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ABSTRACT 

 

In this study, theory of copula is used to establish criteria to select between 

multivariate GARCH models.  It is common to use Multivariate GARCH models to study 

effects of shocks between markets. There are several MGARCH models which scholars 

have applied to different markets data. The problem of preferring one model to other 

model is not discussed by scholars. To do so, first buttermilk problem is identified for 

MGARCH models, and then a hypothesis testing approached is introduced to check 

which model collects better the relationships of two markets. In next step several 

dependency modeling approaches are checked for standardized residuals of MGARCH 

models. Among them, Alternating Conditional Expectations regression method is 

selected as model selection criterion for MGARCH models. To check the consistency of 

criterion, real world data, OPEC oil prices and Chinese stock Indices, has been used for 

empirical study to check which model captures relationship between volatility spillover 

effects of Oil prices on Chinese stock market.  
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1. Introduction 

Forecasting the future loss of portfolio is important for hedge fund managers. 

Portfolio managers want to decrease their exposure to risk (so called volatility) in the 

markets and investors want to take more benefit from their positions in risky assets. 

That’s why estimating tomorrow’s risk and finding the impact of shocks to the portfolio 

is major concern in asset management. Loads of researchers have been concerned 

with finding relationships between shocks and volatilities of markets. After introducing 

ARCH1 models by Engle (1982), scholars agreed that tomorrow volatilities can be 

predictable. The study of volatility forecast has been in a variety of approaches, some 

of which focused on how to model volatilities and some are simply empirical 

suggestions. Meantime, studying the effect of markets on each other became a 

common interest of scholars. This analysis emerged after introducing multivariate 

GARCH2 models. The first MGARCH model, VEC model, was introduced by Bollerslev et 

al. (1988) in their study of CAPM model with time varying variances; they found that 

conditional covariance matrix of asset returns to vary over time and risk premium of 

asset returns to be influenced by variance of returns. After introducing VEC model, 

many scholars tried to understand the co-movements of financial returns using 

MGARCH models. Some scholars indicate that risk management and asset allocation 

relate to finding and updating optimal hedging positions. Silvennoinen et al. (2007) 

and Bauwens et al. (2006) have provided a precious literature review on MGARCH 

models. 

To date, none of the scholars have presented how to distinguish among different 

MGARCH models. In fact, nobody has studied the effectiveness of MGARCH models to 

check whether the MGARCH model has captured all co-movements of two markets or 

there is still some dependency left between two markets after taking out the 

covariance matrix of MGARCH model. This problem has been identified in this study 

                                                      
1
 Autoregressive Conditional Heteroscedasticity 

2
 General Autoregressive Conditional Heteroscedasticity 
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and named as buttermilk problem. After identifying buttermilk in MGARCH models, I 

tried to find how much fat is left in buttermilk of MGARCH models.  

Statistically speaking, the question is what relationship between standardized 

residuals of MGARCH model is.  To investigate this relationship, several dependency 

models have been studied. These dependency models include linear dependency 

models, such as Pearson correlation, Kendal’s tau and Spearman rho, non linear 

dependency models, such as copulas, Randomized Dependence Coefficient, Distance 

or Brownian correlation measure and Alternating Conditional Expectations. Among 

these models, ACE provides better measure to distinguish the fats of buttermilk. Once 

ACE is collected as dependency measure, then this criterion applied to several famous 

and well known MGARCH models to check consistency of criterion. The empirical 

results confirms the consistency of ACE criterion for selecting proper MGARCH model 

that captures better the relationship of two markets 

This study is organized as follows. Section 2 reviews literature on volatility 

modeling, section 3 discusses the problem of MGARCH models, section 4 reviews 

dependency literature and section 5 investigates the criterion on real data, and shows 

how to select among MGARCH models. The data used in this research is bivariate sets 

of OPEC oil and Chinese stock indices. To estimate the MGARCH models RATS 

software, and to estimate the copula functions and dependency measures R Software 

are used. All codes are presented in appendix C. 
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2. Literature Review  

In this section, volatility modeling for markets discussed and mainly focused on 

Multivariate risk models introduced by scholars. The very famous models for volatility 

of markets are ARCH and GARCH models which is the main area of this study.  

2.1. Univariate volatility 

High frequency observations of financial time series of financial assets are in fact 

independent or uncorrelated, while the series contain higher order dependence 

(Teräsvirta (2009)). One way to model this dependency is using ARCH models or in 

general form of them, namely the GARCH model. The GARCH model was developed 

independently by Bollerslev (1986) and Taylor (1986) to capture volatilities of financial 

assets. It is clearly known that the asset returns do not possess constant variance over 

a period of time (see Bollerslev et al. (1988)). Teräsvirta (2009) prepared an overview 

of univariate models of conditional heteroscedasticity. Till now, several types of the 

GARCH model have been introduced to model volatilities. Some try to study 

asymmetric behavior such as, the GJR-GARCH model of Glosten et al. (1993), the 

NAGARCH model of Engle and Ng (1993) which model non-linear asymmetric response 

to news, and the quadratic GARCH (QGARCH) of Sentana (1995). Other extensions of 

GARCH family are: Integrated GARCH (IGARCH), Exponential GARCH (EGARCH), 

Markov-switching GARCH and Threshold GARCH (TGARCH) which modeled by Engle 

and Bollerslev (1986), Nelson (1991), Hamilton and Susmel (1994), and Zakoian (1994) 

respectively. 

The key formula of all GARCH models is that the shocks can be decomposed in the 

following: 

(1)                                     

With forecasted conditional variances we are able to find the measure of risk whilst 

investing in an asset. GARCH model tries to model variance of the current error term 

as a function of the actual sizes of the lag error terms and lag variances. So GARCH 
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(1,1) model will make use of both error term square and variance of the first lag as the 

independent variables of the current variance to make regression coefficient  

estimations for the model. The GARCH (1, 1) is given by:   

(2)            ,  

(3)                                  

(4)     
          

 
        

 
    

   
 , is the time period conditional variance of the error terms (    in the regression 

equations (2),    in equation (3), is normally distributed standardized residual that is 

used as test statistics. Equation (4) gives the values of the conditional variance   
  at 

time period, t.  

 

2.2. Multivariate GARCH Models  

Modeling financial volatility of markets and studying the effects of these volatilities 

on each other is a trending concern of scholars. For modeling dynamic relationship of 

market volatilities, MGARCH models are applied to asset returns of financial time 

series. Multivariate volatility is applied to estimating dynamic and optimal hedge ratio 

or calculating the risk minimizing portfolio. The very first MGARCH model, VEC-GARCH 

model of Bollerslev, Engle, and Wooldridge (1988), is based on conditional variance-

covariance and its lags. Later on, a restricted form of VEC-GARCH model called BEKK 

model after Baba et al. (1987), developed and became more popular between as it was 

easier to estimate due to less complexity in model estimation. Another class of 

MGARCH models is on the decomposition of the conditional covariance matrix into 

conditional standard deviations and correlations (Silvennoinen et al. (2007)). Bollerslev 

(1990) proposed Constant Conditional Correlation (CCC–) GARCH model but time 

varying conditional variances and covariances. Tse and Tsui (2002) investigated 

volatility and correlation transmission and spillover effects by adopting VECH 

representation based on the conditional variances and the conditional correlations. 

They applied their proposed model to exchange rate and stock market indices. Engle 
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(2002) introduced a Dynamic Conditional Correlation (DCC)–GARCH model which its 

dynamic conditional correlation structure is similar to Tse and Tsui (2002) model. 

Applications of MGARCH models are not just restricted to stock markets. Chan et al. 

(2005) used MGARCH models to investigate tourist arrival rate between four tour 

leading countries. Moreover, MGARCH models are widely applied to commodity 

markets to define hedging strategies especially on oil shocks contagion effect. There is 

a number of contributions to the literature on the relationship between oil prices and 

stock index market or other financial and macroeconomic variables. Some researchers 

provided the literature on the impact of oil prices on the exchange rates (see Zhang et 

al., (2008); Narayan et al. (2008)). Several studies have also provided new insights into 

the effect of oil price changes on stock market (see Narayan and Narayan, (2010); Cong 

et al. (2008); Park and Ratti, (2008)). MGARCH models also have been used to analyze 

and estimate the volatilities of crude oil prices, exchange rates and stock markets.  

Asymmetric BEKK model is used by Agren (2006) as strong evidence to show the 

impact of volatilities of oil prices onto the stock markets in Norway, Japan, UK and US 

but rather a weak evidence for the oil price effect on Swedish stock market. A research 

on mutual effects between the S&P oil sector stock index and the oil spot and futures 

prices is reported by Hammoudeh et al.  (2004). Kim et al. (2015) examine spillover 

effects of the recent U.S. financial crisis on five emerging Asian countries by estimating 

conditional correlations of financial asset returns across countries using MGARCH 

models. Lien et al. (2002), evaluate hedging performance of MGARCH models in future 

markets. Jondeau (2015) investigated the properties of a portfolio composed of a large 

number of assets driven by a strong MGARCH process with heterogeneous parameter.  

The common aspect of all MGARCH models is their decomposition of shocks into 

the variance matrix and standardized errors. This is generalization of what we have 

seen in univariate modeling: 

 

 (5)          
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Where Ht is the conditional variance-covariance matrix, (ɛt) is time-varying shocks 

vector and    is standardized errors vector, which is I.I.D with mean zero and variance 

of vector . As in univariate all multivariate GARCH models differ just in the way they 

are modeling variance matrix. In this study just two of MGARCH models are discussed 

but the methodology can be applied to other models as well. 

 

2.3. BEKK Model 

One of important and widely used MGARCH models is the BEKK model, named after 

Baba, Engle, Kraft and Kroner (1987). The final version of BEKK is discussed in Engle 

and Kroner (1995). The BEKK model is simple form of VEC-GARCH model on the 

condition of positive definite covariance process, which makes it is easier to verify 

stationary conditions of covariance process. `Diagonal BEKK' and `scalar BEKK' are 

introduced to decrease the number of parameters to be estimated. Kroner and 

Ng(1998) illustrate the asymmetric behavior of time-varying covariance of asset 

returns.  

