
 

 



 

 

 

 

OPTIMAL HEDGE RATIO AND HEDGING EFFECTIVENESS OF  

TURKISH STOCK INDEX FUTURES 

 

 

 

 

 

 

 

 

 

 

 

 

ONUR OLGUN 

 

 

 

 

 

 

 

 

 

 

 

JUNE 2010 

 

 



  

 

 

OPTIMAL HEDGE RATIO AND HEDGING EFFECTIVENESS OF  

TURKISH STOCK INDEX FUTURES 

 

 

 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF SOCIAL SCINECES  

OF 

IZMIR UNIVERSITY OF ECONOMICS 

 

 

BY 

  

ONUR OLGUN 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF MASTER OF ART 

IN 

THE GRADUATE SCHOOL OF SOCIAL SCIENCES 

  

 

 

 

 

JUNE 2010 



  

 

Approval of the Graduate School of Social Sciences 

                                                  

 

 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Art. 

                                    

 

This is to certify that I have read this thesis and that in my opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Art. 

                                                                                                

 

 

 



 iii 
 

ABSTRACT 

 

OPTIMAL HEDGE RATIO AND HEDGING EFFECTIVENESS OF  

TURKISH STOCK INDEX FUTURES 

 

Olgun, Onur 

MA in Financial Economics,  

Graduate School in Social Sciences 

 
Supervisor: Assoc. Prof. Dr. Đ. Hakan Yetkiner 

June 2010, 59 pages 

 
The objective of this thesis is to estimate optimal hedge ratio for ISE-30 stock 

index futures by using several econometric models. The linear regression model, 

the bivariate vector autoregressive (VAR) model, the error correction model 

(ECM), the GARCH model and the multivariate GARCH (M-GARCH) model are 

conducted particularly in the study to calculate risk-minimizing hedge ratio. The 

appropriateness/superiority of the models’ findings is evaluated under the hedging 

effectiveness criterion for each in-sample and out-of-sample data horizons. As a 

result, M-GARCH hedge ratio provides the highest variance (risk) reduction for 

all of the hedging periods along with both in-sample and out-of-sample data. 

However, there are no penetrating differences between the hedging performances 

of applied models. It is expected that the findings of the analysis will be beneficial 

for investors who wish to hedge price risk in Turkish stock market. 

Keywords: Hedge Ratio, M-GARCH, Hedging Effectiveness 
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ÖZET 

TÜRK HĐSSE SENEDĐ VADELĐ ĐŞLEM SÖZLEŞMELERĐNDE 

OPTĐMAL KORUNMA ORANI VE KORUNMA ETK ĐNLĐĞĐ 

 

Olgun, Onur 

Finansal Ekonomi Yüksek Lisans Programı 

Sosyal Bilimler Enstitüsü  

 
Tez Danışmanı: Doç. Dr. Đ. Hakan Yetkiner 

Haziran 2010, 59 sayfa 

 
Bu tezin amacı, ĐMKB-30 endeks vadeli işlem sözleşmelerine ait optimal 

korunma oranının çeşitli ekonometrik modeller uygulanarak tespit edilmesidir. 

Optimal korunma oranının hesaplanmasında, Doğrusal Regresyon modeli, Yöney 

Kendiylebağlaşım (VAR) modeli, Hata Düzeltme modeli (ECM), GARCH   

modeli ve Çok Değişkenli GARCH (M-GARCH) modeli kullanılmıştır. Modeller 

tarafından tahminlenen korunma oranlarının, örneklem-içi ve örneklem-dışı veri 

setlerinde, karşılaştırılmasında korunma etkinliği kriteri baz alınmıştır. Buna göre, 

M-GARCH modeli tarafından tahminlenen korunma oranının hem örneklem-içi 

hem de örneklem-dışı veri setleri için en düşük değişirli ği sağladığı 

gözlemlenmiştir. Diğer taraftan, modellerin korunma performansları arasında 

kayda değer farklılıklar bulunmamaktadır. Analizden elde edilen bulguların Türk 

hisse senedi piyasasındaki riskini en aza indirmek isteyen yatırımcılar için yararlı 

olması beklenmektedir. 

Anahtar Kelimeler: Korunma oranı, M-GARCH, Korunma etkinliği 
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Chapter 1 

Introduction 

A futures contract is just a standardized agreement to buy or sell a commodity or 

financial instrument on a stipulated future date at a particular price agreed upon 

today by the buyer and seller. The demand for futures contracts has steadily 

expanded around the world over the last decade parallel to the drastic 

technological developments in the meantime. One of the major reasons behind 

this growth is exactly the hedging opportunity provided by futures markets to 

cope with the adverse effects of volatility in asset prices. The purpose of hedging 

is to minimize the risk of a portfolio for a given level of return. This is done by 

taking a position (sell or buy) in futures market that is opposite the one in spot 

market.1 Consequently, a profit or loss in the spot position due to the variability in 

prices will be countered by taking a futures position. 

Traditional hedging approach affirms that the absolute magnitudes of spot and 

futures positions should be same in order to offset price risk. However, the spot 

and futures prices are not perfectly correlated in reality. Hence, the magnitudes of 

the positions in spot and futures market would be different to follow a sound 

hedging strategy. Determining the proper amount of futures position that perfectly 

covers the spot exposure is crucial correspondingly. The optimal hedge ratio, 

which is described as the ratio of the size of portfolio taken in futures contracts to 

                                                 
1 For example, if an US exporter is expected to be paid Euro (long spot position), he needs to sell 
Euro or take short position in futures market. By this way, any reduction in the value of Euro 
against dollar will be compensated through the short position in futures market. 
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the size of the exposure in spot market under minimum risk (variance) constraint, 

is used to determine the proper amount of futures position that optimally covers 

the spot exposure. Nevertheless, the calculation of the optimal hedge ratio for any 

futures contracts is not a straightforward effort.  

Even though there are plenty of suggested methods to compute optimal hedge 

ratio, there is still no agreement in the existing literature on which model is the 

best. The hedging effectiveness measure often decides the most favorable model 

for estimating the hedge ratio in the related studies. Hedging effectiveness can be 

defined as the percentage reduction in the variance of the spot portfolio by using 

futures contracts. Further, the performance of a hedging operation is disclosed via 

the hedging effectiveness criterion.  

The econometric models that are used to estimate the hedge ratio can be grouped 

into two: constant models and dynamic models. Dynamic models, which are more 

sophisticated, take into account the heteroskedastic nature of financial time series, 

contrary to constant models. But they are suffered from the complex algorithms in 

the calculation process, which may sometimes be a disadvantage, compared to 

constant models. To sum up, each model has its own pros and cons in the 

estimation of the optimal hedge ratio.  

In fact, the estimation of the optimal hedge ratio includes many dimensions 

different than the choice of empirical model, which can cause great variations in 

the hedging effectiveness. The choice of data frequency, the length of hedging 

period and whether the horizon is in-sample or out-of-sample all influence the 
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hedge ratio or hedging effectiveness results. Therefore, all these abovementioned 

issues are taken into account in this thesis. 

Since the focus of this study is to explore newly launched Turkish futures 

contracts concerning optimal hedge ratio and hedging effectiveness, the ISE-30 

stock index futures is chosen particularly for the empirical analyses. This futures 

contract is regarded as a benchmark for the Turkish Derivatives Exchange 

(TurkDEX) as it composes more than 90% of total trading volume in last three 

years. Moreover, the trading volume of the ISE-30 futures has been increasing 

steadily as it allows managing price risk in Turkish stock market. 

 The stock index futures contracts have emerged at various exchanges in the world 

since their first launching in 1982. However, the awareness of the index futures 

soared after the 1987 stock market crash. Especially institutional investors 

commonly prefer stock index futures to control the unsystematic risk of the stock 

portfolio they hold without changing the composition. These contracts are favored 

as an effective hedging tool because of their liquidity and relatively lower 

transaction costs. 

This thesis aims to estimate the optimal hedge ratio for ISE-30 stock index futures 

contract by using a variety of empirical models. It further aims to contribute by 

comparing the superiority of constant or dynamic models for the estimation 

process, through associated assessments. The measure of hedging effectiveness 

will be handled particularly to compare the hedge ratio estimations of derived 

models within different hedging horizons for both in-sample and out-of-sample 

data.  
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The findings of thesis will be important for two main reasons. First, hedge ratio 

estimations obtained from the analysis will be beneficial for the investors who 

wish to hedge price risk in Turkish stock market. Second, it will help to answer 

how effective is the ISE-30 futures contract as a hedging tool.  

The remainder of the thesis is organized as follows. Section 2 extensively reviews 

the theoretical background and existing literature on the hedge ratio and hedging 

effectiveness. Section 3 describes the data set used in the study with brief 

information on the TurkDEX. Section 4 presents the empirical models conducted 

for the research. Section 5 portrays hedge ratio estimates of models and the related 

comparison of hedging effectiveness. Section 6 makes concluding remarks. 
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Chapter 2 

Literature Review 

A significant amount of empirical research in the hedging literature has focused 

on estimating the optimal hedge ratio and/or hedging effectiveness for a variety of 

futures contracts. In fact, the two concepts are directly related with each other and 

mostly considered in the same framework. To put it differently, the effectiveness 

of a futures hedging process can be enhanced simply through calculating and 

using the most accurate hedge ratio.  

Theoretical hedging function of futures markets was early investigated by 

Working (1952) in a seminal study. He challenged the common view of 

classifying hedgers as pure risk-minimizers and stated that profit maximization is 

also the prior objective of hedgers as well as speculators. Furthermore, he 

emphasized that, spot and futures prices do not tend to move together entirely in 

practice and most hedging is done by expecting a divergence on these prices. 

Thus, holders of long positions in the spot market will only hedge if the basis (the 

difference between spot and futures prices) is expected to fall. 

