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NUMERICAL MODELLING OF UNIFOM FLOW OVER A POROUS
PLANE WITH SUCTION PERPENDICULAR TO THE SURFACE BY
USING SEMI ANALYTICAL NUMERICAL METHODS

SUMMARY

In this thesis numerical modelling of uniform flow over a porous plane with suction
in vertical direction to the plane by using semi analytical numerical methods were
carried out. Semi analytical numerical methods are differential quadrature method
and method of moments.

In the first section purpose of the thesis and literature review were given. Then in the
theory section, required theoretical information was given. Continuity equation,
momentum equation and Biot’s theory of poroelasticity were used as governing
equations. Reynold and Darcy are dimensionless numbers. In the mathematical
modelling section, firstly problem was defined. In this study the flow is 2
dimensional, incompressible, viscous and Newtonian. So density and viscosity are
constant. By using equations in the theory section, dimensionless governing
equations of the problem were found. After that employing the suggestion by Deng
and Martinez, stream function was selected. Final form of the fluid layer equation
and porous layer equation were found. Defining boundary conditions at the interface
is the most important part of the mathematical modelling. In this study continuity of
the velocity vector and shear stress were used as boundary conditions.

In other sections, semi analytical numerical methods were explained and velocity
distribution in the fluid layer and porous layer are found. In the result section, graphs
were plotted and were interpreted in the section. Also approximate estimate of the
error calculation was done. According to this, it is seen that error was reduced with
increasing number of grid points.

It is easily seen from the graphics that vertical velocity increases from top to the
bottom because of the suction perpendicular to the surface. And at the bottom no
horizontal velocity component exists. Thanks to this study alternative semi analytical
solution to a two dimensional flow is derived. Without empirical constants
meaningful solutions are obtained.
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YUZEYE DiK YONDE EMME OLAN GOZENEKLi ORTAMA GELEN
UNIFORM AKISIN YARI ANALITiK YONTEMLERLE SAYISAL
MODELLENMESI

OZET

Bugiine kadar gozenekli ortam hakkinda ¢ok fazla calisma yapilmistir. Cilinkii
gbozenekli ortam giinlilk hayatimizda her alanda karsimiza c¢ikmaktadir. Kiigiik
Olcekte diisiindiigiimiizde kanin mikroskobik seviyedeki akisindan biiyiik Olgekte
jeotermal bilimlere kadar genis bir alanda gozenekli ortam problemini gdrebilmek
mimkiindiir. Gelisen teknoloji ile beraber ortaya ¢ikan calismalar daha kapsamli
sonuclar vermeye basladik¢a gdzenekli ortam giinden giline daha biiyiik bir dnem
kazanmistir. Biyomekanik sistemlerdeki tasima islemlerinden havacilikta kullanilan
kabin i¢i filtre tasarimina kadar genis bir uygulama alaninda yapilan c¢aligmalar
giinimiizde de devam etmektedir. Niikleer miihendislik, biyomedikal sistemler,
havacilik, jeotermal bilimler sadece birkag¢ 6rnektir. Bu kadar sik karsilagtigimiz bir
ortama gozenekli ortam diyebilmemiz igin bazi sartlara ihtiyacimiz vardir. Ilk
sartimiz malzeme kendi boyutlar1 ile karsilastirildiginda ¢ok kiigiik bosluklara sahip
olmalidir ve bu bosluklar hava ya da su gibi akiskanlar ile dolu olmalidir. Tkinci sart
ise akiskan kati malzemenin bir ucundan girip diger ucundan ¢ikabilmelidir.
Bahsedilen bu iki sart saglandiginda bulunan ortam gozeneklidir kabulii yapilabilir.
Bu caligmada yiizeye dik yonde emme olan gdzenekli bir ortama gelen wniform
akisin yar1 analitik yontemlerle sayisal modellenmesi lizerine ¢aligilmistir.

Bu calismada yiizeye dik yonde emme olan gozenekli ortama gelen iiniform akisin
iki farkli yar1 analitik yontem kullanarak sayisal modellemesi yapilmigtir. Kullanilan
yart analitik yontemler diferansiyel kuadratur yontemi (DQM) ve moment
yontemidir (MoM). Birinci boliimde oOncelikle ¢aligmanin 6nem ve igeriginden
bahsedilmis ve sonra konu ile ilgili yapilan diger c¢aligmalar hakkinda bilgi
verilmistir.

