.13548 0.000953 1.5502 0.00097 4.03505
0.00078847 0.000785 _-0.47941 0.000809 2.6554 0.00085 7.31361
0.00056900 0.000559 -1.70890 0.00059 3.7150 0.00065 12.2152
0.00030499 0.000302 -1.14336 0.000335 9.7252 0.00040 31.3725

3.2 Application of a Bar with | Section

In thesis the analytical relationships have been proposed for a bar with rectangular
section where integrals could be evaluated analytically. In a different case where
material model changes or shape of section varies than simple and analytical
expression the evluation should be done numerically, thus relationship between
moment-curvature should be expressed. Since moment should be numerically
evaluated based on integration through section, it could be easily obtained by
employing simple algorithms but reverse relation from curvature to moment, or
residual curvature to moment should be obtained using graphical relationships or by

expressing the moment-curvature curve into polynomial form.

15



In the application the material model has chosen to be elastic-plastic with strain
hardening and the strain-stress relationship has drawn in Figure 3.1. With a yield
stress of 350 Mpa and elasticity modulus of 200000 Mpa.

600
500
400

300

Stress (Mpa)

N
o
o

0 0.005 0.01 0.015 0.02 0.025
Strain (mm/mm)

Figure 3.1 Stress-Strain relationship of the material.

Employing Equation 2.15 and 2.13 , moment value can be evaluated at any curvature
using numerical integration. Moment- curvature relationship for corresponding I
section with dimensions of 100 mm wide flange and 10 mm thickness and 100 mm

wide web and 10 mm thickness presented in Figure 3.2.

3.50E+06
3.00E+06

= 2.50E+06

1.00E+06

5.00E+05

0.00E+00
0 0.002 0.004 0.006 0.008 0.01 0.012

Curvature (1/mm)
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Figure 3.2 Moment-Curvature relationship of the section with the presented
material.

In order to calculate subjected moment so that the residual curvature would appear at
the measured value , the moment-curvature curve should be either expressed in

closed form. M (®) is the function that represents the closed form, the expression to

find the moment can be expressed as below.
M(®)-ElD,,, =0 (3.2)

This formula can be shown in the diagram as below , to find the residual curvature
for a moment, or vice versa. Where 1st curve shows procedure to find the sujected
moment to lead into residual curvature, 2nd curve shows the unloading where a

moment leads to residual curvature.

3.50E+06
3.00E+06

~— 2.50E+06

mm

= 2.00E+06

1.50E+06

Moment (

1.00E+06 2

5.00E+05

0.00E+00 J’
0 0.002 0.004 0.006 0.008 0.01 0.012

Curvature (1/mm)

Figure 3.3 Rebounding process and calculation of the subjected moment.

3.3 Validation of Proposed Model

It is challenging to find out corresponding deflected curve or loading history from a
permanently deflected curve with FEM. Therefore, moment (a,) distribution of the
rectangular bar for inelastic bending is going to define via proposed method and is
going to implement to FEM. Results are going to compared after unloading process
with FEM.

17



A numerical application for a rectangular bar is examined for validation of the

method. Main dimensions of the bar are “10 mm X 10 mm” with a 1000 mm length

and material is elastic perfectly plastic with 200000 N/mm? Elasticity modulus and

300 N/mm? yield stress. It is assumed that initial imperfection of the defection curve

Is in sine form. Result of plastic and residual deflections of the half length of the

structure for a 0.1 L mid-span deflection are given in Figure 3.1, simulated from the

proposed method. Simplified simulation is available in appendix.

Furthermore, comparison of the proposed method with the FEM is been presented in

Table 3.1, difference of the proposed method is given in percentage of the error

,varies from the FEM results by 3% in the largest amax achieved. And percentage of

Propo.sed FEM Proposed FEM YErTOr a

dplastic/L Splastic/L Sresidual/L Sresidual/ L max
0.0453 0.0454 0.002 0.0020 0.4800 1.1758
0.0582 0.0583 0.01 0.0100 -0.2105 1.3150
0.0709 0.0706 0.02 0.0199 -0.2200 1.3796
0.0925 0.0925 0.04 0.0398 -0.3822 1.4339
0.1543 0.1508 0.1 0.0969 -3.0306 1.4780

error is seen to be varying with the amax value.

Table 3.2 Comparison of FEM results with the proposed method, plastic
deformation.
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Figure 3.4 Comparison of plastic and residual deformation on the span.
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4. CONCLUSION

Curve modelling method from curvatures is expressed for numerical calculation.
Curvature modelling from deflection curve locations is introduced using geometric
relations. Moment calculation formulas from curvatures of an elastic perfectly plastic
rectangular bar is obtained, and formulations of curvatures for the given moment

values of an elastic perfectly plastic rectangular bar is submitted from that formulas.

Validity of the proposed method is shown with FEM comparison. Remaining

strength capacity of the structure is defined for the plastically deformed structures.