Johnson (1960) and Stein (1961) revealed the fundamentals of futures hedging by 

applying the mean-variance framework of Markowitz’s (1952) portfolio theory. 

According to this framework, it is assumed that all investors have a common 

object of maximizing expected return for a given level of variance (risk) or 

alternatively minimizing variance (risk) at a given level of expected return. A 
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hedger can maximize his utility via minimizing the unconditional variance (2
pδ ) of 

the covered portfolio returns as follows: 

),(2222 FSCovwwww fsffssp ∆∆−+= ∆∆ δδδ                        (1.1) 

where ws and wf  represent the weights of spot and futures positions in the hedged 

portfolio, respectively. ∆S and ∆F demonstrate the price changes (or returns) in 

spot and futures market and Cov (∆S, ∆F) denotes the covariance among these 

variables and 2
s∆δ  and 2

f∆δ  are the unconditional variance of price changes in spot 

and futures market. The proportion of futures contracts that should be held in the 

portfolio against existing spot exposure is defined as the Minimum Variance 

Hedge Ratio H*. 

2
* ),(

fs

f FSCov

w

w
H

∆

∆∆==
δ

                            (1.2)
 

Following that, Ederington (1979) adopted Ordinary Least Squared (OLS) 

regression method to derive risk-minimizing hedge ratio. He showed that the 

optimal hedge ratio is just the slope coefficient of a regression equation where 

spot and futures price changes are defined as dependent and explanatory variables, 

respectively. The hedging effectiveness was also specified in the study by 

referring the percentage variance reduction between hedged and unhedged 

positions. Ederington (1979) employed the R-squared statistic of related 

regression as a hedging effectiveness measure in this manner. He stated that the 

OLS-based hedge ratio outperforms naïve one-to- one hedging strategy for 
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treasury-bill futures contracts by creating more reduction in the spot exposure 

variability.  

Many researchers have used the OLS method regularly to estimate the hedge 

ratios for different futures contracts since Ederington’s (1979) benchmark study. 

The hedge ratios estimated by this approach are classified as ‘constant’ in the 

literature as well, corresponding to the essential assumptions of the OLS 

regression model.2 Hill and Schneweeis (1981) analyzed the hedge effectiveness 

of the major currency futures by implementing OLS model to derive hedge ratios. 

They demonstrated that the most significant reduction in the variance of the spot 

return (price-change) series is realized by hedging at the minimum risk hedge 

ratio estimated from the OLS regression. A comparison between the use of spot 

and futures price changes and/or price levels as proper time-series was also made 

in the paper. However, the price level regressions generally violate the OLS 

assumptions due to the high degree of autocorrelation detected in residuals, which 

leads statistically conflicting and inefficient hedge ratio estimates. Figlewski 

(1984) emphasized that the magnitude of the hedged stock position must be 

different than the underlying portfolio. The fluctuations of the basis that indicates 

the changes between spot and futures prices determine the risk and return 

components for index futures hedge. He examined empirically the Standard and 

Poor’s (S&P) 500 futures in terms of hedging potential through pointing out the 

usefulness of OLS-based hedge ratios. He reported that minimum portfolio 

                                                 
2 The residuals have constant (homoscedastic) variance and the error terms are normally 
distributed. 
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variance (risk) is achieved with the hedge ratio of the OLS model for various 

holding periods.  

Myers and Thompson (1989) developed a generalized approach for hedge ratio 

estimation by implementing OLS to a single multiple regression equation. This 

specification that takes heteroskedastic shocks into account differs from simple 

regression models. Nevertheless, it is denoted that the classical regression method 

provides reasonably accurate estimates even it is not complex as the general 

approach. Malliaris and Urrutia (1991) scrutinized the probable effects of the 

lengths of estimation periods and the hedging horizons on the hedging 

effectiveness for selected currency futures. They affirmed that the length of 

estimation period, assigned for the required computations of the OLS regression 

model, does not have any impact on hedging effectiveness. On the other hand, 

weekly (shorter) horizons were found to be more effective in hedging than 

monthly (longer) horizons. In a parallel research, Benet (1992) asserted that the 

hedging horizon should be minimized to reduce spot price risk successfully, since 

the frequent changes in market conditions deteriorate the stable estimates of the 

OLS model. He also documented the robustness of constant hedge ratios relative 

to time-varying (multiple) ratios, since the hedge ratio variability usually offsets 

the diversification benefits of the portfolio. 

The reliability of OLS hedge ratios is noted in a recent study by Lien (2005). His 

findings illustrate that the hedge ratio gathered from the OLS regression would 

minimize the within sample unconditional variance and likely perform better than 

any strategy for out-of–sample comparison too if two sub-samples have equal 
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magnitudes. In addition, he claimed that the superiority of other methods on 

hedging effectiveness, relative to OLS regression model, is caused by either small 

sample sizes or structural changes between two sub-samples.  

One of the limitations for the regression model is the serial correlation detected in 

residuals, which caused to yield biased hedge ratio estimates. To eliminate the 

serial correlation in residuals, Herbst et al. (1993) modeled the spot and futures 

returns through a bivariate vector autoregressive (VAR) framework. As 

consequence, they removed the serial correlation from the residuals and derived 

more realistic hedge ratios in the study.  

It is clearly documented by numerous empirical researches that there is a close 

interaction between the spot and futures markets under the lead-lag pattern, which 

is taken into account by the bivariate VAR model from a different perspective. To 

name a few, Stoll and Whaley (1990), Chan (1992) and Brooks and Chong (2001) 

have all reported the feedback relations (mostly bidirectional) among the spot and 

futures prices, returns and volatilities for various markets. These findings provide 

reasonable support for applying a VAR framework to estimate hedge ratio, under 

the fact that trends in spot and future markets may affect the current price 

movement instantaneously. 
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Another structural viewpoint on hedge ratio estimation merely hinges upon the 

probable cointegration3 relationship between the spot (S) and futures (F) prices, 

which is reinforced by cost-of-carry futures pricing model given in the following4: 

tcsreSF )( −+=                  (1.3) 

where r, s and c indicate risk-free interest rate, storage costs and convenience 

yields respectively that aroused from holding the futures contract until delivery 

date. The existence of such a correlation would not allow any prices to diverge 

extensively from the long-run equilibrium. Engle and Granger (1987) revealed 

that the cointegration among variables invalidates the findings of conventional 

regression method since the essential short-run dynamics are not taken into 

account through the OLS system. They suggested applying error correction 

mechanisms in the case of cointegration, which associate the change in one 

variable to past equilibrium errors and further past changes in other variables. A 

procedure for testing the null hypotheses of no cointegration against the 

alternative cointegration was also developed in their study.  

The cointegration framework is early considered by Garbade and Silber (1983) 

over the estimation of optimal hedge ratio particularly. They specified a method 

that derived from the price elasticity of storable commodities (i.e. wheat, oats, 

gold) to define the interrelationships between cash market prices and futures 

                                                 
3 Cointegration is an econometric character of time-series parameters. If two or more series are 
themselves non-stationary (i.e. spot and future prices), but a linear combination of them is 
stationary, then the series are called as cointegrated. In our context, cointegration refers not to 
comovements in returns, but to comovements in raw asset prices. Cointegration process allows 
considering both short-run and long-run dynamics in the model. 
4 Cost-of-carry model is an arbitrage-free pricing model. Its main idea is that futures contract is so 
priced as to preclude arbitrage profit 
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prices. The degree of market integration is characterized by a simple function 

concerning the supply of arbitrage services for the short hedging horizons. 

Consequently, the optimal hedge ratio would be smaller if the cointegration 

relation is not counted in the process. Ghosh (1993) examined the major stock 

index futures in US with the aim of determining the most effective hedge ratio. 

Apart from simple regression, he employed error correction model (ECM) 

alternatively once the null hypothesis of non-cointegrating vector (rank=0) is 

rejected significantly. The empirical results in the paper demonstrate that the 

hedge ratios derived from traditional methods are underestimated because of the 

misspecification problem.5 On the other hand, the hedging effectiveness is 

improved considerably by the estimates of error correction model which 

incorporates the long-run equilibrium relationship and the short-run dynamics. 

Furthermore, Lien and Luo (1993) confirmed the existence of cointegration 

between spot and futures prices for the major currency and stock index markets. 

They extended the well-known Garbade-Silver (GS) error correction model with 

the inclusion of lagged price terms to calculate the multi-period hedge ratios. It is 

concluded that, the hedge ratios obtained from error correction specification 

provide remarkable performance in hedging. Similar findings referring to the 

superiority of error correction model were also reported by Chou et al. (1996) and 

Kenourgios and Samitas (2008) for the Nikkei and S&P stock index futures, 

respectively. 

                                                 
5 By omitting the long run cointegration relationship from the estimation procedure, hedger would 
take a smaller than optimal futures position, which probably causes a relatively poor hedging 
performance.  
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Nonetheless, Lien (1996) highlighted that the misspecification issue might exist 

for the error correction representations as well by modeling a partial cointegration 

system instead of a complete one. In that case, the error correction model will not 

present the optimal solution in the calculation of the hedge ratios. In a recent 

study Moosa (2003) exhibited the negligible difference in hedging effectiveness 

with or without cointegration consideration. He pointed out that model selection 

(complexity) is not crucial as much as the correlation between the prices of the 

unhedged position and the hedging instrument. 

Contrary to main assumptions of the OLS approach, most of the financial asset 

returns are not symmetrically distributed and do not have constant variance as 

confirmed in the literature. In this context, the variance of error terms tends to 

change through a deterministic function of time, so called as heteroskedastic. The 

stylized fact of volatility clustering is further observed characteristic of the 

financial time-series as a property of stochastic heteroskedasticity processes 

within the econometric perspective.6 Therefore, the Generalized Autoregressive 

Conditional Heteroskedasticity process (GARCH) is developed by Bollerslev 

(1986) for considering idiosyncratic features of financial data in volatility 

modeling unlike conventional methods.  

