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INVERSE OPTIMAL CONTROL FOR NONLINEAR SYSTEMS

SUMMARY

The design of optimal controllers for nonlinear systems has been an area of intense
research interest in control theory. Optimal nonlinear control deals with the problem
of finding a stabilizing control law for a given nonlinear system while achieving a
certain optimality criterion. The traditional approach to solve the nonlinear optimal
control problem leads to a Hamilton-Jacobi-Bellman (HJB) equation that has no exact
analytical solution for general nonlinear systems. In this study, the inverse optimal
controller methodology based on defining an appropriate quadratic control Lyapunov
function (CLF) has been chosen as the basis for the proposed methods. The inverse
optimal control problem, which was initially presented by Kalman for linear systems,
deals with the question of whether a given state feedback can be the optimal control
with respect to some useful performance index.

This thesis proposes two different approaches to implement the inverse optimal
controller design for affine-in-input discrete-time nonlinear systems. In the first
approach, the parameters of the candidate CLF were optimized in an off-line
manner by using Particle Swarm Optimization (PSO) and Big Bang-Big Crunch
(BB-BC) algorithms.  Then, the inverse optimal controller that relied on a
multi-objective optimization criterion in off-line manner is also proposed; where the
root-mean-square-error (RMSE) of system states with respect to a reference trajectory
and the sum-of-squares of control effort are utilized as the multi-objective optimization
criterion in the Big Bang-Big Crunch optimizing algorithm. In order to test the
performance of the proposed off-line approach, a nonlinear example from the literature
of inverse optimal control is firstly taken into consideration. Next, the proposed
controller is used to stabilize an inverted pendulum on cart. Simulation results within
the MATLAB show that the proposed method can effectively solve the nonlinear
optimal control problem for affine-in-input discrete-time nonlinear systems.

Secondly, an inverse optimal control approach based on extended Kalman filter
(EKF) algorithm to solve the optimal control problem for affine-in-input discrete-time
nonlinear systems is presented. In this on-line approach, the parameters of the
candidate quadratic CLF were estimated by adopting the EKF equations. The RMSE of
system states is used as the observed error in the equations of EKF algorithm; whereas,
here, the EKF tries to eliminate the same RMSE error defined over the parameters
by generating a CLF matrix with appropriate elements. The performance and the
applicability of the proposed scheme is illustrated through both simulations performed
on two different nonlinear system models and a real time laboratory experiment.
Simulation study demonstrate the effectiveness of the proposed method in comparison
with two other inverse control approaches from the literature. Finally, the proposed
controller is implemented on a professional control board to stabilize a DC-DC boost
converter and minimize a meaningful cost function. The experimental results show
the applicability and effectiveness of the proposed EKF-based inverse optimal control
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even in real time control systems with a very short time constant.

In order to compare the results of the proposed EKF-based inverse optimal control
approach with classical linearizion based technique, this thesis proposes an effective
solution to the HIB equation for linear system cases. Indeed, this solution leads to
the traditional linear quadratic regulator (LQR) controller which is the most popular
technique that provides an optimal control law for linear systems among the state
space feedback control strategies. However, the conventional LQR controller synthesis
is unfortunately an iterative process due to the trial and error approach involved in
determining the parameters values of the weighing matrices Q and R. In the proposed
method, the BB-BC optimization algorithm is used to find an appropriate value for
theses weighing matrices Q and R; thus avoiding the repeated adjustment process
of LQR parameters in constructing the state feedback optimal control law. Here, a
special performance fitness function that is inversely proportional to the certain time
domain step response criteria of a dynamical system is proposed for the optimization
procedure. In order to test the performance of the proposed method, firstly a
simulation study is done within the MATLAB to stabilize an inverted pendulum on
cart. Then, the proposed controller is used in a real time implementation to stabilize
a DC-DC boost converter benchmark in the lab. Both MATLAB simulations and
laboratory experiments demonstrate the effectiveness of the proposed BB-BC based
LQR controller.
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DOGRUSAL OLMAYAN SISTEMLER iCIN TERS OPTIMAL KONTROL

OZET

Dogrusal olmayan sistemler icin optimal kontrolor tasarimi her zaman yogun bir
arastirma alan1 olmus ve bu alanda cok sayida yayinlar yapilmig ve de aragtirmalar
devam etmektedir.

Dogrusal olmayan kontrolor tasarim problemi verilen bir dogrusal olmayan sistem
icin belirli bir optimal olma Olg¢iitiinii saglayarak soz konusu sistemi dengeleyecek
kontrol yasasini olusturmaya calisir. Dogrusal olmayan optimal kontrol problemine
geleneksel yaklasim bizi Hamilton-Jacobi-Bellman (HJB) denklemine gotiiriir ki bu
denklemlerin genel dogrusal olmayan sistemler i¢in tam analitik bir ¢oziimii yoktur.
Burada, farkli ters optimal kontrolor tasarim yontemlerine temel yaklasimin, uygun
bir kuadratik kontrol Lyapunov fonksiyonu (Quadratic Liapunov Function - CLF)
tanimlanmasi veya bir sekilde olusturulmasi olarak belirtilebilir.

Ters optimal kontrol problemi ilk olarak Kalman tarafindan lineer sistemleri i¢in
Onerilmistir. Bu problem de verilen bir durum geri beslemesinin belirli bir amag
til¢iitiine gore optimal olup olmadig1 sorusuna yanit arar. Sonug olarak ters optimal
kontrol kuraminin arkasindaki temel diisiince bir kararli kilict geri besleme kontrol
kural1 olusturup daha sonra bu kontrol kuralinm1 giris degiskenlerine ve durumlara bagh
bir anlaml1 amag 6lciitiiniin optimizasyonunda kullanmaktir.

Bu yaklagim klasik optimal kontrol problemi ile karsilastirildiginda bir kafa karistirici
bulunabilir. Ciinkii klasik optimal kontrol problemine ¢6ziim yaklasiminda oncelikle
amac¢ Olgiitiiniin bilinmesi zorunlulugu vardir.  Son yillarda 6zellikle havacilik
alanindaki problemler ters optimal kontrol yaklasimi sik¢a kullanilmaya baglamistir.
Boylece, lineer olmayan sistemlerde karsimiz cikan ve coziimii bazen imkansiz
veya c¢cok zor olan Hamiton- Jacobi- Bellman denklemini ¢6zmek durumunda
kalinmamaktadir. Ancak, ters optimal kontrol problemlerinde de temel sorun, bu
giine kadar, en genel sekilde tiim lineer olmayan sitemler icin bir kontrol Liapunov
fonksiyonun (Control Liapunov Function — CLF) bulabilmek i¢in sistematik bir
yaklasim 6nerilememis olmasidir.

Bu tezde, zamanda ayrik affine dogrusal olmayan sistemlerde uygulanmak iizere
ters optimal kontrol problemi ¢oziimiine iki farkli yaklasim onerilmektedir. Birinci
yaklasimda, aday CLF’nin parametreleri c¢evrim-dis1 bir sekilde Parcacik Siirii
Optimizasyon ( Particle Swarm Optimization-PSO) ve Biiyiik Patlama - Biiyiik Cokiis
(Big Bang - Big Crunch BB-BC) optimizasyon yoOntemleri kullanarak optimum
degerleri belirlenmeye ¢aligilmigtr.

Ayrica, bu yaklagimda, yine ¢evrim dig1 olarak ¢ok 0l¢iitlii optimizasyon problemine
dayali bir ters optimal kontrolor tasarim yontemi gelistirilmistir. Bu yOntemde,
birbirleriyle ¢atigsan Ol¢iitler olan hatalarin karelerinin karekokii (RMSE) ve kontrol
aksiyonun karelerinin toplami ifadelerini birlikte eniyileyecek bicimde ve global
bir optimizasyon yontemi olan BB-BC kullanilarak, bir ters optimal kontrolor
tasarlanmisgtir.
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Bilindigi iizere cok oOlciitlii optimizasyon yonteminde birden ¢ok optimal nokta
olacag1 aciktir. Bu nedenle, cok olgiitlii optimizasyon problemi bir agirlik katsayilari
aracilifiyla tek boyuta indirgenmistir. Ancak, bu agirlik katsayilarina degisik degerler
atanarak irdelemeler de yapilmistir. Sonuc¢ olarak bu degisik katsayilar verilereek
elde edilen sonuglar1 tasarimcinin irdeleyerek kendisi i¢in en uygun ¢oziimii se¢mesi
beklenmektedir. Bu yontemlerin basarimini test etmek i¢in de literatiirden bir dogrusal
olmayan sistem Ornegi lizerinde denemeler yapilmis ve sonuglar karsilastirma bir
bicimde irdelenmistir.

Benzetim sonuglart tasarimciya klasik ters optimal kontrol ¢oziimii ile
coklu-optimizasyon fonksiyonu iizerinden sunulan ¢oziimler arasinda secim yapmasi
acisindan bir farkindalik yaratmaktadir. Daha sonra, Bu onerilen yaklagimlar araba
tizerindeki ters sarka¢ problemine de uygulanmistir. Benzetim sonuglari, dnerilen
yontemin, zamanda ayrik affine ve dogrusal olmayan sistemlerin, dogrusal olmayan
kontroliinde etkin sonuclar verdigini gostermistir.

Ikinci yaklagim olarak, yine zamanda ayrik affine dogrusal olmayan sitemlerin
optimal kontrol ¢oziimii i¢in Extended Kalman Filter (EKF) algoritmasina dayali
bir ters optimal kontrol tasarim yontemi Onerilmigstir. Burada, sistem durumlarinin
RMSE degeri gozlenen hata olarak kullanilmis ve EKF, en uygun CLF matris eleman
degerlerini yaratarak RMSE hatasini en aza indirecek sekilde tasarlanmigtir. Yontemin
basarimi ve etkinli8i iki farkli dogrusal olmayan sistem modeli {izerinde benzetimler
yapilarak gosterilmistir.

Ayrica, yontem bir gercek zaman laboratuvar deney diizenegi lizerinde de galistirilarak
basarimi ve etkinligi gézlenmistir. Benzetim calismalar1 6nerilen yontemin literatiirde
s0z edilen diger iki ters optimal kontrol yontemlerine kiyaslandiginda daha verimli
ve etkin ¢oziimler sundugu goriilmiistiir. Son olarak, onerilen yontemle, anlamli bir
maliyet fonksiyonunu en aza indirecek bir bicimde, profesyonel bir kontrol karti
izerinden, Dogru Akim- Dogru Akim (DA-DA) doniistiiriiciiniin (DC-DC boost
converter) kontrol edilmesi saglanmistir. Gercek zamandaki deneysel sonuglari,
bize Onerilen EKF tabanli ters optimal kontrol yontemin, cok kisa zaman sabiti
olan sistemler iizerinde bile rahatlikla ve de etkin bir sekilde uygulanabilirligini
gostermistir.

Bu tez, ayrica, dogrusal sistemler icin HJB denklemine etkin bir ¢6ziim de
sunmaktadir. Dogrusal sistemler ve kuadratik basarim 6l¢iitii durumunda geleneksel
¢Oziim olarak dogrusal kuadratik diizenleyici (Linear Quadratic Regulator - LQR)
problemine varildig1 bilinir. Bu problemin ¢6ziimii de dogrusal sistemler i¢in durum
uzayinda durum geri beslemeli kontrolor tasarimi icin en bilinen ve etkin kullanigh
yontemdir. Ancak, burada bulunan Q ve R matrislerini elemanlarinin se¢cimi daha
cok deneme yanilmaya dayali olarak belirlenmektedir. Burada, yenin bir yaklasim
Onerilmistir.

Bu yaklasimda, Q ve R matrislerinin elemanlar1 zaman tanim bolgesinde tanimli bir
basarim oOl¢iitiinii en iyi yapacak bir bicimde ve global bir arama algoritmasi olan Big
Bang Big Crunch (BB-BC) kullanilarak belirlenmistir. Bu yaklagimda Onerilen 6zel
uygunluk basarim fonksiyonu bazi zaman tanim bolgesi Olgiitlerinin ( yiizde asim,
yerlesme zamani, yiikselme zamani ve siirekli hal hatasi ) ters fonksiyonu olarak
tamimlanmigti. Bu yOntemin basarimimi 6lgmek iizere Once araba iizerindeki ters
sarkac¢ probleminin dengelenmesi i¢in bir benzetim ¢alismasi yapilmistir. Daha sonra,
onerilen yontem, Dogru Akim- Dogru Akim (DA-DA) doniistiiriicii (DC-DC boost
converter) laboratuvar deney setinin kontrol edilmesinde ger¢cek zamanda denenmistir.
Bu iki calisma da, yani MATLAB iizerinde yapilan benzetim caligmalar1 ve gercek
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zamanda laboratuvar deneyleri, yontemin iglerligini ve basarimin teyit etmistir.

