ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

DYNAMIC RESPONSE ANALYSIS OF A FLOATING PLATFORM
FOR OFFSHORE WIND TURBINES

M.Sc. THESIS

Enes TUNCA

Department of Naval Architecture and Marine Engineering

Naval Architecture and Marine Engineering Programme

AUGUST 2017






ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

DYNAMIC RESPONSE ANALYSIS OF A FLOATING PLATFORM
FOR OFFSHORE WIND TURBINES

M.Sc. THESIS

Enes TUNCA
(508141003)

Department of Naval Architecture and Marine Engineering

Naval Architecture and Marine Engineering Programme

Thesis Advisor: Assoc. Prof. Bahadir UGURLU

AUGUST 2017






ISTANBUL TEKNIK UNIiVERSITESI * FEN BILIMLERI ENSTITUSU

YUZER RUZGAR TURBINi PLATFORMLARININ
DINAMIK TEPKi ANALIZi

YUKSEK LiSANS TEZI

Enes TUNCA
(508141003)

Gemi Insaat1 ve Gemi Makinalar1 Miihendisligi Anabilim Dal

Gemi Insaati ve Gemi Makinalar1 Miihendisligi Program

Tez Damismani: Dog. Dr. Bahadir UGURLU

AGUSTOS 2017






Enes TUNCA, an M-.Sc. student of ITU Graduate School of Science Engineering and
Technology student ID 508141003, successfully defended the thesis/dissertation
entitled “DYNAMIC RESPONSE ANALYSIS OF A FLOATING PLATFORM
FOR OFFSHORE WIND TURBINES”, which he prepared after fulfilling the
requirements specified in the associated legislations, before the jury whose signatures
are below.

Thesis Advisor : Assoc. Prof. Bahadir Ugurlu ..
Istanbul Technical University

Jury Members : Prof. SakirBal
Istanbul Technical University

Assoc. Prof. Ismail BAYER ...
Yildiz Technical University

Date of Submission : 14 August 2017
Date of Defense : 17 August 2017






To my family and twin nieces,

Serra & Feyza,

“So, when you have finished, immediately strive hard to do next. (Al-Inshirah, 7)”

vii






FOREWORD

I would like to express my sincere thanks and appreciation to my advisor Assoc. Prof.
Bahadir Ugurlu for his friendship and patiently support and to ismail Kahraman who
can always give an advice about any issue. | appreciate to all of my co-workers for
their valuable support. Besides, I would like to thanks to the National Renewable

Energy Laboratory (NREL) for providing the public documentation about wind
energy.

I extend my sincerest gratitude to my parents giving me the morality of striving to
make the best.

August 2017 Enes TUNCA
Naval Architect and Marine Engineer

X






TABLE OF CONTENTS

Page

FOREWORD ...cutiiiiitininntensennnisssnisseesnesssesssesssessssssssassssessssssssssssassssesssssssssssss ix
TABLE OF CONTENTS....ccooiininiinuinsensesssnssenssesssisssssssssassssssassssssssssssssassssssassssssns xi
ABBREVIATIONS ...ccoiiiniinninsinnsnensnecssiesssesssnsssssessessssessssssssssssassssssssssssassssasssss xiii
SYMBOLS ..uviiiuinnriinseinsnisesssesssnsssssstsssssssssssssssssssssssssssssssssssssssssssssssssssssasssasssssss XV
LIST OF TABLES ....ccoiiiintiiinnnensnecsnessnesssesssacsssessssessssssssssssasssssssssssssssssasssns Xvii
LIST OF FIGURES ....uucouiiiinuininninsnisenssisssisessasssssssssssssssssssssssssssssssssssssssssssass Xix
SUMMARY ..cuuiiiiiininnnicsnnnsnecssessssecssesssassssessssssssessssssssssssassssesssassssssssassssesssssssasssss xxi
OZET c.cooeeerererereeeresssesessssesessssssssssessssssssssasssssssssssssssssssssssssssssssssssssessssssssssesssssess xxiii
1. INTRODUCTION ..ccuiisueisricsensncsaecsasssnsssecsssssessssssassssssssssssssssssssssssssssssssssssassssssae 1
1.1 Floating Offshore Wind Turbines ...........cccceeerviiieiiieeiiieecieecee e 2
1.2 Very Large Floating StruCtUIEs ...........ceovieriieiieniieeiiesiie e 4
1.3 Wind Turbine Components and Terminology .........ccccceeevieerciveeriiieeniieereeenee. 5
1.4 LIterature REVIEW .....c..coiuiiiiiiiiiieieiiesi ettt sttt 7

2. MATHEMATICAL MODEL .....cucininnuinvensinsunssenssesssnssesssesssssssssssssassssssssssssssass 11
2.1 INEOAUCTION ...ttt sttt st et et sb e e ete b e 11
2.2 WiInd CharaCteriStiCS .......c.ueerueerueeriieniieeieesiieeieesteeteesiteesbeesieeebeesaeeesbeeseeeenees 12
2.3 Linear Wave TREOTY.....c.coouiiiiieiieeieeiieeie ettt ettt e ae e e 13
2.4 Generalized Equation of MOtION ........cccviiiiiiiiiiiecieeciee e 16
2.5 Frequency Domain Hydrodynamics.............ccecueevieniieniieniiieniieeieeee e 17
2.5.1 The wave-structure interaction problem ............ccccceeeeiieeriieeerieeeeiee e 17
2.5.2 The boundary element solution of the potential problem ......................... 19
2.5.3 Generalized hydrodynamic fOrces ..........ccovuveviiiieniieeniieeeiee e 22
2.5.3.1 HYdroStatiCs ....cecvieiieriieeiieeiie ettt ettt ettt e 23
2.5.3.2 Damping and added mass..........ccceereiieeiiieniie e 25

2.5.3.3 Wave-eXCItiNg fOTCE ......eevviiriieiieriieeiieriie ettt 26

2.5.4 Floater response in frequency domain and RAO...........ccccveevvveeieeennenn. 27

2.6 Time Domain Hydrodynamics ............ceccueeriieriieniienieeiie e sve e 27
2.7 Aerodynamics of the ROtOT .........coeviiieiiiiiiiicceee e 28
2.7.1 MomeNtUM thEOTY ....cc.eeeiuieiiieiieiie ettt ettt e e 29
2.7.2 Blade element theory ........cceeeciieeiiieeie et 31
2.7.3 Blade element momentum theory ...........cccueriieriieniiinienieeiecie e 34

2.8 Dynamic Response of the Floater ...........ccccvveiiiieiiiieiieeceecee e 35
3. NUMERICAL APPLICATION....ucccvcinsensuecsunsecsaecsensnsssncsssssessssssassasssssssssssassae 37
3.1 VerTfICAtION. ....eiiiiiiiieie ettt et e 37
3.2 Modelling APProach .........oceeeiieiiiiiieie et 41
3.2.1 Dynamic characteristics and simplified structural model......................... 41
3.2.2 Boundary element model .............coocuieiiiiiiiniiiiieieceee e 45
3.2.3 FAST and blade element model.............cccccoiiiiiiiniiiiiieceeee 45
3.2.4 ENVITONMENT ...cutiiiiiiiiieitieie ettt ettt et sttt e s eaae st enaeas 46

3.3 Dynamic Response Analysis Of FOWT ........ccccoeiiiiiiiiiniiiece e 46
3.4 CONCIUSION.....cuiiiiiiiiecect ettt st 54
REFERENCES .....uuiiiiiiiuinneininsnissnnssesssnssssssesssnsssssssssssssssssssssssssssssssssssassssssssssssssass 57



CURRICULUM VITAE

xii



ABBREVIATIONS

BE
BEM
BEMt
BIE
COG
DOF
EWEA
FE
FEM
FOWT
IRF
NMRI
NREL
RAO
RNA
TLP
VLFS
WGN

: Boundary Element

: Boundary Element Method

: Blade Element Momentum Theory

: Boundary Integral Equation

: Center of Gravity

: Degree of Freedom

: European Wind Energy Association
: Finite Element

: Finite Element Method

: Floating Offshore Wind Turbine

: Impulse Response Function

: National Maritime Research Institute
: National Renewable Energy Laboratory
: Response Amplitude Operator

: Rotor-Nacelle Assembly

: Tension Leg Platform

: Very Large Floating Structure

: White Gaussian Noise

xiii






SYMBOLS

A : Hydrodynamic added mass matrix

A : Infinite frequency limit of the hydrodynamic added mass
A : Rotor area

a : Generalized mass matrix

B : Hydrodynamic damping matrix

b : Generalized damping matrix

C : Hydrostatic stiffness matrix

C
C

v : Damping matrix
D : Non-dimensional drag coefficient
CL : Non-dimensional lift coefficient
Cp : Non-dimensional power coefficient
c : Generalized stiffness matrix
E : Young modulus
F : Force vector
Fi : Axial force
f : Generalized external force vector
4 : Generalized aerodynamic force vector
fn : Generalized hydrodynamic force vector
frs : Generalized hydrostatic force vector
fw : Wave excitation force vector
fr : Radiation force vector
G : Free surface Green function
g : Gravitational acceleration
1 : Moment of inertia
K : Stiffness matrix
K : Impulse response function
k : Wave number
M : Mass matrix
Mx, My, Myxy : Torque components
m : Mass
Ni : Shape function
n : Normal vector
P : Pressure
P,P,sP : Principle coordinate vectors
0 : Tip-loss factor
q,9.9 : Acceleration, velocity and displacement
r : Position vector
Sy, Sw : Free surface, wetted surface
§ e : Two-sided power spectral density
T : Transformation matrix
T : Torque

XV



S

o [ I D e

: Time

: Modal matrix

: Mode shape vector

: Wind speed

: Fourier transform a white Gaussian noise time-series
: Position vector, dependent variable of the state-space model
: Complex wave excitation

: Airflow velocity

: Velocity vector

: Roughness length

: Incident wave angle, induction factor

: Angle between wind and airflow over airfoil
: Dirac delta

: Strain components

: Velocity potential

: Radiation velocity potential

: Diffraction velocity potential

: Incident wave velocity potential

: Scattered wave velocity potential

: Domain surface

: Blade, hub and local tip speed ratio

: Density

: Blade local solidity

: Stress components

: Frequency, wake rotation velocity

: Position vector

: Problem domain, blade rotation velocity

: Exciting force vector

: Wave-exciting force vector

: Wave amplitude

Xvi



LIST OF TABLES

Table 3.1 :
Table 3.2 :
Table 3.3 :
Table 3.4 :
Table 3.5 :

Page
Characteristics of the cylinder [39].......ccocvvviiiiiiniiiieeieeeeeee 38
Structural and hydrodynamic characteristics of the VLFS. .................... 41
Structural PrOPEIties........c.eevieeiiierieeiieiieeiee et 43
RN AN 0 (0] 015 3 1SS 46
Pierson-Moskowitz wave spectrum data............cceeeeeeiieenieniieenieenieennans 46

Xvil






LIST OF FIGURES

Figure 1.1 :

Figure 1.2 :
Figure 1.3 :

Figure 1.4 :
Figure 1.5 :

Figure 1.6 :
Figure 1.7 :
Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 2.7 :
Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 3.6 :
Figure 3.7 :
Figure 3.8 :

Figure 3.9 :
Figure 3.10
Figure 3.11

Figure 3.12
Figure 3.13

Figure 3.14 :
Figure 3.15 :
Figure 3.16 :
Figure 3.17 :

Page
Average water depth and distance to the shore of planned offshore wind
PTOJECES [2]. reeeeiieeiiieeiiee ettt e ettt e et e et e e e tae e st e e st e e esaaeessaeesseeennseeennns 1
Floating offshore wind turbine concepts. ..........ccceeveveeriencieenienieeieeee. 3