Ikinci béliimde matematiksel modelleme kisminda gerekli olan teorik bilgilerden
bahsedildi. Oncelikle béliimiin amact ve kapsamindan bahsedildi. Devaminda
akigkan hareketini yoneten denklemler verildi. Siireklilik ve momentumun korunumu
denklemleri akigkani tanimlamak ic¢in kullanilan denklemlerdir. Ayrica akiskani
tanimlayan denklemleri diizenlerken ihtiya¢c duyulan boyutsuz sayilar hakkinda da
bilgi verildi. Reynold sayis1 ve Darcy sayis1 matematiksel modelleme boliimiinde
kullanilan boyutsuz sayilardir. Teori kismimin bir diger dnemli kismi ise gozenekli
ortam akisini tanimlayan modeli belirlemektir. Akis modellerini tanimlayan
denklemler ilk olarak deneysel calisma sonucu elde edilen ve deneysel katsayilar
iceren denklemlerdir. G6zenekli ortamda akisi tanimlayan ilk yasa Henry Darcy
tarafindan 1856 yilinda gelistirilmistir. Darcy yasast Reynold sayisinin 1’den kii¢iik
oldugu, yani disiik hizli, sikistirllamaz ve Newtonyen akiskanlar i¢in gegerlidir.
Darcy denklemi deneysel bir bagintidir ve Reynold sayisinin 1den biiyiik oldugu,
yani yiiksek hizli akislarda Darcy denklemi gegersiz olmaya baslar. Ciinkii Darcy
denklemi akisin dogrusal olmayan etkisini modelleyemez. Ayrica denklem viskoz
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etkileri de igermemektedir. 1947 yilinda Brinkman tarafindan Darcy denklemi tekrar
diizenlenmistir ve Darcy denkleminin igermedigi viskoz etkiler Brinkman
denkleminde saglanmistir. Diger 6nemli denklem ise 1931 yilinda Richard tarafindan
gelistirilmistir.

Ugiincii  béliim matematiksel modelleme kismina ayrilmistir. Giris kisminda
oncelikle boliimiin igeriginden, problemin detaylarindan ve akisi tanimlamak igin
yapilan kabullerden bahsedilmistir. Bu ¢alismada iki boyutlu akis icin sikistirilamaz,
viskoz ve Newtonyen oldugu kabulii yapilmistir. Problem gozenekli ortam ve
akigkan ortam olmak {izere iki farkli ortamdan meydana gelmektedir. Girisin
devaminda gbozenekli ortami tanimlayan model se¢imi yapilmistir. Gzenekli ortami
tanmimlayan denklem igin Biot’un poroelastisite teorisinden faydalanilmistir. Referans
olarak kullanilan Deng ve Martinez’in ¢alismasinda ise Brinkman denklemi
kullanilmistir. Kabuller yapilip akiskan ve gozenekli ortamlar1 tanimlayan modeller
belirlendikten sonra yiizeye dik yonde emme olan gozenekli akis probleminin
matematiksel modellemesine gecilmistir. Bu kismi tamamlarken teori boliimiinde
verilmig olan akigskan hareketini yoneten siireklilik ve momentum denklemleri ile
boyutsuz sayilardan yararlanilmistir. Problemi matematiksel olarak tanimladiktan
sonra iki farkli boliim i¢in de denklemlerin boyutsuz halleri bulunmustur. Gézenekli
ortamin matematiksel ifadesi dordiincii dereceden lineer bir diferansiyel denklem
iken akigkan ortamin matematiksel ifadesi dordiincii dereceden lineer bir diferansiyel
denklem olarak bulunmustur. Problemin matematiksel ifadesini bulduktan sonra
diger bir husus bulunan denklemleri ¢ozebilmek icin gereken yeter sayidaki
baslangi¢c ve sinir sartlarimi belirlemektir. Bu ¢alismada iki ortam i¢in de bulunan
denklemleri ¢ozebilmek icin toplamda 8 tane sart gerekmektedir. Problemin {ist
yiizeyinde iki hiz bileseninin de sifira esit olmasi, alt yiizeyde sadece emme kaynakli
y yoniinde hiz bileseninin olusu, iki yiizeyin kesisim noktasinda da hizlarin
stirekliligi ve kayma gerilmesinin siirekliligi baglangi¢ ve sinir sartlart olarak
belirlenmistir. Ozellikle iki ortamin kesisiminde kullanilan sinir sartlart farkli
problemlere ve calismalara gore degisiklik gostermektedir ve sadece bu sinir sartlari
lizerine yapilan farkli caligmalar mevcuttur.