Bu tez iizerine olas1 gelecek gelistirme calismasi olarak sistemdeki belirsizliklere
kars1 dayaniklilik analizleri yapmak ilk akla gelen ¢alisma olmaktadir. Ayrica, yliksek
mertebeden gercek sistemler iizerinde bu gelistirilen EKF tabanli ve gercek zamanl
ters optimal kontrol yontemin uygulamalarini yapabilmek de ©Onemli bir asama
olacaktir kanisindayiz.
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1. INTRODUCTION

The main challenge in modern control theory is to develop efficient controllers for
nonlinear systems that achieve the desired system performance as well as have the
simplest design procedures. In nature, most dynamical systems such as inverted
pendulum, power converters, robotic systems, and industrial processes etc., are
inherently nonlinear and the equations of such kind of models are difficult to solve.
Designing optimal controllers for such kind of nonlinear systems has been an area of
intense research interest in control theory. "The main objective of optimal control is
to determine control signals that will cause a given nonlinear process (plant) to satisfy
some physical constraints and at the same time extremize (maximize or minimize) a
chosen performance criterion (performance index or cost function)" [1]. Indeed, the
classical solution of the nonlinear optimal control problem leads to a mathematical
Hamilton-Jacobi-Bellman (HJB) equation which is extremely difficult to solve and has
no exact analytical solution for general nonlinear systems [2—4]. For linear systems, it
is also a well-known fact that HIB equation reduces to the Riccati equation [4, 5].

The inverse optimal control problem, which was initially presented by Kalman for
linear systems, deals with the question of whether a given state feedback can be the
optimal control with respect to some useful performance index [5]. The main idea
behind the theory of inverse optimal control is to construct a stabilizing feedback
control law as a first step, and then subsequently, to use this control law in the
optimization of a meaningful cost functional which depends on the state variables and
the control inputs [3, 6]. This definition can be a bit confusing when it is compared to
the definition of optimal control problem where the cost functional should be known
a priori in forming a stabilizing control law. The inverse optimal control for linear
discrete-time systems is presented in [7]. Whereas for nonlinear systems, the inverse
optimal control is an alternative method for solving the nonlinear optimal control
problem while avoiding the tedious task of solving the HIB equation. In recent years,
the inverse optimality approach has been increasingly used for solving the nonlinear

optimal control problem in many real time applications, especially in aerospace
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industry [8,9]. The inverse optimality method is used for nonlinear deterministic
system and nonlinear stochastic system with multiplicative and additive noises, and it
is applied on a stochastic model of a human arm in [10]. In [11], it has been proven that
it is possible to construct a controller which is optimal with respect to a meaningful cost
functional for every system with a stochastic control Lyapunov function. In the above
mentioned researches, the inverse optimality approach based on defining a control
Lyapunov function (CLF) is used to construct the control law. In various studies
on this approach, it has been proven that the Lyapunov function can be considered
as a solution to the HIB equation in optimal control problems corresponding to a
meaningful cost functional [3,6,12]. Up to this date, there does not exist any systematic
procedures for defining a CLF for general nonlinear control systems. However, several
researchers have proposed some systematic approaches to find the CLF for certain class
of nonlinear systems such as feed-forward systems, feedback linearizable and strict
feedback [13—15]. A continuous-time version of an inverse optimal control based on
CLF has been proposed for a helicopter flight system in [16]. A main theorem related to
the inverse optimal control problem for affine-in-input discrete-time nonlinear systems
has been given in [17], where the necessary conditions needed to construct a discrete
quadratic CLF has been illustrated in establishing the control law. A speed-gradient
(SG) algorithm was used in [18] to adjust a single time-variant parameter which defines
the discrete quadratic Lyapunov function. Moreover, the authors in [19] discussed the
inverse optimal control for discrete-time nonlinear systems via passivity approach.

In this study, the inverse optimal control based on CLF theory is considered that is
mainly motivated by the work presented in [17]. This thesis proposes two different
approaches to implement the inverse optimal controller design for affine-in-input
discrete-time nonlinear systems.

In the first approach, the parameters of the candidate CLF were optimized in an off-line
manner by using Particle Swarm Optimization (PSO) and Big Bang-Big Crunch
(BB-BC) algorithms. The BB-BC algorithm which proposed in [20] is derived from
one of the evolution of the universe theories in physics and astronomy which called
BB-BC theory. It has been demonstrated in [20] the effectiveness and superiority
of BB-BC algorithm in comparison to genetic algorithm for many benchmark test
functions. BB-BC algorithm has already been applied to different areas with

encouraging results such as fuzzy model inversion [21] and power system stabilizer
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[22]. Real world control problems in engineering are usually multi objectives or
multi criteria. Hence, the multi-objective optimization problems have been intensively
studied for several decades [23-26].

The novel contribution of this approach is that the multi-objective BB-BC optimization
algorithm is proposed as an off-line parameters optimizer to construct the CLF of the
inverse optimal control for affine-in-input discrete-time nonlinear systems; where the
root-mean-square-error (RMSE) of system states with respect to a reference trajectory
and the sum-of-squares of control effort are utilized as the multi-objective optimization
criterion in the BB-BC optimizing algorithm. In order to test the performance of the
proposed approach, a nonlinear example from the literature of inverse optimal control
is firstly taken into consideration. The simulation results enlighten the designer in
making a choice between the single objective inverse optimal control solution and
the multi-objective function included case. Next, the proposed controller is used to
stabilize an inverted pendulum on cart. The inverted pendulum is one of the most
well-publicized problems in control system and many novel control techniques (such
as linear quadratic regulator, genetic algorithms, fuzzy logic control, PID controllers,
neural networks, etc.) have been tested on it [27], [28—-30]. Simulation results within
the MATLAB show that the proposed method can effectively solve the nonlinear
optimal control problem for affine-in-input discrete-time nonlinear systems.

In the second approach, an inverse optimal control approach based on extended
Kalman filter (EKF) algorithm to solve the optimal control problem of affine-in-input
discrete-time nonlinear systems is presented. Researchers in the field of nonlinear
estimation problems have utilized the EKF algorithm in estimation of a nonlinear
dynamic system states and parameter estimation. Hence, the estimation process has
been used for many applications, such as in a fuzzy modeling control problem [31]
where EKF has been used in formation of fuzzy membership functions in an on-line
manner. Another application is illustrated in [32], where the EKF algorithm was
employed to estimate the back electromotive force (EMF) in an induction machine
control problem.

The novel contribution of this study is that EKF algorithm is used as a parameter
identifier in the formation of the CLF within the inverse optimal control loop for
affine-in-input discrete-time nonlinear systems in an on-line manner for the first time

in literature. The initial background and motivations of this work are laid out and
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presented in [33]. Then, the proposed method is implemented in a DC-DC boost
converter prototype, which is an inherently nonlinear system with a non-minimum
phase characteristics and highly sensitive to load variations. In fact, the problem
of stabilizing and regulating the output voltage of the DC-DC boost converter has
been a research interest area and is widely used as a benchmark for testing various
control forms such as Proportional-Integral-Derivative (PID), Fuzzy etc., [34-36]. The
proposed EKF-based inverse optimal control method is fully developed and adopted
for a real time application in [37].

In order to compare the results of the proposed EKF-based inverse optimal control
approach with classical linearizion based technique, this thesis also proposes an
effective solution to the HIB equation for linear systems. Indeed, this solution leads
to the traditional linear quadratic regulator (LQR) controller which is the most popular
technique in the field of industry that provides an optimal control law for linear systems
among the state space feedback control strategies. In despite of the good results of
the LQR technique, the selection process of the weight matrices (Q and R) in the
conventional LQR controller is given by trial and error that based on the experience
of the designer. For that, the optimizing process of these matrices, which are straight
affect the control performance, is still an active research topic [38]. Michael Athans in
[39] derives a linear quadratic regulator which is robust to real parametric uncertainty.
Genetic optimization algorithm (GA) was used in [27] to find the initial values of the
connection weights of the neural network and initial values of PID in order to stabilize
the inverted pendulum on cart system. Another application for using the GA and LQR
is the aircraft pitch control has been demonstrated in [40]. Using BB-BC optimization
algorithm to determine the weighing matrices (Q and R) of the LQR controller is
the main contribution of this part. The proposed controller is then used to stabilize
both an inverted pendulum on cart and a DC-DC boost converter. Both MATLAB
simulations and laboratory experiments demonstrate the effectiveness of the proposed
controller [41].

The remainder of this thesis is organized as follows: Chapter 2 describes the classical
solution of discrete time optimal control problem for both linear and nonlinear cases.
Chapter 3 introduces the inverse optimal control based on CLF approach. Chapter
4 presents the proposed off-line inverse optimal control approach for discrete-time

nonlinear systems. An in-depth explanation on the proposed on-line EKF-based
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inverse optimal control is given in Chapter 5. Finally, some conclusions are drawn

in Chapter 6.






2. OPTIMAL CONTROL PROBLEM

This chapter presents the conventional solution of nonlinear optimal control problem
and describes the resultant HIB equation which is extremely difficult to solve and has
no exact analytical solution for general nonlinear systems.

In the second part of this chapter, the solution of the HIB equation for linear systems
is presented where this solution reduces to the Riccati equation. Here, the BB-BC
optimization algorithm is proposed to determine the weighing matrices (Q and R) of
the LQR controller. In order to test the performance of the proposed method, firstly
a simulation study is done within the MATLAB to stabilize an inverted pendulum on
cart. Then, the proposed controller is used in a real time implementation to stabilize
a DC-DC boost converter benchmark in the lab. Both MATLAB simulations and

laboratory experiments demonstrate the effectiveness of the proposed controller [41].

2.1 Basic Concepts of Optimal Control

Optimal control theory, which related in its origins to the theory of calculus of
variations, is a mathematical optimization method that deals with the problem of
finding a stabilizing control law for a given dynamical system such that a certain
performance criterion is minimized. This criterion is usually formulated as a cost
functional, which is a function of state and control variables. There are various types
of optimal control problems, depending on the nature of the system ( linear, nonlinear),
the type of time domain (continuous, discrete), the performance index and the different
types of constraints, etc.

In the design process, there is no guarantee for stability margins and adequate
performance in case of implementing a continuous-time control scheme on real-time
application due to the well known fact that the continuous time schemes could become
unstable after sampling process. Moreover, the discrete-time framework is technically
more appropriate for implementing digital controllers and can be directly implemented

in a digital processor. For that, the optimal control problem of affine discrete-time



nonlinear systems is considered in this study.

The major drawback for the conventional solution of optimal nonlinear control
is the need to solve the associated HJB equation, which introduces a significant
computational bottleneck and there is no analytical solution for general nonlinear

systems at present. It has only been solved for the linear regulator problem [3-5].

2.2 Hamilton-Jacobi-Belman Equation for Discrete-Time Nonlinear Systems

In this research, the affine-in-input discrete-time nonlinear systems are considered.
Affine simply means "linear", whereas non-affine means "nonlinear". Hence, if the
input appears linearly in the system then it is affine-in-input system.

Considering the affine-in-input discrete-time nonlinear system of the form:

X1 = f () + 8 (o ) uk 2.1

where x € R” is the state of the system, u € R™ is the control input. f(x;) : R" — R”
and g(xz) : R" — R™ are smooth matrices. Without loss of generality, by shifting the
origin of the system, it can be assumed that the origin (x = 0) is the equilibrium point
of the system (2.1), f(0) =0 and g(xy) # O for all x; # 0 . System (2.1) is assumed to

be stabilizable on a predefined compact set Q € R”.

e Definition 2.1: Stabilizable system; a nonlinear dynamical system is said to be a
stabilizable system on a compact set Q € R" if there exists a control input U € R™

such that, for all initial conditions xp € Q, the state x — 0 as k — oo [42].

For a nonlinear optimal control problem, it is desirable to determine a control law i,

which minimizes the following cost functional:

o)

V(xg) = Z (L(x,) +ul Euy,) (2.2)
n=k

where V : R" — R™ is the cost functional, L : R" — R™ is positive semi-definite
function to weight the performance of the state vector x;, and E : R" — R™*™ is a
real symmetric positive definite weighing matrix to weight the control effort and could

be a function of the system state in order to vary the control efforts according to the

state value [2,3,42].



Equation (2.2) can be written as:

V(xg) = L(x) + u,{Euk + Z (L(x) + u,{Eun)
n=k+1 (2.3)

= L(x) + i Eug +V (xi41)
From Bellman’s optimality principle, which is solved backwards in time, it is known
that the value function V*(xy) is time invariant and satisfies the discrete time Bellman

equation for an infinite horizon optimization case [43—45]:
V*(x) = II;;I{H{L()C]() +ul Eug +V*(xp41)} (2.4)

The discrete-time Hamiltonian equation .77 (xy, u;) which is used to obtain the control

law is defined as:
T (X, uy) = L(xg) +u,{Euk+V* (xka1) =V (xx) (2.5)
Hence, the control law u; should minimize this Hamiltonian equation as following:
nztin (X, u) = H (X, uy) (2.6)

The necessary condition for the feedback optimal control law in order to achieve this
minimization is:

I (X, u;) =0 (2.7)
The formula of the optimal control u; can be calculated by taking the gradient of the

right-hand side of Equation (2.4) with respect to uy:

8{L(xk) + u,{Euk +V* (xk+1)}

i =0 (2.8)
where: ST
8L(xk) :O, {ukEuk} :2Euk,
8uk 8uk
OV 1)} _ 9%pr OV (i)} Oy (50)
§uk 8uk 8xk+1 ’ 8uk BV

The optimal control u;; will be:

1 -1 T(Xk) A% (xk—i—l)

*—u =——F 2.
up = u(xg) SE 8 Tty (2.9)

which is a state feedback control law u(x;) with u(0) = 0. Hence, the boundary

condition V (0) = 0 in Equation (2.2) is satisfied for V (x), and V becomes a Lyapunov
9



function [2,3,45]. Moreover, if 7 (x;,u;) has a quadratic form in u; and E > 0, then
the following sufficient condition for the optimality will satisfied:

82%”()%, uk)

0 2.10
BMI% > ( )

and the optimal control law in Equation (2.9) will globally minimize .7 (x,u;) and
performance index at Equation (2.3) [2, 3,45].

