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ABSTRACT

PHARMACY DUTY SCHEDULING PROBLEM WITH
AN APPLICATION TO İZMİR

Ayşe Ebru Ağlamaz

M.A.in Logistics Management

Supervisor: Asst. Prof. Dr. Özgür Özpeynirci

July 2011, 125 pages

In this thesis, we define the pharmacy duty scheduling (PDS) problem, where a

subset of pharmacies should be on duty on national holidays, at weekends and

at nights in order to be able to satisfy the emergency drug needs of the society.

We model the PDS problem as a multi-period facility location problem with

special side constraints and analyze the computational complexity. We develop

a Tabu Search algorithm to obtain feasible upper bounds for PDS problem and

three lower bounds including Lagrangian Relaxation. We test the performance

of mathematical models, Tabu Search and lower bounds on randomly generated

instances. We analyze the current system in İzmir and obtain the real data

with the help of a Geographic Information System specifically developed for this

thesis. Our results show that proposed Tabu Search algorithm makes significant

improvements over the current system.

Keywords: Facility location, Tabu search, Lagrangian relaxation, Duty schedul-

ing.

i



ÖZET

ECZANE NÖBET ÇİZELGELEME PROBLEMİ: İZMİR
UYGULAMASI

Ayşe Ebru Ağlamaz

Lojistik Yönetimi, M.A.

Tez Yöneticisi: Yard. Doç. Dr. Özgür Özpeynirci

Temmuz 2011, 125 sayfa

Bu tezde, eczanelerin bir alt kümesinin ulusal tatiller, hafta sonları ve hafta

içi akşamları halkın acil ilaç ihtiyaçlarını karşılayabilmek için nöbetçi olması

gerektiği, eczane nöbet çizelgeleme (ENÇ) problemini tanımladık. ENÇ problem-

ini özel ek kısıtları olan çok dönemli bir tesis yerleşimi problemi olarak modelledik

ve hesaplama karmaşıklığını inceledik. ENÇ problemine olurlu üst sınırlar elde

etmek için tabu arama algoritması ve Lagrange gevşetmesi de dahil olmak üzere

üç alt sınır geliştirdik. Matematik modellerin, tabu aramanın ve alt sınırların

performanslarını rassal üretilmiş örneklerde test ettik. İzmir’deki mevcut sistemi

inceledik ve bu tez için özel olarak geliştirilmiş coğrafi bilgi sistemi yardımı ile

gerçek verileri elde ettik. Sonuçlarımız önerilen tabu arama algoritmasının mev-

cut sistem üzerinde önemli iyileştirmeler yaptığını göstermektedir.

Anahtar sözcükler : Tesis yerleşimi, Tabu arama, Lagrange gevşetme, Nöbet

çizelgeleme.
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Chapter 1

INTRODUCTION AND

PROBLEM DEFINITION

In Turkey, drugs can only be obtained from pharmacies. Except for the phar-

macies located in the government hospitals, each pharmacy is an individual en-

terprise that has to be owned and operated by a pharmacist. A pharmacist is

allowed to operate only a single pharmacy. Also, pharmacy chains are not allowed

in Turkey.

In a regular weekday, all pharmacies are open during the working hours. On

national holidays, at weekends and at nights of the week days, only some of the

pharmacies are allowed to be open for 24 hours. These pharmacies are called as

on duty pharmacies. Based on a schedule, each pharmacy performs its duties

multiple times in a year.

The duty schedules are prepared by the regional chambers of pharmacists.

1
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In each chamber, there is a commission in charge of duty schedules. In İzmir,

duties are being assigned to pharmacies manually by the On Duty Pharmacy

Planning Commission of İzmir Regional Chamber of Pharmacists1. This manual

system is causing some difficulties for both customers and the pharmacists. For

the customers, main problem may be stated as traveling a long distance in order

to find an on duty pharmacy. For the pharmacists side, sometimes two close

pharmacies may be on duty at the same day. For this reason, we try to analyze this

problem and develop analytical methods in order to solve the scheduling problem.

We define this problem as the Pharmacy Duty Scheduling (PDS) Problem.

PDS problem deals with the assignment of duty days to different pharmacies

for a specific length of time, which is called as the planning horizon. This problem

is a multi-period facility location problem because it deals with the decision of

opening and closing facilities on different days. PDS is a facility location problem

because we try to decide on whether to open a pharmacy, in other words assign

a duty to that pharmacy, or not. It is also a multi-period problem, since our

planning horizon consists of multiple days and decisions given for a day affects

the decisions for the other days.

In the scope of PDS problem, the pharmacies are the facilities. Opening a

facility on a specific day means assigning a duty to that pharmacy on that day.

The days in PDS problem represents different periods of the planning horizon.

The demand for drugs is dispersed among many different households. In the

1www.izmireczaciodasi.org.tr
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representation of the problem, it is almost impossible to locate each individual or

household and to represent the corresponding demand one by one. Thus, in the

PDS problem, we take the demand nodes to be the districts.

For a specific planning horizon, there may be a variety of assignments of duties

to different pharmacies on different days of the planning horizon. This research

aims to find the optimal assignments for a specific planning horizon. A schedule

made by using the optimal assignments should lead to the least total cost of meet-

ing the demand. Thus, the objective of PDS problem is to minimize the total

demand weighted distance traveled by all customers during the planning horizon

with respect to several operational constraints. The total demand weighted dis-

tance is calculated as the population of the district multiplied by the distance

between the district center and the pharmacy that it gets service from.

For these purposes the following research questions are determined:

1. How should we measure the service quality of a duty schedule?

2. What is the quality of the current system?

3. How much can we improve the current system by the use of analytical

methods to give the best service to the public?

In this thesis, we propose analytical methods in order to measure and increase

the service quality. We find how much the current system may be improved by

the use of proposed analytical methods.
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The outline of this thesis is as follows. Chapter 1 presents the introduction,

concepts used throughout the thesis and the definition of the problem. In Chapter

2, we provide a brief introduction to basic location decision problems. Then,

we review related articles on facility location problems, Lagrangian Relaxation

algorithms and Tabu Search heuristics. Chapter 3 describes the current system in

detail and mentions the problems in the current system. In Chapter 4, we present

the mathematical programming models developed. Chapter 5 introduces the

algorithms developed in order to find lower and upper bounds for the problems.

In Chapter 6, we discuss computational experiments and the results. Chapter 7

includes the İzmir application. Finally, we state conclusions and future research

directions in Chapter 8.



Chapter 2

LITERATURE REVIEW

In this section, we review the related literature and present it in three main

sections: i) general location problems, ii) emergency facility location problems,

iii) tabu search.

2.1 General Location Problems

Hale and Moberg [1] define facility location problems as “the problems investi-

gating where to physically locate a set of facilities so as to minimize the cost of

satisfying some set of demands subject to some set of constraints.” These prob-

lems are covered under the title of location decision problems and have been an

interesting research topic for a very long time.

Location decision problems have been mathematically formulated in different

5
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forms in order to represent different situations or to satisfy different sets of con-

straints. In the following sections, some of these problems related to the research

topic will be presented. These problems are:

• Covering Problems

• p-Median Problems

• Uncapacitated Facility Location Problems

• Multi-Period Capacitated Location Problems

2.1.1 Covering Problems

Covering problems are a class of location problems. There are different variations

of covering problems; however, we will only focus on set covering problems in this

thesis.

The set covering problem is a simple facility location problem. The objective

is to select a minimum cost set of facilities from a set of candidate facilities so that

every demand node is covered by at least one facility in the selected set. The

following notation is used in the mathematical formulation of the set covering

model by Daskin [2].

Notation

V1: set of demand nodes, i ∈ V1
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V2: set of candidate sites, j ∈ V2

fj = cost of locating a facility at candidate site j

aij =

{
1, if candidate site j can cover demands at node i

0, otherwise

Decision Variables

Xj =

{
1, if a facility is located at candidate site j

0, otherwise

The mathematical formulation of the set covering problem is as follows:

Minimize ∑
j

fjXj (2.1)

Subject to ∑
j

aijXj ≥ 1 ∀i (2.2)

Xj ∈ {0, 1} ∀j (2.3)

In the set covering model, the objective function (2.1) minimizes the total

cost of locating facilities. Constraints (2.2) ensure that each demand node i is

covered by at least one facility. Constraints (2.3) are the integrality constraints.
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2.1.2 p-Median Problem

The p-median problem differs from the facility location problem, since the objec-

tive is to locate exactly p facilities so that the total cost of serving customers is

minimized. In the general form of the p-median problems, the customer demand

for a single commodity is met with a specified cost. The cost of meeting demand

is calculated as the demand of node i multiplied by the distance between the

demand node i and the facility j that it gets service from. The notation used in

the mathematical formulation of the problem by Daskin [2] is as follows:

Notation

hi: demand at node i

dij: distance between demand node i and candidate site j

p: number of facilities to locate

Decision Variables

Xj =

{
1, if a facility is located at candidate site j

0, otherwise

Yij =

{
1, if node i is served by a facility at node j

0, otherwise
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The mathematical formulation of the p-median problem is as follows.

Minimize ∑
i

∑
j

hidijYij (2.4)

Subject to ∑
j

Yij = 1 ∀i (2.5)

∑
j

Xj = P (2.6)

Yij −Xj ≤ 0 ∀i, j (2.7)

Xj ∈ {0, 1} ∀j (2.8)

Yij ∈ {0, 1} ∀i, j (2.9)

In p-median problem, the objective function (2.4) minimizes the total demand

weighted distance between each demand node and the nearest open facility. Con-

straints (2.5) state that each demand node i must be assigned to exactly one

facility j while constraints (2.6) equalizes the number of facilities to be opened

to exactly p. Constraints (2.7) ensure that the demand of node i can be assigned
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to facility j only if a facility is opened at site j. Constraints (2.8) and (2.9) are

the integrality constraints.

2.1.3 Uncapacitated Facility Location Problem

In the Uncapacitated Facility Location (UFL) problem, a number of facilities are

chosen from a set of candidate facility locations in order to minimize the cost or

maximize the profit while satisfying the customer demand for a single commodity.

Generally, the associated costs are the transportation costs of distributing com-

modities between the facilities and the customers and the fixed costs for locating

the facilities. If there is a capacity for each potential facility, then the problem is

called as the capacitated facility location problem.

In the formulation of the UFL problem, there are a set of clients I = {1, ...,m}

with a given demand for a single commodity and a set of sites J = {1, ..., n} where

facilities can be located with a fixed cost fj of opening facility j. The notation

used to formulate the problem mathematically by Mirchandani and Francis [3] is

as follows:

Notation

dij: cost of serving customer i from facility j

fj: fixed cost of locating a facility at candidate facility site j
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Decision Variables

Xj =

{
1, if a facility is located at candidate site j

0, otherwise

Yij =

{
1, if demands at node i are served by a facility at node j

0, otherwise

With this notation, the UFL problem is formulated as follows.

Minimize

Z =
∑
i∈I

∑
j∈J

dijYij +
∑
j∈J

fjXj (2.10)

Subject to ∑
j∈J

Yij = 1 ∀j (2.11)

Yij ≤ Xj ∀i, j (2.12)

Xj ∈ {0, 1} ∀j (2.13)

Yij ∈ {0, 1} ∀i, j (2.14)

The objective function (2.10) minimizes the total cost of meeting customers

by facilities. Constraints (2.11) require that each customer i is served by exactly
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one facility. Constraints (2.12) state that in order to serve customer i from facility

j, a facility must be opened at candidate site j. Finally, constraints (2.13) and

(2.14) are the integrality constraints.

2.1.4 Multi-Period Capacitated Location Problems

Previously mentioned models are all single period models. The only question

to be answered is where to locate the facilities. In the multi-period situation

demand varies between different time periods. Thus, in multi-period problems,

when to locate a facility is as important as where to locate it. Multi-Period

Capacitated Location (MCL) problem consists of a set of periods t = {1, ..., T}

in which different amounts of customer demand should be met. The notation

used in the formulation of MCL problem by Mirchandani and Francis [3] is as

follows:

Notation

Zj0: the initial capacity of facility j

wit: demand of customer i at period t

Fjt(zjt): the cost of a capacity expansion of size zjt at the beginning of period t

at location j

cjit = the cost of producing one unit of flow at location j and transporting it to

customer i in period t
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Decision Variables

yjit: the flow from location j to customer i in period t

zjt: the capacity expansion at the beginning of period t at facility j

Zjt: capacity available at period t at facility j

Using this notation, the MCL problem is formulated as follows:

Minimize
T∑

t=1

J∑
j=1

[
Fjt(zjt) +

I∑
i=1

cjityjit

]
(2.15)

Subject to
J∑

j=1

yjit = wit ∀i, t (2.16)

I∑
i=1

yjit ≤ Zjt ∀j, t (2.17)

Zjt = Zj(t−1) + zjt ∀j, t (2.18)

Zjt ≥ 0 ∀j, t (2.19)

zjt ≥ 0 ∀j, t (2.20)
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yjit ≥ 0 ∀i, j, t (2.21)

The objective function, (2.15), minimizes the total cost of capacity expansions

and serving the customers. Constraints (2.16) ensure that all demand is met while

constraint (2.17) limits the flow from a facility to its capacity in each period.