As many empirical investigations in the finance discipline, the GARCH based 

models (both univariate and multivariate specifications) are commonly conducted 

with the aim of estimating hedge ratios. This framework allows us to compute 

                                                 
6 As noted by Manlderbrot (1963) “large changes tend to be followed by large changes, of either 
sign or small changes tend to be followed by small changes”. While returns are themselves 
uncorrelated, absolute returns or their squares display a positive, significant, and slowly decaying 
autocorrelation function for ranging from a few minutes to several weeks. 
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time-varying (dynamic) hedge ratios since the conditional (past) variances and 

covariances are considered as the explanatory of current variance. Baillie and 

Myers (1991) adopted the bivariate GARCH model including an error correction 

term (diagonal VECH parameterization) to calculate optimal hedge ratios for each 

of six different commodity futures. They compared the conditional variances of 

portfolio returns under three hedging strategies: no hedging; hedging with 

constant hedge ratio estimated using regression methods; and hedging with a 

time-varying hedge ratio of bivariate GARCH model. Both the in-sample and out-

sample performance evaluations indicate that time-varying hedge ratio of 

GARCH method generally provides the largest reduction in portfolio variances. 

After that, Kroner and Sultan (1993) found parallel results for the major currency 

futures by employing the constant correlation GARCH (1,1) specification. The 

cointegration issue was taken into account with the inclusion of error correction 

term to the benchmark model, which is required for currency markets. Further, 

Sephton (1998) advanced the existing GARCH methodology in the literature on 

hedge ratio estimation through developing another multivariate framework to 

allow temporal evolution in the processes. He stated that the hedge ratios 

calculated from multivariate GARCH model are optimal to reduce risk for the 

commodity futures traded in Canada.  

Park and Switzer (1995) are the first who apply dynamic hedging to the stock 

index futures, S&P 500 and Toronto 35, in daily basis. It is concluded in the study 

that the bivariate GARCH model provides an improved hedging strategy in 

comparison to the OLS hedge and the OLS with cointegration between spot and 

futures prices. Additionally, Lypny and Powalla (1998) analyzed the hedging 
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effectiveness of the DAX futures. They showed that the application of a dynamic 

hedging strategy based on the GARCH (1,1) covariance parameterization reached 

significant progress in economic welfare over simple constant hedge and the error 

correction without the GARCH (1,1) structure. Allen and Yang (2004) employed 

a standard diagonal VECH M-GARCH (1,1) model under the constant correlation 

hypothesis. The dynamic hedge ratios estimated from conditional information set 

display high degree of non-stationarity through time, which is also consistent with 

the non-linear nature of the price distributions. He markedly expressed that the 

hedging effectiveness is preceded via the GARCH time-varying hedge ratios in 

terms of the minimum portfolio variance for longer hedging horizons particularly. 

From a different perspective, Brooks et al. (2002) put emphasis on the asymmetry 

in GARCH modeling across the entire variance and covariance matrix since the 

OLS hedging is independent of news arriving to the market. Thus, the hedge 

ratios might be responsive to the fluctuations in prices resulting from information 

arrivals. Their findings related to the multivariate asymmetric GARCH model, 

which enables positive and negative price innovations to affect variance 

differently, confirm the significant developments in hedging performance. 

Moreover, Choudhry (2004) implied that the dynamic hedge ratios of various 

GARCH derivations outperform the constant hedge ratios obtained from different 

estimation procedures for many stock markets and their corresponding futures 

contracts. Despite the presence of excessive researches for developed markets on 

time-varying (GARCH) hedge ratio concept, emerging markets have not been 

detected sufficiently yet towards the same purpose. A few numbers of studies 

such as Choudhry (2003) for Hong-Kong and South Africa, Floros and Vougas 
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(2006) for Greece, and Bhaduri and Durai (2008) for India have emphasized the 

ability of GARCH framework to compute risk-minimizing hedge ratios in 

accordance. 

Although the great number of studies in the literature asserts the superiority of the 

dynamic hedge ratios, there exist also considerable counterviews concerning the 

drawbacks of the GARCH estimation process. Myers (1991) revealed that the 

GARCH model perform only slightly better than constant hedge ratio estimation. 

Therefore, the linear regression approaches to optimal hedge ratio estimation may 

be a satisfactory approximation. Besides, Fackler and Mcnew (1994) underlined 

the disadvantage of GARCH formations due to their non-linear optimization 

algorithms. Holmes (1996) and Miffre (2004) also showed that the hedge ratios 

subject to estimations of the OLS regression method provide better hedging 

performance than other complex GARCH specifications. Through a descriptive 

work, Lien et al. (2002) examined the implementation and effectiveness of the 

time-varying hedge ratios attained from the constant correlation GARCH model, 

under the rolling-window out-of-sample forecasts. Their empirical comparisons 

demonstrated that GARCH estimations should not be performed for hedging 

purposes because of the computational complexity and costs. In a more recent 

study Lien (2007) outlined the fact that the time-varying (GARCH) hedge ratio 

minimizes the conditional variance of the hedged portfolio whereas the constant 

(OLS) hedge ratio minimizes the unconditional variance of the hedged portfolio. 

As the common hedging effectiveness measures care the proportional reduction in 

unconditional variance; the conventional hedge ratio dominates the other hedging 

strategies correspondingly. 
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Briefly, four fundamental methodologies have been conducted to estimate optimal 

hedge ratios in the literature. These are OLS regression method, VAR method, 

ECM method and GARCH (univariate or multivariate) method. However, it can 

be easily comprehended that there is no consensus about the best way to 

determine the hedge ratios using futures. Different studies have documented 

contradictory results in this regard. The majority of researches have decided the 

superiority of a method by comparing the estimates of stated models under the 

criterion of hedging effectiveness. A similar procedure is adopted in this study to 

determine optimal hedge ratio for the ISE-30 index futures, which based on 

comparing the hedge ratio estimates of various econometric models under hedging 

effectiveness criteria. Since there are very limited academic researches (only one) 

in the literature so far about the hedging effectiveness of Turkish futures market 

[Aksoy and Olgun (2009)], this thesis aims to make a concrete contribution to the 

hedging effectiveness literature. 
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Chapter 3 

Data      

3.1 Institutional Features of TurkDEX 

The TurkDEX is the first and unique derivatives market in Turkey, authorized by 

the Capital Markets Board (national regulatory agency). The opening bell for 

trading in the TurkDEX rang recently on 4th February 2005 with 34 members. As 

of May 2008, there are 86 registered members (brokerage houses and banks) in 

TurkDEX. Although the exchange is classified as a profit-seeking organization by 

the legislations, it has strategic and economic priorities from the point of 

establishing an efficient and successful risk management platform to sustain a 

robust economic structure. In this context, the principal objectives of the 

TurkDEX are sorted as: protection of investors, transparency in executions, 

optimal response to market demands and integration with international markets.7 

Only futures contracts from the main categories of financials (currency, interest 

rate and equity index) and certain commodities (gold, cotton, wheat) have been 

traded in TurkDEX so far. Futures prices are determined by executing “multiple 

price-continuous auctions” method. A single trading session called as “normal 

session” is adopted in TurkDEX, holding between 9.30 a.m. and 5.35 p.m. 

TurkDEX is tax-free for foreign and domestic investors since the trading was 

                                                 
7 See TurkDEX web site, 
http://www.turkdex.org.tr/VOBPortalEng/DesktopDefault.aspx?tabid=101 
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commenced in the exchange.8 As TurkDEX utilizes a fully electronic trading 

system with remote access, there is no geographical restriction to invest.  

The magnitude of trading volume in TurkDEX has been growing gradually in 

parallel with awareness of the futures contracts by Turkish investors. Figure 1 

below evidently highlights the upward trend in total volume during the period of 

2005-2009. As demonstrated in the figure that annual trading volume in the 

market soared more than 100 times by this time. Further, the daily average 

volume has reached 1.4 billion TL in 2009, which covers 55%-65% of daily 

trading volume in Istanbul Stock Exchange. 
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Figure-1: Annual Trading Volume in TurkDEX (bill. T L) 

Source: TurkDEX 

Nevertheless, the breakdown of total trading volume in TurkDEX points out the 

presence of a heterogeneous structure on the basis of individual futures contracts. 

Correspondingly, it can be affirmed that ISE-30 equity index futures has 

                                                 
8 This regime is going to continue for domestic investors until the end of 2008. However, there is 
no an announced deadline for foreign investors yet. The proportion of foreign investors in the 
market is approximately 25%.  
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dominated the market since the beginning of 2006. This contract composed 

91.22% and 93.16% of market trading volume by itself in 2008 and 2009 

respectively (see Figure-2).  
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Figure-2: Trading Volume Breakdown in TurkDEX  
Source: TurkDEX 

As the ISE-30 index futures contract is comprehended as a good proxy to 

represent the whole market, it would be reasonable to use this contract for 

investigating the hedging effectiveness of TurkDEX. The ISE-30 futures are 

quoted by dividing the underlying spot index (ISE-30) by 10 simply. Six delivery 

months- February, April, June, August, October and December- are specified but 

only three of them are opened to trade at the same time considering expiration of 

previous contracts.9 The ISE-30 futures contracts are cash-settled as other futures 

in TurkDEX. Daily price limit is +/-10%; position limits are 5000 contracts 

(absolute) and 10% of total open positions (proportional). 

