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ABSTRACT

ESTIMATING VALUE AT RISK USING GARCH MODELS:
EVIDENCE FROM THE TURKISH BANKS

Yılmaz, Çiçek

MA in Financial Economics, Graduate School of Social Sciences

Supervisor: Assoc. Prof. Dr. Adnan Kasman

January 2008, 122 pages

This thesis investigates the behaviour and characteristics of Turkish stock markets

with a special focus on listed bank equities. The analysis is based on the fitting of

GARCH model to financial return series for four different time period. The

estimation of the parameters in the model is examined with two distributional

assumptions for the innovations; Gaussian distribution and Student-t distribution.

Furthermore, today’s Value at Risk figures are obtained via GARCH specifications,

and also one-step ahead VaR figures are forecasted. The results indicate that

GARCH (1, 1) model is suitable for modelling bank and index return series, hence,

the VaR captures well stocks’ price movements.

Keywords: volatility, garch, value at risk
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ÖZET

RİSKE MARUZ DEĞERİN GARCH MODELLERİ İLE HESAPLANMASI:
TÜRK BANKALARI ÜZERİNE BİR ÖRNEK ÇALIŞMA

Yılmaz, Çiçek

Finans Ekonomisi Yüksek Lisans Programı, Sosyal Bilimler Enstitüsü

Tez Yoneticisi: Doç. Dr. Adnan Kasman

Ocak 2008, 122 sayfa

Bu  çalışma, Türkiye’deki menkul kıymet borsasının davranışını ve karakteristiğini

banka hisselerini odak noktası alarak incelemektedir. Yapılan analizler GARCH

modelini, dört farklı periyod için, finansal zaman serilerine uygulayabilmek üzerine

kurulmuştur. Model parametreleri Normal dağılım ve Student-t dağılımı olmak üzere

iki farklı dağılım varsayımı altında tespit edilmiştir. Temin edilen parametreler

vasıtasıyla bugünün ve bir adım sonrasının Riske Maruz Değer rakamları tahmin

edilmiştir. Elde edilen sonuçlar GARCH (1, 1) modelinin banka ve endeks getiri

serilerini modellemede uygun olduğunu göstermektedir. Dolayısıyla, buradan

hareketle hesaplanan RMD değerlerinin fiyat hareketlerini yakalamada son derece

başarılı olduğu izlenmiştir.

Anahtar Kelimeler: volatilite, garch, riske maruz değer
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CHAPTER 1

INTRODUCTION

Security prices are assumed to reflect the value of a firm. Major economic events,

such as changes in interest rates, earnings announcements, announcements of

mergers and acquisitions, announcements of increases or decreases in dividends,

financing decisions as the issuance of new shares or plans to repurchase old ones and

actions of government regulators, can affect this value. These events may affect only

a firm, group of firms or even the entire market. It is important to study how such

events that cause the volatility in financial markets to increase affect stock prices

since huge trading volume of these stocks has made the measurement of market risk

to a primary concern in the financial world.

Many previous studies used the conventional methods (unconditional variance) for

measuring risk of assets. This measure of the unconditional volatility does not take

into account that there might be a predictable pattern in the stock market volatility.

However, practices show that for the high frequency data, variance is not constant

over time. Also, many financial time series have a number of common

characteristics. These are:
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a. Asset prices are generally nonstationary. Asset returns are usually

stationary and some financial time series are fractionally integrated.

b. Return series usually show no or little autocorrelation.

c. Serial independence between the squared values of the series is often

rejected pointing towards the existence of non-linear relationships between

subsequent observations.

d. Volatility of the return series appears to be clustered.

e. Normality is usually rejected in favour of some thick-tailed distribution.

f. Some series exhibit so-called leverage effect that is changes in stock prices

tend to be negatively correlated with changes in volatility. A firm with debt

and equity outstanding typically becomes more highly leveraged when the

value of the firm falls. This raises equity returns volatility if returns are

constant.

g. Volatility of different securities very often moves together.

Engel (1982) provides ARCH (autoregressive conditional heteroscedasticity) model

which takes into account excess kurtosis (i.e. fat tail behaviour) and volatility

clustering, two important characteristics of financial time series. He modelled
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conditional variance as squared of regression model’s error terms. Bollerslev (1986),

treated time-varying conditional variance as function of moving averages of past

squared residuals, and added this model the lagged values of the variance,

consequently he suggested GARCH model.

Many extensions of the simple GARCH model have been developed in the literature

such as the EGARCH of Nelson (1991), asymmetric models of Glosten, Jaganathan

Runkle (1993), Zakoian (1994), Engle and Ng (1993) and power models such as

Higgins and Bera (1992), Engle and Bollerslev (1986), and Ding, Granger and Engle

(1993) joined models such as SWARCH, STARCH, and QARCH and many more.

Hence, volatility, which is explained by conditional variance, is accepted as a

measure of risk in the literature.

Providing accurate forecasts of variances and covariances of asset returns through its

ability to be modelled as time-varying conditional variances, one can apply GARCH

models to such diverse fields as risk management, portfolio management and asset

allocation, option pricing, foreign exchange, and the term structure of interest rates.

One can find highly significant GARCH effects in equity markets, not only for

individual stocks, but for stock portfolios and indices, and equity futures markets as

well. These effects are important in such areas as value-at-risk (VaR) and other risk

management applications that concern the efficient allocation of capital. Also,

GARCH models can be used to examine the relationship between long- and short-

term interest rates. As the uncertainty for rates over various horizons changes
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through time, one can also apply GARCH models in the analysis of time-varying risk

premiums. Foreign exchange markets, which have highly persistent periods of

volatility with significant fat tail behaviour, are particularly well suited for GARCH

modelling.

In the context of risk, forecasting volatility also received great concern from the

policy makers. Particularly in emerging markets, the financial liberalization process

is not a smooth path. During last two decades, emerging markets experienced many

financial crises caused or were leaded by huge capital inflows or outflows. While this

is the situation, volatility is a good indicator for monitoring financial stability and

understanding the mechanisms and exact relations behind those crises; because

stability of economy is much related with the stability of its financial market. With

this impetus, Bank for International Settlements (BIS) has recognized internal

models to determine the capital charges of banks, so that market participants began

to deal with efficient computation of Value-at-Risk (VaR). Requiring estimation of

the variables, VaR began to benefit from GARCH models. Calculating VaR needs a

probability distribution of changes in portfolio value. This distribution is derived

from by placing assumptions on 1) how the portfolio function is approximated, and

2) how the state variables are modelled. The GARCH models are exerted for

calculating the 2nd point of the process. The variance acquired from GARCH

processes can be used as an input to the VaR formulation.

Several researchers have used GARCH models to investigate volatility in Turkey.

Some of them are Okay (1998), Lee, Saltoğlu (2002), Kutan and Aksoy (2004),
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Mazıbaş (2004), Çinko (2004), Artan (2006), Duran and Şahin (2006), Telatar,Binay

(2002), Bildirici et al. (2007), Berument et al. (2003), Turanlı et al. (2007), Gökçe

(2001), Akgül and Sayyan (2007).

Despite the mentioned literature on volatility forecasting, the paper makes

contributions to the related literature in several respects: First, this study pays

particular attention to the listed banking firms in Turkey as well as ISE-30, ISE-100

and banking index. This allows us to perceive whether banks evolve with the indexes

or not. Second, we also study four different time horizons. By dividing sample data

into some sub periods, we are able to compare the results of GARCH models among

the sub periods. Moreover, two different error distribution assumptions are exerted,

namely normal distribution and student’s t distribution. Lastly, the one-step ahead

VaR is forecasted by benefiting estimated GARCH models specifying two different

confidence intervals.

The rest of this thesis is organized as follows. The Part 2 presents literature review

for  the  GARCH  models.  The  Part  3  discusses  the  volatility  models.  The  Value  at

Risk models are discussed in Part 4. The Part 5 discusses the data and reports the

empirical results. Finally, the Part 6 contains some concluding remarks.
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CHAPTER 2

LITERATURE REVIEW

Bollerslev (1986) introduced the generalized ARCH (GARCH) model. After the

introduction of the model, the family of GARCH has grown at a tremendous rate. A

bunch of models have been built up, and also used in the VaR calculations. Nelson

(1991) (EGARCH); Glosten, Jagannathan and Runkle (1993) (GJR); Ding, Granger

and Engle (1993) (APARCH); Tse (1998) (FIAPARCH); Alexander and Lazar

(2006) (NMGARCH) tested  various GARCH models for the different financial

market data, and claimed that these models have ability to capture instantaneous

volatility changes.

The  GARCH  models  are  also  constructed  with  different  assumptions  on  normality

distribution. Palm (1996), Pagan (1996), and Bollerslev, Chou and Kroner (1992)

used fat-tailed distributions in the literature. Bollerslev (1987), Hsieh (1989), Baillie

and Bollerslev (1989), and Palm and Vlaar (1997) show that these distributions

perform better in capturing the higher observed kurtosis.

Skewness, one of the characteristics of the high frequency financial time series, is

explored  in  many  researches.  Christoffersen  and  Jacobs  (2004)  show  that  a  simple

asymmetric GARCH captures the leverage effect, and performs best of all GARCH
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models considered. Wu (2001) display the fact that the ‘leverage effect’ in stocks

determines a strong negative correlation between returns and volatility, which is the

most important reason for skewness in stock returns.

So and Yu (2006), studies seven GARCH models, including RiskMetrics and two

long  memory  GARCH  models,  in  Value  at  Risk  (VaR)  estimation.  Both  long  and

short positions of investment are considered. They apply seven models to 12 market

indices  and  four  foreign  exchange  rates  to  assess  each  model  in  estimating  VaR at

various confidence levels. The results indicate that both stationary and fractionally

integrated GARCH models outperform RiskMetrics. Although, most return series

show fat-tailed distribution and satisfy the long memory property, it is more

important to consider a model with fat-tailed error in estimating VaR. Asymmetric

behaviour is also discovered in the stock market data that t-error models give better

VaR estimates than normal-error models in long position.

Burns (2002) estimates VaR using univariate GARCH models. Long history of the

S&P 500 is used to compare the estimators with several other common approaches to

Value at Risk estimation. The test results indicate that GARCH estimates are

superior to the other methods in terms of the accuracy and consistency of the

probability level.

Varma (1999) provides empirical tests of different risk management models in the

VaR  framework  in  the  Indian  stock  market.  It  is  found  that  the  GARCH-GED

(Generalised Auto-Regressive Conditional Heteroscedasticity with Generalised Error
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Distribution residuals) performs exceedingly well at all common risk levels (ranging

from 0.25% to 10%).

Andersen et al. (2005) examine computation of portfolio VaR via historical

simulation, exponential smoothing, and GARCH models including univariate and

multivariate models on S&P 500 index. They claim that Multivariate GARCH

models are outperformed the others.

However, there are some contradictory empirical results obtained from GARCH-in-

mean-type models. French, et al. (1987) find evidence that conditional variance is

statistically significant and positively related to conditional mean for the US equity

index, as expected. However, Baillie and DeGennaro (1990), using the same data,

claim that the coefficient on conditional variance is insignificant when the

conditional distribution was a t- distribution rather than a normal distribution.

Chou (1988) provides evidence in support of a GARCH-in-mean model for a U.S.

equity index. Also, Bali and Peng (2006) find a positive and statistically significant

relation between the conditional mean and conditional volatility of market returns at

the daily level. Choudhry (1996), however, does not find statistically significant

evidence of a risk premium for six emerging market indices.

Goyal (2000) focuses on GARCH models ability to deliver one period ahead

forecasts of volatility by using daily and monthly series of the CRSP value weighted
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returns. He claims that simpler ARIMA specifications give better forecasts than the

GARCH models.

In addition above contradictory results, there are some questions concerning these

models’ forecasting ability. The most pronounced criticism is about the models’

inability to capture structural breaks and regime changes. Aiolfi and Timmermann

(2004) criticises these models being insufficient on catching volatility clustering and

structural breaks. According to Hendry and Clements (2002), GARCH is temporarily

affected from today’s rising volatility. When volatility starts to fall, VaR moves

backward to its old degree. As a result, GARCH performs well in the short term,

however, not in the long term.