(a) Semi-submersible type multi-turbine floater [7], (b) National
Maritime Research Institute (NMRI) concept of ponton-type multi-

turbine floater [S]. .uvveeiiieeiieeie e e 3
Pontoon-type VLFS and semi-submersible-type VLFS [10].................. 4
Main components of floating offshore wind turbines and rotor-nacelle
ASSEMDBIY (RINA). ceiiiiiieiieciieett ettt et e 5
Upwind and downwind wind turbine. ...........cccceeevieviieeniiieciieeiee e 6
Degrees of freedom of a wind turbine. .........ccccoeeeeviiienienciienieeieeeee, 6
Wind CharacterisStiCS [25]...uiiiuiririieeriieeiieeeie e et eree e 12
Wave propagation [27]. ...c.ceceeeieerieeiieiieeieeiee et 14
Definition of incident wave angle. ..........c.coevveeeiiieiiieecieeee e 15
Stream tube around the rotor [36]. .....cccoveeeeiieeiiiieiee e 29
Rotating circular stream tube and notation [25, 36].......ccccceevveeruveennnen. 31
Blade Element Model [36]. ....c..ooocuiieeiiiieiieeeieeeeeeeeee e 32
Flow and forces on the airfoil [36]........ccceeviiieeiiiieieeee e 33
Cylinder meshes used in BEM solution procedure ...........cccccecvvenneennee. 38
Convergence of the radiation coefficients for the cylinder. .................. 39
Convergence of the wave exciting forces for the cylinder. ................... 40
Convergence of the RAOs for the VLFS. ..o 40
RAO of the first vertical bending mode. ..........ccccoevieviiiiniiiiiiiene 41
Platform type mode shapes for different RNA orientation. .................. 44
Convergence of the BEM analysis .........cccceevieniieciienieeiienieeieeeeee, 47
Generalized added mass coefficients for a = 90° (upper-

left), = 135° (upper-right) and = 180° (bottom)........c.cccceruereenenn 47
Generalized wave excitation forces for &= 90° (upper-left),

a = 135° (upper-right) and o= 180° (bottom). ........ccceeevvreerreeeieennns 48
: Diagonal entries of the impulse response function (IRF) for the
platform type modes (= 180°). ...cceeviieiiiiriieiieieeeee e 49
: Time domain radiation forces. ..........covueeiiiniiiniiiiiieeceee e 49
: Time domain wave fOrCes. ........ooeviiririiiniiniiieseeeeeeseee e 50
: Physical Forces on first towWer top. ........cceeveveeeiiieciieeceeecee e 50

Aerodynamic excitations in principle coordinates. ............ccccceeueennenns 51
Modal components of the response in principle coordinates. ............. 52
Floater overall 1€SPONSE. ......c.eevuieeiieriiiiiieiie ettt 53
Total generated POWET. .......cccviieiiiieeiie e e eae e 54

Xix






DYNAMIC RESPONSE ANALYSIS OF A FLOATING PLATFORM FOR
OFFSHORE WIND TURBINES

SUMMARY

In recent years, studies demonstrating the potential of the offshore wind energy have
shown that the installation site of the wind turbines needs to be extended to areas
farther from the shore. However, bottom founded type offshore wind turbines have
limited the installation site to the near-shore areas, so far. Making more use of the wind
energy source is possible through the floating type offshore wind turbines. Due to the
extreme loads, comprehensive response analysis of the floating offshore wind turbines
under combined wave and wind excitation is essential during the initial design.

In this study, the response analysis of the large-scale floating platform carrying two
wind turbines is performed under combined wave and wind loads. It is well accepted
that the investigation of the rigid body motions of the floater is sufficient in response
analysis; however, the elastic motions of the floater should be considered in present
study due to its dimensions.

In order to analyze the aero-hydro-elastic response of the floater, firstly the dynamic
characteristics are determined by the finite element analysis by considering that the
response of the structure can be represented by its dynamic characteristics. The rotor-
nacelle assembly of the wind turbine is imitated by a concentrated mass with rotational
inertia in finite element analysis. Hydrodynamic radiation and wave forces in
frequency domain are computed according to the dynamic characteristics by using the
boundary element method and transformed to their time domain representation by the
convolution of the radiation impulse response function and using the sine
transformation, respectively. The sea state is modeled by using the Pierson-Moskowitz
wave spectra. The aerodynamic forces are obtained by considering the steady wind
condition and using the blade element momentum theory. The time domain response
of the structure is acquired by the time integration of the equation of motion.
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YUZER RUZGAR TURBINI PLATFORMLARININ DINAMIiK TEPKIi
ANALIZI

OZET

Son yillarda, riizgar enerjisi, yenilenebilir enerji kaynaklar1 arasinda en ¢ok yatirim
yapilan, gelecegin enerji kaynagi ¢oziimii haline gelmistir. Bu baglamda, riizgar
enerjisinden daha uygun maliyetle faydalanilmasi igin c¢ok sayida miihendislik
caligmasi literatiire kazandirilmistir. Acik denizlerdeki riizgar enerjisi potansiyelini
ortaya koyan ¢alismalar, riizgar tiirbinlerinin inga sahasinin kiyidan uzak bolgelere
genisletilmesi gerekliligini ortaya ¢ikarmistir. Bununla birlikte, denizlerde insa edilen
riizgar tlrbinlerinin deniz dibinde bir temel ile desteklenmesi gerekliligi, giiniimiize
kadarki insa sahalarimi kiyiya yakin bolgelere kisitlamistir. Daha derin denizlerdeki
enerji potansiyelinden faydalanabilmek, ancak yiizer riizgar tiirbinleri ile miimkiindjir.
Maruz kaldig1 ytikler goz 6ntinde bulunduruldugunda yiizer riizgar tiirbinleri tasarimi
icin kapsamli yapisal analizlerin yapilmas1 gerekir.

Yiizer riizgar tiirbinlerinin tasariminda yapinin riizgar ve dalga tahrik kuvvetlerine
tepkisinin belirlenmesi esastir. Yapinin hareketleri tahrik kuvvetlerinde degisime
sebep olurken, tahrik kuvvetleri de yapinin hareketlerini etkiler. Bu iligki yapinin
elastik hareketlerinin aerodinamik ve hidrodinamik yiikler ile bagli analizini, diger bir
deyisle aero-hidro-elastik analizinin yapilmasini gerektirir.

Bu calismada, rlizgar tiirbinlerine yiizer destek yapisi olarak diisiiniilen biiyiik 6l¢ekli
bir platform, birbirleriyle aerodinamik etkilesimi ihmal edilen iki adet riizgar tiirbinini
tagtyacak sekilde tasarlanmis ve yapinin dalga ve riizgar yiikleri altindaki aero-hidro-
elastik yanit1 belirlenmistir. Yiizer riizgar tlirbinlerinin dinamik analizi esnasinda
platformun yalnizca rijit hareketlerinin incelenmesinin yeterli olacagi genel olarak
kabul goérmiis olmasina ragmen, bu ¢calismada, platformun boyutlarindan dolay: elastik
hareketler de dikkate alinmistir.

Analiz ¢ercevesinde yapiya etkiyen riizgar hizlarinin ytikseklikle beraber artisi, bir
baska deyisle hava akigsindaki sinir tabaka etkisi, iistel fonksiyon yaklagimi ile
belirlenmistir. Dalgalarin modellenmesinde ise diizenli bir dalga icin akiskan
hareketini tanimlayan lineer dalga teorisi kullanilmistir. Karigik deniz modellerine
temel olusturan bu teori dalga yliksekliginin, dalga boyuna gore kiiciik oldugu
kabuliine dayanir.

Platformun dinamik analizi i¢in, Oncelikle, tahrik kuvvetlerinden dogan yapisal
tepkinin sekil degistirme modlar cinsinden temsil edilebilecegi gbz Oniine alinarak,
sonlu elemanlar yontemi ile platformun dinamik karakteristikleri belirlenmistir.
Dinamik karakteristikler elde edilirken, tiirbinin pervane-motor besigi diizenegi
rotasyonel eylemsizlige sahip noktasal kiitle olarak diisiiniilmiis ve bu diizenegin kule
merkez hatti etrafindaki donme serbestlik derecesinden dolayi, dinamik
karakteristikler her bir vaka i¢in riizgar gelis agis1 dikkate alinarak giincellenmistir.

Hidrodinamik kuvvetler, akiskan-yap1 etkilesim kuvvetleri ve dalga tahrik kuvvetleri
olarak ikiye ayrilir. Etkilesim kuvvetleri, yapinin sakin sudaki hareketinden dolay1
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ortaya ¢ikan akiskan kuvvetleridir. Dalga tahrik kuvvetleri ise yapinin hareketsiz kabul
edildigi bir durumda gelen dalgalarin olusturacagi kuvvetlerdir. Etkilesim kuvvetleri,
yapinin hareketi ile etrafa dagilan dalgalarin hareketini tanimlayan radyasyon hiz
potansiyelinin, yapinin dinamik karakteristigi olan mod sekilleri ile eslestirilmesiyle
yapinin her bir dogal modu i¢in elde edilebilir. Modal acilim olarak bilinen bu
yaklasim ile radyasyon potansiyelini tanimlayan sinir deger problemi akiskan-yap1 ara
yiizii iizerinde bir sinir integral denklem olarak ifade elde edilebilir. Bu integral
denklem sinir eleman yontemiyle ¢oziilerek, yapi 1slak yiizeyi tizerindeki potansiyel
dagilimi1 ve sonrasinda yapiya etkiyen genellestirilmis etkilesim kuvvetleri (ek su
kiitlesi ve hidrodinamik soniim etkileri olarak) elde edilmistir. Sinir eleman
uygulamasinda kullanilan serbest yiizey Green fonksiyonunun akiskan serbest yiizey
sartin1 tiim serbest yiizey iizerinde saglamasindan dolay1 ortaya ¢ikan diizensiz frekans
etkilerini ortadan kaldirmak i¢in, yapinin su hattindaki varsayimsal i¢ serbest yiizey,
tizerinde duvar sarti tamimlanarak, problem smir yilizeyine eklenmistir.
Genellestirilmis dalga tahrik kuvvetleri, gelen ve sacilan dalgalarin hiz potansiyelini
iceren difraksiyon bir hiz potansiyeliyle verilebilir. Bu caligmada dalga tahrik
kuvvetleri, Haskind iligkileri kullanilarak, gelen dalga ve radyasyon potansiyelleri
cinsinden dogrudan hesaplanmistir. Akiskan-yapi etkilesim kuvvetlerinin zaman
bolgesine taginmasi, frekans bolgesi degerlerinin sayisal integrasyonu ile elde edilen
etki-tepki fonksiyonlarina (impulse response function) konvolusyon uygulanmasiyla
gergeklestirilmistir. Bu ifade, belirli bir an i¢in etkilesim kuvvetlerinin yapinin hareket
gecmisine bagli olduguna isaret eder. Bu nedenle, analiz esnasinda yapinin hareket
gecmisinin belirli bir zaman dilimi i¢in elde tutulmasi gerekir. Dalga tahrik
kuvvetlerinin zaman bolgesinde temsili i¢in, frekans bolgesinde birim dalga genligi
icin elde edilen tahrik kuvvetlerine siniis doniisiimii uygulanmistir. Dalga genlikleri
Pierson-Moskowitz dalga spektrumu kullanilarak hesaplanmistir.

Aerodinamik kuvvetler kanat eleman momentum teorisi kullanarak hesaplanmistir. Bu
teoride, riizgar tiirbini kanatlar1 yeter sayida elemanla ayriklastirilarak, her eleman
kesiti iizerinde iki boyutlu akis analizi yapilir ve her eleman i¢in elde edilen kuvvetler
kanat boyunca tiimlenerek rotor tizerindeki riizgar kuvvetleri elde edilir. Bu kapsamda,
her zaman adiminda rotor iizerindeki kuvvetler hesaplanmis ve motor besigi
araciligiyla kulelere aktarilmigtir. Bu asamada, agik kaynak simiilasyon kodu FAST
kullanilmastir.

Sonlu eleman modeline tiirbin kulesinin {ist noktasindan aktarilacak aerodinamik
yiikler hesaplanirken, kanatlarin elastik hareketleri, jeneratoriin donme hareketi, saft
burulmasi ve motor besiginin yalpa hareketi dikkate alinmistir. Aerodinamik kuvvetler
laminer sabit hizli riizgar durumu diislintilerek hesaplanmustir.

Yapinin zaman bolgesindeki genellestirilmis hareket denklemi durum uzayinda temsil
edilmis, ¢6ziim i¢in 4. dereceden Runge-Kutta metodu kullanilmistir. Her zaman adimi
i¢in yap1 lizerine etkiyen tahrik ve etkilesim kuvvetleri ve bu kuvvetlere yapinin cevabi
olarak, deplasman, hiz ve ivme degerleri elde edilmistir.

