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DYNAMIC RESPONSE ANALYSIS OF A FLOATING PLATFORM FOR 
OFFSHORE WIND TURBINES  

SUMMARY 

In recent years, studies demonstrating the potential of the offshore wind energy have 
shown that the installation site of the wind turbines needs to be extended to areas 
farther from the shore. However, bottom founded type offshore wind turbines have 
limited the installation site to the near-shore areas, so far. Making more use of the wind 
energy source is possible through the floating type offshore wind turbines. Due to the 
extreme loads, comprehensive response analysis of the floating offshore wind turbines 
under combined wave and wind excitation is essential during the initial design. 

In this study, the response analysis of the large-scale floating platform carrying two 
wind turbines is performed under combined wave and wind loads. It is well accepted 
that the investigation of the rigid body motions of the floater is sufficient in response 
analysis; however, the elastic motions of the floater should be considered in present 
study due to its dimensions. 

In order to analyze the aero-hydro-elastic response of the floater, firstly the dynamic 
characteristics are determined by the finite element analysis by considering that the 
response of the structure can be represented by its dynamic characteristics. The rotor-
nacelle assembly of the wind turbine is imitated by a concentrated mass with rotational 
inertia in finite element analysis. Hydrodynamic radiation and wave forces in 
frequency domain are computed according to the dynamic characteristics by using the 
boundary element method and transformed to their time domain representation by the 
convolution of the radiation impulse response function and using the sine 
transformation, respectively. The sea state is modeled by using the Pierson-Moskowitz 
wave spectra. The aerodynamic forces are obtained by considering the steady wind 
condition and using the blade element momentum theory. The time domain response 
of the structure is acquired by the time integration of the equation of motion.  
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YÜZER RÜZGAR TÜRBİNİ PLATFORMLARININ DİNAMİK TEPKİ 
ANALİZİ  

ÖZET 

Son yıllarda, rüzgâr enerjisi, yenilenebilir enerji kaynakları arasında en çok yatırım 
yapılan, geleceğin enerji kaynağı çözümü haline gelmiştir. Bu bağlamda, rüzgâr 
enerjisinden daha uygun maliyetle faydalanılması için çok sayıda mühendislik 
çalışması literatüre kazandırılmıştır. Açık denizlerdeki rüzgâr enerjisi potansiyelini 
ortaya koyan çalışmalar, rüzgâr türbinlerinin inşa sahasının kıyıdan uzak bölgelere 
genişletilmesi gerekliliğini ortaya çıkarmıştır. Bununla birlikte, denizlerde inşa edilen 
rüzgâr türbinlerinin deniz dibinde bir temel ile desteklenmesi gerekliliği, günümüze 
kadarki inşa sahalarını kıyıya yakın bölgelere kısıtlamıştır. Daha derin denizlerdeki 
enerji potansiyelinden faydalanabilmek, ancak yüzer rüzgâr türbinleri ile mümkündür. 
Maruz kaldığı yükler göz önünde bulundurulduğunda yüzer rüzgâr türbinleri tasarımı 
için kapsamlı yapısal analizlerin yapılması gerekir. 

Yüzer rüzgâr türbinlerinin tasarımında yapının rüzgâr ve dalga tahrik kuvvetlerine 
tepkisinin belirlenmesi esastır. Yapının hareketleri tahrik kuvvetlerinde değişime 
sebep olurken, tahrik kuvvetleri de yapının hareketlerini etkiler. Bu ilişki yapının 
elastik hareketlerinin aerodinamik ve hidrodinamik yükler ile bağlı analizini, diğer bir 
deyişle aero-hidro-elastik analizinin yapılmasını gerektirir.  

Bu çalışmada, rüzgâr türbinlerine yüzer destek yapısı olarak düşünülen büyük ölçekli 
bir platform, birbirleriyle aerodinamik etkileşimi ihmal edilen iki adet rüzgâr türbinini 
taşıyacak şekilde tasarlanmış ve yapının dalga ve rüzgâr yükleri altındaki aero-hidro-
elastik yanıtı belirlenmiştir. Yüzer rüzgâr türbinlerinin dinamik analizi esnasında 
platformun yalnızca rijit hareketlerinin incelenmesinin yeterli olacağı genel olarak 
kabul görmüş olmasına rağmen, bu çalışmada, platformun boyutlarından dolayı elastik 
hareketler de dikkate alınmıştır.  

Analiz çerçevesinde yapıya etkiyen rüzgâr hızlarının yükseklikle beraber artışı, bir 
başka deyişle hava akışındaki sınır tabaka etkisi, üstel fonksiyon yaklaşımı ile 
belirlenmiştir. Dalgaların modellenmesinde ise düzenli bir dalga için akışkan 
hareketini tanımlayan lineer dalga teorisi kullanılmıştır. Karışık deniz modellerine 
temel oluşturan bu teori dalga yüksekliğinin, dalga boyuna göre küçük olduğu 
kabulüne dayanır.   

Platformun dinamik analizi için, öncelikle, tahrik kuvvetlerinden doğan yapısal 
tepkinin şekil değiştirme modları cinsinden temsil edilebileceği göz önüne alınarak, 
sonlu elemanlar yöntemi ile platformun dinamik karakteristikleri belirlenmiştir. 
Dinamik karakteristikler elde edilirken, türbinin pervane-motor beşiği düzeneği 
rotasyonel eylemsizliğe sahip noktasal kütle olarak düşünülmüş ve bu düzeneğin kule 
merkez hattı etrafındaki dönme serbestlik derecesinden dolayı, dinamik 
karakteristikler her bir vaka için rüzgâr geliş açısı dikkate alınarak güncellenmiştir.  

Hidrodinamik kuvvetler, akışkan-yapı etkileşim kuvvetleri ve dalga tahrik kuvvetleri 
olarak ikiye ayrılır. Etkileşim kuvvetleri, yapının sakin sudaki hareketinden dolayı 
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ortaya çıkan akışkan kuvvetleridir. Dalga tahrik kuvvetleri ise yapının hareketsiz kabul 
edildiği bir durumda gelen dalgaların oluşturacağı kuvvetlerdir. Etkileşim kuvvetleri, 
yapının hareketi ile etrafa dağılan dalgaların hareketini tanımlayan radyasyon hız 
potansiyelinin, yapının dinamik karakteristiği olan mod şekilleri ile eşleştirilmesiyle 
yapının her bir doğal modu için elde edilebilir. Modal açılım olarak bilinen bu 
yaklaşım ile radyasyon potansiyelini tanımlayan sınır değer problemi akışkan-yapı ara 
yüzü üzerinde bir sınır integral denklem olarak ifade elde edilebilir. Bu integral 
denklem sınır eleman yöntemiyle çözülerek, yapı ıslak yüzeyi üzerindeki potansiyel 
dağılımı ve sonrasında yapıya etkiyen genelleştirilmiş etkileşim kuvvetleri (ek su 
kütlesi ve hidrodinamik sönüm etkileri olarak) elde edilmiştir. Sınır eleman 
uygulamasında kullanılan serbest yüzey Green fonksiyonunun akışkan serbest yüzey 
şartını tüm serbest yüzey üzerinde sağlamasından dolayı ortaya çıkan düzensiz frekans 
etkilerini ortadan kaldırmak için, yapının su hattındaki varsayımsal iç serbest yüzey, 
üzerinde duvar şartı tanımlanarak, problem sınır yüzeyine eklenmiştir. 
Genelleştirilmiş dalga tahrik kuvvetleri, gelen ve saçılan dalgaların hız potansiyelini 
içeren difraksiyon bir hız potansiyeliyle verilebilir. Bu çalışmada dalga tahrik 
kuvvetleri, Haskind ilişkileri kullanılarak, gelen dalga ve radyasyon potansiyelleri 
cinsinden doğrudan hesaplanmıştır. Akışkan-yapı etkileşim kuvvetlerinin zaman 
bölgesine taşınması, frekans bölgesi değerlerinin sayısal integrasyonu ile elde edilen 
etki-tepki fonksiyonlarına (impulse response function) konvolusyon uygulanmasıyla 
gerçekleştirilmiştir. Bu ifade, belirli bir an için etkileşim kuvvetlerinin yapının hareket 
geçmişine bağlı olduğuna işaret eder. Bu nedenle, analiz esnasında yapının hareket 
geçmişinin belirli bir zaman dilimi için elde tutulması gerekir. Dalga tahrik 
kuvvetlerinin zaman bölgesinde temsili için, frekans bölgesinde birim dalga genliği 
için elde edilen tahrik kuvvetlerine sinüs dönüşümü uygulanmıştır. Dalga genlikleri 
Pierson-Moskowitz dalga spektrumu kullanılarak hesaplanmıştır. 

Aerodinamik kuvvetler kanat eleman momentum teorisi kullanarak hesaplanmıştır. Bu 
teoride, rüzgâr türbini kanatları yeter sayıda elemanla ayrıklaştırılarak, her eleman 
kesiti üzerinde iki boyutlu akış analizi yapılır ve her eleman için elde edilen kuvvetler 
kanat boyunca tümlenerek rotor üzerindeki rüzgâr kuvvetleri elde edilir. Bu kapsamda, 
her zaman adımında rotor üzerindeki kuvvetler hesaplanmış ve motor beşiği 
aracılığıyla kulelere aktarılmıştır. Bu aşamada, açık kaynak simülasyon kodu FAST 
kullanılmıştır. 

Sonlu eleman modeline türbin kulesinin üst noktasından aktarılacak aerodinamik 
yükler hesaplanırken, kanatların elastik hareketleri, jeneratörün dönme hareketi, şaft 
burulması ve motor beşiğinin yalpa hareketi dikkate alınmıştır. Aerodinamik kuvvetler 
laminer sabit hızlı rüzgâr durumu düşünülerek hesaplanmıştır. 

Yapının zaman bölgesindeki genelleştirilmiş hareket denklemi durum uzayında temsil 
edilmiş, çözüm için 4. dereceden Runge-Kutta metodu kullanılmıştır. Her zaman adımı 
için yapı üzerine etkiyen tahrik ve etkileşim kuvvetleri ve bu kuvvetlere yapının cevabı 
olarak, deplasman, hız ve ivme değerleri elde edilmiştir. 

Analizler sonucunda pervane-motor beşiği düzeneğinin yönünün dinamik 
karakteristikler üzerindeki etkisi gözlemlenmiş, modellenen rüzgâr türbininde bu 
düzenek kule ekseni etrafında dönme serbestlik derecesine sahip ise, her çevresel 
durum için dinamik karakteristiklerin güncellenmesi gerektiği sonucuna ulaşılmıştır. 

İncelenen yüzer rüzgâr tribünü sistemi için, genelleştirilmiş aerodinamik kuvvetlerin 
genelleştirilmiş hidrodinamik kuvvetlere göre daha büyük mertebede olduğu 
gözlenmiştir. Yapısal tepkinin daha ziyade aerodinamik kuvvetlerce belirlenmesi, 
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etkileşim kuvvetleri şiddetinde kanat geçiş frekansı ile (üç kanatlı pervane için dönme 
frekansının üç katı) bir salınıma sebep olmuştur. İncelenen çevre durumları 
kapsamında, yapısal tepkinin yanal dalga-rüzgâr durumu için minimumda olduğu 
görülse de, azami enerji üretimi çaprazdan gelen dalga-rüzgâr durumu için elde 
edilmiştir.
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1. INTRODUCTION 

 

In recent years, the wind energy come into prominence as an alternative source of 

energy. Wind energy is predicted as one of the most capable renewable energy solution 

of the future. The estimated potential of wind power over the sites having wind speed 

more than 6.9 m/s at height 80 m is 72 TW for the year 2000, which is the 

approximately eight times of the world’s energy needs [1]. However, the wind energy 

reveals many practical obstacles such as initial investment cost and technological 

immaturity.  In this manner, many studies have been carried out to construct viable 

wind power plant by reducing the cost, in order to make use of this abundant energy 

source cost-effectively.  