Despite their drawbacks, GARCH models predominantly are used in the stock

markets, both in the emerged and emerging. After the financial crisis, especially

experienced in emerging markets, studies on  these models have been emphasized

and accumulated.

Fabozzi, et al.(2004) reveal that there is significant evidence of volatility clustering

and a strong presence of serial correlation in the Chinese stock markets; Shenzen and

Shangai. They investigate a series of GARCH models in estimating the volatility

parameters and found that the daily data on the Shenzhen is fitted well by a

GARCH(1,1) model while the data on the Shanghai exchange by a TAGARCH (1,1)

model. These two models are suggested that capture well the dynamics of the

volatility.
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Jayasuriya, et al. (2005) estimate the magnitude of assymmetric volatility for seven

mature markets and fourteen emerging markets. They find that both mature and

emerging markets exibit large magnitude of assymetric volatility, and claim the

reasons as transaction costs such as capital gains taxes, and certain trading strategies,

e.g. short-selling.

Pan and Zhiang (2006) explore a number of linear and GARCH type models for

predicting the daily volatility of two equity indices in the Chinese stock market.

Under the framework of three distributional assumptions, the forecasts are evaluated

for setting Value at Risk framework. They test seven models, namely; moving

average model, historic mean model, random walk model, GARCH model, GJR

model, EGARCH model and APARCH model. The best models are different for

Shenzen and Shangai stock markets. They conclude a number of results. First, for the

Shenzhen stock market, the traditional method seems superior, and the moving

average model is favoured for the forecasting of daily volatility. For the Shanghai

index the GARCH-t model, APARCH-N model and moving average models are

favoured. Second, in the Shenzhen stock market, the asymmetry model, i.e. the GJR

and EGARCH model perform better than other GARCH-type models, but with little

gain. The models with skewed student t distribution rank better than models with

other distributions, but again the difference is small. For the Shanghai stock market,

there is no evidence that the asymmetric model or skewed student t distribution is

superior. Third, although they cannot find one model that performs best under all the

criteria, it does appear that the random walk model is a poor performer, irrespective
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of both the series on which it is estimated and the loss function used to evaluate the

forecast.

Shin (2005) examines the relationship between expected stock returns and

conditional volatility in fourteen emerging international stock markets. Using both a

parametric and a flexible semiparametric GARCH in mean model, he suggests that a

positive relationship prevails for the majority of the emerging markets, while such a

relationship is insignificant in most cases.

Yu (2002) evaluates the performance of nine alternative models for predicting stock

price volatility using daily New Zealand NZSE40 data. The models contain both

simple models such as the random walk and smoothing models and complex models

such  as  ARCH-type  models  and  a  stochastic  volatility  model.  The  main  results  are

found as the following: (1) The stochastic volatility model provides the best

performance among all the candidates; (2) ARCH-type models can perform well or

badly  depending  on  the  form  chosen:  the  performance  of  the  GARCH(3,2)  model,

the best model within the ARCH family, is sensitive to the choice of assessment

measures; and (3) the regression and exponentially weighted moving average models

do not perform well according to any assessment measure.

Balaban,  et  al.  (2004)  evaluate  the  out-of-sample  forecasting  accuracy  of  eleven

models for weekly and monthly volatility in fourteen stock markets namely Belgium,

Canada, Denmark, Finland, Germany, Hong Kong, Italy, Japan, Netherlands,

Philippines, Singapore, Thailand, the UK and the US. Volatility is defined as within-
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week (within-month) standard deviation of continuously compounded daily returns

on the stock market index of each country for the ten-year period 1988 to 1997. The

following models are employed; a random walk model, a historical mean model,

moving average models, weighted moving average models, exponentially weighted

moving average models, an exponential smoothing model, a regression model, an

ARCH model, a GARCH model, a GJR-GARCH model, and an EGARCH model.

Two set of conclusions are obtained. (1) When employing the standard symmetric

error metrics to assess volatility forecasting performance, it is found that the

Exponential Smoothing approach dominates in providing superior forecasts of

weekly volatility. (2) Employing the non-standard asymmetric error metrics to assess

volatility forecasting performance, interestingly, the results are changed. The

asymmetric loss functions, that penalize under/over-prediction, are employed.

Specifically, when under-predictions are penalized, more heavily ARCH-type

models provide the best forecasts while the random walk is worst.

Angelidis and Degiannakis (2004) examine the performance of various volatility

models in forecasting the realized volatility based on intra day data and in calculating

the VaR numbers based on the returns of Athens Stock Exchange. They make the

evaluation of the risk management techniques on two grounds. First, the volatility

forecasts are compared with the intra-day realized variance based on the 5-minute

intra day returns. Second, under the VaR framework, they simultaneously examine

whether the exception rate is statistically equal to the expected one and the

independence of failures hypothesis is valid. For both equity indices, no model can

forecast both the VaR number and the realized volatility, since it does not generate
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the most accurate VaR values and volatility predictions. For the ASE General index

the exception rate of the GARCH–normal model is statistically equal to the expected

one, while for the Bank index this is not the case, since the APARCH-skewed

Student t model estimates the VaR number more accurately. On the other hand, the

APARCH models estimate the realized intra-day volatility better than the GARCH

framework. However, as in the case of the VaR predictions, there is not a particular

model  that  can  be  applied  for  both  indices.  Thus,  as  concerns  the  volatility  of  the

Greek stock market, although it is predictable, there is not an explicit model, which is

the most accurate for all the forecasting tasks.

GARCH models also have found a wide field of application in Turkey, which is one

of the emerging markets. Models are used in the fields extending from stock market

volatility to inflation uncertainty.

Okay (1998) examines the Istanbul Stock Exchange from 1989 to end-1996.

GARCH and alternatively EGARCH models are studied in the analysis. It is asserted

that both models performed well to explain the dynamic volatility of the ISE,

however, EGARCH is better by taking into account of the asymmetric behaviour of

the stocks.

Mazıbaş (2004) evaluates the out-of-sample forecasting accuracy of fifteen

symmetrical and asymmetrical GARCH models for daily, weekly and monthly

volatility in composite, financial, services and industry indices of Istanbul Stock

Exchange (ISE). In modelling and forecasting stock market volatility GARCH,
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EGARCH, GJR-GARCH, Asymmetrical PARCH and Asymmetrical CGARCH

models are employed. It is found that there are asymmetry and leverage effects in

daily, weekly and monthly market data, also in model forecasts, weekly and monthly

forecasts are more precise than daily forecasts. The reason for the leveraged effect is

claimed as investor’s negative attitude towards bad news gained from severe

financial crisis. Moreover, it is also found that due to high volatility in daily returns,

ARCH-type models are incompetent in modelling daily volatility.

Duran and Şahin (2006) study the existence of volatility spillover and its direction

between IMKB services, financial, industrial and technology indexes based on daily

data from July 2000 to April 2004 by benefited from indexes volatility obtained from

EGARCH  model.  Vector  Autoregressive  (VAR)  model  is  used  to  test  volatility

spillover among the indexes. According to results obtained from the VAR model, it

is found that there exists volatility spillover between IMKB indexes.

Kutan and Aksoy (2004) examine the role of public information arrival using daily

composite and sector index returns in Turkey. GARCH and EGARCH frameworks

are employed to capture the time-varying nature of asset returns in the market.

Specifically, the paper focuses on news regarding the balance of trade (BOT), real

GNP,  industrial  production,  tourism,  the  construction  sector,  and  the  CPI.  The

findings reveal that real GDP and industrial production announcements have the

most important impact on stock returns. Regarding inflation, nominal stock returns

increase in response to unfavourable inflation announcements, but only for the

financials sector and partially. Market volatility is more sensitive to news about real
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GNP, balance of trade, tourism and construction. Overall, public information appears

to play a large role in the emerging stock market of Turkey, affecting both returns

and volatility. This reflects a combination of three significant changes taking place in

the stock market since the late 1980s: greater participation of domestic and foreign

investors, increase in the volume of transactions, and the improved transparency of

the system.

Artan (2006) investigates Turkish high and persistent inflation experience and its

impact on inflation uncertainty and growth. GARCH models are used to generate a

measure of inflation uncertainty and quarterly data covers the period of 1987/1-

2003/3. GARCH (1,1) effect is observed in the series by volatility persistence.(sum

of the parameters is close to one 0.98)

Telstra and Binay (2002) investigate the applicability of PARCH modelling strategy

to the İMKB index and compares the findings with the results obtained for other

countries. The findings indicate that the volatility of the IMKB index is higher than

that of the other countries' exchanges.

Bildirici,  et  al.  (2007)  aim  to  make  a  detailed  calculation  of  the  volatility  of  daily

return by using a different calculation method, rather than using the method

( )1ln -- tt , a widely used method for calculating the volatility of daily return in the

literature by making use of the daily closing values of Istanbul Stock Exchange(ISE)

between years 1988-2006. Also, in this study, the volatility of daily return is

calculated and modelled by using of the ARCH/GARCH family models (EGARCH,



16

TARCH, GJR-TARCH, SAARCH, PGARCH, NARCH/NGARCH, APGARCH,

NPGARCH). The results obtained suggest that it is appropriate to model the

volatility of daily returns in ISE by ARCH/GARCH family models.

Berument, et al. (2004) investigate the day of the week effect for return and volatility

through a GARCH model for Istanbul Stock Exchange through the period 1986 and

2003. Using GARCH model, they find statistically significant evidence to report that

there is the day of the week effect showing that highest volatility is observed for

Mondays and lowest for Fridays. Moreover, Friday has the highest return and

Monday has the lowest return.

Turanlı, et al. (2007) predict Istanbul Stock Market volatility in 2002–2006 period

and make comparison between models under the light of predictions. In the study,

the Istanbul Stock Exchange (ISE) 100 Index’s daily closing values between the

dates of 2002 and 2006 are used. The models ARCH and GARCH which are

examining the characteristic of “heteroscedasticity” are used. GARCH (1,1)

outperform ARCH (1) as expected by the reason of concerning both standardized

residuals and its effect to the autocorrelation.

Gökçe (2001) estimates ARCH, ARCH-M, GARCH, GARCH-M, EGARCH and

EGARCH-M models by using daily data on Istanbul Stock Exchange. The

relationship between market returns and changes in volatility is analyzed, and

positive relationship is found. Having assessed model parameters, GARCH (1,1)

model have been indicated as the best fitted one.
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Akgül and Sayyan (2005) investigate existence of the asymmetry effect and the long

memory characteristic in the ISE30, with the help of Asymmetric Autoregressive

Conditional Heteroscedasticity models. The study concludes that 13 of the stocks

taking place within the IMKB-30 present asymmetry effect, and 4 of these have long

memory characteristic. The findings show that APARCH and FIAPARCH models

provide the most accurate volatility forecasts.
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CHAPTER 3

THE VOLATILITY MODELS FAMILY

3.1. Uncertainty, Risk & Volatility

The future is, by definition, uncertain. But the developed world has many tools to

quantify uncertainty and turn it into measured risk: that is, to calculate the probability

of  events  with  some  certainty.  However,  one  needs  to  make  distinction  among

uncertainty, risk and volatility, and also to define the boundaries of these three

phenomenons. Hence, we try to define them below.

The risk and uncertainty are related to the analysis by Frank H. Knight (1921), in his

treatise “Risk, Uncertainty and Profit”. Knight makes distinction between profit and

rent. He characterizes the role of profit as the reward to the entrepreneur for bearing

inevitable uncertainty. According to Knight, rent is a consequence of unequal income

distribution, however, profit is a consequence of uncertainty which is caused by lack

of information. Risk can be covered, but uncertainty cannot be calculated and

forecasted. So, profit appears as uncertainty’s payoff.

Knight, provides his uncertainty and risk definition. He attaches the label

“probabilities” to opinions formed in the absence of symmetry or homogenous data.
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He suggested that a priori and statistical probabilities reflect “measurable

uncertainty” and opinions represent “unmeasurable uncertainty”. And he states, “to

preserve the distinction… between the measurable uncertainty and an unmeasurable

one we may use the term “risk” to designate the former and the term “uncertainty”

for the latter.” (p.23

Knight explored the uncertainty and risk concepts as an economist ascertaining the

world of business and the nature of profit in that world. However, in 1950s finance

has emerged as a subject independent of economics. The event that marks the

emergence of finance as an independent subject is the doctoral dissertation defence

of  Harry Markowitz. His dissertation was on the portfolio selection. He tried to

describe how investors balance risk and reward in constructing investment portfolios.