Analizler sonucunda pervane-motor besigi diizeneginin yoniiniin dinamik
karakteristikler ilizerindeki etkisi gozlemlenmis, modellenen riizgar tiirbininde bu
diizenek kule ekseni etrafinda donme serbestlik derecesine sahip ise, her ¢evresel
durum i¢in dinamik karakteristiklerin giincellenmesi gerektigi sonucuna ulagilmistir.

Incelenen yiizer riizgar tribiinii sistemi igin, genellestirilmis aerodinamik kuvvetlerin
genellestirilmis hidrodinamik kuvvetlere gore daha biiylik mertebede oldugu
gozlenmistir. Yapisal tepkinin daha ziyade aerodinamik kuvvetlerce belirlenmesi,
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etkilesim kuvvetleri siddetinde kanat gecis frekansi ile (ii¢ kanatli pervane i¢in donme
frekansinin {ic kat1) bir salimma sebep olmustur. Incelenen ¢evre durumlar
kapsaminda, yapisal tepkinin yanal dalga-riizgadr durumu i¢in minimumda oldugu
goriilse de, azami enerji liretimi c¢aprazdan gelen dalga-riizgdr durumu icin elde
edilmistir.
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1. INTRODUCTION

In recent years, the wind energy come into prominence as an alternative source of
energy. Wind energy is predicted as one of the most capable renewable energy solution
of the future. The estimated potential of wind power over the sites having wind speed
more than 6.9 m/s at height 80 m is 72 TW for the year 2000, which is the
approximately eight times of the world’s energy needs [1]. However, the wind energy
reveals many practical obstacles such as initial investment cost and technological
immaturity. In this manner, many studies have been carried out to construct viable
wind power plant by reducing the cost, in order to make use of this abundant energy

source cost-effectively.

The installed wind energy power plants are of either onshore or offshore type.
Numerous offshore wind energy plants have been constructed recently and more are
on the way. According to European Wind Energy Association (EWEA), the offshore
wind capacity are estimated to reach 40 GW by 2020 and 150 GW by 2030 in Europe
[2]. The more power capturing capacity due to the lesser turbulence in wind and higher
average wind speed along with the available area for construction at offshore site
makes offshore plants more popular compared to the land based plants. Moreover, the
visual and noise pollution are prevented by the offshore type plants that are far from
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Figure 1.1 : Average water depth and distance to the shore of planned offshore wind projects [2].



the living space so that the project sites are expected to cover further sites from the
shore. Figure 1.1 presents average water depth and distance to the shore of the planned

offshore wind projects [3].

1.1 Floating Offshore Wind Turbines

Most of the offshore wind projects in operation were installed at nearshore as bottom
founded wind turbines, since they are cost-effective at water depth less than 50 m.
Deep water wind resources, however, are extremely abundant so that project sites are
required to enlarge to far from shore [4]. For sites of depth more than 50 m, bottom
founded type wind turbines are not economically feasible and planting floating type

wind turbines become the norm [5].

Floating offshore wind turbines (FOWT) can carry larger wind turbines, accordingly,
are capable of producing more energy with reduced final cost per MWh [2]. They can
also substitute bottom founded wind turbines at soft seabed. However, the design of
the FOWT brings inherent engineering challenges together. FOWT design should keep
the motion of the system within acceptable limits and provide enough buoyancy to
support the overall system weight. More dynamically coherent machinery design is
needed as the turbine design is also impacted by the floater (platform) dynamics. For
such systems, the design of the floater should be optimized, since the overall cost of
depends mostly on the prices of the floater and power distribution system [6].
Extension of the installation site to deeper waters causes larger environmental loads,
thereby; the response analysis of the floater is essential during the design phase and
should consider both the wind and wave loads. Furthermore, interaction between

floater hydrodynamics and rotor aerodynamics should be investigated [5].

The FOWTs may be divided into three main categories depending on the adopted
strategy to establish the stability of the floating system.

1. Ballast: Stability is achieved via central buoyancy tank that provides high

inertial resistance to roll and pitch motions.
2. Mooring Lines: Stability is achieved by the mooring line tension.

3. Buoyancy: Stability is achieved by water plane area of the floater.



Mooring Line -
Ballast Stabilized Stabiized Buoyancy Stabilized

—

||<
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Spar-Buoy

Figure 1.2 : Floating offshore wind turbine concepts.

The spar-buoy, tension leg platform (TLP), and barge type FOWT, given in Figure
1.2, are examples of ballast, mooring line, and buoyancy stabilized systems,
respectively. Although the floating concepts are usually categorized based on the
dominant source of stability, they are actually hybrid designs, ensuring the stability by

employing each of the aforementioned methods [6].

A great number of studies is carried out to determine optimum floater design of the
FOWT with respect to functionality and reduced cost. There are various possible
floater configurations in design consideration either single-turbine or multi-turbine
floater. The support structures of the multi-turbine floater can be classified as very
large floating structure (VLFS) as the minimum distance between the turbines is
limited due to the aerodynamic interactions between them. Some of the multi-turbine

floater concepts are shown in Figure 1.3.

Figure 1.3 : (a) Semi-submersible type multi-turbine floater [7], (b) National Maritime Research
Institute (NMRI) concept of ponton-type multi-turbine floater [5].
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1.2 Very Large Floating Structures

Very large floating structures (VLFSs) can be thought of as man-made islands that
enable ocean colonization. They may serve as a floating airport, bridge, pier, storage
facility, industrial space, mobile offshore structure, entertainment facility, power plant
and even as a floating city. Even though the VLFSs are mostly suggested as an
alternative to land reclamation, technological developments permit the installation of
these structures also at deep waters [8, 9]. They are cost-effective at deeper waters
compared to classical land reclamation, nature-friendly, and easily constructed,

transported and expanded. Moreover, they are isolated from seismic shocks [10].

VLEFSs are principally structures having too large horizontal dimensions relative to its
vertical dimension. In fact, VLFSs are identified by not only their larger horizontal
dimension but also by having greater length than their characteristic length, defined by
the ratio of the structural stiffness to the hydrostatic stiffness. The elastic responses of
VLFSs, hence, become more dominant than their rigid-body responses [11]. Therefore,
during the design of a VLFS, performing a dynamic fluid-structure interaction analysis

with considering the elasticity of the structure, i.e., a hydroelastic analysis is essential.

VLFSs are generally divided into two categories, as pontoon-type and semi-
submersible type. Pontoon-type VLFSs are suitable in calm water as they are more
sensitive to wave excitation. Pontoon-type VLFSs are mostly erected at sheltered
coastal formation and supported with breakwater to reduce the incident wave height.
Mega-float in Tokyo Bay serving as an airport on the left in Figure 1.4 is a pontoon-

type VLFS example. In open seas, semi-submersible type VLFSs are preferred in order

Mega-Float in Tokyo Bay Aquapolis in Okinawa

Figure 1.4 : Pontoon-type VLFS and semi-submersible-type VLFS [10].

to sustain constant buoyancy and minimize the influences due to wave excitation [8].
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On the right in Figure 1.4 a semi-submersible type VLFS, constructed in Okinawa in

Japan, is shown.

1.3 Wind Turbine Components and Terminology

A wind turbine primarily consists of a rotor composed of blade, hub, nacelle, tower,
and support structure as shown in Figure 1.5. The latter is a floater with mooring lines
in case of floating systems. The plane area shaded by the rotor blades are known as the

actuator disk. The nacelle encloses the wind turbine equipment, involving mainly

Nacelle

Controller

Rotor ub Nacelle

Rotor

Diameter -~ -
Gearbox

Actuator Disk

Rotor Blade

Floater Yaw Drive

Tower 14 /

Mooring Lines

Yaw Motor

Figure 1.5 : Main components of floating offshore wind turbines and rotor-nacelle assembly (RNA).

gearbox, generator, control mechanism, and possibly yaw drivers. The rotor-nacelle
assembly (RNA), seen on the right in Figure 1.5, is composed of everything beared by
the tower. The parts of the turbine necessary to produce electricity, including the

gearbox, generator, shafts, etc., are known as drivetrain.

The wind turbines have two possible configurations namely upwind and downwind,
regarding how the wind encounters with the rotor, as seen in Figure 1.6. The blades
passing in front of the tower of the downwind configuration is subjected to the tower
shadow, which disrupts the wind flow and reduces the captured power. Most of the

wind turbines, however, were constructed as upwind.

There are distinct degrees of freedom (DOFs) associated with the wind turbine
components, which are identified by specific names. The definitions are given with

respect to either rotating or non-rotating local coordinate systems. The blade



LJ LJ

Upwind Configuration Downwind Configuration

Figure 1.6 : Upwind and downwind wind turbine.

coordinate system is fixed at the blade root with its z-axis pointing toward the blade
tip. The tower top and tower base coordinate systems are also fixed at the top and at
the base of the tower. Their x, y-, and z-axes are longitudinal, lateral and upward
direction, respectively. The hub coordinate system rotates with the rotor whereas the

nacelle/yaw coordinate system rotates around the tower centerline with nacelle yaw.

The azimuth refers to the rotation of the rotor around the shaft axis, i.e., the rotation of
the hub coordinate system, while blade pitch refers to the rotation of the blades around

the z-axis of the blade coordinate system. Yaw denotes the rotation of the nacelle

______
~<

S Longitudinal
(Fore-Aft)

Azimuth

ST

~

z
~ -
Figure 1.7 : Degrees of freedom of a wind turbine.
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around the tower centerline. The motion of the rotor around the global y-axis is known
as tilt motion. The flexible blade DOFs are named as flapwise and edgewise,
representing the out-of-plane and in-plane bending, respectively. The flexible tower
DOFs are known as side-to-side and fore-aft bending. All of these DOFs are illustrated

in Figure 1.7.

1.4 Literature Review

The standard hydroelastic analysis approach for floating structures can be attributed to
Bishop and Price [12]; the dry dynamic characteristics of the structure forms the basis
of the analysis, where the small amplitude general frequency dependent response is
represented by modal expansion in terms of natural modes. Here, the linear potential

theory is adopted for the fluid motion.

Wu et al. [13] analyzed the hydroelastic response of a floating plate by using the
eigenfunction expansion method. They applied an analytical approach to obtain the
plate mode shapes and corresponding fluid velocity potential components. They
considered both the rigid body and elastic motions and compared the predictions with

the experimental results.

Huang and Riggs [14] developed an explicit formulation to determine the complete
hydrostatic stiffness for the flexible structures by considering the internal stresses of
the structure along with the external hydrostatic pressure. The structure is assumed at
rest in calm water. The proposed method produces symmetric hydrostatic stiffness

coefficients.

Ertekin et al [15] adopted the Haskind relation to compute the wave exciting forces in
terms of incident and radiation velocity potentials and proposed the schemes of direct

and modal approaches for coupling of the structural and fluid motion problems.

Lee at al [16] developed a numerical technique for the wave-structure interaction
problems to remove the irregular frequency effects inherent to the boundary element
solutions, when the free surface Green function is adopted as the fundamental solution.
They extended the solution domain by appending the inner free surface, over which

the rigid wall condition is applied.



Watanabe et al. [17] presented an approximate benchmark study for the hydroelastic
analysis of a circular pontoon-type VLFS subjected to regular waves. They adopted
the Mindlin plate model and Rayleigh-Ritz method for the solution.

Kara [18] developed a time domain numerical hydroelastic code to predict the
hydroelastic response of floating bodies with zero and forward speed by computing
the time domain radiation and wave excitation forces via the convolution of their

impulse response functions. The method is verified by existing experimental results.

Thanks to the studies revealed the potential of offshore wind energy, FOWTs become
an active research topic lately. Different types of FOWT floater designs are presented
and investigated in terms of survivability, reliability, and availability. Wang et al. [5]

presented a review for floater conceptual designs.

Musial et al. [4] conducted a feasibility study on several FOWT types. They
categorized the floaters mainly as multi-turbine and single-turbine. A financial
comparison between two single-turbine floaters with different mooring systems is also

presented.