The installed wind energy power plants are of either onshore or offshore type. 

Numerous offshore wind energy plants have been constructed recently and more are 

on the way. According to European Wind Energy Association (EWEA), the offshore 

wind capacity are estimated to reach 40 GW by 2020 and 150 GW by 2030 in Europe 

[2]. The more power capturing capacity due to the lesser turbulence in wind and higher 

average wind speed along with the available area for construction at offshore site 

makes offshore plants more popular compared to the land based plants. Moreover, the 

visual and noise pollution are prevented by the offshore type plants that are far from 

Figure 1.1 : Average water depth and distance to the shore of planned offshore wind projects [2]. 
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the living space so that the project sites are expected to cover further sites from the 

shore. Figure 1.1 presents average water depth and distance to the shore of the planned 

offshore wind projects [3].    

1.1 Floating Offshore Wind Turbines 

Most of the offshore wind projects in operation were installed at nearshore as bottom 

founded wind turbines, since they are cost-effective at water depth less than 50 m. 

Deep water wind resources, however, are extremely abundant so that project sites are 

required to enlarge to far from shore [4]. For sites of depth more than 50 m, bottom 

founded type wind turbines are not economically feasible and planting floating type 

wind turbines become the norm [5].  

Floating offshore wind turbines (FOWT) can carry larger wind turbines, accordingly, 

are capable of producing more energy with reduced final cost per MWh [2]. They can 

also substitute bottom founded wind turbines at soft seabed. However, the design of 

the FOWT brings inherent engineering challenges together. FOWT design should keep 

the motion of the system within acceptable limits and provide enough buoyancy to 

support the overall system weight. More dynamically coherent machinery design is 

needed as the turbine design is also impacted by the floater (platform) dynamics. For 

such systems, the design of the floater should be optimized, since the overall cost of 

depends mostly on the prices of the floater and power distribution system [6]. 

Extension of the installation site to deeper waters causes larger environmental loads, 

thereby; the response analysis of the floater is essential during the design phase and 

should consider both the wind and wave loads. Furthermore, interaction between 

floater hydrodynamics and rotor aerodynamics should be investigated [5]. 

The FOWTs may be divided into three main categories depending on the adopted 

strategy to establish the stability of the floating system.  

1. Ballast: Stability is achieved via central buoyancy tank that provides high 

inertial resistance to roll and pitch motions. 

2. Mooring Lines: Stability is achieved by the mooring line tension. 

3. Buoyancy: Stability is achieved by water plane area of the floater.  
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The spar-buoy, tension leg platform (TLP), and barge type FOWT, given in Figure 

1.2, are examples of ballast, mooring line, and buoyancy stabilized systems, 

respectively. Although the floating concepts are usually categorized based on the 

dominant source of stability, they are actually hybrid designs, ensuring the stability by 

employing each of the aforementioned methods [6].  

A great number of studies is carried out to determine optimum floater design of the 

FOWT with respect to functionality and reduced cost. There are various possible 

floater configurations in design consideration either single-turbine or multi-turbine 

floater. The support structures of the multi-turbine floater can be classified as very 

large floating structure (VLFS) as the minimum distance between the turbines is 

limited due to the aerodynamic interactions between them. Some of the multi-turbine 

floater concepts are shown in Figure 1.3.  [7] 

(a)                                                         (b) 
 

Figure 1.3 : (a) Semi-submersible type multi-turbine floater [7], (b) National Maritime Research 
Institute (NMRI) concept of ponton-type multi-turbine floater [5]. 

Figure 1.2 : Floating offshore wind turbine concepts. 



4 
 

1.2 Very Large Floating Structures 

Very large floating structures (VLFSs) can be thought of as man-made islands that 

enable ocean colonization. They may serve as a floating airport, bridge, pier, storage 

facility, industrial space, mobile offshore structure, entertainment facility, power plant 

and even as a floating city.  Even though the VLFSs are mostly suggested as an 

alternative to land reclamation, technological developments permit the installation of 

these structures also at deep waters [8, 9]. They are cost-effective at deeper waters 

compared to classical land reclamation, nature-friendly, and easily constructed, 

transported and expanded. Moreover, they are isolated from seismic shocks [10]. 

VLFSs are principally structures having too large horizontal dimensions relative to its 

vertical dimension. In fact, VLFSs are identified by not only their larger horizontal 

dimension but also by having greater length than their characteristic length, defined by 

the ratio of the structural stiffness to the hydrostatic stiffness. The elastic responses of 

VLFSs, hence, become more dominant than their rigid-body responses [11]. Therefore, 

during the design of a VLFS, performing a dynamic fluid-structure interaction analysis 

with considering the elasticity of the structure, i.e., a hydroelastic analysis is essential. 

VLFSs are generally divided into two categories, as pontoon-type and semi-

submersible type. Pontoon-type VLFSs are suitable in calm water as they are more 

sensitive to wave excitation. Pontoon-type VLFSs are mostly erected at sheltered 

coastal formation and supported with breakwater to reduce the incident wave height. 

Mega-float in Tokyo Bay serving as an airport on the left in Figure 1.4 is a pontoon-

type VLFS example. In open seas, semi-submersible type VLFSs are preferred in order 

to sustain constant buoyancy and minimize the influences due to wave excitation [8]. 

Figure 1.4 : Pontoon-type VLFS and semi-submersible-type VLFS [10]. 
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On the right in Figure 1.4 a semi-submersible type VLFS, constructed in Okinawa in 

Japan, is shown.   

1.3 Wind Turbine Components and Terminology 

A wind turbine primarily consists of a rotor composed of blade, hub, nacelle, tower, 

and support structure as shown in Figure 1.5. The latter is a floater with mooring lines 

in case of floating systems. The plane area shaded by the rotor blades are known as the 

actuator disk. The nacelle encloses the wind turbine equipment, involving mainly 

gearbox, generator, control mechanism, and possibly yaw drivers. The rotor-nacelle 

assembly (RNA), seen on the right in Figure 1.5, is composed of everything beared by 

the tower. The parts of the turbine necessary to produce electricity, including the 

gearbox, generator, shafts, etc., are known as drivetrain. 

The wind turbines have two possible configurations namely upwind and downwind, 

regarding how the wind encounters with the rotor, as seen in Figure 1.6. The blades 

passing in front of the tower of the downwind configuration is subjected to the tower 

shadow, which disrupts the wind flow and reduces the captured power. Most of the 

wind turbines, however, were constructed as upwind. 

There are distinct degrees of freedom (DOFs) associated with the wind turbine 

components, which are identified by specific names. The definitions are given with 

respect to either rotating or non-rotating local coordinate systems. The blade 

Figure 1.5 : Main components of floating offshore wind turbines and rotor-nacelle assembly (RNA). 
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coordinate system is fixed at the blade root with its z-axis pointing toward the blade 

tip. The tower top and tower base coordinate systems are also fixed at the top and at 

the base of the tower. Their x, y-, and z-axes are longitudinal, lateral and upward 

direction, respectively. The hub coordinate system rotates with the rotor whereas the 

nacelle/yaw coordinate system rotates around the tower centerline with nacelle yaw. 

The azimuth refers to the rotation of the rotor around the shaft axis, i.e., the rotation of 

the hub coordinate system, while blade pitch refers to the rotation of the blades around 

the z-axis of the blade coordinate system. Yaw denotes the rotation of the nacelle 

Figure 1.7 : Degrees of freedom of a wind turbine. 

Figure 1.6 : Upwind and downwind wind turbine. 
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around the tower centerline. The motion of the rotor around the global y-axis is known 

as tilt motion. The flexible blade DOFs are named as flapwise and edgewise, 

representing the out-of-plane and in-plane bending, respectively. The flexible tower 

DOFs are known as side-to-side and fore-aft bending. All of these DOFs are illustrated 

in Figure 1.7. 

1.4 Literature Review 

The standard hydroelastic analysis approach for floating structures can be attributed to 

Bishop and Price [12]; the dry dynamic characteristics of the structure forms the basis 

of the analysis, where the small amplitude general frequency dependent response is 

represented by modal expansion in terms of natural modes. Here, the linear potential 

theory is adopted for the fluid motion. 

Wu et al. [13] analyzed the hydroelastic response of a floating plate by using the 

eigenfunction expansion method. They applied an analytical approach to obtain the 

plate mode shapes and corresponding fluid velocity potential components. They 

considered both the rigid body and elastic motions and compared the predictions with 

the experimental results. 

Huang and Riggs [14] developed an explicit formulation to determine the complete 

hydrostatic stiffness for the flexible structures by considering the internal stresses of 

the structure along with the external hydrostatic pressure. The structure is assumed at 

rest in calm water. The proposed method produces symmetric hydrostatic stiffness 

coefficients.   

Ertekin et al [15] adopted the Haskind relation to compute the wave exciting forces in 

terms of incident and radiation velocity potentials and proposed the schemes of direct 

and modal approaches for coupling of the structural and fluid motion problems. 

Lee at al [16] developed a numerical technique for the wave-structure interaction 

problems to remove the irregular frequency effects inherent to the boundary element 

solutions, when the free surface Green function is adopted as the fundamental solution. 

They extended the solution domain by appending the inner free surface, over which 

the rigid wall condition is applied. 
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Watanabe et al. [17] presented an approximate benchmark study for the hydroelastic 

analysis of a circular pontoon-type VLFS subjected to regular waves. They adopted 

the Mindlin plate model and Rayleigh-Ritz method for the solution. 

Kara [18] developed a time domain numerical hydroelastic code to predict the 

hydroelastic response of floating bodies with zero and forward speed by computing 

the time domain radiation and wave excitation forces via the convolution of their 

impulse response functions. The method is verified by existing experimental results. 

Thanks to the studies revealed the potential of offshore wind energy, FOWTs become 

an active research topic lately. Different types of FOWT floater designs are presented 

and investigated in terms of survivability, reliability, and availability. Wang et al. [5] 

presented a review for floater conceptual designs. 

Musial et al. [4] conducted a feasibility study on several FOWT types. They 

categorized the floaters mainly as multi-turbine and single-turbine. A financial 

comparison between two single-turbine floaters with different mooring systems is also 

presented. 

Butterfield et al [19] analyzed the design challenges for certain floater types by 

classifying the floaters according to the static stability criteria. Prescribed challenges 

are assessed for each floater type by considering the financial conditions. 

Jonkman [20] developed a hydrodynamic analysis tool, in addition to the time domain 

simulation tool FAST presented by National Renewable Energy Laboratory (NREL), 

to analyze the coupled dynamic response of the FOWTs and performed a load analysis 

for one of the floater concepts. Here, the impulse response function (IRF) is employed 

to derive the wave forces in time domain. 

Matha [21] performed an extensive load and stability analysis of a TLP type FOWT 

by using the time domain aero-hydro-servo-elastic design code FAST with AeroDyn 

and HydroDyn. A comparison of instability and fatigue lifetime prediction between 

TLP, spar-buoy, and land-based wind turbine systems is presented. 

Ramachandran et al. [22] compared the RAOs obtained from different analysis tools. 

They initially assumed the wind turbine as rigid and non-operating, i.e. not subjected 

to wind excitation, and then extended the analysis by considering the structural 

flexibility of blades and tower, aerodynamic damping, and control mechanism. The 



9 
 

effects of the aerodynamic damping and gyroscopic excitation due to the rotating rotor 

on the dynamic response are also presented. 