In the specification of the BEKK model, each coefficient of past values depends on 

several parameters. Consider an n dimensional vector yt follows the general BEKK (p; q; 

K ) model, given by: 

(6)               

(7)          
   

                         

(8)             ∑ ∑    
         

    
 
   

 
    ∑ ∑    

        
 
   

 
    

Where Aik and Bik are n-dimensional square matrices and C is the n-dimensional 

lower triangular matrix. As in Propositions 2.2 and 2.3 of Engle and Kroner (1995), it is 

useful to impose restrictions for the purpose of model identification. Now consider the 

widely-used BEKK (1,1) specification: 

(9)                    
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(10)     [
      

      
]    [

      

      
]    [

    
      

] ,                ] ,    
 
  [

  
           

          
   

] 

Ht is the conditional variance-covariance matrix of shocks (ɛt). Engle and Kroner 

(1995) proposed that Ht is required to be positive definite for all values of the 

disturbances. By expanding matrix form, we can see relationship of volatilities of both 

markets and effect of shocks of each market on volatilities: 

(11) 

[
          

          
]  [

    
      

]
 

[
    
      

]

 [
      

      
]
 

 [
  

                 

              
     

] [
      

      
]
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]
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So 

(12)           
     

   (   
   

                             
   

     )   

 

                                                     (   
                           

          

(13)                                       
 
                                         

 
      

 
                                    (                                                    

(14)                            
     

   (   
   

                             
   

     )   

 

                                              (   
                           

          

 

The BEKK model captures the effects on the current conditional volatility of own 

innovations3 and lagged volatility as well as the cross market shocks and the volatility 

transmission of other markets.  One application of BEKK model is to calculate Value-at-

Risk (VaR) and conditional expected shortfall (ES).  

To estimate BEKK model, we need to use optimization methods. Similar to 

univariate GARCH models, we can estimate BEKK model using numerical non liner 

                                                      
3
 In time series analysis (or forecasting) — as conducted in statistics, signal processing, and many other fields — 

the innovation is the difference between the observed value of a variable at time t and the optimal forecast of that 
value based on information available prior to time t. 
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optimization methods. If we assume that the error disturbances follow multivariate 

normal distribution and variance-covariance matrix as: 

(15)                         
 |      

Then use log-likelihood function is given: 

(16)        
 

 
∑          

 
      

   
       

 

 
       

 

 
   |  |  

 

 
  

   
     

 Subject to: 

 
(17)                                      

(18)                                           
           

(19)                                      Means H is Positive Definite variance covariance 
condition 

 
To maximize L, the nonlinear maximization method introduced by Brendt et al 

(1974) is used. In case that error disturbances joint distribution is not joint normally 

distributed, then Quasi ML (QML) estimation has been used. By the way, RATS 

software can estimate BEKK model for which we can use this code: 

-> garch(p=1, q=1, mv=bekk, pmethod=simplex, piters=5) Oil Index 

Moreover, for testing BEKK model, we can find eigne values of K matrix which is 

given in (20). According to Silvennoinen et al. (2009), BEKK model is covariance 

stationary if and only if the Eigen values of K are less than one in modulus.  

(20)                    ∑∑    ∑∑    

 Where ⊗ denotes the Kronecker product of two matrices. With the following 

command in R, we can easily calculate K as: 

 -> K=Kronecker (A,A)+Kronecker (B,B) 
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2.4. CCC GARCH Models 

Bauwens et al. (2006) describe CCC-GARCH Models as nonlinear combinations of 

univariate GARCH models in which conditional variances and the conditional 

correlation matrix or another measure of dependence between the individual series is 

separated from each other. Bollerslev (1990) proposed CCC-GARCH models in which 

the conditional correlations are constant and the conditional covariances are 

proportional to the product of the corresponding conditional standard deviations. The 

CCC model is defined as:  

 

(21)                                        √                                  

Where: 

(22)                                               
   

     
   

                              

hiit can be defined as any univariate GARCH model and R is a symmetric positive 

definite matrix containing constant conditional correlations:  R =ρij and ρii=1. The first 

introduced CCC-GARCH model was:  

(23)                       
                                    

Which is GARCH (1,1) process. Tae-Hwy, Long, Xiangdong (2006) introduced copula-

based MGARCH (C-MGARCH) model with uncorrelated dependent errors, which are 

generated through a linear combination of dependent random variables. This model is 

an extension of CCC-GARCH model. 

 

2.4.1. VAR-CCC-GARCH 

VAR-CCC-GARCH model was proposed by Ling and McAleer (2003) and later applied 

by several researchers such as Chan et al. (2005), Hammoudeh et al. (2009) and Arouri 

et al. (2011).  

This model is special case of the multivariate CCC-GARCH of Bollerslev (1990). In 

this model correlations between market shocks are considered to be constant which 

makes estimation easier. The bivariate VAR1 -GARCH (1,1) is used to find conditional 
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correlation of OPEC oil and Financials No Bank Industry Index Stock Index. The 

conditional mean equation of both markets is:  

(24)                                                                           

(25)                                                                       
   

    

Where the volatility across both markets is: 

(26)    
                   

               
              

              
     

(27)   
                   

              
             

               
      

For estimating VAR-CCC-GARCH model, we can use RATS codes as below: 

system(model=var1) 

variables Oil Index 

lags 1 

end(system) 

garch(p=1, q=1, model=var1, mv=CC, variance=varma, pmethod=simplex, 

piters=5) Oil Index 

 

2.5. Tests for MGARCH models 

According to Silvennoinen et al. (2007), there are two approaches to test MGARCH 

models. The general misspecification test approaches to check the adequacy of an 

estimated model and the other approach tries to test the model against a parametric 

extension, named specification tests. The later is mostly designed for CCC-GARCH 

models. Ling and Li (1997) have introduced a test statistics to test the adequacy of 

MGARCH models which can be used for all models. Later on Tse and Tsui (1999) 

criticize the power of Ling and Li (1997) approach. Duchesne (2004) provided a 

generalization of Ling and Li (1997) test. Duchesne (2004), a general class of matricial 

measures of dependence is proposed, that corresponds to sample autocovariance 

matrices of the vector time series of squared (standardized) residuals and cross 

products of (standardized) residuals. He derived the asymptotic distribution of these 

residual autocovariance matrices, using an approach similar to Li and Mak(1994) 
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approach for univariate GARCH models. Tse (2000) introduced a Lagrange Multiplier 

test for the constant-correlation hypothesis in a MGARCH model. The test examines 

the restrictions imposed on a model which encompasses the CCC–GARCH. Bera and 

Kim (2002) have suggested a test for constancy of correlation in bivariate CCC–GARCH 

model.   
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3. Buttermilk! Problem of MGARCH models 

In many of papers about commodity markets BEKK, DCC GARCH and VAR-CCC-

GARCH models are mostly used by scholars to study co-movements of volatility of oil 

and stock markets. It is common among these studies that they compare and contrast 

several MGARCH models results but selecting one model over another is missing in all 

of these studies. There is no methodology presented in strong literature of MGARCH 

models that can say which MGARCH model capture better the dependency of markets 

better than the other models. 

Actually the basic assumption of all MGARCH models is that the variance-covariance 

matrix captures the whole comovement and all relationship of both markets. This can 

be translated to alternative hypothesis that there is no relationship between the 

remaining data of markets after driving off the variance-covariance matrix. That’s the 

main problem of MGARCH models which I call buttermilk. This is similar to the process 

of producing butter. Let’s consider we have two different processes to produce butter 

from milk. After processing the milk and getting milk whatever remains is called 

buttermilk, literally means there is still some fat in the remaining milk. So we need 

another process to separate more fat from butter milk. In this case, if we can measure 

how much fat is left in butter milk of each process then we can decide which churning 

process performs better. MGARCH models are similar to milk process as they are a 

process of capturing variance-covariance of two markets. So if we consider variance as 

fats then buttermilk is the same as standardized residuals. Now we want to know if 

there are fats in buttermilk and how much fat we have left.  

Recall equation (5) from MGARCH model: 

 

(28)                                      
   

                                

Where     are time-series random variables that are independent and identically 

distributed with a mean of 0 and variance of I. This equation is heart of MGARCH 

models and claims that all relationship between two (or more) markets is modeled via 
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equation (28).  Actually this means that there is no relationship left between 

standardized residuals. Here I will use estimated ( ̂      ̂     data to check if the 

MGARCH model’s claim is correct or not. The actual values of ( ̂      ̂     random 

variables are given by matrix multiplication of the inverse of the square root of 

variance-covariance matrix (  
    

  and the MGARCH error terms as following 

equation:   

(29)                    
    

                                  

Now the question is to identify dependency of estimated random variables of two 

markets ( ̂      ̂    . To answer this question we need more literature on dependency 

modeling. Also to avoid complexity of notation, assume that X= ̂     is estimated 

standardized residuals of first market and   = ̂    is estimated standardized residuals 

of second market. From now, we are trying to study dependency of random variables 

of X and Y.  

3.1. Criterion and Hypothesis Testing 

We can establish a model selection criterion using dependency modeling theory to 

find out any dependency of standardized residuals of each MGARCH model. The null 

hypothesis is that H matrix captures all relationship and comovement of two markets. 