Constraints (2.19) state that the capacity of a facility in period t should be equal

to the sum of its capacity in the previous period and capacity expansion made at

the beginning of period t. Constraints (2.19), (2.20) and (2.21) define nonnegative

decision variables.

The PDS problem is different from the location decision problems presented

earlier. In location decision problems, the facilities remain open until the end

of the planning horizon once they are opened. However, in PDS problem, the

facilities are opened and closed multiple times during the planning horizon, since

opening a facility in a period means assigning a duty for a pharmacy only in that

period.

Wesolowsky and Truscott [4] work on dynamic facility location problem. They

consider the location and relocation of facilities in a multi-period setting in re-

sponse to demand changes. They use dynamic programming solution techniques

in order to solve this problem. In each period, the existing facilities may be

closed, relocated or remain open. However, in the PDS problem, each facility can

be opened for only one day during the planning horizon and then it is closed.
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The opening or closing of facilities may occur multiple times during the planning

horizon.

After discussing these four models, their applications in the literature will be

presented. Although these models are formulated in order to represent general

situations, they can be used to model real life problems by introducing some side

constraints as it is the case in the PDS problem.

2.2 Emergency Facility Location Problems

In general, emergency facility location problems try to locate emergency facilities

so that the demands are met as soon as possible or within a given service thresh-

old. Improving the system performance is very important for emergency services,

thus, there are many examples of this type of problem in the literature.

Toregas et al. [5] modeled the location of emergency service facilities as a

set covering problem. They aimed to open facilities that were within a limit of

distance or time in order to reach the demand points since emergency facilities

should be located very near to potential demand points. They introduced a

mathematical program in order to find both optimal number and location of the

facilities.

Çatay et al. [6] worked on planning the locations of the emergency medical

service stations. Maximal covering model is used in order to solve both the single
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period and multi-period emergency station location problems. They defined two

different limits of time, t1 and t2, the former is the maximum time allowed to reach

a demand node from the nearest station. The latter one is the time limit for the

second closest station. The objective of the study is to maximize the population

covered within these two limits of time by the stations located. Besides the exact

solution methods proposed, they developed three different heuristic methods in

order to solve the large size problems.

Carreras and Serra [7] worked on optimal location problem with threshold

requirements. The model developed in the research is then applied to the phar-

macy location problem in rural areas of Spain. The objective of the problem

is determining the optimal locations for new pharmacies. In this problem, they

tried to locate minimum number of facilities while keeping the service level above

a defined threshold. They introduced a tabu search heuristic in order to solve

this problem. This problem is different from the PDS problem. The aim of this

problem is to locate new pharmacies, on the other hand, the aim of the PDS

problem is to define duty schedules for the existing facilities.

Rajagopalan et al. [8] worked on dynamic redeployment of ambulances. They

stated that the demand for ambulances change according to the day of the week

or even time of the day. Thus, they aimed to increase the service performance by

relocation and redeployment of ambulances. They first proposed a search algo-

rithm in order to define the minimum number of ambulances to be located. Then,
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they introduced a tabu search algorithm in order to locate the given ambulances.

2.3 Tabu Search Heuristics

Tabu Search is a meta-heuristic method developed to solve combinatorial opti-

mization problems. It is based on searching the neighborhood of a given solution

with the use of various neighborhood search techniques while not allowing to visit

some solutions in order to search a broader space for better solutions. In Tabu

Search heuristics, two types of decisions are made: tabu specific and problem

specific decisions. For example, tabu tenures and aspiration criteria are tabu spe-

cific decisions . The problem specific decisions are related to problem type such

as neighborhood structure, neighborhood search techniques etc.

Glover [9] introduced the Tabu Search algorithm and discussed general char-

acteristics such as the aspiration criteria, tabu lists and memory functions. Tabu

lists are kept in order to avoid getting stuck in local optima. By the use of tabu

lists, recently visited solutions are prohibited and the search continues in differ-

ent parts of the search space. Aspiration criteria are used when a very good

solution is tabu. With the use of aspiration criteria, tabu solutions are accepted

as admissible for instance, if they correspond to a solution that is better than

the best known solution so far. Memory functions are divided into three levels

as short-term, medium-term and long-term memories. These different memory

functions are used throughout the Tabu Search algorithm.
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Glover [10] introduced different neighborhood search methods for the Tabu

Search algorithm. The neighborhood search techniques are used to search the

different parts of the search space for better solutions. The fundamentals of the

Tabu Search algorithm with different examples are introduced in Glover’s tutorial

on Tabu Search algorithm [11]. In addition to the previous researches, Glover

and Laguna provide the fundamentals and variations of Tabu Search heuristics

in detail in their book [12].

Tabu Search is a commonly used solution method in the literature. The

application of Tabu Search algorithm varies from the facility location problems

to scheduling problems.

Albareda-Sambola et al. [13], worked on multi-period incremental service

facility location problem. This problem reduces to the p-median problem by

limiting the number of facilities to p. In each period, at least a pre-defined num-

ber of customers’ demand is met and the customers are served until the end of

the planning horizon if they are serviced once at any time period. They have

proposed a Lagrangian Relaxation algorithm by relaxing the constraint of assign-

ing customers only to open facilities and obtained good solutions in reasonable

computation times.

Wang et al. [14] worked on the budget constrained location problem in which

some new facilities are opened and some existing facilities are closed. They ap-

plied their models on locating and relocating of bank branches in a large-size
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town. They first developed a mathematical programming model and then they

developed three heuristic approaches, namely greedy-interchange heuristic, tabu

search approach and Lagrangian relaxation approximation for the problem. The

greedy-interchange heuristic, consists of two phases. In the first phase, facilities

are opened or closed to make the total number of open facilities equal to p. Phase

two consists of an interchange procedure in which an open facility is swapped with

an unopen facility in order to improve the objective function value. If there are no

remaining swaps that improve the objective the algorithm stops and tabu search

technique is applied to the solution in order to investigate local optima. Finally,

they used the Lagrangian relaxation approximation in order to provide solutions

within ε% of the optimum. The solution methods are tested on real data for a

specific bank and the performance of the algorithm was reported as good.

Al-Sultan et al. [15] worked on uncapacitated facility location problem using

tabu search heuristics. They proposed a net benefit heuristic (NBH) in order to

provide good quality initial solutions for the tabu search algortihm. In the initial

phase of NBH, for each demand node, the facility with the least service cost is

determined and it is opened unless it was opened before. The solution from the

initial phase is then used as an upper bound to the problem. In the refinement

phase of NBH, each facility that is opened in the initial phase is investigated.

If closing an open facility provides benefit, than the demands are assigned to

the next cheapest facility. After obtaining a good initial solution from the NBH,

the tabu search technique is applied. The neighborhood solutions are searched



CHAPTER 2. LITERATURE REVIEW 20

by generating random solutions and the one with the minimum cost is chosen.

This process is repeated until a pre-defined maximum number of non-improving

iterations are reached. The proposed tabu search algorithm was tested on some

test problems and the performance of the algorithm was found to be better in

comparison to the existing algorithms.

Bilgin and Azizoğlu [16] worked on a machine scheduling problem. The aim

was to assign operations to different machines and allocate the capacity and

the tools. For this problem, they first introduced a mathematical model for

the problem. Then they proposed different heuristic methods and Lagrangean

Relaxation algorithm in order to obtain lower bounds. Finally, they introduced

a Tabu Search algorithm in order to solve this problem.



Chapter 3

CURRENT SYSTEM

In this chapter, we discuss the current pharmacy duty system in Turkey and

provide the necessary information for İzmir.

In Turkey every pharmacy is registered to Pharmacists’ Association1. This

association has 53 regional chambers and İzmir is covered in the third region.

In the metropolitan area of İzmir there are around 1300 pharmacies and the 3rd

Regional Chamber of Pharmacists, (Chamber from now on), is responsible for

the duty scheduling of these pharmacies.

In the current planning system, there are three different types of duties. These

are the duties on national holidays, duties on weekends and duties at nights on

the week days. Saturday is considered as a week day between September and

May due to high demand and the pharmacies are open during the working hours.

In summer, when the demand is low, it is considered as weekend and only on

1www.teb.org.tr

21



CHAPTER 3. CURRENT SYSTEM 22

duty pharmacies are open on Saturdays. For each type of duty, the sequence of

pharmacies to be on duty differs although the same scheduling rule is applied.

The duties on national holidays are the least preferred ones by the pharmacists

and a special sequence is used for this type of duties.

There are 11 counties in the metropolitan area of İzmir. These are Balçova,

Bayraklı, Bornova, Buca, Çiğli, Gaziemir, Güzelbahçe, Karabağlar, Karşıyaka,

Konak and Narlıdere. These counties are divided into regions in order to simplify

the planning and the control process of the on duty pharmacy schedules. There

are a total of 45 regions in the metropolitan area of İzmir. Figure 3.1 shows the

pharmacies in 45 regions on the map. In the figure, different colors represent

different regions.

Figure 3.1: Pharmacies from 45 Regions
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For each region of Izmir, a pharmacy is chosen in order to represent its region

in the Chamber. During each period, the representative pharmacists propose a

duty schedule for the next planning period. After the group of representatives

finalize the schedule, the duty pharmacy commission of the Regional Chamber of

Pharmacists controls the schedule and makes changes if needed. After that, the

Regional Health Department of Izmir gives the last approval.

In Izmir, the length of each planning horizon is determined as 4 months and

there are 3 periods in a year. Each Chamber determines the length of the planning

horizon itself, in other words, there is no legal restriction regarding the length

of the planning horizon. For example, in Istanbul, the 1st Regional Chamber

of Pharmacists has determined the length of the planning horizon as one year.

In Ankara, the length of the planning horizon is also determined as 1 year by

the 2nd Regional Chamber of Pharmacists. In Izmir, they preferred a shorter

period length. A shorter planning horizon is more flexible since accounting for

changes a year ahead is hard. Many changes may occur within a year, for in-

stance, new pharmacies may start business, some may go out of business, or some

unpredictable events like illnesses may occur. Thus, a shorter planning horizon

increases the control of the Chamber on the schedule. On the other hand, too

short planning horizons are not preferred, either. The planning process of the

on duty pharmacy schedules is a time consuming and difficult process for the

chambers. Hence, they do not want to deal with it very frequently.
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In each region, all the pharmacies which are able to take duties are listed

according to their license numbers. Three copies of the same list are used seper-

ately for three types of duties. The upcoming duties are assigned to pharmacies

by order of this on duty pharmacy list. The first duty of a period is given to the

pharmacy following the last on duty pharmacy of the previous period on the list.

Then all the upcoming duties are assigned to pharmacies following the order in

the list. When they reach the end of list, they continue to assign duties from the

top of the list. This continues until all days in a planning period are assigned to

one pharmacy from each region. The pharmacy following the-last-duty-assigned-

pharmacy, again, takes the first duty in the next period. This is applied for all

types of duties separately for each region.

The number of pharmacies in the metropolitan area of İzmir is different from

the number of pharmacies taking duties. There is a difference because some

parts of the regions are excluded from the on duty pharmacy regions. These

parts are excluded because they are far away from both central residential areas

and health centers even they are located in the metropolitan area. In addition,

some pharmacies in the metropolitan area are excluded from the duty list if

they have a reason for not taking duties. These reasons, such as illness of the

pharmacist or the pharmacist being too old for a duty, should be accepted by

the Chamber. These pharmacies may be allowed not to take duties temporarily

or may permanently be exempt from duty with regard to their reasons. Because

of the previously mentioned reasons, the number of pharmacies in the on duty
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Table 3.1: A sample part of a duty schedule 2010

Licence # Pharmacy September October November December

230 Güçlü 30 13 5W 31
253 Mavişehir Sağlık 1 15 12W
262 Bostanlı Pınar 2 20 19W
305 Damla 7 22 26W
310 Bostanlı Saadet 5 23
...

