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ABSTRACT

OPTIMAL HEDGE RATIO AND HEDGING EFFECTIVENESS OF
TURKISH STOCK INDEX FUTURES

Olgun, Onur
MA in Financial Economics,

Graduate School in Social Sciences

Supervisor: Assoc. Prof. Di. Hakan Yetkiner
June 2010, 59 pages

The objective of this thesis is to estimate optitetige ratio for ISE-30 stock
index futures by using several econometric modeie linear regression model,
the bivariate vector autoregressive (VAR) modek #rror correction model
(ECM), the GARCH model and the multivariate GARQWGARCH) model are
conducted particularly in the study to calculask#minimizing hedge ratio. The
appropriateness/superiority of the models’ findirggevaluated under the hedging
effectiveness criterion for each in-sample andajtgample data horizons. As a
result, M-GARCH hedge ratio provides the highesiarece (risk) reduction for
all of the hedging periods along with both in-sagnpind out-of-sample data.
However, there are no penetrating differences batwke hedging performances
of applied models. It is expected that the findingthe analysis will be beneficial

for investors who wish to hedge price risk in Tgtkstock market.

Keywords: Hedge Ratio, M-GARCH, Hedging Effectivese



OZET

TURK HISSE SENEDVADELI ISLEM SOZLESMELERINDE

OPTIMAL KORUNMA ORANI VE KORUNMA ETKINLIGI

Olgun, Onur
Finansal Ekonomi Yuksek Lisans Programi
Sosyal Bilimler Enstitlisi

Tez Dangmani: Dog. Drl. Hakan Yetkiner
Haziran 2010, 59 sayfa

Bu tezin amacl,IMKB-30 endeks vadeli siem sozlgemelerine ait optimal
korunma oraninin géli ekonometrik modeller uygulanarak tespit edibihr.
Optimal korunma oraninin hesaplanmasindagrDsal Regresyon modeli, Yoney
Kendiyleb&lasim (VAR) modeli, Hata Duzeltme modeli (ECM), GARCH
modeli ve Cok Dgiskenli GARCH (M-GARCH) modeli kullanilmgtir. Modeller
tarafindan tahminlenen korunma oranlarinin, 6érmekig ve drneklem-da veri
setlerinde, kaulastiriimasinda korunma etkidi kriteri baz alinmgtir. Buna gore,
M-GARCH modeli tarafindan tahminlenen korunma amamihem 6rneklem-igi
hem de Orneklem-gh veri setleri icin en diuk desisirligi sasladig
gozlemlenmgtir. Diger taraftan, modellerin korunma performanslari iace
kayda dger farkhliklar bulunmamaktadir. Analizden eldeledibulgularin Tark
hisse senedi piyasasindaki riskini en aza indirmdyen yatirimcilar igin yararl

olmasi beklenmektedir.

Anahtar Kelimeler: Korunma orani, M-GARCH, Korunmtkinligi
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Chapter 1

Introduction

A futures contract is just a standardized agreentebtly or sell a commodity or
financial instrument on a stipulated future datex gtarticular price agreed upon
today by the buyer and seller. The demand for &sturontracts has steadily
expanded around the world over the last decadellgar®@ the drastic

technological developments in the meantime. Onéhefmajor reasons behind
this growth is exactly the hedging opportunity pded by futures markets to
cope with the adverse effects of volatility in agseces. The purpose of hedging
is to minimize the risk of a portfolio for a givéevel of return. This is done by
taking a position (sell or buy) in futures markkeatt is opposite the one in spot
market! Consequently, a profit or loss in the spot positioie to the variability in

prices will be countered by taking a futures positi

Traditional hedging approach affirms that the absolmagnitudes of spot and
futures positions should be same in order to offsiete risk. However, the spot
and futures prices are not perfectly correlateckbality. Hence, the magnitudes of
the positions in spot and futures market would b&erént to follow a sound

hedging strategy. Determining the proper amourititofres position that perfectly
covers the spot exposure is crucial correspondinghe optimal hedge ratio,

which is described as the ratio of the size offpba taken in futures contracts to

! For example, if an US exporter is expected to &id furo (long spot position), he needs to sell
Euro or take short position in futures market. Bistway, any reduction in the value of Euro
against dollar will be compensated through thetghosition in futures market.



the size of the exposure in spot market under mimmisk (variance) constraint,
is used to determine the proper amount of futuaestipn that optimally covers
the spot exposure. Nevertheless, the calculatidheobptimal hedge ratio for any

futures contracts is not a straightforward effort.

Even though there are plenty of suggested methmditnpute optimal hedge
ratio, there is still no agreement in the existiligrature on which model is the
best. The hedging effectiveness measure often ettt most favorable model
for estimating the hedge ratio in the related stssidHedging effectiveness can be
defined as the percentage reduction in the variahdee spot portfolio by using
futures contracts. Further, the performance ofdgimg operation is disclosed via

the hedging effectiveness criterion.

The econometric models that are used to estimatéedge ratio can be grouped
into two: constant models and dynamic models. Dynanodels, which are more
sophisticated, take into account the heteroskedaature of financial time series,
contrary to constant models. But they are suffér@ah the complex algorithms in
the calculation process, which may sometimes bésaddantage, compared to
constant models. To sum up, each model has its pwwe and cons in the

estimation of the optimal hedge ratio.

In fact, the estimation of the optimal hedge raticludes many dimensions
different than the choice of empirical model, whidn cause great variations in
the hedging effectiveness. The choice of data #eqy, the length of hedging

period and whether the horizon is in-sample orajtgample all influence the



hedge ratio or hedging effectiveness results. Toereall these abovementioned

issues are taken into account in this thesis.

Since the focus of this study is to explore newdyriched Turkish futures
contracts concerning optimal hedge ratio and heggiffiectiveness, the ISE-30
stock index futures is chosen particularly for @mepirical analyses. This futures
contract is regarded as a benchmark for the Turldehnivatives Exchange
(TurkDEX) as it composes more than 90% of totadlitrg volume in last three
years. Moreover, the trading volume of the ISE-Bfurfes has been increasing

steadily as it allows managing price risk in Tuhksgock market.

The stock index futures contracts have emergedraius exchanges in the world
since their first launching in 1982. However, thveageness of the index futures
soared after the 1987 stock market crash. Espgciafititutional investors
commonly prefer stock index futures to control timsystematic risk of the stock
portfolio they hold without changing the compogsitid hese contracts are favored
as an effective hedging tool because of their diqui and relatively lower

transaction costs.

This thesis aims to estimate the optimal hedge fati ISE-30 stock index futures
contract by using a variety of empirical modelsfulther aims to contribute by
comparing the superiority of constant or dynamicdele for the estimation
process, through associated assessments. The medshedging effectiveness
will be handled particularly to compare the hedg#or estimations of derived
models within different hedging horizons for bothsample and out-of-sample

data.



The findings of thesis will be important for two maeasons. First, hedge ratio
estimations obtained from the analysis will be Iiered for the investors who
wish to hedge price risk in Turkish stock marketc&d, it will help to answer

how effective is the ISE-30 futures contract agdging tool.

The remainder of the thesis is organized as foll@&estion 2 extensively reviews
the theoretical background and existing literatomethe hedge ratio and hedging
effectiveness. Section 3 describes the data sed usdhe study with brief

information on the TurkDEX. Section 4 presents eéhgirical models conducted
for the research. Section 5 portrays hedge ratimates of models and the related

comparison of hedging effectiveness. Section 6 makecluding remarks.



Chapter 2

Literature Review

A significant amount of empirical research in thedging literature has focused
on estimating the optimal hedge ratio and/or heglgiiflectiveness for a variety of
futures contracts. In fact, the two concepts arectly related with each other and
mostly considered in the same framework. To pdifferently, the effectiveness
of a futures hedging process can be enhanced sithptyigh calculating and

using the most accurate hedge ratio.

Theoretical hedging function of futures markets weewly investigated by
Working (1952) in a seminal study. He challenge@ ttommon view of

classifying hedgers as pure risk-minimizers antedt#éhat profit maximization is

also the prior objective of hedgers as well as sjpgars. Furthermore, he
emphasized that, spot and futures prices do nat tiemove together entirely in
practice and most hedging is done by expectingvargence on these prices.
Thus, holders of long positions in the spot mavidtonly hedge if the basis (the

difference between spot and futures prices) is eepeto fall.

Johnson (1960) and Stein (1961) revealed the fuedtais of futures hedging by
applying the mean-variance framework of MarkowitZdl®52) portfolio theory.
According to this framework, it is assumed that ialfestors have a common
object of maximizing expected return for a giveweleof variance (risk) or

alternatively minimizing variance (risk) at a givéewvel of expected return. A



hedger can maximize his utility via minimizing thieconditional variancec‘(ﬁ) of

the covered portfolio returns as follows:

Oy = W0 + W, I5 — 2w, W, COUAS, AF) (1.1)

wherews andw; represent the weights of spot and futures postio the hedged
portfolio, respectivelyAS andAF demonstrate the price changes (or returns) in

spot and futures market ai@bv (AS AF) denotes the covariance among these

variables andd, and d;; are the unconditional variance of price changespiot

and futures market. The proportion of futures cacts that should be held in the
portfolio against existing spot exposure is defireed the Minimum Variance

Hedge RatidH .