Dordiincli boliimde calismada kullanilan yar1 analitik yontemlerden biri olan
diferansiyel kuadratur yontemi anlatilmistir. Oncelikle genel hatlariyla ydntemin
tarihgesi ve yapisi verilmistir. DQM ilk defa Bellman tarafindan 1971 yilinda ortaya
konmustur. Devaminda yontemin iginde bulunan agirlikli katsayilari hesaplamak i¢in
gelistirilen farkli yaklasimlar ve bu yaklasimlarin birbirlerine goére avantaj ve
dezavantajlarindan bahsedilmistir. Diferansiyel kuadratur yonteminde ¢O6zliimiin
hassasiyeti hem diigiim noktasi sayisina hem de diigiim noktalarinin dagilimina
baglidir. Lineer tiirden denklemlerin ¢oziimiinde esit aralikli diiglim noktasi se¢imi
yeterliyken lineer olmayan denklemlerde durum degismektedir. Calismada sinir
sartlarina yaklasildiginda sonuglar koétiilestigi i¢in sinirlara dogru daha sik adim
araliklarinin kullanildigi Chebyshev-Gauss-Lobatto nokta dagilimi tercih edilmistir.
Diferansiyel kuadratur yonteminin detaylar1 verildikten sonra akigkan ortam ve
gozenekli ortam denklemleri DQM ile ¢oztilmiistiir.

Besinci boliim ise agirlikli artiklar yontemlerinden moment yontemine ayrilmistir.
Moment yontemi 1947 yilinda Yamada tarafindan gelistirilmistir ve 1951 yilinda
Fujita yontemin gelismesine katkida bulunmustur. 4 madde takip edilerek biitiin
agirhikli artiklar ydntemiyle sonuca ulasmak miimkiindiir. Oncelikle bilinmeyen
katsayilar ile problemi tanimlayacak olan bir polinom olusturulur. Ikinci adimda bu
polinom baslangi¢ ve sinir sartlar1 tarafindan saglanir ve dolayisi ile bu sartlara gore
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bilinmeyen sayis1 diisiiriiliir. Ugiincii adimda problemi tanimlayan artik fonksiyon
belirlenir. Ve son adimda agirlikli artik fonksiyonlari sifira esitlenerek bilinmeyen
tiim katsayilar bulunarak problem ¢6ziilmiis olur.

Altinct boliim ise sonug boliimiidiir. Bu boliimde gozenekli ortam ve akiskan ortam
icin DQM ve MoM yontemleri kullanilarak bulunan x ve y yoOniindeki hiz
bilesenlerinin grafikleri ¢izilmis ve hata hesab1 yapilmistir.

Son bolim olan yedinci bolimde de sonuglar degerlendirilip calisma
tamamlanmastir.
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1. INTRODUCTION

In the introduction section, firstly purpose of the thesis was given for creating
general point of view and then important developments of flow in the porous media

were shared.

1.1 Purpose of Thesis

Fluid flow behavior in porous media is conundrum. This study deals with study on
numerical modelling of uniform flow over a porous plane with suction perpendicular
to the plane by using semi analytical numerical methods. In recent years, the study of
flow over a porous plane with downward suction has gained a lot of importance
because porous plane with downward suction has wide range of application areas.
Several sciences that have carried out many researchers in this field are geothermal
science, biological transport process in biological sciences, flow filtration and energy
engineering disciplines. A porous medium is defined by the total volume fraction,
which are fluid layer and porous layer. In contrast to the dynamics of large fluid
compartments, the dynamics of fluids in porous media is more complicated. There
are many reasons for this. First and the most important reason is efficient dissipation
of the fluid’s kinetic energy in porous media. The other reason is complexity of the
internal dynamic for multiple fluids. Be able to make correct assumptions and
identify negativities, many scientists focus on this issue. Most research issue through

porous media problems are focus on the defining interface.

In both theoretical perspective and experimental perspective, the analysis of interface
conditions is very important and updated. Many different types of boundary
conditions at the water porous interface have been discussed. In this study continuity
of velocity and continuity of shear stress are used as a boundary conditions as seen in
the mathematical modelling section. Another important thing is defining porous flow
model. As will mentioned in the theory section, there are 4 different porous flow
models which are Brinkman equation, Darcy’s equation, Richard’s equation and

Biot’s theory of poroelasticity.