...
...

...
...

...
507 Site 16 29H 4

End of List
10 Çaylı 1 18 6

H: national holidays, W: weekends

pharmacy list may change from one period to another. One month prior to the

start of each planning period, the pharmacies to be included in the on duty

pharmacy list are determined. There are approximately 1300 pharmacies in the

metropolitan area of İzmir. However, there were a total of 1046 pharmacies taking

duties in the 3rd period of 2010 due to the previously mentioned reasons. The

number of pharmacies taking duties has increased to 1053 for the 1st period of

2011.

Table 3.1 shows a sample from the on duty pharmacy schedule for the 3rd

period of 2010 from Bostanlı region. In the table, the numbers represent the days

of the months. The days shown with letter W denote the duties on weekends

and days shown with letter H denote the national holidays. The rest of all duties

are night duties on week days. For the 3rd period of 2010, only Sundays are

considered as weekend since it is the high season. The last day of the 3rd period



CHAPTER 3. CURRENT SYSTEM 26

of 2010 is 31st of December. The last duty is assigned to the Güçlü Pharmacy.

This implies that the first night duty of the next period, which is the 1st period of

2011, will be assigned to Mavişehir Sağlık Pharmacy. Likewise, the last Sunday

of the period is the 26th of December which is assigned to Damla Pharmacy.

Thus, the first Sunday duty of the following period will be assigned to Bostanlı

Saadet Pharmacy. The same rule applies with the national holiday duties. The

last national holiday of the period is 29th of October and it is assigned to Site

Pharmacy. Thus, the first national holiday of the following period, which is 1st

of January, will be assigned to Çaylı Pharmacy .

As it can also be seen from the table, Damla and Bostanlı Saadet in October,

sometimes the duty dates are not assigned in the given order. This is simply

because some pharmacies exchange their duty dates by their own mutual will

and it should also be approved by the Chamber.

The main objective of duty scheduling is to locate the pharmacies on duty in

such a way that the customers requiring drugs may reach a pharmacy easily, in

every day of the planning horizon. The most important problem of the current

system is making assignments not centrally but within the specified regions. This

assignment method sometimes causes two pharmacies that are very close to each

other but from different regions to be on duty on the same day. Since there is only

one on duty pharmacy for each region each day, such an assignment may cause

some customers to travel a far distance in order to find an on duty pharmacy.
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As a conclusion, the duty assignment decisions are made with a very simple

method on a regional basis in the current system. There is no central planning

system and the authorities are not using a decision support system. The central

planning system is also mentioned to be more advantageous by the authorities of

the Chamber, however, they also mentioned that it is a very complex system for

them to apply. Aim of this research is to provide a centralized decision support

system. Although central planning is a more complex system than the current

one, it will help to solve the problems faced in the current system.



Chapter 4

MATHEMATICAL MODELS

In this chapter, we develop different mathematical programming models for the

pharmacy duty scheduling problem and prove that the PDS problem is NP -Hard.

In the first part of the chapter, simple models are introduced. In the second part,

more realistic models are presented. All models included in this chapter are

mixed integer programming models. While developing these models, we have

made some assumptions regarding the demand points and the distances between

demand points and the pharmacies.

In real life applications, it is very hard to determine the customer nodes and

their demands precisely. Likewise, in our problem, representing each individual

customer location with a customer node is not possible. So, we assume an ag-

gregate customer node where a group of people living in the same neighborhood

will be represented. We assume that the customer nodes, which are denoted by

i, are located at the centers of the districts. There are a total of 350 districts

28
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in the metropolitan area of İzmir. The demand in each customer node, which

is represented as hi, is determined as the population of these districts. Combin-

ing these two assumptions, our demand size and customer node representations

become more accurate.

The distances between the customer nodes and the pharmacy locations are

assumed to be rectilinear distances. These distances , which are represented as

dij, are calculated as the rectilinear distances using the real coordinates of the

pharmacy locations and the districts. In real life application, reasonable modifi-

cations are done in distance calculations. The total demand weighted distances in

the models represented in the following sections are calculated using the distances

and the demand sizes mentioned previously.

The length of the planning horizon which is denoted by T is an input for the

mathematical models. In all of the models except Simple Model 2, it is a given

parameter which is defined by the Chamber. In Simple Model 2, T is a decision

variable and we try to maximize the length of the planning horizon.

4.1 Simple Models

There are two different models developed under the simple models section. These

models are called as simple models since we ignore some real life constraints.

These models can also be referred as the single duty models, since the pharmacies
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are taking only one duty during the whole planning horizon. There are two

approaches for the simple models. The first one is minimizing the total distance

traveled. The second approach is to maximize the length of the planning horizon

with respect to a defined service threshold.

4.1.1 Simple Model 1

The first simple model aims to minimize the total demand weighted distance

traveled by the customers during the whole planning horizon. On each day t of

the planning horizon, each customer i is serviced by at least one facility j. In the

first model, the length of the planning horizon is determined as T . Thus, this

model tries to minimize the total distance traveled in T days. In the formulation

of the model, we make use of the following notation.

Notation

i : demand points (customer nodes), i={1, ..., I}

j : facility sites (pharmacies), j={1, ..., J}

t : time periods (days), t={1, ..., T}

hi: demand at customer node i

dij: distance between customer node i and facility site j
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Decision Variables

Xijt =

{
1, if customer i is served by facility j on day t

0, otherwise

Yjt =

{
1, if facility j is opened on day t

0, otherwise

Model 1 is formulated as follows with the use of the notation presented:

Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt (4.1)

Subject to

Xijt ≤ Yjt ∀i, j, t (4.2)

T∑
t=1

Yjt ≤ 1 ∀j (4.3)

J∑
j=1

Xijt ≥ 1 ∀i, t (4.4)

Yjt ∈ {0, 1} ∀j, t (4.5)
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Xijt ∈ {0, 1} ∀i, j, t (4.6)

In simple model 1, the objective function (4.1) minimizes the total demand

weighted distance traveled by all customers. Constraint set (4.2) ensures that

no customer is assigned to an unopened facility at any time period. Constraint

set (4.3) guarantees that no facility is opened more than once during the whole

planning horizon. Constraint set (4.4) fulfills the necessity that each customer

must be assigned to a facility in each day of the planning horizon. Constraint

sets (4.5) and (4.6) define the binary decision variables.

Note that the integrality constraints on Xijt variables can be relaxed since in

an optimal solution, each customer will be assigned to the closest open facility

on each day due to the minimization objective and the unlimited capacity of the

facilities.

After solving this model to optimality, for any day t, we have the sets of

pharmacies to be opened. In the optimal solution, exchanging days with each

other does not make any difference to the objective value if the pharmacies in

the same set are opened together. Thus, this yields to a T ! alternative optimal

solutions. As a modification for this model, we define a new decision variable ft

that shows the total demand weighted distance traveled by all customers for day

t.
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ft =
I∑

i=1

J∑
j=1

hidijXijt ∀t

We can rewrite model 1 using ft variables as follows:

Minimize

F =
T∑

t=1

ft (4.7)

Subject to

ft ≤ ft+1 ∀t (4.8)

(4.2), (4.3), (4.4), (4.5), (4.6)

In this model, objective function (4.7) minimizes the total demand weighted

distance traveled by all customers during the whole planning horizon. The only

difference of this model is the additional constraint set (4.8) that state the total

distance traveled by all customers on a given day must be less than the total

distance traveled by all customers on the following day. In this problem, our aim

is to find the optimal sets of pharmacies that should be opened together on the

same day and we are not interested in finding which set of pharmacies is opened

on which day of the planning horizon.

In the optimal solution of the modified model, day 1 provides the highest

service quality and day T provides the lowest service quality. The order of days

in the model does not necessarily represent the order of days in real life. One may
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want to assign day 1 of the model to the day with the highest demand. Hence

matching the model days with the calender days is another decision to be made.

As an observation on the problem, we may state that, in a one-day-problem,

all potential pharmacies are opened on day 1. So, all customers are served by

the facilities that are closest to them. When we increase the time horizon to two

days, it means that the customers should be served for two days. Since a facility

cannot be opened more than once during the whole planning horizon, we have to

split the opened locations between two days. In this case, on some days, some

customers are still served by the facilities that are closest to them. On the other

hand, some of them may get service from the facilities that are not the closest

ones.

We define F 1 and F 2 as the optimal objective values for the one-day-problem

and two-days-problem, respectively. We also define F 2
1 and F 2

2 as the objective

values of each day in a two-days-problem. By definition,

F 2 = F 2
1 + F 2

2

Since, all customers cannot be served by the closest facilities on both days of a

two-days-problem, we can write the following equation:

F 2
1 ≥ F1 and F 2

2 ≥ F1

Hence, if we sum F 2
1 and F 2

2 values, we get the following equation:

F 2 ≥ 2× F 1
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In order to generalize this observation, we define F t as the optimal objective value

of a t-days-problem.

F t ≥ t× F 1

4.1.2 Simple Model 2

In the second simple model, we aim to maximize the length of the planning

horizon while keeping the service quality above a desired level. For this purpose,

we define a new decision variable gt.

gt =

{
1 if service is provided to each customer on day t within distance DT

0 otherwise

The additional notation used in the model is as follows:

DT : distance threshold αij=

{
1, if dij ≤ DT

0, otherwise

The mathematical model is as follows:

Maximize

G =
T∑

t=1

gt (4.9)

Subject to

gt+1 ≤ gt ∀t (4.10)
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gt ≤
J∑

j=1

Yjt ∀t (4.11)

J∑
j=1

αijXijt ≥ gt ∀i, t (4.12)

gt ∈ {0, 1}∀t (4.13)

(4.2), (4.3), (4.5), (4.6)

The objective function (4.9) maximizes the number of days customers are

getting service in a lexicographic manner. Constraint set (4.10) states that in

order to give service on day t + 1, service must be given on day t. Constraint set

(4.11) shows that in order to give service in a specific day, at least one facility

should be opened on that day. Constraint set (4.12) ensures that each customer

is served by a facility within the given distance limits if service is given on day t.

Finally, constraint set 4.13 states that decision variable gt is binary variable. In

addition to these, constraints (4.2), (4.3), (4.5), (4.6) from Model 1 also hold for

Model 2.

As a conclusion, models in this section are useful for understanding the basics

of the problem and to develop alternative models and solution techniques (see

Ch5). However, these models assume that each facility should be opened once

during the planning horizon. In real life, this is a strong assumption and should
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be relaxed. In section 4.2, we develop more realistic models by relaxing this

assumption.

4.2 Realistic Models

The realistic models are more complex models than the models developed in

the previous section. They also take constraints mentioned by the authorities

of the Chamber into account. The realistic models may also be referred as the

multiple duty models, since the basic difference of these ones are the multiple

duties assigned to the pharmacies.

The first model in this section, considers the regional setting applied in the

current system and assigns multiple duties for the pharmacies. The second model

developed does not consider the regions of the current system but still distributes

the duties for close pharmacies evenly.

4.2.1 Realistic Model 1

The realistic model 1 considers the regions in the current system. There are mul-

tiple duties taken by the pharmacies and the number of the duties are determined

according to the region of the pharmacy. Thus, pharmacies in different regions

may be assigned different numbers of duties.

In the multiple duty problem, the duty numbers of pharmacies vary according
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to the number of pharmacies in their region. If there are many pharmacies within

the region of a pharmacy, then the duties for that pharmacy is less frequent. On

the other hand, if there are very few pharmacies in a region, then those pharmacies

take duties more often.

The average number of duties to be assigned to any pharmacy within a region

may be found by dividing the total number of days in a planning period by the

total number of pharmacies in that region. If we round this number down, we find

the duty number lower bound for a given pharmacy and likewise, duty number

upper bound when the number is rounded up. These upper and lower bounds

on the duty numbers are calculated for each region and used in order to assign

duties evenly to pharmacies within the same region.

The following notation introduced in the previous section is also used in this

section.

i : demand points (customer nodes), i={1, ..., I}

j, q : potential facility sites, j={1, ..., J}, q={1, ..., J}

t : time periods (days), t={1, ..., T}

hi: demand at customer node i

dij: distance between customer node i and potential facility site j

Decision Variables
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The same decision variables from Simple Models section are used in this model.