Calculations are separated into two parts; firstly the geometric calculations based on
simple usage of curvature values of the structure, second is the moment curvature
relationship. Moment curvature relationship is depending on the material model and
equilibrium of internal and external forces over cross-section. Therefore, deflection
calculation is just a simple numerical calculation of curvatures achieved from
moment distribution of the system if moment curvature relationship is obtained
initially. By the way proposed method has the advantage of fast response and may
become an alternative for hull monitoring. It will be possible to find out loading
history of an inelastic deformation if the fracture does not occur and residual stresses
are available. Post buckling analysis for residual stress free initial deflected
structures can be obtained just by addition of initial curvature to actuated curvature

due to loading.
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APPENDICES

APPENDIX A: Simplified simulation of the beam model
APPENDIX B: Moment-Curvature calculator mathematica code

25



APPENDIX A

Calculation table for a 10 mm midspan residual deflection of rectangular bar

described at chapter 3 for 10 segments is given below.

Table A.1. Initial curvature and loading history calculation .

X Y ) AG® ¢residual A

0 0.000 0.000

50 1.231 0.049 0.0492 0.000984 1.4779
100 4.894 0.097 0.0478 0.000953 1.4769
150 10.899 0.142 0.0450 0.000893 1.4748
200 19.098 0.183 0.0410 0.000809 1.4712
250 29.289 0.219 0.0361 0.000707 1.4658
300 41.221 0.249 0.0303 0.000590 1.4574
350 54.601 0.273 0.0241 0.000465 1.4442
400 69.098 0.291 0.0174 0.000335 1.4224
450 84.357 0.301 0.0105 0.000202 1.3814
500 100.000 0.305 0.0035 0.000067 1.2787

Sub calculations of x = 250 is given below:
Following calculation are for the s where x = 250

Ay =29.289 - 19.098 = 10.191 mm

Ax =50 mm
From Eq. 2.10
AB(250) = Z(tan‘l 10'191—0.183j =0.036054 rad
0(250)=0.183 + 0.036054 = 0.2191 rad
From Eq. 2.11

. (0.0361

¢residual(250) = Weigzz =0.000707

and from Eq. 2.21.

20'0

Eh( 2 —ao) (1<a<1.5)

6—4 1))

0.000707 =

Where the root of the equation is: a =1.4658

Therefore, corresponding external moment subjected to the deflection at x = 250 is

M(a) = M, a = 22" 14658 =-73287.5 N mm
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It should be noticed that curve length can be submitted from eq.5 as follows:

A8
As =

=0.036054/0.000707 =51.0308 mm

¢Tesidual

Table for deflection for the moment distribution above.

Table A.2. Deflection calculation for the estimated loadings

X [0} A® (0] AY AX

0 0

50 0.00143 0.071 0.071 1.785 49.978
100 0.00140 0.070 0.141 5.324 49.845
150 0.00134 0.067 0.209 8.770 49.584
200 0.00125 0.063 0.272 12.062 49.206
250 0.00115 0.058 0.331 15.143 48.725
300 0.00103 0.053 0.383 17.961 48.160
350 0.00090 0.046 0.430 20.470 47.536
400 0.00076 0.040 0.470 22.628 46.881
450 0.00062 0.032 0.502 24.399 46.231
500 0.00045 0.02362 0.525 25.736 45.632

Curvature for the corresponding moment is calculated from Eq. 2.20 as follows:

b, = 2 x 300 2 =0.001146
P~ 200000 x10./6—4 x 1.4658

AB can be obtained from Eq. 2.5 as:

A6 = 0.001146 x 51.0308 = 0.05849 rad
And from the previous iteration, if 6 at x=200 is equal to 0.272, 8 for the curve
where x=250 will be as follows:
6(250) = 6(200) + A6 = 0.272 + 0.05849 = 0.3306 rad
Finally Ax and Ay values can be obtained from Eq. 2.7 and Eq. 2.8, respectively as
follows:

Ax [sin(0.3306) — sin(0.272)] = 48.725 mm

- 0.001146

Ay = —— 272) — . = 15.14
y 0.001146[cos(0 72) — co0s(0.3306)] 5.143 mm
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APPENDIX B

ElasticityModulus = 200 000;
YieldStress = 350;
FlenchBreadthl[y ]
FlenchBreadth2 [y ]
WebBreadth[y ] = 10;
Pinitial = @;
PEnd = 200;
Neckl = 1@;
Neck2 = 19@;
B[y_] = FlenchBreadthl [y] HeavisideTheta[y - Pinitial] -

(FlenchBreadthl[y] - WwebBreadth[y]) HeavisideTheta[y - Neck1] +

(FlenchBreadth2 [y] - webBreadth[y]) HeavisideTheta[y - Neck2] -

FlenchBreadth2[y] HeavisideTheta[y - PEnd];
Efunc[y_] = ElasticityModulus y - HeavisideTheta[Abs[y] - YieldStress / ElasticityModulus]

(ElasticityModulus y - 868.4 Abs [y] °'%)

100;
100;

StrainFunc[¢ ,y 1 =y @;
StressFunc[¢_, y_] = Efunc[y @] ;

End
AreaV = r Bl[y] dy;
P

initial
End

AreaMoment = f (yBlyl) dy;
P:

initial
Centroid = AreaMoment / AreaV;
PEnd

MomentV[¢ ] = HoldForm [J

Pinitial

B[y] StressFunc[@ , (y - Centroid)] c:ly] -

ReleaseHold [MomentV[©.01]];
Plot[B[y], {y, @, 200 }]
Plot[Efunc[y], {y, @, ©.2}]

Figure B.1 Mathematica code for calculation of moment.
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