The equation of uniform flow over a porous plane with downward suction is solved
by using different numerical techniques. One of them is differential quadrature
method and the other one is the method of moments. In the next subtitle of the study,
historical development of the studies about porous media is given. Then required
background to understand the mathematical modelling of the problem was explained.
After this, mathematical modelling of the problem was given. And numerical
methods are defined and solution procedures were mentioned. In conclusion, results

of each numerical method is found and compared according to each other.

1.2 Literature Review

In recent years rather a lot of interest has been taken in the development of flow in
the porous media by reason of its importance in a variety of natural phenomena,
biological sciences, energy stocking systems, geothermal sciences and industrial
processes. The developments started with experimental studies in 1856 and have
been continuing to this day by using different boundary conditions and variable

geometrical structures.

First empirical studies are done by Darcy in 1856 [1]. It was an important starting
point for theoretical studies because it is impossible to solve empirically three
dimensional more general cases. Darcy’s study is the extension to more general cases
that are difficult to perform experimentally. This kind of cases deserving theoretical
studies. The first studies which are especially difficult to perform experimentally are
groundwater flows and oil recovery processes. After Darcy’s study, theoretical

studies also started.

A large number fluid particles flowing in pores are seen in the porous media. It is
very difficult to determine initial and final position of the fluid particles in the flow.
Flow through channel in porous media problems are known as Berman flow.
Because he was the first one to interest with this issue in 1953. Flow in a channel
with a permeable bottom and uniform outward suction is studied by Berman. He
investigated effect of wall porosity on the two dimensional laminar flow of an
incompressible fluid in a channel. According to Berman’s work, the effect of the
channel dimensions, position coordinates and fluid properties on the velocity
components and the pressure are defined. He reduced the Navier Stokes equation to

the third order, nonlinear, ordinary differential equation [2]. Further contribution has
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been made by Sellars in 1955 [3]. He extended the problem that is studied by
Berman by using very high Reynold numbers. In 1956 Seo Young studied on
numerical modelling of heat transfer in a channel with fluid saturated porous media.
By using finite element techniques, the two dimensional equation were solved [4]. In

1979 the flow in a channel with one porous wall is studied by Green [5].

More particularly flow through porous media problems are focused on the boundary
conditions at the interface separating the pore fluid from the porous medium flow.
This has been an important research issue since the Beavers and Joseph in 1967 [6].
These authors postulated a discontinuity in the interfacial tangential velocity. In
1995, Ochoa-Tapia and Whitaker postulated continuity of tangential velocity and
discontinuity of shear stress [7]. In 1999, Cieszko and Kubik adopted discontinuity
of both tangential velocity and shear stress [8]. Deng and Martinez postulated
continuity of tangential and discontinuity of shear stress in 2005 [9]. They used
Brinkman-extended Darcy law relationship to define the porous medium. Continuity
of the velocity vector at the viscous zone interface is studied by Bars and Worster in
2006 [10]. Multiple domain models which include more complex formulations such
as the Brinkman equation are retained in the upscaling process by Auriault in 2009
[11].






2. THEORY

2.1 Introduction

In this section, the problem described in different point of views. In order to
understand mathematical modelling of the uniform flow over a porous plane with
suction perpendicular to the plane easily requires to theoretical knowledge. Before
mathematical modelling, some required informations were given for understanding
easily such as governing equations, dimensionless numbers, different pore flow
models and so on. Understanding the equations that are mentioned above are
necessary to understand the core of the problem. After the preliminary informations,

mathematical modeling was given.

2.2 Governing Equations

Fundamental governing equations of the fluid dynamics which are the basic
equations of the physical systems are conservation of mass (the equation of
continuity), conservation of momentum (the Navier Stokes equations) and
conservation of energy equations (first law of thermodynamics). Complete
understanding of these equations make it possible to apply other specific cases and
tasks. Governing equations are based upon conservation of mass, conservations of

energy and Newton’s second law.
2.2.1 Continuity equation

The starting point of the all conservation law is

Da _ da

— +(V V) 2.1
Dt a& V.V) (2.1)
in which « is any property of the fluid, D represent the material derivative, V is the

divergence operator, t is time and V is the velocity.
Basically the law of conservation of mass is
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m = pV =const. (2.2)

in which pis density and V is volume. According to principle of mass conservation,

observed fluid size and shape will change, its mass will remain same. Mathematical

representation of the mass conservation is

ot oY) =P Y o (23)