Ma et al. [23] have developed a numerical simulation method to analyze coupled 

FOWT and mooring systems by considering the flexibility of the floater and 

nonlinearity of the mooring line. They also carried out a series of experiment of the 

scaled FOWT model under the excitation of steady wind and regular waves to validate 

the numerical method. 

Iijima et al. [24] proposed a numerical procedure to perform a coupled time-domain 

aerodynamic and hydrodynamic analysis for the pontoon-type multi-turbine floaters 

developed at NMRI (see Figure 1.3b). Here, the flexibility of both support structures, 

including the tower and blades, and wave and wind excitation forces are taken into 

account, though the interaction between the rotors is ignored. 

Within the scope of this thesis, the time domain response analysis of a large-scale 

support structure carrying two 5MW wind turbines, which is classified as VLFS due 

to its dimension, is performed under combined wave and wind loads. The dynamic 

characteristics of the structure, i.e., natural frequencies and mode shapes, are obtained 

using the finite element method (FEM) in order to represent the structural response, 

which is described by the modal approach. The fluid perturbation due to structural 

motiongiven in terms of potential distributions and represented similarly by modal 

expansionis related with the response through the kinematical boundary condition. 

The hydrodynamic forces on the structure are computed by applying the Boundary 

Element Method (BEM) in the frequency domain. The resulting frequency dependent 

wave radiation (in other words, fluid-structure interaction) forces and wave excitation 

forces are transformed into their time domain representation. The time domain 

interaction forces are calculated by the convolution of the impulse response functions 

that are obtained from the radiation forces. The time domain representation of the 

excitation forces for the irregular incident waves is obtained by the Fourier 

transformation of the wave exciting forces corresponding to the unit wave amplitude. 

Here, the Pierson-Moskowitz wave spectrum is applied for the specified wind velocity. 

The aerodynamic forces on the rotor are obtained by the Blade Element Momentum 

Theory (BEMt). The time integration of the structural responses are computed by 

forming the state-space model. 
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2. MATHEMATICAL MODEL 

2.1 Introduction 

A time domain aero-hydro-elastic solution procedure is formed to investigate the 

elastic response of the multi-rotor floating wind turbine structure under combined wind 

and wave loads. The aerodynamics of the rotor is calculated by considering the steady 

wind flow with laminar boundary layer effects and using the Blade Element 

Momentum Theory (BEMt). On the other side, the wave kinematics is determined by 

using the linear wave theory and adopting the irregular sea state.  The corresponding 

hydrodynamics interaction and wave forces in terms of potential distribution over the 

wetted surface of the floater is computed by using the Boundary Element Method 

(BEM). In order to obtain the time domain response of the structure, including the 

tower and floater, the state-space formulation of the generalized equation of motion is 

solved by applying a time integration scheme. The response is determined under 

several conditions of the combined wave-wind loads.  

The BEMt is based on the spanwise integration of the forces calculated by the 2D flow 

analysis at each blade cross section. Accordingly, the obtained forces are then 

transmitted to the structure through the components of the nacelle at each time step.  

The modal expansion methodology, which can efficiently couple the structural 

deformation with the fluid perturbation, is employed to establish the wave-structure 

interaction problem in the frequency domain. The method estimates the structural 

response as the superposition of natural (dry) modes, where the series coefficients, so 

called principle coordinates, describe the contribution of individual modes within the 

overall response. Fluid velocity potential is also decomposed into components 

corresponding to each considered mode shape, and the response and potential 

components are related through the kinematical boundary condition. The wave 

excitation forces for the unit amplitude regular waves are determined by using the 

Haskind relation. The fluid-structure interaction (radiation) forces and wave excitation 
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forces obtained in the frequency domain in generalized forms are transformed into the 

time domain as impulse response functions (IRFs) by using the Fourier transformation. 

In order to derive the external loading on the structure, the environmental conditions 

should be defined. First, the wind and wave characteristics and their mathematical 

approximation are introduced. Then, the numerical procedure to obtain the frequency 

dependent interaction and exciting forces and their time domain transformation are 

presented. Finally, the response of the floater under combined wave and wind loads is 

obtained by solving the generalized equations of motion. 

2.2 Wind Characteristics 

The wind environment can be represented by selecting an appropriate wind model 

depending on the circumstances. Assuming that the wind is steady, homogenous, 

uniform and unidirectional, as shown in Figure 2.1a, its aerodynamic can be efficiently 

studied. The airflow where the turbines are located, however, is subjected to boundary 

layer effect due to the viscosity and no-slip condition at the earth surface. Thus, the 

flow velocity in boundary layer decreases with elevation. This is determined by the 

uniform wind shear model illustrated in Figure 2.1b. In fact, inherently rough surface 

of the earth causes inhomogeneous, unsteady and turbulent flow. The turbulent wind 

model, demonstrated in Figure 2.1c, involves the sudden fluctuation in velocity and 

pressure [25]. 

Wind shear model is approximated by either power law profile or logarithmic wind 

profile. The power law describing the relation between height and wind speed is given 

as follow, 

Figure 2.1 : Wind Characteristics [25]. 



13 

 2 2

1 1

U z

U z


 

  
 

  (2.1) 

where 1U  and 2U  are the wind speeds at heights 1z  and 2z , while  stands for the 

wind shear exponent. 

On the other side, logarithmic wind profile relates the wind speed with the elevation 

as, 

 2 2
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U z z

U z z
   (2.2) 

Here, rz  is the roughness length, where mean speed is assumed zero [26]. 

2.3 Linear Wave Theory 

Linear wave theory is the most basic mathematical model to represent the regular water 

waves. The theory, however, is often preferred for engineering problems, since it 

provides accurate approximation and representation of the irregular waves in terms of 

regular waves. 

If the length of the structure along the waves is greater than about one-fifth of the 

wavelength, effects of the flow separation and friction drag can be neglected, so that 

the flow can be assumed inviscid. Furthermore, the water is essentially incompressible. 

The continuity equation for the incompressible and homogenous fluid may be 

expressed as, 

 . ( , ) 0t v x   (2.3) 

where v is the velocity vector, T( , , )x y zx  and t denote the position vector and time, 

respectively. Assumption of the irrotational fluid motion leads to the equation 

Assumption of the irrotational fluid motion leads to the equation 

 x ( , ) 0t v x   (2.4) 

which is satisfied if the fluid velocity vector is given as the gradient of the velocity 

potential ( , )t x . 

 ( , ) ( , )t tv x x   (2.5) 
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Therefore, the motion of the fluid could be expressed in terms of a velocity potential 

function by the Eq. (2.3) and (2.5) satisfying Laplace’s equation throughout the fluid 

domain ,  

 2 0 in      (2.6) 

Water waves can be defined by the deformation of the free surface. The fluid particles 

excited by the propagating waves are assumed not to propagate with the waveform. 

The characteristics of the water waves are demonstrated in Figure 2.2. 

The fluid motion at the free surface satisfies the dynamic and the kinematic boundary 

conditions. In linear wave theory, it is assumed that the wave height is much smaller 

than the wavelength. Hence, the dynamic boundary condition stating the equality of 

the fluid pressure to the atmospheric pressure on the free surface may be expressed in 

the following linear form by neglecting the second order terms in Bernoulli’s equation. 

 
1

on fS
g t




 


  (2.7) 

Here, Sf and  denote the free surface and free surface elevation, respectively, and g is 

the gravitational acceleration. The accompanying kinematic boundary condition states 

that the fluid particles on the free surface follow the vertical motions of the wave 

profile, 

 on fS
z t

 


 
  (2.8) 

where, z is vertical axis with the positive direction upwards. 

Combining Eqs. (2.7) and (2.8),  the linear free surface boundary condition is obtained, 

[27] 

Figure 2.2 : Wave propagation [27]. 
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At the sea bottom, there is no flow in normal direction. Considering the horizontal flat 

bottom, the seabed kinematic boundary condition can be written as, 

 0 on z h
z


  


  (2.10) 

In the absence of the body, the velocity potential for a progressive wave satisfying the 

boundary conditions (2.9) and (2.10) can be given as [7], 

  ( cos sin )cosh ( )
( , ) Re

cosh

i k x y t

I

ig k z h
t e

kh

  


  

   
 

x   (2.11) 

Here,  and  are the frequency and amplitude of the propagating waves in a water of 

uniform depth h, respectively,  is the incident angle, as shown in Fig. 1.2, and k is 

the wave number given by the dispersion relation 

 2 tanh .gk kh    (2.12) 

In deep water, tanh kh  approaches one and the dispersion relation for the deep water 

is given as 

 2k g   (2.13)  

Subsequently, the incident wave potential of deep water can be given from Eq. (2.11)
as [28], 

  ( cos sin )( , ) i k x y tkz
I

g
t e e   


  x   (2.14) 

Figure 2.3 : Definition of incident wave angle. 
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2.4  Generalized Equation of Motion 

The dynamic response of a structure due to external forces can be described by the 

discretized equation of motion, 

 ( ) ( ) ( ) ( ),Vt t t tMq C q + Kq = F    (2.15) 

where M, C, K represent the mass, structural damping and stiffness matrices, ,q q  and 

q  stands for the time-dependent displacements, velocities and accelerations 

respectively, F is the vector denoting the external forces and t represents the time. The 

displacement vector can be expressed as 

 T
1 2[ ... ... ],j nq q q q q   (2.16) 

where n denotes the number of nodes and jq  represents the nodal displacement 

components with three translations ux, uy, uz and three rotations x, y, z. Thus, the 

displacement vector for each node can be written as, 

 T [ ] .j x y z x y z ju u u   q   (2.17) 

For an undamped free vibration, in other words in vacuo analysis, the equation of 

motion of the structure becomes, 

 ( ) ( ) 0t tMq + Kq =   (2.18) 

By substituting the solution i te q u , Eq. (2.18)  can be written as 

 2( ) = 0 M K u   (2.19) 

Eq. (2.19) forms the eigenvalue problem, solution of which gives the dynamic 

characteristics, i.e., natural frequencies and corresponding mode shapes (normal 

modes) u of the structure.  

The general forced response of a structure may be expanded with a set of appropriate 

normal modes in following form, 

 
1

( ) ( ) ( )
mn

i i
i

t p t t


 q u Up   (2.20) 

where the modal matrix U consists of the normal mode vectors iu , and p(t) is the 

principle coordinates vector standing for the deflection components in the mn -



17 

dimensional modal vector space, where mn  indicates the number of considered 

principal modes. Eq. (2.15) may be written in terms of principal coordinates p(t) by 

using Eq. (2.20) and pre-multiplying by TU  

 ( ) ( ) ( ) ( )t t t t  ap bp cp f    (2.21) 

Here, a, b and c stand for the generalized matrices of mass, damping and stiffness, 

respectively, and given as 

 T T T T, , , ( ) ( )V t t   a U MU b U C U c U KU f U F   (2.22) 

The generalized mass and stiffness matrices are diagonal; however, the damping 

matrix does not have to be diagonal. The generalized external force vector f(t) that 

represents the fluid-structure interaction and all other external forces can be expressed 

as [29], 

 ( ) ( ( ) ( ) ( )) ( ),t t t t t    f Ap Bp Cp Ξ    (2.23) 

where, A, B and C are the generalized added mass, fluid damping, and fluid stiffness 

matrices, respectively, and (t) denotes the generalized external force vector caused 

by wave, wind, mechanical excitation, etc. 