This can be translated as there is no relationship between standardized residuals. So 

we can write: 

 

  H0:  ̂      ̂    are stochastically independent 

  H1:  ̂      ̂     are stochastically dependent 

 

To run this test two MGARCH model have been selected, each from different 

category of volatility modeling. Then the dependency of standardized residuals of 

BEKK GARCH model and an extension of CCC-GARCH model is estimated. To avoid 
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complexity, bivariate models are considered for MGARCH models. As the real data is 

used, after estimating each model, the standardized residuals are estimated for each 

market data. To do so in RATS 8.0 the following codes are used to estimate each 

MGARCH model and standardized residuals of MGARCH model: 

Standard BEKK RATS codes: 

garch(p=1, q=1, mv=bekk, pmethod=simplex, piters=5, piters=20, 

rvectors=rd, hmatrices=hh) Oil Index 

 

VAR-CCC-GARCH RATS codes: 

system(model=var1) 

variables Opec CI005022 

lags 1 

end(system) 

garch(p=1, q=1, model=var1, mv=CC, variance=varma, pmethod=simplex, 

piters=5, piters=20,rvectors=rd, hmatrices=hh) Oil Index 

 

This code prepares Standardized residuals  

dec vect[series] zu(%nvar) 

do time=%regstart(),%regend() 

   compute %pt(zu,time,%solve(%decomp(hh(time)),rd(time))) 

end do time 

@mvqstat(lags=1) 

#zu 
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4. Dependency Modeling  

Pearson correlation coefficient is basic parameter that captures linear dependency 

of two random variables. Kendall (1938)'s tau rank correlation is another approach to 

find rank correlation between two random variable. Some scholars study some other 

non-linear statistics that can be applied to standardized residuals. These are namely, 

Alternating Conditional Expectations or back fitting algorithm, Kernel Canonical 

Correlation Analysis, (Copula) Hilbert-Schmidt Independence Criterion, Distance or 

Brownian Correlation and the Maximal Information Coefficient. (See Breiman et al. 

(1985), Francis et al. (2002), Gretton et al. (2005), Szekely et al. (2007) and Reshef 

(2011)). In this study, both linear dependency models and non linear dependency 

models are studied to check the correlation of fats in buttermilk.  

 

4.1. Pearson Correlation Coefficient 

The very famous correlation coefficient between two random variables is Pearson's 

correlation coefficient. This is calculated by:  

 (30)                        
         

    
 

The claim of buttermilk problem is that if there is significant linear correlation between 
X and Y. So the parameter used for linear correlation is: 

             

           

Using t-student distribution for      with n-2 degrees of freedom, the test statistic is 

given by Rahman (1968): 

(31)                                                                √
   

    
   

 

The R command for preparing such a test is given as: 
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cor(x,y,method="pearson")    

cor.test(x,y, method="pearson")$ statistic 

cor.test(x,y,method="pearson",alternative = "two.sided")$ p.value 

 

4.2. Kendall’s Tau and Spearman’s rho 

Two rank correlation coefficient commonly used as a way of determining 

association between variables, are Kendall’s tau and Spearman’s rho. According to 

Nelsen (1991), Kendall’s coefficient introduced by Fechner around 1900, and 

rediscovered by Kendall (1938). Kendall’s tau is a measure of association between two 

quantities and measure of bivariate concordance (see Joe (2014)). Spearman’s rho, 

named after Charles Spearman, is also another type of nonparametric measure of 

statistical dependence.  

4.2.1. Test for association/correlation between paired 

samples 

Myles Hollander & Douglas A. Wolfe (1973) prepared a test for Kendall’s tau rank 

correlation. The null hypothesis of this test is: 

H0: [HX,Y (x, y) ≡ FX (x)FY (y), for all (x, y) pairs]. 

They consider alternative hypothesis can be any function of dependence between 

the X and Y variables. They used Kendall population correlation coefficient as 

dependence measured by the:  

(32)                           τ = 2 P{(Y2 − Y1)(X2 − X1) > 0} − 5.  

The R command cor.test will perform this test: 

cor.test (x, y, method="kendall") 

Similarly for Spearman’s rho: 

cor.test (x, y, method="spearman") 
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4.3. Copulas 

Recently copulas have had extensive use in financial analysis due to ability to 

compute the joint distributions for several random variables. Copulas concept were 

introduced by Sklar (1959), who together with Schweizer (1974, 1983) developed some 

important aspects of theory of copulas.  

 Nelson (1999) gives this intuition about copulas. He referred to copulas as 

“functions that join or couple multivariate distribution functions to their one-

dimensional marginal distribution functions” and as “distribution functions whose one-

dimensional margins are uniform.” He clearly states that these are not definition of 

copulas. Nelson (1999) explains more precisely, consider X and Y as random variables 

with distribution functions F(x)= P[X  x] and G( )=P[Y  ], respectively, and a joint 

distribution function H(x,  ) = P[X  x , Y     ]. To each pair of real numbers (x,  ) we 

can associate three numbers: F (x), G ( ), and H (x,  ). Note that each of these numbers 

lies in the interval [0, 1]. In other words, each pair (x,  ) of real numbers leads to a 

point (F(x), G ( )) in the unit square [0, 1]  [0, 1], and this ordered pair in turn 

corresponds to a number H(x,  ) in [0, 1]. This correspondence, which assigns the value 

of the joint distribution function to each ordered pair of values of the individual 

distribution functions, is indeed a function, named copulas. A copula is a function C 

that links univariate marginal probabilities of two random variables to their 

multivariate distribution: 

(33)                           HX,Y  (x, y) = C(FX(x), FY (y)) where 

(34)                          C(u, v) = H (F  1 X (u), F  1 Y (v)) 

The joint density function can be obtained from:  

(35)             hX,Y (x, y) = c(FX(x), FY (y)) fX (x) fY (y), 

where 

c(u, v)=
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In this study, only bivariate copulas are used to determine the joint cumulative 

distributions of standardized residuals. 

4.3.1. Definition 

 According to Nelson (1999), a two-dimensional Copula is a 2-subcopula C whose 

domain is  2. Copula is a real function C: [0, 1] X [0, 1] → [0, 1] with the following 

properties: 

 Groundedness property, for every u,v in  :  

          C (0,v) = C(u,0) = 0  

   C (u,1) = u  

   C (1,  ) =   ; 

 2-increasing property: 

    u1, u2,   1 ,   2    , where u2 ≥ u1 and   2 ≥   1 ,  

C(u2 ,   2)- C(u1 ,   2)- C(u2 ,   1)+C(u1 ,   1) ≥ 0 ,  

Copulas can be considered as joint cumulative distribution functions that act as 

dependency functions with parameters showing to what degree or measurement level 

the variables are dependent on one another. This can possibly be done with an 

application of a well-known, powerful and useful Sklar’s theorem (Sklar, 1959).  The 

theorem gives a way of relating directly the joint cumulative distribution function with 

a special copula and inputs to copulas are the continuous univariate marginal 

distributions for the variables of interest.  

 

4.3.2. Sklar’s theorem 

HXY(x, y) = C(FX(x), FY (y)) where FX(x) and FY(y) are marginal distributions functions 

for X and Y respectively. If FX(x) and FY(y) are absolutely continuous, then C is unique.   

C: [0,5] X [0,5] → [0,5] and H(x,y) is the joint cumulative distribution function for the 

two variables. 
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4.3.3. Rank correlation 

As for the case of conventional statistics, using copula as a statistical tool will 

require one to find means of determining rank correlation between variables.  

Fortunately we can obtain both coefficients by expressing them as functions of 

copulas. Schweizer and Wolff (1981) defined Spearman’s rho and Kendall’s tau rank 

correlation in terms of copula as: 

(36)                           S = 12 ∫ ∫  
 

 

 

 
 C (u,v) } du dv-3 

(37)                            τ = 4 ∫ ∫  
 

 

 

 
(u,v) dC(u,v) – 1 

Where dC is doubly stochastic measure induced on I2 by C. Schweizer and Wolff 

(1981) established that for Archimedean copulas, Kendall’s tau can be related to the 

dependence parameter 

 

4.3.4. Student’s t-copula  

According to Peng et al. (2014) the Student’s t-copula distribution is defined by: 

(38)      

     ∫ ∫     
 

  √    

  
     

  

  
     

  
(  

          

 
)
 

   

 
     

Where   > 0 is the number of degrees of freedom, ρ   [−5, 5] is the linear 

correlation coefficient, tν is the distribution function of a t-distribution with ν degrees 

of freedom and t − ν denotes the generalized inverse function of tν. Student’s t-copula is 

an elliptical copula that can also be used as an extreme value theorem copula.  

The rank correlation coefficient, Kendall’s tau (τ) is given by: 

(39)          
 

 
           

For the Student’s t-copulas, the relationship between the linear correlation 

coefficient and Spearman’s rho is:  
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(40)           
 

 
       

 

 
  

 

To transfer the X and Y, student t distribution is used, for which R codes are as 

follows: 

U <- sapply(1:2, function(y) pt(ETA1[, y], df =2353 )) 

V <- sapply(1:2, function(y) pt(ETA2[, y], df =2353 )) 

To estimate t-copula, “VineCopula” package of R is used: 

f=1 

cop01<-BiCopEst(U1[,1], U1[,2], family=2, method="mle", 

se=FALSE, max.df=2352,weights=NA) 

CT[f,1]<-cop01$par #so called rho parameter  

CT[f,2]<-cop01$par2 

tau<-2/pi*asin(cop01$par) #Kendell's tau rank correlation OR  

this formula BiCopPar2Tau(family=2, par=cop01$par,cop01$par) 

spe.rho<-6/pi*asin(cop01$par/2) #Spearman's rho correlation 

CT[f,3]<-tau 

CT[f,4]<-spe.rho 

 

cop02<-BiCopEst(U2[,1], U2[,2], family=2, method="mle", 

se=FALSE, max.df=2352,weights=NA) 

CT[f,5]<-cop02$par #so called rho parameter  

CT[f,6]<-cop02$par2 

tau<-2/pi*asin(cop02$par) #Kendell's tau rank correlation OR  

this formula BiCopPar2Tau(family=2, par=cop01$par,cop01$par) 

spe.rho<-6/pi*asin(cop02$par/2) #Spearman's rho correlation 

CT[f,7]<-tau 

CT[f,8]<-spe.rho 
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4.3.5. Frank copula 

Frank copula (1979) can be defined as: 

(41) 

 

The dependency parameter may assume any real value (    ).According to 

Cherubini et al. (2004), frank Kendall’s tau and spearman’s rho are as follows 

respectively:  

(42)                                                      
         

 
 

 (43)                                                     
               

 
 

Where Dk is Debye function  

 (44)                          
 

  ∫
  

    
  

 

 
          

    

 (45)                       
  

   
 

These are the R codes for calculating Debye function: 

f1 <- function(x) x/(exp(x) - 1) 

f2 <- function(x) x^2/(exp(x) - 1) 

fu <- function(x) integrate(f1, lower = 0, upper = x)$value 

fu2 <- function(x) integrate(f2, lower = 0, upper = x)$value 

fl <- function(x) integrate (f1, lower = x, upper = 0)$value 

fl2 <- function(x) integrate (f2, lower = x, upper = 0)$value 

#Frank Capula 

f=2 

 
  1

1 1
, ln 1 .