Be able to arrange equation, alternative expressions were given. The rate of volume
increase of a particle per unit volume is equal to total strain rate. This relation was

given in equation (2.4)

1DV
———=&,t&, +& 2.4
V Dt XX yy 2z ( )

in which &represents the strain rate. Another expression for strain rate that was

written in equation (2.5) is relate with velocity

gxx+gw+gzz:Z—u+%+?:v.\7:div\7 (2.5)
X z

The improved expression for rate of volume increase of a particle is arranged in

equation (2.6).

BV _vdivw (2.6)
Dt

Equation (2.6) is substituted to the equation (2.3). Then all sides of the equation are
divided by volume and equation of continuity is obtained in its general form.

Dp .S
—+ pdivV =0 2.7
ot HP (2.7)

Equation (2.7) is equal to the equation (2.8)

%”mw(p\?) -0 (2.8)

Equation (2.8) is called as continuity equation in conservation form. It refers to

unsteady flow in a compressible flow.



2.2.2 Momentum equation

The principle of conservation of momentum is an application of Newton’s second

law of motion.
F=ma (2.9)

in which m is mass and a is acceleration. Each element of the equation (2.9) is
divided by the volume. We worked with velocity and density instead of acceleration
and mass. Hence we arranged equation (2.9)

DV F
pﬁ = V = fbody + fsurface (210)

in which f is applied force per unit volume on the fluid particle.

It is divided into two different types which are body forces and surface forces. The

body forces apply to the entire mass and formulation is

foosy = PO (2.12)
in which g is acceleration of gravity and p is density.

The surface forces that are shown in Figure 2.1 are applied by external stresses. All

stresses that are seen in the Figure 2.1 are positive.

T//.

t}'}
I =

Figure 2.1: Notation for stresses.



The stress tensor can be written as

Tix Z-xy Ty

T.=|1, T, T (2.12)

] yX vy yz

T sz T2

Net force on the element in the x direction due to stress is written in the equation
(2.13).

5
dF, :(_aafxx dxjdydz +(—;yyx dy}dxdz +(—88’ZX dzjdxdy (2.13)
' X Z

dF, . is divided by volume d.d d,. Hence force per unit volume is found and

written in the equation (2.14)

or;
=V _vr 2.14
surface an Z'” ( )
Equation (2.14) is substituted to the equation (2.10).
pﬂ =pg+V.r, (2.15)

Dt

It remains only to express V.z;in terms of the velocity V. This is done by relating
;10 ¢; by using some viscous deformation rate law for a Newtonian Fluid. The

simpler form of the viscous deformation law is given in the equation (2.16).
7, =—Pp+Keg, +C,divv (2.16)

Indicial notation form of the simpler form of the viscous deformation law is written
in the equation (2.17).

6ui auj .
Tij :_pé‘ij +/,l 87+8—X +5ij/ld|VV (217)

J 1

in which A4 is volume viscosity or dilatational viscosity. Hence representation of

V.z; in terms of the velocity component is calculated.



Representations of surface forces and body forces in desired form are substituted to
the equation (2.10). Found equation is the famous equation of motion that name is
Navier Stokes equation that named after Claude Louis Navier and George Gabriel

Stokes. Indicial notation of the Navier Stokes equation as a single vector equation is

Du, 0 ou, ou ou,
— = P8+ p| -+ — [+ A 2.18
Por AT ale( a (axj axJ ox, }] (218)
If the flow is incompressible, 5"./1% is equal to zero. The flow is incompressible in
Xk

this study. Vectorial representation of the Navier Stokes equation in three different
directions is
x direction

ou ou _éu _ou oP o°u o%u o
Pl —HU—+V—F2— |=——+pQ, +U| —5+—+—; (2.19)
ot oXx oy oz OX oXx® oy® oz

y direction

o o ov _ov)|_ P o’v ov o
pl —+U—+V—+Z— |= o9, tu| —S+——5+ (2.20)
o0 ox oy oz 8y ox® oy oz

oP o°w  o*'w  o*w
Pl —HU—+V—tZ— |[=——+pg, + U| —5 +—5 +— (2.21)
ot OX oy oz ow ox® oy oz

2.3 Dimensionless Numbers

There are too many reasons for using dimensionless numbers. To begin with,
dimensionless numbers are not just numbers. They contain significant informations
about characteristic of a given flow. Dimensionless numbers give information about
how the system will behave and allow for comparisons between different systems.
Also helps us to scale problem. This minimize the numerical errors of the study. In
this way complexity of the problem abates. In the subtitle of the dimensionless
numbers section, some important dimensionless numbers that was used in the

mathematical section were given.