The governing equation of motion in Eq. (2.21) then can be expressed as follows, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).t t t t     a A p b B p c C p Ξ    (2.24) 

2.5 Frequency Domain Hydrodynamics 

2.5.1 The wave-structure interaction problem 

The hydrodynamic loads on the body floating near the free surface are formulated by 

the wave diffraction and radiation potentials, which can be defined by the Laplace’s 

equation. Total velocity potential can be expressed as the sum of radiation and 

diffraction potentials,  

 .R D      (2.25) 

The radiation potential represents the velocity potential in the absence of the incident 

waves. For instance, in calm water, if the body is forced to oscillate, the resulting fluid 

motion will be represented by the radiation potential.  On the other hand, the diffraction 

potential arise from the presence of the incident waves and its interaction with floating 
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body. Under the assumptions of the linear theory, this potential may be defined about 

the fixed body, independent of its motions [28]. 

The diffraction potential may be further decomposed as 

 ,D I S     (2.26) 

where I  is the incident wave potential, given by Eq. (2.14) for deep water, and S  

is the scattering wave potential representing the disturbance of the incident waves by 

the presence of the body. The diffraction potential satisfies the following boundary 

condition on the wetted surface of the body, 

 0, onD S I wS       n n n   (2.27) 

Here, n is the unit normal vector on the wetted surface of the structure, Sw, pointing 

out of the fluid domain.  

A modal expansion similar to Eq. (2.20) can be adopted for the radiation potential, by 

proposing a series of potential components corresponding to each principal coordinate 

used in Eq. (2.20). Thus, the radiation potential in Eq. (2.25) can be rewritten as 

follows, 

 
1

( , ) ( ) ( ),
mn

R i i
i

t p t


  x x   (2.28) 

 ( ) .i t
i ip t p e    (2.29) 

where, i  and ( )ip t refer to the spatial distribution of the radiation potential and the 

principle coordinate associated with the ith principal mode, respectively. mn  is the 

number of considered modes in the dry analysis. 

The radiation potential is due to the structural motion, so a Neumann type boundary 

condition, stating the equality of the fluid and body normal velocities must be 

expressed over the fluid-structure interface. Using Eqs. (2.5), (2.20), and (2.28), the 

kinematical boundary condition for each potential component can be given as 

 , oni
i wS

t

 


 
u

n
  (2.30) 

Eq. (2.30) relates potential components with the normal modes of the floating body.   
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Considering the time harmonic form of the motion, boundary conditions stated in Eq. 

(2.9), (2.10) and (2.30) can be rewritten as 
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  (2.31) 
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 oni
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n

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u   (2.33) 

The waves on the free surface except due to the incident wave potential itself have to 

be radiating away from the body. For the infinite fluid domain, the additional condition 

stating that the effects of the body on fluid domain will diminish with the distance, r, 

from the source (so-called radiation condition) can be expressed as 

 
( )

lim ( ) 0.I
I

r
r ik

r

  
    

  (2.34) 

2.5.2 The boundary element solution of the potential problem 

In order to compute the interaction forces, the distribution of the velocity potential on 

the wetted surface should be determined. The potential problem defined by the Laplace 

equation and boundary conditions in Eqs. (2.31)-(2.34) can be expressed by the 

boundary integral equation (BIE) reducing the problem domain to the interface 

surface. The BIE can be determined through Green’s identities [30], Betti’s theorem 

[31] or weighted residual method [32] and solved by using the BEM. 

By considering the potential functions  and , satisfying the Laplace equation in the 

domain , the Green’s second identity is stated as follow, 

 2 2( )d d
n n

 
     

 

  
       

  
    (2.35) 

where,  is the boundary surface of the domain . The solution of a differential 

equation for a unit point source in an infinite domain  is entitled as the fundamental 

solution and defined as, 

 * ( ).u   x,ξ   (2.36) 
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Here, *u  is the fundamental solution,   is the differential operator, and ( , , )  ξ

and x  represents the source and field points in the domain, respectively. ( ) x,ξ is the 

Dirac delta function given as, 

 
0

( )


 
 

x ξ
x,ξ

x ξ
  (2.37) 

and it satisfies the following equations, 

 ( ) ( ) ( )f d f






  x x,ξ ξ   (2.38) 

 

0 ,

( ) ( ) ( )

undefined

f d f


 


  
 


ξ

x x,ξ ξ ξ

ξ

  (2.39) 

If the source point is on the surface  the integral becomes undefined. However, it can 

be calculated in the limit that the radius of the circular boundary approaches to zero. 

By replacing with the fundamental solution, defining the flux as q n   , and 

using Eqs. (2.36) and (2.39), Eq. (2.35) can be stated as follows [33],  

  * *( ) ( , ) ( ) ( ) ( , ) d .q q  


  ξ x ξ x x x ξ   (2.40) 

Eq. (2.40), however, includes singularities since Eq. (2.39) is undefined on the surface 

. These singularities, however, can be suppressed by defining a small circular 

boundary around the source point with radius  and calculating integrals while  

approaches to the surface. Then, Eq. (2.40) turns into the following BIE of the 

potential problem. 

 
* *( ) ( ) ( ) ( , )d ( , ) ( )dc q q  

 

    ξ ξ x x ξ x ξ x   (2.41) 

Here, ( )c ξ is the free-term, resulting from the calculation of the singular integrals that 

identifies the fraction of ( ) ξ  lying inside the domain of interest. The BIE can be 

applied to the free-surface problem by defining the fundamental solution satisfying the 

free surface and the radiation condition, i.e. free surface Green’s function which is 

given as follows [34]. 
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4 '
G H

r r

 
   

 
  (2.42) 

Here, H represents the influences of the free surface in Green’s function, while r and 

r’ denote the distance between the source point and the field point and the free surface 

image of the source point and the field point, respectively. 

 
     

     
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'
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r x y z

  

  

      
 

      
 

  (2.43) 

Since the Green’s function satisfies all the boundary conditions except for the wetted 

surface, the BIE can be defined over the wetted surface of the structure wS , 

 ,( ) ( ) ( ) ( , )d ( , ) ( )d
w w

n

S S

c G S G q S     ξ ξ x x x x   (2.44) 

The general solution of Eq. (2.44) requires the discretization of the interface surface 

with boundary elements, so that the potential function and body normal velocity 

distributions over the interface can be approximated using shape functions and nodal 

potential and flux values. For the ith boundary element, the corresponding 

representations i and iq  can be given as 

 
1 1

, .
i ie e

i i
j ij j ij

j j

N q N q 
 

     (2.45) 

Here, ie  is the number of nodal points assigned to the boundary element, ij  and ijq  

respectively represent the potential and flux values for the jth nodal point of the 

element, and Nj denotes the associated shape function. The shape functions are used to 

represent the distribution of the potentials over the related element. The linear shape 

functions are given as follows, 

 
        
       

1 2

3 4

1 1 4 , 1 1 4

1 1 4 , 1 1 4

N N

N N

   

   

     

     
  (2.46) 

By taking the nodal points of the discretization as the source point and substituting Eq. 

(2.45) with the boundary condition (2.33) into Eq. (2.44), the following set of algebraic 

equations can be written in terms of nodal potential function and body normal velocity 

values: 
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e i e i

i i

n e n e

k k ij j n ij j n
i j i jS S

c N G dS i N GdS k n  
   

    u   (2.47) 

Here, nn  and en  are the numbers of nodal points and boundary elements, respectively, 

used in the discretization, iS  is the area of the ith boundary element, and k  represents 

the potential value for the kth nodal point. The resulting system of equations after 

completing the surface integrations in Eq. (2.47) can be given with the matrix form 

 .iHΦ G q   (2.48) 

2.5.3 Generalized hydrodynamic forces 

Using the Bernoulli’s equation by neglecting the second-order terms, the fluid 

pressure, P(x, t), on the floating body can be given as. 

 
( , )

( , )
t

P t gz
t


 

   
 

x
x   (2.49) 

By substituting Eq. (2.28)-(2.29) into Eq. (2.25) the total velocity potential can be 

expressed as,  

 
1

( , ) Re ( )
mn

i t
j j I S

j

t p e 


   
       

   
x   (2.50) 

where  is the incident wave amplitude. Using Eq. (2.50) for the velocity potential in 

Eq. (2.49), the pressure expression can be arranged as follows. 
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   (2.51) 

The hydrodynamic force on the body related with the jth mode shape can be expressed 

by integrating the fluid pressure over the wetted surface: 
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  (2.52) 
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The force components in Eq. (2.52) represent different aspects of the hydrodynamic 

problem. The first term is the hydrostatic component. The second term is due to 

radiation problem and can be associated with the added-mass and hydrodynamic 

damping effects through its real and imaginary parts, respectively. The last term is 

related with the diffraction problem representing the wave excitation forces, 

proportional to the incident wave amplitude. 

2.5.3.1 Hydrostatics 

The leading term in Eq. (2.52), representing the forces associated with the vertical 

displacement, is known as the hydrostatic restoring force. The restoring force is 

generally expressed in terms of hydrostatic stiffness coefficients. The hydrostatic 

stiffness associated with the rigid body motion is well known, however in 

hydroelasticity, this stiffness matrix has to be extended to cover also the elastic 

motions. Furthermore, the hydrostatic stiffness matrix should consider all 

displacement related variations of the forces such as internal forces [14].  

When the hydrostatic stiffness of the flexible structure is formed, the structure can be 

assumed at rest in calm fluid, and subjected only to the gravity forces. The hydrostatic 

forces are divided into two components as external and internal forces. External forces 

result from the hydrostatic pressure on the wetted surface and the structural weight, 

whereas internal forces are due to the internal stresses [14]: 

    . . .
i

w s

E
HS i s i

S

dS g d


   f n u p n u   (2.53) 

 
i

s

I i
HS kl kl d 



 f   (2.54) 

Here, s  is the mass density of the structure and s  is the structural volume in the 

equilibrium configuration. kl  is the actual stress tensor and i
kl  is the strain tensor 

that is compatible with the normal mode iu . Thus, the hydrostatic stiffness matrix C 

presented in Eq. (2.24) can be expressed as, 

 h g C C C   (2.55) 

where hC  represents the hydrostatic stiffness due to the external forces and gC , known 

as the geometric stiffness matrix, results from the internal stresses. 
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The stiffness coefficients can be derived by a consistent linearization of the internal 

and external forces via the directional derivative [35], 

 , ,

i

h g E I
ij HS jC  f u   (2.56) 

where, superscript E and I indicate the external and internal forces. Substitution of Eq. 

(2.56) into Eq. (2.55) yields the explicit expression of the complete hydrostatic 

stiffness (see detailed derivation in Ref. [14]), 

 3 , , ,( ) .
w w s

i j j i j i j
ij k k l k l k lm k l k m

S S

C g u u z n dS g z u u n dS u u d   


          (2.57) 

Here, ,
j j

l lu   is the volumetric strain and kn  is the kth member of unit normal vector. 

Since the hydroelasticity of the floating structures are generally analyzed by adopting 

two-dimensional elements, the formulation can be specialized for a plate element by 

adopting the Kirchhoff plate model. The plate stiffness is formulated in a local 

coordinate system, x y z  , where z  is normal to the plane surface. Assuming that 

either top or bottom surface parallel to the x y  plane is subjected to the hydrostatic 

pressure, the other surface and the four edges are dry, considering the internal stresses 

in the geometric stiffness matrix, the hydrostatic stiffness matrix for a plate element is 

expressed as, 

 ,3 3 3 3 33 3 3, , 1, 2
w de

g i j i j
ij ij k k

S S

C C p u u n dS u u n dS k       (2.58) 

where ,3 33Tp g  . 33T  is the element of the transformation matrix T, such that it 

transforms a vector from local coordinates to the global coordinates. deS  represents the 

four edges and dry surface. The geometric stiffness in Eq. (2.58) is defined as, 

 
3, 3,

/2 /2
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C N u u dA

N d z d z m n  
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

  



 
  (2.59) 

Here, the integration is carried over the mid-plane area, A. mn  is the Kronecker delta 

function. The surface integral in Eq. (2.58) can be calculated along the mid-plane 

independently of z , however, in Eq. (2.59) the distribution of the normal stress over 

the thickness is required. 
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2.5.3.2 Damping and added mass 

For a structure near the free surface, the second term on the right-hand side of Eq. 