1

u ve e
C u v

e
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cop1<-BiCopEst(U1[,1], U1[,2], family=5, method="mle", se=FALSE, 

max.df=2352,weights=NA) 

CT[f,1]<-cop1$par  

CT[f,2]<-cop1$par2 

par=cop1$par; par2=cop1$par2 

if (any(par > 0))  

{    tau <- 1 - 4/par + 4/par^2 * sapply(par, fu)  

     prh<- -1 -24/par^3 * sapply(par, fu2)+12/par^2* sapply(par, 

fu)}   

if (any(par < 0)) 

{tau <-  1 - 4/par - 4/par^2 * sapply(par, fl); 

 prh <- -1 + 24/(par^3) * sapply (par, fl2)- 12/par^2* 

sapply(par, fl)} 

 

CT[f,3]<- tau   #BiCopPar2Tau(family=5, par=cop01$par, 

par2=cop01$par2) 

CT[f,4]<-prh   

 

cop2<-BiCopEst(U2[,1], U2[,2], family=5, method="mle", se=FALSE, 

max.df=2352,weights=NA) 

CT[f,5]<-cop2$par  

CT[f,6]<-cop2$par2 

par=cop2$par; par2=cop2$par2 

if (any(par > 0))  

{    tau <- 1 - 4/par + 4/par^2 * sapply(par, fu)  

     prh<- -1 -24/par^3 * sapply(par, fu2)+12/par^2* sapply(par, 

fu) 

}   

if (any(par < 0)) 

{tau <-  1 - 4/par - 4/par^2 * sapply(par, fl); 
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 prh <- -1 + 24/(par^3) * sapply (par, fl2)- 12/par^2* 

sapply(par, fl)} 

 

CT[f,7]<- tau   #BiCopPar2Tau(family=5, par=cop01$par, 

par2=cop01$par2) 

CT[f,8]<-prh   

 

4.4. Regression for dependence modeling and correlation 

Another way of finding the linear relationship of two variables is running regression 

by considering one variable as dependent variable and the other independent variable. 

In this case, our hypothesis is that there is no correlation between standardized 

residuals of both markets in each model. In another words, the slope coefficient of 

regression model is zero.  

The R code for running OLS regression is: 

summary(lm(ETA[,1]~ETA[,2])) 

summary(lm(ETA2[,1]~ETA2[,2])) 

4.5. Distance Correlation and Covariance Statistics 

Distance or Brownian correlation and covariance statistics (DCOR) is a measure of 

dependence between random vectors proposed by Szekely et al. (2007). It is similar to 

product-moment covariance and correlation, but it is zero only if the random vectors 

are independent. According to Szekely et al. (2007), the empirical distance 

dependence measures are based on certain Euclidean distances between sample 

elements rather than sample moments, yet have a compact representation analogous 

to the classical covariance and correlation. With following R code from energy package 

we can estimate DCOR: 

DCOR(ETA1[,1], ETA1[,2], index = 1.0)  
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4.6. Randomized Dependence Coefficient 

Lopez et al. (2013) developed Randomized Dependence Coefficient (RDC) as measure 

of non-linear dependency. Following R codes estimates RDC: 

rdc <- function(x,y,k=20,s=1/6,f=sin) { 

  x <- cbind(apply(as.matrix(x),2,function(u)rank(u)/length(u)),1) 

  y <- cbind(apply(as.matrix(y),2,function(u)rank(u)/length(u)),1) 

  x <- s/ncol(x)*x%*%matrix(rnorm(ncol(x)*k),ncol(x)) 

  y <- s/ncol(y)*y%*%matrix(rnorm(ncol(y)*k),ncol(y)) 

  cancor(cbind(f(x),1),cbind(f(y),1))$cor[1]} 

 

4.7. Alternating Conditional Expectations 

Alternating Conditional Expectations (ACE) or back fitting is a very flexible form of 

additive models, which first optimal transformations from data, and then runs a 

regression on transferred data. Breiman and Friedman (1985), proposed this non-

linear regression technique to ease of finding relationship between variables. Hastie et 

al. (1986) proposed generalized additive model based on back fitting model of ACE and 

Generalized Linear Model. ACE tries to transfer both X and Y variables to maximize R2 

between transformed data. (See Faraway (2005) for more detail). 

              

“Acepack” library in R allows ACE estimation through following codes: 

library("acepack") 

x<-as.matrix(ETA[,1]) 

y<-as.matrix(ETA[,2]) 

a <- ace(y,x) 

summary(lm(a$ty~a$tx))$coefficients  
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5. Data and Empirical Results  

5.1. Crude oil 

Crude oil has become one of the most important commodities over a considerable 

period of time. The trend and behavior of the crude oil trade has not only affected the 

Chinese economy but the economy of the whole globe as well. Since it has a huge 

impact and influences on various human activities, it is considered as one of the 

physical commodities that set the living standards for the people of China. Over the 

past few recent years, some macroeconomic variables, such as the exchange rate and 

the stock indices, have been observed to change their patterns of behavior in 

conjunction with the change in the value of crude oil, be it increasing or decreasing.  

This explains why crude oil in China has dynamically and actively been traded on both 

Chinese Stock exchange and exchange markets, such as those in Shanghai and 

Shenzhen.   

For this study and to collect OPEC Oil prices, I used “QUANDL” package in R. Here 

are the codes for downloading oil prices in USD: 

library(Quandl) 

## Loading required package: xts 
## Loading required package: zoo 
##  
## Attaching package: 'zoo' 
##  
## The following objects are masked from 'package:base': 
##  
##     as.Date, as.Date.numeric 

 

Quandl.auth("*****") 
 
# downloading data 
 OPECoil2 <- Quandl('OPEC/ORB', start_date = '2004-12-31', end_date = 
'2014-10-17') 
 write.table(OPECoil2, file = "OPECoil2.txt", sep = "\t") 
 str(OPECoil2) 

## 'data.frame':    2528 obs. of  2 variables: 
##  $ Date : Date, format: "2014-10-17" "2014-10-16" ... 
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##  $ Value: num  83.2 81.2 81.9 85.1 85.9 ... 
##  - attr(*, "freq")= chr "daily" 

Then I used USD/RMB exchange rates to convert the oil prices from USD to RMB, 

Chinese local currency. Figure 1, presents the fluctuations of oil prices during last ten 

years. 

 

Figure 1-OPEC Oil prices in RMB (2004-2014) 

 

5.2.  CHINESE STOCK MARKETS 

The Shanghai Stock Exchange is a stock exchange that is based in the city of 

Shanghai, China. It is one of the two stock exchanges operating independently in the 

People's Republic of China. Shanghai Stock Exchange is the world's sixth largest stock 

market. The Shenzhen Stock Exchange is one of China's three stock exchanges, 

alongside the Shanghai Stock Exchange and Hong Kong Stock Exchange. 

The sample data used in this project was obtained from the Wind Data Center. The 

returns, for all sector indices organized and summarized in table 1, were captured for 

the time range starting on Dec 31, 2004 to October 17, 2014 on a daily basis. The daily 

http://en.wikipedia.org/wiki/China
http://en.wikipedia.org/wiki/Stock_exchange
http://en.wikipedia.org/wiki/Shanghai_Stock_Exchange
http://en.wikipedia.org/wiki/Hong_Kong_Stock_Exchange
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close continuously compounded return data is used for analysis. To prepare 

descriptive analysis I used R commends as follow: 

library(moments) 
library(FinTS) 

## Loading required package: zoo 
##  
## Attaching package: 'zoo' 
##  
## The following objects are masked from 'package:base': 
##  
##     as.Date, as.Date.numeric 

library(rugarch) 

## Loading required package: parallel 

library(rmgarch) 
 
data <- read.csv("source.csv", header=T) 
data2 <- data[,-1] 
 
z<-diff(log(ts(data2))) 
heads <- read.csv("~/Industries Indexes/heads.csv", header=F) 
 
 
dateA=data[,1] 
 
x<-as.Date(dateA, "%m/%d/%Y") 
 
j=1 
    plot(x,ts(data2[j]),xlab="",  
       ylab=heads[j,2],type="l", main=heads[j,1], col=2,xaxt = "n") 
   
  axis(side=1, at = seq(as.Date("2005/1/1"), as.Date("2015/1/1"), 
"years"), 
       labels=seq(2005, 2015, by = 1), las=2) 
   
  grid() 

 

#descriptive table 
Result<-matrix(nrow=3, ncol=10) 
 
j=1 
for (i in 1:3) 
{ 
  Result[i,1]<-100*mean(z[,j]) 
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  Result[i,2]<-sd(z[,j]) 
  Result[i,3]<-unname(skewness(z[,j])) 
  Result[i,4]<- unname(kurtosis(z[,j]))   
  Result[i,5]<-unname(jarque.test(as.vector(z[,j]))$ statistic) 
  Result[i,6]<-unname(jarque.test(as.vector(z[,j]))$ p.value) 
  Result[i,7]<-unname(ArchTest(z[,j])$statistic) 
  Result[i,8]<-unname(ArchTest(z[,j])$p.value) 
  Result[i,9]<-unname(Box.test(z[,j],lag=20,type="Ljung-
Box")$statistic) 
  Result[i,10]<-cor(z[,1],z[,j],method="pearson") 
   
  j=j+1 
   
} 
 
write.table(Result, file = "Descriptive-Table1.txt", sep = "\t") 

 

 

Figure 2- Financials No Bank Industry Stock Index (2004-2014) 
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Figure 3- Media Industry Index (2004-2014) 

Table 1 presents the descriptive statistics for market returns. This also gives the 

range of average returns for these sector indices which shows Financials No Bank index 

has highest return (0.068%). The unconditional standard deviation provides the 

measure for the volatilities log-return series ranging from 0.0165 (OPEC oil prices in 

Rmb) to 0.0260 (for Financials No Bank). 