2.3.1 Reynolds number

The history of the Reynolds number that back to in 1908 that is still valid today.
Reynold is the ratio of inertial forces to viscous forces. Formulation of the Reynolds

number is

_pvL
U
in which pis density, L is length, V is velocity and g is dynamic viscosity of fluid.

Re (2.22)

Reynolds number is used to analyze different flow regimes such as laminar, turbulent
and transitional. High Reynolds number means that inertial forces are higher than
viscous forces. When the inertial forces are dominant, flow is named as turbulent.
Smaller Reynolds number means viscous forces are bigger than inertial forces. When

the viscous forces are dominant, flow is named as laminar
2.3.2 Darcy number

Darcy number gives information about effect of the permeability of the medium
versus its cross sectional area. Formulation of the Darcy number is
k

Da = H—F’z (2.23)

in which k is permeability of the porous medium and H is the total height of the

channel.

2.4 Porous Flow Models

The importance of research in flow, heat and mass transfer in porous media are
increase during the past several decades. The importance of this research comes from
in many engineering applications. Viscous flow through porous media has a wide
range of application area such as thermal insulation, air filter technology, petroleum
industries, electronic cooling, geothermal systems, biological systems and so on [12].
As a consequence of these wide range of application area defining equations that
describing viscous flow through porous media attract considerable great theoretical
and experimental attention from the scientific community. Be able to reduce

complexity of these physical problems, porous media models are improved by

10



scientist and they are used widely in the literature. Fundamentally there are three
porous media models used in the theoretical studies. These three models are
Brinkman’s equation, Darcy’s equation and Richard’s equation. Each porous media

model has own specific advantages.
2.4.1 Brinkman equation

As mentioned before, there has been increasing rate of interest on heat and fluid
flows through porous media from varying disciplines such as engineering and
science. The Brinkman equations describe flow through porous media where

momentum transport by shear stresses in the fluid is important.

The Brinkman equation is applicable for fluid that moves at high velocities and high
permeability areas. The common problem type that is solved by using Brinkman
equation is combinations of free flow and porous media. These type of problems are
seen in the filtration problem and separation problem of the chemical reaction
engineering such as modelling of porous catalysts in monolithic reactors. In the

Brinkman equation, velocity and pressure are dependent parameters.

D) i) =0, (2.24)

in which Q,, is fluid source, ¢, represent porosity. The momentum equation in the

Brinkman form is

ﬁ[a—qu (u.div)i] =—divp+ div{i{y(divu + (divu)T)—g,u(divu) I Hv
& | ot & & 3

p p p

—[k‘1y+Qngu+f (2.25)

gP
in which I is identity matrix, T denotes temperature, « is the dynamic viscosity, k

denotes the porosity tensor and f represents volume forces and gravity

11



2.4.2 Darcy’s law equation

Darcy’s Law equation has been investigated the flow of fluids through permeable
material by a French hydraulic engineer named Henry Darcy in 1856. In the Darcy’s
equation fluid viscosity, pore structure and pressure gradient are the base parameters
in order to define the fluid velocity. It has a major solving effectiveness for low fluid

velocity due to friction resistance. Darcy’s velocity is given by
kK . .
u =——(divp+ pgdivh) (2.26)
U

in which k is the porous media permeability, u is Darcy’s velocity
2.4.3 Richard’s equation

The Richard’s equation has been introduced by Richards in 1931. The Richard’s
equation is basic theoretical equation for vertical unsaturated flow. It has many
variations but both forms of Richard’s equation are used in unsaturated-zone
modelling. By using Reynolds Transport Theorem, one directional flow in an

unsaturated porous media is

% + a_q =0
ot oz
in which @ and gare unknowns. Experimental expression that is proven by Darcy is