(2.52) represents the radiation forces, which can be given from Eqs. (2.22), (2.48) as, 

 
1

Re , 1, 2,...,
mn

i t
Ri j ij m

j

p e f i n



 
  

 
f   (2.60) 

where ijf  is the ith complex force component related with the jth mode shape and can 

be expressed as, 

  2 2.
w

ij i j ij ij

S

f dS A i B      n u   (2.61) 

Here, ijA and ijB  denote the generalized added mass and generalized hydrodynamic 

damping components, respectively:  

        . Re , . Im ,
w w

ij i j ij i j

S S

A dS B dS      n u n u   (2.62) 

Considering the time harmonic dependency, the radiation force can be given from Eq. 

(2.61) as 

 
1

( )
mn

Ri ij i ij j
i

A p B p


  f     (2.63) 

The added-mass coefficients imply that the force component proportional to the 

acceleration, whereas, the damping coefficients signify the force proportional to the 

body velocity. Moreover, the added-mass  and damping matrices are symmetric due to 

the implication of Green’s theorem during the computation of the coefficients [28]. 

The added mass can be explained as a certain fluid volume that is accelerated by the 

response of the structure. Hypothetically, every fluid particle will be affected by the 

structural motions, and the added mass is a weighted integration of this entire mass. 

Unlike the body mass, the added mass differ with the direction of the body motion 

[28].  

The damping related force results from the waves generated by the structural motions 

radiating outward on the free surface. Thus, the damping coefficients have a relation 

with the amplitude of the waves generated by the structure. If there is waves generated 

by the structure in any mode, the corresponding damping coefficient must be greater 

than zero [28].  
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2.5.3.3 Wave-exciting force 

The wave exciting forces determined by the last term of Eq. (2.52) are proportional to 

the incident wave amplitude. 

   Re .
w

i t
H I S i

S

i e dS 
  

    
  

Ξ n u    (2.64) 

It is appropriate to write Eq. (2.64) in the form, 

  Re , 1,2,..,i t
H i i me X i n Ξ   (2.65) 

where iX  is the complex excitation forces in the ith principle mode for a unit amplitude 

of incident wave. Substituting the boundary condition (2.33) into Eq. (2.64) yields 

following expression, 

  
w

i
i I S

S

X dS
n




   
   (2.66) 

The incident wave potential can be found for finite or infinite depth conditions by 

using Eq. (2.11). The similarity between boundary conditions for the scattering and 

incident wave potential can be used to derive the formulation for the excitation forces 

that is known as Haskind relation where no assumption required about wavelength or 

body geometry. Since the boundary condition at free surface and the radiation 

condition at infinity are the same for these two potentials, Green’s theorem can be 

applied on the wetted surface for the scattering potential [28], 
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 
 
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   (2.67) 

In this manner, one can rearrange the excitation force expression by substituting Eq. 

(2.67) into Eq. (2.66), 
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
  

    
  

   (2.68) 

In order to reduce the unknown scattering velocity potential from the expression, the 

boundary condition (2.27) is imposed to Eq. (2.68) and the following Haskind relation 

is acquired.  



27 

 
w

i I
i I i

S

X dS
n n


  

    
  

   (2.69) 

By this method, it is possible to state the excitation forces independently of the 

scattering potential, without approximation.  

2.5.4 Floater response in frequency domain and RAO 

Considering that the wave excitation is harmonic, the generalized equation of motion 

Eq. (2.24) can be given in the frequency domain that the response of the floater is 

represented through the response amplitude operator (RAO). By substituting Eq. 

(2.29) for the principle coordinates p and Eq. (2.65) for the excitation forces in Eq. 

(2.24), the equation of motion can be expressed as, 

       2 .i            a A B c C p X   (2.70) 

where, is the incident wave frequency. The generalized fluid radiation and wave 

excitation forces are frequency dependent, so the RAO, as the principle coordinate 

vector, is computed for each incident wave frequency of interest using Eq. (2.70): 

         
1

2 .RAO i     


        
p a A B c C X   (2.71) 

The components of RAO represent the influence values of each normal mode of 

interest on the overall response for unit wave amplitude of a certain frequency.  

2.6 Time Domain Hydrodynamics 

The time domain floater hydrodynamics can be constituted by using the output of the 

frequency domain analysis. In other words, the frequency dependent radiation and 

excitation forces obtained through the linear hydroelastic analysis can be transformed 

into their time dependent form. Accordingly, the time domain equation of motion can 

be written in generalized coordinates as, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).W Rt t t t t      a A p b B p c C p f f   (2.72) 

Here, A∞ is the generalized added mass matrix at infinite frequency, which has constant 

terms, and fW(t) and fR(t) are the time domain counterparts of the excitation and 

radiation forces, respectively.  
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The irregular sea state can be determined by the combination of regular wave 

components by using an appropriate wave spectrum. Within this context, the free 

surface elevation in an irregular sea can be given as [20]: 

      21
2 .

2
Sided i tt W S e d
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






    (2.73) 

Here, W(and 2 SidedS
 are the Fourier transform of a white Gaussian noise (WGN) 

time-series with standard normal distribution and two-sided power spectral density 

(see further details in Ref. [20]). The excitation forces, then can be estimated as,  
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

 f   (2.74) 

where ( , )iX    is the complex wave-excitation forces on the floater due to unit 

amplitude incident wave with frequency  and direction    

The time domain representation of the radiation forces is given by the convolution 

integral, 

  
0

( ) (t )d .
t

Ri ij jt K p    f    (2.75) 

Here,  is a dummy variable and Kij is the radiation IRF, covering the effects of the 

hydrodynamic damping as well as remaining part of added mass when A∞ is 

subtracted. It can be found by the Fourier sine transformation: 

        
0

2
sinij ijK t A A t d   






        (2.76) 

The convolution integral represents that the memory effects that describe the influence 

of radiation forces through the motion history of the floater. 

2.7 Aerodynamics of the Rotor 

The dynamics of fluid passing through the wind turbine is represented by the Navier-

Stokes equations. These equations, however, are not applied for the design and 

aerodynamic analysis of FOWTs due to the computational complexity they introduce. 

Instead, wind turbine aerodynamics is generally investigated through the two-

dimensional airfoil analysis with quasi-steady flow by using the BEMt [25]. 
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The BEMt combines the momentum theory that expresses the momentum balance on 

a rotating circular stream tube passing through the rotor and the blade element theory 

that computes the forces on the rotor by integrating the individual forces on the airfoil 

at each defined section of the blade [36].   

2.7.1 Momentum theory 

In the momentum theory, the rotor is considered as a collection of infinite number of 

very thin blades without drag, i.e. an actuator disk, where the static pressure has 

discontinuity at its sides due to energy extraction. The system illustrated in Figure 2.4 

is represented in a fixed control volume whose boundaries defined by the stream tube. 

The theory assumes that the wind is steady, homogenous and unidirectional; the flow 

in control volume is potential and uniform across the actuator disk; upwind and 

downwind (station 1 and 4 respectively in Figure 2.4) boundaries are far enough from 

the actuator disk so that the air pressure is equal to the atmospheric pressure at these 

boundaries [25]. 

Assuming the pressures at station 1 and 4  and the velocities at station 2 and 3 are equal 

and flow is frictionless, the Bernoulli’s equation yields [36] 

  2 2
2 3 1 4

1

2
p p V V     (2.77) 

where, p, V and   stand for the pressure, flow velocity and density of the air, 

respectively, while the attached indices refer to the related stations. The axial force can 

be expressed, then, as follows 

  2 2
1 4

1

2
xdF V V dA    (2.78) 

Figure 2.4 : Stream tube around the rotor [36]. 
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An axial induction factor, , is defined by the fractional decrease of the velocity when 

the wind reaches to the actuator disk, 

 1 2

1

V V

V



   (2.79) 

or equivalently, 

  2 1 1V V     (2.80) 

  4 1 1 2V V     (2.81) 

By substituting Eq. (2.81) into Eq. (2.78) and rewriting the far field wind velocity as 

1V V , the axial thrust can be written as follows. 

  21
4 1 2

2
xdF V rdr         (2.82) 

The extracted power by the rotor, then, is expressed as, 

  
231

4 1
2

P AV      (2.83) 

The non-dimensional power coefficient is given as, 
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2

P

P
C

AV
   (2.84) 

Substituting Eq. (2.84) into Eq. (2.83) yields, 

  
2

4 1 .PC      (2.85) 

The maximum power coefficient of the ideal rotor, known as Betz limit, can be found 

as max 0.5926PC   according to Eq. (2.85). In practice, the wake rotation, finite 

numbers of blades and aerodynamic drag prevent to achieve this efficiency. 

The wake rotation effects due to the blade rotation, neglected so far herein, are taken 

into account by using the conservation of the angular momentum. Considering the 

angular velocities of the wake rotation  , blade rotation , the moment of inertia 

2 ,I mr  the angular momentum L I , and the torque T dL dt , the following 

relation can be written: 
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2( ) ( )d I d mr dm
T r

dt dt dt

 
     (2.86) 

Here, m and r are the mass of the air and radius of the circular element illustrated in 

Figure 2.5b in stream tube, respectively. For the rotating circular differential element, 

the torque expressed as, 

 2 2
2 2dT dm r V r rdr       (2.87) 

By defining the angular induction factor as ' 2    and substituting Eq. (2.80) into 

Eq. (2.87), the torque equation can be rearranged as, 

 34 '(1 ')dT V r dr        (2.88) 

The 1/2 factor used in the angular induction factor is due to averaging the angular 

velocities of the wake at two sides of the rotor [25]. The axial and tangential forces, 

given by Eqs. (2.82) and (2.88), respectively, on a circular element can be derived by 

using the momentum theory.  

2.7.2 Blade element theory 

The blade element theory relies on the computation of the forces on the rotor by 

dividing the blades into sufficient number of element along the blade length and 

analyzing each element independently. The aerodynamic interaction between the blade 

elements is neglected and the forces are determined by using the lift and drag 

coefficients at cross-section of each blade element. In order to obtain the lift and drag 

Figure 2.5 : Rotating circular stream tube and notation [25, 36]. 
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coefficients of the cross-section, the airfoils data can be used, if available, otherwise 

wind tunnel experiment is required. 

A typical blade discretization is illustrated in Figure 2.6. Each blade element is 

subjected to different airflow depending on the chord length, c, twist angle,  , and 

position and velocity of the element [36]. Thus, the relative flow should be determined 

before the aerodynamic calculation of the corresponding airfoil. 