Skewness coefficients are seen to be negative for OPEC Oil and Media Industry 

Index the indices resulting that the return series are skewed to the right and tailed in 

left. But for Financials No Bank Index, skewness is positive indicating market return 

series of this index are skewed to the left and tailed to right. Kurtosis statistic estimate 

values are significantly greater than 3 showing leptokurtic property. These two 

estimates indicate asymmetric probability distributions for market returns which 

deviate from normal distribution. This is strongly supported by the Jarque-Bera test 

statistic results for the series. JB test statistic results show high values and in doing so, 

they clearly reject the null hypothesis of normality for all the log-returns. 
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Table 1–Descriptive Analysis 

Index Name OPEC Oil prices in 
Rmb 

Financials No Bank 
Index 

Medias Index 

Index Code Oil Rmb CI005022.CI CI005028.CI 

Mean*100 0.0224 0.0679 0.0598 

Standard Deviation 0.017 0.026 0.024 

Skewness -0.127 0.034 -0.514 

Kurtosis 23.117 4.969 4.854 

Jarque-Bera Test 39698.68*** 380.592*** 440.704*** 

JB  (p-value) 0 0 0 

Arch Test 130.82*** 241.727*** 172.619*** 

p-value  0 0 0 

Ljung–Box test 
(Lag=20) 

178.725*** 31.878** 34.446** 

p-value 0 0.044 0.0233 

Pearson Correlation 1 0.134 0.077 

 

The Ljung-box Q statistics are greater than the critical chi-square value indicating 

serial correlation for the time-series log-returns (in 5% level). The test for conditional 

heteroscedasticity with statistical significance suggests volatilities are conditional on 

previous returns; hence the need for the use of GARCH models for further analysis of 

data.  

5.3. Standard BEKK Results 

The estimated BEKK model coefficients for spillover effect of Oil prices on each 

index are given by table 2 and table 3. The mean coefficient of OPEC Oil returns in 

table2 is significant (in 5%level) indicating drift level in OPEC Oil return series. The 

results of BEKK model for Financials No Bank Industry Stock Index can be written in the 

matrix form: 
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 ̂  [
       
            

]   ̂  [
          

           
]   ̂   [

           
          

]  

To test covariance stationary condition for this index, recall formula (20) which can 

be estimated through following R codes, the K matrix is:  

A<- matrix(   c(0.245,-0.026,0.069, 0.142),    nrow=2 ,   ncol=2)  

B<- matrix(   c(0.968,0.003, -0.013, 0.988),    nrow=2 ,   ncol=2)  

A%*%t(A)+B%*%t(B) 

n<-kronecker (A,A)+kronecker (B,B) 

 [,1] [,2] [,3] [,4] 

[1,] 0.997049 0.004321 0.004321 0.00493 
[2,] -0.00347 0.991174 -0.00183 -0.00305 
[3,] -0.00347 -0.00183 0.991174 -0.00305 
[4,] 0.000685 -0.00073 -0.00073 0.996308 

 

 

And by setting det (K − λI) = 0 the following Eigen values are obtained: 

eign(n) 

is.positive.definite(n) 

eigen(n)$values 

[0.9973, 0.9930, 0.9926+0.0033995i, 0.9926516-0.00339i] 
 
 

The absolute value of Eigen values is less than one which fulfills the condition of 

covariance stationarity. Moreover, if the matrices are expressed as AA ′ and BB ′ then 

sum of parameter pairs is less than one. 

All A matrix coefficients for Financials No Bank Industry Stock Index are significant 

indicating the effect of previous shocks on current variances and transmitting effect of 

previous shocks between oil market and Financials No Bank Industry Stock Index. B 

matrix coefficients, except bˆ21, indicate the information transmission of previous 

volatilities between two those markets.  
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Table 2- BEKK Results for OPEC Oil and Financials No Bank Industry Index 

  Variable Coefficients Std Error T-Stat p-value 

1 Mean(OPEC) 0.00053 0.0003 2.43 0.014 

2 Mean(CI005022) 0.00030 0.0005 0.62 0.532 

3 C(1,1) 0.0011 0.0002 6.75 0 

4 C(2,1) 0.00016 0.0005 0.35 0.728 

5 C(2,2) 0.001 0.0004 3.42 0.001 

6 A(1,1) 0.245 0.0191 12.82 0 

7 A(1,2) 0.069 0.0249 2.78 0.005 

8 A(2,1) -0.026 0.0096 -2.69 0.007 

9 A(2,2) 0.142 0.0155 9.15 0 

10 B(1,1) 0.968 0.0047 205.36 0 

11 B(1,2) -0.013 0.0059 -2.27 0.023 

12 B(2,1) 0.003 0.0023 1.43 0.154 

13 B(2,2) 0.988 0.0027 363.41 0 

Log Likelihood=12188.27,  AIC=-10.349 m,     HQ=-10.337(log)  , FPE= -10.349 
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Table 3- BEKK Results for OPEC Oil and Media Industry Index 

  Variable Coefficients Std Error T-Stat p-value 

1 Mean(OPEC) 0 0.0003 1.45 0.148 

2 Mean(CI005028) 0 0.0004 0.52 0.605 

3 C(1,1) 0.001 0.0002 6.64 0 

4 C(2,1) 0.002 0.0004 6.36 0 

5 C(2,2) 0 0.0051 -0.01 0.991 

6 A(1,1) 0.21 0.0146 14.36 0 

7 A(1,2) 0.028 0.0202 1.4 0.162 

8 A(2,1) -0.023 0.0065 -3.52 0 

9 A(2,2) 0.209 0.0146 14.34 0 

10 B(1,1) 0.962 0.0073 132.04 0 

11 B(1,2) 0.416 0.0645 6.45 0 

12 B(2,1) 0.066 0.0253 2.61 0.009 

13 B(2,2) -0.959 0.0081 -118.9 0 

Log Likelihood=12386.84, AIC=-10.518  HQ=-10.506(log)  FPE= -10.518 

 

Then standardized residuals  ̂  of each market are estimated and histogram graph 

of them are shown in figure 4 and 5. Now the dependency of both standardized 

residuals is estimated through several dependency parameters to check if there is still 

some dependency left.  The following R codes are used to graph the histograms: 

par(mfrow=c(2,1))  

hist (ETA[, 1], breaks=400, col="red", main = "Histogram of standardized residuals of 

Oil market- BEKK Model  ", xlab="" ) 

hist (ETA[, 2], breaks=400, col="Green", main = "Histogram of standardized 

residuals of Stock market Index- BEKK Model  ", xlab="") 
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Figure 4 – Histogram of standardized residuals BEKK Model:  

(OPEC Oil and Financials No Bank Industry Index) 

 

Figure 5- Histogram of standardized residuals of BEKK Model 

(OPEC Oil and Media Industry Index) 
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5.4. VAR-CCC-GARCH Results 

The results of applying VAR-CCC-GARCH Model is presented in table 4 and 5. The 

coefficients of mean model in Financials No Bank Industry Index equation are not 

significant as well as constant vector in variance estimation of both markets. It is 

interesting to find 13.17% significant constant correlation between OPEC Oil and 

Financials No Bank Industry Index markets as well as 8.62% significant constant 

correlation between OPEC Oil and Media Industry Index.  

 The results suggest that past shocks of the stock Index have significant effect on 

both markets’ volatilities. This follows by the significance effect of previous volatilities 

of Industry Index on both markets. 
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Table 4- VAR-CCC-GARCH for OPEC Oil and Financials No Bank Industry Index 

Variable Coefficients Std Error T-Stat p-value 

Mean Model (OPEC)         

1.  OPEC{1} 0.2356 0.0215 10.95412 0 

2.  CI005022{1} -0.0302 0.01 -3.00989 0.0026134 

Mean Model(CI005022)     

3.  OPEC{1} 0.0352 0.032 1.09966 0.271482 

4.  CI005022{1} -2.52E-04 0.0212 -0.01191 0.990494 

5.  C(1) 8.12E-07 4.69E-07 1.73021 0.083592 

6.  C(2) 2.96E-06 1.42E-06 2.08535 0.037038 

7.  A(1,1) 0.0554 8.54E-03 6.4833 0 

8.  A(1,2) -0.00562 4.90E-03 -1.14854 0.250747 

9.  A(2,1) -0.00431 0.0119 -0.36249 0.716982 

10. A(2,2) 0.0316 5.99E-03 5.27395 1.3E-07 

11. B(1,1) 0.9286 0.011 84.28923 0 

12. B(1,2) 0.0704 0.0361 1.95238 0.050893 

13. B(2,1) 0.00216 0.0632 0.03424 0.972682 

14. B(2,2) 0.9639 9.09E-03 106.0655 0 

15. R(2,1) 0.1317 0.02 6.57741 0 

Log Likelihood= 12239.1089,  AIC=-10.39,   HQ=-10.35,   (log) FPE= -10.39 
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Table 5- VAR-CCC-GARCH for OPEC Oil and Media Industry Index 

Variable Coefficients Std Error T-Stat p-value 

Mean Model(OPEC)         

1.  OPEC{1} 0.2264 0.0236 9.59149 0 

2.  CI005028{1} -0.0121 9.61E-03 -1.25888 0.208073 

Mean 
Model(CI005028) 

    