 

                                                 
9 For instance, when February contract is expired August contract is activated. 
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3.2 Data Description 

The data set employed in the study comprise daily spot and futures prices of the 

ISE-30 stock index covering the period from 2 May 2005 to 30 April 2009 by 

1006 observations.10 The spot and futures data were collected from the official 

web sources of the Istanbul Stock Exchange (ISE) and the TurkDEX. The ISE-30 

stock index contains the shares of 30 largely capitalized firms from various 

sectors quoted on Turkish stock market, which is accounting for approximately 

60% of total market value. To eliminate the adverse effects of thin trading near 

expiration, the contracts in settlement month are rolled over to next two-month 

contracts whenever the daily open interest (as proxy of trading volume) of next 

two-month contract exceeds the daily open interest of the contract in settlement 

month.11 Moreover, the last 276 observations (from 21 March 2008 to 30 April 

2009) in the data set are not included to estimation process in order to evaluate 

out-of-sample forecasting abilities of the empirical models in the thesis. Figure 3 

provides an insight for the basis between spot and futures prices of the ISE-30 

index. 

Daily returns for ISE-30 index (spot and futures) are calculated by the following 

formulas; 







=

−1
, log

t

t
ts S

SR               (2.1) 

                                                 
10 As the ISE-30 index future contracts were not heavily traded during the first months of the 
exchange, the dataset is started from 02 May 2005 instead of the launching date, 4 February 2005.  
11 For instance, the open interest of the February 2005 contract exceeded the December 2005 
contract firstly at the rollover date of 29.12.2005 (one day before December 2005 contract 
expiration). Hence, the settlement prices of February 2005 contract are started to be used from 
29.12.2005 by ignoring remained settlement prices in the December 2005 contract.  
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
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

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−1
, log
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t
tf F

FR                               (2.2) 

where Rs and Rf represent daily spot and futures returns respectively. Closing 

values of ISE-30 index are shown by St for spot and Ft for futures, on the 

corresponding day t.  
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Figure-3: Basis between ISE-30 Index Spot and Futures Prices (log.) 

Source: ISE and TurkDEX 

3.2 Summary Statistics 

Several descriptive statistics are calculated for the purpose of recognizing 

fundamental statistical properties of the dataset prior to empirical analysis.     

Table 1 shows summary statistics related to univariate spot and futures daily 

return series for the selected period.  

Table-1: Summary Statistics 

 
Mean Stand. Dev. Variance Skewness Kurtosis JB 

Statistics 
Rs 2.57E-04 0.0221 0.0005 -0.0073 4.5564 65.14* 

Rf 2.64E-04 0.0226 0.0005 -0.0458 4.6659 65.39* 

Note: * denotes 1% significance level. 
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As firstly seen in the table, both samples exhibit positive average daily return 

(mean) values over three year period, though futures returns are slightly greater 

than the spot returns. The volatility measures, standard deviation and variance, are 

highly identical for spot and futures returns as presumed. In addition, both series 

are negatively skewed by pointing out an asymmetrical left-tailed distribution. 

The excess kurtosis estimates denote that daily return distributions have fat tails 

(leptokurtic) relative to normal distribution. On the other hand, asymmetric 

distribution of spot and futures returns are verified through significant Jarque-

Bera statistics as well rejecting the null hypothesis of normality12.                  

 

 

                                                 
12 Jarque-Bera (JB) statistic is employed to test the null hypothesis of normality along with an 
asymptotic chi-square distribution. JB values tend to be closer to 1, or less than 1 for symmetric 
normal distributions. 
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Chapter 4 

Methodology 

As stated previously, there is nothing like “the best method” in the literature to 

estimate optimal hedge ratio for the selected futures contracts. Each suggested 

model has its own strengths and weaknesses. For instance, the primitive models, 

such as linear regression, are simple and easy to implement; but they do not fully 

cover the features (e.g. heteroskedasticity) of the financial data. On the other 

hand, the sophisticated models, as multivariate GARCH, may lead to calculate 

more realistic dynamic hedge ratios. Nevertheless, they have numerous 

constraints which make estimation process so difficult and complicated.  

Moreover, the predictions of the econometric models do not engender identical 

hedging performances for each derivative market particularly.13 Therefore, most 

of the researches concerning optimal hedge ratio estimation have been conducted 

by employing various econometric models together and interpreting their results 

in terms of hedging effectiveness. The appropriateness of an empirical model and 

the optimal hedge ratio for a specific futures contract is determined through 

comparing the findings of these models respectively. This common application 

will also be adopted in this thesis. Accordingly, Linear Regression Model (Model 

I), Bivariate Vector Autoregressive Model (Model II), Error Correction Model 

(Model III), GARCH Model (Model IV) and Multivariate GARCH Model (Model 

                                                 
13 Whilst the hedge ratio calculated by simple regression method is characterized as optimal by 
Choudhry (2003) for Germany and United Kingdom, the hedging performance of the same model 
is found as the worst for Australia and Hong Kong.   
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V) are chosen for the econometric comparisons to estimate optimal hedge ratio for 

the ISE-30 index futures contract. However, it is expected that multivariate 

GARCH (M-GARCH) hedge ratio will provide a superior hedge performance due 

to the statistical strength of the model.    

4.1 Linear Regression Model  

Linear regression is the most widely applied econometric technique, which aims 

to explain the statistical relationship between two or more variables by fitting a 

linear equation to observed data. In other words, it attempts to estimate the 

expected value of an interest variable (dependent variable), using some 

explanatory variables (independent variables) along with a linear function. To fit a 

regression line for the observed data, the sum of squares belonging to vertical 

deviations (residuals) from each data point is minimized, which is called as 

ordinary least-squares (OLS) method. The classical assumptions of the linear 

regression model can be stated as normally distributed and uncorrelated residuals 

that have an unconditional constant variance (homoscedasticity). 

Since the interaction between spot and futures prices composes the key principal 

of hedging, the linear regression model is employed commonly to calculate hedge 

ratio through relating the spot price changes (dependent) with the changes of 

futures prices (independent). Furthermore, it is characterized as the simplest and 

quickest model in the literature. Equation (3.1) developed by Ederington (1979) is 

used to estimate hedge ratio specifically; 
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ttfts RcR εβ ++= ,,                                     (3.1) 

where the slope coefficient β represents risk-minimizing hedge ratio. Rs,t  and Rf,t  

indicate actual daily spot and futures returns (price changes) respectively. The 

constant term in the model is shown by c and residuals (error terms) are 

symbolized by εt . 

The validity of the linear regression model is highly dependent on satisfying its 

conventional assumptions. For this reason, the consistency of these assumptions 

should be monitored through some diagnosis tests. Jarque-Bera test for normality, 

Breusch-Godfrey test for autocorrelation and ARCH-LM test for homoscedasticty 

will be used in this thesis and will be discussed exclusively in the empirical results 

of linear regression model in the next chapter. 

4.2 Bivariate Vector Autoregressive (VAR) Model  

Vector autoregression is basically an econometric approach designed to capture 

interdependencies among multiple time-series. It can be perceived as a 

generalized extension of the univariate autoregressive model (AR) in practice. The 

VAR specifications are found to be functional in reflecting the dynamic features 

of the financial time-series and often generate superior forecasts than univariate 

models. In addition, estimates of VAR models are not rigid because of the 

conditional forecasts on potential lead-lag structure of specified variables.14 There 

are two essential considerations for the variables of structural VAR model from 

                                                 
14 Theoretically, all the variables used in the VAR process have to be at the same order of 
integration [I(0) or I(1)]. Otherwise, the required transformations should be provided in order to 
prevent biased estimations.    
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econometric perspective: (i) error terms are not correlated, and more importantly 

(ii) variables can have contemporaneous interactions with other variables and their 

own lags.15 

The VAR modeling has comprehensible advantages (especially on linear 

regression model) over estimation of a robust hedge ratio. First, it can eliminate 

serial correlation (autocorrelation) in residuals, which usually causes biased 

results predicted by conventional methods. Second, the VAR procedure helps to 

examine the simultaneous interactions between spot and futures returns by 

underlining the fact that fluctuations in both markets may influence the current 

price mechanisms. 

The bivariate version of the standard VAR model is employed in the thesis 

particularly, consistent with the existed hedge ratio literature. It is just a multiple 

regressions process by two equations that contains two variables (spot and futures 

returns). For the purpose of calculating a risk-minimizing hedge ratio, the 

following bivariate VAR specification is applied particularly [Kroner and Sultan 

(1993)]. 
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15 See, Lütkepohl (2008). 
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Equations (3.2) and (3.3) demonstrate explanatory parameters on daily spot and 

futures returns, respectively. Meanwhile, daily spot and futures returns as main 

variables in both equations are characterized by Rs,t  and Rf,t  respectively. βs,i,  βf,,i , 

λs,i and λf,i are positive VAR parameters; and cs and cf indicate constant terms in 

the equations. Further, identically distributed independent vectors are shown by 

εs,t and εf,t in the model. The optimal hedge ratio (h) is derived from the bivariate 

VAR model by: 

2
f

sfh
δ
δ

=                   (3.4) 

where 2
fδ  is the variance of  εf,t calculated from equation (3.3) and δsf is the 

covariance between εs,t and εf,t.  

One critical point for the success of model is deciding the optimal lag length 

(shown by k) to remove autocorrelation in residuals permanently. To this end, 

Akaike’s Information Criterion (AIC) and Schwarz’s Information Criterion (SIC) 

are employed to determine the proper lag length before running the model. 

Moreover, the autocorrelation structure of residuals is checked through the 

Lagrange-Multiplier test. 

4.3 Error Correction Model (ECM)  

Error correction mechanisms primarily allow considering long-run cointegration 

relationship between non-stationary (level) forms of variables in estimation 

process along with short-run impact of changes for stationary (differenced) forms. 
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If the presence of such a cointegration relationship is ignored, it would be 

probable to attain spurious results due to excluding the effect of previous period’s 

error (adjustment) term for the long-run equilibrium. All the variables in the ECM 

must be stationary, I (0), and cointegrated as pre-requisites of the model. The 

estimation procedure of ECM consists of two steps. The first step is computing 

the error correction vector between non-stationary [I(1)] variables. Next, the pivot 

model for stationary variables is built by including appropriate error correction 

terms derived from the first step. 