The flow reaching the blade element at station 2 of the stream tube is initialy non-

rotating and it leaves the rotor with rotational velocity . The rotational flow over the 

airfoil can be determined by averaging the inlet and outlet velocities. Considering that 

the blade rotates with velocity  and recalling the angular induction factor 

' 2 ,   the average tangential velocity can be expressed as 

 
1

(1 ')
2

V r r r          (2.89) 

The incoming flow orientation can be determined by using the normal and tangential 

velocities. By substituting normal velocity in Eq. (2.80), the flow orientation can be 

written as follows, 

 
 
(1 ')

tan
1

r

V






 



  (2.90) 

where,  , as seen in Figure 2.7, represents the angle between the directions of the 

wind and the flow over the blade element. By defining the local tip speed ratio as 

r r V   , Eq. (2.90) is rewritten in the following form: 

Figure 2.6 : Blade Element Model [36]. 
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The incoming flow W, thus, is given as, 

 
(1 )

cos

V
W






   (2.92) 

The drag force is parallel to the incoming waves, whereas the lift and drag forces are 

perpendicular to each other. The forces on the blade element, illustrated in Figure 2.7, 

can be expressed in terms of lift and drag forces as, 

 sin cosxdF dL dD     (2.93) 

 cos sindF dL dD      (2.94) 

where, dL and dD are the lift and drag forces on each element: 

 21

2
LdL C W cdr   (2.95) 

 21

2
DdD C W cdr   (2.96) 

Here, LC  and DC  are the lift and drag coefficients of the corresponding airfoil, 

respectively. 

Finally, Eqs. (2.91)-(2.96) yield the following torque and thrust force expressions: 

Figure 2.7 : Flow and forces on the airfoil [36]. 
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Here, ' 2Bc r   is known as the local solidity, with B as the number of blades. 

2.7.3 Blade element momentum theory 

The rotor aerodynamics whose blade geometric properties (i.e. airfoil geometry, blade 

length and twist distribution along the blade length) are known can be analyzed by 

combining the momentum and blade element theories. Before equating the thrust and 

torque expressions, equation of the momentum theory should be adjusted to represent 

the finite number of blades. This adjustment is commonly applied by tip loss factor. 

The tip loss factor is expressed as follows [25, 36]: 
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  (2.99) 

By substituting the tip loss factor in Eqs. (2.82)-(2.88), the thrust and torque equations 
become, 

  2 4 1xdF Q V rdr         (2.100) 

 34 '(1 ') .dT Q V r dr        (2.101) 

By equating the adjusted expressions of the momentum theory in Eqs. (2.100)-(2.101) 

and the blade element expressions in Eqs. (2.97)-(2.98), the following BEMt equations 

are derived. 
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  (2.102) 
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The aerodynamic performance of the rotor can be determined by using Eqs. (2.102)-

(2.103). The power output of the rotor is expressed as, 

 
h h

R R

r r
P dPdr dTdr      (2.104) 
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where, hr  is the hub radius. The dimensionless power coefficient PC  is given by, 
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Substituting the torque statement to Eq. (2.105) yields the power coefficient equation 

in terms of tip speed ratios. 
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Here,  and h  indicate the blade and hub tip speed ratios that express the ratio of the 

related element speed to the far field wind speed. 

2.8 Dynamic Response of the Floater 

The response of the floater to the combined wave and wind loads can be obtained 

through the equation of motion given in Eq. (2.72) by adding the forces transferred 

from RNA. The equation of motion takes the following form, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).W R At t t t t t       a A p b B p c C p f f f    (2.107) 

Here, fA is the generalized aerodynamic force that represents the forces transferred 

from RNA and given as, 

 ( ) T
A it ff U   (2.108) 

where fi is the nodal forcing vector. The aerodynamic forcing term includes the 

interaction forces of the blades with the air flow so that the motion of the RNA should 

be considered during the BEMt solution. Therefore, a weakly coupling procedure 

between hydrodynamic and aerodynamic analysis is formed by setting an interface 

point on tower top, where forces on the RNA are transmitted to the structure and in 

return, the motion of RNA is updated according to the structural response.     

The coefficients of the structural damping b can be estimated by the relation, 
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where  stands for the structural damping ratio. *
jja  and cij are the coefficient of the 

mass matrix excluding the RNA mass and stiffness matrix, respectively. The term in 

square root represents the natural frequencies of the structure when RNA mass is not 

included. 

For the time integration, the equation of motion can be converted into a set of first-

order differential equations by defining the state variable 
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The state-space formulation of the equation of motion can be given as [37], 

      t t f t x Ax   (2.111) 

where, 

 
       

   

1 1

1

0
,

0
( ) .

( ) ( ) ( )W R A

I

f t
t t t

 

 





 
  

       

  
  

     

A
a A c C a A b B

a A f f f

  (2.112) 

The influence of the hydrodynamic added-mass on the structural response is 

significant due to the same order of densities of the water and structural material; in 

contrast, by considering the air density, the aerodynamic added-mass can be excluded 

from the equation [20]. However, both aerodynamic and hydrodynamic damping are 

considered. Eq.(2.111) can be integrated using the explicit 4th order Runge-Kutta 

method and at each time step, the structural response can be obtained. 
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3. NUMERICAL APPLICATION 

The time domain response analysis of the large-scale support structure carrying two of 

5MW wind turbines is performed under combined wave and wind loads by coupling 

the hydroelastic and aeroelastic solution procedures.  

Firstly, the dynamic characteristics of the structure, i.e. natural frequencies and mode 

shapes, are obtained by the finite element method (FEM) in order to represent the 

structural response and corresponding fluid perturbation by the modal expansion 

method. The hydrodynamic forces on wave-structure interface are stated by the 

boundary integral equation (BIE) considering the linear waves and solved by 

Boundary Element Method (BEM) for the given frequency interval. The resulting 

frequency dependent interaction and excitation forces are converted into their time 

domain counterparts. The fluid-structure-interaction forces are calculated by the 

convolution integral of the impulse response functions that are obtained from the 

radiation forces in frequency domain by using the Filon quadrature. The time domain 

representation of the excitation forces for the irregular incident waves is obtained by 

the Fourier transformation of the wave exciting forces corresponding to the unit wave 

amplitude. Here, the Pierson-Moskowitz wave spectrum is applied for the specified 

wind velocity. The aerodynamic forces on the rotor are obtained by the Blade Element 

Momentum Theory (BEMt). The time integration of the structural responses are 

computed by forming the state-space model.  

3.1 Verification 

In this section, the computation procedure for the solution of the radiation and 

diffraction problems is tested by considering a free-floating cylinder near the free 

surface, which is commonly used for verification. Furthermore, the RAOs of a box-

like VLFS are calculated and compared with the benchmark data in order to verify the 

wave force and RAO computation procedure [38].  

The cylinder with radius r = 1 m and draught T = 1 m is discretized by using three 

different meshes of 272, 612 and 2041 elements (Figure 3.1), in order to analyze the 
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convergence of the results. Firstly, the non-dimensional added mass and 

hydrodynamic damping coefficients of the vertical cylinder body are computed by 

considering only the rigid body modes for the frequency interval [0, 10] rad/s. Then, 

the exciting forces, i.e. the diffraction forces, and the RAOs of the surge, heave and 

pitch motions are obtained. The damping due to viscous effects is imitated by adding 

an external damping coefficient for the pitch motion. The main parameters of the 

cylinder are given in Table 3.4. 

The obtained results are compared with the results presented in [39]. The non-

dimensional added mass and damping coefficients are determined as follows. 
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Table 3.1 : Characteristics of the cylinder [39]. 

Radius 1.00 m COG X coordinate 0.00 m 

Draught 1.00 m COG Y coordinate 0.00 m 

Mass 3.14E+3 kg COG Z coordinate -0.50 m 

Pitch inertia 1.57E+3 kg m2 C55 (External damping coefficient) 4.35E+3 kg m2 /s 

The added mass and damping coefficients of the surge, heave and pitch motion are 

presented in Figure 3.2, along with the results found in literature. The results indicate 

2041 Element 

272 Element 612 Element 

Figure 3.1 : Cylinder meshes used in BEM solution procedure 
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the improvement of the accuracy in parallel with the mesh density. The added mass 

coefficients of the fine mesh in the pitch motions, 55a , are slightly different due to the 

different mesh. This disagreement can be suppressed by intensifying the meshes near 

the free surface or using quadratic boundary elements. 

The wave exciting forces and RAOs for heave and pitch motions of the cylinder are 

calculated for the incident wave frequencies of [0-10] rad/s interval. The obtained 

results and the comparisons are presented in Figure 3.3 and Figure 3.4. The non-

dimensional forces and moments are determined as follows 

Figure 3.2 : Convergence of the radiation coefficients for the cylinder. 
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    (3.2) 

Although the minor differences are observed in wave exciting forces for the coarse 

and medium meshes, the results are quite compatible for the finest mesh. On the other 

side, the RAOs of the pitch motion have some differences probably due to the slight 

differences in added-mass and damping coefficients, yet the RAOs give consistent 

results in general. 

So far, the solution procedure of the rigid body motions is verified; however, the 

varication should be extended to include the elastic motions of the structure. In this 

respect, the hydroelastic analysis of a VLFS is performed to obtain RAOs. The 

structural and hydrodynamic descriptions of the selected VLFS are presented in Table 

3.5. The resulting RAOs are compared with the benchmark case given in Ref. [38]. 

The bending stiffness of the elements used in dry analysis is increased by considering 

that the bending thickness is five times of the nominal plate thickness. The density of 

Figure 3.3 : Convergence of the wave exciting forces for the cylinder. 

Figure 3.4 : Convergence of the RAOs for the VLFS. 
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the bottom and top decks are set to 15375 kg/m3 and 5125 kg/m3, while the other plates 

are considered massless. The element size are 1 m in horizontal directions and 0.5 m 

in vertical direction. The coordinate system is located at still water level at midship 

with x-axis is along the longitudinal direction and z-axis is pointing upward. The 

analysis is conducted by considering the first twelve elastic modes. The resulting 

RAOs in first vertical mode of the VLFS is presented in Figure 3.5 for two different 

incident wave angle. 

Table 3.2 : Structural and hydrodynamic characteristics of the VLFS. 

Length 100 m Elastic Modulus 15 GPa 

Breadth 10 m Poisson’s Ratio 0.3 

Height 2 m Center of Gravity (0.0, 0.0, 0.5) m 

Draught 1 m Density of water 1025 kg/ m3 

 

3.2 Modelling Approach 

3.2.1 Dynamic characteristics and simplified structural model 

For the computation of the dynamic characteristics of the FOWT, the finite element 

models of the floater and tower are based on shell and beam elements, respectively, 

and the RNAs are represented as concentrated masses with rotational inertia at tower-

top. Since the yaw angle of the RNA influences the dynamic characteristics, the mode 

shapes of the structure are determined for each environmental condition according to 

the orientation of the RNA. 

Typical arrangement of the floating structure contains longitudinal and transverse 

structural components as well as bottom and deck plating. The entire structural model 

Figure 3.5 : RAO of the first vertical bending mode. 



42 

could be formed, yet for large structures this implies a large amount of redundant 

degrees of freedom; using simplified models is quite common [8] to avoid excessive 

computational cost for the hydroelastic response analysis, which is the adopted 

strategy here. 

The structure can be idealized as equivalent orthotropic plate model by using uniform 

shell elements with identical bending and torsional stiffness. The following moment 

curvature equation can be written for two-dimensional structural elements, 
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where w is the global deflection of the structure, andx yM M  are the biaxial bending 

moment, xyM  is the torsional moment, and the coefficients in matrix are the structural 

properties known as bending stiffness. For an orthotropic material, the stress-strain 

relation under plane-stress conditions are given as, 
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where 1E  and 2E  are the elastic modulus in longitudinal and transverse directions, 

respectively, and 12  and 21  are the Poisson ratios. The moment-curvature relation of 

the equivalent orthotropic plate model is expressed as follows,  
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where t is the equivalent orthotropic plate thickness. By considering the relation 

12 2 21 1E E   and with an arbitrary value of t, Eq. (3.3) and Eq. (3.5) together provides 

the equivalent orthotropic plate properties, namely 1 2 12 12, , ,E E G . 