Xijt =

{
1, if customer i is served by potential pharmacy j on day t

0, otherwise

Yjt =

{
1, if potential pharmacy j is opened on day t

0, otherwise

The additional notation introduced is as follows:

k : regions, k={1, ..., K}

Jk: set of pharmacies in region k

J =
K⋃

k=1

Jk

Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt (4.14)

Subject to
T∑

t=1,j∈Jk

Yjt ≤
⌈

T

|Jk|

⌉
∀k (4.15)

T∑
t=1,j∈Jk

Yjt ≥
⌊

T

|Jk|

⌋
∀k (4.16)

Xijt ≤ Yjt ∀i, j, t (4.17)
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J∑
j=1

Xijt ≥ 1 ∀i, t (4.18)

∑
j:q(j,k)=1

Yjt = 1 ∀k, t (4.19)

In the model, objective function (4.14) minimizes the total demand weighted

distance traveled by all customers. In constraint sets (4.15) and (4.16) the value

of T
|Jk|

shows the exact number of duties to be assigned to pharmacy j in region k.

Thus, these constraint sets, make the total number of duties assigned to pharmacy

j equal to the the number of duties assigned to other pharmacies within the same

region. The constraint set (4.17) states that in order to assign customer i to

pharmacy j on day t, the pharmacy should be open on day t. Constraint set

(4.18) requires that each customer is assigned to at least one pharmacy on each

day of the planning horizon. Finally, constraint set (4.21) states that only one

pharmacy can be opened from each region on each day of the planning horizon.

4.2.2 Realistic Model 2

In this model, pharmacies again may take duties more than once during the

planning horizon. The authorities from the Chamber define the most important

characteristic of the planning system as the fair distribution of duties to the phar-

macies. The Chamber tries to assign same number of duties to the pharmacies in

the same region. Although this approach is reasonable within a region, two close
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pharmacies may take extremely different number of duties.

In realistic model 2, we aim to assign similar number of duties to pharmacies

close to each other. This model does not use regions defined by the Chamber.

Notation

The following notation are the additional notation introduced for this model.

α: distance limit defined to set the neighborhoods

β: error term which represents the allowable difference in number of duties of a

pharmacy and the average number of duties of the pharmacies within the

pharmacies in α neighborhood

Sj: the set of pharmacies within the α neighborhood of pharmacy j

Sj =
⋃

k:djk≤α,k 6=j

{k}

The mathematical formulation of the problem is as follows.

Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt (4.20)
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Subject to
T∑

t=1

Yjt ≤ β +
1

|Sj|

K∑
k∈Sj

T∑
t=1

Ykt ∀j (4.21)

T∑
t=1

Yjt ≥ −β +
1

|Sj|

K∑
k∈Sj

T∑
t=1

Ykt ∀j (4.22)

(4.17), (4.18)

In this model, the objective function (4.20) is the same with the objective

function of realistic model 1. Constraint sets (4.21) and (4.22) state that the

number of duties taken by pharmacy j should be within a β error limit of the

average number of duties taken by the pharmacies within the α-neighborhood of

pharmacy j.

Both models developed in this section are memoryless and do not consider

the schedules of previous planning periods. Some pharmacies may be assigned

more duties than the others. In the long run, the total number of duties assigned

to different pharmacies may not be the same since some pharmacies are assigned

duties on the duty number lower bound and some on duty number upper bound.

Thus, this may lead to an unfair schedule. To be fair, a new parameter,that

keeps the number of duties in the previous planning horizon for each pharmacy

may be added to the models. Hence, duties may be fairly distributed among the

pharmacies in the long run.

In the upcoming chapters, we will focus on two models. These are Simple
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Model 1 that assigns one duty to each pharmacy and Realistic Model 1 that

assigns multiple duties to pharmacies during the planning horizon.

We omit Simple Model 2, because maximizing the length of the planning

horizon is not appropriate for application. The aim of the Chamber is to distribute

the duties fairly for a specific time period. We also omit the Realistic Model 2,

since, the α and β values are not easy to define and would be hard to apply by

the authorities.

4.3 Computational Complexity Analysis for the

PDS Problem

In this section, we prove that the Pharmacy Duty Scheduling problem with single

and multiple duties are NP -Hard.

Theorem 1. PDS-1 problem is NP -Hard.

Proof. Assume that the planning horizon length is T is 2 days, there are I cus-

tomers and J pharmacies. Since the pharmacies in this case can only take one

duty during the planning horizon, the aim is to separate J pharmacies into 2 par-

titions in order to minimize the total demand weighted distance. Thus, a group

of pharmacies out of J will be selected to take duties on the first day and the

remaining will be on duty on the second day.

In general, this problem aims to partition the pharmacies into T partitions
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so that the total cost is minimized. PDS-1 problem is equal to set-partitioning

problem and NP -Hard for variable T .

Theorem 2. PDS-M problem is NP -Hard.

Proof. Assume that planning horizon T is 1 day, number of regions is p, there

are n pharmacies (n >> p) in each region and hence J = np. Pharmacies

(k − 1)n + 1, . . . , kn are in region k. There are I customers.

Let di,j > 0 for i = 1, . . . , I, j = 1, . . . , J and di,j = di,j+kn for k = 1, . . . , p−1,

j = 1, . . . , n, i = 1, . . . , I. We may simply consider pharmacies j, j+n, j+2n,. . . ,

j+(p−1)n are located at the same place. Therefore there are n distinct pharmacy

locations; each includes p pharmacies, one from each region. By construction, all

pharmacies at the same location are equally distant to all customers. Since n > p

and dij > 0 for i = 1, . . . , I, j = 1, . . . , n, it is obvious that in the optimal solution,

at most one pharmacy can be selected for the duty from a pharmacy location.

Note that T = 1 and only one pharmacy is selected from each region. This

special case of PDS-M problem aims to minimize the demand weighted distance

by selecting p locations out of n candidates. PDS-M problem is equal to p-median

problem and NP-hard for variable p.
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4.4 Concluding Remarks

In this chapter, we propose 4 mathematical models. In the following chapters we

will use Simple Model 1 and Realistic Model 1. We will not use Simple Model

2 and Realistic Model 2, since these models are hard to apply for the parties

involved in real life. The models applied to the real case should be accepted by

the parties involved and they should be simple tools for application. Thus, in

real application we omit these two models.

We evaluate the PDS problem only from the side of customers. The problem

may also be evaluated from the pharmacists’ side. In our models, it is not likely

that two pharmacies that are very close to each other to be opened on the same

day. As a by product, our models are also beneficial for the pharmacies. However,

evaluating the problem from the pharmacists’ side and proposing direct benefits

for them may be evaluated as a future research.

Throughout the thesis, simple model and single duty models will be used

interchangeably in order to represent the problem type in which pharmacies are

assigned only one duty during the planning horizon. Realistic model and multiple

duty models will be used interchangeably in order to represent the problem type

in which pharmacies are assigned multiple duties during the planning horizon.



Chapter 5

UPPER AND LOWER

BOUNDS

In Chapter 4, we proved that PDS problem with both single and multiple duties

are NP -hard. In addition to this, during the preliminary test runs, we have

realized that as the problem size increases, it gets harder to obtain results in

reasonable computation times. We tested our models with one hour runs for

different instances and optimal solutions cannot be found within one hour limit

for the large-size problems. Since, the real problem to be solved is a very large-

size problem, we decided to use heuristic based methods. Thus, we developed

some heuristic and meta-heuristic algorithms in order to obtain lower and upper

bounds on the objective values of the problems.

In this chapter, we introduce different algorithms used to obtain bounds for

large-size problems. In the first section, we discuss algorithms developed to find

46
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upper bounds for the problems. First, we introduce the initial solution heuristics

for single duty (simple model) and multiple duty (realistic) problems. Then, we

discuss the Tabu Search algorithm.

In the second section of this chapter, we introduce the algorithms developed to

obtain lower bounds for the problems. We first discuss the Lagrangean Relaxation

algorithm and then AO S, AO M1 and AO M2 lower bound algorithms.

5.1 Upper Bounds

In the first part of this section, we introduce two initial solution heuristics for

single duty and multiple duty models. In the second part, we introduce the Tabu

Search algorithm.

We compute the cost of given duty assignments with the use of an algorithm

(Algorithm 5.1). When the optimal duty dates are known for the pharmacies,

then the customers may be matched with the pharmacies optimally. Thus, this

algorithm simply assigns the customers to the closest open pharmacies for each

day of the planning period. The cost of each assignment is the demand weighted

distance between the customer node and the pharmacy. After assigning each

customer to an open pharmacy on each day of the planning horizon, these costs

are summed for all customers and all days. Thus, the total cost of assigning

customers to pharmacies are calculated for a planning horizon.
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Algorithm 5.1 Cost Computation Algorithm

obj val = 0
for t = 1 → T do

for i = 1 → I do
min d = M
for j = 1 → J do

if Yjt = 1 and dij < min d then
min d = dij

end if
end for
obj val = obj val + hi ×min d

end for
end for

5.1.1 Initial Solution Heuristics

We developed simple heuristic algorithms in order to provide initial solutions for

the Tabu Search algorithms. These algorithms also provide upper bounds on the

objective value of the problem. In the following sections initial solution heuristics

for single and multiple duty models are introduced.

5.1.1.1 Initial Solution Heuristic for Single Duty Problem

In the single duty problem, at most one duty is assigned to each pharmacy during

the planning period. In this algorithm, we assign duties to pharmacies in a simple

way without taking the objective value into account. In other words, one duty

is assigned to each pharmacy in an ascending order for the days of the planning

period. The pseudocode for the initial solution heuristic for single duty problem

is given as Algorithm 5.2.
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Algorithm 5.2 Initial Solution Heuristic for Single Duty Problem

for j = 1 → J do
if t ≥ T then

t = 0
end if
t = t + 1
Yjt = 1

end for
Compute Cost

After applying the initial solution heuristic algorithm, we obtain a feasible

solution to the problem. Then, we compute the cost of the given feasible duty

assignments and use these assignments as the starting solution for the Tabu

Search algorithm. In addition, this solution itself is an upper bound on the

objective value of the problem, since the optimal solution may not be worse than

any feasible solution.

5.1.1.2 Initial Solution Heuristic for Multiple Duty Problem

In the multiple duty problem, each pharmacy may be assigned more than one

duty. However, on each day of the planning period, there should only be one on

duty pharmacy from each region. Thus, the initial solution heuristic algorithm

is changed accordingly. This algorithm is also a simple one and assigns duties

to pharmacies in the pharmacy index order without paying attention to the cost

of the assignments. The only difference of this algorithm from Algorithm 5.2 is

that only one pharmacy is opened from each region on each day of the planning

horizon. The set of pharmacies within region k is defined by Jk. The pseudocode
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for this algorithm is given as Algorithm 5.3.

Algorithm 5.3 Initial Solution Heuristic for Multiple Duty Problem

for k = 1 → K do
j = 1
for t = 1 → T do

assign = 0
while assign = 0 do

if j ∈ Jk then
Yjt = 1
assign = 1

end if
j = j + 1
if j > J then

j = 1
end if

end while
end for

end for
Compute cost

5.1.2 Tabu Search Algorithm

In Chapter 4, we proved that our problem is NP-hard. Due to this property and

the large-size of the real problem, it cannot be solved to optimality in reasonable

time. Thus, in this section, we introduce a meta-heuristic method in order to

solve large-size instances like the real life problem.

Tabu Search Heuristics is a strategy developed for solving combinatorial op-

timization problems and it has been widely used for various problems [9]. The

algorithm depends on searching the neighborhood of a given solution by mod-

ifying the solution with different moves by the use of predefined neighborhood

search techniques. At any stage, the aim is to find better solutions than the best
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known so far. Sometimes moves to some solutions, which are called as the tabu

solutions, are restricted in order to escape from stucking at local optima. Tabu

search is found to be a very efficient algorithm and it is used in many facility

location problems in the literature.

In the tabu search algorithm, two types of decisions are made. Firstly, we

decide on the pharmacies to be opened on each period of the planning horizon.

Secondly, we decide on the assignment of customers to open facilities while mini-

mizing the total demand weighted distance traveled by all customers throughout

the planning horizon.

We first present the Tabu Search algorithm for single duty problem. Then,

we discuss the algorithm for multiple duty problem.

5.1.2.1 Tabu Search Algorithm for Single Duty Problem

In order to solve the single duty problem, we have developed a tabu search algo-

rithm. The pseudocode of the Tabu Search algorithm for the single duty problem

is stated as Algorithm 5.4.