W, _ Coq(AS,AF)
W, o7

S

H = (1.2)
Following that, Ederington (1979) adopted Ordindrgast Squared (OLS)
regression method to derive risk-minimizing hedgéor He showed that the
optimal hedge ratio is just the slope coefficiehtaoregression equation where
spot and futures price changes are defined as depeand explanatory variables,
respectively. The hedging effectiveness was alseciBpd in the study by
referring the percentage variance reduction betwbedged and unhedged
positions. Ederington (1979) employed the R-squastdtistic of related
regression as a hedging effectiveness measurasimnner. He stated that the

OLS-based hedge ratio outperforms naive one-to- loedging strategy for



treasury-bill futures contracts by creating mordueion in the spot exposure

variability.

Many researchers have used the OLS method regularBstimate the hedge
ratios for different futures contracts since Edgiam’'s (1979) benchmark study.
The hedge ratios estimated by this approach assifitd as ‘constant’ in the
literature as well, corresponding to the essenéissumptions of the OLS
regression modél Hill and Schneweeis (1981) analyzed the hedgetiffmess
of the major currency futures by implementing OL8d®l to derive hedge ratios.
They demonstrated that the most significant reducin the variance of the spot
return (price-change) series is realized by hedgihghe minimum risk hedge
ratio estimated from the OLS regression. A comparisetween the use of spot
and futures price changes and/or price levels @geprtime-series was also made
in the paper. However, the price level regressigaserally violate the OLS
assumptions due to the high degree of autocomelaketected in residuals, which
leads statistically conflicting and inefficient lggd ratio estimates. Figlewski
(1984) emphasized that the magnitude of the hedgeck position must be
different than the underlying portfolio. The fluations of the basis that indicates
the changes between spot and futures prices dekerthie risk and return
components for index futures hedge. He examinedrarally the Standard and
Poor’s (S&P) 500 futures in terms of hedging pa&drihrough pointing out the

usefulness of OLS-based hedge ratios. He repottatl minimum portfolio

2 The residuals have constant (homoscedastic) \@risand the error terms are normally
distributed.



variance (risk) is achieved with the hedge ratiothed OLS model for various

holding periods.

Myers and Thompson (1989) developed a generalippdoach for hedge ratio
estimation by implementing OLS to a single multipggression equation. This
specification that takes heteroskedastic shocks actount differs from simple
regression models. Nevertheless, it is denotedthigatlassical regression method
provides reasonably accurate estimates even ibtiscomplex as the general
approach. Malliaris and Urrutia (1991) scrutinizie probable effects of the
lengths of estimation periods and the hedging bosz on the hedging
effectiveness for selected currency futures. Th#yneed that the length of
estimation period, assigned for the required coatpuris of the OLS regression
model, does not have any impact on hedging effecggs. On the other hand,
weekly (shorter) horizons were found to be moresaife in hedging than
monthly (longer) horizons. In a parallel reseaBknet (1992) asserted that the
hedging horizon should be minimized to reduce gpioe risk successfully, since
the frequent changes in market conditions detdgaitze stable estimates of the
OLS model. He also documented the robustness dtaonhedge ratios relative
to time-varying (multiple) ratios, since the hedg#éo variability usually offsets

the diversification benefits of the portfolio.

The reliability of OLS hedge ratios is noted inegent study by Lien (2005). His
findings illustrate that the hedge ratio gathenexnf the OLS regression would
minimize the within sample unconditional variancel dikely perform better than

any strategy for out-of-sample comparison too ib tsub-samples have equal



magnitudes. In addition, he claimed that the swpiyi of other methods on
hedging effectiveness, relative to OLS regressiodeh is caused by either small

sample sizes or structural changes between tweaniples.

One of the limitations for the regression modedhis serial correlation detected in
residuals, which caused to yield biased hedge edtonates. To eliminate the
serial correlation in residuals, Herbat al (1993) modeled the spot and futures
returns through a bivariate vector autoregressiVAR) framework. As
consequence, they removed the serial correlatimm fhe residuals and derived

more realistic hedge ratios in the study.

It is clearly documented by numerous empirical aedees that there is a close
interaction between the spot and futures marketemthe lead-lag pattern, which
is taken into account by the bivariate VAR modehira different perspective. To
name a few, Stoll and Whaley (1990), Chan (1998)Bmooks and Chong (2001)
have all reported the feedback relations (mostiyréctional) among the spot and
futures prices, returns and volatilities for vasauarkets. These findings provide
reasonable support for applying a VAR frameworlestimate hedge ratio, under
the fact that trends in spot and future markets ratigct the current price

movement instantaneously.



Another structural viewpoint on hedge ratio estioratmerely hinges upon the
probable cointegratidrrelationship between the sp@) (and futures K) prices,

which is reinforced by cost-of-carry futures prigimodel given in the followiry

F = Selr+sor (13)

wherer, s and c indicate risk-free interest rate, storage costd @mnvenience

yields respectively that aroused from holding theufes contract until delivery
date. The existence of such a correlation wouldatioiv any prices to diverge
extensively from the long-run equilibrium. Engleda@ranger (1987) revealed
that the cointegration among variables invaliddtes findings of conventional
regression method since the essential short-rurardigs are not taken into
account through the OLS system. They suggestedyiagperror correction

mechanisms in the case of cointegration, which @at®o the change in one
variable to past equilibrium errors and furthertpa®anges in other variables. A
procedure for testing the null hypotheses of nontegration against the

alternative cointegration was also developed iir stady.

The cointegration framework is early considered@grbade and Silber (1983)
over the estimation of optimal hedge ratio paraciyl They specified a method
that derived from the price elasticity of storallemmodities (i.e. wheat, oats,

gold) to define the interrelationships between casdrket prices and futures

% Cointegration is an econometric character of tseges parameters. If two or more series are
themselves non-stationary (i.e. spot and futureeg)i but a linear combination of them is

stationary, then the series are called as coirtieyrdn our context, cointegration refers not to

comovements in returns, but to comovements in rasetaprices. Cointegration process allows
considering both short-run and long-run dynamich@amodel.

* Cost-of-carry model is an arbitrage-free pricingd®l. Its main idea is that futures contract is so

priced as to preclude arbitrage profit

10



prices. The degree of market integration is charasd by a simple function
concerning the supply of arbitrage services for #irt hedging horizons.
Consequently, the optimal hedge ratio would be kmaf the cointegration
relation is not counted in the process. Ghosh (L@a&mined the major stock
index futures in US with the aim of determining timest effective hedge ratio.
Apart from simple regression, he employed errorremion model (ECM)
alternatively once the null hypothesis of non-cegmating vector (rank=0) is
rejected significantly. The empirical results iretpaper demonstrate that the
hedge ratios derived from traditional methods ardewestimated because of the
misspecification problem.On the other hand, the hedging effectiveness is
improved considerably by the estimates of errorrezdion model which
incorporates the long-run equilibrium relationskapd the short-run dynamics.
Furthermore, Lien and Luo (1993) confirmed the #xise of cointegration
between spot and futures prices for the major ocggrend stock index markets.
They extended the well-known Garbade-Silver (G®)recorrection model with
the inclusion of lagged price terms to calculat hulti-period hedge ratios. It is
concluded that, the hedge ratios obtained fromrecmwrection specification
provide remarkable performance in hedging. Simfladings referring to the
superiority of error correction model were alsoaied by Chowet al (1996) and
Kenourgios and Samitas (2008) for the Nikkei andPSs&tock index futures,

respectively.

® By omitting the long run cointegration relationsiiiom the estimation procedure, hedger would
take a smaller than optimal futures position, whprbbably causes a relatively poor hedging
performance.

11



Nonetheless, Lien (1996) highlighted that the masffration issue might exist

for the error correction representations as welinmgleling a partial cointegration
system instead of a complete one. In that casegrtioe correction model will not

present the optimal solution in the calculationtieé hedge ratios. In a recent
study Moosa (2003) exhibited the negligible diffese in hedging effectiveness
with or without cointegration consideration. He mted out that model selection
(complexity) is not crucial as much as the corretabbetween the prices of the

unhedged position and the hedging instrument.

Contrary to main assumptions of the OLS approadabstrof the financial asset
returns are not symmetrically distributed and do Imave constant variance as
confirmed in the literature. In this context, thariance of error terms tends to
change through a deterministic function of timecatled as heteroskedastic. The
stylized fact of volatility clustering is furtherbeerved characteristic of the
financial time-series as a property of stochastitetoskedasticity processes
within the econometric perspecti¥eCherefore, the Generalized Autoregressive
Conditional Heteroskedasticity process (GARCH) evealoped by Bollerslev
(1986) for considering idiosyncratic features ohaficial data in volatility

modeling unlike conventional methods.

As many empirical investigations in the financecghbne, the GARCH based
models (both univariate and multivariate specifaat) are commonly conducted

with the aim of estimating hedge ratios. This framk allows us to compute

® As noted by Manlderbrot (1963) “large changes tene followed by large changes, of either
sign or small changes tend to be followed by setainges”. While returns are themselves
uncorrelated, absolute returns or their squargdalis positive, significant, and slowly decaying
autocorrelation function for ranging from a few mmi@s to several weeks.