There is a long-run relationship between spot and futures prices under theoretical 

framework [equation (1.3)]. This structure clearly signals the presence of a 

cointegration relation among the variables, which is not taken into account by the 

previous hedge ratio models. However, numerous studies claim that such a 

correlation for spot and futures prices (at level) may cause some misspecifications 

on hedge ratio estimations and produce biased results apparently.  

With the aim of incorporating both long-run and short-run dynamics 

simultaneously to the forecasting process, the error correction model is employed 

as the third method to determine the optimal hedge ratio. The univariate ECM 

model and its cointegrating vector are defined as follows, respectively: 
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In equations (3.5) and (3.6), Rs,t  and Rf,t  indicate daily spot and futures returns 

[I(1)], where previous day’s non-stationary spot and futures prices (logged) are 

shown by St-1 and Ft-1 in cointegration equation (3.6). In equation (3.5), ECt-1 

represents lag-one error correction term and the optimal hedge ratio is 

demonstrated by β. The constant and error term (residual) of the model are 

characterized by c and εt as other models. Further, the absolute value of λ 

parameter provides an interpretation about the speed of adjustment in the long-run 

relationship. Optimal lag-lengths of spot (n) and futures (k) returns might be 

different for the ECM unlike the bivariate VAR model. We followed “general to 

specific” approach of Hendry (1995) to verify suitable lag-lengths. The pre-

conditions of ECM given above are controlled through various unit-root tests and 

Johansen (1988) cointegration test before setting the model. Nevertheless, the 

same diagnosis tests previously applied to linear regression model are also 

implemented to ECM, as it is just an extension of the simple regression model. 

4.4 GARCH Model 

The heteroskedastic nature of the financial time-series has been confirmed by 

numerous empirical studies over the last decade. In fact, the variances of error 

terms for these series are not constant over time, as assumed in conventional 

econometric perspective, and the current variances are considered as conditional 

upon the past values. As a consequence of reflecting the characteristics of the data 

reasonably, the GARCH model developed by Bollerslev (1986) is classified as 

superior for modeling financial asset returns in particular. The process permits the 

variance change over time through a long-term memory contemporaneously. To 
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put it differently, it has a key advantage of attaching heteroskedasticity into the 

estimation procedure and capturing the tendency for volatility clustering in 

financial series. According to the GARCH framework, there are two main 

parameters affecting current variance: past values of error terms (ARCH effect) 

and the conditional variances generated by information arrivals to the market. 

For a standard GARCH (p, q) model, p and q represent the lag length of 

conditional variances and past values of error terms, respectively. Generally log-

likelihood ratio test is conducted in order to determine the optimal lag length for 

the GARCH model. As a rule of thumb, the GARCH (1,1) specification generally 

provides the best fit and forecast accuracy for the financial data within other 

alternatives. 

Consistent with the prior empirical works, we expect that the spot and futures 

return series used in this thesis will follow a heteroskedastic pattern. The 

asymmetric structures of these series have already been exhibited in descriptive 

statistics. Correspondingly, the GARCH (p, q) model is constructed below 

[equations (3.7) and (3.8)] on estimation of the optimal hedge ratio as the fourth 

model. The most important contribution of this model would be calculating a 

hedge ratio that considers heteroskedastic nature of the data. 
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Equation (3.7) is the mean equation of the model, where Rs,t  and Rf,t represent 

daily spot and futures returns. β characterizes the optimal hedge ratio and the 

constant term is shown by c. Further, εt is random error term while  

coefficient indicates available past information that has an effect on error term. In 

volatility equation (3.8), the coefficients of λ1 and λ2 are the ARCH and GARCH 

effects respectively on the conditional volatility ht. The lag-lengths, p and q, for 

the model are chosen by log-likelihood ratio test as stated before.  

4.5 Multivariate GARCH (M-GARCH) Model 

Multivariate GARCH framework can be simplified just as an advanced version of 

univariate GARCH pattern, which aim to provide a better forecast of asset pricing, 

portfolio selection and hedging. Technically, it focuses on predicting the 

sequential dependence in the cross order moments of time-series by employing 

information set through complete variance-covariance matrix of errors. In fact, the 

distinctive feature of M-GARCH model, compared to univariate specifications, is 

using historical information from various markets together instead of 

concentrating in only one market. Pagan (1984) affirms that the generated 

regressor problem detected for univariate models is eliminated by the generated 

regressor problem detected for univariate models is eliminated by M-GARCH 

extension since all parameters are estimated jointly. Moreover, it is asserted by 

Engle and Kroner (1995) that variance and covariance elements in M-GARCH 

model depend upon the information set in a vector ARMA manner.  
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As the spot and futures series are closely interrelated, it would be more precise to 

conduct a multivariate model for computing the optimal hedge ratio. Thus, M-

GARCH specification of Kroner and Sultan (1993) is utilized lastly in the thesis 

with the anticipation of deriving the best hedge ratio plausibly. As a combination 

of the bivariate VAR and the error correction model, equations (3.9) and (3.10) 

present conditional mean equations of the M-GARCH model. Hereby, Rs,t  and Rf,t 

demonstrate daily spot and futures returns and ECt-1 is the error correction term 

from Equation (3.6). The coefficients cs and cf  display constant terms. Further, 

the residuals of the equations are shown by εs,t and εf,t .  

sttitf

k

i
isits

k

i
issts ECRRcR εγλβ ++++= −−

=
−

=
∑∑ 1,

1
,,

1
,,                                            (3.9) 

fttitf

k

i
ifits

k

i
ifftf ECRRcR εγλβ ++++= −−

=
−

=
∑∑ 1,

1
,,

1
,,                                           (3.10)

  

Conditional volatility specifications of the M-GARCH (p, q) model are expressed 

through the following equation (and matrices) in this manner.  

















+



















+
















=
















−

−

−

−

−−

−

qtff

qtsf

qtss

i

ptf

ptfpts

pts

i

tff

tsf

tss

tff

tsf

tss

h

h

h

BA

c

c

c

h

h

h

,

,

,

2
,

,,

2
,

,

,

,

,

,

,

,

ε

εε
ε

                                               (3.11)

 

In equation (3.11), hss and hff exhibit conditional variance of the error terms (εs,t, 

εf,t) from the mean equations of the model. Besides, the conditional covariance 

among daily spot and futures returns is represented by hsf. It is evidently seen that 

there are 21 parameters to estimate in the model. In order to ease complications, 
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Bollerslev et al. (1988) suggested a restricted parameterization technique, called 

as diagonal VECH, which assumes Ai and Bi matrices in equation (3.11) are 

diagonal. It is also assumed that the conditional variances (spot and futures) are 

only related with the past values of its lagged squared residuals. Therefore, 

diagonal elements deducted to estimate conditional variances and covariance of 

the M-GARCH (p, q) model are found as:  

qtssssptssssstss hch −− ++= ,
2
,, βεα                                                                         (3.12)  

qtsfsfptfptssfsftsf hch −−− ++= ,,,, , βεεα          (3.13) 

qtffffptffffftff hch −− ++= ,
2

,, βεα                                                                       (3.14)  

Subsequent to the estimation of parameters above, time-varying daily hedge ratios 

(Ht) are calculated by: 

tff
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However, it may not be so practical to change the position in futures market day 

by day for a hedger due to the transaction costs and initial margins. Hence, the 

arithmetic mean value of time-varying hedge ratios will be taken as  unique M-

GARCH hedge ratio for that reason.16 

                                                 
16 There are numerous studies using this process. To name a few, see Myers (1991), Kroner and 
Sultan (1993), and Brooks, Henry and Persand (2002).  
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Chapter 5 

Empirical Results 

5.1 Testing for Unit Root 

The presence of unit-root for the time-series data is checked through various 

procedures as a pre-condition. Granger and Newbold (1974) indicated that using 

non-stationary variables in the OLS process leads potentially spurious regression 

results due to the time-variant variance feature of the unit-root series.17 In this 

case, the persistence of shocks will be infinite and permanent by invalidating the 

assumptions of asymptotic OLS analysis. Hence, the non-stationary data 

incorporated to conventional regression model may cause higher R2 values and t-

ratios for even completely unrelated variables. 

Even though there are numerous methods proposed in the literature for 

investigating a unit-root in time-series, the most widely conducted two procedures 

are Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP). We also employed 

these two procedures in this study to test the stationarity condition of the series.18 

The ADF test is developed by Dickey and Fuller (1981) which assumes error term 

( tε ) is white noise and not autocorrelated. However, it is reported by many related 

studies [e.g. Phillips (1987)] that the error term ( tε ) is unlikely to be white noise 

                                                 
17 Contrary to stationary series, the non-stationary time series do not have a constant variance. The 
variance depends on time and it has a long memory, which approaches to infinity as time goes. 
Thus, it is usually not clear-cut to estimate parameters over past and future intervals of time for 
these series.    
18 Leybourne and Newbold (1999) stated that evaluating the results of both tests jointly would be 
more precise. 
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in practice. Therefore, Dickey and Fuller (1981) suggested an ‘augmented’ 

version that adds p lags of the dependent variable (∆Y) to the standard 

autoregressive time-series model by the following: 
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The test-statistics
 
that is compared with the critical values computed by Dickey 

and Fuller (1981) under the null hypothesis H0: γ = 0 (there is unit-root) is 

calculated as: 
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where SE stands for standard error. If the test statistics is greater than the critical 

value then the null hypothesis of γ = 0 is rejected and the absence of unit root for 

Yt  is verified. Dickey and Fuller (1981) derived also two more expansions of their 

core process [equation (5.2)] to monitor random walk against a stationary 

autoregressive process. These are called “intercept” and “trend” procedures, 

which are also checked separately in this study. 