Although not making a clear definition of risk, Markowitz (1952) considers variance

as an “undesirable thing” and states, “… if the term “yield” were replaced by

“expected yield” or “expected return”, and “risk” by “variance of return”, little

change of apparent meaning would result.” (Pg 8

9

Today, the definitions of uncertainty, risk and volatility are based on the suggestions

of Markowitz (1952). Say, et al. (1999) provide the following perspective of risk: “A

dictionary definition of risk is that of a state in which the number of possible future

events exceeds the number of actually occurring events, and some measure of

probability can be attached to them.” And they state, “Risk is thus seen to differ from

uncertainty where the probabilities are unknown.”
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To apply the above theoretical background and illustrate the differences between risk

and uncertainty for this thesis’s purposes, suppose one is attempting to forecast the

stock price of X Bank. S/he supposes that X is currently priced at $15 per share, and

historical prices place the stock at 21.89% volatility. Now supposing that for the next

3  years,  X  does  not  engage  in  any  risky  ventures  and  stays  the  same,  and  also

supposing the entire economic and financial world remains constant, this means that

risk is fixed and unchanging; that is, volatility is unchanging for the next 3 years.

However, the price uncertainty still increases over time; that is, the width of the

forecast intervals will still increase over time. For instance, year 0’s forecast is

known and is $15. However, as one progresses one day, X will most probably vary

between $14 and $16. One year later, the uncertainty bounds may be between $10

and $20. Three years into the future, the boundaries might be between $5 and $25.

As in this example, uncertainties increase while risks remain the same. Therefore,

risk is not equal to uncertainty.

Consequently we are able to say that making distinction among, uncertainty, risk and

volatility is important. Uncertainty describes a situation where various possible

outcomes are connected to an event, however, the assignment of probabilities to

these outcomes is not possible. On the contrary, risk permits  the  assignment  of

probabilities to the different outcomes. Volatility is  dedicated  to  risk  in  that  it

provides a measure of the possible variation or movement in a particular economic

variable. However, volatility is not observable in the marketplace. So, it needs to be

estimated. It is usually measured based on observed realizations of a random variable

over some historical period. This is referred to as historical volatility which is
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different from the implied volatility calculated, for example, from the Black-Scholes

formula.

Each method has its own characteristics. Implied volatilities are often referred to as a

"market consensus" of volatility—an indication of risk that combines the insights of

many market participants. For the most part, this is a reasonable interpretation.

However, implied volatilities are essentially prices. They can be biased by such

things as bid-ask spreads as well as supply and demand for options. For example, in

1995, Nick Leeson was selling so many Nikkei options that he drove that implied

volatility far below its historical levels. Historical volatility, on the other hand,

reflects actual market fluctuations. However, the data upon which historical volatility

is based may be obsolete—perhaps encompassing a period not reflective of current

market conditions.

Historical volatility measures are “backward-looking” in the sense that they rely on

the history of prices that have already been observed in a time series rather than on

expected future prices. Unlike these historical measures, “forward-looking” measures

of volatility rely on current prices which incorporate all available information about

future prices. Alternatively stated, since these current prices are determined by the

best and most up-to-date information, they reflect participant’s expectations about

future market conditions.

Implied  volatility  can  be  used  to  price  options  on  an  underlier.  It  is  the  result

obtained  from  a  theoretical  option  pricing  model  given  the  market  price  of  the
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option.  When one solve for the implied volatility of an option s/he is assuming that

the theoretical value is known and that the volatility is unknown.  Implied volatility

can be thought of as the current market consensus of volatility for the underlying

instrument assuming that everyone is using the same theoretical option pricing

model. Unlike time series measures of volatility that are entirely backward-looking,

option implied volatility is “backed-out” of actual option price which, in turn, are

based on actual transactions and expectations of market participant and thus is

inherently forward-looking.

The implied volatility of an option provides information about what market

participants expect to happen with future asset returns. Implied volatility is the

volatility  implied  by  two  things:  the  current  market  price  of  the  option,  and  some

model for calculating the theoretical price of the option such as Black-Scholes.  An

option pricing model is an attempt to express or calculate the fair market value of an

option (net of trading costs and liquidity) as a function of observable parameters,

such as maturity. The theoretical price of an option is then the fair market price of an

option under the assumptions made by the corresponding valuation model. This is the

well known option pricing the Black-Scholes model. However, historical volatility is

an  approach  to  estimate  volatility  applying  techniques  of  time  series  analysis  to

historical  data  for  the  variable.  It  can  be  used  for  VaR,  portfolio  studies  as  well  as

underliers which implied volatilities are unavailable. Historical volatility also might

be  used  as  a  reality  check  to  supplement  implied  volatilities.  In  more  basic  terms,

historical volatility (also called statistical volatility) gauges price movement in terms

of past performance.
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Historical volatility is most commonly measured by the standard deviation based on

the historical data set of an economic variable. In this context, there will always be

either  an  explicit  or  implicit  reference  to  an  underlying  probability  distribution  for

the variables of concern. However, if components or trends in the underlying

variable are predictable, then calculating volatility might be based on the standard

deviation of total variability or on the standard deviation of risk, which can be

obtained as the residual from a forecasting equation for total variability.

In  this  process,  an  additional  question  arises:  Is  the  volatility  (variance  or  standard

deviation) of the pure risk component constant, or does it vary over time? The idea

that volatility tends to cluster, i.e. that there may be serial correlation in it, and

modelling this using autoregressive conditional heteroscedasticity, was the

contribution of Robert F. Engle to the literature in 1982. The research in time varying

volatility modelling started with the introduction of the autoregressive conditional

heteroscedasticity (ARCH) model in Engle (1982). The ARCH model relates

variance of the error terms to the square of a previous period's error terms. So that,

the models are able to capture much of the volatility clustering and serial correlation

in financial time series.

3.2. Volatility Models

Volatility modelling techniques can be analysed in three parts. Models might be

categorized as “past standard deviation based models”, “ARCH type models”, and

“Stochastic Volatility models”. In this thesis, SV models are out of scope.
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Accordingly, past standard deviation based models will be mentioned generally,

ARCH type models will be conveyed in detail, and SV will not be covered.

3.2.1. Predictions Based on Past Standard Deviations

3.2.1.1. Random Walk Model

When faced with a time series that shows irregular growth, the best strategy is to try

to predict the change that occurs from one period to the next, i.e., the quantity

)1()( -- tYtY . In other words, one need to look at the first difference of the series, to

see if a predictable pattern can be discerned there. The first difference of a time

series is the series of changes from one period to the next. If )(tY denotes the value

of the time series Y at period t, then the first difference of Y at period t is equal to

)1()( -- tYtY .  If  the first  difference of Y is stationary and also completely random

(not autocorrelated), then Y is described by a random walk model, meaning that each

value is a random step away from the previous value.

Hence, the forecasting model suggests that

a=-- )1()(ˆ tYtY                                                                           (1)

where a  is the mean of the first difference , i.e., the average change one period to

the next. Rearranging this equation to put )(tY by itself on the left, one get:

a+-= )1()(ˆ tYtY                                                              (2)
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3.2.1.2. Simple Moving Average

Extending this idea, one has the Simple Moving Average method, the Exponential

Smoothing method and the Exponentially Weighted Moving Average method. The

Moving Average method discards the older estimates. Similarly, the Exponential

Smoothing method uses all historical estimates, and lastly the Exponentially

Weighted Moving Average (EWMA) method uses only the more recent ones. But

unlike the previous one, the last two exponential methods place greater weights on

the more recent volatility estimates. However, the three methods reflect a tradeoff

between increasing number of observations and sampling nearer to time t .

A simple moving average is the unweighted mean of the previous n  data points. In

this method, each data series might be converted into a new series that is a moving

average over any number of periods. This moving average smoothes out

irregularities and captures cyclical influences if the data is stationary and seasonally

adjusted.  Simple moving average models have an order as “ n ”  and  weights  as

“ n
1 ”.   Any value of n  may be used, but the higher the value of  “ n ” the less the

amount of variation in the forecasts. A forecast for the next period is the moving

average of the current period.
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For example, a 10-day simple moving average of closing price is the mean of the

previous 10 days' closing prices. If the prices are mP , 1-mP ,... 9-mP  then the formula

is:

10
... 921 --- +++-

= mmmm PPPPSMA                                   (3)

When calculating the successive values, a new value comes into the sum and an old

value drops out, meaning a full summation each time is unnecessary,

nPnPSMASMA mnmyesterdaytoday /)(/)( 11 ++- +-=                           (4)

However, there are some drawbacks concerning simple average method;

a. The forecast will lag turning points if it captures them at all (oversmoothing

for high values of n ).

b. Forecasts will be biased when there is a strong trend in the variable.

c. Past observations are given the same weight.
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3.2.1.3. Exponential Smoothing & EWMA

Exponential smoothing weights past observations with exponentially decreasing

weights to forecast future values. This smoothing scheme begins by setting 2S  to 1y ,

where iS  stands for smoothed observation, and y  stands for the original observation.

Whilst the subscripts referring to the time periods, 1, 2,..., n; for the third period,

223 )1( SyS aa -+= ; and so on. There is not a 1S ; because, the smoothed series starts

with the smoothed version of the second observation.

For any time period t , the smoothed value tS  is found by computing

3,10)1( 11 ³££-+= -- tSyS ttt aaa                           (5)

The Exponentially Weighted Moving Average ( EWMA ) is a statistic for monitoring

the process that averages the data in a way that gives less and less weight to data as

they are further removed in time.

The statistic that is calculated is:

ntforEWMAYEWMA ttt ,...,2,1)1( 1 =-+= -ll                                                 (6)

where

Ø tEWMA is the mean of historical data
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Ø tY  is the observation at time t

Ø n is the number of observations to be monitored including tEWMA

Ø 10 £< l  is a constant that determines the depth of memory of the EWMA .

The parameter l  determines the rate at which 'older' data enter into the calculation of

the 10 £< l  statistic.  A  value  of 1=l  implies that only the most recent

measurement influences the EWMA  . Thus, a large value of 1=l  gives more weight

to recent data and less weight to older data; a small value of l  gives more weight to

older data.

3.2.1.4. ARMA Models

ARMA models are linear models which have two types of dynamic processes built

into. Model assumes that the time series is stationary. For a time series variable ty :

• An “autoregressive” ( AR )  process  is  one  where  the  current  value  of y  is

influenced

by it’s own past values:

tttt yyfy e+= -- ,...),( 21 (7)
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• A “moving average” ( MA ) process is one where the contemporaneous value

of y

is influenced by past as well as contemporaneous values of the innovation term,

te .

tttt fy eee += -- ,...),( 21              (8)

• An MA  process  is  one  where  there  is  a  simple  linear  influence  of  past

innovations

on the current value of y .

tt

q

i
ity eeqa ++= -

=
å 1

1

          (9)

where ..nw»e

3.2.1.5. ARIMA Models

ARIMA  (Autoregressive Integrated Moving Average) time series analysis uses lags

and shifts in the historical data to uncover patterns, e.g. moving averages,

seasonality, and predict the future. ARIMA might be seen as a method for answering

two questions; how much of the past should be used to predict the next observation

(length of weights), and the values of the weights.
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ARIMA  model includes three types of parameters: the autoregressive parameters

( p ), the number of differencing passes ( d ), and moving average parameters ( q ). In

the notation, models are summarized as ( )qdpARIMA ,, . For example, a model

described as ( )2,1,0  means that it contains 0 (zero) autoregressive ( p ) parameters and

two moving average ( q ) parameters which were computed for the series after it was

differenced once.

Actually,  ARIMA  models  consist  of  three  steps:  (1)  Identification,  (2)  Estimation,

(3) Analysis of Residuals.

Identification: A general ARIMA model can be expressed as:

Zt - MA1*Zt-1 - MA2*Zt-2 -.. - MAq*Zt-q = C + at - AR1*at-1 - AR2*at-2 -.. -

ARp*at-p                                                                                                                (10)

Where Zt is obtained by differencing the original time series d times.