12



time-varying (dynamic) hedge ratios since the conditional (paatiances and
covariances are considered as the explanatory mértuvariance. Baillie and
Myers (1991) adopted the bivariate GARCH modeludgig an error correction
term (diagonal VECH parameterization) to calculgémal hedge ratios for each
of six different commodity futures. They comparée ttonditional variances of
portfolio returns under three hedging strategies: hedging; hedging with
constant hedge ratio estimated using regressiomadst and hedging with a
time-varying hedge ratio of bivariate GARCH modg&bth the in-sample and out-
sample performance evaluations indicate that tiamgimg hedge ratio of
GARCH method generally provides the largest reduactn portfolio variances.
After that, Kroner and Sultan (1993) found paratesults for the major currency
futures by employing the constant correlation GARQHL) specification. The
cointegration issue was taken into account withitiotusion of error correction
term to the benchmark model, which is required dorrency markets. Further,
Sephton (1998) advanced the existing GARCH metloggyoin the literature on
hedge ratio estimation through developing anothettivariate framework to
allow temporal evolution in the processes. He dtaieat the hedge ratios
calculated from multivariate GARCH model are optirnt@ reduce risk for the

commodity futures traded in Canada.

Park and Switzer (1995) are the first who applyatgyit hedging to the stock
index futures, S&P 500 and Toronto 35, in dailyi®als is concluded in the study
that the bivariate GARCH model provides an improveztiging strategy in
comparison to the OLS hedge and the OLS with cgmateon between spot and

futures prices. Additionally, Lypny and Powalla 9B analyzed the hedging

13



effectiveness of the DAX futures. They showed thatapplication of a dynamic
hedging strategy based on the GARCH (1,1) covagigrazameterization reached
significant progress in economic welfare over sengbnstant hedge and the error
correction without the GARCH (1,1) structure. Alland Yang (2004) employed
a standard diagonal VECH M-GARCH (1,1) model urntierconstant correlation
hypothesis. The dynamic hedge ratios estimated fronditional information set
display high degree of non-stationarity throughetjirwhich is also consistent with
the non-linear nature of the price distribution® Markedly expressed that the
hedging effectiveness is preceded via the GARCH-arying hedge ratios in

terms of the minimum portfolio variance for londedging horizons particularly.

From a different perspective, Brooksal (2002) put emphasis on the asymmetry
in GARCH modeling across the entire variance anchgance matrix since the
OLS hedging is independent of news arriving to mharket. Thus, the hedge
ratios might be responsive to the fluctuationsniegs resulting from information
arrivals. Their findings related to the multivagahsymmetric GARCH model,
which enables positive and negative price innovatido affect variance
differently, confirm the significant developments ihedging performance.
Moreover, Choudhry (2004) implied that the dynarhedge ratios of various
GARCH derivations outperform the constant hedgesaibtained from different
estimation procedures for many stock markets aed #torresponding futures
contracts. Despite the presence of excessive mweafor developed markets on
time-varying (GARCH) hedge ratio concept, emergmgrkets have not been
detected sufficiently yet towards the same purpdséew numbers of studies

such as Choudhry (2003) for Hong-Kong and SouthcAfrFloros and Vougas

14



(2006) for Greece, and Bhaduri and Durai (2008)Ifatia have emphasized the
ability of GARCH framework to compute risk-minimigj hedge ratios in

accordance.

Although the great number of studies in the literatasserts the superiority of the
dynamic hedge ratios, there exist also consideratumterviews concerning the
drawbacks of the GARCH estimation process. MyeB91] revealed that the
GARCH model perform only slightly better than cargthedge ratio estimation.
Therefore, the linear regression approaches tonaptiedge ratio estimation may
be a satisfactory approximation. Besides, Fackher cnew (1994) underlined
the disadvantage of GARCH formations due to thain-linear optimization
algorithms. Holmes (1996) and Miffre (2004) alsmwbkd that the hedge ratios
subject to estimations of the OLS regression metphomvide better hedging
performance than other complex GARCH specificatioftwrough a descriptive
work, Lien et al (2002) examined the implementation and effecegsnof the
time-varying hedge ratios attained from the cortstanrelation GARCH model,
under the rolling-window out-of-sample forecast$ieif empirical comparisons
demonstrated that GARCH estimations should not &opned for hedging
purposes because of the computational complexity csts. In a more recent
study Lien (2007) outlined the fact that the tinseyng (GARCH) hedge ratio
minimizes the conditional variance of the hedgedfplio whereas the constant
(OLS) hedge ratio minimizes the unconditional vacia of the hedged portfolio.
As the common hedging effectiveness measures lsangroportional reduction in
unconditional variance; the conventional hedgeorddminates the other hedging

strategies correspondingly.

15



Briefly, four fundamental methodologies have beendticted to estimate optimal
hedge ratios in the literature. These are OLS ssgra method, VAR method,
ECM method and GARCH (univariate or multivariate¢thod. However, it can
be easily comprehended that there is no consensost dhe best way to
determine the hedge ratios using futures. Differstuidies have documented
contradictory results in this regard. The majoofyresearches have decided the
superiority of a method by comparing the estimatestated models under the
criterion of hedging effectiveness. A similar prdaee is adopted in this study to
determine optimal hedge ratio for the ISE-30 indetures, which based on
comparing the hedge ratio estimates of various @oetric models under hedging
effectiveness criteria. Since there are very lichieeademic researches (only one)
in the literature so far about the hedging effemiess of Turkish futures market
[Aksoy and Olgun (2009)], this thesis aims to makeoncrete contribution to the

hedging effectiveness literature.
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Chapter 3

Data

3.1 Institutional Features of TurkDEX

The TurkDEX is the first and unique derivatives kadrin Turkey, authorized by
the Capital Markets Board (national regulatory ay@nThe opening bell for
trading in the TurkDEX rang recently off Bebruary 2005 with 34 members. As
of May 2008, there are 86 registered members (bagleehouses and banks) in
TurkDEX. Although the exchange is classified as@ipseeking organization by
the legislations, it has strategic and economiorjpies from the point of
establishing an efficient and successful risk manasnt platform to sustain a
robust economic structure. In this context, then@pal objectives of the
TurkDEX are sorted as: protection of investorsndparency in executions,

optimal response to market demands and integratiminternational markets.

Only futures contracts from the main categoriediredncials (currency, interest
rate and equity index) and certain commoditiesdgobtton, wheat) have been
traded in TurkDEX so far. Futures prices are deiteeoh by executing “multiple

price-continuous auctions” method. A single tradsegsion called as “normal
session” is adopted in TurkDEX, holding between09&8m. and 5.35 p.m.

TurkDEX is tax-free for foreign and domestic inv@st since the trading was

" See TurkDEX web site,
http://www.turkdex.org.tr/VOBPortalEng/DesktopDelfaaispx?tabid=101
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commenced in the exchanyeéds TurkDEX utilizes a fully electronic trading

system with remote access, there is no geograpigisaiction to invest.

The magnitude of trading volume in TurkDEX has begowing gradually in
parallel with awareness of the futures contractsThykish investors. Figure 1
below evidently highlights the upward trend in totalume during the period of
2005-2009. As demonstrated in the figure that ahma@ing volume in the
market soared more than 100 times by this timethEur the daily average
volume has reached 1.4 billion TL in 2009, whichvexs 55%-65% of daily

trading volume in Istanbul Stock Exchange.

400 -
350 - 334,17
300 -
2507 207.96
200 -
150 | 118,03
100

50 510 17,87

0 —

2005 2006 2007 2008 2009

Figure-1: Annual Trading Volume in TurkDEX (bill. T L)
Source: TurkDEX

Nevertheless, the breakdown of total trading volum@&urkDEX points out the
presence of a heterogeneous structure on the difasidividual futures contracts.

Correspondingly, it can be affirmed that ISE-30 iggundex futures has

8 This regime is going to continue for domestic stees until the end of 2008. However, there is
no an announced deadline for foreign investors Vhe proportion of foreign investors in the
market is approximately 25%.
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dominated the market since the beginning of 200&is Tcontract composed
91.22% and 93.16% of market trading volume by fitsel 2008 and 2009

respectively (see Figure-2).

2009 93%
2008 |
2007 7
2006 |
2005 | 22%
0% 20% 40% 60% 80% 100%
O Equity B Forex O Other

Figure-2: Trading Volume Breakdown in TurkDEX
Source: TurkDEX

As the ISE-30 index futures contract is comprehdnds a good proxy to
represent the whole market, it would be reasonableise this contract for
investigating the hedging effectiveness of TurkDEPhe ISE-30 futures are
quoted by dividing the underlying spot index (IS&-8y 10 simply. Six delivery

months- February, April, June, August, October Bredember- are specified but
only three of them are opened to trade at the saneeconsidering expiration of
previous contractd The ISE-30 futures contracts are cash-settledtes utures

in TurkDEX. Daily price limit is+/-10%; position limits are 5000 contracts

(absolute) and 10% of total open positions (prapodl).

° For instance, when February contract is expiredusticontract is activated.
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3.2 Data Description

The data set employed in the study comprise daib¢ and futures prices of the
ISE-30 stock index covering the period from 2 M&p2 to 30 April 2009 by
1006 observation¥. The spot and futures data were collected fromatfieial
web sources of the Istanbul Stock Exchange (ISH)the TurkDEX. The ISE-30
stock index contains the shares of 30 largely aap#d firms from various
sectors quoted on Turkish stock market, which oanting for approximately
60% of total market value. To eliminate the advexffects of thin trading near
expiration, the contracts in settlement month atked over to next two-month
contracts whenever the daily open interest (asypofxdrading volume) of next
two-month contract exceeds the daily open inteoéshe contract in settlement
month!* Moreover, the last 276 observations (from 21 Ma26b8 to 30 April
2009) in the data set are not included to estimgpimcess in order to evaluate
out-of-sample forecasting abilities of the empiriceodels in the thesis. Figure 3
provides an insight for the basis between spot fatutes prices of the ISE-30

index.