In the tabu search algorithm for the single duty problem, swap and move

methods are used in order to search the neighborhood of a given solution. In the

swap algorithm, (Algorithm 5.5), the duty days of two pharmacies are changed

with each other. A pharmacy is selected and the possible swaps with all other

pharmacies that are on duty on a different day are determined. The costs of these
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Algorithm 5.4 Tabu Search Algorithm for Single Duty Problem

while outer iteration < maximum outer iteration do
if outer iteration = 1 then

Generate initial solution
else

Generate new initial solution
end if
while inner iteration < maximum inner iteration do

Search best swap
Search best move
if Fbest cand swap < Fbest cand move then

Apply best swap
else

Apply best move
end if
Update frequencies
Update tabu status
if Fcurrent < Fbest then

Update best solution
end if

end while
end while
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swaps are calculated. If swapping the duties of two pharmacies improves the

objective value, this solution becomes the candidate solution. After all possible

swaps are checked the best one among them is determined and chosen as the best

candidate solution.

Algorithm 5.5 Swap Heuristic for Single Duty Problem

for j1 = 1 → J do
for t1 = 1 → T do

if Yj1t1 = 1 then
for j2 = j1 + 1 → J do

for t2 = 1 → T do
if Yj2t2 = 1 & t1 6= t2 then

Yj1t1 = 0
Yj1t2 = 1
Yj2t1 = 1
Yj2t2 = 0
Compute candidate solution cost
if Fcand swap < Fbest cand swap then

if j1, j2, t1, t2 not tabu then
Update best candidate swap

else
if Fcand swap < Fbest then

Update best candidate swap
end if

end if
end if
Yj1t1 = 1
Yj1t2 = 0
Yj2t1 = 0
Yj2t2 = 1

end if
end for

end for
end if

end for
end for

Likewise the swap algorithm, the move algorithm (Algorithm 5.6) is used to
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search the neighborhood of a given solution. In this search method, an on duty

pharmacy is selected and it is moved to another day of the planning period.

In other words, we check whether the solution quality improves if the selected

pharmacy was opened on any other day than the day it is actually opened or

not. After all possible moves are checked, the best candidate move resulting in

the highest improvement is determined.

Algorithm 5.6 Move Heuristic for Single Duty Problem

for j = 1 → J do
for t1 = 1 → T do

if Yjt1 = 1 then
for t2 = 1 → T do

if Yjt2 = 0 then
Yjt1 = 0
Yjt2 = 1
if Fcand move < Fbest cand move then

if j, t1, t2 not tabu then
Update best candidate move

else
if Fcand move < Fbest then

Update best candidate move
end if

end if
end if
Yjt1 = 1
Yjt2 = 0

end if
end for

end if
end for

end for

During the search process of better solutions, we make use of tabu tenures in

order to escape local optima for both search methods. We assign a tabu tenure

to recently visited solutions and prevent the algorithm to search for solutions in a
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small portion of the search space. In the single duty problem, we keep tabu lists

for the days and the pharmacies. For each inner iteration and for each move type,

the tabu status of the candidate solutions are checked. If the candidate solutions

are in the tabu list, they are not denoted as the best candidate solutions unless

they meet the aspiration criteria. The aspiration criteria are used in order to

allow the algorithm to move to the solutions with a very good objective value

even if they are tabu. In our Tabu Search Algorithm, we allow a tabu solution

to be indicated as the best candidate solution if the solution gives an objective

value better than the best known solution so far.

Following the previous steps, the best candidate solutions for each type of

search methods are determined with the help of neighborhood search algorithms.

After that, these two best alternatives from each type of search methods are

compared and the better one among them is chosen as the best solution for that

inner iteration. The selected best solution becomes the initial solution for the

next inner iteration and the neighborhood searches are made for this solution.

This process continues until the inner iteration number reaches to its maximum.

After each inner iteration, we check if the newly found solution is better than

the best known solution so far. If so, the best solution found so far is updated

and the new solution is used as the best solution for making comparisons in the

upcoming iterations.
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In the Tabu Search Algorithm for single duty problem, we make use of in-

tensification and diversification strategies [10, 11, 12]. We first create an initial

solution and intensify the search by swap and move search methods. After a

number of iterations, that is the maximum inner iteration, a new initial solution

is generated in order to diversify the search space. This technique is used in order

not to get stuck in a local optima and search a larger portion of the search space.

However, starting from a totally new or random initial solution is not preferred

either. Thus, we keep a record of the frequencies of the pharmacy pairs that are

opened on the same day. While generating the new initial solution, the phar-

macy pairs with high frequencies in the evaluated solutions so far are assigned to

different days of the planning horizon. The pseudocode for the new initial solu-

tion is given as Algorithm 5.7. In the first part of the algorithm, the pharmacies

with the highest frequency of opening on the same day is found. In the second

part, these pharmacies are assigned to different days. After all pharmacies with

high frequencies are assigned to different days, the assignments of the remaining

pharmacies are made.

When the number of inner iterations reach to its maximum level, the new

solution heuristic runs and generates a new solution. This solution makes use

of the frequencies collected during the inner iterations. If two pharmacies have

a tendency to be opened on the same day, they are assigned duties on different

days using Algorithm 5.7. Thus, a new and diverse solution is obtained. This

new solution enables us to search different parts of the search space.
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Algorithm 5.7 New Initial Solution Heuristic for Single Duty Problem

maximum frequency = 1
t1 = 1
t2 = T
while maximum frequency > 0 do

maximum frequency = 0
for j1 = 1 → J do

if zj1 < 0 then
for j2 = j1 + 1 → J do

if zj2 < 0 then
if maximum frequency < frequencyj1j2 then

maximum frequency = frequencyj1j2

end if
end if

end for
end if

end for
if maximum frequency > 0 then

zj1 = t1
Yj1t1 = 1
t1 = t1 + 1
if t1 > T/2 then

t1 = 1
end if
zj2 = t2
Yj2t2 = 1
t2 = t2 − 1
if t1 ≤ T/2 then

t2 = T
end if

end if
end while
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We use maximum iteration numbers and the number of iterations in which

no improvements were made as the stopping criteria. The maximum iteration

numbers limit both the inner and the outer iterations. Thus, the algorithm stops

after a predefined number of iterations are made. Secondly, the algorithm stops

if no improvements on the objective value are made in a predefined number of

iterations. We use this type of stopping condition for the inner iterations, so that,

the algorithm may skip non-improving directions and move to other parts of the

search space. After the stopping conditions are met, the Tabu Search algorithm

stops and reports the best solution found.

5.1.2.2 Tabu Search Algorithm for Multiple Duty Problem

For the multiple duty problem, the logic of the Tabu Search algorithm uses the

same structure with the single duty algorithm. However, some changes need to

be done in order to reflect the regions and the multiple duties for the pharmacies.

The pseudocode of the Tabu Search algorithm for multiple duty problem is stated

as Algorithm 5.8.

In the tabu search algorithm for the multiple duty problem, we make use

of swap and add-drop neighborhood search techniques. The swap algorithm,

(Algorithm 5.9), again looks for possible swaps for a pharmacy but the allowable

swaps are only with the pharmacies within the same region. Since, there is

only one on duty pharmacy in each region on each day of the planning horizon,
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Algorithm 5.8 Tabu Search Heuristic for Multiple Duty Problem

while outer iteration < maximum outer iteration do
Reset tabu status
if outer iteration = 1 then

Generate initial solution
else

Generate new initial solution
end if
while inner iteration < maximum inner iteration do

Search best swap
Search best add-drop
if Fbest cand swap < Fbest cand add−drop then

Apply best swap
else

Apply best add-drop
end if
Update frequencies
Update tabu status
if Fcurrent < Fbest then

Update best solution
end if

end while
end while
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the solution would become infeasible if a pharmacy is swapped with another

pharmacy from a different region. Thus, the algorithm only looks for swaps

between the pharmacies within the same region.

Algorithm 5.9 Swap Heuristic for Multiple Duty Problem

for j1 = 1 → J do
for t1 = 1 → T do

if Yj1t1 = 1 then
for j2 = j1 + 1 → J do

if regionj1 = regionj2 then
for t2 = 1 → T do

if Yj2t2 = 1 & t1 6= t2 then
Yj1t1 = 0
Yj1t2 = 1
Yj2t1 = 1
Yj2t2 = 0
Compute candidate solution cost
if Fcand swap < Fbest cand swap then

if j1, j2, t1, t2 not tabu then
Update best candidate swap

else
if Fcand swap < Fbest then

Update best candidate swap
end if

end if
end if
Yj1t1 = 1
Yj1t2 = 0
Yj2t1 = 0
Yj2t2 = 1

end if
end for

end if
end for

end if
end for

end for



CHAPTER 5. UPPER AND LOWER BOUNDS 61

The same logic is valid for the add-drop algorithm. In the simple duty prob-

lem, we introduced the move search method which is inapplicable for the multiple

duty problem. In the multiple duty problem, if we move a pharmacy from one

day to another then there will be no on duty pharmacy on the day the pharmacy

was initially assigned and two on duty pharmacies on the moved day. Thus, this

causes infeasibility of the solutions. For this reason, we move one step ahead and

introduce the add-drop algorithm (Algorithm 5.10).

For the add-drop algorithm, we calculate the upper and lower bounds for

the duty numbers for each region. The average number of duties for pharmacies

during the planning horizon within a region is simply calculated by dividing the

number of days in a planning horizon by the number of pharmacies in the region.

This number gives the average number of duties to be assigned to each pharmacy

in the region. However, sometimes this number may not be an integer. Thus, the

duty numbers of pharmacies within a region may be different from each other.

The upper and lower bounds of duty numbers are calculated by rounding the

average duty number up and down unless it is an integer value.

The duty number upper bounds and lower bounds of the pharmacies must

be different from each other in order to apply the add-drop algorithm. If these

values are equal, then, it means that the selected pharmacy is assigned exactly

the number of duties that it should take. In order to add a duty for a pharmacy,

it should be assigned duties on its duty number lower bound. Otherwise, the
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maximum number of duties to be assigned will be exceeded for the selected phar-

macy and the problem will become infeasible. Likewise, in order to drop a duty

from a pharmacy, it should be assigned duties on its duty number lower bound.

Otherwise, the pharmacy will be assigned less duties than the minimum number

allowed and the problem will again become infeasible.

In the add-drop algorithm, a pharmacy is chosen. Then, the algorithm tests

if the solution quality improves, when another duty is assigned to the selected

pharmacy on any other day of the planning horizon. The new duty is assigned to

the pharmacy unless the maximum number of duties that can be assigned to a

pharmacy is exceeded. If this number is not exceeded, the new duty is assigned

to the pharmacy and all the existing duties remains the same. If the pharmacy

is assigned a duty on e.g. day t1, then the duty of the pharmacy from its region

on day t1 is canceled. In this way, a duty is added for the selected pharmacy and

the duty of another one is dropped within the same region.

For the single duty problem, we keep tabu list for days and the pharmacies.

In the multiple duty problem, we keep a tabu list for the regions, additionally. If

a change is made within a region during an iteration, then no changes are allowed

for that region for a number of iterations. The number of iteration in which no

changes are allowed is equal to the tabu tenure for regions. The same aspiration

criterion with the single duty problem is used for the multiple duty problem, too.

A solution is accepted as admissible if it is better than the best known solution
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Algorithm 5.10 Add-Drop Heuristic for Multiple Duty Problem

for j1 = 1 → J do
k = regionj1

if duty number LBj1 < duty number UBj1 and duty numberj1 =
duty number UBj1 then

for t = 1 → T do
if Yj1t = 1 then

for j2 = 1 → J do
if regionj2 = k and duty numberj2 < duty number UBj2 then

Yj1t = 0
Yj2t = 1
Compute candidate solution cost
if Fcand add−drop < Fbest cand add−drop then

if j1, j2, t not tabu then
Update best candidate add-drop

end if
if j1, j2 or t is tabu and aspiration criteria is met then

Update best candidate add-drop
end if

end if
end if

end for
end if

end for
end if

end for
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even if the selected solution is tabu.

During each inner iteration of the algorithm, the best candidate swap and

add-drop solutions are determined. Then, these two solutions are compared and

the best one among them is chosen and it is applied. This solution becomes

the initial solution for the next inner iteration and the search process continues

within the neighborhood of this solution.

After the maximum number of inner iterations is reached for each outer itera-

tion a new initial solution is formed. During the inner iterations, the frequencies

of the pharmacies that are opened on the same day are kept. The new initial

solution algorithm for the multiple duty problem, (Algorithm 5.11), makes use of

these frequencies and assign the pharmacies that tend to be opened on the same

day frequently to different days of the planning horizon.