By substituting the optimal control formula u; in V*(x;) at Equation (2.4), the
discrete-time HJB equation will be:

19V (xe41)

V0 = L) 4V ) 4 3 g

IV (xk41)

E*l T
g )E™ g" (xx) T

2.11)

Unfortunately, the HIB is extremely difficult to solve for a general nonlinear system.
Hence, it precludes any hope of an exact global solution to the general nonlinear

optimal control problem [3,43-45].

2.3 Hamilton-Jacobi-Bellman Equation for Linear Systems (LQR Equation)

For linear regulator problem case with no constraints, the HIB equation can be reduced
to the Riccati equation, which has been efficiently solved in the literature to derive
a linear state feedback control [3, 5]. The linear quadratic regulator is an optimal
controller for linear systems and is clearly the most important and influential result
in optimal control theory that is widely used in all field of industry control. Actually,
the LQR is popular used technique for state space feedback control design that takes
into account the states of the dynamical system and control input to make the optimal
control decisions [46].

Considering the system governed by the following linear time invariant (LTI)

state-space equations:
X =Ax+Bu
(2.12)
Y =Cx+Du

The pair (A, B) must be controllable. The state feedback control u = —kx leads to the

following closed-loop state-space equations:

%= (A—Bk)x (2.13)
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Where k is derived from minimization the following infinite horizon quadratic cost
function:

J= / (" Qx +uT Ru)di (2.14)
0

The weighing matrix Q is a symmetric positive semi-definite matrix, while R is defined
as a symmetric positive definite symmetric matrix. Actually, The LQR problem is the
weighted minimization of a linear combination of the states x and the control input u.
The weighing matrix Q demonstrates which states are to be controlled more tightly
than others. Increasing the values of the R matrix leads to applying a larger penalty to
the aggressiveness of the control action.

By writing the well known HJB equation for linear system in Equation (2.12), we have:

* *

J
(Ax-+Bu)+ = | (2.15)

oJ
0 =min [xT Ox+ u' Ru+
u 8)6

For infinite-horizon case, all dependence of J on ¢ will drop out. Hence, the HIB
equation reduces to:

*

aJ
0 = min |x" Qx +u’ Ru+ (Ax+ Bu) (2.16)

ox

The formula of the optimal control u* can be calculated by taking the gradient with

respect to u and setting it to zero:

T
O g0 s ——rg1g7?

2u'R
" +8x 2 ox

(2.17)
In order to find the solution, we can try a particular form for the cost-to-go function J*:
I =x"Px PT=P>0 (2.18)
Then the LQR optimal control u* is given by:
u*=—R'BTPx (2.19)
Therefore, at minimum u:
0=x" [Q F2PA— PBR’lBTP] x (2.20)
Since x” PAx = xT AT Px, we can equivalently write the symmetric form:
0=x" [Q L PA+ATP - PBR_IBTP]x 2.21)

11



Therefore, P must satisfy the condition (known as the continuous time Algebraic

Riccati Equation (ARE)):
O+PA+ATP—PBR'BTP=0 (2.22)

The LQR controller construction is shown in Figure 2.1. In order to reduce the steady
state error of the system output, a value of feed forward gain (N,,,) may be added after

the reference r(t) as a scaling factor.

Refrl)  r——1  + =\ X = AX + Bu v(©)
Nb
] e i i !

X
| K [e—

Figure 2.1 : LQR controller for state space model.

In despite of the good results of the LQR technique, the selection process of the
weighing matrices (Q and R) in the conventional LQR controller is given by trial and
error that based on the experience of the designer. For that, the optimizing process
of these matrices, which are straight affect the control performance, is still an active
research topic [47].

Here, Figure 2.2 illustrates the difference between the two main available approaches

in solving the nonlinear optimal control problem.

2.4 Big Bang-Big Crunch Optimization for LQR Controller

In this section, the BB-BC optimization algorithm is used to find an appropriate value
for the weighing matrices Q and R; thus avoiding the repeated adjustment process
of LQR parameters in constructing the state feedback optimal control law. Here, a
special performance fitness function that is inversely proportional to the certain time
domain step response criteria of a dynamical system is proposed for the optimization
procedure.

In the proposed method, the BB-BC algorithm will optimize the weighing matrices (Q
and R) in off-line mode, then these optimal matrices will be used by the LQR controller

to stabilize the system.
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Figure 2.2 : Nonlinear optimal control problem solving approaches.

2.4.1 Big Bang-Big Crunch Optimization Algorithm

The authors in [20] introduced a new evolutionary optimizing algorithm named Big
Bang-Big Crunch (BB-BC); the BB-BC algorithm is derived from one of the evolution
of the universe theories in physics and astronomy which called BB-BC theory. The
BB-BC optimization method is formed by two phases: a Big Bang phase where
candidate solutions are randomly distributed over the search space in a uniform
manner and a Big Crunch phase where candidate solutions are drawn into a single
representative point via a center of mass for the population [20]. The initial Big
Bang population is randomly generated over the entire search space just like the
other evolutionary search algorithms. All subsequent Big Bang phases are randomly
distributed about the center of mass in a similar fashion. The Big Bang phase is
followed by the Big Crunch phase which is a convergence operator. This operator takes
the current positions of each candidate solution in the population and its associated
cost function value to calculate the center of mass. The point representing the center

of mass that is denoted by x€ is calculated according to the formula:

1=
<l
=,

™

= (2.23)

M=
|~
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where x’ is a point within an n-dimensional search space generated, f' is a fitness
function value of this point, N is the population size in Big Bang phase. After the Big
Crunch phase, new points are produced to be used in the Big Bang of the next iteration
step. The new generation is normally distributed around the center of mass x¢ in every
direction as follows:

X' =x+o (2.24)

The standard deviation of this normal distribution is given as

G — ’”a(xma)lcc_ xmin) (2.25)

where r is a normal random number; « is a parameter limiting the size of the search

space and £ is the iteration step. Therefore, the new point is generated as follows:

X =X ’"O‘(x’"“;( — i) (2.26)

These consecutive explosion and contraction are carried repetitively until a stopping
criterion has been met. High convergence speed, low computation time and few
parameters to be selected are the leading advantages of BB-BC optimization method
[20]. BB-BC algorithm has already been applied to different areas with encouraging
results such as fuzzy model inversion [21], and power system stabilizer [22].

The BB-BC optimization algorithm can be used to extremize (minimize or maximize)
the fitness function. Actually, selecting the fitness function is the most important part
in any type of optimization algorithms. A fitness function based on time domain is
proposed to satisfy the smallest overshoot, faster rise time, very small steady state
error and quickest settling time. In order to combine all of these objectives together,

the following fitness function is used [21]:

100
/= 2%x0.8+6xTs+ 12xTr+44xSSE

(2.27)

The constants of this fitness function have been adjusted in such way that normalize
the time domain step response criteria to be in same scale. Highest constant 44 is
attached to steady state error to emphasis on this criterion in the optimization process.
This fitness function is inversely proportional to the step response parameters of the

dynamic system. Hence, the center of mass equation in BB-BC optimization algorithm
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can be adopted for maximization case as following:

™M=

' fifi
7 = 1; (2.28)
Y S

i=1

For simplicity, the Q matrix is reduced to diagonal form i.e. Q = Diaglql,...,qn|;
hence, the parameters of Q and R matrices are combined into one vector in order to be
used within the BB-BC optimization algorithm: V = [q,...qn, 1, ...7%]-

Figure 2.3 demonstrates the flowchart of BB-BC optimization algorithm. Once the
stopping criterion is satisfied in BB-BC algorithm, the optimized Q and R matrices
will be ready to construct the feedback state control law for LQR controller which will

stabilize the control system and minimize the cost function.

Form an initial generation of

N candidates in a random manner.
Respect the limits of the search space:

V =1[q1,.--qnsT1,---1%]

|

Calculate the fitness function

—> values of all candidate solutions:
_ 100
J = S OSTeTs T I TrT445SSE

]

Find the center of mass for maximization case:
N
Z flx.’l

=i

fi

™M=

]

Calculate new candidates around
the center of mass

KW — x¢ + ra(xmuz*xmiu)

no Stopping

criteria?

Figure 2.3 : Flowchart of the BB-BC optimization algorithm for LQR controller.

2.4.2 Simulation results for inverted pendulum on cart

The inverted pendulum on cart is a classic control problem in dynamics and control
theory that is a suitable benchmark for testing prototype controllers due to its high

nonlinearities and lack of stability [27,29,30]. The physical model of the system is
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shown in Figure 2.4. The studied system consists of an inverted pole attached on a
cart which is free to move in the x-direction. It is assumed that the pendulum rod is
massless, and the joint is frictionless. The cart mass and the ball mass at the upper
end of the inverted pendulum are denoted as M and m, respectively. F' is an externally
x-directed force on the cart which driven by a DC motor. x represents the cart position

and 0 is the angle of the rod from the vertically upward direction.

-
M F 5
7 7 / 7

Figure 2.4 : The structure of inverted pendulum on cart system.

Table 2.1 contains the physical quantities for the inverted pendulum on cart.

Table 2.1 : Physical quantities for the inverted pendulum on cart for LQR based

BB-BC.
Symbol Parameter Value Unit
M Mass of the cart 0.5 Kg
m Mass of the pendulum 0.2 Kg
L Length of the pendulum 0.3 m
b Coefficient of friction for cart | 0.1 || N/m/sec
I Pendulum moment of inertia | 0.006 kg.m?
g Gravity 9.8 m/s>

By summing the forces in the free body diagram of the inverted pendulum system in

horizontal and vertical direction, we get the following equations of motion:
(M 4 m)i + bi + mLOcos® — mLO*sin = F (2.29)

(I+mL?)6 4+ mgLsin® = —mLicos0 (2.30)

The dynamic equations in (2.29) and (2.30) are linearized about 6 = 7 at the upright

(unstable) equilibrium position. Assume that 8 = 7 4 ¢ where (¢ represents a small
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angle from the vertical upward direction). The state-space form of the linearized

equations for the inverted pendulum on cart system will be:

o [0 1 0 0
x(r) (I+mL2)b m’gL? )
0| |0 ~marrmise e e 0| |X(0)
s mLb mgL(M-+m) )
o)l o T I(MAm)+MmL?  I(M~+m)+MmL? 0j19() (2.31)
0
_ ImL?
+ 1(M+m2)+MmL2 u(t)
___mL
I(M+m)+MmlL?
x(1)
1 0 0 O] [x(z 0
y@:{o 0 1 0] ¢((t)) +M ) o
o(t)

A constant gain factor can be added in order to reduce the steady state error of the
system output. The value of constant gain N, is selected to be: Nj, = —70.7107.
The search domains for ¢1,¢2,¢3, 4 are selected to be [1,107] and [1,10%] for r. After
25 iterations in BB-BC algorithm, the optimal weighing matrices are obtained as:
Q=[4.070%10° 2.632 2249.7 23514.1],R = [821.72]. Hence, the feedback gain
matrix will be : K =[—70.3786 —44.4010 143.4788 30.6465].

The experiential-LQR method for the same inverted pendulum on cart has been used
in [48,49] where the LQR matrices are selected as Q = C' «C and R = [I]. Here, the
output responses of the pendulum’s angle and cart’s position stabilized by the proposed
controller compared with the experiential-LQR results in [49] are shown in Figure 2.5
and Figure 2.6, respectively.

Table 2.2 demonstrates the comparison between the step responses of the proposed

method and the experiential-LQR technique for the cart of the pendulum.

Table 2.2 : Comparison between the response of LQR based BB-BC and
experiential-LQR for the cart of the pendulum.

Time Response of Cart | LQR Based BB-BC | Experiential-LQR
Settling time 0.95s 0.99s
SSE 0 0
Rising Time Tr 0.44 0.41
Percentage Overshoot 0% 0%

From Table 2.2, the experiential-LQR has faster rising time of 0.41 seconds while the
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Figure 2.5 : Oscillation of the pendulum’s angle for proposed controller and the
experiential-LQR one.
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Figure 2.6 : Step response of the cart’s position for proposed controller and the
experiential-LQR one.
proposed one has the rising time of 0.44 seconds. However, the proposed controller has
smaller settling time of 0.95 seconds. In addition, from Figure 2.6 it is worth to remark
that the pendulum’s angle has a 35° maximum overshoot range in the oscillation while
in experiential-LQR method it is exceeded the 44°. Both the proposed controller and
experiential-LQR method have percent overshoot and steady state error for the cart
almost equal to 0. Finally, the effectiveness and superiority of the proposed method
is due to the fact that it is automatically calculated the parameters of the weighing

matrices and there is no need for trial and error time conservative approach.
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2.4.3 Experimental results for the DC-DC boost converter

The DC-DC boost converters are widely used in power conversion applications where
the required output voltage is higher than the source voltage. The DC-DC boost
converter dynamics are nonlinear in nature due to switching action and saturation of
the duty-cycle. The control law obtained for these converters is usually based on linear
techniques which is simpler and of lower cost than other nonlinear approaches [35].
Hence, the small signal model of this converter is derived by linearization around a
specific equilibrium point where the stability is basically achieved around the small
vicinity of this point.