3.  OPEC{1} -0.0168 0.0257 -0.65422 0.512967 

4.  CI005028{1} 0.0274 0.0246 1.11712 0.263942 

5.  C(1) 1.31E-06 4.83E-07 2.71221 0.006684 

6.  C(2) 4.14E-06 1.63E-06 2.53472 0.011254 

7.  A(1,1) 0.0546 7.63E-03 7.16248 0 

8.  A(1,2) -0.0197 4.80E-03 -4.10752 4E-05 

9.  A(2,1) 9.01E-03 0.0143 0.62844 0.529717 

10. A(2,2) 0.051 7.39E-03 6.89753 0 

11. B(1,1) 0.9452 8.50E-03 111.1612 0 

12. B(1,2) -8.11E-03 0.0341 -0.23816 0.811756 

13. B(2,1) 0.0156 0.0816 0.19115 0.84841 

14. B(2,2) 0.9405 9.25E-03 101.6583 0 

15. R(2,1) 0.0862 0.0204 4.23057 2.33E-05 

Log Likelihood=12457.76, AIC=-10.57, HQ=-10.56, (log) FPE= -10.57 
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Now standardized residuals  ̂  of each market are estimated and graphed in figure 6 

and 7 using following R codes: 

 par(mfrow=c(2,1))  

hist (ETA2[, 1], breaks=400, col="red", main = "Histogram of standardized residuals 

of Oil market- VAR-CCC-GARCH Model  ", xlab="") 

hist (ETA2[, 2], breaks=400, col="green", main = "Histogram of standardized 

residuals of Stock market Index- VAR-CCC-GARCH Model  ", xlab="") 

 

 

Figure 6- Histogram of standardized residuals VAR-CCC-GARCH Model 
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Figure 7- Histogram of standardized residuals of VAR-CCC-GARCH 

 

5.5. Linear Dependency modeling estimation 

The results of linear dependency estimation between standardized residuals of 

BEKK model in each market data series are presented in table 6 and 7 which indicate 

small (close to zero) linear dependency between standardized residuals of both 

MGARCH models. This means linear dependency modeling doest help to select 

between models. 

Table 6- Linear Dependency estimation of standardized residuals  

(OPEC Oil and Financials No Bank Industry Index) 

GARCH Model  Dependency parameter Correlation Test statistics P-value 

  Pearson 
0.0037 0.1817 0.8558 

BEKK Model kendall’s tau 
0.0028 0.2007 0.8409 

  Spearman rho 
0.0035 2163777410 0.8671 

 
Pearson 

-0.0002 -0.0082 0.9934 

VAR GARCH Model 
kendall’s tau 

-0.0013 -0.0916 0.927 

 
spearman 

-0.0018 2175241670 0.9294 
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Table 7- Linear Dependency Estimation of standardized residuals BEKK  

(OPEC Oil and Financials No Bank Industry Index) 

GARCH Model  Dependency parameter Correlation Test statistics P-value 

  Pearson 
-0.0032 -0.1552 0.8767 

BEKK Model kendall’s tau 
-0.0087 -0.634 0.5261 

  Spearman rho 
-0.013 2.2E+09 0.5279 

 
Pearson 

-4.00E-04 -0.0204 0.9837 

VAR GARCH 
Model 

kendall’s tau 
-0.0038 -0.2742 0.784 

 
spearman 

-0.0057 2.18E+09 0.7809 

 

 

5.6. Copula Estimation for dependency 

As the linear dependency modeling was not helpful to find fats in buttermilk, the 

copula method is used to find any other dependency between two markets’ 

standardized residuals. As mentioned before, Student t density distribution is used to 

estimate joint distribution of data. Afterwards, the parameters of two introduced 

copula, t-copula and frank copula are estimated. The results are provided in table (8) 

and table (9). 

 The Kendall’s tau and Spearman’s rho parameters derived from copula estimation 

of all markets in both MGARCH models are close to zero. This also suggests that the 

copula methodology is not indicating any dependency between standardized residuals. 

 

 

 

 

 



41 | P a g e  
 

Table 8- Copula estimation of standardized residuals of BEKK Model 

(OPEC Oil and Financials No Bank Industry Index) 

 

GARCH Model   Student-T Copula Frank Copula 

  Par1 
0.006 0.041 

BEKK Model Par2 
31.544 0 

  Kedall's Tau 
0.004 0.005 

  Spearman's rho 
0.006 -0.007 

  Par1 
0.003 0.009 

VAR GARCH 
Model Par2 

38.914 0 

  Kedall's Tau 
0.002 0.001 

  Spearman's rho 
0.003 -0.002 

 

 

Table 9- Copula estimation of standardized residuals of BEKK Model 

(OPEC Oil and Financials No Bank Industry Index) 

GARCH Model   Student-T Copula Frank Copula 

  Par1 
-0.0029 -0.0591 

BEKK Model Par2 
57.5247 0 

  Kedall's Tau 
-0.0018 -0.0066 

  Spearman's rho 
-0.0028 0.0098 

  Par1 
0.001 -0.0065 

VAR GARCH 
Model Par2 

91.7742 0 

  Kedall's Tau 
6.00E-04 -7.00E-04 

  Spearman's rho 
9.00E-04 0.0011 
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5.7. Regression on standardized residuals 

The results of running simple linear regression on standardized residuals of each 

model are presented in table (10) and table (11)-see the appendix A and B for more 

detail. The results indicating that there is no significant relationship between 

standardized residuals of both models. The linear regression results are not promising 

to select between models. 

Table 10- Standardized residuals regression 

(OPEC Oil and Financials No Bank Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.02109 0.0205 -1.029 0.304 

slope 0.0037 0.02036 0.182 0.856 

 

VAR-CCC-GARCH Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.015685 0.020629 0.76 0.447 

slope -0.00059 0.020646 -0.029 0.977 

 

Table 11- Standardized residuals regression 

(OPEC Oil and Media Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.01141 0.020503 -0.557 0.578 

slope -0.00316 0.020382 -0.155 0.877 

 

VAR-CCC-GARCH Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.016353 0.020632 0.793 0.428 

slope -0.00042 0.020639 -0.02 0.984 
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5.8. Distance Correlation and Covariance Statistics 

The estimation results of Distance Correlation and Covariance is presented in Table 

(12) and Table (13). Table (12) Indicates 3.75% distance correlation for BEKK model 

and 3.82% for that of VAR-CCC-GARCH model. Similarly, the difference of DCOR 

estimation of both models in table (13) is close to zero (4.53% against 4.32%).  

Table 12- DCOR (OPEC Oil and Financials No Banks Industry Index) 

 DCOR 

BEKK 0.03750254 

VAR-CCC-GARCH 0.03820621 

 
Table 13- DCOR (OPEC Oil and Media Industry Index) 

 DCOR 

BEKK 0.04539 

VAR-CCC-GARCH 0.043289 

 

5.9. Randomized Dependence Coefficient 

The results of running RDC is presented in table (14) and table (15).  The RDC shows 

there is 8.31 % dependency in contrast to that of VAR-CCC-GARCH 9.51% between 

standardized residuals of OPEC Oil and Financials No Banks Industry Index MGARCH 

models. Similarly, for standardized residuals of OPEC Oil and Media Industry index: 

RDC estimation of BEKK, 8.31%, is slightly different than that of VAR-CCC-GARCH, 

8.49%. This indicates deference between models. 

Table 14- RDC estimation (OPEC Oil and Financials No Banks Industry Index) 

 RDC 

BEKK 0.08317179 

VAR-CCC-GARCH 0.09512199 
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Table 15- RDC estimation (OPEC Oil and Media Industry Index) 

 RDC 

BEKK 0.086999 

VAR-CCC-GARCH 0.089436 

 

5.10. Alternating Conditional Expectations 

The results of ACE algorithm are presented in table (16) and table (17). All results 

are providing significant slope coefficient for regression of transformed X and Y. this 

confirms there is still dependency between standardized residuals. In addition, the 

slope coefficient of BEKK model in table (16) is greater than that of VAR-CCC-GARCH 

model and in table (17) the slope coefficient of BEKK model is smaller than that of 

VAR-CCC-GARCH model. Now the question arises if the difference between these 

coefficients is statistically different than zero? If the answer is yes then we can say the 

resulting slopes are statistically different from each other, leading us to selection 

between models. Hopefully, the answering to this question is provided by t-test based 

on this formula: 

  
     ̂       ̂ 

√         ̂
 
 

  
         ̂  

 

         

This in R can be provided by: 

#estimating ACE 

x<-as.matrix(ETA1[,1]) ; y<-as.matrix(ETA1[,2]); a <- ace(y,x) 

fit<-lm(a$ty~a$tx); s1 <- summary(fit)$coefficients 

x<-as.matrix(ETA2[,1]); y<-as.matrix(ETA2[,2]); a <- ace(y,x) 

fit<-lm(a$ty~a$tx)fit<-lm(a$ty~a$tx) ;s2 <- summary(fit)$coefficients 

#difference test 

db <- (s2[2,1]-s1[2,1]); sd <- sqrt(s2[2,2]^2/2351+s1[2,2]^2/2351);df <- 2*2351-4  
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td <- db/sd; td; 2*pt(-abs(td), df) 

Table 16- Standardized residuals ACE regression 

(OPEC Oil and Financials No Banks Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.78E-17 2.06E-02 0 1 

slope 1.216 0.3158 3.851 0.000121*** 

VAR-CCC-GARCH     

(Intercept) 1.68E-18 2.06E-02 0 1 

slope 1.155 0.272 4.246 2.26E-05*** 

Student t Test for difference of slopes -7.10791 1.3e-12*** 

 

 

Table 17- Standardized residuals ACE regression 

(OPEC Oil and Media Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -4.71E-18 2.06E-02 0 1 

slope 1.1930 0.3208 3.719 0.000205*** 

VAR-CCC-GARCH     

(Intercept) 3.06E-19 2.06E-02 0 1 

slope 1.363 0.3291 4.141 3.58E-05*** 

Student t Test for difference of slopes 17.90849 1.967408e-69 

 

It is obvious by student t test statistics of both data sets; the slope coefficient’s 

difference is statistically different than zero. Now we can choose between MGARCH 

models. In table (16), the VAR-CCC-GARCH has smaller slope coefficient than BEKK, so 
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here we choose the former model. In table (17), the BEKK has smaller slope coefficient 

than VAR-CCC-GARCH, so here we choose the former model which is BEKK. 