In this algorithm, we partition the planning horizon into two parts. For a

period of length T , these two partitions are [1, T/2) and (T/2, T ]. We make

use of these partitions while assigning duty dates to the pharmacies with high

frequencies. By the use of partitioning, the pharmacies with high frequencies are

assigned to different parts of the planning horizon and it is not possible that they

are assigned duties on the same day.
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Algorithm 5.11 New Initial Solution Heuristic for Multiple Duty Problem

t1 = 1
t2 = T
while maximum frequency > 0 do

maximum frequency = 0
for j1 = 1 → J do

if zj1 < 0 then
for j2 = j1 + 1 → J do

if zj2 < 0 then
if maximum frequency < frequencyj1j2 then

maximum frequency = frequencyj1j2

maxj1 = j1

maxj2 = j2

end if
end if

end for
end if

end for
if maximum frequency > 0 then

zmaxj1 = t1
Yj1t1 = 1
t1 = t1 + 1
if t1 > T/2 then

t1 = 1
end if
zj2 = t2
Yj2t2 = 1
t2 = t2 − 1
if t1 ≤ T/2 then

t2 = T
end if

end if
end while
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5.2 Lower Bounds

We need lower bounds in order to test the performance of the Tabu Search algo-

rithms. With the help of lower bounds, the gap between the lower bound and the

upper bound may be found and that could give an idea about how far the solution

found is from the optimal solution. In this section, the lower bound algorithms

are introduced. In the first part, Lagrangean Relaxation algorithm is introduced.

Then, in the following section different lower bound algorithms are proposed for

the single duty and the multiple duty problems.

5.2.1 Lagrangian Relaxation Algorithm

In general, the complexity of the problems are caused by the constraints. By use

of Lagrangian relaxation, some of these constraints may be relaxed. The relaxed

constraints are reflected in the objective function with a penalty term. Thus, the

amount of violation is penalized with an increase (in minimization problems) or

decrease (in maximization problems) in the objective value. We use Lagrangian

relaxation in order to obtain lower bounds for the models developed.

5.2.1.1 Application of Lagrangian Relaxation to Model 1

Model 1 is developed for single duty problem in Section 4.1.1. The model is as

follows:
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Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt

Subject to

Xijt ≤ Yjt ∀i, j, t (5.1)

T∑
t=1

Yjt ≤ 1 ∀j (5.2)

J∑
j=1

Xijt ≥ 1 ∀i, t (5.3)

Yjt ∈ {0, 1} ∀j, t

Xijt ∈ {0, 1} ∀i, j, t

In this model, there are three possible relaxations. These are relaxing con-

straint sets (5.1), (5.2) or (5.3), respectively. When constraint set (5.1) is re-

laxed, customers may be assigned to unopened facilities. Relaxing constraint set

(5.2) may cause some facilities to be opened more than once during the planning

horizon. Finally, when constraint set (5.3) is relaxed, not all customers are nec-

essarily assigned to a facility each day of the planning horizon. For each of these
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relaxations, penalty terms are defined in order to penalize the violations in the

objective function.

Sections 5.2.1.1.1, 5.2.1.1.2 and 5.2.1.1.3, represent relaxations of constraint

sets (5.1), (5.2) and (5.3), respectively.

5.2.1.1.1 Relaxation of Constraint Set (5.1): Relaxation 1 is obtained by

relaxing the constraint set that ensures no customer is assigned to an unopened

facility.

Xijt ≤ Yjt ∀i, j, t

When this constraint set is relaxed, the following model is obtained:

Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt +
I∑

i=1

J∑
j=1

T∑
t=1

λijt(Xijt − Yjt) (5.4)

Subject to
J∑

j=1

Xijt ≥ 1 ∀i, t (5.5)

T∑
t=1

Yjt ≤ 1 ∀i, t (5.6)

Yjt ∈ {0, 1} ∀j, t (5.7)
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Xijt ≥ 0 ∀i, j, t (5.8)

By relaxing this constraint, assignment of customers to unopened facilities is

allowed. By arranging the terms in (5.4), the revised objective function (5.9) is

obtained.

F =
I∑

i=1

J∑
j=1

T∑
t=1

(hidij + λijt)Xijt −
I∑

i=1

J∑
j=1

T∑
t=1

λijtYjt (5.9)

This revised version of the objective function (5.4), has two separate com-

ponents ,n the objective function and the constraints that are related with the

decision variables Xijt and Yjt, respectively. Thus, this model decomposes into

two subproblems which can be solved separately.

Subproblem 1: P1

Minimize

F1 =
I∑

i=1

J∑
j=1

T∑
t=1

(hidij + λijt)Xijt (5.10)

Subject to
J∑

j=1

Xijt ≥ 1 ∀i, t (5.11)

Xijt ≥ 0 ∀i, j, t (5.12)

Subproblem 2: P2
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Maximize

F2 =
I∑

i=1

J∑
j=1

T∑
t=1

λijtYjt (5.13)

Subject to
T∑

t=1

Yjt ≤ 1 ∀i, t (5.14)

Yjt ∈ {0, 1} ∀j, t (5.15)

After this decomposition, each subproblem may further be decomposed into

sub-subproblems. Subproblem 1 may be decomposed into (I) sub-subproblems

each one representing an (i, t) pair. Similarly, subproblem 2 may be decomposed

into J sub-subproblems.

The related decomposition of subproblem 1 is as follows:

Sub-subproblem P1(i, t)

Minimize

F1it =
J∑

j=1

(hidij + λijt)Xijt (5.16)

Subject to
J∑

j=1

Xijt ≥ 1 (5.17)

Xijt ≥ 0 (5.18)
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Let

cj =
I∑

i=1

T∑
t=1

hidij + λijt

Then subproblem 1 can be rewritten as follows for a given (i, t) pair:

Minimize

F1it =
J∑

j=1

cjXj

Subject to
J∑

j=1

Xj ≥ 1

Xj ≥ 0

The decision here is to set Xj∗ = 1 such that cj∗ = min{cj} and all other

Xj = 0.

The further decomposition of subproblem 2 is as follows:

Sub-subproblem P2(j)

Maximize

F2j =
T∑

t=1

{ I∑
i=1

λijt

}
Yjt (5.19)

Subject to
T∑

t=1

Yjt ≤ 1 ∀i, t (5.20)

Yjt ∈ {0, 1} ∀j, t (5.21)
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Let

ct =
I∑

i=1

λijt

Then the model is revised as

Maximize

F2j =
T∑

t=1

ctYjt (5.22)

Subject to
T∑

t=1

Yt ≤ 1

Yt ∈ {0, 1}

The solution is trivial, set Yt∗ = 1 such that ct∗ = min{ct} and all other

Yt = 0.

5.2.1.1.2 Relaxation of Constraint Set (5.2): Relaxation 2 is obtained

by relaxing constraint set (5.2) in Model 1. These constraints state that each

facility must be opened only once during the planning horizon. Relaxation of

this constraint set causes some facilities to be opened more than once.

T∑
t=1

Yjt ≤ 1 ∀j

If the constraint set above is relaxed, the following model is obtained:
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Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt +
∑

j

λj(1−
T∑

t=1

Yjt) (5.23)

Subject to

Xijt ≤ Yjt ∀i, j, t (5.24)

(5.17), (5.21) and (5.18)

5.2.1.1.3 Relaxation of Constraint Set (5.3): Relaxation 3 is obtained

by relaxing constraint set (5.3) from Model 1. This constraint set makes sure

that each customer is assigned to at least one facility each day of the planning

horizon. Some customers will not be assigned to any facility in different days by

the relaxation of this constraint set. The model is as follows:

Minimize

F =
I∑

i=1

J∑
j=1

T∑
t=1

hidijXijt +
I∑

i=1

T∑
t=1

λit(1−
J∑

j=1

Xijt) (5.25)

Subject to (5.20), (5.21), (5.18) and (5.24)

We have proved that relaxation of constraint sets 1 and 3 are unimodular.

Thus, these relaxations will produce lower bounds equal to linear relaxation at

best. The relaxation of constraint set 2 is not unimodular and with the optimal

λj values it may produce lower bounds better than that of LP relaxation. How-

ever, during the preliminary experiments, it was not possible to get promising
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results within reasonable computation times for relaxation 2. For this reason,

Lagrangean Relaxation is not used for large-size problems and not included in

the computational results.

5.2.2 AO S Lower Bound Algorithm for the Single Duty

Problem

In this section, the lower bound algorithm for the single duty problem is intro-

duced (Algorithm 5.12). In this algorithm, a customer is chosen at first. Then,

the closest pharmacy is found for the customer and the customer is assigned to

the closest pharmacy for each day of the planning horizon. Since, each pharmacy

may take only one duty, each customer may be assigned to the pharmacy that

is closest to them only once. For the following days of the planning period, cus-

tomers are assigned to the second closest pharmacy, to the third closest pharmacy

and so on.

Algorithm 5.12 AO S Lower Bound Algorithm for Single Duty Problem

LB = 0
for i = 1 → I do

for t = 1 → T do
minimum distance = M
for j = 1 → J do

if dij < minimum distance then
minimum distance = dij

min j = j
end if

end for
LB = LB + minimum distance× hi

di,min j = M
end for

end for
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In the scope of this algorithm, it is not required that a pharmacy is opened

in order a customer to be assigned to it. Since, this algorithm just tries to find a

lower bound, the aim is to find a solution that the real solution cannot be better

off. Likewise, we could have relaxed the constraint that each pharmacy can only

be opened once and assign each customer to their closest facility for all days of

the planning horizon. When the cost of these assignments were computed, we

would again obtain a lower bound value, however, that lower bound would not

be tight enough. During the test runs, we observed that the AO S Lower Bound

Algorithm gives exactly the same lower bound value with the LP relaxation within

much less computation time.

5.2.3 AO M1 Lower Bound Algorithm for the Multiple

Duty Problem

The AO M1 lower bound algorithm, (Algorithm 5.13), is introduced for the mul-

tiple duty problem. This algorithm works with a similar logic with Algorithm

5.12. The difference is that the pharmacies may take more than one duty during

the planning period in the multiple duty problem. In this case, the customers

may be assigned to their closest pharmacies more than once. The number of

this assignment is actually equal to the number of duty days assigned to that

pharmacy. Thus, the minimum and maximum duty numbers for each pharmacy

are calculated with regard to their regions. Thus, when the closest pharmacy to

a customer is found, the customer is assigned to the closest pharmacy for the
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maximum number of days the pharmacy can take duties. Similarly, the cost of

assignments is calculated by taking the maximum number of duties into account.

Algorithm 5.13 AO M1 Lower Bound Algorithm for Multiple Duty Problem

LB = 0
for i = 1 → I do

t = 0
while t ≤ T do

minimum distance = M
for j = 1 → J do

if dij < minimum distance then
minimum distance = dij

min j = j
end if

end for
duty number = duty number UBmin j

if T − t ≤ duty number then
duty number = T − t

end if
LB = LB + minimum distance× hi × duty number
dij = M
t = t + duty − number

end while
end for

However, this lower bound algorithm is not producing tight lower bounds,

thus, we move a step ahead and introduce the AO M2 Lower Bound Algorithm

for the multiple duty problem.

5.2.4 AO M2 Lower Bound Algorithm for the Multiple

Duty Problem

In the real case, not all pharmacies take same number of duties even if they are

within the same region. Some of them are assigned minimum number of duties
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for their regions while the others are assigned the maximum number of duties.

So, a better lower bound algorithm needed to reflect this characteristic of the real

problem. Thus, we introduce AO M2 Lower Bound Algorithm for the multiple

duty problem (Algorithm 5.14).

Algorithm 5.14 AO M2 Lower Bound Algorithm for Multiple Duty Problem

for i = 1 → I do
t = 0
while t ≤ T do

minimum distance = M
for j = 1 → J do

if dij < minimum distance then
minimum distance = dij

min j = j
end if

end for
duty number = duty number LBmin j

if T − t ≤ duty number then
duty number = T − t

end if
LB = LB + minimum distance× hi × duty number
dij = M
t = t + duty number

end while
end for

In this algorithm, for each of the regions, the number of pharmacies that

should take the maximum and minimum number of duties are calculated. Then

the maximum number of duties are assigned to the pharmacies that are closest

to each customer unless the number of pharmacies that should take maximum

number of duties is exceeded. If the number is exceeded, then, the pharmacies

are assigned duties on the lower bound. During the test runs, as expected, it

is observed that the AO M2 Lower Bound Algorithm gives better results than
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the AO M1 Lower Bound Algorithm. In other words, it is a more tight bound.