Daily returns for ISE-30 index (spot and futuresy ealculated by the following

formulas;

R, = log(%_l) (2.1)

10 As the ISE-30 index future contracts were not Hgawvaded during the first months of the
exchange, the dataset is started from 02 May 2@§tBad of the launching date, 4 February 2005.
1 For instance, the open interest of the Februa@52€bntract exceeded the December 2005
contract firstly at the rollover date of 29.12.20(0&ne day before December 2005 contract
expiration). Hence, the settlement prices of Felyr@®05 contract are started to be used from
29.12.2005 by ignoring remained settlement pringhé December 2005 contract.
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Ry = Iog( %Hj (2.2)

where Rs and Ry represent daily spot and futures returns respdgtivClosing
values of ISE-30 index are shown I8 for spot andF; for futures, on the

corresponding daly
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Figure-3: Basis between ISE-30 Index Spot and Futes Prices (log.)
Source: ISE and TurkDEX

3.2 Summary Statistics

Several descriptive statistics are calculated foe purpose of recognizing
fundamental statistical properties of the datasebrpto empirical analysis.
Table 1 shows summary statistics related to urat@rspot and futures daily

return series for the selected period.

Table-1: Summary Statistics

Mean Stand. Dev. Variance Skewness  Kurtosis ‘].B .
Statistics
R. 2.57E-04 0.0221 0.0005 -0.0073 4.5564 65.14
Rs 2.64E-04 0.0226 0.0005 -0.0458 4.6659 65.39

Note: denotes 1% significance level.
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As firstly seen in the table, both samples exhgusitive average daily return
(mean) values over three year period, though fetoeturns are slightly greater
than the spot returns. The volatility measures)ddied deviation and variance, are
highly identical for spot and futures returns asspimed. In addition, both series
are negatively skewed by pointing out an asymmedtrieft-tailed distribution.

The excess kurtosis estimates denote that dailyrretistributions have fat tails

(leptokurtic) relative to normal distribution. Omet other hand, asymmetric
distribution of spot and futures returns are vedfithrough significant Jarque-

Bera statistics as well rejecting the null hypothes normality.

12 Jarque-Bera (JB) statistic is employed to testrthi hypothesis of normality along with an
asymptotic chi-square distribution. JB values témdbe closer to 1, or less than 1 for symmetric
normal distributions.
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Chapter 4

Methodology

As stated previously, there is nothing like “thestomethod” in the literature to
estimate optimal hedge ratio for the selected &gwontracts. Each suggested
model has its own strengths and weaknesses. Ranoes the primitive models,
such as linear regression, are simple and easyplzment; but they do not fully
cover the features (e.g. heteroskedasticity) of fthencial data. On the other
hand, the sophisticated models, as multivariate GARmay lead to calculate
more realistic dynamic hedge ratios. Nevertheled®y have numerous

constraints which make estimation process so ditfend complicated.

Moreover, the predictions of the econometric modkgdsnot engender identical
hedging performances for each derivative marketiquéarly.®* Therefore, most
of the researches concerning optimal hedge ratimason have been conducted
by employing various econometric models togethet iaterpreting their results
in terms of hedging effectiveness. The appropriedsrof an empirical model and
the optimal hedge ratio for a specific futures cacit is determined through
comparing the findings of these models respectivEhis common application
will also be adopted in this thesis. Accordinglynéar Regression Model (Model
), Bivariate Vector Autoregressive Model (Mode),Error Correction Model

(Model IlI), GARCH Model (Model IV) and Multivarig GARCH Model (Model

13 Whilst the hedge ratio calculated by simple resjars method is characterized as optimal by
Choudhry (2003) for Germany and United Kingdom, lileelging performance of the same model
is found as the worst for Australia and Hong Kong.
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V) are chosen for the econometric comparisonstimate optimal hedge ratio for
the ISE-30 index futures contract. However, it ipected that multivariate
GARCH (M-GARCH) hedge ratio will provide a superivedge performance due

to the statistical strength of the model.

4.1 Linear Regression Model

Linear regression is the most widely applied ecoetoin technique, which aims
to explain the statistical relationship between wvamore variables by fitting a
linear equation to observed data. In other wortdsattempts to estimate the
expected value of an interest variable (dependemtable), using some
explanatory variables (independent variables) aleitig a linear function. To fit a
regression line for the observed data, the sumqoares belonging to vertical
deviations (residuals) from each data point is mired, which is called as
ordinary least-squares (OLS) method. The classassumptions of the linear
regression model can be stated as normally disétband uncorrelated residuals

that have an unconditional constant variance (hcedsssticity).

Since the interaction between spot and futureseprammposes the key principal
of hedging, the linear regression model is emplay@dmonly to calculate hedge
ratio through relating the spot price changes (ddeet) with the changes of
futures prices (independent). Furthermore, it igrabterized as the simplest and
quickest model in the literature. Equation (3.1yeleped by Ederington (1979) is

used to estimate hedge ratio specifically;
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Ri=c+pR; +¢ (3.1)

where the slope coefficiet represents risk-minimizing hedge rati,; and Ry
indicate actual daily spot and futures returnscgprchanges) respectively. The
constant term in the model is shown byand residuals (error terms) are

symbolized by .

The validity of the linear regression model is tygtlependent on satisfying its
conventional assumptions. For this reason, theistemey of these assumptions
should be monitored through some diagnosis testquéd-Bera test for normality,
Breusch-Godfrey test for autocorrelation and ARCHM-1est for homoscedasticty
will be used in this thesis and will be discussedgsively in the empirical results

of linear regression model in the next chapter.

4.2 Bivariate Vector Autoregressive (VAR) Model

Vector autoregression is basically an economefmra@ach designed to capture
interdependencies among multiple time-series. Ih d#e perceived as a
generalized extension of the univariate autoregressodel (AR) in practice. The

VAR specifications are found to be functional iflegeting the dynamic features
of the financial time-series and often generateegop forecasts than univariate
models. In addition, estimates of VAR models are ngid because of the

conditional forecasts on potential lead-lag streenf specified variable¥. There

are two essential considerations for the variabfestructural VAR model from

* Theoretically, all the variables used in the VARqess have to be at the same order of
integration [I(0) or 1(1)]. Otherwise, the requiré@nsformations should be provided in order to
prevent biased estimations.
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econometric perspective: (i) error terms are notetated, and more importantly
(i) variables can have contemporaneous interastith other variables and their

own lags®®

The VAR modeling has comprehensible advantagese¢esdfy on linear

regression model) over estimation of a robust hedge. First, it can eliminate
serial correlation (autocorrelation) in residuaghich usually causes biased
results predicted by conventional methods. Sectivel VAR procedure helps to
examine the simultaneous interactions between spot futures returns by
underlining the fact that fluctuations in both metd may influence the current

price mechanisms.

The bivariate version of the standard VAR modelemployed in the thesis
particularly, consistent with the existed hedgéoréterature. It is just a multiple
regressions process by two equations that contamsariables (spot and futures
returns). For the purpose of calculating a riskimining hedge ratio, the

following bivariate VAR specification is applied pigularly [Kroner and Sultan

(1993)].
k k
Rt = Cs +Zﬂs,i R i +Z/15,i R T €q (3.2)
= =
k K
Ri. = Cq +Z,Bf,i Rs - +z/1f,i R T & (3.3)
i=1 i=1

1% See, Liitkepohl (2008).
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Equations (3.2) and (3.3) demonstrate explanatararpeters on daily spot and
futures returns, respectively. Meanwhile, daily tspod futures returns as main
variables in both equations are characterizeBhwndR:; respectivelyps;, fx.i,
Jsijand s are positive VAR parameters; angdandc; indicate constant terms in
the equations. Further, identically distributedependent vectors are shown by

&sandeg in the model. The optimal hedge rati) {s derived from the bivariate

VAR model by:
0

h=-3 (3.4)
o;

whered? is the variance of &, calculated from equation (3.3) aw is the

covariance betweef} { ande .

One critical point for the success of model is deg the optimal lag length
(shown byk) to remove autocorrelation in residuals permagenfb this end,
Akaike’s Information Criterion (AIC) and SchwarZisformation Criterion (SIC)
are employed to determine the proper lag lengtloreefunning the model.
Moreover, the autocorrelation structure of residuad checked through the

Lagrange-Multiplier test.

4.3 Error Correction Model (ECM)

Error correction mechanisms primarily allow considg long-run cointegration
relationship between non-stationary (level) formfs variables in estimation

process along with short-run impact of changesftationary (differenced) forms.
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If the presence of such a cointegration relatigmsisi ignored, it would be
probable to attain spurious results due to exclytie effect of previous period’s
error (adjustment) term for the long-run equililniuAll the variables in the ECM
must be stationary, | (0), and cointegrated asregeisites of the model. The
estimation procedure of ECM consists of two stdpee first step is computing
the error correction vector between non-statiofgy] variables. Next, the pivot
model for stationary variables is built by includimppropriate error correction

terms derived from the first step.