The input series for ARIMA  needs to be stationary, that is, it should have a constant

mean, variance, and autocorrelation through time. Therefore, usually the series first

needs to be differenced until it is stationary, this also often requires log transforming

the data to stabilize the variance. The number of times the series needs to be

differenced to achieve stationarity is reflected in the d  parameter.

Estimation: At the estimation stage, the parameters are estimated using function

minimization procedures so that the sum of squared residuals is minimized. The
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estimates of the parameters are used in the forecasting stage to calculate new values

of the series.

Before the estimation begins, one needs to identify the specific number and type of

ARIMA parameters to be estimated. A majority of empirical time series patterns can

be sufficiently approximated using one of the 5 basic models:

1. One autoregressive ( p ) parameter;

2. Two autoregressive ( p ) parameters;

3. One moving average ( q ) parameter;

4. Two moving average ( q ) parameters;

5. One autoregressive ( p ) and one moving average ( q ) parameter.

During the parameter estimation phase a function minimization algorithm is used to

maximize the likelihood of the observed series, given the parameter values. In

practice, this requires the calculation of the (conditional) sums of squares (SS) of the

residuals, given the respective parameters.
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Multiplicative seasonal ARIMA is a generalization and extension of the method

introduced in the previous paragraphs to series in which a pattern repeats seasonally

over time. In addition to the non-seasonal parameters, seasonal parameters for a

specified lag (established in the identification phase) need to be estimated.

Analogous to the simple ARIMA  parameters, these are: seasonal autoregressive ( ps ),

seasonal differencing ( ds ), and seasonal moving average parameters ( qs ). For

example, the model ( )2,1,0 ( )1,1,0  describes a model that includes no autoregressive

parameters, 2 regular moving average parameters and 1 seasonal moving average

parameter, and these parameters were computed for the series after it was differenced

once with lag 1, and once seasonally differenced.

Analysis of Residuals: The major concern is that the residuals are systematically

distributed across the series (e.g., they could be negative in the first part of the series

and approach zero in the second part) or that they contain some serial dependency

which may suggest that the ARIMA  model is inadequate. The analysis of ARIMA

residuals constitutes an important test of the model. The estimation procedure

assumes that the residual are not correlated and that they are normally distributed.

However, there are some limitations. The ARIMA  method is appropriate only for a

time series that is stationary (i.e., its mean, variance, and autocorrelation should be

approximately constant through time) and it is recommended that there are at least 50

observations  in  the  input  data.  It  is  also  assumed  that  the  values  of  the  estimated

parameters are constant throughout the series.
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3.2.2. ARCH Class Conditional Volatility Models

3.2.2.1. ARCH Models

ARCH class  models  do  not  make  use  of  sample  standard  deviations.  In ARCH

models, volatility is a linear deterministic function of historical returns. The

formulation models conditional variance th  as  a  linear  function  of  the  first q  past

squared innovations.

2

1
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i
ith -

=
å+= eaw ;                                                (11)

The forecast errors ( te ) are assumed to be conditionally normally distributed with a

zero mean and th  variance, based on the information set,

),0(1 tt hN¥Y -

The parameter w  is  equal  to Vd , where V  is the long run volatility and d  is the

weight given to V . Weights must sum to unity 1
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For the ARCH(1) model, it can be shown that the unconditional kurtosis of te  is
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1 <a  ,  and  infinite  otherwise.  In  general, ARCH models

may not be finite unconditional fourth moments. In financial time series, there is a
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great deal of persistence, in the sense that the autocorrelations of the squared

residuals and of the absolute residuals are positive at long lags. An ARCH(1) process

can only imply substantial persistence if 1a  is close to 1, but this implies a very high

level of first-order autocorrelation. Thus an ARCH (1) model may not possibly

explain the autocorrelation in the series.

In practice, q needs to be quite large if a linear ARCH (q) model is to provide a

reasonably good fit to most financial time series. This is undesirable for two reasons.

Firstly the more parameters we have to estimate, the more costly it is to do so, and

the less precise will tend to be the estimates. Secondly, when q is not small, there is a

risk that some of the ia
)  will be negative. But the ia  cannot be negative, because, if

even one of them is negative, it is possible that the conditional variance will be

negative for some observations.

3.2.2.2. GARCH Models

3.2.2.2.1.  GARCH

A much more flexible model is GARCH model which generalizes the ARCH model

by allowing the current conditional variance to depend on the first p past conditional

variances as well as the q past squared innovations.
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By accounting for the information in the lag(s) of the conditional variance in addition

to the lagged 2
it-e  terms, the GARCH model reduces the number of parameters

required. In most cases, one lag for each variable is sufficient. The GARCH (1,1)

model is given by

11
2

11 -- ++= ttt hh beaw                                            (13)

This model forecasts the variance of date t return as a weighted average of a

constant, yesterday’s forecast, and yesterday’s squared error.

The GARCH (1,1) model is capable of modelling financial time series reasonably

well. When 1a  is small and 11 ba +  is large, it is possible for the first-order

autocorrelation coefficient to be fairly small and yet for the autocorrelations to die

out quite slowly.

The GARCH (q, p) model includes both the information about volatility observed in

the previous period, i.e. short run volatility, (ARCH term) and the forecasted variance

from last period, i.e. long run volatility, (GARCH term) in order to predict the current

period’s variance. Thus GARCH models describe both the autoregressive and moving

average components of time series data with the heteroscedastic variance.
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3.2.2.2.2. EGARCH

Even if the GARCH models successfully capture the thick tail returns, and the

volatility clustering, they are poor models if one wishes to capture the leverage effect

since the conditional variance is a function only of the magnitudes of the past values

and not their sign. The conditional variance 2
ts  of tX  given information at time t ,

obviously must be non-negative with probability one. In GARCH models this

property is assured by making 2
ts  a  linear  combination  (with  positive  weights)  of

positive random variables (as in the ( )qpGARCH ,  case).  Another  way  of  making

2
ts  non-negative is by making ( )2ln ts  linear in some function of time and lagged

tZ ’s. This formulation leads to the asymmetric GARCH model,

alGARCHEcxponenti ,

( ) ( ) ( )2

11
0

2 lnln jt

q

j
j

p

i
itit Zg -

==
- åå ++= sbaas .                                        (14)

The value of ( )tZg  depends on several elements such as the magnitude and the sign

of tZ . This leads to following;

( ) { [ ][ ]
44 344 21

ffectmagnitudea

tt
signaffect

tt ZEZZZg -+= 21 qq                                                         (15)
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With this construction, ( ){ } ¥-¥= ,ttZg  is a zero-mean, ... dii  random sequence. (Each

component  has  mean  zero.)  Over  the  range ¥<< tZ0 , ( )tZg  is linear in tZ  with

slope 21 qq + , and over the range 0£<¥- tZ , ( )tZg  is linear with slope 21 qq - .

Thus ( )tZg  allows the conditional variance 2
ts  to  respond asymmetrically  to  rises

and falls in stock price.

To perceive that the term [ ][ ]tt ZEZ -2q  represent the magnitude effect one first

assumes that 01 =q  and 02 >q . This makes the innovation in ( )2
1ln +ts  positive

(negative) when the magnitude of tZ  is larger (smaller) than its expected value.

Assuming that 01 <q  and 02 =q . The innovation in conditional variance is now

positive (negative) when returns innovations are negative (positive).

In contrast to the GARCH models, the EGARCH models do not have any restrictions

on the parameters in the model. The EGARCH model always produces a positive

conditional variance independently of the signs of the estimated parameters in the

model and no restrictions are needed. This is preferable when the restrictions in the

GARCH model sometimes create problems when estimated parameters violate the

inequality constraints.
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CHAPTER 4

VALUE at RISK

VaR describes the worst loss over a target horizon with a given level of confidence,

and it can summarize the maximum loss in a currency value.

Daily VaR at a %99  confidence level is the smallest x  for which the probability that

the next day’s portfolio loss exceeds x  is less than %1 , or, VaR is the smallest x

such that { } 01.Pr £³ xLosses .  For  example  a  10-day  VaR  is  $20  M  at  the %95

confidence level means that there is less than %5  chance that our portfolio will lose

more than $20 M in the next 10 days.

VaR measures can have many applications, and is used both for risk management

and for regulatory purposes. In particular, the Basel Committee on Banking

Supervision (1996) at the Bank for International Settlements (BIS) imposes to

financial institutions such as banks and investment firms to meet capital requirements

based on VaR estimates.

VaR models can be classified into three categories:

· Parametric (Risk Metrics and GARCH)

· Nonparametric (Historical Simulation)
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· Semiparametric (Extreme Value Theory, CAViaR and quasi maximum

likelihood GARCH)

In order to choose the best model, one might consider the characteristics of financial

data. The empirical facts about financial markets can be summarized as follows:

1. Financial return distributions are leptokurtotic that is they have heavier tails and a

higher peak than a normal distribution.

2. Equity returns are typically negatively skewed.

3. Squared returns have significant autocorrelation, i.e. volatilities of market factors

tend to cluster. This is a very important characteristic of financial returns, since it

allows the researcher to consider market volatilities as questionable, changing in the

long run, but stable in the short period. Most of the VaR models make use of this

quasi-stability to evaluate market risk.

4.1. Parametric Value at Risk

In parametric VaR approach there are two steps to follow: (1) assuming portfolio

returns have a particular distribution; (2) Computing VaR by estimating parameters

of that distribution.

Let R  denote the rate of return and ( )tX  the portfolio value at time t . Then,

( ) ( )
( )0

01
X

XXR -
=                                                                                            (16)
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The loss is ( ) ( )[ ] ( )RXXXL 001 -=--=

Assume rates of return ( )2,smN» , then ( )1,0NRZ »
-

=
s
m .

Then one can compute VaR from the following equation:

{ } ( ){ }xRXxL ³-==³= 0PrPr01.
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Using a standard normal distribution table one can find that { } 01.33.2Pr =-£Z

Then also can get the VaR from;

( ) 33.20 -=
--

s

mX
x

                                                                                    (18)

The 99% VaR with normal distribution is:

( )[ ]ms -= 33.20XVaR  This can be shown graphically as;
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Figure 1 The 1%-value of risk of a normally distributed portfolio

The question here is how sm ,  should be estimated?

As given in equation (3), the GARCH model has two crucial elements: the particular

specification of the variance equation and the assumption that the standardized

residuals are i.i.d. The first element was inspired by the characteristics of financial

data discussed above. The assumption of i.i.d. standardized residuals, instead, is just

a necessary device to estimate the unknown parameters. A further necessary step to

implement any GARCH algorithm is the specification of the distribution of the te .

The most generally used distribution is the standard normal. Only after this extra

distributional assumption has been imposed, does it become possible to write down a

likelihood function  and  get  an  estimate  of  the  unknown parameters.  Once  the  time

series of estimated variance is computed, the 5% quartile, say, is simply computed as

-1.645 (the 5% quartile of the standard normal) times the estimated standard

deviation.
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The general finding is that these approaches (both normal GARCH and RiskMetrics)

tend  to  underestimate  the  Value  at  Risk,  because  the  normality  assumption  of  the

standardized residuals seems not to be consistent with the behaviour of financial

returns. The main advantage of these methods is that they allow a complete

characterization of the distribution of returns and there may be space for improving

their performance by avoiding the normality assumption.

4.2. Non-parametric Value at Risk

One of the most common methods for VaR estimation is the Historical Simulation.

This approach drastically simplifies the procedure for computing the Value at Risk,

since it doesn’t make any distributional assumption about portfolio returns. Historical

Simulation is based on the concept of rolling windows. First, one needs to choose a

window of observations that generally ranges from 6 months to two years. Then,

portfolio returns within this window are sorted in ascending order and the q -quartile

of interest is given by the return that leaves q  % of the observations on its left side

and (1-q )% on its right side. If such a number falls between two consecutive returns,

then some interpolation rule is applied. To compute the VaR the following day, the

whole window is moved forward by one observation and the entire procedure is

repeated.

Even if this approach makes no explicit assumptions on the distribution of portfolio

returns, an implicit assumption is hidden behind this procedure: the distribution of
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portfolio returns doesn’t change within the window. From this implicit assumption

several problems derive.