Butterfield et al [19] analyzed the design challenges for certain floater types by
classifying the floaters according to the static stability criteria. Prescribed challenges

are assessed for each floater type by considering the financial conditions.

Jonkman [20] developed a hydrodynamic analysis tool, in addition to the time domain
simulation tool FAST presented by National Renewable Energy Laboratory (NREL),
to analyze the coupled dynamic response of the FOWTs and performed a load analysis
for one of the floater concepts. Here, the impulse response function (IRF) is employed

to derive the wave forces in time domain.

Matha [21] performed an extensive load and stability analysis of a TLP type FOWT
by using the time domain aero-hydro-servo-elastic design code FAST with AeroDyn
and HydroDyn. A comparison of instability and fatigue lifetime prediction between

TLP, spar-buoy, and land-based wind turbine systems is presented.

Ramachandran et al. [22] compared the RAOs obtained from different analysis tools.
They initially assumed the wind turbine as rigid and non-operating, i.e. not subjected
to wind excitation, and then extended the analysis by considering the structural

flexibility of blades and tower, aerodynamic damping, and control mechanism. The



effects of the aerodynamic damping and gyroscopic excitation due to the rotating rotor

on the dynamic response are also presented.

Ma et al. [23] have developed a numerical simulation method to analyze coupled
FOWT and mooring systems by considering the flexibility of the floater and
nonlinearity of the mooring line. They also carried out a series of experiment of the
scaled FOWT model under the excitation of steady wind and regular waves to validate

the numerical method.

Iijima et al. [24] proposed a numerical procedure to perform a coupled time-domain
aerodynamic and hydrodynamic analysis for the pontoon-type multi-turbine floaters
developed at NMRI (see Figure 1.3b). Here, the flexibility of both support structures,
including the tower and blades, and wave and wind excitation forces are taken into

account, though the interaction between the rotors is ignored.

Within the scope of this thesis, the time domain response analysis of a large-scale
support structure carrying two SMW wind turbines, which is classified as VLFS due
to its dimension, is performed under combined wave and wind loads. The dynamic
characteristics of the structure, i.e., natural frequencies and mode shapes, are obtained
using the finite element method (FEM) in order to represent the structural response,
which is described by the modal approach. The fluid perturbation due to structural
motion—given in terms of potential distributions and represented similarly by modal
expansion—is related with the response through the kinematical boundary condition.
The hydrodynamic forces on the structure are computed by applying the Boundary
Element Method (BEM) in the frequency domain. The resulting frequency dependent
wave radiation (in other words, fluid-structure interaction) forces and wave excitation
forces are transformed into their time domain representation. The time domain
interaction forces are calculated by the convolution of the impulse response functions
that are obtained from the radiation forces. The time domain representation of the
excitation forces for the irregular incident waves is obtained by the Fourier
transformation of the wave exciting forces corresponding to the unit wave amplitude.
Here, the Pierson-Moskowitz wave spectrum is applied for the specified wind velocity.
The aerodynamic forces on the rotor are obtained by the Blade Element Momentum
Theory (BEMt). The time integration of the structural responses are computed by

forming the state-space model.






2. MATHEMATICAL MODEL

2.1 Introduction

A time domain aero-hydro-elastic solution procedure is formed to investigate the
elastic response of the multi-rotor floating wind turbine structure under combined wind
and wave loads. The aerodynamics of the rotor is calculated by considering the steady
wind flow with laminar boundary layer effects and using the Blade Element
Momentum Theory (BEMt). On the other side, the wave kinematics is determined by
using the linear wave theory and adopting the irregular sea state. The corresponding
hydrodynamics interaction and wave forces in terms of potential distribution over the
wetted surface of the floater is computed by using the Boundary Element Method
(BEM). In order to obtain the time domain response of the structure, including the
tower and floater, the state-space formulation of the generalized equation of motion is
solved by applying a time integration scheme. The response is determined under

several conditions of the combined wave-wind loads.

The BEMt is based on the spanwise integration of the forces calculated by the 2D flow
analysis at each blade cross section. Accordingly, the obtained forces are then

transmitted to the structure through the components of the nacelle at each time step.

The modal expansion methodology, which can efficiently couple the structural
deformation with the fluid perturbation, is employed to establish the wave-structure
interaction problem in the frequency domain. The method estimates the structural
response as the superposition of natural (dry) modes, where the series coefficients, so
called principle coordinates, describe the contribution of individual modes within the
overall response. Fluid velocity potential is also decomposed into components
corresponding to each considered mode shape, and the response and potential
components are related through the kinematical boundary condition. The wave
excitation forces for the unit amplitude regular waves are determined by using the

Haskind relation. The fluid-structure interaction (radiation) forces and wave excitation
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forces obtained in the frequency domain in generalized forms are transformed into the

time domain as impulse response functions (IRFs) by using the Fourier transformation.

In order to derive the external loading on the structure, the environmental conditions
should be defined. First, the wind and wave characteristics and their mathematical
approximation are introduced. Then, the numerical procedure to obtain the frequency
dependent interaction and exciting forces and their time domain transformation are
presented. Finally, the response of the floater under combined wave and wind loads is

obtained by solving the generalized equations of motion.

2.2 Wind Characteristics

The wind environment can be represented by selecting an appropriate wind model
depending on the circumstances. Assuming that the wind is steady, homogenous,
uniform and unidirectional, as shown in Figure 2.1a, its acrodynamic can be efficiently
studied. The airflow where the turbines are located, however, is subjected to boundary
layer effect due to the viscosity and no-slip condition at the earth surface. Thus, the
flow velocity in boundary layer decreases with elevation. This is determined by the
uniform wind shear model illustrated in Figure 2.1b. In fact, inherently rough surface
of the earth causes inhomogeneous, unsteady and turbulent flow. The turbulent wind
model, demonstrated in Figure 2.1c, involves the sudden fluctuation in velocity and

pressure [25].

Wind shear model is approximated by either power law profile or logarithmic wind
profile. The power law describing the relation between height and wind speed is given

as follow,

«
a) U:'!il"Dl'l’l’l b) Uniform ¢) Turbulent
Wind Wind Shear Wind

Figure 2.1 : Wind Characteristics [25].
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where U, and U, are the wind speeds at heights z, and z,, while « stands for the

wind shear exponent.

On the other side, logarithmic wind profile relates the wind speed with the elevation

as,

U, In(z,/z)

U In(z,/z,) @2

Here, z, is the roughness length, where mean speed is assumed zero [26].

2.3 Linear Wave Theory

Linear wave theory is the most basic mathematical model to represent the regular water
waves. The theory, however, is often preferred for engineering problems, since it
provides accurate approximation and representation of the irregular waves in terms of

regular waves.

If the length of the structure along the waves is greater than about one-fifth of the
wavelength, effects of the flow separation and friction drag can be neglected, so that
the flow can be assumed inviscid. Furthermore, the water is essentially incompressible.
The continuity equation for the incompressible and homogenous fluid may be

expressed as,

V.v(x,)=0 2.3)

where v is the velocity vector, x =(x, »,z)" and ¢ denote the position vector and time,
respectively. Assumption of the irrotational fluid motion leads to the equation
Assumption of the irrotational fluid motion leads to the equation

Vxv(x,t)=0 2.4

which is satisfied if the fluid velocity vector is given as the gradient of the velocity

potential ®(x,?).

v(x,t) =VO(x,t) 2.5)
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Therefore, the motion of the fluid could be expressed in terms of a velocity potential
function by the Eq. (2.3) and (2.5) satisfying Laplace’s equation throughout the fluid

domain (2
VO=0inQ (2.6)

Water waves can be defined by the deformation of the free surface. The fluid particles
excited by the propagating waves are assumed not to propagate with the waveform.

The characteristics of the water waves are demonstrated in Figure 2.2.

The fluid motion at the free surface satisfies the dynamic and the kinematic boundary
conditions. In linear wave theory, it is assumed that the wave height is much smaller
than the wavelength. Hence, the dynamic boundary condition stating the equality of
the fluid pressure to the atmospheric pressure on the free surface may be expressed in

the following linear form by neglecting the second order terms in Bernoulli’s equation.

g=——— on §, 2.7)

Here, Srand ¢ denote the free surface and free surface elevation, respectively, and g is
the gravitational acceleration. The accompanying kinematic boundary condition states
that the fluid particles on the free surface follow the vertical motions of the wave

profile,
—=—on §, 2.8)

where, z is vertical axis with the positive direction upwards.

Combining Egs. (2.7) and (2.8), the linear free surface boundary condition is obtained,

Wave Height Crest l
\ Wave Amplitude ¢=H/2
Still Water N

Line - T

Wave Period T

Wave Length

Trough /
A
p

A e

Water Depth

T

Figure 2.2 : Wave propagation [27].
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oD O'D
— =0 on § 2.9
8 or s @9
At the sea bottom, there is no flow in normal direction. Considering the horizontal flat

bottom, the seabed kinematic boundary condition can be written as,

62:0 on z=—h (2.10)

Oz

In the absence of the body, the velocity potential for a progressive wave satisfying the

boundary conditions (2.9) and (2.10) can be given as [7],

CD[(X, t) — Re lg; COSh k(Z + h) ei[k(xcosa+ysina)+a)t] (2.1 1)
@ cosh kh

Here, @ and ¢ are the frequency and amplitude of the propagating waves in a water of
uniform depth 4, respectively, « is the incident angle, as shown in Fig. 1.2, and £ is

the wave number given by the dispersion relation
" = gk tanh kh. (2.12)

In deep water, tanh &k approaches one and the dispersion relation for the deep water

is given as
k=g (2.13)

Subsequently, the incident wave potential of deep water can be given from Eq. (2.11)
as [28],

q)l (X, t) — gekzei[k(xcosaﬁ—ysinaﬂwt] (2.14)
[0

Ya

v

Figure 2.3 : Definition of incident wave angle.
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2.4 Generalized Equation of Motion

The dynamic response of a structure due to external forces can be described by the

discretized equation of motion,
Mq(2) +C,q(1) + Kq(2) = F(2), (2.15)

where M, C, K represent the mass, structural damping and stiffness matrices, q,q and
q stands for the time-dependent displacements, velocities and accelerations

respectively, F is the vector denoting the external forces and ¢ represents the time. The

displacement vector can be expressed as

q' =[q,q,..9;...q,], (2.16)

where n denotes the number of nodes and q ; represents the nodal displacement

components with three translations ux, u,, u. and three rotations &, 6, €. Thus, the

displacement vector for each node can be written as,

q; =[u,u,u.6.00] (2.17)

y Tz Tx Ty Tzt

For an undamped free vibration, in other words in vacuo analysis, the equation of

motion of the structure becomes,
Mq(t)+Kq()=0 (2.18)

iot

By substituting the solution q =ue™ , Eq. (2.18) can be written as

(—o’M+K)u=0 (2.19)

Eq. (2.19) forms the eigenvalue problem, solution of which gives the dynamic
characteristics, i.e., natural frequencies @ and corresponding mode shapes (normal

modes) u of the structure.

The general forced response of a structure may be expanded with a set of appropriate

normal modes in following form,
a(t) = u,p,(t)=Up(1) (2.20)
i=1

where the modal matrix U consists of the normal mode vectors u,, and p(¢) is the

principle coordinates vector standing for the deflection components in the n -
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dimensional modal vector space, where 7, indicates the number of considered
principal modes. Eq. (2.15) may be written in terms of principal coordinates p(¢) by

using Eq. (2.20) and pre-multiplying by U"

ap(¢) +bp(?) +cp(?) =1(?) (2.21)

Here, a, b and ¢ stand for the generalized matrices of mass, damping and stiffness,

respectively, and given as
a=U'MU,b=U"C,U, ¢c=U'KU, f(r) = U'F(¢) (2.22)

The generalized mass and stiffness matrices are diagonal; however, the damping
matrix does not have to be diagonal. The generalized external force vector f(¢) that
represents the fluid-structure interaction and all other external forces can be expressed

as [29],
f(1) =—(Ap(¢)+Bp(?) + Cp(?)) + E(¢), (2.23)

where, A, B and C are the generalized added mass, fluid damping, and fluid stiffness
matrices, respectively, and E (¢) denotes the generalized external force vector caused

by wave, wind, mechanical excitation, etc.
The governing equation of motion in Eq. (2.21) then can be expressed as follows,

@+ A)p@)+d+B)p(?)+(c+C)p(z) =E(2). (2.24)

2.5 Frequency Domain Hydrodynamics

2.5.1 The wave-structure interaction problem

The hydrodynamic loads on the body floating near the free surface are formulated by
the wave diffraction and radiation potentials, which can be defined by the Laplace’s
equation. Total velocity potential can be expressed as the sum of radiation and

diffraction potentials,
O=D,+D,. (2.25)

The radiation potential represents the velocity potential in the absence of the incident
waves. For instance, in calm water, if the body is forced to oscillate, the resulting fluid
motion will be represented by the radiation potential. On the other hand, the diffraction

potential arise from the presence of the incident waves and its interaction with floating
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body. Under the assumptions of the linear theory, this potential may be defined about
the fixed body, independent of its motions [28].