There is a long-run relationship between spot adrés prices under theoretical
framework [equation (1.3)]. This structure cleasignals the presence of a
cointegration relation among the variables, whilnat taken into account by the
previous hedge ratio models. However, numerousiegudlaim that such a

correlation for spot and futures prices (at levefly cause some misspecifications

on hedge ratio estimations and produce biasedtsempparently.

With the aim of incorporating both long-run and sghon dynamics
simultaneously to the forecasting process, ther @woection model is employed
as the third method to determine the optimal hedg®. The univariate ECM

model and its cointegrating vector are definedo#lews, respectively:

k n

R =C+[R;, + Z’]i Riw Z 0. Ri-m +AEC, * &, (3.5)
i=1 m=1

EC.. =S4~ (a+ th—l) (3.6)
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In equations (3.5) and (3.6R: andR;; indicate daily spot and futures returns
[1(2)], where previous day’s non-stationary spotl datures prices (logged) are
shown byS., and F., in cointegration equation (3.6). lequation(3.5), EC.,
represents lag-one error correction term and thé&map hedge ratio is
demonstrated by. The constant and error term (residual) of the ehaate
characterized by c and as other models. Further, the absolute valuel of
parameter provides an interpretation about thedspéadjustment in the long-run
relationship. Optimal lag-lengths of sp@t) and futures(k) returns might be
different for the ECM unlike the bivariate VAR mdd&/e followed “general to
specific” approach of Hendry (1995) to verify sbi@ lag-lengths. The pre-
conditions of ECM given above are controlled thiowgrious unit-root tests and
Johansen (1988) cointegration test before settiegnbodel. Nevertheless, the
same diagnosis tests previously applied to lineggrassion model are also

implemented to ECM, as it is just an extensiorhefgimple regression model.

4.4 GARCH Model

The heteroskedastic nature of the financial tinteesehas been confirmed by
numerous empirical studies over the last decaddadt the variances of error

terms for these series are not constant over tameassumed in conventional
econometric perspective, and the current variaacesconsidered as conditional
upon the past values. As a consequence of reftgttien characteristics of the data
reasonably, the GARCH model developed by Bollerg[E386) is classified as

superior for modeling financial asset returns irtipalar. The process permits the

variance change over time through a long-term mgneontemporaneously. To
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put it differently, it has a key advantage of dtiag heteroskedasticity into the
estimation procedure and capturing the tendency vidatility clustering in

financial series. According to the GARCH framewotkere are two main
parameters affecting current variance: past vatiesror terms (ARCH effect)

and the conditional variances generated by infaonatrrivals to the market.

For a standard GARCH (p, q) model, p and q reptese® lag length of
conditional variances and past values of error semaspectively. Generally log-
likelihood ratio test is conducted in order to detime the optimal lag length for
the GARCH model. As a rule of thumb, the GARCH JXpecification generally
provides the best fit and forecast accuracy for fthancial data within other

alternatives.

Consistent with the prior empirical works, we exp#twat the spot and futures
return series used in this thesis will follow a dreskedastic pattern. The
asymmetric structures of these series have alrbady exhibited in descriptive
statistics. Correspondingly, the GARCH (p, q) model constructed below
[equations (3.7) and (3.8)] on estimation of théropl hedge ratio as the fourth
model. The most important contribution of this miod®uld be calculating a

hedge ratio that considers heteroskedastic nafuhe alata.

R, =c+AR, +5 :&p| =N(0.5?) (3.7)

h =4, +/]1‘€t2—q +Ah -, (3.8)
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Equation (3.7) is the mean equation of the modéler&Rs; and Ry; represent
daily spot and futures returng. characterizes the optimal hedge ratio and the
constant term is shown bg. Further, & is random error term while?:—s
coefficient indicates available past informatioatthas an effect on error term. In
volatility equation (3.8), the coefficients &f andZ, are the ARCH and GARCH
effects respectively on the conditional volatilty The lag-lengthsp andq, for

the model are chosen by log-likelihood ratio tesstated before.

4.5 Multivariate GARCH (M-GARCH) Model

Multivariate GARCH framework can be simplified just an advanced version of
univariate GARCH pattern, which aim to provide &dreforecast of asset pricing,
portfolio selection and hedging. Technically, itcises on predicting the
sequential dependence in the cross order momenimefseries by employing
information set through complete variance-covamamatrix of errors. In fact, the
distinctive feature of M-GARCH model, compared tovariate specifications, is
using historical information from various market®géther instead of
concentrating in only one market. Pagan (1984)rraffi that the generated
regressor problem detected for univariate modeHiminated by the generated
regressor problem detected for univariate modelsliminated by M-GARCH

extension since all parameters are estimated yoiMbreover, it is asserted by
Engle and Kroner (1995) that variance and covaeaglements in M-GARCH

model depend upon the information set in a vecl®MA manner.
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As the spot and futures series are closely inted| it would be more precise to
conduct a multivariate model for computing the wati hedge ratio. Thus, M-
GARCH specification of Kroner and Sultan (1993utsized lastly in the thesis
with the anticipation of deriving the best hedgeoralausibly. As a combination
of the bivariate VAR and the error correction modeuations (3.9) and (3.10)
present conditional mean equations of the M-GARCbtleh. HerebyRs; andRs;
demonstrate daily spot and futures returns B@g, is the error correction term
from Equation (3.6). The coefficients andc; display constant terms. Further,

the residuals of the equations are shownshgnde;; .

K K

Rt =Cs + Zﬁs,i Roe-i + ZAs,i Ry TEC, +&4 (3.9)
= =
K K

Ri; =¢; +z:8f,i Rs i +z/]f,i Ry +JEC, +&4 (3.10)
=] =]

Conditional volatility specifications of the M-GARC(p, ) model are expressed

through the following equation (and matrices) iis timanner.

2
hsst Csst Es,t— p hsst—q
hsft = Csft + A ‘gs,t—p ’ ‘gf t-p + BI hsf,t—q (311)
2
ff t C €t tp hy t-q

In equation (3.11)hss andhy exhibit conditional variance of the error terms
ery) from the mean equations of the model. Besides,cthnditional covariance

among daily spot and futures returns is represemydd:. It is evidently seethat

there are 21 parameters to estimate in the madalrder to ease complications,
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Bollerslevet al (1988) suggested a restricted parameterizaticmtgque, called

as diagonal VECH, which assumés and B; matrices in equation (3.11) are
diagonal. It is also assumed that the conditioraiances (spot and futures) are
only related with the past values of its laggedasgd residuals. Therefore,
diagonal elements deducted to estimate conditisgaabnces and covariance of

the M-GARCH (p, q) model are found as:

hss,t = Css + assgsz,t—p + ﬂsshsst—q (312)
hsf,t = Csf + asf gs,t—p ' gf,t—p + ﬁsf hsf,t—q (313)
Ng, =Cq +aﬁ£f2,t—p +Bihg g (3.14)

Subsequent to the estimation of parameters abiove;varying daily hedge ratios

(Hy) are calculated by:

H, =—" (3.15)

However, it may not be so practical to change thstipn in futures market day
by day for a hedger due to the transaction costisimitial margins. Hence, the
arithmetic mean value of time-varying hedge ratiols be taken as unique M-

GARCH hedge ratio for that reasth.

'8 There are numerous studies using this processan®e a few, see Myers (1991), Kroner and
Sultan (1993), and Brooks, Henry and Persand (2002)
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Chapter 5

Empirical Results

5.1 Testing for Unit Root

The presence of unit-root for the time-series data@hecked through various
procedures as a pre-condition. Granger and New{d®@d4) indicated that using
non-stationary variables in the OLS process leadsnpially spurious regression
results due to the time-variant variance featurehef unit-root serie¥. In this

case, the persistence of shocks will be infinitd parmanent by invalidating the
assumptions of asymptotic OLS analysis. Hence, toa-stationary data
incorporated to conventional regression model naysehigher R values and t-

ratios for even completely unrelated variables.

Even though there are numerous methods proposedhen literature for
investigating a unit-root in time-series, the meately conducted two procedures
are Augmented Dickey-Fuller (ADF) and Phillips-Reri(PP). We also employed
these two procedures in this study to test théostatity condition of the serigg.
The ADF test is developed by Dickey and Fuller (@8hich assumes error term

(&,) is white noise and not autocorrelated. Howewes, ieported by many related

studies [e.g. Phillips (1987)] that the error tefep) is unlikely to be white noise

" Contrary to stationary series, the non-statiotiamg series do not have a constant variance. The
variance depends on time and it has a long memuhnich approaches to infinity as time goes.
Thus, it is usually not clear-cut to estimate patars over past and future intervals of time for
these series.
'8 Leybourne and Newbold (1999) stated that evalgatie results of both tests jointly would be
more precise.
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in practice. Therefore, Dickey and Fuller (1981)ggested an ‘augmented’
version that addsp lags of the dependent variabldY] to the standard

autoregressive time-series model by the following:
P

DY, = Py + Y aAY, +g, (5.1)
i=1

The test-statisticghat is compared with the critical values compubgdDickey
and Fuller (1981) under the null hypothesis. y = 0 (there is unit-root) is

calculated as:

DF, = /_ (5.2)
SHYy)

where SE stands for standard error. If the test statisiagreater than the critical
value then the null hypothesis pf 0 is rejected and the absence of unit root for
Y; is verified. Dickey and Fuller (1981) derived at®® more expansions of their
core process [equation (5.2)] to monitor random kwabainst a stationary
autoregressive process. These are called “intércapd “trend” procedures,

which are also checked separately in this study.