First,  this  method is  logically  inconsistent.  If  all  the  returns  within  the  window are

assumed to have the same distribution, then the logical consequence must be that all

the returns of the time series must have the same distribution: if twindowt yy ,...,-  and

11 ,..., +-+ twindowt yy are i.i.d., then also 1+ty  and windowty -   must be i.i.d., by the transitive

property. Second, the empirical quartile estimator is consistent only if k, the window

size, goes to infinity. The third problem concerns the length of the window. This is a

very delicate issue, since forecasts of VaR under this approach are meaningful only if

the historical data used in the calculations have (roughly) the same distribution. In

practice, the volatility clustering period is not easy to identify. The length of the

window must satisfy two contradictory properties: it must be large enough, in order

to make statistical inference significant, and it must not be too large, to avoid the risk

of  taking  observations  outside  of  the  current  volatility  cluster.  Clearly,  there  is  no

easy solution to this problem.

Moreover, assume that the market is moving from a period of relatively low

volatility  to  a  period  of  relatively  high  volatility  (or  vice  versa).  In  this  case,  VaR

estimates based on the historical simulation methodology will be biased downwards

(correspondingly upwards), since it will take some time before the observations from

the low volatility period leave the window.
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Finally, VaR estimates based on historical simulation may present predictable jumps,

due  to  the  discreteness  of  extreme  returns.  To  see  why,  assume  that  we  are

computing the VaR of a portfolio using a rolling window of 180 days and that

today’s return is a large negative number. It is easy to predict that the VaR estimate

will jump upward, because of today’s observation. The same effect (reversed) will

reappear after 180 days, when the large observation will drop out of the window.

This is a very undesirable characteristic and it is probably enough to discard the

historical simulation method as a reliable one.

4.3. Semiparametric Value at Risk

4.3.1. Extreme Value Theory

There are two principal distributions that are used in extreme value modelling: the

generalized extreme value (GEV) distribution and the generalized Pareto distribution

(GPD). An often useful method is known as the Peaks-Over-Threshold (POT)

method.

Periodic  (daily,  monthly,  yearly,  etc.)  maxima  (or  minima)  follow  a  GEV

distribution. So if one was concerned with monthly peaks in interest rates, s/he could

fit a GEV distribution to the monthly maxima. Excesses over a given high threshold,

however, follow a GPD. Suppose one is interested in the distribution of insurance

claims over some high threshold, as s/he in catastrophe bond ratings; those excesses

would be best modelled by a GPD. Alternatively, if s/he concerned about the
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occurrence times of the losses over some threshold and the excess distribution, s/he

would fit a POT model. In a POT model, the number of events during a given time

follows a Poisson process and the exceedances over a given high threshold follow a

GPD. Since the number of events is Poisson, the interarrival times (time between

events) are exponentially distributed. Therefore, by fitting a POT model one can

estimate the average time between events of a given magnitude (threshold), and the

distribution of the excess over the threshold. An underlying feature of a Poisson

process is that the number of events in disjoint time intervals is independent. This is

often not the case for financial data.

Financial time series data tend to be ill-behaved in that they show jumps and

fluctuations that are not modelled well by standard modelling techniques. Often

many assumptions must be made, such as the data come from well-defined

distributions,  and  the  data  have  constant  variance  over  time.  One  of  the  biggest

problems with ‘typical’ models is they fail to capture extreme jumps in the data and

cannot describe the external behaviour. Extreme value methods outperform standard

modelling techniques when the goal is to model external behaviour.

Suppose }{ nX is a sequence of independent and identically distributed random

variables and nM is the ),...,max( nt XX . Then if there exist constants 0>nc  and

Rdn Î (a real number), nnn cdM /)( -  is a cantered and normalized maximum. If

HcdM
d

nnn ®- /)( (that is, converges in distribution to H ), for some non-degenerate

distribution function H , then H  belongs to one of the three families of extreme



46

value distribution functions: Fréchet, Weibull, and Gumbel. These distributions have

the following form:

Frechét:

( ) { } þ
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>
£
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í
ì

-
=
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Weibull:
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ay                                                                   (21)

Gumbel:

( ) { } Rxex x Î-=L - ,exp                                                                               (22)

The extreme value distributions represent the limit laws for the normalized maxima

of i.i.d. random variables. One needs to consider the conditions on a distribution

function F  that imply the normalized maxima nM  converge to H . In other words

the question here is how one chooses constants 0>nc  and nd  such that

HcdM d
nnn ¾®¾- /)( ?  If  this  condition  is  satisfied  one  can  say  the  distribution

function F  belongs to the maximum domain of attraction of H .
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4.3.2. CAViaR

The Conditional Autoregressive Value at Risk’s basic intuition is to model directly

the evolution of the quartile over time, rather than the whole distribution of portfolio

returns. The specification for the VaR is:

),,,,...,( 112,110, qbbibb qq --- ++= ttpqtt qyq                                                 (23)

Different models can be estimated by choosing different specifications for the i

function such as the Symmetric Absolute Value, 12(.) -= tybi  and the Asymmetric

Slope

)0(1)0(1(.) 1312 <->= -- tt yy bbi                                                               (24)

4.3.3. Quasi Maximum Likelihood GARCH

In GARCH models, the assumption of normally distributed standardized residuals

seemed to be at odds with the fact that financial data tend to be exhibit heavy tails.

However, normality assumption may not be restrictive; because, Bollerslev and

Woolridge (1992) show that the maximisation of the normal GARCH likelihood is

able to deliver consistent estimates, provide that the variance equation is correctly

specified, even if the standardized residuals are not normally distributed. This is

referred as the quasi-maximum likelihood (QML) GARCH. The QMLE obtained by
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maximizing the Gaussian log-likelihood is known to be consistent and

asymptotically normal.

If the likelihood is assumed to be Gaussian, then the QMLE is the value of

)(
1

1 qiq å =
-º

T

t tT  where the period- t  conditional log-likelihood of ty  given

)(, qi ttÁ ,is defined as
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CHAPTER 5

ANALYSIS

5.1. Data

The aim of  this  study  is  to  measure  VaR for  the  listed  banks  in  the  Istanbul  Stock

Exchange (ISE) as well as banking index, ISE-100, and ISE-300, using GARCH

model for the period July 1997-July 2007.  The data consists of closing prices for the

banking firms and indices and is obtained from Reuters, and expressed in local

currency.

Ten commercial banks are listed in ISE 100 as of 2007. Seven of the ten banks are

chosen for this study. Because, these banks’ data has been observed within 10

years period, covering 1997-2007. This time period is important for our study since

we  like  to  see  the  impact  of  the  some  shocks  over  the  sample  period  on  the

measures of VaR.
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Seven studied banks in this paper compose of  54.02 % of total assets of the whole

banking industry as of 06/20071.  These banks are namely,  Alternatifbank, Akbank,

Isbank, Finansbank, Garantibank, Sekerbank and Yapı Kredi Bank.

Detailed information on indexes and individual banks might be obtained by

descriptive statistics. Descriptive statistics of ten data groups’ returns are provided

for the four different sample periods below2.

Table 1 and Table 2 show that the highest standard deviations, unexceptionally, are

observed in the longest term which contains the whole shock periods. However,

when the time interval is set shorter, deviation is given to be lower. Variation tends

to evolve around 3% and 4% which leads one to think that observed values are close

to the mean value and dispersion is lower. And also, by looking at the minimum and

maximum values, it may be claimed that the range between this two is not that high

and consequently extreme values are not frequently observable. Among seven banks,

Alternatif Bank stands out as the most volatile while ISE 100 index has the lowest

standard deviation. In 1997-2007 period, Alternatif Bank experienced 4.45%

standard deviation whilst ISE 100 has 2.92 %. Consequently, the other notable thing

from this point is that the standard deviation tends to decrease by the diversification.

For all the four time periods, drifts on the individual stocks are much higher than the

indexes’.

1 Source: The Turkish Banking Association
2 Daily returns are calculated as following: )/log( 1-= ttt PPR ,where tP  denotes the price at time t .
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Table 1 Descriptive Statistics for Daily Index Returns

Mean Std Dev Max Min Skewness Kurtosis JB

07.1997 - 07. 2007 0.001 0.029 0.177 -0.199 -0.074 7.797 2.395.115
(.000)

01.2003 – 07.2007 0.001 0.019 0.109 -0.133 -0.430 8.135 1.282.386
(.000)

04.2006 - 07.2007 0.000 0.017 0.051 -0.086 -0.597 5.024 75.063
(.000)

07.2006 - 07.2007 0.001 0.015 0.051 -0.045 -0.155 3.595 4.928
(.000)

07.1997 - 07. 2007 0.001 0.030 0.176 -0.219 -0.095 8.146 2.756.162
(.000)

01.2003 – 07.2007 0.001 0.020 0.110 -0.135 -0.299 7.480 966.325
(.000)

04.2006 - 07.2007 0.000 0.018 0.056 -0.085 -0.414 4.423 36.847
(.000)

07.2006 - 07.2007 0.001 0.016 0.056 -0.049 -0.074 3.572 3.821.553
(.147)

07.1997 - 07. 2007 0.001 0.033 0.172 -0.239 -0.039 7.433 2.043.127
(.000)

01.2003 – 07.2007 0.001 0.023 0.121 -0.145 -0.218 7.253 864.837
(.000)

04.2006 - 07.2007 0.000 0.019 0.056 -0.085 -0.277 3.986 17.413
(.000)

07.2006 - 07.2007 0.001 0.018 0.056 -0.050 0.017 3.383 1.619
(.444)

Note: The figures in the parentheses are p-values.

IMKB 100

IMKB 30

BANK INDEX

Table  1  shows  that  three  indexes  are  behave  similarly.  The  returns  are  skewed

negatively except for the bank index’s last period. The reason is thought to be

recently growing interest of foreign investors to the sector and consequently realized

mergers and acquisitions. Foreign investors’ shares on the twenty six of the fifty

Turkish banks (Sekerbank, Fortis-formerly Dışbank, Garanti Bank, Finansbank...) go

beyond 50 % as of 11/2007.3

3 www.bddk.org.tr
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Table 2 Descriptive Statistics for Daily Stock Returns

Mean Std Dev Max Min Skewness Kurtosis JB

07.1997 - 07. 2007 0.001 0.036 0.192 -0.226 0.211 6,386 1210.673
(.000)

01.2003 – 07.2007 0.001 0.026 0.109 -0.140 -0.038 4,730 141.977
(.000)

04.2006 - 07.2007 0.000 0.025 0.084 -0.103 -0.149 4,802 45.348
(.000)

07.2006 - 07.2007 0.001 0.020 0.082 -0.093 0.020 4,694 31.358
(.000)

07.1997 - 07. 2007 0.001 0.044 0.182 -0.241 -0.047 6,085 987.573
(.000)

01.2003 – 07.2007 0.001 0.029 0.169 -0.146 0.433 7,028 799.480
(.000)

04.2006 - 07.2007 0.000 0.025 0.122 -0.088 0.393 5,268 78.305
(.000)

07.2006 - 07.2007 0.001 0.022 0.071 -0.088 0.082 3,849 8.166
(.016)

07.1997 - 07. 2007 0.001 0.043 0.535 -0.227 1,065 14,764 14819.18
(.000)

01.2003 – 07.2007 0.002 0.035 0.179 -0.227 0.453 8,215 1322.853
(.000)

04.2006 - 07.2007 0.001 0.036 0.179 -0.227 -0.110 11,337 939.017
(.000)

07.2006 - 07.2007 0.003 0.031 0.168 -0.088 1,185 6,948 229.814
(.000)

07.1997 - 07. 2007 0.001 0.038 0.207 -0.207 0.255 6,139 1049.866
(.000)

01.2003 – 07.2007 0.001 0.029 0.137 -0.163 -0.116 5,872 392.894
(.000)

04.2006 - 07.2007 -0.000 0.028 0.093 -0.109 -0.158 3,908 12.593
(.001)

07.2006 - 07.2007 0.001 0.026 0.093 -0.088 0.021 3,675 5.005
(.081)

07.1997 - 07. 2007 0.001 0.038 0.194 -0.211 0.079 6,200 1066.777
(.000)

01.2003 – 07.2007 0.002 0.028 0.141 -0.157 0.025 6,917 725.274
(.000)

04.2006 - 07.2007 0.000 0.017 0.141 -0.093 1,496 21,190 3710.124
(.000)

07.2006 - 07.2007 .000 0.018 0.141 -0.139 -0.134 22,317 5054.034
(.000)

07.1997 - 07. 2007 0.001 0.044 0.280 -0.223 0.386 6,564 1382.294
(.000)

01.2003 – 07.2007 0.001 0.031 0.175 -0.147 0.465 7,133 849.178
(.000)

04.2006 - 07.2007 -0.000 0.030 0.175 -0.140 0.441 10,910 860.499
(.000)

07.2006 - 07.2007 0.001 0.024 0.175 -0.073 2,062 16,884 2281.491
(.000)

07.1997 - 07. 2007 0.001 0.041 0.185 -0.244 0.012 6,037 959.328
(.000)

01.2003 – 07.2007 0.002 0.028 0.146 -0.170 -0.209 7,150 822.879
(.000)

04.2006 - 07.2007 0.001 0.027 0.126 -0.084 0.148 4,051 16.226
(.000)

07.2006 - 07.2007 0.002 0.026 0.126 -0.067 0.389 4,300 25.105
(.000)

Note: The figures in the parentheses are p-values.