(2.27)

q=-Ki (2.28)
in the above expression, K is hydraulic conductivity and i is hydraulic gradient. This
expression is only valid for saturated flow. Formulation of the hydraulic gradient is

i=3(£+ zJ (2.29)
oz\ p9

Mathematical representation of the hydraulic conductivity is

(£+ zj —H (2.30)
P9

in which H is equal to suction head and gravity head

12



In unsaturated conditions, the expression for Darcy velocity is

q=-K % (2.31)

This expression should be valid for unsaturated conditions. Be able to satisfy this,

hydraulic conductivity H should be function of both ¢ and z

q=—K W2 (2.32)
0z

oy _ 0y 90 (2.33)

0z 00 o0z

in which & is the volumetric soil water content, 88_0 is the gradient of water content
z

in vertical direction, 2—? is specific water capacity.

oy 060
=-K(——+1 2.34
q ( 50 72 ) (2.34)
soil water diffusivity D is equal to
D=k (2.35)
06
D is substituted to the equation
q:—[D%+ K} (2.36)
0z

One directional Richard’s Equation in an unsaturated porous media is

@_ 5% ] 2an
ot oz 0z

Thanks to @ based form, calculation is faster than alternatives.
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3. MATHEMATICAL MODELLING

3.1 Introduction

In the present study, numerical modelling of uniform flow over a porous plane with
downward suction by using semi analytical numerical methods was studied.
Numerical models that mentioned before are differential quadrature method and
method of moments. Schematic diagram of the study that a steady uniform flow

passes through a porous plane is seen in the Figure 3.1.

1 ’

u 1,
l fluid layer

V]_J

AT AT OO T O T

¥ porous medium layer
NN NN NN EEEEN?

T T
NN NN NN

v v v v v
v

Figure 3.1: Schematic representation of the problem.

In the mathematical modelling section, the problem was divided into two different
sections such as fluid layer and porous layer as seen in the schematic representation.
The subscript 1 and 2 were used to separate the fluid layer and the porous layer from
each other. According to this two different layer, the governing equations and
dimensionless governing equations were derived. Remaining variables such as U, H
and so on that are seen in the figure were explained in the section of governing
equations and dimensionless governing equations. After obtaining final mathematical

expressions of the layers, boundary conditions were defined.

Before starting to mathematical modelling, the assumptions that are followed during

the modelling are given.
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e The first one is defining dimension. The problem is considered two
dimensional;

e The fluid is Newtonian;

e The fluid is viscous and incompressible;

e Viscosity of the fluid is constant;

e Gravity effect is neglected,

e Porous medium is saturated, isotropic and homogeneous;

e Solid matrix is unmovable and rigid;

3.2 Deciding Porous Flow Models

Darcy’s, Brinkman’s and Richard’s equations are popularly employed to treat the
porous media flow. However, these equations contain empirical constants that lead to
cumbersome during the solving stages. In this study, Biot’s theory of poroelasticity is
used. By using Biot’s theory, I overcome the problem without evaluation of the
empirical constants. Creation of the discontinuity is the another negativity of the
Darcy, Brinkman and Richard’s equation. For example Navier Stokes equations is
second order and Darcy is first order equation. This situation also leads to
discontinuity in the interface of the two different layers. Be able to solve this
difficulty, different boundary conditions are used at the interface of the problem.
This is the most difficult part of the mathematical modelling section. In this study,

Biot’s theory of poroelasticity is used and with Brinkman extended Darcy’s equation.

3.3 Governing Equations

The continuity equation and the equation of motion were used to describe the fluid.
As mentioned before, fluid flow is two dimensional. The Navier Stokes equations in
x and y directions were used to express the flow.

3.3.1 Fluid layer

The continuity equation is seen in the equation (3.1)

o

Ay =0 (3.1)
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in which subscript 1 denotes fluid layer, u,and v, are components of the velocity in x

and y direction.

Equations of motion in x and y direction are seen in the equation (3.2) and (3.3)

2 2

o My O 1OR ufOY OY (32)
OX oy p ox pl ox oy
2 2

o, My Mo LR O 0N, (33)
ox oy poy plox oy

in which £ is dynamic viscosity of fluid, p is density of fluid and P is pressure in

the fluid layer.

3.3.2 Porous layer

In the theory section of the study, three different porous flow models that are taken
place in literature were given. In the present paper, simplified version of Biot’s
theory of poroelasticity is used to describe the porous medium flow and Brinkman-
extended Darcy equation as the equation of motion was used by Deng and Martinez

who are owners of the reference study.