On the other hand, several limitations are pre$enthe ADF test. First, the

adequacy of the test declines clearly as the lagthe p increases. Second, it
assumes that residuals are uncorrelated and hawstaod variance; but this is
generally not true for the financial time-seriey. @nsidering the shortcomings
of the ADF test, Phillips and Perron (1988) sugegsin alternative approach on

unit-root testing that allows taking into considema heteroskedasticity and
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autocorrelated residuals. A non-parametric comecis used to account for the
probable serial correlation. The hypotheses andddusion making process for
the PP test are identical with the ADF test. Thst-s¢atistics that will be

compared with the relevant critical values is cotepdwia the formula below:

2(t,) = (2 ]rﬂ - 0'{2—]{8%2@ - V)Z} } (53)

S and §, are consistent estimators developed by Phillips Bedon (1988),

corresponding to dependent variaplél is the number of observations ands

the t-statistics applied in testing the null hypastis of unit root.

Table 2 demonstrates the results of ADF and PR festthe spot and futures
return series. Moreover, the logarithmic valuesspbt and futures indexes at
levelsare examined as well since their unit root struetsrimportant to reveal the
type of cointegration relationship between the al@lgs [equation (3.6)]. The
optimal lag-length that removes autocorrelation agnoesiduals is determined
according to Akaike Information Criteria (AIC).i#t denoted in the table that both
of the return series are stationary at 1% signiiiealevel whilst the logarithmic
spot and future index series (at level) are likielycontain unit-root, hence the

series are non-stationary.
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Table-2: Unit Root Tests
Variables Lag-Length (p)  Critical Values ADF Statidics PP Statistics

S 1 -3.430 -2.508 -2.543
F 1 -3.430 -2.492 -2.464
Rs 2 -3.430 -16.142 -28.438
Ry 1 -3.430 -20.321 -29.381

Note: S and F represent logarithmic spot and future values f8E-BO index (level)
respectively.Rs and Ry demonstrate daily spot and future returns in thisymer. Tests are
applied according to “intercept” and “trend” proceels as well; as the results do not change
we have not presented in the table.

" 1% significance level.

As the variables are integrated of order one [J(I)¢ need to analyze the

cointegration relationship. The next subsectionsdbes.
5.2 Testing for Cointegration

Once the presence of I(1) process is detectedhéospot and futures price (level)
series, it is now possible to analyze the cointégnarelationship between the
mentioned non-stationary variables. In this contéahansen (1988) cointegration
test is used particularly to observe probable lnnmginteractions among the spot
and future markets. This methodology has precisargdges over alternative
testing procedures such as the Engle and Gran§87)Inethod. It primarily lets
all test parameters to react as endogenous vasiahieng the estimations. The
basic VAR mechanism applied in Johansen methos sllws.

p+l
AY, = u+Ny,_ + le FAy,, +& (5.4)
y: is ann x1 vector of variables that are 1(1) processs vector of constants and

t=1,2,....Tis the number of observations. The lagged tempsucing the long-run
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dynamics is represented k.. However, the rank off plays a key role in the
process for estimating the number of cointegratiagtors. If the rank of/ isr
and r < n then there exist® x r cointegrating vector among the variables.
Johansen (1988) suggested two different likelihtesis to monitor the reduced
rank of thell matrix, which are called as “the trace test” ankde“tmaximum
eigenvalue test”. The following equations basicakhibit related computations
for these statistics respectively that will be camgal with critical values found by

Johansen (1988).

3 =-TYInfi-1) (5.5)

i=r+l

J,=-Tinft-1) (5.6)

/. represents the largest canonical correlationTaglthe sample size. Whilst the
trace statistics is used to test the null hypothesr cointegrating vector against
the alternative hypothesis pivectors; the maximum eigenvalue statistics téws t
presence ofr cointegrating vectors (null) against1 (alternative). If the

calculated statistics is greater than the critzlie, the null hypothesis would be

rejected as usual.

Table 3 provides Johansen cointegration test sesWidely applied two-step
process is followed to test the rank of cointegiatvector between logarithmic
spot and future prices. According to this framewofkstly the lack of

cointegrating vectors, ¢4r = 0is tested firstly against the hypothesis that there

at least one vector,Hr = 1. Next, the null hypothesis of maximum one vector
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Ho: r < 1is tested against the alternative hypothesis of ¢eiategrating vectors
Hi: r = 2. The lag-length of VAR model is calculated as 3twy AIC. 1% and 5%

Johansen critical points are also presented itetble.

Table-3: Johansen Cointegration Test

He:r=oand Hyi:r=1 Ho:r<landHir=2
Statistics Critical Values Statistics Critical Values
Value 1% 5% Value 1% 5%
Trace 42.59 24.60 19.96 6.40 12.97 9.42
Eigenvalue  36.18 24.60 15.67 6.40 12.97 9.24

Note: The VAR model employed in process is specifiechwieénd and constant terms.

exhibit the rejection of fht 1% significance.
As shown in the table, the null hypothesis thatréhés no cointegration
relationship among spot and futures pricesg: (H= 0) is rejected significantly
against the alternative hypothesis that there ésamintegrating vector @ir = 1).
Nonetheless, the null hypothesis stating that threber of cointegrating vectors is
not greater than one ¢Hr < 1) cannot be rejected by either trace or eigenvalue
statistics. Therefore, the presence of a cointegraielationship between level
variables is approved with rank of one< 1). In that case, the cointegrating
vector among logged spot and futures prices isddoy using OLS regression

method as follows:

S, =0.4389+ 0.959%F, (5.7)

This vector will be used to derive error correctienm [equation (3.6)] among
spot and futures prices, which is a parameter®@B6M and M-GARCH models

specified above.
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5.3 Hedge Ratio Estimations of Specified Models

The hedge ratios computed by proposed empiricalefsoidr the ISE-30 index

futures are reported in this section with relatedydostics respectively.

5.3.1 Estimates of Linear Regression Model

The OLS results obtained by running the regressmumtion (3.1) are shown in
Table 4 (Panel A). Accordingly, the optimal hedgea that is just the coefficient
of daily futures returnsR;;) is calculated a®9.8938 Statistical meanings of
estimated coefficients are checked through staneamads, t-statistics and related
p-values as welfl? The coefficient representing the hedge ratio iantb as

significant (1%) in this regard, contrary to comstparameterd) of the model.

Table-4: Results of Linear Regression Model

Panel A — Parameter Estimates

Variable Coefficient S. Error t-statistics p-value
c 1.7e-5 0.0003 0.06 0.954
Ry 0.8938 0.0159 56.35 0.000
Panel B-Diagnostic Tests
Shapiro- Breusch- ARCH-LM White’s
Wilk Godfrey
Test Statistic 12.23 82.63 48.81 20.35

Note: The null hypotheses for diagnostic tests can beveyed as: “normally
distributed residuals” for Shapiro-Wilk, “no seriabrrelation in residuals” for
Breusch-Godfrey, “no ARCH effects in residuals” faRCH-LM and “constant
variance” for White’s test.

" indicates 1% significance level.

As a matter of fact, the robustness of the linegression model strongly depends
on validity of the OLS assumptions. Hence, the megluspecification tests are

applied to the estimates of regression model. PBngh Table 4) denotes the

% This statistical evaluation process will be folkeavsimilarly for the findings of other empirical
models in the dissertation.
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results of the essential diagnostics in particulae assumptions of normality and
no serial correlation are rejected via the Shapvitk and Breusch-Godfrey tests
respectively. In addition, the results of the ARCM-and White’s tests state that
the spot and future return series have time-varyiagance unlike the OLS

assumptions. Consequently, it can be argued tbat #xist potential biases in the

estimations of the regression model.

5.3.2 Estimates of Bivariate VAR Model (II)

The bivariate VAR model [equations (3.2) and (3i8)¢mployed secondly in the
thesis to calculate optimal hedge ratio, which aremeoving the adverse effects
of serial correlation detected by the regressiothote The appropriate lag-order
for the VAR model is determined as 2 according i€ .ATable 5 displays the
estimated coefficients from the bivariate VAR (2ddel. Nevertheless, the LM
statistics (up to lag 4) are also provided in tiad to ensure the condition of no

serial correlation.

Table-5: Results of Bivariate VAR Model

Variable Coefficient S. Error z-statistics p-value
Spot Eq.
Cs 0.0006 0.0007 0.82 0.411
Rst1 -0.0457 0.0889 -1.98 0.048
Rst2 -0.0283 0.0922 -0.31 0.759
Ry i1 0.0582 0.0920 0.63 0.527
Ry 1.2 0.0375 0.0917 0.41 0.682
Futures Eq.
G 0.0006 0.0007 0.67 0.503
Rsta 0.4030 0.0913 4.41 0.000
Rt 0.2107 0.0917 2.30 0.022
Ry i1 -0.4029 0.0912 -4.41 0.000
Ry iz -0.1705 0.0889 -1.99 0.045
LM -Test Lag 1 Lag 2 Lag 3 Lag 4

5.62 (0.22) 4.47 (0.35) 7.42 (0.11) 1.35 (0.85)
Note: The null hypothesis for LM-test is “no autocorteda at lag order k.
Numbers in brackets represent corresponding p-salueand ~ indicate the
significance levels of 1% and 5% respectively.
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After predicting the variance-covariance matrixesidual series for the spet ()
and futuresds;) equations, the hedge ratio is calculate@.8822[equation (3.4)]

by the VAR method.