Considering the DC-DC boost converter circuit shown in Figure 2.7.

IL

DC
Output
hvl):t | | | | RL Vout>Vin
X2

SquareWave MOSFET
Driving Switch SWITCH

Figure 2.7 : DC-DC boost converter circuit.

To derive the state equations of this converter, states x; and x; are allocated to the
current of inductor L and the voltage of capacitor C, respectively. The commutated

model for the DC-DC boost converter can be presented as:

dip. . Vi X2

—y =22 2.
a T T R (2.33)
dve X1 X2
De _o=pll_*2 234
a 2R T RC (2.34)

Where p = {0, 1} is the switch position, Dy is the duty-cycle of the control signal p
and D/, is the complementary operating point duty-cycle (i.e. D/, =1—Dy). If the
switching frequency is significantly higher than the converter’s natural frequencies,
then this discontinuous model can be approximated around an appropriate equilibrium

point and reformed in a continuous averaged model.
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Hence, the equilibrium point is selected as in [35]:

Vg
X = DéR . U=Dd (2.35)
D,

Since we consider the control of the boost converter around the equilibrium point, we
can neglect the nonlinear term of the converter average model and obtain a linearized

model. Hence, the state space model of the boost converter is obtained as:

al o =2 ng’
e e A O (2.36)
AT —mell? (DZR.)C
_ X1
y=1[0 1] ch] (2.37)

The DC-DC converter parameters are given in Table 2.3.

Table 2.3 : DC-DC boost converter model parameters.

Element Value
Diode 1n4007
Power Mosfet IRF 620
Inductor 4.9 mH
Capacitor 470 uF
Load resistor | 470 2 — 5700
Input voltage IV

Hence, the optimal control problem for DC-DC boost converter is to determine a
control signal u that achieves stability for the converter and minimizes a certain cost
function. The controlled DC-DC boost converter should be robust in the presence of
disturbances, such as step changes in load or changes in source voltage and converter
parameters. In a boost converter, the output voltage response of the DC-DC boost
converter is controlled by changing the duty cycle of the pulse width modulation
(PWM) signal. The structure of the converter with the proposed controller is shown
in Figure 2.8. The circuit has a current sensor and differential amplifier in order to
measure the inductor current. The load change experiments have been carried out by
means of a multi-steps switch at the load side. A variable power supply is used in
order to test the transient waveform of output voltage with respect to changes in input

voltage.

The feed forward gain scaling factor N, = 6.44 is used. The search domains for g1, g2

and r are selected to be [1,10%]. After 32 iterations within the proposed algorithm, the
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Figure 2.8 : DC-DC converter board and ARDUINO Mega 2560 controller kit

optimal weight matrices are obtained as: Q = diag[403.159 749.712], r = [732.293].
Hence, the feedback gain matrix will be: K = [1.1016 0.9751].

The proposed controller is implemented on an ARDUINO MEGA 2560 starter Kkit.
One output pin is connected to the gate of the Mosfet driver in order to control the duty
cycle by the mean of a PWM technique. The switching frequency of the converter
was selected as 20 KHz. Two analog input pins were used to read the current flow in
the inductor and the output voltage level on the capacitor. Figure 2.9 illustrates the
algorithm block diagram for the proposed controller in a Simulink/MATLAB interface
to be implemented on an ARDUINO controller.

The transient responses of the stabilized boost converter under sudden changes in
desired reference voltage from 18V to 25V and then from 25V to 18V are shown in
Figure 2.10. The overshoot is equal to 11.1% and undershoot equal to 28.4%. The
settling and rising time were equal to .9s and 0.15s, respectively. However, there exist
no remarkable steady state error value. The upper waveform of each figure shows
the output voltage signal on the capacitor V¢, while the lower waveform depicts the

inductor’s current .
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Figure 2.9 : The proposed controller algorithm within Simulink interface.
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Figure 2.10 : Transient response for the proposed controller under sudden changes in

reference voltage.

In order to check the robustness of the proposed controller, we have obtained the
transient response under a set of load changes (47022 — 5702 — 51022 — 470Q2 —
570£2). The corresponding responses for the output voltage and inductor’s current
under the load perturbations have been grouped and shown in Figure 2.11. Hence, the
output waveform illustrates the performance of the proposed controller in presence of
the load perturbations. Furthermore, we have verified the response of the proposed
controller to supply voltage changes where the experimental result, shown in Figure

2.12, illustrates the positive behavior of the proposed controller in stabilizing the output

22



voltage within the range of desired value 25V under input voltage variations from 9V,

7V, 10V and then to 12V.

Telw T & Stop M Fas: 0.0005
-
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Figure 2.11 : Transient response of the proposed controller with load variation.
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Figure 2.12 : Transient response of the proposed controller with input voltage
variation.

From the previous results, it is obvious that the proposed method has been successfully
stabilized the DC-DC boost converter prototype while optimizing a fitness function
based on time domain. The correctness of this approach is verified in presence of step

changes of load and line voltage.
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3. INVERSE OPTIMAL CONTROL PROBLEM

This chapter describes some useful formulas required in the Lyapunov stability
analysis where this analysis is important for the inverse optimal control based on
CLF approach. Section (3.2) illustrates the inverse optimal control theorem for
affine-in-input discrete-time nonlinear systems proposed in [3, 17]. This theorem
will be used as basis for the proposed methods in the following chapters. Finally,
the differences between the inverse optimal control problem and the optimal control

problem is briefly discussed.

3.1 Lyapunov Stability Theory

In this section, the tools of Lyapunov stability are reviewed in order to analyze the
stability properties of inverse optimal control theory based on CLF which is the basis of
the proposed approaches in the following chapters. Here, only definitions and theorems
are presented, with no proofs. For further information, the reader could find more
details in standard texts of nonlinear systems , such as Khalil [50] or Vidyasagar [51].

Considering the affine-in-input discrete-time nonlinear system of the form:

X1 = f(o) + g () uk (3.1

where x € R” is the state of the system, u € R™ is the control input. f(x;) : R" — R”
and g(xy) : R" — R™™ are smooth matrices.
Definition 3.1: Equilibrium State [52]
An equilibrium point x; = E is such that:
ifxo=FE=x,=E, forall k

Without loss of generality, by shifting the origin of the system, it can be assumed that
the origin (xo = 0) is the equilibrium point of the system (3.1).
Definition 3.2: Positive Definite Function [52]
A function V (x;) is said to be a positive definite function if

Vixg) >0 Vx#0 ,and V(0) =0
Definition 3.3: Radially Unbounded Function [50]
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A positive definite function V (x;) is said to be radially unbounded function if
V(xg) oo as |[lxg| — oo
Definition 3.2: Decrescent Function [50]
A function V : R" — R is said to be decrescent if there is a positive definite function 3
such that the following inequality holds:
(%) <B(llwell) VEk =0
Theorem 3.1: Global Asymptotic Stability [52]
The equilibrium point x; = 0 of (3.1) is globally asymptotically stable if there exists a
function V : R” — R such that:
(i) V is a positive definite function, decrescent and radially unbounded.
(if) —AV (xx,ui) is a positive definite function, where

AV (e, ue) =V (x+ 1) =V (xx)

Theorem 3.2: Exponential Stability [3,51]
Suppose that there exists a positive definite function V : R” — R and constants
c1, ¢2, c3 > 0and p > 1 such that
ci|lx[|P <V (x) < el
AV (xz) < —c3||x||P, Vk>0, VxeR"

Then the equilibrium point x; = 0 is an exponentially stable for system (3.1). |

Definition 3.3: Control Lyapunov Function [53, 54]
Let V(x;) be a radially unbounded function, with V (x;) > 0,Vx; # 0 and V(0) = 0. If
for any x; € R" there exist real values u; such that

AV (xp,u;) <0

where the Lyapunov difference is defined as
AV (g, ur) =V (f () + 8 (e Jug) — V (xz)
then V(.) us said to be a discrete-time control Lyapunov function(CLF) for system (

3.1).

Assumption 3.1: [3]
Les assume that x; = 0 is an equilibrium point for system ( 3.1), and that there exists a
control Lyapunov function V (x;) such that

o ([lx) < V() < ea(]lxl])
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AV (xp, uy) < —oi3([[x]])

where oy, ap, o3 are class H.. functions and ||.|| denotes the usual Euclidean norm.
Then, the origin of the system is an asymptotically stable equilibrium point by means
of uy as input.

The existence of this CLF is guaranteed by a converse theorem of the lyapunov stability
theory. As a special case, the calculus of class H., functions in (Assumption 3.1)
simplifies when they take the special form ;(r) = k;jr°,k; >0, c¢=2, andi=1,2.
In particular, for a quadratic positive definite function V(x;) = %x,{ka , with P a
positive definite and symmetric matrix, inequality in (Assumption 3.1) results in

Aomin(P) 1] < 2 Ptk < Aamax (P) | ]|
where A, (P) is the minimum eigenvalue of matrix P and A4, (P) is the maximum

eigenvalue of matrix P.

3.2 Inverse Optimal Control Based on CLF For Discrete-Time Nonlinear System

Considering the affine-in-input discrete-time nonlinear system (3.1) where this system
is assumed to be stabilizable on a predefined compact set 2 € R". For a nonlinear
optimal control problem, it is desirable to determine a control law u;, which minimizes

the following cost functional:

(o)

V) = Y (L(x) +u) Euy) (3.2)
n=k

The optimal control ;. has been driven in Chapter (2) Equation (2.9) as:

—1 T(xk)M

- 1
* P— p— —_E .
u, = u(xy) Yk 8 et (3.3)

Definition 3.4: The control law u; at Equation (3.3) can be assumed to be inverse
optimal control if:

a) It achieves a global exponential stability of the equilibrium point x; = O for the

system (3.1).

b) It minimizes the cost functional in Equation (3.2), for which L(x;) := —V, with
V= V(xep1) — V() + uiTEu; <0, where V(x;) is radially unbounded positive

definite function.
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In this approach, inverse optimal control is based on knowledge of V(x;). Hence,
a CLF V(x;) is proposed such that (a) and (b) are guaranteed. In [6], the authors
proved that the Lyapunov function can be considered as a solution to the HJB equation
in optimal control problems corresponding to a meaningful cost functional. That is,
instead of solving HIB in Equation (2.11) for V(x;), a candidate quadratic control

Lyapunov function V (x;) is proposed with the form:

1
Vi) = Ex,{ka (3.4)
where P € R™" is assumed to be positive definite and symmetric, i.e. P =P >0
However, an appropriate matrix P must be selected in order to achieve stability and to
minimize a meaningful cost functional.

The state feedback control law can be rewritten as:

i = 5 (E+ 58" (v)Pe() 8w P (xe). (3.5)

The following theorem gives the necessary condition for matrix P to satisfy the

requirements of Definition (3.4).

Theorem 3.3: [3,17]
Considering the affine discrete-time nonlinear system (3.1). If there exists a matrix

P = PT > 0 such that the following inequality holds

V() = 3P () (E -+ Po() ™ Pr() < —Gollae P (:6)
where:
Vi) = V() =V (x), with V(f(x) = 37 (a)Pf(x) s o >0
Pi(xi) = g" )Pfx) 3 P(x) = %gT(xk)Pg(xk) then the equilibrium point

(xy = 0) of the system (3.1) is globally exponential stabilized by the control law
in Equation (3.5) with the CLF in Equation (3.4). Moreover, this control law will
minimize the cost functional given in Equation (3.2), with L(x;) := _V|MZ' Hence, the

optimal value function will be equal to V*(xg) = V (xp). [ |

This theorem was proved in [17] and presented in AppendixA.
The process of finding an appropriate P matrix is still an active research topic [3,17,18].

In [17], the authors used the form V (x;) = %x,{ka as a CLF and they proposed the
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Trial and Error method to select an appropriate value for P matrix. Moreover in [18]
the same authors proposed a time-variant parameter P, to be adjusted where P = P x P
and P is a predefined matrix.

In this research, two different methods to find P matrix are proposed; the first is the
off-line method using different search algorithm which presented in Chapter (4), and
then in Chapter (5), the EKF approach to estimate the overall elements of the P matrix
in on-line manner within the loop of inverse optimal control is presented.

Here, the simulation results which appeared in [17, 18] are re-done and presented to be
used in the comparison process at following chapters.

Considering the following affine-in-input nonlinear dynamical system [17, 18]:

X1 = f (k) + & (o) 3.7
X1 kXQk—O.g)Czk 0
h : — bl b 9 , —
where S () [ x%7k+1.8x27k } 8 (%) {—2+cos(x27k)}

The stabilizing optimal control law can be calculated according to Equation (3.5).

1: 10 0} The MATLAB platform of the Trial and

Error method for inverse optimal control is shown in Figure 3.1.