Material properties of the shell elements are determined by using the orthotropic plate 

model in order to avoid a detailed structural model. However, the bulkheads of the 

structure is considered in 3-D model. The mass element properties are determined 

according to the NREL 5MW baseline turbine and the density of the tower is increased 

to represent the mass except its outer shell. The structural properties of the FE model 

are presented in Table 3.1.  

Table 3.3 : Structural Properties. 

Length x breadth x height 240 m x 24 m x 4 m 

Draught 2 m 

Bending stiffness of shell and bulkhead plates 5,0802E+09 

Displacement 1,5744E+04 tonnes 

Tower height 87,6 m 

Tower mass 347.460 kg 

Tower base radius / thickness 3 m / 27 mm 

Tower top radius / thickness 1,935 m / 19 mm 

Elastic modulus of tower material 210 GPa 

Poisson ratio of tower material 0,3 

Density of tower material 8500 

RNA mass 3,5000E+05 kg 

RNA roll inertia 4,5050E+07 kg m2 

RNA pitch inertia 2,4940E+07 kg m2 

RNA yaw inertia 2,5477E+07 kg m2 

The mode shapes of the structure can be described as either tower or platform type 

depending on the domination of the components. The platform type modes are 

identified as vertical (V), horizontal, (H), or torsional (T), and the tower type modes 

are identified as fore-aft (FA), side-to-side (SS), or mixed (MX), which states that the 

mode shape is directed along the x-axis, y-axis, or both, respectively. Some platform 

type modes are illustrated according to the RNA orientation ( in Figure 3.6.  
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Figure 3.6 : Platform type mode shapes for different RNA orientation. 
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3.2.2 Boundary element model 

The BE meshes are constructed according to the FE meshes so that the finite and 

boundary elements over the wetted surface match to each other. The tower type mode 

shapes are not considered in BE solutions, since their effect on the hydrodynamic 

analysis can be neglected. 

BEM computation introduces inherently the irregular frequencies due to the 

implementation of the free surface Green function. Since the Green function satisfies 

the free surface boundary condition over the entire free surface-both the external free 

surface and assumed inner free surface, the obtained fluid forces are erroneous at the 

wave frequencies coinciding with the associated sloshing frequencies.  In order to 

handle this problem during the BEM computation, the inner free surface is appended 

to the computation domain and a rigid wall boundary condition is applied over it. The 

potential distributions over the wetted boundary elements and inner water-plane 

boundary elements are represented by using linear and quadratic shape functions, 

respectively.  

Considering that the free-terms in Eq. (2.47) are determined by only the geometry of 

the boundary surface, they can be calculated indirectly by considering a completely 

closed fluid domainby combining the wetted surface and inner free surfaceand 

applying constant potential in the domain so that the flux values in Eq. (2.48) vanishes 

for the corresponding internal flow problem. In that case, sum of the each rows of the 

H matrix must be zero and the diagonal terms of H can be calculated as [33], 
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Here, instead of the free surface Green function, the simple source of 1/4r is used as 

the fundamental solution. 

3.2.3 FAST and blade element model  

The source code FAST is utilized in the implementation of the aerodynamics and 

structural dynamics of RNA. The nonlinear aeroelastic analysis is modeled in FAST 

according to the Kane’s equation of motion for a simple holonomic system stated by 

the following equation [40, 41],  

 ( , , ) ( , , , , ) 0dp u t p p p u u t M f    (3.7) 
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where M is the mass matrix, f is the forcing vector, u  and du  are the wind turbine 

control inputs and wind inputs [41]. FAST is set to consider the two flapwise and one 

edgewise elastic modes per blade, generator azimuth, shaft torsion, and nacelle yaw 

rotation. In order to compute the RNA forces due to each turbine, the tower top motions 

from hydroelastic analysis and kinematics obtained from the dynamic characteristics 

are imposed to the FAST dynamic routine. The forces on tower top due to RNA, except 

its gravity forces already accounted in FE model, are transferred to the hydroelastic 

analysis of the structure. BEMt computation is carried out by ignoring the aerodynamic 

interaction between the rotors.  

Three bladed NREL 5MW wind turbine is adopted for the RNA model whose 

specifications are given in Table 3.2.  

Table 3.4 : RNA properties. 

Blades length 61,5 m 

Mass of each blade 17.740 kg 

Hub mass 56.780 kg 

Nacelle mass 240.000 kg 

Rated rotor speed 13,6 rpm 

Blade passing frequency 0,68 Hz 

3.2.4 Environment  

In order to estimate the sea state, the Pierson-Moskowitz wave spectrum is 

implemented by considering 12 m/s wind speed. The wave parameters of the spectrum 

data are given in Table 3.3. The same direction is assumed for the wind and wave 

environments. Three incident angles are considered for the analysis, namely, 90° 

(beam), 135° (oblique) and 180° (head). 

Table 3.5 : Pierson-Moskowitz wave spectrum data. 

Wind speed 12 m/s 

Significant wave height 3,074 m 

Peak spectral period 7,338 s 

3.3 Dynamic Response Analysis of FOWT 

In order to observe the aero-hydro-elastic behavior of the floater carrying two 5MW 

wind turbines under wave and wind loads, firstly, the dynamic characteristics and the 



47 

corresponding frequency domain hydroelastic features are obtained by using the FEM 

and BEM respectively. The mesh size is determined by considering the convergence 

of the generalized added mass coefficients, given for the first platform bending and 

torsional modes in Figure 3.7. In the case of coarse mesh, the results are quite different 

due to the inadequate element size for the hydrodynamic analysis. However, the mesh 

size having 140, 12 and 6 elements along the x-, y- and z-axis, respectively, is sufficient 

for achieving accurate results. The diagonal added mass terms corresponding to the 

platform modes are presented for each incident wave direction in Figure 3.8. Although 

Figure 3.8 : Generalized added mass coefficients for upper-left),upper-right) and 
bottom). 

Figure 3.7 : Convergence of the BEM analysis 
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for most of the modes the added mass coefficients of are similar despite the change in 

wave angle, significant variations in second and third vertical bending modes are 

observed.  

The wave excitation forces are determined by applying the Haskind relation. As shown 

in Figure 3.9, the wave forces related with the vertical bending modes are relatively 

larger in the low frequency range, as expected. Even though the forces generally have 

the same amplitude, the wave force in second vertical bending mode differs for each 

wave angle. 

The time domain fluid-structure interaction forces and excitation force are obtained 

from the radiation forces, i.e. added masses, and the wave excitation forces, 

respectively, using the Fourier transform. The Filon quadrature is adopted to integrate 

the oscillatory function in Eq. (2.76) for the computation of IRF. The diagonal 

coefficients of IRF are illustrated in Figure 3.10 for the platform modes. The 

coefficients of IRF are expected to decline, since the effect of the structural motions 

on the radiated waves decreases over time. Besides, smaller amplitude IRFs for the 

modes having higher natural frequency indicates that the energy transferred to the fluid 

are relatively small for the high frequency modes. 

Figure 3.9 : Generalized wave excitation forces for upper-left), upper-right) and 
bottom). 
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The time domain radiation forces are obtained by the convolution of the IRF. As seen 

in Eq. (2.75), the computation process involves the motion history of the structure. 

Considering that the memory effects are weakened as time progresses, however, the 

motion history can be limited to shorter times. Keeping the sixty seconds history is the 

common approach and it is adequate for achieving accurate results. The time domain 

radiation forces are presented in Figure 3.11 for several angles of incident wave. The 

forces have slightly different amplitude when the RNA is oriented according to the 

oblique direction (135°) of the wave-wind as a result of the modification of the tower 

mode shapes from FA to MX. 

Figure 3.11 : Time domain radiation forces. 

Figure 3.10 : Diagonal entries of the impulse response function (IRF) for the platform type modes 
( 
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The time domain wave forces are derived by the sine transformation of the frequency 

domain wave forces. The waves are considered as unidirectional and the wave 

elevation is represented by using the Pierson-Moskowitz wave spectrum. As illustrated 

in Figure 3.12, the magnitude of the time domain wave forces for the vertical bending 

modes of the platform are of higher order in parallel with the frequency domain wave 

forces. 

While applying the BEMt for the rotor aerodynamics, swirl model for the induction 

factor is adopted. In addition, hub-loss and tip-loss of the rotor are taken into account 

by using the Prandtl model. Two flapwise and one edgewise modes of the blades and 

drivetrain rotational flexibility are considered along with the generator degree of 

freedom for the structural dynamics of the rotor. The tower top forces due to rotor is 

presented in Figure 3.13. 

The generalized aerodynamic forces are computed by substituting the tower top forces 

for the nodal forcing vector in Eq. (2.108). The generalized aerodynamic forces of the 

Figure 3.12 : Time domain wave forces. 

Figure 3.13 : Physical Forces on first tower top. 
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modes TFA-V1 and TFA-V3 are given in Figure 3.14. The aerodynamic excitation is 

excessively large with respect to the hydrodynamic excitation, meaning that the 

response is mainly due to aerodynamics. The dependence of aerodynamic excitation 

to the wind angle is also presented in Figure 3.14. The relation between the wave and 

aerodynamic excitation is revealed by the lower frequency oscillation of the 

aerodynamic forces about 0.14 Hz (the peak spectral frequency of the irregular waves), 

while the influences of the radiation forces and the rotation of the blades cause an 

oscillation with the blade passing frequency, 0.68 Hz. Furthermore, when the RNA is 

oriented to the 135° with respect to the wind angle, the influence of the wave forces 

over the aerodynamics diminishes for the first vertical bending mode of platform. 

At last, the forces are assembled in principle coordinates and the state-space equation 

of motion, given in Eq. (2.111), is solved to find the principle coordinate vector 

representing the influences of the specified modes on overall response. The 

Figure 3.14 : Aerodynamic excitations in principle coordinates. 
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generalized response of the platform vertical bending modes (V1, V2 and V3) are 

demonstrated in Figure 3.15 for each environmental case. The head and beam direction 

of the wave-wind have same order effects on the response in symmetric vertical 

bending modes (V1 and V3), however, for the asymmetric mode (V2) this correlation 

is vanished. The principle coordinate components for the oblique wave-wind have 

particular values due to different type of the tower mode shapes. 

The response of the structure, i.e. nodal displacements and velocities, can be 

determined by converting the quantities from the principle coordinates to the physical 

Figure 3.15 : Modal components of the response in principle coordinates. 
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coordinates through the mode shapes. In Figure 3.16, the displacement of the point 

chosen at floater aft (-120, 0, 2) and floater fore (120, 0, 2) along with the velocities 

of the point (120, 0, 2) are presented for 60 s time history. The overall response is 

sensitive to the angle of the wave-wind. Although the minimum deflection is observed 

at beam direction, as seen in Figure 3.17, the most power capturing capacity is 

achieved by the oblique wave-wind s. 

 

Figure 3.16 : Floater overall response. 
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3.4 Conclusion 

The time domain dynamic response of a FOWT’s support structure including towers 

and floater is investigated under combined wave and wind loads by coupling the 

hydroelastic and aeroelastic solution procedures. The elastic responses of the structure 

is taken into account due to its relatively large dimensions. The modal approach is 

adopted to describe the dynamic response of the support structure and the FEM is 

applied to represent its dynamic characteristics, namely, the natural frequencies and 

corresponding mode shapes. The fluid flow, assumed ideal and irrotational, is 

described as the combination of potential components attributed to the wave radiation 

and diffraction. The fluid-structure interaction is established through the kinematical 

boundary condition and fluid pressure distribution over the wetted surface. The 

frequency domain wave radiation forces (i.e., the added mass and hydrodynamic 

damping effects) and wave excitation forces are determined by using a higher-order 

BEM approach relies on the free surface Green function, where the extended BEM 

formulation is adopted for removal of the frequency effects. The time domain history 

of the wave forces is obtained by the Fourier transformation of the frequency domain 

counterparts; the Filon quadrature is applied for numerical calculations. 