5.11. Model Selection 

Comparing the results shown in table (6) and table (7), provides that Kendal’s tau 

estimated based on BEKK standardized residuals and the ones derived from VAR-CCC-

GARCH model are almost close to zero. Also Pearson correlation coefficient confirms 

the same result. Although dependency parameters are close to zero, non significant 

coefficients indicates that these criteria are not able to model the dependency. 

Referring to table (8) and table (9), the dependency parameters derived from copula 

estimation are not promising, leading us to apply other models for dependency 

modeling of variables. The simple regression applied to data is not providing any 

promising result (see table 10 and table 11). Although applying Distance Correlation 

and Covariance (DCOR) and RDC methods are providing some indications, their results 

are slightly different from between models.  

 Finally, Alternating Conditional Expectations method is also tested on the models 

which provide significant dependency between transformed standardized residuals of 

models. Moreover, a student t statistics is checked for testing statistical difference of 

slope confidents of provided regression.  

 

5.12. Consistency of criterion 

After finding the proper criteria to choose between models, ACE, now the questions 

arise for consistency of the criterion. In other words, can we apply this criterion to 

other MGARCH models? 

 To answer this question, ACE regression has been applied to several MGARCH 

models and similar results are obtained (see table (18) and table (19)). These MGARCH 

models are mainly in context of BEKK and CCC-GARCH categories of MGARCH models  

just differ how to model mean equation (considering VAR or not) or variance  (VARMA 
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variance, E-GARCH, DCC and EWMA). (See appendix C for more detail of RATS codes 

for OPEC oil and Financials no Banks industry index). DCC model for OPEC oil and 

Media industry index didn’t converge, so the results are not reported in table (19). 

Interestingly, Table (18) indicates VAR1-BEKK model has smallest slope coefficient 

and table (19) indicates Standard BEKK model has smallest slope coefficient among 

other MGARCH models. This happens while all slope coefficients are significant, which 

confirms the consistency of criterion. To check that the coefficients are statistically 

different from each other or not, the student t test provided based on difference of 

slope of each MGARCH model and smallest slope in each table (Var1-BEKK for table 

(18) and BEKK for table (19)). The results of student t test are presented in table (20) 

and table (21). It is obvious from table (20) and table (19) that slope of selected 

MGARCH model is statistically different from that of other MGARCH models. This 

provides that we can distinguish which MGARCH model is preferable regarding to less 

relationship between standardized residuals.  
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Table 18- ACE (OPEC Oil and Financials No Banks Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -1.78E-17 2.06E-02 0 1 

slope 1.216 0.3158 3.851 0.000121*** 

VAR-CCC-GARCH     

(Intercept) 1.68E-18 2.06E-02 0 1 

slope 1.155 0.272 4.246 2.26E-05*** 

CCC-GARCH     

(Intercept) 2.70E-18 2.05E-02 0 1 

slope 1.1520 0.2525 4.564 5.27E-06*** 

DCC     

(Intercept) -1.78E-18 2.05E-02 0 1 

slope 1.1350 0.2607 4.354 1.40E-05*** 

CC with VARMA variances     

(Intercept) 1.27E-17 2.05E-02 0 1 

slope 1.1510 0.2565 4.488 7.52E-06*** 

EWMA with t-errors      

(Intercept) 3.29E-17 2.05E-02 0 1 

slope 1.1610 0.2487 4.667 3.23E-06*** 

CC-EGARCH with asymmetry     

(Intercept) -4.18E-18 2.05E-02 0 1 

slope 1.1590 0.2607 4.447 9.13E-06*** 

VAR(1)- BEKK      

(Intercept) -2.11E-17 2.06E-02 0 1 

slope 1.0820 0.3426 3.157 0.00161** 
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Table 19- ACE (OPEC Oil and Media Industry Index) 

BEKK Estimate Std. Error t value Pr(>|t|) 

(Intercept) -4.71E-18 2.06E-02 0 1 

slope 1.1930 0.3208 3.719 0.000205*** 

VAR-CCC-GARCH     

(Intercept) 3.06E-19 2.06E-02 0 1 

slope 1.3630 0.3291 4.141 3.58E-05*** 

CCC-GARCH     

(Intercept) -2.75E-18 2.06E-02 0 1 

slope 1.2560 0.3364 3.735 0.000192*** 

DCC      

(Intercept)     

slope     

CC with VARMA variances     

(Intercept) -1.63E-17 2.06E-02 0 1 

slope 1.2760 0.3434 3.717 0.000206 

EWMA with t-errors      

(Intercept) -1.07E-17 2.05E-02 0 1 

slope 1.2260 0.2543 4.819 1.53E-06 

CC-EGARCH with asymmetry     

(Intercept) 1.21E-17 2.06E-02 0 1 

slope 1.2870 0.3583 3.592 0.000335 

VAR(1)- BEKK      

(Intercept) 1.71E-17 2.06E-02 0 1 

Slope 1.2370 0.3287 3.763 0.000172 
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Table 20- ACE regression slopes Student t-test, comparing with VAR-BEKK  

 (OPEC Oil and Financials No Banks Industry Index) 

 slopes t value Pr(>|t|) 

VAR1-BEKK model 1.08171 

  BEKK 1.216109 13.98548 1.41E-43*** 

VAR-CCC-GARCH 1.155011 8.124412 5.70E-16*** 

CCC-GARCH 1.152378 8.050975 1.03E-15*** 

DCC 1.13504 6.005923 2.05E-09*** 

CC with VARMA variances 1.15148 7.903542 3.35E-15*** 

EWMA with t-errors  1.160718 9.048349 2.08E-19*** 

CC-EGARCH with asymmetry 1.159457 8.755466 2.79E-18*** 

 

 

Table 21- ACE regression slopes Student t-test, comparing with BEKK  

 (OPEC Oil and Media Industry Index) 

 slopes t value Pr(>|t|) 

BEKK model 1.193117   

VAR-CCC-GARCH 1.362883 17.90849 1.97E-69*** 

CCC-GARCH 1.256347 6.594954 4.72E-11*** 

DCC    

CC with VARMA variances 1.276393 8.592268 1.15E-17*** 

EWMA with t-errors  1.225764 3.866147 0.000112*** 

CC-EGARCH with 
asymmetry 

1.286707 9.435698 5.95E-21*** 

VAR(1)- BEKK  1.237171 4.649944 3.41E-06*** 
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6. Conclusion 

In this research a new model selection criterion is introduced to be able select 

among MGARCH models and find out which model is preferable due to better 

modeling dependency of markets. To do so, first the buttermilk problem is identified in 

literature of MGARCH models. Then several dependency models are introduced to 

identify the dependency of standardized residuals of each model.  

Among several MGARCH models, first two famous ones in commodity markets 

named Standard BEKK and VAR –CCC-GARCH models are chose and applied to OPEC oil 

and Financials No Bank Industry Index daily return prices of Chinese stock markets. 

Afterwards, standardized residuals of each market of each model are used to estimate 

several dependency models such as Pearson correlation coefficient, copulas, Kendal’s 

tau, spearman rho, simple regression and kernel density transfer regression. 

 In applying copula method, probability distribution functions from i.i.d 

standardized residuals, approximated with the t-distribution as long as the dataset is 

large enough. These estimated PDF’s were used as inputs to the bivariate copula 

functions to determine the estimation of both copula dependence parameters by 

applying copula maximum likelihood estimation and the joint distribution function for 

any preferred combination of two return series. Once the estimates of dependence 

parameters are obtained, the spearman’s rho and Kendall’s tau directly were 

estimated as well to show rank correlation between the two standardized residuals 

series in consideration.  In addition, running a regression on the standardized residuals 

of each MGARCH model is also considered. Besides RDC and Distance Correlation and 

covariance (DCOR) estimates for dependency are also estimated. None presented very 

clear difference between variables. 

The only criterion which worked very well with MGARCH model’s standardized 

residuals is ACE method. The ACE regression gives significant slope coefficient for 

transformed standardized residuals. This can help to select among models. To check 

consistency of ACE, I have tried several other MGARCH models for the data in hand 
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and then tried ACE regression on remaining of buttermilks. The results were similar 

and confirming consistency of the ACE regression for selecting among MGARCH 

models. 

It is interesting that for the applied data sets we can prefer BEKK to CCC-GARCH 

category of GARCH models as the correlation between the standardized residuals of 

later model is obviously greater than the former model.  