5.3.3 Estimates of Error Correction Model (l11)

Since the presence of a long-run cointegratiorticglghip is confirmed between
spot and futures prices, the Error Correction Md&€M) ought to be employed
alternatively for calculating the optimal hedgeigatAccordingly, the ultimate

model [equation (3.5)] is derived by adding oneigmbdagged error correction
term to the simple regression equation [equatioh)|3vith specified lag orders of
spot and futures returns. The time-series regarthegerror correction term is
created by referring the cointegration vector cotegyreviously [equation (5.9)].
Before running the model, the proper lag-length $pot and future returns is
determined as 2 by applying the Hendry’'s (1995n&gal to specific” approach.

The outcomes from the error correction model atedvin Table 6 below.

Table-6: Results of Error Correction Model

Panel A — Parameter Estimates

Variable Coefficient S. Error t-statistics p-value
c 1.5e-05 0.0002 -0.06 0.956
Ry ¢ 0.9271 0.0132 62.79 0.000
Rs 1 -0.3107 0.0485 -6.41 0.000
Rs t2 -0.1592 0.0441 -3.61 0.000
Rt 0.3348 0.0489 6.85 0.000
Rtz 0.1445 0.0446 3.24 0.001
EC. -0.1731 0.0316 -5.49 0.000
Panel B — Diagnostic Tests
Shapiro- Breusch- ARCH-LM White’s
Wilk Godfrey
Test Statistic 12.39 0.62 25.98 4.88

"and_indicate the significance levels of 1% and 5%peesively.
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Nearly all estimated parameters are statisticadigicant, as demonstrated in the
table (Panel A). This finding remarkably gives ns@dea about the fitness of error
correction model. The hedge ratio that is just ¢befficient of current future
returns R ;) is found as0.9271 Furthermore, the sign of error correction term
(EC.,) clarifies the fact that the direction of adjustrhés from spot to future
market unsurprisingly. The speed of adjustmeneigminined as approximately 6

days in this manner.

Panel B in the table reports the results of essledtagnostic tests, which are
applied for linear regression model as well. Thagdostic tests show that the
residuals are abnormally distributed and do not ehasonstant variance
(heteroskedastic). On the other hand, the abseinserial correlation cannot be

rejected significantly for given lag orders.

5.3.4 Estimates of GARCH Model (1V)

The heteroskedastic nature of the return serieghesuraged us to set a GARCH
model in estimation of the optimal hedge ratio. Mitmany specifications, the
GARCH (p, q) model [equations (3.7) and (3.8)] i®®en due to its accuracy on
many financial time series. The lag-orders of cbodal variancep, and past-
squared residuals} are defined as 1 by the log-likelihood procedir&able 7
summarizes the coefficient findings of GARCH (1, rhpdel. To support the
robustness of the model, the Ljung-Box-Q (LB-Q) &&RICH-LM test statistics

are presented in the table as additional diagrsostic

20 After estimating several GARCH (p, q) specificasdfor p=1, 2 and q=1,2 it is decided that the
GARCH (1, 1) model is the most appropriate modebading to log-likelihood statistics.
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Table-7: Results of GARCH (1,1) Model

Panel A — Parameter Estimates

Parameters Coefficient S. Error z-statistics p-vale
c 2.1e-04 2.3e-05 0.08 0.929
B 0.9093 0.0098 9351 0.000
Ao 2.4e-06 6.89e-07 3.56 0.004
M 0.0871 0.0157 5.57 0.000
A2 0.8796 0.0201 42.80 0.000

Panel B — Diagnostic Tests

Test-

statistics lag-length p-value
ARCH-LM 0.81 2 0.469
Ljung-Box-Q 18.35 20 0.313

Note: The null hypothesis for Ljung-Box test is “no sédarrelation for given lag
9rder;:. The lag-lengths for diagnostic tests aneidained by using AIC.
and  indicate the significance levels of 1% and 5%peetively.

The GARCH (1, 1) model yielded that (see Panel Aable 7) the optimal hedge
ratio, represented hg, is 0.9093and significant* More importantly, the hedge
ratio of the GARCH (1,1) model has the lowest staidderror compared to results
of previous methods so far; and, parameter@appear to be highly significant by
correcting the conditional volatility over the spahd futures returns. The
condition of4; + A, close to unity can be interpreted as past vohatitiformation
suppresses the outsized market shocks in foregastirrent volatility?? To put
differently, these shocks decay with time. Thegngicant LB-Q and ARCH-LM

statistics at selected lags (Panel B) confirm thegaacy of the model.
5.3.5 Estimates of M-GARCH Model

Although the bivariate VAR model and the error ectron model (ECM) have
taken into account the short-run and long-run adgons between spot and

futures prices respectively, the ARCH effects isidaals could not be captured

%L Estimations are made under General Error DisiobuGED) assumption as it is more effective
for non-normal distributions.
2 The persistency in volatility is captured byt 4, for GARCH (p, q) model.
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by these models. At this point, the most cruciatdiee of the M-GARCH model is
to consider the bivariate cointegration relatiopdtetween spot and futures prices
from theheteroskedastipattern jointly. It basically combines the bivagia/AR
and the error correction models through mean egust{equations (3.9) and
(3.10)] and the GARCH framework as in conditionarignce-covariance
equations [equations (3.12), (3.13) and (3.14)inévarying hedge ratios from
the M-GARCH model are therefore expected to givéebeesults in terms of

hedging effectiveness.

Table 8 indicates the estimation results from theGAMRCH (1, 1) modef?
However, the coefficient findings of mean equatians not presented in the table
since the main drive for calculating time-varyingdige ratios is to obtain
conditional variance and covariances. To estimiagecbefficients in the model,
the Marquardt algorithm under t-distribution is dspecifically.

Table-8: Results of M-GARCH (1,1) Model

Panel A — Parameter Estimates

Parameters Coefficient S. Error z-statistics p-vale
Ces 7.8e-06 3.1e-06 2.58 0.001
Cr 6.1e-06 2.2e-06 2.75 0.006
Ct 5.9e-06 2.1e-06 2.75 0.006
Oss 0.0558 0.0130 4.29 0.000
Ol 0.0511 0.0114 4.45 0.000
Olss 0.0525 0.0115 4.55 0.000
Bss 0.9251 0.0159 58.06 0.000
B 0.9330 0.0139 66.70 0.000
Bt 0.9301 0.0138 67.39 0.000

Panel B — Diagnostic Tests
Residuals T?‘St_' lag-length p-value
statistics

. Spot 23.74 20 0.254
Liung-Box-Q  Eliee 25.32 20 0.190

Note: The lag-lengths for Ljung-Box-Q test are determibgdising AIC.
" indicates the significance level of 1%.

%3 Once again the lag-lengths of p=1 and g=1 folGA&RCH model provides the best combination
corresponding to log-likelihood functions.

45



As stated in the table (Panel A), all coefficienfsthe conditional variance and
covariance equations are statistically significantl positive, which satisfies the
model constraint at first sight. Further, the GAR@aframeters’ sumc{s+ ass+

PBs9 and(cx + ox + Pr) IS close to unity for each variance equation. Imeotwords,

the persistence in volatility is high for the datasThe sign of the covariance
parametersdg;, fs) also corrects the positive interaction betweentie prices.

Panel B in the table provides Ljung-Box-Q statstid standardized residuals for
the spot and futures returns [equation (3.9) antdjB According to the results of
Ljung-Box-Q test, there is no autocorrelation isideals of both specifications,
which confirms that the M-GARCH model is capablessfimating the dynamics

in the second moments of spot and futures returns.

Figure 4 below plotting the time-varying hedge aatcalculated by the standard
M-GARCH (1, 1) model [equation (3.15)] shows thatanges from a minimum

of 0.79 to a maximum of 1.32.

1,20 A+

1.00 A+

0,80 -

0.60

05.05.2005
19.08.2005
07.12.2005
29.03.2006
13.07.2006
01.11.2006
19.02.2007
05.06.2007
19.09.2007
10.01.2008

Figure-4: Time-varying hedge ratios
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The mean value for the time-varying hedge ratiteses computed a3.9490 In
order to compare the empirical models applied & gtudy robustly, the sample

mean of the dynamic hedge ratios is taken as ahineg.
5.4 Hedging Effectiveness Comparison

The performance of the hedge ratios based on fifereht empirical models is
compared in this section from the perspective @& tedging effectiveness.
Ederington (1979) defines the hedging effectiveresshe relative percentage
reduction in the unhedged portfolio variance aftke hedging transaction.
Therefore, we need to construct unhedged and hepgetblios virtually first.
While the unhedged portfolio just contains the [EEspot index, the hedged
portfolios are composed from the ISE-30 spot inded the ISE-30 futures index
at different weights (using different hedge ratic®jether. Then, the returns of
these portfolios for different hedging horizons.(i5, 10, 15 and 20 days) are

computed by the following equations.
e =(8-5.,) (5.8)

e = (St - St—p)_ h' (Ft - Ft—p) (5.9)

ruet and rn; represent the daily returns of unhedged and hedgmtfolios
respectively, wher& andF; indicate logged spot and futures pricesquals 5,
10, 15 and 20 for different hedging horizons. Theelde ratio determining the

weight of the futures position is shown hy Nonetheless, the variances of the
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created portfolio return series are calculated ughothe equations (5.10) and

(5.11) below.
Var(U) =Var(r,) (5.10)
Var(H) =Var(r,) (5.11)

The variances of the unhedged and hedged portfatslemonstrated byar (U)
andVar (H) respectively. Consequently, the measure of thgihgdeffectiveness
(HE) that is used to evaluate the performances of #tienated hedge ratios is

calculated as follows [Ederington, (1979)]:

_Var(U)-Var(H)
~ VvarU)

HE

(5.12)

As the main purpose of the hedging is to diminigshabolish the price risk

(variance) of the underlying asset, the comparisiothe effectiveness of hedge
ratios via various techniques is made under thigran essentially. There are
few other studies [Howard and D’Antonio, (1984)]ialh assert that the return
after hedging is also important and should be ctamed for the effectiveness of
hedging. For that reason, the average daily retafrthe constructed portfolios
are also calculated and analyzed as a supportioé ftr evaluating the

effectiveness of hedging via different models.