In order to avoid detailed modelling of the structure, the FE model of the floater is 

constituted by using the orthotropic plate model whereas the RNAs represented by 

mass elements with rotational inertia on each tower top. The orientations of the mass 

elements are taken into consideration in the dry analysis due to the yaw degree of 

freedom of the RNAs.  

Figure 3.17 : Total generated power. 
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The wave radiation and excitation forcesrelated with the elastic modes that induce 

strong fluid-structure interactionare determined for each environmental condition 

and transformed to their time domain representations by the convolution of the 

radiation impulse response function and using the sine transformation, respectively. 

The aerodynamic forces due to steady wind are obtained by using the BEMt by 

considering the interaction with the structural motion. 2 flapwise and 1 edgewise 

elastic modes per blade, generator azimuth, shaft torsion, and nacelle yaw rotation are 

considered during the computation of the forces on each tower top. Then, the state-

space formulation of the equation of motion is solved at each time step by using the 

4th order Runge-Kutta method for the time integration of the responses. The general 

conclusions may be given as follows: 

 The variation of the dynamic characteristics corresponding to the RNA 

orientation should be taken into account when the nacelle rotation is enabled.  

 Due to the configuration of the floater, the irregular frequency effects resulting 

from the adopted free surface Green function is expected to be large, though 

the applied extended BEM formulation effectively removes the effects. 

 The wave forces associated with the floater vertical bending modes have 

relatively higher influences over the structural response. 

 The generalized aerodynamic forces are excessively large with respect to the 

generalized wave forces for the analyzed FOWT configuration. 

 The response of the structure is mainly due to the aerodynamic excitation. 

Accordingly, the hydrodynamic and aerodynamic interaction forces oscillate 

with the blade passing frequency, which is three times of the rated rotor speed. 

 The influence of the head and beam directions of the wave-wind on the 

response of the symmetric vertical bending modes is of the same order. The 

effect of the oblique wave-wind, however, can be distinctive depending on the 

tower mode shapes. Additionally, the correlation between the influences of the 

head and beam direction of the wave and wind is vanished for asymmetric 

floater modes. 



56 

 The overall response of the floater is minimized when the wave-wind are in the 

beam direction. The maximum power is generated by the oblique wave-wind 

case. 



57 

REFERENCES 

[1] Archer, C.L. & Jacobson, M.Z. (2005). Evaluation of global wind power, Journal 
of Geophysical Research-Atmospheres, 110 (D12). 

[2] EWEA. (2013). Deep water—the next step for offshore wind energy: The European 
Wind Energy Association 

[3] Athanasia, A. & Genachte, A.B. (2013). Deep Offshore and New Foundation 
Concepts, Energy Procedia, 35, s. 198-209. 

[4] Musial, W., Butterfield, S., & Boone, A. (2004), Feasibility of Floating Platform 
Systems for Wind Turbines, in 42nd AIAA Aerospace Sciences Meeting 
and Exhibit. American Institute of Aeronautics and Astronautics. 

[5] Wang, C.M., Utsunomiya, T., Wee, S.C., & Choo, Y.S. (2010). Research on 
floating wind turbines: a literature survey, The IES Journal Part A: 
Civil & Structural Engineering, 3 (4), s. 267-277. 

[6] Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering 
Challenges for Floating Offshore Wind Turbines, Conference: 
Presented at the 2005 Copenhagen Offshore Wind Conference, 26-28 
October 2005, Copenhagen, Denmark: ; National Renewable Energy 
Laboratory (NREL), Golden, CO. 

[7] Ishihara, T., Phuc, P.V., & Sukegawa, H. (2007). Numerical study on the 
dynamic response of a floating offshore wind turbine system due to 
resonance and nonlinear wave, European Offshore Wind Conference & 
Exhibition. Berlin, Germany. 

[8] Wang, C.M., Watanabe, E., & Utsunomiya, T. (2007). Very Large Floating 
Structures, New York: Taylor & Francis. 

[9] Wang, C. & Wang, B. (2014). Large Floating Structures: Technological 
Advances, Vol. 3: Springer. 

[10] Watanabe, E., Utsunomiya, T., & Wang, C. (2004). Hydroelastic analysis of 
pontoon-type VLFS: a literature survey, Engineering structures, 26 (2), 
s. 245-256. 

[11] Suzuki, H., Yasuzawa, Y., Fujikubo, M., Okada, S., Endo, H., Hattori, Y., 
Okada, H., Watanabe, Y., Morikawa, M., & Ozaki, M. (1997). 
Structural response and design of large scale floating structure, 
Proceedings of the International Conference on Offshore Mechanics 
and Arctic Engineering. American Society of Mechanical Engineers, 
131-138. 

[12] Bishop, R.E.D. & Price, W.G. (1979). Hydroelasticity of Ships: Cambridge 
University Press. 



58 

[13] Wu, C., Watanabe, E., & Utsunomiya, T. (1995). An eigenfunction expansion-
matching method for analyzing the wave-induced responses of an 
elastic floating plate, Applied Ocean Research, 17 (5), s. 301-310. 

[14] Huang, L.L. & Riggs, H.R. (2000). The hydrostatic stiffness of flexible floating 
structures for linear hydroelasticity, Marine Structures, 13 (2), s. 91-
106. 

[15] Ertekin, R.C., Wang, S.Q., Che, X.L., & Riggs, H.R. (1995). On the application 
of the Haskind-Hanaoka relations to hydroelasticity problems, Marine 
Structures, 8 (6), s. 617-629. 

[16] Lee, C.-H., Newman, J.N., & Zhu, X. (1996). An Extended Boundary Integral 
Equation Method For The Removal Of Irregular Frequency Effects, 
International Journal for Numerical Methods in Fluids, 23 (7), s. 637-
660. 

[17] Watanabe, E., Utsunomiya, T., Wang, C.M., & Hang, L.T.T. (2006). 
Benchmark hydroelastic responses of a circular VLFS under wave 
action, Engineering Structures, 28 (3), s. 423-430. 

[18] Kara, F. (2015). Time domain prediction of hydroelasticity of floating bodies, 
Applied Ocean Research, 51, s. 1-13. 

[19] Butterfield, S., Musial, W., Jonkman, J., Sclavounos, P., & Wayman, L. 
(2005). Engineering challenges for floating offshore wind turbines, 
Copenhagen Offshore Wind Conference, Copenhagen, Denmark. 
Citeseer, 377-382. 

[20] Jonkman, J.M. (2009). Dynamics of offshore floating wind turbines—model 
development and verification, Wind energy, 12 (5), s. 459-492. 

[21] Matha, D. (2010). Model development and loads analysis of an offshore wind 
turbine on a tension leg platform with a comparison to other floating 
turbine concepts (NREL/SR-500-45891).  

[22] Ramachandran, G., Robertson, A., Jonkman, J., & Masciola, M. (2013). 
Investigation of response amplitude operators for floating offshore 
wind turbines, The Twenty-third International Offshore and Polar 
Engineering Conference. International Society of Offshore and Polar 
Engineers. 

[23] Ma, C., Iijima, K., & Nihei, Y. (2014). Strongly coupled method for predicting 
the response of flexible FOWT with mooring and its experimental 
validation, ASME 2014 33rd International Conference on Ocean, 
Offshore and Arctic Engineering. American Society of Mechanical 
Engineers. 

[24] Iijima, K., Kim, J., & Fujikubo, M. (2010). Coupled aerodynamic and 
hydroelastic analysis of an offshore floating wind turbine system under 
wind and wave loads, ASME 2010 29th International Conference on 
Ocean, Offshore and Arctic Engineering. American Society of 
Mechanical Engineers, 241-248. 

[25] Jonkman, J.M. (2003). Modeling of the UAE wind turbine for refinement of 
FAST_AD (NREL/TP-500-34755 ).  

[26] Jain, P. (2011). Wind energy engineering: McGraw-Hill. 



59 

[27] Yue, D.K.P. (2005), 2.20 - Marine Hydrodynamics, in Massachusetts Institute of 
Technology: MIT OpenCouseWare. 

[28] Newman, J.N. (1977). Marine hydrodynamics: MIT press. 

[29] Ergin, A., Price, W.G., Randall, R., & Temarel, P. (1992). Dynamic 
Characteristics of a Submerged, Flexible Cylinder Vibrating in Finite 
Water Depths, Journal of Ship Research, 36 (2), s. 154-167. 

[30] Wrobel, L.C. (2002). The boundary element method, applications in thermo-
fluids and acoustics, Vol. 1: John Wiley & Sons. 

[31] Beer, G., Smith, I., & Duenser, C. (2008). The boundary element method with 
programming: for engineers and scientists: Springer Science & 
Business Media. 

[32] Brebbia, C.A., Telles, J.C.F., & Wrobel, L. (2012). Boundary element 
techniques: theory and applications in engineering: Springer Science 
& Business Media. 

[33] Gaul, L., Kögl, M., & Wagner, M. (2003). Boundary Element Methods for 
Engineers and Scientists: Springer. 

[34] Wehausen, J.V. & Laitone, E.V. (1960). Surface Waves: Springer-Verlag. 

[35] Hughes, T.J.R. & Pister, K.S. (1978). Consistent linearization in mechanics of 
solids and structures, Computers & Structures, 8 (3), s. 391-397. 

[36] Ingram, G. (2005). Wind turbine blade analysis using the blade element 
momentum method. version 1.0, School of Engineering, Durham 
University, UK. 

[37] Craig, R.R. & Kurdila, A.J. (2011). Fundamentals of Structural Dynamics: 
Wiley. 

[38] Riggs, H.R., Niimi, K.M., & Huang, L.L. (2007). Two Benchmark Problems 
for Three-Dimensional, Linear Hydroelasticity, Journal of Offshore 
Mechanics and Arctic Engineering, 129 (3), s. 149-157. 

[39] Watai, R.A., Ruggeri, F., Sampaio, C.M.P., & Simos, A.N. (2015). 
Development of a time domain boundary element method for numerical 
analysis of floating bodies’ responses in waves, Journal of the Brazilian 
Society of Mechanical Sciences and Engineering, 37 (5), s. 1569-1589. 

[40] Kane, T.R. & Levinson, D.A. (1985). Dynamics, Theory and Applications: 
McGraw-Hill. 

[41] Jonkman, J.M. & Buhl Jr, M.L. (2005). FAST user’s guide, National 
Renewable Energy Laboratory, Golden, CO, Technical Report No. 
NREL/EL-500-38230. 

 

 





61 

 

CURRICULUM VITAE 

Name Surname : Enes TUNCA   

Place and Date of Birth : Karamürsel / 1991  

E-Mail : tuncaen@itu.edu.tr 

 

EDUCATION    

 B.Sc.  : 2014, Istanbul Technical University  

  Faculty of Naval Architecture and Ocean Engineering  

  Department of Naval Architecture and Marine Engineerig 

PUBLICATIONS: 

 Tunca, E., Kahraman, İ., Uğurlu, B. 2016. Free-surface Coupled 
Hydroelastic Analysis Of Fluid Containers, The 30th Asian-Pacific Technical 
Exchange And Advisory Meeting On Marine Structures, October 10-13, 2016 
Mokpo, South Korea. 

 Tunca, E., Uğurlu, B., 2015. Ultimate Strength Analysis For The Assessment 
Of Stiffener-Plate Design Configuration, The 29th Asian-Pacific Technical 
Exchange and Advisory Meeting on Marine Structures, October 12-15, 2015  
Vladivostok, Russia. 