Matrix P is selected as : P = {

Istanbul Technical University 6
Inverse optimal control for Nonlinear Systems &
Supervisors: Prof. Dr. brahim Eksin Prof. Dr. Mijjde Giizelkaya -
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j 0 2 1 6 5
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= \\___ 5
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869 = [z 4 cosgre] g
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Figure 3.1 : The platform of Trial and Error method for inverse optimal control.

The MATLAB platform of the speed gradient algorithm method for inverse optimal

control is shown in Figure 3.2.
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Figure 3.2 : The platform of speed gradient algorithm method for inverse optimal
control.
Figures (3.1, 3.2) illustrate the effectiveness of the speed gradient algorithm [18] over
the Trial and Error method [17] for inverse optimal control problem in minimizing the
cost functional.
Shortly, the distinction between the traditional solution for the nonlinear optimal
control problem and the inverse optimal control approach based on control Lyapunov

function is illustrated in Figure 3.3.
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Figure 3.3 : Inverse optimal control approach and traditional solution for optimal
control problem.
e "For optimal control, the state cost function L(x;) > 0 and the input weighing term
E > 0 are given a priori. Then, they are used to determine u(x;) and V (x;) by the

means of the discrete-time HJB equation solution" [3].

e "For inverse optimal control, the control Lyapunov function V (x;) > 0 and the input
weighing term E > 0 are given a priori. Then, these functions are used to compute
u(xx) and the penalty term L(x;) which used in constructing a meaningful cost

function" [3].
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4. AN OFF-LINE INVERSE OPTIMAL CONTROL APPROACH FOR
DISCRETE-TIME NONLINEAR SYSTEMS

This chapter presents an inverse optimal control design method for affine-in-input
discrete-time nonlinear systems where the parameters of the candidate CLF were
optimized in an off-line manner by using Particle Swarm Optimization (PSO).
The Big Bang-Big Crunch multi-objective algorithm is also proposed where the
root-mean-square-error (RMSE) of system states with respect to a reference trajectory
and the sum-of-squares of control effort are utilized as the multi-objective optimization
criterion. In order to test the performance of the proposed method, a nonlinear
example from the literature of inverse optimal control is firstly taken into consideration.
The simulation results enlighten the designer in making a choice between the single
objective inverse optimal control solution and the multi-objective function included

case. Next, the proposed controller is used to stabilize an inverted pendulum on cart.

4.1 PSO algorithm for inverse optimal control

In this section, the P matrix of the candidate quadratic control Lyapunov function
V (xx), which illustrated in Chapter (3), will be optimized in an off-line manner in order

to construct the control law of the inverse optimal control by using PSO algorithm.

4.2 Particle Swarm Optimization (PSO)

PSO algorithm which proposed by Kennedy and Eberhart [55], is a population-based
search algorithm simulates social behavior of insect swarms or bird flocks shown
in Figure 4.1 [56]. The optimization process of PSO depends on a population
of candidate solutions, called particles. These candidate solutions are iteratively
improved by the the particles’ movements around in the search space according to
a mathematical equation over the particle’s position and velocity. The particle’s
movement is influenced by its local best known position and is also guided toward

the best known positions in the search-space which are better positions found by other
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particles. Therefore, the swarm is expected to move toward the best solutions [55].

Figure 4.1 : Swarm flocks.

Each particle moves through a n-dimensional search space, with an associated position

vector:
xi(1) = {xi1, X2, - Xin() } (4.1)
and velocity vector:

vi(t) = {v,-l,viz, ...,v,-,l(t)} (4.2)

For the current evolutionary iteration ¢. The individual particle in PSO flies in
the search space with velocity which is dynamically adjusted according to its own
flying experience and its companions’ flying experience. The former was termed
cognition-only model and the latter was termed social-only model. By integrating
these two types of knowledge, the particle behavior in a PSO can be modeled by using

the following equations:
vi(t+ 1) = wxvi(t) + c1 x rand x (Pbest; — x;(t)) + 2 * rand * (Gbest; — x;(t)) (4.3)

xi(t—l—l) :xi(t)+vi(t+1) 4.4)

where

c1,cp : acceleration constants;

rand : random number between 0 and 1;
x;(t) : the position of particle i at iteration 7 ;
vi(t) : the velocity of particle i at iteration 7 ;
w : inertia weight factor;

Gbest : the best previous position among all the particles;
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Pbest; : the best previous position of particle i.

Equation 4.3 represents the velocity-updating rule which consist of:

e The first term w* v;(¢) represents the previous velocity as the necessary momentum

for particles to fly across the search space.

e The second term c; * rand x (Pbest; — x;(t)) represents the personal thinking of each
particle, which encourages the particles to move toward their own best positions

found so far.

e The third term c; * rand x (Gbest; — x;(t)) represents the collaborative effect of the

particles in finding the global optima.

A typical PSO algorithm consists a population of particles initialized with random
position x; and velocity v;. Fitness of particles is evaluated by calculating the objective
function f(x;) .The current position of each particle is set as Pbest;. The Pbest; with
best value in the swarm is set as Gbest. As evolution continues, next position for each
particle is evaluated by using the previous equations. If a better position is achieved
by an agent, the Pbest; value is replaced by the current value. If a new Gbest value is
better than the previous Gbest value, the Gbest value is replaced by the current Gbest
value. Iterations repeat until a predetermined iteration number is reached. The flow

chart of PSO algorithm is shown in Figure 4.2.

Here, the root mean square error of the system states is selected as the fitness function
F to be minimized using PSO while searching the appropriate value for P matrix.

The formula of RMSE is given by:

4.5)

RMSE — \/(X] _xlref)2+ (xz _xzref)2+.. + (xn _xnref)Z
n

Figure 4.3 illustrates the block diagram of the proposed PSO inverse optimal control

approach.
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Figure 4.2 : Swarm algorithm flowchart.
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PPy By L State Penalty Term 1
1
V(xx) = =xI Pxy
Lyapunov Function ¥ n=k
1 IM*(x, Meaningful Cost Functional
uz — _EE—lgT(xk) ax( kJrl) L
k+1 » X1 = f(Xk) +g(xk)uk
Control Law Nonlinear System

Figure 4.3 : The proposed PSO optimization based inverse optimal controller for
discrete-time nonlinear system.
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4.3 Multi-objective Big Bang-Big Crunch Optimization algorithm for inverse

optimal control

In this section, the parameters of the candidate control Lyapunov matrix are optimized
by using multi-objective Big Bang-Big Crunch algorithm.

The BB-BC algorithm is allready presented in details at section 2.4.1.

4.3.1 Multi-objective Optimization Criteria

Most of optimization problems in the real-world appears to be in a multi-objective
nature where these multiple objectives are often in conflict with each other. In a
single objective optimization problem, the best design solution is the unique optimal
point and value. However, for multi-objective optimization problems, there exist
more than one optimal solution points. Therefore, the decision maker is required to
select a solution from a finite set of solution points by making compromises [57]. A

multi-objective optimization problem with m objectives can be written in general as:

Minimize fi(x), f2(x),....fm(x)

Subjecttox €S

(4.6)

In many multi-objective optimization approaches it is possible to transform the
multi-objective problem into a single composite objective optimization problem. One
of the simplest methods that is commonly used for this purpose is the weighting sum

method [57]. Therefore , the single objective can be considered as:
m
f=Y wifi (4.7)
i=1

with
wi=1,w; >0 4.8)

on

i=1

where m is the number of objectives and w;(i = 1,...m) are non-negative weights.
Hence, the optimization process will produce a single point for each given set of w;.
The fundamental idea of the weighted sum approach is that the weighted coefficients
act as the preferences for these objectives [57]. These weights are randomly generated;
therefore, different weights are used to generate different optimal solutions and then

the decision maker is asked to select the most appropriate one.
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Considering the CLF used in inverse optimal control law which explained at Theorem
(3.3).

1
Vi(xg) = 5x,’{ka P=P">0 4.9)

where P, ,P, ,...P, are the elements of matrix P to be optimized by the proposed
method. Figure 4.4 illustrates the block diagram of the proposed method.

The steps of the proposed method are illustrated as following:

1. Find the optimal value of P matrix using Big Bang-Big Crunch optimization method

by:
a. Form an initial generation of N candidates; each candidate is a vector of
parameters equal to the number of the optimized elements in P matrix.

b. Calculate the fitness function values of all the candidate solutions. Both the
RMSE of system states and the sum-of-squares of control law values are used as

the fitness functions:

e Fitness function (1):

RMSE — \/(xl _)Clref)2 “ <x2 _x2ref)2 +...+ (xn _)Cnref)2
n

e Fitness function (2):

n
Sum-of-squares of control law values= Y |u(k)|?
k=1

c. A constraint for maximum value of u(k) can be added as a physical constraint.

d. Combine the multi-objective problem into a composite single objective
optimization problem as described in Section 4.3.1.
e. Calculate new candidate vectors around the center of

new _ € | 10U (Ximax —Xmin)

X X

f. Return to step b if the stopping criteria is not satisfied.

2. Construct the control Lyapunov function (CLF), and then establish the control law

of the inverse optimal control.
3. Calculate the penalty term L(x;) for the meaningful cost functional.

4. Calculate the new states of the nonlinear discrete system.
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In summary, the Big Bang-Big Crunch algorithm is carried out off-line and minimized
the RMSE of system states and Sum-of-squares of control law values by generating
a CLF matrix with appropriate elements. Hence, guaranteeing system stability by
the meaning of eliminating the RMSE. The best value for this CLF matrix which
is determined by the Big Bang-Big Crunch optimization algorithm is then used for

establishing the inverse optimal controller for discrete-time affine nonlinear systems

Big Bang-Big Crunch algorithm _i Lxy) = — [V (k1) =V (xx) +uiTE uﬂ

PPy By L State Penalty Term 1
1

V(x) = =x] Px;
2 > V(xk) = )+ MZ;EM”>

Lyapunov Function ¥ n=k

u;: - lE*lgT (xk) oM™ (xk+1) L Meaningful Cost Functional
2 8xk-i-l > Xyl = f(xk) —l—g(xk)uk

Control Law Nonlinear System

Figure 4.4 : The proposed multi-objective Big Bang-Big Crunch optimization based
inverse optimal controller for discrete-time nonlinear system.

4.4 Simulation Examples

The performance of both PSO algorithm and the multi-objective Big Bang-Big Crunch
optimization is examined through a comparison study over a nonlinear example for
inverse optimal control presented at [17] where the authors proposed the trial and
error method to select an appropriate value for matrix P. Finally, the proposed
multi-objective Big Bang-Big Crunch optimization algorithm for inverse optimal

control is used to stabilize an inverted pendulum on cart by MATLAB simulation.

4.4.1 A nonlinear system case

Considering the following affine-in-input nonlinear dynamical system:

X1 = f () + g0 ug (4.10)
. . xl,kxz,k—O.lek . 0
W f) = [ xik—|—1.8x27k } . 8l = {—2+cos(x2,k)}

The stabilizing optimal control law can be calculated according to Equation (3.5).

Matrix P is estimated by the proposed method, where E = 1 is the constant in the cost
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functional equation. The initial condition for the states is selected as xo = [2 —2].
The MATLAB platform of the proposed PSO algorithm for inverse optimal control is

shown in Figure 4.5.
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Figure 4.5 : The platform of PSO algorithm for inverse optimal control.

Figure 4.6 illustrates the response of the closed loop system with the resultant P matrix

from the proposed PSO algorithm.
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Figure 4.6 : Swarm platform result.

Figure 4.7 demonstrates the MATLAB GUI simulation platform that used in order to
adapt the parameters of the proposed multi-objective BB-BC algorithm and to analysis

the output states of the nonlinear example.
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Figure 4.7 : MATLAB GUI for the proposed multi-objective Big Bang-Big Crunch

Optimization controller for inverse optimal control.

The following parameters can be configured by using the platform of the

multi-objective Big Bang-Big Crunch Optimization controller for inverse optimal

control :

Four scenarios are presented here for the Big Bang-Big Crunch inverse optimal

controller:

The stopping criterion.

Boundaries of the elements in P matrix.

The weighting parameters of the objectives.

The max value of the control law u(y).

The initial conditions of the system’s states.

1. Only considering the minimization part of RMSE for the system states (W)

1,W, = 0) as shown in Figure 4.8 (b).

.8,W, =0.2) as shown in Figure 4.8 (c).

Sum-of-squares for the control effort (W; = .5,W, = 0.5) as shown in Figure 4.8

(d).

41

Highly consideration of the minimization part of RMSE for the system states (W,

Equally considering the minimization of RMSE for the system states and the



4. Highly consideration of the minimization part of Sum-of-squares for the control

effort (W; = .2,W, = 0.8) as shown in Figure 4.8 (e).

Here, a comparison study for the previous example is done between the proposed PSO

based inverse optimal controller, multi-objective Big Bang-Big Crunch inverse optimal

controller with different cases and the trial and error method used in [17]. MATLAB

simulation results in Figure 4.8 show the superior performance of multi-objective

Big Bang-Big Crunch inverse optimal controller and demonstrate its potential in

minimizing the cost functional. Table 4.1 shows the difference between off-line inverse

optimal controller scenarios.