The diffraction potential may be further decomposed as

D, =0, +D,, (2.26)

where @, is the incident wave potential, given by Eq. (2.14) for deep water, and @

is the scattering wave potential representing the disturbance of the incident waves by
the presence of the body. The diffraction potential satisfies the following boundary

condition on the wetted surface of the body,

oD, /on=0®;/on+0®,/on=0, on S, (2.27)

Here, n is the unit normal vector on the wetted surface of the structure, Sy, pointing

out of the fluid domain.

A modal expansion similar to Eq. (2.20) can be adopted for the radiation potential, by
proposing a series of potential components corresponding to each principal coordinate
used in Eq. (2.20). Thus, the radiation potential in Eq. (2.25) can be rewritten as

follows,
D, (x,1) =D D, (X)p, (1), (2.28)
i=1

pi(t)=p.e”. (2.29)

where, ®@. and p,(¢) refer to the spatial distribution of the radiation potential and the
principle coordinate associated with the ith principal mode, respectively. n, is the

number of considered modes in the dry analysis.

The radiation potential is due to the structural motion, so a Neumann type boundary
condition, stating the equality of the fluid and body normal velocities must be
expressed over the fluid-structure interface. Using Egs. (2.5), (2.20), and (2.28), the

kinematical boundary condition for each potential component can be given as
D,
O _ 9y ons, (2.30)
on Ot

Eq. (2.30) relates potential components with the normal modes of the floating body.
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Considering the time harmonic form of the motion, boundary conditions stated in Eq.

(2.9), (2.10) and (2.30) can be rewritten as

2
@ _9 % on S, 2.31)
oz g
o =0 onz=—h (2.32)
0z
o0, =iwu, on S, (2.33)
on

The waves on the free surface except due to the incident wave potential itself have to
be radiating away from the body. For the infinite fluid domain, the additional condition
stating that the effects of the body on fluid domain will diminish with the distance, r,

from the source (so-called radiation condition) can be expressed as

lim~/r {@ +ik(D— @,)} = 0. (2.34)
v

F—>0

2.5.2 The boundary element solution of the potential problem

In order to compute the interaction forces, the distribution of the velocity potential on
the wetted surface should be determined. The potential problem defined by the Laplace
equation and boundary conditions in Egs. (2.31)-(2.34) can be expressed by the
boundary integral equation (BIE) reducing the problem domain to the interface
surface. The BIE can be determined through Green’s identities [30], Betti’s theorem

[31] or weighted residual method [32] and solved by using the BEM.

By considering the potential functions ¢ and y, satisfying the Laplace equation in the

domain Q, the Green’s second identity is stated as follow,

[ovp-gviprdan= | [v/%— ¢‘2—";j ar 2.35)

where, /" is the boundary surface of the domain (2. The solution of a differential
equation for a unit point source in an infinite domain (2, is entitled as the fundamental

solution and defined as,

L =—-0(x,8). (2.36)
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Here, u is the fundamental solution, £ is the differential operator, and & = (&,7,¢)
and X represents the source and field points in the domain, respectively. o(x,&) is the

Dirac delta function given as,

0 x=#§
o(x,8) = { (2.37)
o x=§
and it satisfies the following equations,
f J(x)6(x,8)dQ2, = 1(3) (2.38)
0 Ee QT
[rosxed=1  f@  &eQ (2.39)

undefined el

If the source point is on the surface 7/ the integral becomes undefined. However, it can
be calculated in the limit that the radius of the circular boundary approaches to zero.

By replacing ¥ with the fundamental solution, defining the flux as g=0g¢/0n, and
using Egs. (2.36) and (2.39), Eq. (2.35) can be stated as follows [33],

$(©) = [ (¢ (x.&)a(®) ~g(x)g (x,8))dr". (2.40)

Eq. (2.40), however, includes singularities since Eq. (2.39) is undefined on the surface
I These singularities, however, can be suppressed by defining a small circular
boundary around the source point with radius & and calculating integrals while &
approaches to the surface 7. Then, Eq. (2.40) turns into the following BIE of the

potential problem.

(©)PE) + [#(0)q (O = [ § (x.8)g(x)dT 2.41)

Here, c(§) is the free-term, resulting from the calculation of the singular integrals that
identifies the fraction of @() lying inside the domain of interest. The BIE can be

applied to the free-surface problem by defining the fundamental solution satisfying the
free surface and the radiation condition, i.e. free surface Green’s function which is

given as follows [34].
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G- [1 +1+Hj (2.42)

4 r'

Here, H represents the influences of the free surface in Green’s function, while » and
r” denote the distance between the source point and the field point and the free surface

image of the source point and the field point, respectively.
1/2

r=(6=x) (=) (¢ =) |
1/2

r=[(g=x) +(n-y) +(¢+2) |

Since the Green’s function satisfies all the boundary conditions except for the wetted

(2.43)

surface, the BIE can be defined over the wetted surface of the structure S, ,

c®)4@)+ | (G, (x,H)dS = [ G(x,£)g(x)dS (2.44)

The general solution of Eq. (2.44) requires the discretization of the interface surface
with boundary elements, so that the potential function and body normal velocity
distributions over the interface can be approximated using shape functions and nodal

potential and flux values. For the ith boundary element, the corresponding

representations @' and ¢' can be given as
=Y N4, ., q =) Ny, (2.45)
Jj=1 Jj=1

Here, e, is the number of nodal points assigned to the boundary element, ¢, and g,

respectively represent the potential and flux values for the jth nodal point of the
element, and N; denotes the associated shape function. The shape functions are used to
represent the distribution of the potentials over the related element. The linear shape

functions are given as follows,

N, =((1-¢)(1-n))/4. N, = )(1-1))/4

2.46
N, =((1+¢)(1+7))/4, N, ( 1+77)/4 (2.49)

By taking the nodal points of the discretization as the source point and substituting Eq.
(2.45) with the boundary condition (2.33) into Eq. (2.44), the following set of algebraic
equations can be written in terms of nodal potential function and body normal velocity

values:
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. + ZZqﬁj [N,G,ds :la)ZZuJ [N.GdS, k=l,..n, (247
S, S,

i=l j=I i=l j=I

Here, n, and n, are the numbers of nodal points and boundary elements, respectively,
used in the discretization, S, is the area of the ith boundary element, and ¢, represents

the potential value for the kth nodal point. The resulting system of equations after

completing the surface integrations in Eq. (2.47) can be given with the matrix form

H®=ivGq. (2.48)

2.5.3 Generalized hydrodynamic forces

Using the Bernoulli’s equation by neglecting the second-order terms, the fluid

pressure, P(X, f), on the floating body can be given as.

P(x,t)=—p (%Jr gzj (2.49)

By substituting Eq. (2.28)-(2.29) into Eq. (2.25) the total velocity potential can be

expressed as,
d(x,1) :Re{(id)jpj +4(D, +CDS)Je"“”} (2.50)
J=

where ¢'is the incident wave amplitude. Using Eq. (2.50) for the velocity potential in

Eq. (2.49), the pressure expression can be arranged as follows.

P:—pRe{(id)jpj+§(®,+¢>S)Jia)ei”’t}—pgz 2.51)

J=1

The hydrodynamic force on the body related with the jth mode shape can be expressed

by integrating the fluid pressure over the wetted surface:

f, (6) = —pgjjznds
Sy
- pRe{iiije"‘” [[o, ndS} (2:52)
J=1 S,

—pRe{iwé’e”’””(@, +CDS)ndS}.
S,
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The force components in Eq. (2.52) represent different aspects of the hydrodynamic
problem. The first term is the hydrostatic component. The second term is due to
radiation problem and can be associated with the added-mass and hydrodynamic
damping effects through its real and imaginary parts, respectively. The last term is
related with the diffraction problem representing the wave excitation forces,

proportional to the incident wave amplitude.

2.5.3.1 Hydrostatics

The leading term in Eq. (2.52), representing the forces associated with the vertical
displacement, is known as the hydrostatic restoring force. The restoring force is
generally expressed in terms of hydrostatic stiffness coefficients. The hydrostatic
stiffness associated with the rigid body motion is well known, however in
hydroelasticity, this stiffness matrix has to be extended to cover also the elastic
motions. Furthermore, the hydrostatic stiffness matrix should consider all

displacement related variations of the forces such as internal forces [14].

When the hydrostatic stiffness of the flexible structure is formed, the structure can be
assumed at rest in calm fluid, and subjected only to the gravity forces. The hydrostatic
forces are divided into two components as external and internal forces. External forces
result from the hydrostatic pressure on the wetted surface and the structural weight,

whereas internal forces are due to the internal stresses [14]:

5 = [ (nu,).pdS—-p.g [ (nu,)d0 (2.53)
Sy Q
£l = [ 0,1, dQ (2.54)
QS‘

Here, p, is the mass density of the structure and €2, is the structural volume in the
equilibrium configuration. o), is the actual stress tensor and ¢,, is the strain tensor
that is compatible with the normal mode wu, . Thus, the hydrostatic stiffness matrix C
presented in Eq. (2.24) can be expressed as,

C=C"+C* (2.55)

where C" represents the hydrostatic stiffness due to the external forces and C*, known

as the geometric stiffness matrix, results from the internal stresses.
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The stiffness coefficients can be derived by a consistent linearization of the internal

and external forces via the directional derivative [35],
Ci;"g =-Vf jsl u, (2.56)

where, superscript £ and / indicate the external and internal forces. Substitution of Eq.
(2.56) into Eq. (2.55) yields the explicit expression of the complete hydrostatic
stiffness (see detailed derivation in Ref. [14]),

C, = —pg_[u,i (u! +28L{)nde+pgj zuyul n dS + I o, ui,lu,{,mdQ. (2.57)
S, S, Q

Here, ¢/ =u/, is the volumetric strain and #, is the kth member of unit normal vector.

Since the hydroelasticity of the floating structures are generally analyzed by adopting
two-dimensional elements, the formulation can be specialized for a plate element by
adopting the Kirchhoff plate model. The plate stiffness is formulated in a local
coordinate system, X —y —z , where z is normal to the plane surface. Assuming that
either top or bottom surface parallel to the x — 3 plane is subjected to the hydrostatic
pressure, the other surface and the four edges are dry, considering the internal stresses
in the geometric stiffness matrix, the hydrostatic stiffness matrix for a plate element is
expressed as,

C,=Cj+ '[ P s n3dS+'[ oysusuy, ndsS, k=1,2 (2.58)

Sdc

where p,=-pgT,;. T;; is the element of the transformation matrix T, such that it

transforms a vector from local coordinates to the global coordinates. S, represents the
four edges and dry surface. The geometric stiffness in Eq. (2.58) is defined as,

Cz;g = j mnu3 mu3 n
(2.59)

t/2

t/2
Now =] Om dz-9,, L/z 0,dz, mn=12.

Here, the integration is carried over the mid-plane area, 4. ¢, is the Kronecker delta

function. The surface integral in Eq. (2.58) can be calculated along the mid-plane
independently of z , however, in Eq. (2.59) the distribution of the normal stress over

the thickness is required.
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2.5.3.2 Damping and added mass

For a structure near the free surface, the second term on the right-hand side of Eq.