Both in-sample and out-of-sample data are applredhe model assessment

process. Whilst we can monitor statistical robussnef the empirical models by
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analyzing in-sample data; out-of-sample data camdhie forecast accuracy of the

proposed modef&

Table 9 and 10 depict the effectiveness resultshef hedge ratios of the
methodologies used in the study for in-sample and-obsample data,

respectively. The mean returns and the variancetheothedged and unhedged
portfolios are presented as well in the tables i measure of the hedging

effectivenessHE.

The results indicate that even if all hedge rastineates reduce the variance of
the unhedged portfolio, time-varying hedge ratio tbe M-GARCH model
outperforms the findings of competing methods irjamty of cases for both in-
sample and out-of-sample data in terms of HE measthis implication is
evidently consistent with Baillie and Myers (199Kyoner and Sultan (1993),
Choudhry (2003) and Yang and Allen (2004). Hence,can assert that the M-
GARCH model is the most appropriate model (as ebep@do estimate the risk-
minimizing hedge ratios for ISE-30 index. The opmtlnmedge ratio for ISE-30
index contracts is determined @9490in this manner as an arithmetic mean of
the daily hedge ratios from the multivariate modehus, if a hedger takes a
reverse position in futures market which coversrapmately 95% of his spot
exposure, he will attain the most effective hedgingaddition, the significance of
the hedging effectiveness increases parallel toleéhgth of the hedging period

through in-sample data but not for out-of-samplada

“However, Baillie and Myers (1989) and Park and Sevit(1994) reveal that the out-of-sample
data provide more reliable results for the comjparisf hedging effectiveness.
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Table-9: In-sample Hedging Effectiveness

Model Hedge Ratio Mean Return Variance HE (%)
S-day

OoLS 0.8938 6.78e-05 1.29e-04 94.26
VAR 0.9322 -6.56e-05 1.21e-04 94.65
ECM 0.9271 -4.79e-05 1.23e-04 94.61
GARCH 0.9093 3.68e-05 1.25e-04 94.44
M-GARCH 0.9490 -1.23e-04 1.12e-04 95.03
Unhedged 0.0000 3.17e-03 2.24e-03 -
10-day

OoLS 0.8938 3.06e-04 1.95e-04 95.13
VAR 0.9322 2.23e-05 1.81e-04 95.47
ECM 0.9271 5.99e-05 1.83e-04 95.44
GARCH 0.9093 2.87e-04 1.89e-04 95.29
M-GARCH 0.9490 -1.01e-04 1.47e-04 96.34
Unhedged 0.0000 6.91e-03 4.02e-03 -
15-day

OoLS 0.8938 5.88e-04 2.71e-04 95.40
VAR 0.9322 1.49e-04 2.38e-04 95.96
ECM 0.9271 2.07e-04 2.42e-04 95.90
GARCH 0.9093 4.64e-04 2.54e-04 95.71
M-GARCH 0.9490 -4.32e-04 2.08e-04 95.79
Unhedged 0.0000 1.08e-02 5.90e-03 -
20-day

OoLS 0.8938 5.26e-04 2.59e-04 96.92
VAR 0.9322 -4.27e-05 2.18e-04 97.40
ECM 0.9271 3.29e-05 2.22e-04 97.36
GARCH 0.9093 3.79e-04 2.36e-04 97.21
M-GARCH 0.9490 -2.92e-04 1.97e-04 97.66
Unhedged 0.0000 1.37e-02 8.43e-03 -

Note:ln-sample period covers 730 observations from®2@5 to 20.03.2008.
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Table-10: Out-of-sample Hedging Effectiveness

Model Hedge Ratio Mean Return Variance HE (%)
S-day

OoLS 0.8938 -2.25e-03 5.44e-05 93.12
VAR 0.9322 -2.24e-03 5.38e-05 93.21
ECM 0.9271 -2.24e-03 5.38e-05 93.22
GARCH 0.9093 -2.26e-03 5.39e-05 93.22
M-GARCH 0.9490 -2.19e-03 5.14e-05 93.51
Unhedged 0.0000 -2.26e-03 7.93e-04 -
10-day

OoLS 0.8938 -2.24e-03 5.61e-05 90.75
VAR 0.9322 -2.31e-03 5.80e-05 90.43
ECM 0.9271 -2.30e-03 5.76e-05 90.49
GARCH 0.9093 -2.28e-03 5.59e-05 90.77
M-GARCH 0.9490 -2.33e-03 5.94e-05 90.18
Unhedged 0.0000 -7.06e-04 6.06e-04 -
15-day

OoLS 0.8938 -1.82e-03 7.12e-05 93.28
VAR 0.9322 -1.80e-03 7.17e-05 93.23
ECM 0.9271 -1.80e-03 7.14e-05 93.26
GARCH 0.9093 -1.79e-03 7.09e-05 93.31
M-GARCH 0.9490 -1.77e-03 6.95e-05 93.38
Unhedged 0.0000 -2.25e-03 1.05e-04 -
20-day

OoLS 0.8938 -4.54e-03 3.60e-05 95.05
VAR 0.9322 -4.65e-03 3.44e-05 95.27
ECM 0.9271 -4.64e-03 3.45e-05 95.26
GARCH 0.9093 -4.55e-03 3.51e-05 95.19
M-GARCH 0.9490 -4.41e-03 3.24e-05 95.54
Unhedged 0.0000 -2.10e-03 7.28e-04 -

Note:Out-sample period covers 276 observations fror@22008 to 30.04.2009.

When the returns of the portfolios are taken intwoant, there is a slight
difference between in-sample and out-of-sample sgtdéa Whilst, the highest
returns are provided by the regression methodrf@&ample data, the M-GARCH
hedge ratio performs the best in three of four €dee out-of-sample data with

negative returns particularly. Since the out-of-pendata is especially used to
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evaluate the applicability of the empirical findgdt can be claimed that the best
hedging period is 20 days or 4-weeks for the ISEiBQres contracts as the
lowest variance is realized in this period by ingetvarying hedge ratio of the M-
GARCH model. Therefore, hedgers should reorganimsr tportfolios every

twenty days actively.
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Chapter 6

Conclusion

This study examines the optimal hedge ratio for fBE-30 futures contracts,
traded in the TurkDEX, by running several competitieconometric models.
Accordingly, the linear regression model, the bist& vector autoregressive
(VAR) model, the error correction model (ECM), teandard GARCH model
and the multivariate GARCH (M-GARCH) model are cootkd to estimate the
risk-minimizing hedge ratio. The appropriatenegssiority of the models is
investigated under the hedging effectiveness aritefior each in-sample and out-

of-sample data horizons.

The empirical results demonstrate that the hedge estimated by the M-
GARCH model provides the highest variance (riskjuation for majority of the
hedging periods along with both in-sample and dtgample data. This finding is
consistent with the general expectation in theishesice the M-GARCH model
has a more complex structure that takes into a¢dbeninteractions among spot
and future prices jointly from the heteroskedastisdom. On the other hand,
there are no penetrating differences between tinigs of empirical models in
terms of hedging effectiveness. The hedging effeaiss also improves in longer

hedging periods for just in-sample data.

Moreover, the return performance of the hedgedfg@as that constructed by

utilizing the estimated hedge ratios is also chéd@®a minor comparison tool for
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the models. Consequently, the highest returns aowided by the linear
regression model for the in-sample data and the ARGH model for the out-of-

sample data.

It is expected that the findings of the thesis wlobé useful practically for the
institutional investors, who want to hedge theip@sure in Turkish stock market,
through resolving the magnitude of the futures fpmsi We can also assert that
the ISE-30 index futures contract succeed to reguime variability in the spot
market more than 95%. Therefore, the TurkDEX isabl perform its hedging
function perfectly even it does not have a longdns as developed futures
markets. This fact might help to increase the amess and reputation of the
TurkDEX in near future. Nonetheless, this studyl eithance the poor academic
literature about the newly established Turkish fegumarket through providing a

recent discussion point on the optimal hedge @atih the hedging effectiveness.

One important proposal for a possible further rede& changing the frequency
of the data for the empirical analyses. To conedaton high-frequency data
might provide more realistic results as it captuak®of the dynamics tick by tick

between the spot and future markets particularly.
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