On the other hand, several limitations are present for the ADF test. First, the 

adequacy of the test declines clearly as the lag-length, p increases. Second, it 

assumes that residuals are uncorrelated and have constant variance; but this is 

generally not true for the financial time-series. By considering the shortcomings 

of the ADF test, Phillips and Perron (1988) suggested an alternative approach on 

unit-root testing that allows taking into consideration heteroskedasticity and 
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autocorrelated residuals. A non-parametric correction is used to account for the 

probable serial correlation. The hypotheses and the decision making process for 

the PP test are identical with the ADF test. The test-statistics that will be 

compared with the relevant critical values is computed via the formula below: 
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Sπ and Su are consistent estimators developed by Phillips and Perron (1988), 

corresponding to dependent variable y. T is the number of observations and τµ is 

the t-statistics applied in testing the null hypothesis of unit root.  

Table 2 demonstrates the results of ADF and PP tests for the spot and futures 

return series. Moreover, the logarithmic values of spot and futures indexes at 

levels are examined as well since their unit root structure is important to reveal the 

type of cointegration relationship between the variables [equation (3.6)]. The 

optimal lag-length that removes autocorrelation among residuals is determined 

according to Akaike Information Criteria (AIC). It is denoted in the table that both 

of the return series are stationary at 1% significance level whilst the logarithmic 

spot and future index series (at level) are likely to contain unit-root, hence the 

series are non-stationary.  
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Table-2: Unit Root Tests 

Variables Lag-Length (p) Critical Values ADF Statistics PP Statistics 
St 1 -3.430 -2.508 -2.543 
Ft 1 -3.430 -2.492 -2.464 
Rs 2 -3.430 -16.142* -28.438* 
Rf 1 -3.430 -20.321* -29.381* 

Note: St and Ft represent logarithmic spot and future values for ISE-30 index (level) 
respectively. Rs and Rf  demonstrate daily spot and future returns in this manner. Tests are 
applied according to “intercept” and “trend” procedures as well; as the results do not change 
we have not presented in the table. 
* 1% significance level. 

As the variables are integrated of order one [I(1)], we need to analyze the 

cointegration relationship. The next subsection does this. 

5.2 Testing for Cointegration 

Once the presence of I(1) process is detected for the spot and futures price (level) 

series, it is now possible to analyze the cointegration relationship between the 

mentioned non-stationary variables. In this context, Johansen (1988) cointegration 

test is used particularly to observe probable long-run interactions among the spot 

and future markets. This methodology has precise advantages over alternative 

testing procedures such as the Engle and Granger (1987) method. It primarily lets 

all test parameters to react as endogenous variables during the estimations. The 

basic VAR mechanism applied in Johansen method is as follows. 

tt

p

i
itt yyY εµ +∆Γ+Π+=∆ −

+

=
− ∑ 1

1

1
1                                                                       (5.4)

 

yt  is an n x 1 vector of variables that are I(1) process, µ is vector of constants and    

t = 1,2,…..T  is the number of observations. The lagged terms capturing the long-run 
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dynamics is represented by yt-1. However, the rank of Π plays a key role in the 

process for estimating the number of cointegrating vectors. If the rank of Π is r 

and r < n then there exists n x r cointegrating vector among the variables. 

Johansen (1988) suggested two different likelihood tests to monitor the reduced 

rank of the Π matrix, which are called as “the trace test” and “the maximum 

eigenvalue test”. The following equations basically exhibit related computations 

for these statistics respectively that will be compared with critical values found by 

Johansen (1988). 

( )∑
+=

−−=
n

ri
it TJ

1

~
1ln λ                                                                                            (5.5) 

( )im TJ λ~1ln −−=                                                                                                (5.6) 

λ represents the largest canonical correlation and T is the sample size. Whilst the 

trace statistics is used to test the null hypothesis of r cointegrating vector against 

the alternative hypothesis of n vectors; the maximum eigenvalue statistics tests the 

presence of r cointegrating vectors (null) against r+1 (alternative). If the 

calculated statistics is greater than the critical value, the null hypothesis would be 

rejected as usual. 

Table 3 provides Johansen cointegration test results. Widely applied two-step 

process is followed to test the rank of cointegrating vector between logarithmic 

spot and future prices. According to this framework, firstly the lack of 

cointegrating vectors, H0: r = 0 is tested firstly against the hypothesis that there is 

at least one vector, H1: r = 1. Next, the null hypothesis of maximum one vector 
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H0: r ≤ 1 is tested against the alternative hypothesis of two cointegrating vectors 

H1: r = 2. The lag-length of VAR model is calculated as 3 by the AIC. 1% and 5% 

Johansen critical points are also presented in the table. 

Table-3: Johansen Cointegration Test 

 H0: r = 0 and H1: r = 1 H0: r ≤ 1 and H1: r = 2 
 Critical Values    Critical Values 
 

Statistics 
Value      1%      5% 

Statistics 
Value     1%      5% 

Trace   42.59*      24.60    19.96 6.40      12.97      9.42 
Eigenvalue   36.18*      24.60    15.67 6.40      12.97      9.24 

Note: The VAR model employed in process is specified with trend and constant terms. 
* exhibit the rejection of H0 at 1% significance. 

As shown in the table, the null hypothesis that there is no cointegration 

relationship among spot and futures prices (H0: r = 0) is rejected significantly 

against the alternative hypothesis that there is one cointegrating vector (H1: r = 1). 

Nonetheless, the null hypothesis stating that the number of cointegrating vectors is 

not greater than one (H0: r ≤ 1) cannot be rejected by either trace or eigenvalue 

statistics. Therefore, the presence of a cointegration relationship between level 

variables is approved with rank of one (r = 1). In that case, the cointegrating 

vector among logged spot and futures prices is found by using OLS regression 

method as follows: 

tt FS 9599.04389.0 +=              (5.7) 

This vector will be used to derive error correction term [equation (3.6)] among 

spot and futures prices, which is a parameter of the ECM and M-GARCH models 

specified above. 
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5.3 Hedge Ratio Estimations of Specified Models 

The hedge ratios computed by proposed empirical models for the ISE-30 index 

futures are reported in this section with related diagnostics respectively. 

5.3.1 Estimates of Linear Regression Model  

The OLS results obtained by running the regression equation (3.1) are shown in 

Table 4 (Panel A). Accordingly, the optimal hedge ratio that is just the coefficient 

of daily futures returns (Rf,t) is calculated as 0.8938. Statistical meanings of 

estimated coefficients are checked through standard errors, t-statistics and related 

p-values as well.19 The coefficient representing the hedge ratio is found as 

significant (1%) in this regard, contrary to constant parameter (c) of the model. 

Table-4: Results of Linear Regression Model 

Panel A – Parameter Estimates 
Variable Coefficient S. Error t-statistics p-value 
       c 1.7e-5     0.0003 0.06     0.954 
       Rf,t 0.8938     0.0159 56.35      0.000* 
 
Panel B-Diagnostic Tests 
 Shapiro-

Wilk 
Breusch-
Godfrey 

ARCH-LM White’s  

Test Statistic 12.23* 82.63* 48.81* 20.35* 
Note: The null hypotheses for diagnostic tests can be conveyed as: “normally 
distributed residuals” for Shapiro-Wilk, “no serial correlation in residuals” for 
Breusch-Godfrey, “no ARCH effects in residuals” for ARCH-LM and “constant 
variance” for White’s test.  
* indicates 1% significance level. 

As a matter of fact, the robustness of the linear regression model strongly depends 

on validity of the OLS assumptions. Hence, the required specification tests are 

applied to the estimates of regression model. Panel B (in Table 4) denotes the 

                                                 
19 This statistical evaluation process will be followed similarly for the findings of other empirical 
models in the dissertation. 
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results of the essential diagnostics in particular. The assumptions of normality and 

no serial correlation are rejected via the Shapiro-Wilk and Breusch-Godfrey tests 

respectively. In addition, the results of the ARCH-LM and White’s tests state that 

the spot and future return series have time-varying variance unlike the OLS 

assumptions. Consequently, it can be argued that there exist potential biases in the 

estimations of the regression model.  

5.3.2 Estimates of Bivariate VAR Model (II) 

The bivariate VAR model [equations (3.2) and (3.3)] is employed secondly in the 

thesis to calculate optimal hedge ratio, which aims removing the adverse effects 

of serial correlation detected by the regression method. The appropriate lag-order 

for the VAR model is determined as 2 according to AIC. Table 5 displays the 

estimated coefficients from the bivariate VAR (2) model. Nevertheless, the LM 

statistics (up to lag 4) are also provided in the table to ensure the condition of no 

serial correlation. 

Table-5: Results of Bivariate VAR Model 

Variable Coefficient S. Error z-statistics p-value 
Spot Eq.     

cs  0.0006 0.0007 0.82 0.411 
Rs,t-1 -0.0457 0.0889 -1.98 0.048**  
Rs,t-2 -0.0283 0.0922 -0.31 0.759 
Rf,t-1  0.0582 0.0920 0.63 0.527 
Rf,t-2 0.0375 0.0917 0.41 0.682 

Futures Eq.     
cf 0.0006 0.0007 0.67 0.503 
Rs,t-1 0.4030 0.0913 4.41 0.000* 
Rs,t-2 0.2107 0.0917 2.30 0.022* 
Rf,t-1 -0.4029 0.0912 -4.41 0.000* 
Rf,t-2 -0.1705 0.0889 -1.99 0.045**  

LM -Test 
 

Lag 1 
5.62 (0.22) 

Lag 2 
4.47 (0.35) 

Lag 3 
7.42 (0.11) 

Lag 4 
1.35 (0.85) 

Note: The null hypothesis for LM-test is “no autocorrelation at lag order k”. 
Numbers in brackets represent corresponding p-values. * and **  indicate the  
significance levels of 1% and 5% respectively. 
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After predicting the variance-covariance matrix of residual series for the spot (εs,t) 

and futures (εf,t) equations, the hedge ratio is calculated as 0.9322 [equation (3.4)] 

by the VAR method. 