Table 4.1 : Difference between off-line inverse optimal controller scenarios.

n 1

Cases W, | W, | U-Constraint | U-Max kgl u,% Cost | Statel | State2 ST Pll:;l\iaglle -

Casel 1 0 7 5.48 30.26 131 4 3 4.81 -1.11 58.52

Case2 812 6 4.86 24.89 126 5 4 3.88 -5.3 48.9

Case3 S5 6 4.76 24.33 114 5 4 4.24 -5 42.85

Case4 21 .8 4 2.8 14.58 | 16.71 9 8 4.05 -.65 3.08

PSO - | - - 3.65 19.788 | 32 5 6 1.84 -.198 10
Trial & Error | — | — 4819 | 25.169 | 40 5 5 10 0 10
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Figure 4.8 : Stabilized nonlinear system with different cases.
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4.4.2 An inverted pendulum on cart case
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The inverted pendulum on cart is a classic control problem in dynamics and control
theory that is a suitable benchmark for testing prototype controllers due to its high
nonlinearities and lack of stability [27,29,30]. The physical model of the system is
shown in Figure 4.9. The studied system consists of an inverted pole attached on a
cart which is free to move in the x-direction. It is assumed that the pendulum rod is

massless, and the joint is frictionless. The cart mass and the ball mass at the upper



end of the inverted pendulum are denoted as M and m, respectively. F' is an externally
x-directed force on the cart which driven by a DC motor. x represents the cart position

and 0 is the angle of the rod from the vertically upward direction.

.
M - F
77 77 77 77

Figure 4.9 : The structure of inverted pendulum on cart system.

77

Table 4.2 contains the physical quantities for the inverted pendulum on cart.

Table 4.2 : Physical quantities for the inverted pendulum on cart.

Symbol Parameter Value || Unit
M Mass of the cart 0.5 Kg
m Mass of the pendulum 0.2 Kg
L Length of the pendulum 0.3 m
I Pendulum moment of inertia | 0.006 | kg.m?>
g Gravity 9.8 m/s®

By summing the forces in the free body diagram of the inverted pendulum system in

horizontal and vertical direction, we get the following equations of motion:
(M + m)i +mLOcos® —mLO>sin® = F (4.11)

(I+mL?)6 4+ mgLsin® = —mLicos0 (4.12)

Hence, the dynamics of the inverted pendulum on cart are given as in [58]:

X = vy

 mlw?*sin — mgsin6 cos 6 + F
Vy =

M + mlsin*6
=0 (4.13)
. —ml®?sin®cosO + (M +m)gsin® — FcosO
M + mlsin*6
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Xk+1 — Xk
AT
converter equations. Hence, the discrete-time model for the inverted pendulum on cart

Euler approximation method <x = > is used in order to discretize the boost

is obtained as:

X1 = Xk + AT vy g

ml a)zsinek — mgsin6 cos 6y AT -
= AT k F
Va1 = Vek F ( M + mlsin? 6y M + mlsin26;, ©
Or1 = O +AT ooy (4.14)
—ml®?sinB cos 6 + (M + m)mgsin6y ATcosO, -
W1 = W + AT k — F;
ket K+ ( M1+ mlsin?6; M1+ mlsin26;, *

where AT is the sampling time. In order to apply the proposed inverse optimal
controller method, the dynamics of the inverted pendulum on cart should be rewrite

in affine-in-input discrete-time form as following:

Xpi1 = f(x) + g (k) Fi

X+ ATVXJC
AT (mla)lfsinek — mgsinBy cos 9k)
Flo) = - M + mlsin? 6y 4.15)
O, + AT oy,
O AT ( (ml @} sin6cos6y) + (M + m)gsin@k)
| M1+ mlsin? 6 ]
_ 0 -
AT
ey =| M —l—nz)sin2 O
AT cosB,
L M + mlsin? 0y

Figure 4.10 demonstrates the MATLAB GUI simulation platform that used in order to
adapt the parameters of the proposed multi-objective BB-BC algorithm and to analysis

the output states for inverted pendulum on cart.
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Figure 4.10 : MATLAB GUI for the proposed multi-objective Big Bang-Big Crunch
Optimization controller for inverted pendulum on cart.

By means of MATLAB simulations, the proposed multi-objective BB-BC algorithm

for inverse optimal control as an off-line approach is successfully stabilized the

inverted pendulum on cart nonlinear dynamics.

46



5. AN ON-LINE INVERSE OPTIMAL CONTROL BASED ON EXTENDED
KALMAN FILTER APPROACH FOR DISCRETE-TIME NONLINEAR
SYSTEMS

In this chapter, the extended Kalman filter (EKF) equations are adopted to be used
as an on-line parameter identifier for optimizing the elements of the control Lyapunov
function (CLF). This CLF will be used to construct the inverse optimal control law as it
has been defined in Chapter (3). The performance and the applicability of the proposed
scheme is illustrated through several reliability nonlinear examples using MATLAB
and a real time laboratory experiments. For the real time, the proposed controller is
implemented on a professional control board to stabilize a DC-DC boost converter and

minimize a meaningful cost function [33,37].

5.1 EKF Algorithm for Inverse Optimal Control

In this study, a novel method for inverse optimal control is proposed; where the
parameters of the candidate control Lyapunov matrix in the control law are estimated

using EKF after certain adaptations.

5.1.1 General Information on Extended Kalman Filter

The Kalman filter (KF), a set of mathematical equations, has become a standard
technique as an optimal estimator and is quite an easy method to estimate the
unmeasurable states in linear systems, in a way that minimizes the mean of the
squared error [59]. For nonlinear systems, the Kalman filter cannot be applied directly.
However, if the nonlinearity of the system is sufficiently smooth, then it can be
linearized about the current mean and covariance of the state estimation. Kalman filter
that linearizes about the current mean and covariance is referred to as an extended
Kalman filter (EKF). This filter has diverse applications in the areas of radar target

tracking, aerospace, marine navigation and control systems [31,60].

EKF algorithms are usually used to estimate the state variables which are normally

represented by {x},x3,... x,} symbols. In this research, the EKF is used as a parameter
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identifier. Hence, to avoid the confusion with symbols in the proposed inverse
optimal control method, the symbols {aj,as,...a,} are used instead of {x,xz,...x,}
to represent the states to be estimated (or parameters to be identified) inside EKF
equations.

The state of the system at time #;,(k = 1,2,...) is modelled as a stochastic variable ay.

The evolution of the state in time is given by a stochastic difference equation
ar =w(ag_1,u) + & 5.1
The measurements z; are related to the state by
2k = h(ag) + & (5.2)

State transition probability and measurement probability are governed by nonlinear
functions w and h, respectively. & represents the system process noise and is assumed
to be Gaussian white noise with zero mean and covariance matrix Q. & represents
the measurement noise and is assumed to be Gaussian white noise with zero mean
and covariance matrix Ry. Finally, u; is the input control vector. The equations of
an EKF are illustrated in Figure 5.1. Where the matrix W is the Jacobian of the
state function and is defined as the derivatives of each component of w with respect
to each component of a;_1. Moreover, matrix Hy is the Jacobian of the measurement
function and it is defined as the derivatives of each component of / with respect to each
component of a;. The EKF notations from [61] are: d; Posterior mean estimate at time
step #, 4, Prior mean estimate at time step #, X Posterior covariance at time step 7,
X, Prior covariance at time step #, K; Kalman gain, z; Actual measurement, and Z;

Predicted measurement.

Since the covariance matrices that are used in EKF are approximations and the
estimation is based on the linearization of nonlinear functions w and #/, there is
no guarantee of stability and performance for the system prior to experimental data
analysis. Indeed, the approach seems to work well if the linearization is sufficiently
smooth and a proper tuning for filter parameters is achieved [62]. The next section
illustrates how to modify EKF equations to estimate the parameters in the proposed

inverse optimal control law.
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Figure 5.1 : Extended Kalman filter equations.

5.1.2 Extended Kalman Filter equations as parameter optimizer in inverse

optimal control

Here, we consider the following quadratic CLF which explained in Chapter 3.

1
Vixg) = 5x,{ka P=P' >0 (5.3)

where Py , P, ,...P, are the elements of matrix P to be estimated by the adopted EKF
equations. Due to symmetric property of matrix P, m = @ where 7 is the number
of states. In order to adopt the EKF equations as a parameter identifier, the matrix
P elements are accepted as the state variables of the classical EKF procedure. The

on-line estimating process requires the initial values for these parameters and their

corresponding covariance values.

Pl
P2
dk,l = (i]: = w(dk,l,uk) = . (54)

Pm
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The state Jacobian matrix Wy will be equal to the identity matrix.

"OP, 9P oP, ]
o s R
oP, oP, oP,
W,=|0P P,  9P,|=1I (5.5)
oP, 0P, oP,
0P, 9P, 0P,

For simplicity, it can be assumed that covariance matrices Q; and R; are constant.
Qk:qoxl s 2():.5‘0)(] s Rk:r() (56)

where qq , So , and r( are constants to be specified by the designer.
In this research, the main adopting in the EKF algorithm is done at the estimating
equation

dp =a, +Ki(z—2;) (5.7)

where the term (z; — 2, ) is used to calculate the difference between the actual
measurement and the predicted measurement. This term is adopted as following:

Z, in the EKF equations can be used as an error indicator and z; can be set to be equal
to zero to minimize the total error (zx — 2, ). The root mean square error (RMSE) of
the state variables are used as the observed error instead of measurement error . (i.e.,

Z, = RMSE), which equal to i(d, ) as shown in Figure 5.1.

(xl _xlref)2 + (XZ _x2ref)2 +...+ (xn _xnref)2
n

2, =h(a,) = RMSE = \/ (5.8)

To calculate the Jacobian Hy, it is necessary to define h(d;) as a function of the
parameters to be optimized [P, , P ,... By]. Then the Jacobian matrix can be found

as following:

= [ ) O on) 59

P P, 0P,
Figure 5.2 shows the block diagram of the proposed method, and Figure 5.3 illustrates
the flowchart of the proposed EKF-based inverse optimal control algorithm.
In summary, the EKF tries to eliminate the RMSE of all system states by generating a
CLF matrix with appropriate elements. This new P matrix should minimize the RMSE

value if the filter parameters are well adjusted. Hence, guaranteeing system stability.
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Figure 5.2 : The proposed EKF-based inverse optimal control for discrete-time
nonlinear system.
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Figure 5.3 : The flowchart of the proposed EKF-based inverse optimal control.
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5.2 Simulation Examples

The performance of the proposed EKF-based inverse optimal controller method has
been tested via a comparison study between speed-gradient inverse optimal controller
presented in [18] and the trial and error method used in [17] over two different
nonlinear system models. In trial and error method, the authors try to select an
appropriate value for matrix P. While in a speed gradient algorithm (SG), the authors
proposed a quadratic function of the form V(x;) = %x,{ka with a time-variant
parameter P to be optimized by speed gradient algorithm where P = P x P and P

is a predefined matrix.

5.2.1 A nonlinear system_1

Considering the following affine-in-input nonlinear dynamical system used in Chapter

4):

X1 = S () + & (o ) (5.10)
X1 kxzk—O.SXZk 0
h : — b bl b} , —
where Fxx) [ xik-l- 1.8x, 4 } g(xz) {—2+c0s(xz7k)}

The stabilizing optimal control law can be calculated according to Equation (3.5).
Matrix P is estimated by the proposed method, where E = 1 is the constant in the cost
functional equation. The initial condition for the states is selected as xo = [2 —2].
The constants of the EKF algorithm are selected as: gg = 100; ro = 0.001; 59 = 0.001.
The phase portraits for the unstable system and for the stabilized one by the mean
of the proposed EKF-based inverse optimal control are illustrated in Figure 5.4.
The MATLAB simulation results in Figure 5.5 show the noticeable amelioration
in performance of the proposed technique and demonstrate its high potential in

minimizing the cost functional when compared to the other methods.

Table 5.1 illustrates the comparison results between the three methods.

Table 5.1 : Comparison results between the proposed EKF-based approach and other
approaches for nonlinear system_1.

Methods x1 — O(within 5 % error) | x, — O(within 5 % error) | Cost Functional
Trial and Error 5 Steps 5 Steps 40
Speed Gradient 7 Steps 6 Steps 10

EKF-based 3 Steps 2 Steps 4
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Figure 5.4 : The phase portrait of: (a) the unstable system_1, (b) the stabilized
system_1 by the proposed method.

Figure 5.6 demonstrates the MATLAB GUI simulation platform that used to adapt
the parameters of the proposed EKF-based inverse optimal control and to analysis the

output states of the nonlinear example in Equation (5.10).

The following parameters can be configured by this platform:

e The constants of EKF algorithms ( g , so , and rp).

The number of steps to be simulated.

The initial value of matrix P .

The E value in the cost functional equation.

The initial conditions of the system’s states.

5.2.2 A nonlinear system_2

Considering the following affine-in-input nonlinear dynamical system:

X1 = f (%) + g (o) u (5.11)
 [2x1 ksin(0.5x1 ) 4+ 0.1x3 _ 0
S ) = O.lx%k—l— 1.8x) & - 8l) = 2+0.1cos(xa )|

The stabilizing optimal control law can be calculated according to Equation (3.5).
Matrix P is estimated by the proposed method, where E = 1 is the constant in the cost
functional equation. The initial condition for the states is selected as xo = [2.5 —1].