SEKERBANK

YAPI KREDI

AKBANK

GARANTI

ALTERNATIF BANK

FINANSBANK

ISC
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Individual bank data series exhibit skewness denoting that the distributions have an

asymmetric  tails  extending  out  to  the  right  (  referring  to  as  “positively  skewed”  or

“skewed to the right” ) or extending out to the left ( referring to as “negatively

skewed”  or  “skewed to  the  left”  ).  Positively  skewed distributions  confirm that  the

series have positive shocks than the negative ones, and vice versa. This also can be

followed from the Figures 1, 2, 3, and 4. The rest of the figures of return distribution

analysis for all the time series are given in Appendix I.

Figure 2 Distribution of  Return Series for ISE 100
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Figure 3 Distribution of Return Series for ISE 30
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Figure 4 Distribution of Return Series for Bank Index
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Figure 5 Distribution of Return Series for Akbank
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The fourth moment, kurtosis, introduces a measure of how flat the top of a

symmetric distribution is when compared to a normal distribution of the same

variance. The sample series exhibit leptokurtic behaviour meaning the distribution is

peaked relative to the normal distribution. Namely, fourth moment higher than 3

shows the non-normality of data series. High kurtosis also may be interpreted as the

data series have large shocks than expected. Kurtosis characteristic may also be

pursued from above figures.

 Just as third and fourth moments of the series, Jarque-Bera statistics can be used to

check normality hypothesis. JB tests the residuals for normality by testing whether

the coefficient of skewness and the coefficient of excess kurtosis are jointly zero.
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The high value of JB necessitates rejection of the null hypothesis which states

normality. Hence, it can be affirmed that the data sets are not normally distributed.

Finally, it can be said that ten data series almost exhibit the same characteristics.

They are all display skewness and excess kurtosis. Individual banks are not dispersed

among themselves, any exceptional bank is encountered. Moreover, individually

banks tend to evolve parallel with three indexes.

5.2. Empirical Results

In this part  of the thesis,  volatility of the listed banks in Turkey as well  as ISE-30,

ISE-100 and banking index are studied. Four different time horizons are specified to

control the periods containing shocks. Two different error distribution assumptions

are exerted, namely normal distribution and student’s t distribution. Lastly, today’s

Value  at  Risk  figures  are  found  and  also  one-step  ahead  VaR  is  forecasted  by

benefiting estimated GARCH models specifying two different confidence intervals.

For the volatility analysis, GARCH model specified in equation (13) is used.4

Subsequently, the Parametric VaR is calculated through GARCH figures.  Parameter

estimations and VaR results for four time periods might be followed through the

Table 3 to 10.

4 For the mean equation autoregressive structure is taken into consideration where significant.

å ++= - titit uRR da , where id  is the autoregressive term.
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It can be seen from the below tables that some of the VaR figures are not displayed.

The reason for that is that the parameter constraints for the model are not satisfied.

The GARCH (1, 1) model is capable of modelling financial time series, however,

there are some restrictions for the parameter estimation. For the model, w should be

positive and 1a  and 1b  should be nonnegative.

If we define 0q  is equal to ( )ba
w

--1   the model can be rewritten as:

( ) ( )010
2

10 qhqqh ttt -+-+= -- bea                                                              (26)

By this form of equation, the model restrictions can be understood. If last period’s

squared return is above unconditional variance (a positive shock to conditional

variance), then the next period’s conditional variance increases in a proportion to the

persistence parameter b .

Following that:

· Weakly Stationary Case: When 1<+ ba , the process is weakly stationary

with unconditional variance ( )ba
w

--=- 11th . In this case, the process is

assumed to start from its unconditional mean.

· Unit Root Case: When 1=+ ba , the process is not weakly stationary, i.e. the

unconditional  variance  would  not  exist,  In  this  case,  the  process  and  its

derivatives are assumed to start from some arbitrary value.
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Evidently, if we write 0q  is equal to ( )ba
w

--1 , we require that 1<+ ba , and for

it to be nonzero, 0>w .

From Table 3, it can be seen that stationary does not hold for Finansbank and

Alternatifbank for 1997-2007 period. According to the specified time interval,

Finansbank experienced nonstationarity. However, GARCH model is not suitable for

Alternative Bank independent from the period or distribution assumption. The

remaining five banks and three indexes are all satisfy the model restrictions for the

different  periods.  Hence,  it  can  be  said  that  these  time  series  have  GARCH  effect

meaning they suffer from heteroscedasticity in which the expected value of the error

terms is not equal.

As we stated earlier in equation (13) th  is the return variance and 1-te  is  the  error

term. The slope parameter, b ,  measures  the  combined  marginal  impacts  of  the

lagged innovations. The slope parameter, a , on the other hand, captures the marginal

impact of the most recent innovation in the conditional variance. Our study shows

that b  estimates are markedly higher than a estimates, i.e., variance persistence is

often characterized by a low but prolonged effect of variance innovation in a given

period.

The significance of  parameters in the model indicates the tendency of the shock to

persist. The measure of volatility persistence ba +  coefficients is greater than or

almost equal to unity. This indicates that the tendency for a volatility response to

shocks to display a long memory. These results confirm the time varying risk in the
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stock returns in Turkey. Also, the conditional variance changes over time showing

that periods of relatively high (or lows) volatility are found to be time-dependent.

After specifying GARCH values, we use these numbers as inputs to the parametric

VaR calculation specified in equation (18) and generate one-day forecasts for both

95% and 99% confidence levels.  We assume that all individual series compose

separate portfolios. Tables 3 to 10 show the GARCH parameter estimations, and

today’s VaR and also tomorrow’s VaR numbers.

According to the Tables below, Şekerbank emerges as the highest risky bank for

sample periods. The lowest risky bank seems to be the Yapı Kredi. It should be noted

that  the  risk  of  banks  may differ  from one  period  to  other.  For  instance,  in  the  2nd

period,  Finansbank is the lowest risky bank whereas Yapı Kredi is less riskier than

the other banks for the 1st period. The remarkable thing is that for all the periods ISE-

100 is the lowest risky portfolio, positive effect of diversification might be claimed

as the reason.

As stated earlier, we used two different error distribution assumptions. However,

assumption of normality and Student’s t distribution does not produce too different

VaR results. Student’s t estimates are slightly higher then those for normal

distribution. For instance, in the 1st period, Sekerbank’s VaR is 14.97 % under

Student’s t distribution whereas, 14.31% with normal distribution. Or, ISE-100 has

4.85 % under Student’s t, 4.73 % with normal distribution. Moreover, Yapı Kredi has

6.57 % and 6.07 % , respectively.
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If one wants to analyse the highest risky period, s/he observes that third period is

generally arise as the most risky one. Even the first period covers more shocks than

those  of  third  period,  the  effect  of  the  shocks  are  smoothed  by  the  time.  Fresh

affirmative news are weighted more than the former negative news. However, in the

third period, a newly shock has been experienced and its effect does not diffuse in

the time yet. Besides, fourth period, 07-06/07-07 is fairly stable, subsequently, it

stands out as the safest interval.

The  other  noteworthy  point  is  that  all  the  forecasts  are  smaller  than  today’s  VaR

numbers. It makes one to think that forward looking expectations about Turkey’s

general view of political, economic and social environment are positive.
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Table 3 Estimation Results of GARCH with Norm. Dist. & VaR Figures for the 1st Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 7.99% 7.39%
5% 5.70% 5.17%
1% 6.32% 5.82%
5% 4.51% 4.01%
1% 14.31% 11.62%
5% 10.17% 8.16%
1% 7.05% 6.63%
5% 5.02% 4.65%
1% - -
5% - -
1% - -
5% - -
1% 7.35% 6.9%
5% 5.24% 4.83%
1% 4.73% 3.76%
5% 3.38% 2.46%
1% 5.17% 4.8%
5% 3.69% 3.36%
1% 6.07% 5.58%
5% 4.33% 4.03%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.

0.997

Bank Index 0.000* 0.075* 0.919* 0.994

ISE 30 0.000* 0.088* 0.908*

0.110* 0.870* 0.980

ISE 100 0.000* 0.094* 0.902* 0.996

0.111* 0.889* 1.001

Alternatifbank 0.000* 0.157* 0.856* 1.013

0.364* 0.446* 0.810

ISC 0.000* 0.065* 0.920* 0.986

0.069* 0.918* 0.988

Yapı Kredi 0.000* 0.076* 0.918* 0.994
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Garanti 0.000*

Table 4 Estimation Results of GARCH with Norm. Dist. & VaR Figures for the 2nd Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 7.38% 6.78%
5% 5.28% 4.74%
1% 6.07% 5.49%
5% 4.34% 3.84%
1% 11.51% 10.18%
5% 8.19% 7.14%
1% 6.94% 6.34%
5% 4.96% 4.45%
1% 5.63% 4.95%
5% 4.05% 3.43%
1% - -
5% - -
1% 6.40% 5.93%
5% 4.59% 4.13%
1% 4.52% 4.06%
5% 3.24% 2.82%
1% 4.87% 4.43%
5% 3.49% 3.08%
1% 5.62% 5.16%
5% 4.03% 3.59%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.
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Akbank 0.000*

Sekerbank 0.000*

Finansbank 0.000*

Garanti 0.000**

0.055* 0.912* 0.968

Yapı Kredi 0.000* 0.057* 0.913* 0.971

0.208* 0.640* 0.848

ISC 0.000* 0.069* 0.876* 0.946

0.121* 0.873* 0.995

Alternatifbank 0.000* 0.213* 0.817* 1.030

0.022* 0.971* 0.993

ISE 100 0.000* 0.080* 0.888* 0.968

0.969

Bank Index 0.000* 0.054* 0.917* 0.971

ISE 30 0.000* 0.071* 0.898*
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Table 5 Estimation Results of GARCH with Norm. Dist. & VaR Figures for the 3rd Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 9.42% 8.46%
5% 6.70% 5.95%
1% 7.20% 6.64%
5% 5.12% 4.67%
1% 13.60% 10.86%
5% 9.72% 7.57%
1% 7.08% 6.74%
5% 5.01% 4.77%
1% - -
5% - -
1% - -
5% - -
1% 6.66% 6.20%
5% 4.76% 4.33%
1% 4.98% 4.37%
5% 3.57% 3.05%
1% 5.29% 4.75%
5% 3.78% 3.32%
1% 6.25% 5.75%
5% 4.44% 4.03%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.
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Akbank 0.000***

Sekerbank 0.000*

Finansbank 0.000*

Garanti 0.000

0.139* 0.840* 0.979

Yapı Kredi 0.000*** 0.141* 0.645* 0.787

0.347* 0.470* 0.817

ISC 0.000 0.085* 0.799* 0.884

0.815* 0.232* 1.048

Alternatifbank 0.000*** 0.279* 0.791* 1.070

0.060* 0.828* 0.889

ISE 100 0.000*** 0.151* 0.772* 0.923

0.920

Bank Index 0.000 0.116*** 0.803* 0.919

ISE 30 0.000 0.130** 0.790*

Table 6 Estimation Results of GARCH with Norm. Dist. & VaR Figures for the 4th Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 7.87% 7.14%
5% 5.61% 5.01%
1% 6.23% 5.88%
5% 4.45% 4.12%
1% 9.15% 8.42%
5% 6.55% 5.87%
1% 6.63% 6.21%
5% 4.72% 4.37%
1% 5.80% 4.69%
5% 4.13% 3.29%
1% - -
5% - -
1% - -
5% - -
1% 4.50% 3.84%
5% 3.23% 2.67%
1% 4.91% 4.27%
5% 3.52% 2.97%
1% 6.18% 5.45%
5% 4.42% 3.81%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.