However, the LP relaxation in multiple duty case provides better bounds for the

problems than the AO M2 Lower Bound Algorithm. This is simply due to the fact

that in the AO M2 Lower Bound Algorithm, we assign duties to the pharmacies

on the upper bound until the limit is reached. On the other hand, in the LP

relaxation, the assignments are made while taking costs into account.



Chapter 6

COMPUTATIONAL

EXPERIMENTS

In this chapter, we present the computational experiments made for both single

duty and multiple duty problems. In each of the sections, first preliminary ex-

periments designed for the problems are explained. Then, the results of different

instances generated for the related problems are discussed.

We conducted the computational experiments on a HP Laptop with AMD

Triple Core Processor 1.80 GHz, 4GB RAM and Windows 7 Professional. We

solve the mathemtatical models using GAMS 22.5 and CPLEX 11.2. We coded

Tabu Search and lower bound algorithms using C++ and Codeblocks.

79
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6.1 Single Duty Problem

The single duty problem is the problem type in which the pharmacies are assigned

one duty during the planning horizon and similar to the Simple Model 1 from

Chapter 4. For the single duty problem, different instances were generated in

order to test the performance of the Tabu Search algorithm. Before starting the

test runs, we conducted some preliminary experiments in order to find the most

effective values for the tabu tenures and the maximum iteration numbers.

During the preliminary experiments, we used 6 different problem sizes. Each

of these problem sizes were scaled to the real problem size, so that the test

results would give an insight about the large-size real life problem. Two types

of parameters were tested during the preliminary experiments. We first tested 3

different levels of tabu tenures while taking the iteration numbers constant. After

choosing the most suitable tabu tenure, we tested 3 different levels of iteration

numbers using the selected tabu tenure.

In Tabu Search algorithm, tabu tenures are used to represent the number of

iterations in which a recently changed solution cannot be visited. For the tabu

tenures, we tested three different tenures as 5, 8 and 10 that are commonly used

values in the literature [11]. We used constant iteration numbers during these

tests. We chose maximum outer iteration number as 10 and maximum inner

iteration number as 30. Table 6.1 shows the test results for tabu tenures. In

the table, I, J and T denote the numbers of customers, pharmacies and days,
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Table 6.1: Tabu Tenure Test Results for Single Duty Problem

I J T In Out Day Node AO LB LB CPU Tabu Search TS CPU Gap
(seconds) (%)

20 10 5 30 10 5 5 362,789 0.001 363,922 0.205* 0.3*
20 10 5 30 10 8 8 362,789 0.002 363,922 0.213 0.3*
20 10 5 30 10 10 10 362,789 0.001 363,922 0.214 0.3*
20 30 15 30 10 5 5 701,217 0.001 708,271 3.150* 1.0
20 30 15 30 10 8 8 701,217 0.002 709,083 4.218 1.1
20 30 15 30 10 10 10 701,217 0.002 705,964 4.464 0.7*
40 40 10 30 10 5 5 690,491 0.002 693,924 16.992* 0.5*
40 40 10 30 10 8 8 690,491 0.002 693,924 18.035 0.5*
40 40 10 30 10 10 10 690,491 0.002 693,924 18.428 0.5*
40 60 15 30 10 5 5 1,125,694 0.001 1,133,049 30.734* 0.7*
40 60 15 30 10 8 8 1,125,694 0.002 1,134,184 45.184 0.8
40 60 15 30 10 10 10 1,125,694 0.002 1,136,737 47.016 1.0
60 60 10 30 10 5 5 867,355 0.002 874,606 75.324* 0.8*
60 60 10 30 10 8 8 867,355 0.002 874,606 79.111 0.8*
60 60 10 30 10 10 10 867,355 0.002 874,606 81.071 0.8*
60 90 15 30 10 5 5 1,316,550 0.002 1,340,447 139.762* 1.8*
60 90 15 30 10 8 8 1,316,550 0.002 1,342,397 191.316 2.0
60 90 15 30 10 10 10 1,316,550 0.002 1,342,454 208.443 2.0

respectively. These parameters define the problem size. Then the iteration num-

bers are given under in and out iterations which are constant. The day and node

tenures are the tested parameters. AO LB column shows the lower bound values

for the instances where Tabu Search column denotes the objective value of the

Tabu Search algorithm. LB CPU and TS CPU denote the computation times in

seconds for the lower bound algorithm and the Tabu Search algorithm, respec-

tively. Finally, Gap denotes the relative gap between the objective value of tabu

search algorithm and the lower bound value of the instance. The best results in

terms of computation time and objective value can be found in Table 6.1.

After conducting the preliminary experiments on tabu tenures, the results

for each tabu tenure were compared according to the computation time and the
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Table 6.2: Summary Table for Tabu Tenures

Tenure CPU Solution Quality
5 81% 92%
8 96% 97%
10 100% 94%

gap between the lower bound and the objective value. For each problem size,

the minimum TS CPU and Gap values are indicated with a (*). We compute

average performance of each tabu tenure with respect to the best results obtained

in each problem size. Table 6.2 shows the average CPU times and the gap values

of all test instances for each tenure level. The 100% represents the largest values

and the other percentages show the values with respect to the largest one. As it

can be seen from Table 6.2, tabu tenure 5 was the best among all both for the

computation time and the objective value. Thus, we decided to use 5 as the tabu

tenure of days and nodes for the single duty problem.

After determining the tabu tenure, the iteration numbers were tested. Again,

there were 3 levels of iteration numbers for both inner and outer iterations while

taking the day and node tabu tenures as 5. Table 6.3 shows the results of six

different instances.

Table 6.4, shows a summary of the preliminary experiments for the iteration

numbers. In this table, the largest CPU is represented with 100% and the other

ones show the ratio of CPU usage with regard to the CPU usage of 40 and 30
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Table 6.3: Iteration Number Test Results for Single Duty Problem

I J T In Out Day Node AO LB LB CPU Tabu AO TS CPU Gap
(seconds) (%)

20 10 5 20 10 5 5 362,789 0.001 363,922 0.138* 0.3
20 10 5 30 15 5 5 362,789 0.002 362,789 0.307 0.0*
20 10 5 40 20 5 5 362,789 0.002 363,922 0.563 0.3
20 30 15 20 10 5 5 701,217 0.001 706,261 2.088* 0.7
20 30 15 30 15 5 5 701,217 0.002 708,271 4.783 0.1*
20 30 15 40 20 5 5 701,217 0.002 706,131 8.747 0.7
40 40 10 20 10 5 5 690,491 0.002 694,419 10.426* 0.6
40 40 10 30 15 5 5 690,491 0.002 693,924 25.627 0.5*
40 40 10 40 20 5 5 690,491 0.004 693,924 47.832 0.5*
40 60 15 20 10 5 5 1,125,694 0.002 1,133,049 46.428 0.7
40 60 15 30 15 5 5 1,125,694 0.002 1,333,049 46.376* 18.4
40 60 15 40 20 5 5 1,125,694 0.002 1,132,838 86.573 0.6*
60 60 10 20 10 5 5 867,355 0.002 879,647 47.08* 1.4
60 60 10 30 15 5 5 867,355 0.001 874,606 110.722 0.8*
60 60 10 40 20 5 5 867,355 0.002 874,460 205.192 0.8*
60 90 15 20 10 5 5 1,316,550 0.003 1,371,646 75.364* 4.2
60 90 15 30 15 5 5 1,316,550 0.002 1,340,447 205.685 1.8
60 90 15 40 20 5 5 1,316,550 0.002 1,327,967 328.593 0.9*

iterations for inner and outer loops. As the CPU time increases the solution qual-

ity increases since more iterations in general mean more solution space searched.

However, for a 4% increase in the solution quality, the CPU times increases more

than four times. Thus, we decided to give up some quality in return for decreased

CPU time. According to these results, the maximum number of inner iterations

is determined as 30 and the maximum number of outer iterations is determined

as 15.

After conducting the preliminary experiments, the performance of the tabu

search algorithm is tested. In these test runs, ten different instances were gen-

erated for each of six different problem sizes. Table 6.5, shows the arithmetic
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Table 6.4: Summary of Iteration Number Test Results for Single Duty Problem

In Out CPU Solution Quality
20 10 28% 7%
30 15 55% 4%
40 20 100% 3%

average values of 10 instances for each problem size. In the table, problem size

column shows the I, J and T values that refer to customers, pharmacies and

days. LB AO column refers to the average lower bound values for each problem

size. Tabu AO column represents the average results found for each problem size

by Tabu Search algorithm. The average lower and upper bound values found

with the use mathematical models are given under GAMS LB and GAMS UB

columns, respectively. # column shows the number of problem instances solved

to optimality out of 10 within one hour limit. Real Gap column shows the rel-

ative gap between the GAMS LB and the Tabu AO. Perceived gap shows the

relative gap between the lower bound found by the lower bound algorithm and

the Tabu Search algorithm. On the other hand, real gap corresponds to the rela-

tive gap between the best known lower bound value and the objective value of the

Tabu Search algorithm. LB AO, Tabu AO and GAMS CPU columns represent

the computation times for the mentioned methods. As expected, the CPU times

increase a lot as the problem size gets larger. For the mathematical models, we

determined one hour limit for the CPU times. Thus, a CPU time of 3600 seconds

states that the problem could not be solved optimally within one hour.
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Table 6.6: Average Results for Single Duty Problem

Real Perceived
Gap 0.717 0.974

Tabu GAMS
CPU Time 40.308 1830.968

Table 6.6 shows a summary of the gaps and the CPU times. The Tabu Search

algorithm mostly produces results within 1% of the optimal solutions as the gaps

state. If the average CPU times for the Tabu Search algorithm and the GAMS

mathematical models are compared, it is obvious that the Tabu Search algorithm

finds results within much less CPU time and these results are not far from the

results of the mathematical models.

Figures 6.1, 6.2 and 6.3 show the computation time change with respect to

number of customers, length of the planning horizon and problem size, respec-

tively. As the figures show, the length of the planning horizon has serious effect on

computation time. Figure 6.3 shows that even with higher number of customers

and pharmacies, results are found within shorter computation times when the

planning horizon length is shorter.
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Figure 6.1: CPU Time vs. Number of Customers

Figure 6.2: CPU Time vs. Length of the Planning Horizon
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Figure 6.3: CPU Time vs. Problem Size

6.2 Multiple Duty Problem

For the preliminary experiments of the multiple duty problem, we generated 6

different problem instances with different numbers of customers, pharmacies, days

and regions. Before the test runs, we conducted preliminary experiments on these

instances in order to determine the tabu tenures and the iteration numbers.

For the day, pharmacy and region tabu tenures, we tested four different levels.

For these experiments inner and outer iteration numbers are considered constant

as 30 and 10, respectively. Table 6.7, shows the results of the preliminary exper-

iments for tabu tenures.

Table 6.8, shows the average values of CPU times and the gaps for the in-

stances used in preliminary experiments. As it can be seen from the table, day

tenure 5, node tenure 5 and region tenure 3 combination gives the best solution

quality within a tolerable CPU time increase.
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Table 6.8: Summary of Tabu Tenure Preliminary Experiments for Multiple Duty
Problem

Day Node Region CPU Solution Quality
5 5 1 98.6% 96.1%
5 5 3 98.0% 95.7%
8 8 3 95.7% 97.0%
10 10 4 95.7% 100.0%

After analyzing the tabu tenures, the iteration numbers are tested with the

selected tabu tenures. The same instances are also used for iteration number

tests. Three levels of inner and outer iteration number combinations are tested.

These combinations are (20,10), (30,15) and (40,20). Table 6.9 shows the results

for iteration number tests.

Table 6.10 shows the total CPU times and the gaps for the tested instances.

Iteration number set 40 and 20 gives the best result quality, however, the CPU

times are four times higher than the iteration number set 20 and 10. When the

solution qualities of these two iteration number sets are compared, it is seen that

iteration number set 20 and 10 gives solutions nearly as good as the iteration

number set 40 and 20 within much less CPU time. Thus, iteration number set

20 and 10 is chosen for multiple duty problems.

We separated the multiple duty problem into two parts as the small-size and

the large-size problems. In the following two sections, we discuss the computa-

tional results for the small-size problems. In the second one, we introduce the
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Table 6.10: Summary of Iteration Number Preliminary Experiments for Multiple
Duty Problem

In Out CPU Solution Quality
20 10 25.37% 100.00%
30 15 55.25% 95.17%
40 20 100.00% 94.09%

modifications made in the Tabu Search algorithm in order to solve the large-size

problems and discuss the computational results.