The constants of the EKF algorithm are selected as: go = .01; ro = 0.01; so = .05.
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Figure 5.5 : Stabilized nonlinear system_1 using: (a) Trial and error method, (b)
Speed-gradiant based method, (¢) Proposed EKF-based method.

The phase portraits for the unstable system and for the stabilized one by the mean of

the proposed EKF-based inverse optimal control are illustrated in Figure 5.7.

The MATLAB simulation results in Figure 5.8 show the noticeable amelioration

in performance of the proposed technique and demonstrate its high potential in

minimizing the cost functional when compared to the other methods. The negative

values of the cost functional evaluation appeared at the simulation is due to the penalty

value L(x;) which can be positive or negative at the cost evaluation in Equation (3.2).

However, the total cost function should be positive for the physical meaning as shown

in the main theorem at section 3. Table 5.2 illustrates the comparison results between

the three methods.

Table 5.2 : Comparison results between the proposed EKF-based approach and other
approaches for nonlinear system_2.

Methods x1 — 0 (within 5 % error) | x, — 0 (within 5 % error) | Cost Functional Value
Trial and Error 10 Steps 10 Steps 59.5
Speed Gradient-based 8 Steps 6 Steps 22.725
EKF-based 6 Steps 2 Steps 10.625

54




Istanbul Technical University | e e e kO
Inverse optimal control for Nenlinear Systems 4t
Supervisors: Prof. Dr. brahim Eksin Prof. Dr. Mijde Glizelkaya £ ;| R S S
Moayed Almobaied ===== (EKF Based Method) x:“ = |
0 ;
2 S
| 0 2 4 6 8 10
- Parameters 20 20 0 7 —
Number of Steps | 10 — Ol ion Ei X
1k
Rforcost [E xi 0.00271295 st BT 1 -
Covariances x2 0.00107331 Pox
Q=Qo"l Qo 100 0 w J
= :
P=Pol  Po  .001 £F 4 6 8 10
) RN SR N P
R=Ro Ro | .o01 RMSE =
Lyapunov P Matrix initial values— 2y ) 5 H 5
1 Error 0.000650221 X H H
1k : Lo
V(Xk):EXEPXk P11 | 1 Dynamic P Matrix i
e G P11 1 P12 14513 Kierr = TXi) + g%y 5 7] 5 ) 10
&
p= Py Pyl pez | 1 P21 14513 P22 30038 ERl
e, p % pckie— 0.8x5 S
2 P [[ENE ‘ 0 s
Xq3° +1.8%p £
'~ Initial state Condition T d |
X10 2 x20 [ g(x )= 0 E 2pe--- Cost Evaluation
~2+cos(xy) v e Optimal Value
@ ]
S0 2 4 B 8 10

WEE e | memw s

Figure 5.6 : MATLAB GUI of the proposed EKF-based inverse optimal control for
system_1.
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Figure 5.7 : The phase portrait of: (a) the unstable system_2, (b) the stabilized
system_2 by the proposed method.

As the previous example, Figure 5.9 demonstrates the MATLAB GUI simulation
platform that used to adapt the parameters of the proposed EKF-based inverse optimal

control and to analysis the output states of the nonlinear example.
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5.3 Experimental Results of the DC-DC Boost Converter

The DC-DC boost converters are widely used in power conversion applications where
the required output voltage is higher than the source voltage. The DC-DC boost
converter dynamics are nonlinear in nature due to switching action and saturation
of the duty-cycle. The control law obtained for these converters is usually based on
linear techniques which is simpler and of lower cost than other nonlinear approaches
[35]. Hence, the small signal model of this converter is derived by linearization
around a specific equilibrium point where the stability is basically achieved around the
small vicinity of this point. Therefore, the problem of stabilizing these converters in
nonlinear form has been a research interest area and is widely used as a benchmark
for testing new control strategies. The optimal control problem for DC-DC boost
converter is to determine a control signal that achieves stability for the converter and
minimizes a certain cost functional [34,35]. Moreover, the controlled DC-DC boost
converter must be robust in the presence of disturbances, such as step changes in load
and source voltage. The difficulty in the control of DC-DC boost converters is due
to its nonminimum phase characteristics where the control input appears in both the

voltage and current equations.

5.3.1 Mathematical model of the DC-DC boost converter
The principal components of the DC-DC boost converter are illustrated in Figure 2.7.

The equations that describe the operation of the converter can be written as:

dl

L'd_tL = Vin — UVour. (5.12)
dVout VOMZ’

C. — .l — 5.13

where p = {0, 1} define the switch position; the parameters RL,L,C, and Vj, for the
circuit are the resistance, inductance, capacitance, and source voltage, respectively.

These equations can be represented by the mean of the state variables as follows:

) Vi X2
_ in X2 5.14
X1 L L.“? ( )
. X1 X2
M2 5.15
R=CcH TR (5.15)



where the state variable x; represents the average current in the coil and the state x;
represents the average voltage at the output. Euler approximation method is used to
discretize the boost converter equations. Hence, the discrete-time model for the boost

converter is obtained as:

Vin X2k
= AT| — — == 5.16
X g1 =X+ (L 3 Nk>, (5.16)
X1k X2 k
= AT | —=—uy — —— 5.17
X2 k+1 =Xk + ( o M RLC)’ (5.17)

where AT is the sampling time. In order to use these equations within the framework
of the proposed EKF-based inverse optimal controller method, the system should be

written in the general affine-in-input form as follows:

X1 = S (o) + & (o) (5.18)

. _ T
where: xk—[xl,k+1 x2,k+1] )

X1 4 +AT (VT) —AT (%)
flw) = e glxx) = b
x27k—AT (m> AT(T)

The basic operation of a boost converter consists of two stages:

1. When the switch is closed, the diode will be in reverse bias mode. Hence, the
inductor will store some energy by generating a magnetic field. During this stage,
the reverse diode prevents the capacitor from discharging through the switch. The
switch should be opened again fast enough to avoid having the capacitor discharge

a large amount through the load resistor.

2. When the switch is open, the diode will be in a forward bias mode and the inductor
current is forced to flow through diode D, capacitor C and with load RL. In this
mode, both the stored energy of the inductor and input voltage source supply power

to the load. Finally, a higher voltage level than the input voltage is produced.

Figure 5.10 demonstrates the MATLAB GUI simulation platform that used to adapt

the parameters of the proposed EKF-based inverse optimal control and to analysis the
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output of the DC-DC boost converter. The following parameters can be configured and

observed by this platform:

e The constants of EKF algorithms ( g , so , and rp).
e The number of steps to be simulated.

e The initial value of matrix P .

e The E value in the cost functional equation.

e The initial conditions of the system’s states.

e Parameters of the DC-DC boost converter.

e The variations at matrix P .

e The output voltage value of the DC-DC boost converter.

The simulation results at Figure 5.10 demonstrates the superiority of the proposed
EKF-based inverse optimal control when compared to the fixed matrix P approach

during the stabilization process of the DC-DC boost converter.

Istanbul Technical University sm,,;'E -
Inverse optimal control for Nenlinear Systems + 2 .
Supervisors: Prof. Dr. brahim Eksin Prof. Dr. Mijde Gilizelkaya > )
Meayed Almobaied (Ekf_Based Boost Controller) 5 1
f =
— Boost Converter Parameters r::", J 'a
- 9
Desired Voltage | 90 RLOAD | 220 Smare MOSEET 9
Wiave Switch
—Parameters———— Vin | 48 Lmh | 12 HIGH _ ON
Number of Steps| 100 Sample_tmeus | 33 corF | 15
T Coor 05 e . Output voltage
Covariances———————— Dynamic P Matrix EKF Approav:h
Q=Qo1 Qo | 10 (OIEEARRIN | by 28877 P12 0.0543 100 : ;
P=Po’l Po 1 por WIBE s G Cost function evaluation - E
R=Ro Ro = X 2 - ° o /
SRR, o, E . L :
Lyapunov P Matrix initial values—— " i o F‘.Xﬂfd P Ma”tnx r
1 Steps 100 3 ]
Vixg) = EXEka pri | 1 Time 0.0033 Second 0 2 4 & @ o
P12 | 15 Ouput voltage 90 3 e e S e
Error 2.32728e.05 1
Py Pyl | P2| ¢ : e
PE N %
P Py 0 T s f :
- Help i 0 40 50 B0 100
L — Time k : :
Initial state Condition———— ! o + 1
x10 | o X0 | ! - 0 40 68 & 10
step k

Figure 5.10 : MATLAB GUI for the proposed EKF-based inverse optimal control for
DC-DC boost converter.
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5.3.2 EKF-based Inverse Optimal Control for DC-DC Boost Converter as a Real
Time Application

Here, the DC-DC boost converter is used as a real time application for the proposed
EKF-based inverse optimal control. Figure 5.11 shows a complete schematic diagram
for the DC-DC boost converter that used in this section where the values of the
converter parameters are given in Table 5.3. The circuit contains a current sensor to
measure the value of inductor’s current, and it also contains a small switch at the load
side to change the load resistance as a disturbance model. Moreover, a variable power

supply is used to test the output voltage response with respect to variations in input

voltage.
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Figure 5.11 : Schematic diagram of DC-DC boost converter circuit.

In this work, the proposed EKF-based inverse optimal controller is implemented on
an ARDUINO MEGA 2560 starter kit. One output pin is connected to the gate of
the Mosfet to control the duty cycle by the mean of a PWM technique. The switching

frequency is selected to be 20 kHz. Two analog input pins were used to read the current
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Table 5.3 : Parameters values of the DC-DC boost converter.

Element Value
Diode 1n4007
Power Mosfet IRF 620
Inductor 4.9 mH
Capacitor 470 uF
Load resistor | 470 2 — 57002
Input voltage A%

flow in the inductor and the output voltage level across the capacitor. The ARDUINO

kit and the DC-DC boost converter are shown in Figure 5.12.

PWM Signal
Input

Calibration ~ Voltage and
Unit current Sensors
Signals

ARDUINO Board

Figure 5.12 : DC-DC converter board and ARDUINO Mega 2560 controller kit.

In order to test the effectiveness of the proposed method on stabilizing the DC-DC
boost converter, a comparative study has been done between the proposed EKF-based
inverse optimal controls, advanced LQR state feedback controller based on BB-BC
algorithm presented in Chapter (2) and the classical Ziegler-Nichols controllers. The
advanced control technique given in Chapter (2) proposes a new way of selecting
the weighing matrices Q and R of the linear quadratic regulator (LQR) using the
global Big Bang-Big Crunch (BB-BC) optimization algorithm so as to optimize a
special time domain fitness function. In this manner, the repeated adjustment process
of LQR parameters has been avoided. On the other hand, the Proportional Integral
Derivative - PID controller is a generic control loop feedback mechanism which has
become the ‘industry standard’ in the control systems due to its simplicity and good
performance. In fact, the PID controllers are still widely used for commercialized

switching power supplies. The best way for PID parameters determination is indeed
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to use the mathematical model to get the desired response. However, the mathematical
description of the system is often missing or inadequate and the experimental tuning
of the PID parameters has to be performed in such cases. Therefore, in this research,
the well-known heuristic Ziegler-Nichols is used to determine the parameters of PID
controllers [63,64]. The results of above mentioned two methods are compared with
the results of the proposed method on the same test kit.

In order to implement the LQR and PID controllers, a linearized model of the
DC-DC boost converter is required. The states x; and x, are selected as the current
of inductor L and the voltage of capacitor C, respectively. The commutated model
for the DC-DC boost converter is then presented as in Equations (2.33, 2.34). If the
switching frequency is significantly higher than the converter’s natural frequencies,
this discontinuous model can be approximated around an appropriate equilibrium
point and reformed in a continuous averaged model as illustrated in Chapter (2). Since
we consider the control of the boost converter around the equilibrium point, we can
neglect the nonlinear term of the converter average model and obtain a linearized
model. Hence, the state space model of the boost converter is obtained asin Equations
(2.36, 2.37).

Figures 5.13(a), 5.13(b) and 5.13(c) illustrate the Simulink block diagrams of the
EKF-based inverse optimal controller, optimized LQR state feedback controller and
Ziegler-Nichols PID controller, respectively. These blocks are directly programmed
on the ARDUINO kit from Simulink interface.

The feed forward gain scaling factor N, is selected as 6.44 in the case of
the optimized LQR state feedback controller. The optimal weight matrices are
obtained as: Q = diag[403.159 749.712] , r = [732.293] after the application of
BB-BC optimization algorithm. Then, the feedback gain matrix is computed as
K =[1.1016 0.9751]. The Ziegler-Nichols PID controller parameters are obtained
as K, = 0.12; K; = 14; K; = 0.02.

The internal construction of the EKF-based inverse optimal controller for DC-DC
boost converter is shown in Figure 5.14. In the proposed controller case, the constants
of the EKF algorithm are selected as gg = 10; rg = 0.1; so = 0.001 and E constant is

selected as 0.5 in the cost functional equation.
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Figure 5.13 : Simulink interface for EKF-based inverse optimal controller, LQR state
feedback controller and Ziegler-Nichols PID controller to be installed
on ARDUINO board.
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Figure 5.14 : Internal blocks of the EKF-based inverse optimal controller for boost
converter.