(2.52) represents the radiation forces, which can be given from Egs. (2.22), (2.48) as,

J=1

where f; is the ith complex force component related with the jth mode shape and can

be expressed as,

fi= pa)zﬂ(n.ui)d)de =’ 4; —ioB, (2.61)
s,

Here, 4;and B, denote the generalized added mass and generalized hydrodynamic

damping components, respectively:

4;=p[(nu,)Re{®,}dS , B, =—po[ (nu,)im{®,}ds, (2.62)
S, Sy

Considering the time harmonic dependency, the radiation force can be given from Eq.

(2.61) as
£, =—> (4,5, +B;p;) (2.63)
i=1

The added-mass coefficients imply that the force component proportional to the
acceleration, whereas, the damping coefficients signify the force proportional to the
body velocity. Moreover, the added-mass and damping matrices are symmetric due to

the implication of Green’s theorem during the computation of the coefficients [28].

The added mass can be explained as a certain fluid volume that is accelerated by the
response of the structure. Hypothetically, every fluid particle will be affected by the
structural motions, and the added mass is a weighted integration of this entire mass.
Unlike the body mass, the added mass differ with the direction of the body motion
[28].

The damping related force results from the waves generated by the structural motions
radiating outward on the free surface. Thus, the damping coefficients have a relation
with the amplitude of the waves generated by the structure. If there is waves generated
by the structure in any mode, the corresponding damping coefficient must be greater

than zero [28].
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2.5.3.3 Wave-exciting force

The wave exciting forces determined by the last term of Eq. (2.52) are proportional to

the incident wave amplitude.

2, =—p Re{iw{e’w [[(@,+®;)(nu,) dS} (2-64)

It is appropriate to write Eq. (2.64) in the form,

Ey =Re{ge” X}, i=12,.n, (2.65)

where X, is the complex excitation forces in the ith principle mode for a unit amplitude

of incident wave. Substituting the boundary condition (2.33) into Eq. (2.64) yields

following expression,
0D,
=— O, +0,)—dS 2.66
,OJ;;[( I S) n ( )

The incident wave potential can be found for finite or infinite depth conditions by
using Eq. (2.11). The similarity between boundary conditions for the scattering and
incident wave potential can be used to derive the formulation for the excitation forces
that is known as Haskind relation where no assumption required about wavelength or
body geometry. Since the boundary condition at free surface and the radiation
condition at infinity are the same for these two potentials, Green’s theorem can be

applied on the wetted surface for the scattering potential [28],

ﬂ( 0Py _ de 0, i=1,2,.n . (2.67)

on

In this manner, one can rearrange the excitation force expression by substituting Eq.

(2.67) into Eq. (2.66),

:—pﬂ( By — de (2.68)

In order to reduce the unknown scattering velocity potential from the expression, the
boundary condition (2.27) is imposed to Eq. (2.68) and the following Haskind relation

is acquired.
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00, 8@
=— O, —L-®,—L |dS 2.69
p j | ( — j (2.69)
By this method, it is possible to state the excitation forces independently of the

scattering potential, without approximation.

2.5.4 Floater response in frequency domain and RAO

Considering that the wave excitation is harmonic, the generalized equation of motion
Eq. (2.24) can be given in the frequency domain that the response of the floater is
represented through the response amplitude operator (RAO). By substituting Eq.
(2.29) for the principle coordinates p and Eq. (2.65) for the excitation forces in Eq.

(2.24), the equation of motion can be expressed as,
|- (a+A(0))+ioB(0)+c+C|p=¢X(0). (2.70)

where, wis the incident wave frequency. The generalized fluid radiation and wave
excitation forces are frequency dependent, so the RAO, as the principle coordinate

vector, is computed for each incident wave frequency of interest using Eq. (2.70):

RAO(w)= % =[-o’(a+ A(a)))+ia)B(a))+c+CJ_l X(®). (@71

The components of RAO represent the influence values of each normal mode of

interest on the overall response for unit wave amplitude of a certain frequency.

2.6 Time Domain Hydrodynamics

The time domain floater hydrodynamics can be constituted by using the output of the
frequency domain analysis. In other words, the frequency dependent radiation and
excitation forces obtained through the linear hydroelastic analysis can be transformed
into their time dependent form. Accordingly, the time domain equation of motion can

be written in generalized coordinates as,
@a+A )p@)+(b+B)p@)+(c+C)p(t) =1, () +1,(?). (2.72)

Here, A« is the generalized added mass matrix at infinite frequency, which has constant
terms, and fy(r) and fx(f) are the time domain counterparts of the excitation and

radiation forces, respectively.
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The irregular sea state can be determined by the combination of regular wave
components by using an appropriate wave spectrum. Within this context, the free
surface elevation in an irregular sea can be given as [20]:

£) = [ () 2T (@) “do @.73)

T

—o0

Here, W(w)and S;*“* are the Fourier transform of a white Gaussian noise (WGN)

time-series with standard normal distribution and two-sided power spectral density

(see further details in Ref. [20]). The excitation forces, then can be estimated as,

£, (t)= i T W (@)\22875 (0) X (@, B)e” dw (2.74)

—0

where X, (@, ) is the complex wave-excitation forces on the floater due to unit

amplitude incident wave with frequency w and direction /.

The time domain representation of the radiation forces is given by the convolution

integral,
£ (1) =—[ K,(0)p,(t-)d. 2.75)
0

Here, 7is a dummy variable and Kj; is the radiation IRF, covering the effects of the
hydrodynamic damping as well as remaining part of added mass when A. is
subtracted. It can be found by the Fourier sine transformation:
2% .
K, (1)= —;ja)[A,.j (@)-4, |sin(et)dow (2.76)
0
The convolution integral represents that the memory effects that describe the influence

of radiation forces through the motion history of the floater.

2.7 Aerodynamics of the Rotor

The dynamics of fluid passing through the wind turbine is represented by the Navier-
Stokes equations. These equations, however, are not applied for the design and
aerodynamic analysis of FOWTs due to the computational complexity they introduce.
Instead, wind turbine aerodynamics is generally investigated through the two-

dimensional airfoil analysis with quasi-steady flow by using the BEMt [25].
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The BEMt combines the momentum theory that expresses the momentum balance on
a rotating circular stream tube passing through the rotor and the blade element theory
that computes the forces on the rotor by integrating the individual forces on the airfoil

at each defined section of the blade [36].

2.7.1 Momentum theory

In the momentum theory, the rotor is considered as a collection of infinite number of
very thin blades without drag, i.e. an actuator disk, where the static pressure has
discontinuity at its sides due to energy extraction. The system illustrated in Figure 2.4
is represented in a fixed control volume whose boundaries defined by the stream tube.
The theory assumes that the wind is steady, homogenous and unidirectional; the flow
in control volume is potential and uniform across the actuator disk; upwind and
downwind (station 1 and 4 respectively in Figure 2.4) boundaries are far enough from
the actuator disk so that the air pressure is equal to the atmospheric pressure at these

boundaries [25].

Figure 2.4 : Stream tube around the rotor [36].

Assuming the pressures at station 1 and 4 and the velocities at station 2 and 3 are equal

and flow is frictionless, the Bernoulli’s equation yields [36]
_ _ 1 2 2
p=pi=5 P -V7) @.77)

where, p, V and p stand for the pressure, flow velocity and density of the air,
respectively, while the attached indices refer to the related stations. The axial force can

be expressed, then, as follows

dF. :% p(V -V )d4 (2.78)
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An axial induction factor, ¢, is defined by the fractional decrease of the velocity when

the wind reaches to the actuator disk,

a=2=V2 (2.79)
4
or equivalently,
V,=V,(1-a) (2.80)
V,=V,(1-2a) (2.81)

By substituting Eq. (2.81) into Eq. (2.78) and rewriting the far field wind velocity as

V, =V, the axial thrust can be written as follows.

ma;:% V:[4a(1-a)|2zrdr (2.82)

The extracted power by the rotor, then, is expressed as,
P:%pAVMaU—aY (2.83)

The non-dimensional power coefficient is given as,

Cp= P (2.84)
— pAV?
5P
Substituting Eq. (2.84) into Eq. (2.83) yields,
C,=da(l-a). (2.85)

The maximum power coefficient of the ideal rotor, known as Betz limit, can be found

as C

Pmax

=0.5926 according to Eq. (2.85). In practice, the wake rotation, finite

numbers of blades and aerodynamic drag prevent to achieve this efficiency.

The wake rotation effects due to the blade rotation, neglected so far herein, are taken
into account by using the conservation of the angular momentum. Considering the
angular velocities of the wake rotation @, blade rotation (2, the moment of inertia
I =mr’, the angular momentum L = /e, and the torque T =dL/dt, the following

relation can be written:
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2
_ d(lw) _ d(mr-w) :d—mrzw
dt dt dt

T

(2.86)

Here, m and r are the mass of the air and radius of the circular element illustrated in
Figure 2.5b in stream tube, respectively. For the rotating circular differential element,

the torque expressed as,
dT = dimewr® = pV,or’ 2rrdr (2.87)

By defining the angular induction factor as &' = @/2Q and substituting Eq. (2.80) into

Eq. (2.87), the torque equation can be rearranged as,
dT =4a'(1-a") pV Qr’ ndr (2.88)

The 1/2 factor used in the angular induction factor is due to averaging the angular
velocities of the wake at two sides of the rotor [25]. The axial and tangential forces,
given by Egs. (2.82) and (2.88), respectively, on a circular element can be derived by

using the momentum theory.

2.7.2 Blade element theory

The blade element theory relies on the computation of the forces on the rotor by
dividing the blades into sufficient number of element along the blade length and
analyzing each element independently. The aerodynamic interaction between the blade
elements is neglected and the forces are determined by using the lift and drag

coefficients at cross-section of each blade element. In order to obtain the lift and drag

a) Stream tube perspective view - 7 b) Rotor end on view

¢) Wake rotation end on view

Figure 2.5 : Rotating circular stream tube and notation [25, 36].
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coefficients of the cross-section, the airfoils data can be used, if available, otherwise

wind tunnel experiment is required.

A typical blade discretization is illustrated in Figure 2.6. Each blade element is
subjected to different airflow depending on the chord length, ¢, twist angle, y, and
position and velocity of the element [36]. Thus, the relative flow should be determined

before the aerodynamic calculation of the corresponding airfoil.

The flow reaching the blade element at station 2 of the stream tube is initialy non-
rotating and it leaves the rotor with rotational velocity @. The rotational flow over the
airfoil can be determined by averaging the inlet and outlet velocities. Considering that
the blade rotates with velocity (2 and recalling the angular induction factor

a'= w/2Q, the average tangential velocity can be expressed as
V,= Qr+%a)r =Qr(l+a’) (2.89)

The incoming flow orientation can be determined by using the normal and tangential
velocities. By substituting normal velocity in Eq. (2.80), the flow orientation can be
written as follows,

Qr(1+a')

lima) (2.90)

tan [ =

where, £, as seen in Figure 2.7, represents the angle between the directions of the
wind and the flow over the blade element. By defining the local tip speed ratio as

A =Qr/V , Eq. (2.90) is rewritten in the following form:

Figure 2.6 : Blade Element Model [36].
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A(+a')

tan [ = (2.91)
(1-a)
The incoming flow W, thus, is given as,
Va-
w =129 2.92)
cos 3

The drag force is parallel to the incoming waves, whereas the lift and drag forces are
perpendicular to each other. The forces on the blade element, illustrated in Figure 2.7,

can be expressed in terms of lift and drag forces as,

dF_=dLsin f+dDcos (2.93)
dF, =dLcos 8 —dDsin (2.94)

where, dL and dD are the lift and drag forces on each element:
M:Q%dwwr (2.95)
dD =C, %szcdr (2.96)

Here, C, and C, are the lift and drag coefficients of the corresponding airfoil,

respectively.

Finally, Egs. (2.91)-(2.96) yield the following torque and thrust force expressions:

V(1-a)

blade rotation
Qr

F wake rotation
X wr

Figure 2.7 : Flow and forces on the airfoil [36].
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Vi(—-a)’

dF. =oc'np > (C,sin f+C, cos f)rdr (2.97)
cos
' V2 (1_ a)2 . 2
dT =o' mp————(C, cos B~ C, sin B)r” dr (2.98)
Ccos

Here, o'= Bc/27r is known as the local solidity, with B as the number of blades.