0.840

Bank Index 0.000 0.127 0.739* 0.867

ISE 30 0.000 0.104 0.736*

-0.028* 1.009* 0.980

ISE 100 0.000 0.105 0.716* 0.822

0.389* 0.580* 0.970

Alternatifbank 0.000 0.265* 0.789* 1.054

0.088** 0.815* 0.903

ISC 0.000 0.059 0.827* 0.887

0.083* 0.865* 0.949

Yapı Kredi 0.000 0.073 0.779* 0.853
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Table 7 Estimation Results of GARCH with S’s T Dist. & VaR Figures for the 1st Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 8.52% 7.95%
5% 6.05% 5.59%
1% 6.78% 6.63%
5% 4.82% 4.48%
1% 14.97% 12.98%
5% 10.58% 9.18%
1% 7.40% 6.99%
5% 5.29% 4.91%
1% - -
5% - -
1% - -
5% - -
1% 7.27% 6.84%
5% 5.18% 4.78%
1% 4.85% 4.35%
5% 3.48% 3.03%
1% 5.18% 4.74%
5% 3.71% 3.30%
1% 6.22% 5.70%
5% 4.44% 3.96%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.

0.991

Bank Index 0.000* 0.080* 0.910* 0.991

ISE 30 0.000* 0.084* 0.906*

0.107** 0.880* 0.988

ISE 100 0.000* 0.099* 0.891* 0.991

0.115* 0.897* 1.013

Alternatifbank 0.000** 0.132** 0.889** 1.021

0.398* 0.567* 0.965

ISC 0.000* 0.077* 0.899* 0.977

0.084* 0.898* 0.982

Yapı Kredi 0.000* 0.098* 0.894* 0.993
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Table 8 Estimation Results of GARCH with S’s T Dist. & VaR Figures for the 2nd Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 8.64% 7.77%
5% 6.15% 5.45%
1% 6.54% 5.97%
5% 4.65% 4.19%
1% 14.22% 12.36%
5% 10.05% 8.73%
1% 7.40% 6.99%
5% 5.01% 4.49%
1% - -
5% - -
1% - -
5% - -
1% 6.67% 6.14%
5% 4.77% 4.27%
1% 4.57% 4.03%
5% 3.29% 2.79%
1% 4.94% 4.43%
5% 3.55% 3.07%
1% 5.89% 5.35%
5% 4.23% 3.72%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.
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0.099* 0.832* 0.931

Yapı Kredi 0.000* 0.075* 0.867* 0.942

0.366* 0.585* 0.952

ISC 0.000** 0.071* 0.853* 0.925

0.127* 0.883* 1.010

Alternatifbank 0.000** 0.160* 0.859* 1.020

0.062* 0.868* 0.949

ISE 100 0.000* 0.081* 0.866* 0.948

0.951

Bank Index 0.000** 0.068* 0.884* 0.952

ISE 30 0.000** 0.074* 0.877*
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Table 9 Estimation Results of GARCH with S’s T Dist. & VaR Figures for the 3rd Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 9.57% 8.52%
5% 6.79% 5.99%
1% 6.92% 6.58%
5% 4.90% 4.64%
1% 13.49% 12.20%
5% 9.54% 8.63%
1% 7.09% 6.72%
5% 5.01% 4.75%
1% 5.73% 4.51%
5% 4.05% 3.15%
1% - -
5% - -
1% 6.63% 6.22%
5% 4.74% 4.34%
1% 4.79% 4.25%
5% 3.43% 2.96%
1% 5.15% 4.67%
5% 3.68% 3.33%
1% 6.19% 5.72%
5% 4.41% 4.01%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.

04
.2

00
6 

- 0
7.

20
07

G
A

R
C

H
(1

,1
) -

 S
tu

de
nt

-t
 D

ist
.

Akbank 0.000

Sekerbank 0.000***

Finansbank 0.000**

Garanti 0.000

0.147* 0.821* 0.968

Yapı Kredi 0.000 0.116 0.665* 0.781

0.303** 0.649* 0.953

ISC 0.000 0.086 0.817* 0.904

0.463* 0.529* 0.992

Alternatifbank 0.000*** 0.242* 0.779* 1.022

0.053 0.827* 0.880

ISE 100 0.000 0.124 0.795* 0.920

0.919

Bank Index 0.000 0.113 0.805 0.919

ISE 30 0.000 0.112** 0.806*

Table 10 Estimation Results of GARCH with S’s T Dist. & VaR Figures for the 4th Period

ω α1 β1

Volatility
Persistence c.i. VaRt VaRt+1

1% 8.53% 7.50%
5% 6.07% 5.25%
1% 6.28% 6.00%
5% 4.47% 4.21%
1% 9.99% 9.73%
5% 7.05% 6.89%
1% - -
5% - -
1% 5.12% 4.80%
5% 3.62% 3.39%
1% 2.20% 2.50%
5% 1.54% 1.66%
1% 5.91% 6.46%
5% 4.64% 4.10%
1% 4.47% 3.81%
5% 3.21% 2.64%
1% 4.87% 4.24%
5% 3.49% 2.95%
1% 6.17% 5.44%
5% 4.41% 3.80%

Note: *, **, *** denotes significance level at %1, %5, %10, respectively.
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Akbank 0.000

Sekerbank 0.000

Finansbank 0.000***

Garanti 0.000

0.110*** 0.804* 0.914

Yapı Kredi 0.000 0.078 0.765* 0.844

0.124 0.817* 0.941

ISC 0.000* -0.045* 1.016* 0.970

0.129*** 0.816* 0.945

Alternatifbank 0.000** 0.158* 0.791* 0.949

0.042 0.778*** 0.820

ISE 100 0.000 0.101*** 0.709* 0.811

0.829

Bank Index 0.000 0.126 0.738* 0.864

ISE 30 0.000 0.099 0.729*
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Simultaneously, below graphics can be consulted as an illustration of the model’s

ability to capture the changes in the stock prices.5 The graphics are drawn upon daily

VaR numbers with normal distribution assumption. The series in the middle

represents  the  log  return  series.  Two  series  surrounding  the  return  series  are  VaR

numbers for positive and negative volatility. The model, irrespective of the sample

size chosen, understate the true one-day 5% confidence interval VaR estimate,

however, 1% c.i. estimates are capture better the VaR (For the 5% c.i. graphical

illustrations,  please  refer  to  Appendix  II).  However,  VaR  fails  to  capture  seven

points. These specific points are well-known economic and politic shocks. These

shocks are in 1997, 1998, 2001, 2003, 2006, and 2007 successively.

In 1997, Asian economic crisis broke out. This crisis emerged in the second half of

the 1997. The reasons of the crisis are given as free capital flow (especially hedge

funds), exaggerated optimistic opinions caused by the Asia’s stunning economic

performance, and structural deficiencies of financial sector. The crisis initially

affected Thailand, Indonesia, Malaysia, Philippines, South Korea and Japan

successively. Then, it spreads world trade and finance markets. This crisis has direct

and  indirect  effects  on  Turkey.  After  the  devaluation  of  Baht,  Asia  countries  gain

advantage of competition. Direct impact is the Asia’s increased exports, the indirect

impact was that exports of Turkey and other emerging countries decreased. While the

world experiencing Asia shock, in 1998 Russia devalues the rubble and announced

moratorium. Consequently, world trade volume decreased even more. Turkey’s trade

5 Graphics are drawn upon normal dist. Results. T-dist. is not considered, because it generates highly
similar results and graphical illustrations are overlapped.
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volume decreased about 5% in 1998. In the mean time, investors withdraw their

money and searched for more confident countries’ bonds. Capital flight and high

interest rates led to slowdown of production. It was like a vicious circle, because, this

situation caused to increase in problem loans. Economy started to shrink late of 1998.

Such an environment gave rise to high deposit rate but low credit rates meaning

unbalanced loans to deposit ratio. Banks’ profitability decreased with the upwarding

risk trend. Besides, holding banking grew and profit of the banks transferred to the

subsidiaries. Consequently, banks did not fulfil their main function. Moreover, their

liquid assets were decayed and vulnerability to liquidity crisis rose.  In 1999, Turkey

concluded an agreement with IMF aiming to decrease inflation. Positive

developments have seen for a short time, but in November 2000 Turkish financial

sector faced with increasing foreign exchange demand resulted from liquidity

shortfall. This crisis temporarily circumvented by IMF loan, however low inflation

programme wounded crucially. This help only covered for 3 months, in February

2001 another economic crisis broke out. After that previous economic policy left and

floating exchange rate system were introduced. Financial institutions influenced very

badly by the crisis, and lot of banks seized by TMSF.

In 2003, a negative shock came with the occupation of Iraq by the United States of

America. However, there is a positive shock in the October 2003. This period had

political news about new cabinet election.

In May/June 2006, expectation of FED’s interest rate increase waved the financial

markets. The expectation based on fast growing of US economy and inflationary
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pressures. As a result of expectations many hedge funds started to lower their risk in

the emerging markets. Especially in Turkey, this movement has felt, stock market

decreased substantially.

The other and last shock is occurred in July 2007. It is emerged by the

announcements of cabinet election. The expectation of one party cabinet affects the

markets positively. However, GARCH model is not able to capture this positive

shock.



68

Figure 6 Return vs VaR on ISE 100 with Norm Dist  - 99 c.i.  for 1st Period

Figure 7 Return vs VaR on ISE 100 with Norm Dist. - 99 c.i.  for 2nd Pperiod
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Figure 8 Return vs VaR on ISE 100 with Norm Dist. -  99 c.i.  for 3rd Period

Figure 9 Return vs VaR on ISE 100 with Norm Dist . - 99 c.i.  for 4th Period
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Figure 10 Return vs VaR on ISE 30 with Norm Dist. -  99 c.i.  for 1st Period

Figure 11 Return vs VaR on ISE 30 with Norm Dist . - 99 c.i.  for 2nd Period
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Figure 12 Return vs VaR on ISE 30 with Norm Dist. - 99 c.i.  for 3rd Period

Figure 13 Return vs VaR on ISE 30 with Norm Dist. - 99 c.i.  for 4th Period
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Figure 14 Return vs VaR on Bank Index with Norm Dist. - 99 c.i.  for 1st Period

Figure 15 Return vs VaR on Bank Index with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 16 Return vs VaR on Bank Index with Norm Dist. - 99 c.i.  for 3rd Period

Figure 17 Return vs VaR on Bank Index with Norm Dist. - 99 c.i.  for 4th Period
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Figure 18 Return vs VaR on Akbank with Norm Dist. - 99 c.i.  for 1st Period

Figure 19 Return vs VaR on Akbank with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 20 Return vs VaR on Akbank with Norm Dist. - 99 c.i.  for 3rd Period

Figure 21 Return vs VaR on Akbank with Norm Dist. - 99 c.i.  for 4th Period
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CONCLUSION

The last decade has seen a remarkable growth in the development and trading of

financial instruments. The growth of this activity has also generally increased

awareness of risk exposures and has contributed to the development of more formal

methods of risk management and risk measures such as value-at-risk (VaR). Indeed,

the Bank for International Settlements (BIS) has suggested regulatory policies for

setting capital requirements for banks that are closely related to the VaR

methodology, and the system has been adopted by the European Community and by

banking authorities elsewhere around the world.

Besides growing financial instruments, global investments are accelerated and spread

all around the world with the improved technology and stock market liberalization.

These developments lead to upward risk trend in the world financial markets.

Consequently, it becomes a primary concern to measure of market risk. Volatility

finds acceptance as a risk metric, because investors’ expected profit are based on

price movements.