Figure 5.15 demonstrates the step responses of all three controllers under a sudden
change in reference voltage from 9 V to 25 V. The overshoot and the settling time were
significantly reduced in the case of an EKF-based inverse optimal control controller as
shown in Table 5.4; whereas, there was no noticeable change on the rise time and

steady-state-error (SSE) values.
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Figure 5.15 : Step response analysis of the DC-DC boost converter for EKF-based
controller, LQR state feedback controller and Ziegler-Nichols PID
controller.
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Table 5.4 : Step response analysis of the DC-DC boost converter for EKF-based
controller, LQR state feedback controller and Ziegler-Nichols PID

controller.
Parameters EKF-based inverse optimal controller | LQR state feedback controller | Z-N PID controller
Peak amplitude 26.5 29 34
Over shoot (% ) 6 15.1 27
Rise time(s) 0.1 0.25 0.21
Settling time(s) 0.5 1.7 2.1
SSE 0.09 0.2 0.15

In order to check the dynamic performance and robustness of the proposed controller,
the load disturbance is suddenly changed from 570£2 to 470€2 and then from 4702
to 570Q2. The performance of the controllers under these load variations is shown
in Figure 5.16. It is obvious that the proposed EKF-based inverse optimal controller
method reacts a lot faster than the others in recovering the reference voltage. Moreover,
Figure 5.17 illustrates the dynamic responses of the controllers under input voltage
variations. These responses also clearly show that the proposed EKF-based inverse
optimal controller is more robust than the other controllers. Finally, Figure 5.18
illustrates that the proposed controller has a significant amelioration in the performance
over the other controllers in maintaining the output voltage of the boost converter

according to the desired voltage.
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Figure 5.16 : Output response for EKF-based inverse optimal controller, LQR state
feedback controller and Ziegler-Nichols PID controller with load
variation.

67



Tek g @ Stop M Pos: 0.000s
-+

Input Voltage
Variation:9V->7.5V Input Voltage

\ Variation:10V->12V

\

i Input Voltage
Variation:7.5V->10V

reee 4
..
|' .7 b B

Inductor Current

CH2 50.0m% M 5.00s
(a) EKF-based controller

Tek Ak & Stop M Pos: 0.000s
-+

Input Voltage
Variation:9V->7.5V
Input Voltage
\ / Variation:10V->12V

\ Input Voltage
Variation:7.5V>10V
Inductor Current

CH2 S0.0mY M 5.00s
(b) LQR state feedback controller

Tek e @ Stop k4 Pos: 0.000s
+
Input Voltage
Variation:9V->7.5V Input Voltage

Variation:10V->12V

i

\ Input Voltage
Variation:7.5V>10V
Inductor Current

I
24

CH2 5000 M 5.00s
(c) Ziegler-Nichols PID controller

Figure 5.17 : Output response for EKF-based inverse optimal controller, LQR state
feedback controller and Ziegler-Nichols PID controller with input
voltage variation.
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Figure 5.18 : Output response for EKF-based inverse optimal controller, LQR state
feedback controller and Ziegler-Nichols PID controller with reference
voltage variation.
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From the previous comparison, it is obvious that the proposed controller has
significantly much better performance compared to the LQR based on BB-BC and to
the conventional PID controller under various disturbances of input voltage and load

changes.
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6. CONCLUSIONS AND RECOMMENDATIONS

The inverse optimal control technique has been firstly introduced to solve the nonlinear
optimal control problem as an alternative to the traditional solution path of utilizing
the Hamilton- Jacobi-Bellman (HJB) equation.

In this research, novel discrete-time inverse optimal control approaches based on
quadratic control Lyapunov function (CLF) are proposed where the parameters of this
CLF are estimated in both off-line and on-line manners. For off-line approach, two
different algorithms are used to optimize the matrix of the quadratic CLF: a) particle
swarm optimization (PSO) algorithm, b) Big Bang-Big Crunch (BB-BC) algorithm.
The simulation results for BB-BC algorithm enlighten the designer in making a choice
between the single objective inverse optimal control solution and the multi-objective
function case where the root-mean-square-error (RMSE) of system states with respect
to a reference trajectory and the sum-of-squares of control effort are utilized as
the multi-objective optimization criterion. By means of MATLAB simulations, the
proposed off-line approaches are successfully applied to a nonlinear example from the
literature and to an inverted pendulum on cart nonlinear dynamics.

For the on-line manner, the parameters of CLF function are estimated using extended
Kalman filter (EKF) algorithm in a recursive way. The simulation results attained
on two different nonlinear systems demonstrate the effectiveness and superiority
of the proposed controller. Next, in order to test the applicability of the proposed
method in real-world scenarios, a set of experiments on a DC-DC boost converter
prototype have been accomplished in the lab so as to assess the performance of the
proposed controller. Experimental results illustrate the reliability of the proposed
EKF-based inverse optimal controller in stabilizing the DC-DC boost converter where
the system time constant is very low so the system responses are very fast. Moreover,
a comparative study has been done between the proposed EKF-based inverse optimal
controls, advanced LQR state feedback controller based on BB-BC algorithm and the
classical Ziegler-Nichols controllers. In fact, the proposed controller has significantly

much better performance compared to the optimized LQR based state feedback
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controller and to the conventional ZN based PID controller under various disturbances
of input voltage and load changes which applied to the DC-DC boost converter
prototype.

In order to compare the results of the proposed EKF-based inverse optimal control
approach with classical linearizion based technique, this thesis proposes an effective
solution to the HIB equation for linear system. In this method, the BB-BC algorithm
is integrated in the design process of LQR controller by finding the optimum
parameter values of the O and R matrices for LQR design problem. The BB-BC
algorithm optimizes a special time domain performance function which is selected
to be inversely proportional to the step response parameters of the dynamic system
(i.e. overshoot, settling time, rising time and steady state error). In order to test the
effectiveness of the proposed LQR controller, the MATLAB simulation is used to
analysis the performance response of the inverted pendulum on cart that demonstrated
the superiority of the proposed controller in comparison to the experiential-LQR
results from the literature. Furthermore, the proposed method has been successfully
applied to a DC-DC boost converter prototype where the correctness of our approach

is verified in presence of step changes of load and line voltage.

Possible future work for this thesis includes integration the proposed algorithms of
inverse optimal control with the robustness to uncertainties. Applying the inverse
optimal control to non-affine in input systems, and optimizing the initial values of

the covariance at the EKF equations are another possible future works.
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APPENDIX A.1

This thesis used the following theorem for inverse optimal control based on CLF, which
proposed in [3], as the basis of the proposed approaches. Hence, I attached the proof
of this theorem as an appendix.

Considering the affine-in-input discrete-time nonlinear system of the form:

X1 = fox) + 8 () uk (A.D)

where x € R” is the state of the system, u € R™ is the control input. f(x;) : R" — R”
and g(x) : R* — R™" are smooth matrices. Without loss of generality, it can be
assumed that the origin (x = 0) is the equilibrium point of the system in Equation (
A.1), £(0) =0 and g(x;) # 0 for all x; # 0. System in Equation ( A.1) is assumed to
be stabilizable on a predefined compact set Q € R".

For a nonlinear optimal control problem, it is desirable to determine a control law u,
which minimizes the following cost functional:

[e)

V() =Y (L(xk) +uf Euy) (A2)
k=0

where V : R” — R™ is the cost functional, L : R* — R is positive semi-definite
function to weight the performance of the state vector xi, and E : R” — R™*™ is a real
symmetric positive definite weighting matrix to weight the control effort and could be
a function of the system state in order to vary the control efforts according to the state
value.

Definition 1: The control law u; at Equation ( A.1) can be assumed to be inverse
optimal control if:

a) It achieves a global exponential stability of the equilibrium point x; = O for the
system in Equation ( A.1).

b) It minimizes the cost functional in Equation ( A.2), for which L(xy) := —V, with

Vi=V(x) = V) +ulTEuf <0 (A.3)

where V (x;) is radially unbounded positive definite function.

Theorem 1:
Consider the affine discrete-time nonlinear system A.1. If there exists a matrix P =
PT > 0 such that the following inequality holds

Vi(x) — %PF(XI«)(E +Py(xi)) P (o) < — ol (A4)

where:
Vi(a) =V (f () =V (), with V(£ () = 3.7 () Pf () 5 Go >0
Pi(x) =g  (a)Pf() 5 Paloa) = 587 () Pg ()
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then the equilibrium point (x; = 0) of the system in Equation ( A.1) is globally
exponential stabilized by the following control law:

1

;= 5 (E+ 38" (v)Pe() 8w P (xe). (AS)

with V(x;) = %x,{ka as a CLF. Moreover, this control law will minimize the cost
functional in Equation ( A.2):

with L(xk) = —V|uz
and the optimal value function V*(x0) = V(x0). |
PROOF

First, we analyze stability. Global stability for the equilibrium point x; = 0 of system
A.1 with A.5 as input is achieved if Equation ( A.5) is satisfied. Thus, V results in

V =V(a1) = Va) +u Euf
_ ST () P (xic) + 257 (o) Pg (i u

2
«T T *T
X )Pg(x —x;' Px
_I_”k g (xx) g(zk)uk k k-l-uZTEuk

= Vi) — P () (B + Pa() ™ Pr ()

+ %PIT (xi) (E + Pa ()™ Py ()

Vi) — %p{ () (E + Po(x)) Py (x0) (A6)

Selecting P such that V < 0, the stability of x; = 0 is guaranteed. Furthermore, by
means of P, we can achieve a desired negativity amount for th closed-loop function V
in Equation ( A.6). This negativity amount can be bounded using a positive definite
matrix Q as follows:

V = V() — 3P ) (E -+ Po(s)) ™ P ()

x,{ka
Donin(Q) |1
_CQkaHZa CQ = A'mm(Q) (A7)

S_
S_

where ||.|| stands for the Euclidean norm and {p > 0 denotes the minimum eigenvalue
of matrix Q(Auin(Q)). Thus, Equation ( A.7) follows condition ( A.4).
Considering ( A.6),( A.7)
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V = V(xgr1) — V(ixg) + uzTEuk < —CQH)CkHz = AV =V(+1)—V(x) <

—Gollxel .
Moreover, as V (x;) is a radially unbounded function. then the solution x; = 0 of the

closed-loop system ( A.1) with A.5 as input is globally exponentially stable according
to Theorem 1. When function —/(xy) is set to be the ( A.7) right-hand side, that is,

%PIT (xe) (E + Py () Py () (A.8)

l(xk) = —Vf(xk) —+
then V (x;) = %x,{ka is a solution of the Discrete Time HJB equation:

*T
V*(xx) = L) + V" (xXpq1) + lwg(xk)EﬂgT(xk) IV (Xk+1)

A9
4 dxi OXp 11 (A9)

In order to obtain the optimal value for the cost functional ( A.2), we substitute /(xy)
given in ( A.8) into ( A.2); then

(x) + v Eug)
V4 uj Eu)

V() — %PIT (x) (E +Po(xi)) " Py ()| + i ul Euy ( A.10)
k=0

V (xz) i(L
k=0
=X(
k=0
-Y

k=0

Factorizing Equation ( A.10), and then adding the identity matrix

In = (E +Pa(xi)) (E + Py (%))~
with I, € R™*™_we obtain

i [Vf Xr) 1P1 () (E + P (x)) ' Py (xx)
+ %PIT(X]() (E +P2(Xk))_1P2(xk)(E —|—P2(xk))_1P1 (xx)
43P (B + () B

x (E +P2(xk))_1P1T(xk)} + i ul Euy. (A.11)

Being u} = —3(E + Py (x)) ' P (xt), then Equation ( A.11) becomes

Vi)=Y [vfm) P (e u *Pz<xk>ui] Ly [k Eug il Ek]

k=0 k=0
=-Y [v(ka) —V(xk)} +) {u,{Euk — u,{*EuZ} (A.12)
k=0 k=0
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which can be written as

[}

V(xps1) — V(xk)} —V(x1)+V(x) + k;) [u,{Euk — u,{*Euz]

~
I
—_

=
&
I
|
13
1

em —v<xk>} V)1V ()

~
I
)

I
|
gk

—V(x)+Vixo)+ Y {u,fEuk — u,{*Eu}:} (A.13)
k=0

For notation convenience in Equation ( A.13), the upper limit c will be treated as
N — oo, and thus

V(xg)=—=V(xn)+V(xn-_1) —V(xn-1)+V(xo)
N
: T _ TIx *
+1\171_r>20 Z [ukEuk U Euk]
k=0
<[ o7 T
= — li Euy —u, *Euj A.14
V(xy)+V(xo) +N1_I>Il°kz‘b {Uk Up — Uy uk} ( )
Letting N — oo and noting that V (xy) — 0 for all x¢, then
N
V(x) =V(xo)+ ), [u,{Euk — u,{*Eu}g} (A.15)

k=0

Thus, the minimum value of Equation ( A.15) is reached with u; = u;. Hence, the
control law in Equation ( A.5) minimizes the cost functional ( A.2). The optimal value
function of ( A.2) is V*(xp) = V(x¢) for all xo.

Additionally, with [(x;) as defined in Equation ( A.8) ,V(x;) solves the following
Hamilton-Jacobi-Bellman equation:

* * 1 aV*TOC/(-H)
% (xk) = L(xk) +V (xk+1) + ZT/H_]

aV(Xk+1)

A.16
Xt 1 ( )

g(a)E~ g™ ()
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