For future studies, scholars can apply this methodology to distinguish among 

several MGARCH models and to study which one under which condition can capture 

better co-movements of two markets. Moreover, scholars are encouraged to 

introduce unique dependency criteria for checking the fat density in buttermilk. Even, 

trying to establish a new MGARCH model which captures the whole dependency of 

markets would be considered as from now there is a way to check which model is 

doing well.  
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Appendix A- Regression on standardized residuals OPEC 

Oil- Media Industry Index (CI005028) 

 

 
BEKK Standardized residuals regression 

 
 
Call: 
lm(formula = ETA[, 1] ~ ETA[, 2]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-7.9247 -0.5651  0.0316  0.6199  5.6527  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.011411   0.020503  -0.557    0.578 
ETA[, 2]    -0.003164   0.020382  -0.155    0.877 
 
Residual standard error: 0.9945 on 2351 degrees of freedom 
Multiple R-squared:  1.025e-05, Adjusted R-squared:  -0.0004151  
F-statistic: 0.0241 on 1 and 2351 DF,  p-value: 0.8767 

  

VAR-CCC-GARCH Standardized residuals regression 
Call: 
lm(formula = ETA2[, 1] ~ ETA2[, 2]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-7.6204 -0.5703  0.0316  0.6060  5.6246  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  0.0163531  0.0206318   0.793    0.428 
ETA2[, 2]   -0.0004187  0.0206385  -0.020    0.984 
 
Residual standard error: 1.001 on 2351 degrees of freedom 
Multiple R-squared:  1.751e-07, Adjusted R-squared:  -0.0004252  
F-statistic: 0.0004116 on 1 and 2351 DF,  p-value: 0.9838 
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Appendix B- Regression on standardized residuals OPEC 

Oil- Financials No Bank Industry Index (CI005022) 

 
BEKK Standardized residuals regression 
 
 
Call: 
lm(formula = ETA[, 1] ~ ETA[, 2]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.2228 -0.5653  0.0327  0.6147  5.6622  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.02109    0.02050  -1.029    0.304 
ETA[, 2]     0.00370    0.02036   0.182    0.856 
 
Residual standard error: 0.9945 on 2351 degrees of freedom 
Multiple R-squared:  1.405e-05, Adjusted R-squared:  -0.0004113  
F-statistic: 0.03303 on 1 and 2351 DF,  p-value: 0.8558 
 
 
VAR-CCC-GARCH Standardized residuals regression 
 
Call: 
lm(formula = ETA2[, 1] ~ ETA2[, 2]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-8.5873 -0.5725  0.0296  0.5777  5.6326  
 
Coefficients: 
            Estimate Std.Error tvalue Pr(>|t|)     
(Intercept)  0.01333    0.02047   0.651    0.515     
ETA2[,2]    0.13148    0.02046   6.428 1.57e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.9924 on 2351 degrees of freedom 
Multiple R-squared:  0.01727, Adjusted R-squared:  0.01685  
F-statistic: 41.31 on 1 and 2351 DF,  p-value: 1.565e-10 
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Appendix C- MGARCH models RATS codes and results  

Standard BEKK - ETA1 

garch(p=1,q=1,mv=BEKK,pmethod=simplex,piters=20,rvectors=rd,hmatrices=hh ) 

gstart gend Opec CI005022 

McAleer VAR-CCC-GARCH- ETA2 

open data LogReturn.xls 

data(format=xls,org=columns) / Opec CI005022 

compute gstart=2,gend=2354 

system(model=var1) 

variables Opec CI005022 

lags 1 

end(system) 

garch(p=1,q=1,model=var1,mv=CC,variance=varma,pmethod=simplex,piters=20,rve

ctors=rd,hmatrices=hh, MVHSERIES=VarmaHmatrix ) gstart gend Opec CI005022 
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Restricted correlation models- ETA3 

garch(p=1,q=1,mv=CC,pmethod=simplex,piters=20,rvectors=rd,hmatrices=hh ) 

gstart gend Opec CI005022 

  MV-GARCH, CC - Estimation by BFGS 

Convergence in    27 Iterations. Final criterion was  0.0000000 <=  0.0000100 

Log Likelihood                     12178.1975 

Variable Coefficients Std Error T-Stat P. Value 

1 Mean(1) 4.43E-04 2.52E-04 1.76213 0.078047 

2 Mean(2) 6.18E-04 4.50E-04 1.37227 0.169979 

3 C(1) 1.42E-06 3.99E-07 3.55564 0.000377 

4 C(2) 3.00E-06 1.41E-06 2.11903 0.034088 

5 A(1) 0.05348 0.00822 6.50936 0 

6 A(2) 0.03251 0.00584 5.56882 3E-08 

7 B(1) 0.94254 0.00804 117.2229 0 

8 B(2) 0.96277 0.0069 139.503 0 

9 R(2,1) 0.12831 0.02093 6.13145 0 
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 DCC –ETA4 

garch(p=1,q=1,mv=DCC,pmethod=simplex,piters=20,rvectors=rd,hmatrices=hh ) 

gstart gend Opec CI005022 

MV-GARCH, DCC - Estimation by BFGS 

Convergence in    30 Iterations. Final criterion was  0.0000000 <=  0.0000100 

Log Likelihood                     12185.9191 

 

Variable Coefficients Std Error T-Stat P. Value 

1 Mean(1) 4.83E-04 2.43E-04 1.98998 0.046593 

2 Mean(2) 6.14E-04 4.68E-04 1.313 0.189182 

3 C(1) 1.43E-06 4.13E-07 3.46424 0.000532 

4 C(2) 3.02E-06 1.62E-06 1.86865 0.061671 

5 A(1) 0.054 0.00741 7.29038 0 

6 A(2) 0.0334 0.00599 5.58011 2E-08 

7 B(1) 0.94206 0.00742 126.8993 0 

8 B(2) 0.96201 0.00741 129.8404 0 

9 DCC(1) 0.09449 0.03032 3.11597 0.001833 

10 DCC(2) 0.38697 0.26628 1.45324 0.146157 
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 CC with VARMA variances-ETA5 

garch(p=1,q=1,mv=CC,variance=varma,pmethod=simplex,piters=20,rvectors=rd,hm

atrices=hh ) gstart gend Opec CI005022 

MV-GARCH, CC with VARMA Variances - Estimation by BFGS 

Convergence in    52 Iterations. Final criterion was  0.0000000 <=  0.0000100 

Log Likelihood           12182.1006 

   

Variable Coefficients Std Error T-Stat P. Value 

1 Mean(1) 4.52E-04 2.53E-04 1.78367 0.074478 

2 Mean(2) 5.54E-04 4.61E-04 1.20206 0.229339 

3 C(1) 7.65E-07 4.70E-07 1.6285 0.10342 

4 C(2) 3.03E-06 1.37E-06 2.21185 0.026977 

5 A(1,1) 0.0533 9.00E-03 5.91853 0 

6 A(1,2) -6.85E-03 5.32E-03 -1.28898 0.197406 

7 A(2,1) -4.50E-03 9.82E-03 -0.45834 0.64671 

8 A(2,2) 0.0323 5.89E-03 5.47439 4E-08 

9 B(1,1) 0.9333 0.0117 79.76803 0 

10 B(1,2) 0.0624 0.0363 1.72068 0.08531 

11 B(2,1) 8.98E-03 0.0531 0.1691 0.865717 

12 B(2,2) 0.9626 8.38E-03 114.8811 0 

13 R(2,1) 0.1323 0.0193 6.84601 0 
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 EWMA with t-errors with an estimated degrees of freedom parameter- 

ETA6 

 

garch(p=1,q=1,mv=ewma,distrib=t,pmethod=simplex,piters=20,rvectors=rd,hmatric

es=hh ) gstart gend Opec CI005022 

 

MV-GARCH, EWMA - Estimation by BFGS 

Convergence in 2 Iterations. Final criterion was  0.0000018 <=  0.0000100 

Log Likelihood                     12344.8717 

 

     

Variable Coefficients Std Error T-Stat P. Value 

1 Mean(1) 0.000460327 0.000188394 2.44343 0.01454853 

2 Mean(2) -
0.000012799 

0.000392835 -0.03258 0.97400777 

3 Alpha 0.026143736 0.002351885 11.11608 0 

4 Shape 6.351573087 0.410603234 15.46888 0 
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CC-EGARCH with asymmetry- ETA7 

garch(p=1,q=1,mv=cc,asymmetric,variances=exp,pmethod=simplex,piters=20,rvect

ors=rd,hmatrices=hh ) gstart gend Opec CI005022 

MV-GARCH, CC with E-GARCH Variances - Estimation by BFGS 

Convergence in  50 Iterations. Final criterion was  0.0000000 <=  0.0000100 

Log Likelihood                     12181.6903 

 

Variable Coefficients Std Error T-Stat P. Value 

1 Mean(1) 0.00046412 0.00023834 1.94732 0.05149659 

2 Mean(2) 0.00054376 0.00047395 1.14731 0.25125384 

3 C(1) -0.20894082 0.03035163 -6.88401 0 

4 C(2) -0.10002165 0.03247918 -3.07956 0.00207305 

5 A(1) 0.11163861 0.01526422 7.31375 0 

6 A(2) 0.08020922 0.01301611 6.1623 0 

7 B(1) 0.98584806 0.00295665 333.43394 0 

8 B(2) 0.99453264 0.00381372 260.77748 0 

9 D(1) 33.04458308 8.89394401 3.7154 0.00020288 

10 D(2) -2.47922141 7.39270213 -0.33536 0.73735305 

11 R(2,1) 0.12724105 0.02008214 6.33603 0 
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VAR(1) model for the mean, BEKK – ETA8 

garch(p=1,q=1,model=var1,mv=bekk,pmethod=simplex,piters=20,rvectors=rd,hmat

rices=hh ) gstart gend Opec CI005022 

MV-GARCH, BEKK - Estimation by BFGS 

Convergence in    40 Iterations. Final criterion was  0.0000057 <=  0.0000100 

Log Likelihood                     12245.0620 

 

Variable Coefficients Std Error T-Stat P. Value 

1 OPEC{1} 0.234143 0.020924 11.19038 0 

2 CI005022{1} -0.03103 0.010641 -2.91639 0.003541 

3 OPEC{1} 0.041489 0.029298 1.41611 0.156743 

4 CI005022{1} 0.00403 0.021377 0.18853 0.850461 

5 C(1,1) 0.001187 0.000167 7.10399 0 

6 C(2,1) 0.000213 0.000406 0.52467 0.599814 

7 C(2,2) 0.001255 0.000352 3.56122 0.000369 

8 A(1,1) 0.243448 0.016301 14.93486 0 

9 A(1,2) 0.07225 0.025092 2.87935 0.003985 

10 A(2,1) -0.02081 0.008652 -2.40489 0.016177 

11 A(2,2) 0.140079 0.015157 9.24192 0 

12 B(1,1) 0.96831 0.003953 244.9857 0 

13 B(1,2) -0.01287 0.005513 -2.33393 0.019599 

14 B(2,1) 0.002026 0.002029 0.99839 0.318091 

15 B(2,2) 0.988123 0.002558 386.2403 0 

 