2.7.3 Blade element momentum theory

The rotor aerodynamics whose blade geometric properties (i.e. airfoil geometry, blade
length and twist distribution along the blade length) are known can be analyzed by
combining the momentum and blade element theories. Before equating the thrust and
torque expressions, equation of the momentum theory should be adjusted to represent
the finite number of blades. This adjustment is commonly applied by tip loss factor.

The tip loss factor is expressed as follows [25, 36]:

r- Ay 4 B/2[1-7/R]
0= V1 [ p{ ( (r/R)cos 8 jH (2.99)

By substituting the tip loss factor in Egs. (2.82)-(2.88), the thrust and torque equations
become,

dF, =QpV* [ 4a(1-a) |zrdr (2.100)

dT = Q4a'(1-a") pV Q- redr. (2.101)

By equating the adjusted expressions of the momentum theory in Egs. (2.100)-(2.101)
and the blade element expressions in Egs. (2.97)-(2.98), the following BEMt equations

are derived.

a o'[C,sinf+C,cos ff]
l-a 4cos’

(2.102)

a' o'[C,cos—C,sinf3]
1-a 42, cos®

(2.103)

The aerodynamic performance of the rotor can be determined by using Egs. (2.102)-

(2.103). The power output of the rotor is expressed as,

R R
P= j dPdr = j QdTdr (2.104)
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where, 7, is the hub radius. The dimensionless power coefficient C, is given by,

jRQder
c, -t _2n

(2.105)
Pwmd ;pﬂ-RzV3

Substituting the torque statement to Eq. (2.105) yields the power coefficient equation

in terms of tip speed ratios.
— 8 7 3 0 CD
Cp —?Lh OAa (l—a){l—C—Ltan,B}d/ir. (2.106)

Here, A and 4, indicate the blade and hub tip speed ratios that express the ratio of the

related element speed to the far field wind speed.

2.8 Dynamic Response of the Floater

The response of the floater to the combined wave and wind loads can be obtained
through the equation of motion given in Eq. (2.72) by adding the forces transferred

from RNA. The equation of motion takes the following form,
@+A_ )p()+b+B)p@)+(c+C)p@) =1, (1) +f,(1)+f,(). (2.107)

Here, f4 is the generalized aerodynamic force that represents the forces transferred

from RNA and given as,
f,)=U"f (2.108)

where f; is the nodal forcing vector. The aerodynamic forcing term includes the
interaction forces of the blades with the air flow so that the motion of the RNA should
be considered during the BEMt solution. Therefore, a weakly coupling procedure
between hydrodynamic and aerodynamic analysis is formed by setting an interface
point on tower top, where forces on the RNA are transmitted to the structure and in

return, the motion of RNA is updated according to the structural response.

The coefficients of the structural damping b can be estimated by the relation,

*

a

b, =2¢¢, (2.109)

J
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where ¢ stands for the structural damping ratio. a" ; and ¢ are the coefficient of the

mass matrix excluding the RNA mass and stiffness matrix, respectively. The term in
square root represents the natural frequencies of the structure when RNA mass is not

included.

For the time integration, the equation of motion can be converted into a set of first-

order differential equations by defining the state variable

x(t) = {ig;} (2.110)

The state-space formulation of the equation of motion can be given as [37],
x(1)=Ax(0)+ f(¢) (2.111)
where,

0 1

A=|: -1 r ]’
—(a+Aw) (c+C) —(a+Aw) (b+B) (2.112)

0
- {—(a+ A,) (F, () +1,0) +fA(f))}

The influence of the hydrodynamic added-mass on the structural response is
significant due to the same order of densities of the water and structural material; in
contrast, by considering the air density, the aerodynamic added-mass can be excluded
from the equation [20]. However, both aerodynamic and hydrodynamic damping are
considered. Eq.(2.111) can be integrated using the explicit 4" order Runge-Kutta

method and at each time step, the structural response can be obtained.
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3. NUMERICAL APPLICATION

The time domain response analysis of the large-scale support structure carrying two of
SMW wind turbines is performed under combined wave and wind loads by coupling

the hydroelastic and aeroelastic solution procedures.

Firstly, the dynamic characteristics of the structure, i.e. natural frequencies and mode
shapes, are obtained by the finite element method (FEM) in order to represent the
structural response and corresponding fluid perturbation by the modal expansion
method. The hydrodynamic forces on wave-structure interface are stated by the
boundary integral equation (BIE) considering the linear waves and solved by
Boundary Element Method (BEM) for the given frequency interval. The resulting
frequency dependent interaction and excitation forces are converted into their time
domain counterparts. The fluid-structure-interaction forces are calculated by the
convolution integral of the impulse response functions that are obtained from the
radiation forces in frequency domain by using the Filon quadrature. The time domain
representation of the excitation forces for the irregular incident waves is obtained by
the Fourier transformation of the wave exciting forces corresponding to the unit wave
amplitude. Here, the Pierson-Moskowitz wave spectrum is applied for the specified
wind velocity. The aerodynamic forces on the rotor are obtained by the Blade Element
Momentum Theory (BEMt). The time integration of the structural responses are

computed by forming the state-space model.

3.1 Verification

In this section, the computation procedure for the solution of the radiation and
diffraction problems is tested by considering a free-floating cylinder near the free
surface, which is commonly used for verification. Furthermore, the RAOs of a box-
like VLFS are calculated and compared with the benchmark data in order to verify the

wave force and RAO computation procedure [38].

The cylinder with radius » = 1 m and draught 7= 1 m is discretized by using three

different meshes of 272, 612 and 2041 elements (Figure 3.1), in order to analyze the
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Firstly, the non-dimensional added mass and

Figure 3.1 : Cylinder meshes used in BEM solution procedure
hydrodynamic damping coefficients of the vertical cylinder body are computed by
considering only the rigid body modes for the frequency interval [0, 10] rad/s. Then,
the exciting forces, i.e. the diffraction forces, and the RAOs of the surge, heave and
pitch motions are obtained. The damping due to viscous effects is imitated by adding
an external damping coefficient for the pitch motion. The main parameters of the
The obtained results are compared with the results presented in [39]. The non-

convergence of the results.
cylinder are given in Table 3.4.

J

a.

dimensional added mass and damping coefficients are determined as follows.
b,

i

b

prr’T

prr’To
blj

b,

a;

prr’To

i

b

prr’T

Table 3.1 : Characteristics of the cylinder [39].

COG X coordinate

1.00 m
1.00 m
3.14E+3 kg
1.57E+3 kg m?

Radius

COG Y coordinate

Draught

COG Z coordinate

Mass

Css (External damping coefficient)

Pitch inertia

The added mass and damping coefficients of the surge, heave and pitch motion are
presented in Figure 3.2, along with the results found in literature. The results indicate
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the improvement of the

accuracy in parallel with the mesh density. The added mass
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Figure 3.2 : Convergence of the radiation coefficients for the cylinder.

coefficients of the fine mesh in the pitch motions, ass, are slightly different due to the

different mesh. This disagreement can be suppressed by intensifying the meshes near

the free surface or using quadratic boundary elements.

The wave exciting forces and RAOs for heave and pitch motions of the cylinder are
calculated for the incident wave frequencies of [0-10] rad/s interval. The obtained
results and the comparisons are presented in Figure 3.3 and Figure 3.4. The non-

dimensional forces and moments are determined as follows
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Although the minor differences are observed in wave exciting forces for the coarse
and medium meshes, the results are quite compatible for the finest mesh. On the other
side, the RAOs of the pitch motion have some differences probably due to the slight
differences in added-mass and damping coefficients, yet the RAOs give consistent

results in general.

So far, the solution procedure of the rigid body motions is verified; however, the
varication should be extended to include the elastic motions of the structure. In this
respect, the hydroelastic analysis of a VLFS is performed to obtain RAOs. The
structural and hydrodynamic descriptions of the selected VLFS are presented in Table
3.5. The resulting RAOs are compared with the benchmark case given in Ref. [38].
The bending stiffness of the elements used in dry analysis is increased by considering

that the bending thickness is five times of the nominal plate thickness. The density of
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Figure 3.4 : Convergence of the RAOs for the VLFS.
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the bottom and top decks are set to 15375 kg/m? and 5125 kg/m?, while the other plates
are considered massless. The element size are 1 m in horizontal directions and 0.5 m
in vertical direction. The coordinate system is located at still water level at midship
with x-axis is along the longitudinal direction and z-axis is pointing upward. The
analysis is conducted by considering the first twelve elastic modes. The resulting
RAOs in first vertical mode of the VLFS is presented in Figure 3.5 for two different

incident wave angle.

Table 3.2 : Structural and hydrodynamic characteristics of the VLFS.

Length 100 m Elastic Modulus 15 GPa
Breadth 10 m Poisson’s Ratio 0.3
Height 2m Center of Gravity (0.0, 0.0,0.5) m
Draught 1 m Density of water 1025 kg/ m3

—o—Head Waves
074 - +- Head Waves, Ref [38]

ot+———F——F—F 7 T 71— T e e R B s e R
0.2 0.4 0.6 0.8 1 12 1.4 0.2 04 0.6 08 1 1.2 14
w (rad/s) w (rad/s)

Figure 3.5 : RAO of the first vertical bending mode.

3.2 Modelling Approach

3.2.1 Dynamic characteristics and simplified structural model

For the computation of the dynamic characteristics of the FOWT, the finite element
models of the floater and tower are based on shell and beam elements, respectively,
and the RNAs are represented as concentrated masses with rotational inertia at tower-
top. Since the yaw angle of the RNA influences the dynamic characteristics, the mode
shapes of the structure are determined for each environmental condition according to

the orientation of the RNA.

Typical arrangement of the floating structure contains longitudinal and transverse

structural components as well as bottom and deck plating. The entire structural model
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could be formed, yet for large structures this implies a large amount of redundant
degrees of freedom; using simplified models is quite common [8] to avoid excessive
computational cost for the hydroelastic response analysis, which is the adopted

strategy here.

The structure can be idealized as equivalent orthotropic plate model by using uniform
shell elements with identical bending and torsional stiffness. The following moment

curvature equation can be written for two-dimensional structural elements,

_sz
2
M, D, D, 0 aaf
w

M, +=|D, D, 0 _8y2 3.3)

M 0 0 G

xy xy 2
) ow
Ox0y

where w is the global deflection of the structure, M and M are the biaxial bending
moment, M is the torsional moment, and the coefficients in matrix are the structural

properties known as bending stiffness. For an orthotropic material, the stress-strain

relation under plane-stress conditions are given as,

E, vy E 0 ]
o l=vyvy 1=vyyy, <
X E E X
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where E, and E, are the elastic modulus in longitudinal and transverse directions,

respectively, and v,, and v,, are the Poisson ratios. The moment-curvature relation of

the equivalent orthotropic plate model is expressed as follows,

E, Vo £y 0 _azw
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where ¢ is the equivalent orthotropic plate thickness. By considering the relation

v,,E, =v, E, and with an arbitrary value of 7, Eq. (3.3) and Eq. (3.5) together provides

the equivalent orthotropic plate properties, namely E,, E,, v,,, G,, .

Material properties of the shell elements are determined by using the orthotropic plate
model in order to avoid a detailed structural model. However, the bulkheads of the
structure is considered in 3-D model. The mass element properties are determined
according to the NREL 5SMW baseline turbine and the density of the tower is increased
to represent the mass except its outer shell. The structural properties of the FE model

are presented in Table 3.1.

Table 3.3 : Structural Properties.

Length x breadth x height 240mx24mx4m
Draught 2m
Bending stiffness of shell and bulkhead plates 5,0802E+09
Displacement 1,5744E+04 tonnes
Tower height 87,6 m
Tower mass 347.460 kg
Tower base radius / thickness 3m/27 mm
Tower top radius / thickness 1,935 m/ 19 mm
Elastic modulus of tower material 210 GPa
Poisson ratio of tower material 0,3
Density of tower material 8500
RNA mass 3,5000E+05 kg
RNA roll inertia 4,5050E+07 kg m?
RNA pitch inertia 2,4940E+07 kg m?
RNA yaw inertia 2,5477E+07 kg m?