Primarily, volatility is measured by the conventional methods (unconditional

variance). This measure of the unconditional volatility does not take into account the

predictable pattern in the stock market volatility. However, practices show that for
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the high frequency data, variance is not constant over time. Subsequently, Engel

(1982) provides ARCH (autoregressive conditional heteroscedasticity) model which

takes into account the financial return series characteristics. After Engel, Bollerslev

(1986), treated time-varying conditional variance as function of moving averages of

past squared residuals, and added this model the lagged values of the variance,

consequently he suggested GARCH model which can capture the behaviour of the

series.

Motivated by these events, this thesis looked into some important aspects of risks,

and risk measures. In the thesis, we investigate the three indexes and seven banks

equities volatility (ISE-100, ISE-30, Banking Index, Akbank, Alternatifbank,

Finansbank, ISC, Şekerbank, Garantibank, Yapı Kredi) which is accepted as a metric

of  risk.  The  reason  of  choosing  bank  equities  is  that  they  are  one  of  the  most

sensitive economic agents to macro news such as economic, political. Besides,

shocks are primarily and profoundly affect the banks. The best example may be

given as 2000-2001 Turkish economic crisis both the cause and the most affected

part of the economy were banks. Furthermore, in relatively stable periods, many

number of news about banks are announced. These news may be about new credit

strategy, syndication credits, profits, changes in the executive management. In

addition to bank equities we also studied three indexes. The reason behind this is to

observe whether banks evolve with the indexes or they act separately from them.

We used the GARCH (1, 1) model with gauss and Student-t innovations distributions

to examine volatility, because it is a well known fact that financial time series’
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variance is not constant, it evolves with time. GARCH models are able to capture

this behaviour. Besides, there are more stylised facts about financial data GARCH is

able to describe:

· Large and small values in a log return sample tend to occur in clusters,

indicating that there is dependence in the tails. This characteristic is also

called volatility clustering.

· Changes in stock prices tend to be negatively correlated with changes in

volatility, i.e., volatility is higher after negative shocks than after positive

shocks of same magnitude. This property is called the leverage effect.

· Long-range dependence in  the  data.  Sample  autocorrelations  of  the  data  are

small whereas the sample autocorrelations of the absolute and squared values

are significantly different from zero even for large lags. This behaviour

suggests that there is some kind of long-range dependence in the data.

· Aggregational Gaussianity, i.e., the distribution of log-returns over larger

periods of time (such as a month, half a year, a year) is closer to the normal

distribution than for hourly or daily log-returns.
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The empirical results may be summarized as follows:

· Both normal and student-t distribution assumptions are suitable to describe

the stocks behaviour and almost generate the same results. Student-t

distribution results slightly higher VaR figures floating around 0,05 – 0,01 %.

· However, in some cases contradictory results are obtained. Like Baillie and

DeGennaro (1990), we found that conditional variance is not significant when

the  conditional  distribution  was  a  normal  distribution  rather  than  a  t-

distribution. This conflicting results is the picture for Garanti Bank in the last

time period. The parameter estimations under normal distribution does not

hold  for  Garanti  Bank  for  the  4th period, however, for the same period

student-t parameter estimation is valid for the model.

· The other finding is that GARCH cannot capture structural breaks and regime

changes. We saw that shocks as economic crisis or global turbulences or

drastic positive news are not captured. This result is parallel with Aiolfi and

Timmerman’s (2004) study.

· When volatility starts to fall, VaR moves backward to its old degree.

Consequently, GARCH performs well in the short term. As we stated earlier,

for the third period we are most likely to see the shock effect, however, for

the first and the longest time period it seems that shocks effect relatively
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smoothed and languished. Hendry and Clements (2002), found the same

results that GARCH is temporarily affected from today’s rising volatility.

· Some  of  the  return  series  do  not  fulfill  the  adequate  parameter  constraints.

Espacially, Altenatif Bank and Finansbank attract notice. Alternatif Bank

gives satisfying results only for the 4th period and under student-t distribution

assumption. Whereas, Finansbank’s results differ according to period and

assumption.

·  The measure of volatility persistence ba +  in the model shows that the

tendency of the shock to persist meaning that series have long memory

characteristics. This indicates that the mean return is slow.

· The results suggest that individual banks are evolved with the indexes, they

have the same trend. However, GARCH model captures more data points in

the indexes, whereas there are more data points are not captured by the model

in the individual series. The reason may be claimed as bank-specific news are

more  effective on individual series, these news are felt more profoundly.

After  specification  of  GARCH,  we  used  Value  at  Risk  model  to  convert  GARCH

figures to maximum possible loss amount. Value at risk (VaR) is a very popular risk

management tool, because it is an easily understood and obviously relevant concept.

It  is  simply the answer of “What is  the most one can lose on a given investment?”

This is a question that almost every investor who has invested or is considering
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investing  in  a  risky  asset  asks  at  some point  in  time.  So,  in  its  most  general  form,

VaR measures the potential loss in value of a risky asset or portfolio over a defined

period for a given confidence interval. We used two different confidence intervals as

99  %  and  95  %.  The  empirical  results  show  that  99  %  confidence  interval

outperforms the 95 %, it captures almost every realized stock return.

VaR results differ for each series, the most risky appears to be the Sekerbank, and the

lowest  risky  one  appears  to  be  the  ISE-100.  However,  one-step  ahead  VaR depicts

unexceptionally for all the series have lower VaR number for tomorrow. The reason

might be cited as positive expectations on Turkey.

As a result, this study shows that Turkey stock market has time-varying volatility,

and long memory behaviour. According to these characteristics, GARCH (1,1) model

captures fairly well the behaviour of daily stock returns.
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APPENDIX I - DISTRIBUTION OF RETURN SERIES

Figure 22 Distribution of Return Series for Yapı Kredi
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Figure 23 Distribution of Return Series for Sekerbank
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Figure 24 Distribution of Return Series for ISC
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Figure 25 Distribution of Return Series for Finansbank
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Figure 26 Distribution of Return Series for Alternatifbank
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Figure 27 Distribution of Return Series for Garantibank
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APPENDIX II – RETURN vs VALUE at RISK

Figure 28 Return vs VaR on ISE 100 with Norm Dist. - 95 c.i.  for 1st Period

Figure 29 Return vs VaR on ISE 100 with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 30 Return vs VaR on ISE 100 with Norm Dist. - 95 c.i.  for 3rd Period

Figure 31 Return vs VaR on ISE 100 with Norm Dist. - 95 c.i.  for 4th Period
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Figure 32 Return vs VaR on ISE 30 with Norm Dist. - 95 c.i.  for 1st Period

Figure 33 Return vs VaR on ISE 30 with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 34 Return vs VaR on ISE 30 with Norm Dist. - 95 c.i.  for 3rd Period

Figure 35 Return vs VaR on ISE 30 with Norm Dist. - 95 c.i.  for 4th Period
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Figure 36 Return vs VaR on Bank Index with Norm Dist. - 95 c.i.  for 1st Period

Figure 37 Return vs VaR on Bank Index with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 38 Return vs VaR on Bank Index with Norm Dist. - 95 c.i.  for 3rd Period

Figure 39 Return vs VaR on Bank Index with Norm Dist. - 95 c.i.  for 4th Period
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Figure 40 Return vs VaR on Akbank with Norm Dist. - 95 c.i.  for 1st Period

Figure 41 Return vs VaR on Akbank with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 42 Return vs VaR on Akbank with Norm Dist. - 95 c.i.  for 3rd Period

Figure 43 Return vs VaR on Akbank with Norm Dist. - 95 c.i.  for 4th Period
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Figure 44 Return vs VaR on Yapı Kredi with Norm Dist. - 99 c.i.  for 1st Period

Figure 45 Return vs VaR on Yapı Kredi with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 46 Return vs VaR on Yapı Kredi with Norm Dist. - 99 c.i.  for 3rd Period

Figure 47 Return vs VaR on Yapı Kredi with Norm Dist. - 99 c.i.  for 4th Period
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Figure 48 Return vs VaR on Yapı Kredi with Norm Dist. - 95 c.i.  for 1st Period

Figure 49 Return vs VaR on Yapı Kredi with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 50 Return vs VaR on Yapı Kredi with Norm Dist. - 95 c.i.  for 3rd Period

Figure 51 Return vs VaR on Yapı Kredi with Norm Dist. - 95 c.i.  for 4th Period
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Figure 52 Return vs VaR on Sekerbank with Norm Dist. - 99 c.i.  for 1st Period

Figure 53 Return vs VaR on Sekerbank with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 54 Return vs VaR on Sekerbank with Norm Dist. - 99 c.i.  for 3rd Period

Figure 55 Return vs VaR on Sekerbank with Norm Dist. - 99 c.i.  for 4th Period
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Figure 56 Return vs VaR on Sekerbank with Norm Dist. - 95 c.i.  for 1st Period

Figure 57 Return vs VaR on Sekerbank with Norm Dist. - 95 c.i.  for 2nd Period



106

Figure 58 Return vs VaR on Sekerbank with Norm Dist. - 95 c.i.  for 3rd Period

Figure 59 Return vs VaR on Sekerbank with Norm Dist. - 95 c.i.  for 4th Period
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Figure 60 Return vs VaR on ISC with Norm Dist. - 99 c.i.  for 1st Period

Figure 61 Return vs VaR on ISC with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 62 Return vs VaR on ISC with Norm Dist. - 99 c.i.  for 3rd Period

Figure 63 Return vs VaR on ISC with Norm Dist. -  99 c.i.  for 4th Period
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Figure 64 Return vs VaR on ISC with Norm Dist. - 95 c.i.  for 1st Period

Figure 65 Return vs VaR on ISC with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 66 Return vs VaR on ISC with Norm Dist. - 95 c.i.  for 3rd Period

Figure 67 Return vs VaR on ISC with Norm Dist. - 95 c.i.  for 4th Period
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Figure 68 Return vs VaR on Finansbank with Norm Dist. - 99 c.i.  for 1st Period

Figure 69 Return vs VaR on Finansbank with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 70 Return vs VaR on Finansbank with Norm Dist. - 99 c.i.  for 3rd Period

Figure 71 Return vs VaR on Finansbank with Norm Dist. - 99 c.i.  for 4th Period
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Figure 72 Return vs VaR on Finansbank with Norm Dist. - 95 c.i.  for 1st Period

Figure 73 Return vs VaR on Finansbank with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 74 Return vs VaR on Finansbank with Norm Dist. - 95 c.i.  for 3rd Period

Figure 75 Return vs VaR on Finansbank with Norm Dist. - 95 c.i.  for 4th Period
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Figure 76 Return vs VaR on Alternatifbank with Norm Dist. - 99 c.i.  for 1st Period

Figure 77 Return vs VaR on Alternatifbank with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 78 Return vs VaR on Alternatifbank with Norm Dist. - 99 c.i.  for 3rd Period

Figure 79 Return vs VaR on Alternatifbank with Norm Dist. - 99 c.i.  for 4th Period
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Figure 80 Return vs VaR on Alternatifbank with Norm Dist. - 95 c.i.  for 1st Period

Figure 81 Return vs VaR on Alternatifbank with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 82 Return vs VaR on Alternatifbank with Norm Dist. - 95 c.i.  for 3rd Period

Figure 83 Return vs VaR on Alternatifbank with Norm Dist. - 95 c.i.  for 4th Period
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Figure 84 Return vs VaR on Garanti Bank with Norm Dist. - 99 c.i.  for 1st Period

Figure 85 Return vs VaR on Garanti Bank with Norm Dist. - 99 c.i.  for 2nd Period
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Figure 86 Return vs VaR on Garanti Bank with Norm Dist. - 99 c.i.  for 3rd Period

Figure 87 Return vs VaR on Garanti Bank with Norm Dist. - 99 c.i.  for 4th Period
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Figure 88 Return vs VaR on Garanti Bank with Norm Dist. - 95 c.i.  for 1st Period

Figure 89 Return vs VaR on Garanti Bank with Norm Dist. - 95 c.i.  for 2nd Period
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Figure 90 Return vs VaR on Garanti Bank with Norm Dist. - 95 c.i.  for 3rd Period

Figure 91 Return vs VaR on Garanti Bank with Norm Dist. - 95 c.i.  for 4th Period
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