6.2.1 Small-Size Problems

For the small-size problems, we defined 9 different problem sizes. For each prob-

lem size, we generated 10 instances and compared the results in terms of com-

putation times and the gap between the lower bound and the optimal values if

available or with the upper bounds if the optimal value could not be obtained.

Table 6.11 shows the average of the results and the CPU times of ten instances

for each problem size. In the table, lower bound algorithm values, GAMS lower

bound and the LP relaxation values are presented. Alsa Tabu Search algorithm

objective value and the GAMS upper bound value are given. The # column

shows the number of problem instances solved to optimality within 3600 seconds

of computation limit. The LB, TS, OPT and LP CPUs refer to the computa-

tion times of the lower bound algorithm, Tabu Search algorithm, mathematical

model and LP relaxation, respectively. As the problem size gets larger, the CPU
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times increase. However, even for larger problem sizes, the proposed Tabu Search

algorithm finds results within much less computation times.

Table 6.12 shows a summary of average gap and CPU time values. The Tabu

Search algorithm is capable of finding acceptable results in very short computation

times.

Figures 6.4, 6.5 and 6.6 show the computation time change with respect to

number of customers, number of pharmacies and number of days in the planning

horizon. The length of the planning horizon has a major effect on difficulty of

the problem for the multiple duty problem, too.

Figure 6.4: CPU Time vs. Number of Customers

6.2.2 Large-Size Problems

For the large-size problems, we made some modifications on the Tabu Search

algorithm. In the actual algorithm, the neighborhood searches are being done for
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Table 6.12: Average Results for Small-Size Multiple Duty Problem

Real Perceived
Gap 0.961 7.667

Tabu GAMS
CPU Time 9.942 1625.637

Figure 6.5: CPU Time vs. Length of the Planning Horizon

Figure 6.6: CPU Time vs. Problem Size
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each pharmacy in all neighborhood search techniques. For large-size problems,

since the number of pharmacies are huge, it becomes very hard to obtain results

in reasonable computation times.

As the first modification, we started to count the number of iterations in

which an improvement on the best candidate solution is made. When this number

reaches to the predefined level, we stop searching better results for the selected

pharmacy and continue with the next one. In this way, we limit the search done

for a pharmacy and do not try to find the best candidate solution. We just find

a solution that is good enough and look for different solutions by searching other

pharmacies.

As another modification, we make use of the regional setting of the multiple

duty problem. In the modified tabu search algorithm, we relate the regions to be

searched for with the outer iteration numbers. In this way, every outer iteration

starts from a different set of pharmacies, not from the beginning every time.

Thus, we can search a broader space for better solutions. For this reason, we

change the maximum inner iteration number to 45, so that, in each iteration a

region can be searched.

The test results for large-size problems are given in Table 6.13. The optimal

values and the LP relaxation values are not available for the large-size problems,

since these are hard to obtain in reasonable times. Thus, in this part of the study,

we compare the lower bound values from Algorithm AO M2 and the upper bound
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Table 6.13: Results for Large-Size Multiple Duty Problems

I J T K LB AO LB CPU Tabu AO TS CPU Perceived
(second) (second) Gap (%)

350 250 25 49 4,185,525 0.008 4,604,968 17,180 10.0
350 250 25 49 4,281,480 0.008 4,727,774 17,194 10.4
350 250 25 49 3,888,865 0.008 4,339,607 17,326 11.6
350 250 25 49 3,946,011 0.008 4,355,554 16,939 10.4
350 250 25 49 4,026,870 0.009 4,411,435 16,632 9.5
350 500 50 49 8,115,930 0.021 9,555,180 120,159 17.7
350 500 50 49 7,471,040 0.020 9,012,111 134,734 20.6
350 500 50 49 7,808,867 0.017 9,123,935 76,620 16.8
350 500 50 49 7,496,463 0.016 8,649,854 75,793 15.4
350 500 50 49 7,471,051 0.016 8,900,553 82,272 19.1
350 1000 100 49 11,780,551 0.032 17,626,749 540,240 49.6
350 1000 100 49 11,500,085 0.016 17,357,072 587,043 50.9
350 1000 100 49 12,711,395 0.031 17,868,820 537,777 40.6
350 1000 100 49 11,373,180 0.031 17,275,659 540,238 51.9
350 1000 100 49 12,263,164 0.016 18,124,038 576,574 47.8

values from the Tabu Search algorithm and report the relative gap between these

two results.

As the table shows, the relative gap between the lower bound and the tabu

search objectives are very high even with long computation time. We believe that

this is due to using randomly generated data.



Chapter 7

İZMİR APPLICATION

We chose İzmir to implement the proposed method and compare the current

and the proposed solutions. Thus, in this chapter, we introduce the related

information about İzmir.

7.1 Data Gathering and Visualization

After making test runs using the randomly generated data sets, we collected

the real data of pharmacies in the metropolitan area of İzmir, the regions of

the pharmacies and the duty dates of these pharmacies from the Chamber. We

obtained the pharmacy and duty lists for two planning periods, namely, the third

period of 2010 and the first period of 2011.

For the given pharmacies, we obtained the coordinates from the geographic

98



CHAPTER 7. İZMİR APPLICATION 99

information system1 of İzmir Municipality2 in order to locate the pharmacies.

We located the demand nodes as the centers of the districts and the de-

mand sizes as the population of the districts. We collected the coordinates of the

districts from the geographical information system of the Municipality and we

bought the population data from Turkish Statistical Institute3.

After collecting the coordinates for the pharmacies, we updated the col-

lected data by adding the pharmacies that are necessary but not included in

GIS database of the Municipality, taking out the pharmacies that are not taking

duties and the districts that are not in the metropolitan area of İzmir. We cre-

ated a full list of potential on duty pharmacies and their coordinates. We also

made a list of all districts and their coordinates. Also, we store the number of

pharmacies in each region and calculate the related upper and lower bounds on

the number of duties for the pharmacies using these numbers.

Then, we transfered the printed data, such as the duty lists for different

periods, to the computer in order to use in calculations of the current duty plan’s

objective function value so that we can make comparisons between the current

and the proposed solutions.

In order to calculate the costs of the assignments, we needed the locations

of the pharmacies. Thus, we had a geographical information system developed

1http://cbs.izmir.bel.tr/CbsWebServisleri/CbsLoadStone/download/download.aspx?Id=111
2www.izmir.bel.tr/
3www.tuik.gov.tr
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for this study. New pharmacies can be added and the unnecessary ones can be

deleted from the database using the interface of the GIS. We used the GIS in order

to obtain the distances between the pharmacies and the districts. Thus, for each

of the two periods, two distance matrices are formed. First, the district-pharmacy

distance matrix is formed in order to calculate the costs of the assignments made.

Secondly, the pharmacy-pharmacy distance matrix is formed to use in new region

generation.

In addition to data collection, we make use of the GIS in visualization of the

results. The system is capable of showing the locations of the pharmacies and

the districts on a map. Also, we can see a given solution on the map with the

help of the GIS. We can also use these visualizations while comparing the current

and proposed solutions.

7.2 Comparison of Current and Proposed Solu-

tions

In this section of the thesis, we present the comparison of the current and the

proposed solutions for two periods, namely, the third period of 2010 and the first

period of 2011.



CHAPTER 7. İZMİR APPLICATION 101

Table 7.1: Comparison of Results for the 3rd Period of 2010
Cost (demand-meter) CPU (seconds) Gap*

Current 309,011,788,792 — 9.4%
Tabu Search 305,873,089,207 36,624.911 8.2%
AO M2 LB 282,589,154,945 0.085 —
AO M1 LB 274,449,079,588 0.080 —

*: Relative gap using AO M2 LB

7.2.1 Real Instance 1: 3rd Period of 2010

For the third period of 2010, there were 1046 pharmacies taking duties. We calcu-

lated the cost of the current assignments using our cost algorithm taking the cost

of an assignment as the demand weighted distance between the customer and the

pharmacy it is assigned to. We compare the current cost with the assignments we

make with the use of the Tabu Search algorithm. Table 7.1 shows the two results

with the lower bound value and computation time of Tabu Search Algorithm.

We make an improvement of 3, 151, 573, 307 meters approximately with a 10-

hour run. If we assume that every customer traveling to a pharmacy needs to

turn back to their home, then, we need to double this number to 6, 303, 146, 614

meters. Assume, traveling one kilometer with a car costs around 0.25 TL, then

the monetary cost of this improvement will be around 1.6 million Turkish Liras

for only the third period of 2010.

The gaps between the AO M2 lower bound, Tabu Search algorithm and the

current assignments are presented under the gap column in Table 7.1. The relative
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Table 7.2: Comparison of Results for the 1st Period of 2011
Cost (demand-meter) CPU (seconds) Gap*

Current 410,889,602,394 — 40%
Tabu Search 317,121,539,733 55,428.838 8%
AO M2 LB 293,916,086,606 0.087 —
AO M1 LB 288,041,632,701 0.335 —

*: Relative gap using AO M2 LB

gap between the lower bound and the Tabu Search solution is still huge. If we

increase the iteration numbers, we may get closer to the optimal value and find

better results. In this case, the computation times will be longer. Since this is

not a every day problem, it is solved only three times a year, longer computation

times are bearable in exchange for better results. The important point is to decide

whether the improved solution quality or the computation time is more crucial.

7.2.2 Real Instance 2: 1st Period of 2011

The number of pharmacies taking duties in the first period of 2011 has increased

to 1053. For this period, again the current cost is calculated and it is compared

with the proposed one. Table 7.2 shows the results in meters.

The improvement made for this period is 93, 768, 062, 661 meters. If we double

this number for the round trip, the actual gain becomes 187, 536, 125, 322 meters.

A tour around the world is approximately around 40, 000 kilometers.

For both periods, we make an assumption that all people will have a demand
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for pharmacies each day of the planning horizon while calculating the improve-

ments. This assumption is not valid in real life applications. However, the cal-

culations for the current and the proposed solutions are made in the same way.

Thus, we still have a fair comparison even though the calculated benefit may be

less.

Another point is, when the working hours are over, each pharmacist has to

put a sign on the pharmacy window which shows the on duty pharmacies of the

current day. Currently, the pharmacies within the same region, direct customers

only to the on duty pharmacies within their region. Sometimes the on duty phar-

macy of that region is farther away in distance for that customer in comparison

to the on duty pharmacy of another region. In the current planning system, the

customer has to travel to the far away on duty pharmacy for the given reasons.

When we calculate the cost of a given solution, we assign the customers to the

closest open facility. On the other hand, in real life not all customers are traveling

to the closest pharmacies due to the regional policy in use. Thus, the real cost

of the current assignments are higher than our calculations. If the real cost of

assignments could be calculated then, the improvement obtained will definitely

be more than the calculated one.



Chapter 8

CONCLUSIONS AND

FURTHER RESEARCH

In this study, we defined a new real life problem as the Pharmacy Duty Scheduling

(PDS) Problem. We analyzed the complexity of this problem and we proved that

the problem is NP-hard. We proposed solution methods for this problem using

exact, heuristics and meta-heuristics algorithms.

We defined our problem in two different levels as the simple and the realistic

problems. For both problems, we proposed mathematical programming models.

We modeled the problems using integer programming models. We solved the

small-size problems exactly, using Cplex solver on GAMS. For large-size problems,

we proposed different algorithms using heuristics and meta-heuristics approaches.

In order to test the solution quality of the algorithms, we developed different lower

bound algorithms.
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We gathered data for the current real life situation in İzmir. We tested our

algorithms on two different duty periods that are the third period of 2010 and the

first period of 2011. We calculated the objective value of the current assignments

and compared our solutions with the assignments made for both periods. We

showed that our algorithm makes significant improvements for both periods.

In the scope of future researches, exact algorithms can be further investigated

and improved in order to solve the large-size problems. Different solution methods

may be developed in order to solve the real life problem. Simple model 2 and

realistic model 2 may be improved and be used in the solutions. The problem

may also be evaluated with the scope of pharmacists not only the public.
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Appendix A

Geographic Information System

Figure A.1: Home Page of GIS Application
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Figure A.2: Sample House List

Figure A.3: Sample Pharmacy List
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Figure A.4: Insert Pharmacy Screen

Figure A.5: Results Page
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Figure A.6: Sample On-Duty Pharmacies