The mode shapes of the structure can be described as either tower or platform type
depending on the domination of the components. The platform type modes are
identified as vertical (V), horizontal, (H), or torsional (T), and the tower type modes
are identified as fore-aft (FA), side-to-side (SS), or mixed (MX), which states that the
mode shape is directed along the x-axis, y-axis, or both, respectively. Some platform

type modes are illustrated according to the RNA orientation () in Figure 3.6.
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Figure 3.6 : Platform type mode shapes for different RNA orientation.
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3.2.2 Boundary element model

The BE meshes are constructed according to the FE meshes so that the finite and
boundary elements over the wetted surface match to each other. The tower type mode
shapes are not considered in BE solutions, since their effect on the hydrodynamic

analysis can be neglected.

BEM computation introduces inherently the irregular frequencies due to the
implementation of the free surface Green function. Since the Green function satisfies
the free surface boundary condition over the entire free surface-both the external free
surface and assumed inner free surface, the obtained fluid forces are erroneous at the
wave frequencies coinciding with the associated sloshing frequencies. In order to
handle this problem during the BEM computation, the inner free surface is appended
to the computation domain and a rigid wall boundary condition is applied over it. The
potential distributions over the wetted boundary elements and inner water-plane
boundary elements are represented by using linear and quadratic shape functions,

respectively.

Considering that the free-terms in Eq. (2.47) are determined by only the geometry of
the boundary surface, they can be calculated indirectly by considering a completely
closed fluid domain—by combining the wetted surface and inner free surface—and
applying constant potential in the domain so that the flux values in Eq. (2.48) vanishes
for the corresponding internal flow problem. In that case, sum of the each rows of the

H matrix must be zero and the diagonal terms of H can be calculated as [33],

E
H,=1- > H,. (3.6)

n=l;n#l

Here, instead of the free surface Green function, the simple source of 1/4 7z is used as

the fundamental solution.

3.2.3 FAST and blade element model

The source code FAST is utilized in the implementation of the aerodynamics and
structural dynamics of RNA. The nonlinear aeroelastic analysis is modeled in FAST
according to the Kane’s equation of motion for a simple holonomic system stated by

the following equation [40, 41],

M(p,u,t)p+£(p, p,u,u,,1)=0 3.7
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where M is the mass matrix, f is the forcing vector, u and u, are the wind turbine

control inputs and wind inputs [41]. FAST is set to consider the two flapwise and one
edgewise elastic modes per blade, generator azimuth, shaft torsion, and nacelle yaw
rotation. In order to compute the RNA forces due to each turbine, the tower top motions
from hydroelastic analysis and kinematics obtained from the dynamic characteristics
are imposed to the FAST dynamic routine. The forces on tower top due to RNA, except
its gravity forces already accounted in FE model, are transferred to the hydroelastic
analysis of the structure. BEMt computation is carried out by ignoring the aerodynamic

interaction between the rotors.

Three bladed NREL 5SMW wind turbine is adopted for the RNA model whose

specifications are given in Table 3.2.

Table 3.4 : RNA properties.

Blades length 61,5m
Mass of each blade 17.740 kg
Hub mass 56.780 kg
Nacelle mass 240.000 kg
Rated rotor speed 13,6 rpm
Blade passing frequency 0,68 Hz

3.2.4 Environment

In order to estimate the sea state, the Pierson-Moskowitz wave spectrum is
implemented by considering 12 m/s wind speed. The wave parameters of the spectrum
data are given in Table 3.3. The same direction is assumed for the wind and wave
environments. Three incident angles are considered for the analysis, namely, 90°

(beam), 135° (oblique) and 180° (head).

Table 3.5 : Pierson-Moskowitz wave spectrum data.

Wind speed 12 m/s
Significant wave height 3,074 m
Peak spectral period 7,338 s

3.3 Dynamic Response Analysis of FOWT

In order to observe the aero-hydro-elastic behavior of the floater carrying two SMW

wind turbines under wave and wind loads, firstly, the dynamic characteristics and the
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Figure 3.7 : Convergence of the BEM analysis

corresponding frequency domain hydroelastic features are obtained by using the FEM
and BEM respectively. The mesh size is determined by considering the convergence
of the generalized added mass coefficients, given for the first platform bending and
torsional modes in Figure 3.7. In the case of coarse mesh, the results are quite different
due to the inadequate element size for the hydrodynamic analysis. However, the mesh
size having 140, 12 and 6 elements along the x-, y- and z-axis, respectively, is sufficient
for achieving accurate results. The diagonal added mass terms corresponding to the

platform modes are presented for each incident wave direction in Figure 3.8. Although
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Figure 3.8 : Generalized added mass coefficients for a = 90° (upper-left), @ = 135° (upper-right) and
a = 180° (bottom).
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for most of the modes the added mass coefficients of are similar despite the change in

wave angle, significant variations in second and third vertical bending modes are

observed.

The wave excitation forces are determined by applying the Haskind relation. As shown
in Figure 3.9, the wave forces related with the vertical bending modes are relatively
larger in the low frequency range, as expected. Even though the forces generally have
the same amplitude, the wave force in second vertical bending mode differs for each

wave angle.

The time domain fluid-structure interaction forces and excitation force are obtained
from the radiation forces, i.e. added masses, and the wave excitation forces,
respectively, using the Fourier transform. The Filon quadrature is adopted to integrate
the oscillatory function in Eq. (2.76) for the computation of IRF. The diagonal
coefficients of IRF are illustrated in Figure 3.10 for the platform modes. The
coefficients of IRF are expected to decline, since the effect of the structural motions
on the radiated waves decreases over time. Besides, smaller amplitude IRFs for the
modes having higher natural frequency indicates that the energy transferred to the fluid

are relatively small for the high frequency modes.
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Figure 3.10 : Diagonal entries of the impulse response function (IRF) for the platform type modes
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The time domain radiation forces are obtained by the convolution of the IRF. As seen
in Eq. (2.75), the computation process involves the motion history of the structure.
Considering that the memory effects are weakened as time progresses, however, the
motion history can be limited to shorter times. Keeping the sixty seconds history is the
common approach and it is adequate for achieving accurate results. The time domain
radiation forces are presented in Figure 3.11 for several angles of incident wave. The
forces have slightly different amplitude when the RNA is oriented according to the
oblique direction (135°) of the wave-wind as a result of the modification of the tower

mode shapes from FA to MX.
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Figure 3.11 : Time domain radiation forces.
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The time domain wave forces are derived by the sine transformation of the frequency
domain wave forces. The waves are considered as unidirectional and the wave
elevation is represented by using the Pierson-Moskowitz wave spectrum. As illustrated
in Figure 3.12, the magnitude of the time domain wave forces for the vertical bending

modes of the platform are of higher order in parallel with the frequency domain wave

forces.
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Figure 3.13 : Physical Forces on first tower top.

While applying the BEMt for the rotor aerodynamics, swirl model for the induction
factor is adopted. In addition, hub-loss and tip-loss of the rotor are taken into account
by using the Prandtl model. Two flapwise and one edgewise modes of the blades and
drivetrain rotational flexibility are considered along with the generator degree of
freedom for the structural dynamics of the rotor. The tower top forces due to rotor is

presented in Figure 3.13.

The generalized aecrodynamic forces are computed by substituting the tower top forces

for the nodal forcing vector in Eq. (2.108). The generalized aerodynamic forces of the
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Figure 3.14 : Aerodynamic excitations in principle coordinates.

modes TFA-V1 and TFA-V3 are given in Figure 3.14. The aerodynamic excitation is

excessively large with respect to the hydrodynamic excitation, meaning that the

response is mainly due to aerodynamics. The dependence of aerodynamic excitation

to the wind angle is also presented in Figure 3.14. The relation between the wave and

aerodynamic excitation is revealed by the lower frequency oscillation of the

aerodynamic forces about 0.14 Hz (the peak spectral frequency of the irregular waves),

while the influences of the radiation forces and the rotation of the blades cause an

oscillation with the blade passing frequency, 0.68 Hz. Furthermore, when the RNA is

oriented to the 135° with respect to the wind angle, the influence of the wave forces

over the aerodynamics diminishes for the first vertical bending mode of platform.

At last, the forces are assembled in principle coordinates and the state-space equation

of motion, given in Eq. (2.111), is solved to find the principle coordinate vector

representing the influences of the specified modes on overall response. The
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Figure 3.15 : Modal components of the response in principle coordinates.

generalized response of the platform vertical bending modes (V1, V2 and V3) are
demonstrated in Figure 3.15 for each environmental case. The head and beam direction
of the wave-wind have same order effects on the response in symmetric vertical
bending modes (V1 and V3), however, for the asymmetric mode (72) this correlation
is vanished. The principle coordinate components for the oblique wave-wind have

particular values due to different type of the tower mode shapes.

The response of the structure, i.e. nodal displacements and velocities, can be

determined by converting the quantities from the principle coordinates to the physical
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coordinates through the mode shapes. In Figure 3.16, the displacement of the point
chosen at floater aft (-120, 0, 2) and floater fore (120, 0, 2) along with the velocities
of the point (120, 0, 2) are presented for 60 s time history. The overall response is
sensitive to the angle of the wave-wind. Although the minimum deflection is observed

at beam direction, as seen in Figure 3.17, the most power capturing capacity is

achieved by the oblique wave-wind s.
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Figure 3.16 : Floater overall response.
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3.4 Conclusion

The time domain dynamic response of a FOWT’s support structure including towers
and floater is investigated under combined wave and wind loads by coupling the
hydroelastic and aeroelastic solution procedures. The elastic responses of the structure
is taken into account due to its relatively large dimensions. The modal approach is
adopted to describe the dynamic response of the support structure and the FEM is
applied to represent its dynamic characteristics, namely, the natural frequencies and
corresponding mode shapes. The fluid flow, assumed ideal and irrotational, is
described as the combination of potential components attributed to the wave radiation
and diffraction. The fluid-structure interaction is established through the kinematical
boundary condition and fluid pressure distribution over the wetted surface. The
frequency domain wave radiation forces (i.e., the added mass and hydrodynamic
damping effects) and wave excitation forces are determined by using a higher-order
BEM approach relies on the free surface Green function, where the extended BEM
formulation is adopted for removal of the frequency effects. The time domain history
of the wave forces is obtained by the Fourier transformation of the frequency domain

counterparts; the Filon quadrature is applied for numerical calculations.

In order to avoid detailed modelling of the structure, the FE model of the floater is
constituted by using the orthotropic plate model whereas the RNAs represented by
mass elements with rotational inertia on each tower top. The orientations of the mass
elements are taken into consideration in the dry analysis due to the yaw degree of

freedom of the RNAs.
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The wave radiation and excitation forces—related with the elastic modes that induce
strong fluid-structure interaction—are determined for each environmental condition
and transformed to their time domain representations by the convolution of the
radiation impulse response function and using the sine transformation, respectively.
The aerodynamic forces due to steady wind are obtained by using the BEMt by
considering the interaction with the structural motion. 2 flapwise and 1 edgewise
elastic modes per blade, generator azimuth, shaft torsion, and nacelle yaw rotation are
considered during the computation of the forces on each tower top. Then, the state-
space formulation of the equation of motion is solved at each time step by using the
4™ order Runge-Kutta method for the time integration of the responses. The general

conclusions may be given as follows:

e The variation of the dynamic characteristics corresponding to the RNA

orientation should be taken into account when the nacelle rotation is enabled.

e Due to the configuration of the floater, the irregular frequency effects resulting
from the adopted free surface Green function is expected to be large, though

the applied extended BEM formulation effectively removes the effects.

e The wave forces associated with the floater vertical bending modes have

relatively higher influences over the structural response.

e The generalized aerodynamic forces are excessively large with respect to the

generalized wave forces for the analyzed FOWT configuration.

e The response of the structure is mainly due to the aerodynamic excitation.
Accordingly, the hydrodynamic and aerodynamic interaction forces oscillate

with the blade passing frequency, which is three times of the rated rotor speed.

e The influence of the head and beam directions of the wave-wind on the
response of the symmetric vertical bending modes is of the same order. The
effect of the oblique wave-wind, however, can be distinctive depending on the
tower mode shapes. Additionally, the correlation between the influences of the
head and beam direction of the wave and wind is vanished for asymmetric

floater modes.
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e The overall response of the floater is minimized when the wave-wind are in the
beam direction. The maximum power is generated by the oblique wave-wind

casc.
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