5.3.3 Estimates of Error Correction Model (III) 

Since the presence of a long-run cointegration relationship is confirmed between 

spot and futures prices, the Error Correction Model (ECM) ought to be employed 

alternatively for calculating the optimal hedge ratio. Accordingly, the ultimate 

model [equation (3.5)] is derived by adding one-period lagged error correction 

term to the simple regression equation [equation (3.1)] with specified lag orders of 

spot and futures returns. The time-series regarding the error correction term is 

created by referring the cointegration vector computed previously [equation (5.9)]. 

Before running the model, the proper lag-length for spot and future returns is 

determined as 2 by applying the Hendry’s (1995) “general to specific” approach. 

The outcomes from the error correction model are noted in Table 6 below. 

Table-6: Results of Error Correction Model 

Panel A – Parameter Estimates 
Variable Coefficient S. Error t-statistics p-value 

c 1.5e-05 0.0002 -0.06 0.956 
Rf,,t 0.9271 0.0132   62.79 0.000* 
Rs,t-1 -0.3107 0.0485 -6.41 0.000* 
Rs,t-2 -0.1592 0.0441 -3.61 0.000* 
Rf,t-1 0.3348 0.0489 6.85 0.000* 
Rf,t-2 0.1445 0.0446 3.24 0.001* 
ECt-1 -0.1731 0.0316 -5.49 0.000* 

 
Panel B – Diagnostic Tests 
 Shapiro-

Wilk 
Breusch-
Godfrey 

ARCH-LM White’s  

Test Statistic 12.39* 0.62 25.98*    4.88**  
                     * and **  indicate the  significance levels of 1% and 5% respectively. 
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Nearly all estimated parameters are statistically significant, as demonstrated in the 

table (Panel A). This finding remarkably gives us an idea about the fitness of error 

correction model. The hedge ratio that is just the coefficient of current future 

returns (Rf,,t) is found as 0.9271. Furthermore, the sign of error correction term 

(ECt-1) clarifies the fact that the direction of adjustment is from spot to future 

market unsurprisingly. The speed of adjustment is determined as approximately 6 

days in this manner.  

Panel B in the table reports the results of essential diagnostic tests, which are 

applied for linear regression model as well. The diagnostic tests show that the 

residuals are abnormally distributed and do not have constant variance 

(heteroskedastic). On the other hand, the absence of serial correlation cannot be 

rejected significantly for given lag orders. 

5.3.4 Estimates of GARCH Model (IV)  

The heteroskedastic nature of the return series has encouraged us to set a GARCH 

model in estimation of the optimal hedge ratio. Within many specifications, the    

GARCH (p, q) model [equations (3.7) and (3.8)] is chosen due to its accuracy on 

many financial time series. The lag-orders of conditional variance, p, and past-

squared residuals, q are defined as 1 by the log-likelihood procedure.20 Table 7 

summarizes the coefficient findings of GARCH (1, 1) model. To support the 

robustness of the model, the Ljung-Box-Q (LB-Q) and ARCH-LM test statistics 

are presented in the table as additional diagnostics. 

                                                 
20 After estimating several GARCH (p, q) specifications for p=1, 2 and q=1,2 it is decided that the 
GARCH (1, 1) model is the most appropriate model according to log-likelihood statistics.  
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Table-7: Results of GARCH (1,1) Model 

Panel A – Parameter Estimates 
Parameters Coefficient S. Error z-statistics p-value 

c 2.1e-04 2.3e-05 0.08 0.929 
β 0.9093 0.0098  93.51 0.000* 
λ0 2.4e-06 6.89e-07 3.56 0.004* 
λ1 0.0871 0.0157 5.57 0.000* 
λ2 0.8796 0.0201 42.80 0.000* 

 
Panel B – Diagnostic Tests 
 

 
Test-

statistics 
lag-length p-value 

    ARCH-LM  0.81 2 0.469 
Ljung-Box-Q  18.35 20 0.313 
Note: The null hypothesis for Ljung-Box test is “no serial correlation for given lag 
order”. The lag-lengths for diagnostic tests are determined by using AIC. 
* and **  indicate the  significance levels of 1% and 5% respectively. 

The GARCH (1, 1) model yielded that (see Panel A in Table 7) the optimal hedge 

ratio, represented by β, is 0.9093 and significant.21 More importantly, the hedge 

ratio of the GARCH (1,1) model has the lowest standard error compared to results 

of previous methods so far. λ1 and λ2 parameters appear to be highly significant by 

correcting the conditional volatility over the spot and futures returns. The 

condition of λ1 + λ2 close to unity can be interpreted as past volatility information 

suppresses the outsized market shocks in forecasting current volatility.22 To put 

differently, these shocks decay with time. The insignificant LB-Q and ARCH-LM 

statistics at selected lags (Panel B) confirm the adequacy of the model.  

5.3.5 Estimates of M-GARCH Model 

Although the bivariate VAR model and the error correction model (ECM) have 

taken into account the short-run and long-run interactions between spot and 

futures prices respectively, the ARCH effects in residuals could not be captured 

                                                 
21 Estimations are made under General Error Distribution (GED) assumption as it is more effective 
for non-normal distributions. 
22 The persistency in volatility is captured by λ1 + λ2 for GARCH (p, q) model.  
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by these models. At this point, the most crucial feature of the M-GARCH model is 

to consider the bivariate cointegration relationship between spot and futures prices 

from the heteroskedastic pattern jointly. It basically combines the bivariate VAR 

and the error correction models through mean equations [equations (3.9) and 

(3.10)] and the GARCH framework as in conditional variance-covariance 

equations [equations (3.12), (3.13) and (3.14)]. Time-varying hedge ratios from 

the M-GARCH model are therefore expected to give better results in terms of 

hedging effectiveness.  

Table 8 indicates the estimation results from the M-GARCH (1, 1) model.23 

However, the coefficient findings of mean equations are not presented in the table 

since the main drive for calculating time-varying hedge ratios is to obtain 

conditional variance and covariances. To estimate the coefficients in the model, 

the Marquardt algorithm under t-distribution is used specifically.  

Table-8: Results of M-GARCH (1,1) Model 

Panel A – Parameter Estimates 
Parameters Coefficient S. Error z-statistics p-value 

css 7.8e-06 3.1e-06 2.58 0.001* 
cff 6.1e-06 2.2e-06   2.75 0.006* 
csf 5.9e-06 2.1e-06 2.75 0.006* 
αss 0.0558 0.0130 4.29 0.000* 
αff 0.0511 0.0114 4.45 0.000* 
αsf 0.0525 0.0115 4.55 0.000* 
βss 0.9251 0.0159 58.06 0.000* 
βff 0.9330 0.0139 66.70 0.000* 
βsf 0.9301 0.0138 67.39 0.000* 

 
Panel B – Diagnostic Tests 
 

Residuals 
Test-

statistics 
lag-length p-value 

Spot 23.74 20 0.254 Ljung-Box-Q 
Futures 25.32 20 0.190 

Note: The lag-lengths for Ljung-Box-Q test are determined by using AIC. 
* indicates the  significance level of 1%. 

                                                 
23 Once again the lag-lengths of p=1 and q=1 for the GARCH model provides the best combination 
corresponding to log-likelihood functions. 
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As stated in the table (Panel A), all coefficients of the conditional variance and 

covariance equations are statistically significant and positive, which satisfies the 

model constraint at first sight. Further, the GARCH parameters’ sum (css + αss + 

βss) and (cff + αff + βff) is close to unity for each variance equation. In other words, 

the persistence in volatility is high for the dataset. The sign of the covariance 

parameters (αsf, βsf) also corrects the positive interaction between the two prices. 

Panel B in the table provides Ljung-Box-Q statistics of standardized residuals for 

the spot and futures returns [equation (3.9) and (3.10)]. According to the results of 

Ljung-Box-Q test, there is no autocorrelation in residuals of both specifications, 

which confirms that the M-GARCH model is capable of estimating the dynamics 

in the second moments of spot and futures returns. 

Figure 4 below plotting the time-varying hedge ratios calculated by the standard 

M-GARCH (1, 1) model [equation (3.15)] shows that it ranges from a minimum 

of 0.79 to a maximum of 1.32.  

 
Figure-4: Time-varying hedge ratios 
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The mean value for the time-varying hedge ratio series is computed as 0.9490. In 

order to compare the empirical models applied in the study robustly, the sample 

mean of the dynamic hedge ratios is taken as a benchmark.  

5.4 Hedging Effectiveness Comparison 

The performance of the hedge ratios based on five different empirical models is 

compared in this section from the perspective of the hedging effectiveness. 

Ederington (1979) defines the hedging effectiveness as the relative percentage 

reduction in the unhedged portfolio variance after the hedging transaction. 

Therefore, we need to construct unhedged and hedged portfolios virtually first. 

While the unhedged portfolio just contains the ISE-30 spot index, the hedged 

portfolios are composed from the ISE-30 spot index and the ISE-30 futures index 

at different weights (using different hedge ratios) together. Then, the returns of 

these portfolios for different hedging horizons (i.e. 5, 10, 15 and 20 days) are 

computed by the following equations. 

( )ptttu SSr −−=,               (5.8) 

( ) ( )pttpttth FFhSSr −− −−−= *
,                                (5.9) 

ru,t and rh,t represent the daily returns of unhedged and hedged portfolios 

respectively, where St and Ft  indicate logged spot and futures prices. p equals 5, 

10, 15 and 20 for different hedging horizons. The hedge ratio determining the 

weight of the futures position is shown by h*. Nonetheless, the variances of the 
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created portfolio return series are calculated through the equations (5.10) and 

(5.11) below. 

)()( urVarUVar =                (5.10)  

)()( hrVarHVar =                  (5.11) 

The variances of the unhedged and hedged portfolios are demonstrated by Var (U) 

and Var (H) respectively. Consequently, the measure of the hedging effectiveness 

(HE) that is used to evaluate the performances of the estimated hedge ratios is 

calculated as follows [Ederington, (1979)]: 

)(

)()(

UVar

HVarUVar
HE

−=                           (5.12)
 

As the main purpose of the hedging is to diminish or abolish the price risk 

(variance) of the underlying asset, the comparison of the effectiveness of hedge 

ratios via various techniques is made under this criterion essentially. There are 

few other studies [Howard and D’Antonio, (1984)] which assert that the return 

after hedging is also important and should be considered for the effectiveness of 

hedging. For that reason, the average daily returns of the constructed portfolios 

are also calculated and analyzed as a supportive tool for evaluating the 

effectiveness of hedging via different models. 

Both in-sample and out-of-sample data are applied in the model assessment 

process. Whilst we can monitor statistical robustness of the empirical models by 
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analyzing in-sample data; out-of-sample data consider the forecast accuracy of the 

proposed models.24   

Table 9 and 10 depict the effectiveness results of the hedge ratios of the 

methodologies used in the study for in-sample and out-of-sample data, 

respectively. The mean returns and the variances of the hedged and unhedged 

portfolios are presented as well in the tables with the measure of the hedging 

effectiveness, HE.  

The results indicate that even if all hedge ratio estimates reduce the variance of 

the unhedged portfolio, time-varying hedge ratio of the M-GARCH model 

outperforms the findings of competing methods in majority of cases for both in-

sample and out-of-sample data in terms of HE measure. This implication is 

evidently consistent with Baillie and Myers (1991), Kroner and Sultan (1993), 

Choudhry (2003) and Yang and Allen (2004). Hence, we can assert that the M-

GARCH model is the most appropriate model (as expected) to estimate the risk-

minimizing hedge ratios for ISE-30 index. The optimal hedge ratio for ISE-30 

index contracts is determined as 0.9490 in this manner as an arithmetic mean of 

the daily hedge ratios from the multivariate model. Thus, if a hedger takes a 

reverse position in futures market which covers approximately 95% of his spot 

exposure, he will attain the most effective hedging. In addition, the significance of 

the hedging effectiveness increases parallel to the length of the hedging period 

through in-sample data but not for out-of-sample data.  

                                                 
24However, Baillie and Myers (1989) and Park and Switzer (1994) reveal that the out-of-sample 
data provide more reliable results for the comparison of hedging effectiveness. 
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Table-9: In-sample Hedging Effectiveness 

Model Hedge Ratio Mean Return Variance HE (%) 
     
5-day     
OLS 0.8938 6.78e-05 1.29e-04 94.26 

VAR 0.9322 -6.56e-05 1.21e-04 94.65 

ECM 0.9271 -4.79e-05 1.23e-04 94.61 

GARCH 0.9093 3.68e-05 1.25e-04 94.44 

M-GARCH 0.9490 -1.23e-04 1.12e-04 95.03 
Unhedged 0.0000 3.17e-03 2.24e-03 - 

     

10-day     

OLS 0.8938 3.06e-04 1.95e-04 95.13 

VAR 0.9322 2.23e-05 1.81e-04 95.47 

ECM 0.9271 5.99e-05 1.83e-04 95.44 

GARCH 0.9093 2.87e-04 1.89e-04 95.29 

M-GARCH 0.9490 -1.01e-04 1.47e-04 96.34 
Unhedged 0.0000 6.91e-03 4.02e-03 - 

     

15-day     

OLS 0.8938 5.88e-04 2.71e-04 95.40 

VAR 0.9322 1.49e-04 2.38e-04 95.96 
ECM 0.9271 2.07e-04 2.42e-04 95.90 

GARCH 0.9093 4.64e-04 2.54e-04 95.71 

M-GARCH 0.9490 -4.32e-04 2.08e-04 95.79 

Unhedged 0.0000 1.08e-02 5.90e-03 - 

     

20-day     

OLS 0.8938 5.26e-04 2.59e-04 96.92 

VAR 0.9322 -4.27e-05 2.18e-04 97.40 

ECM 0.9271 3.29e-05 2.22e-04 97.36 

GARCH 0.9093 3.79e-04 2.36e-04 97.21 

M-GARCH 0.9490 -2.92e-04 1.97e-04 97.66 
Unhedged 0.0000 1.37e-02 8.43e-03 - 

     
           Note: In-sample period covers 730 observations from 02.05.2005 to 20.03.2008. 
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Table-10: Out-of-sample Hedging Effectiveness 

Model Hedge Ratio Mean Return Variance HE (%) 
     
5-day     
OLS 0.8938 -2.25e-03 5.44e-05 93.12 

VAR 0.9322 -2.24e-03 5.38e-05 93.21 

ECM 0.9271 -2.24e-03 5.38e-05 93.22 

GARCH 0.9093 -2.26e-03 5.39e-05 93.22 

M-GARCH 0.9490 -2.19e-03 5.14e-05 93.51 
Unhedged 0.0000 -2.26e-03 7.93e-04 - 

     

10-day     

OLS 0.8938 -2.24e-03 5.61e-05 90.75 

VAR 0.9322 -2.31e-03 5.80e-05 90.43 

ECM 0.9271 -2.30e-03 5.76e-05 90.49 

GARCH 0.9093 -2.28e-03 5.59e-05 90.77 
M-GARCH 0.9490 -2.33e-03 5.94e-05 90.18 

Unhedged 0.0000 -7.06e-04 6.06e-04 - 

     

15-day     

OLS 0.8938 -1.82e-03 7.12e-05 93.28 

VAR 0.9322 -1.80e-03 7.17e-05 93.23 

ECM 0.9271 -1.80e-03 7.14e-05 93.26 

GARCH 0.9093 -1.79e-03 7.09e-05 93.31 

M-GARCH 0.9490 -1.77e-03 6.95e-05 93.38 
Unhedged 0.0000 -2.25e-03 1.05e-04 - 

     

20-day     

OLS 0.8938 -4.54e-03 3.60e-05 95.05 

VAR 0.9322 -4.65e-03 3.44e-05 95.27 

ECM 0.9271 -4.64e-03 3.45e-05 95.26 

GARCH 0.9093 -4.55e-03 3.51e-05 95.19 

M-GARCH 0.9490 -4.41e-03 3.24e-05 95.54 
Unhedged 0.0000 -2.10e-03 7.28e-04 - 

     
           Note: Out-sample period covers 276 observations from 21.03.2008 to 30.04.2009. 

When the returns of the portfolios are taken into account, there is a slight 

difference between in-sample and out-of-sample datasets. Whilst, the highest 

returns are provided by the regression method for in-sample data, the M-GARCH 

hedge ratio performs the best in three of four cases for out-of-sample data with 

negative returns particularly. Since the out-of-sample data is especially used to 
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evaluate the applicability of the empirical findings, it can be claimed that the best 

hedging period is 20 days or 4-weeks for the ISE-30 futures contracts as the 

lowest variance is realized in this period by the time-varying hedge ratio of the M-

GARCH model. Therefore, hedgers should reorganize their portfolios every 

twenty days actively.  
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Chapter 6 

Conclusion 

This study examines the optimal hedge ratio for the ISE-30 futures contracts, 

traded in the TurkDEX, by running several competitive econometric models. 

Accordingly, the linear regression model, the bivariate vector autoregressive 

(VAR) model, the error correction model (ECM), the standard GARCH model 

and the multivariate GARCH (M-GARCH) model are conducted to estimate the 

risk-minimizing hedge ratio. The appropriateness/superiority of the models is 

investigated under the hedging effectiveness criterion for each in-sample and out-

of-sample data horizons.  

The empirical results demonstrate that the hedge ratio estimated by the M-

GARCH model provides the highest variance (risk) reduction for majority of the 

hedging periods along with both in-sample and out-of-sample data. This finding is 

consistent with the general expectation in the thesis since the M-GARCH model 

has a more complex structure that takes into account the interactions among spot 

and future prices jointly from the heteroskedastic wisdom. On the other hand, 

there are no penetrating differences between the findings of empirical models in 

terms of hedging effectiveness. The hedging effectiveness also improves in longer 

hedging periods for just in-sample data. 

Moreover, the return performance of the hedged portfolios that constructed by 

utilizing the estimated hedge ratios is also checked as a minor comparison tool for 
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the models. Consequently, the highest returns are provided by the linear 

regression model for the in-sample data and the M-GARCH model for the out-of-

sample data. 

It is expected that the findings of the thesis would be useful practically for the 

institutional investors, who want to hedge their exposure in Turkish stock market, 

through resolving the magnitude of the futures position. We can also assert that 

the ISE-30 index futures contract succeed to reduce price variability in the spot 

market more than 95%. Therefore, the TurkDEX is able to perform its hedging 

function perfectly even it does not have a long history as developed futures 

markets. This fact might help to increase the awareness and reputation of the 

TurkDEX in near future. Nonetheless, this study will enhance the poor academic 

literature about the newly established Turkish futures market through providing a 

recent discussion point on the optimal hedge ratio and the hedging effectiveness. 

One important proposal for a possible further research is changing the frequency 

of the data for the empirical analyses. To concentrate on high-frequency data 

might provide more realistic results as it captures all of the dynamics tick by tick 

between the spot and future markets particularly. 
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