The continuity equation for the porous layer is given by the equation (3.4)

6(nu2)+a(nv2)
oX oy

~0 (3.4)

in which subscript 2 denotes porous layer, nis porosity, u,and v, are components of

the velocity in x and y direction.

Equations of motion in x and y direction are given by in the equation (3.5) and (3.6)

2 2
ynu, :_@+# 0 u22 N 0 u22 (3.5)
K OX OX oy
2 2
o, _ —%w[—a@ 42 V;J (36)
X

in which K is the hydraulic conductivity, P, is pressure in porous layer.
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3.4 Dimensionless Governing Equations

Nondimensionalization is a technique that can simplify complex mathematical
problem and reduces the number of variables in the problem. It is most desirable
technique such complex problems that contain so many variables and equations. This
method creates relationship between variables in terms of nondimensional
parameters such as Reynolds number, Darcy number, Prandtl number, Froude
number and so on. In this part of the study, all equations that are found in the
governing equations section via continuity and Navier Stokes equations are
converted to dimensionless governing equations. Thus the labor of calculation
reduced.

3.4.1 Fluid layer

Dimensionless variables that are used in the nondimensionalization process of the
continuity equation and Navier Stokes equation were given. Dimensionless variables

for coordinates are given in the equation (3.7)
Xd=F— y =-> (3.7)

in which H is the total height of the channel

Dimensionless variables for velocity components are given in the equation (3.8)

ul = — Vl = — (38)

in which U, is the uniform suction velocity at porous wall

Dimensionless variable for pressure was given in the equation (3.9)
* P
R =

Dimensionless velocity components in equation (3.8) and dimensionless coordinates

3.9)

in equation (3.7) were substituted to continuity equation in equation (3.10).

L =0 (3.10)
Hox H oy

Thus continuity equation in equation (3.1) was converted to dimensionless form in
equation (3.11).

18



* S

| o

= 3.11
ox oy 0 (3.11)

Dimensionless velocity components in equation (3.8), dimensionless coordinates in
equation (3.7) and dimensional pressure coordinate in equation (3.9) are substituted
to x component of the momentum equation in equation (3.2) and equation (3.12) was

found.

TH oy pH X p

u'u,u, au” vUU, au"  puzoP’ ﬂ(u u oy U
1 iyt 1 w 1 w 1 —w 1

_ Sw O - 3.12
H  ox H2 ox™ Hzasz (3.12)

All components of the equation (3.12) were multiplied with and equation

(3.13) was found.
Lou ,ou oP o'u ou
Wy =1y H = (3.13)
' OX Loy ox  pHU, | ox oy
in which :U is inverse of the dimensionless Reynolds number. This
pHY,

dimensionless number is substituted to momentum equation in x direction and

equation (3.14) was found.

*

Lou L éu oP” o’ o'’
e ST S s (3.14)
' OX Loy oX  Re| ox oy

Be able to calculate dimensionless form of the y component of the momentum
equation, dimensionless velocity components in equation (3.8), dimensionless
coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.9)

are substituted to the equation (3.3) and equation (3.15) was found.

uuu,ov vu U, ov 2 oP” oV o’
w N Vi W_lz_&_l*Jrﬁ U_vg = +U_vg L | (3.15)
pH oy p| H® ox H* oy

Again all components of the equation (3.15) were multiplied with and

W= w

equation (3.16) was found.
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* * *

OV Lo oP o oV
Uy —r=— M ( >+ 1] (3.16)

Lo oy oy pHU, | X v

U
p,HU,,

in which

is inverse of the dimensionless Reynolds number. This

dimensionless number is substituted to momentum equation in y direction and

equation (3.17) was found.

* *

oP” o oV
. +Rie(ax*; +ay*3J (3.17)

After calculations dimensionless form of the momentum equation in x and y

1
*

u

*
1

*
1

OX

direction were found. Unknown variable F’1 was seen in dimensionless momentum

equation both in x direction and y direction. Same unknown variables were
eliminated from both of the equations. Be able to complete this process first
derivative of the momentum equation in x direction was taken with respect to y and

was written in equation (3.18).

ou ou . oW oviau ol oP 1( u; o J (3.18)

o Mooy oy oy oyt oxoy  Rel oty oy

Also first derivative of the momentum equation in y direction was taken with respect

to x and result was written in equation (3.19).

ouov Lo v v L OV, ok 1 (83 oV

L—L4u =—— +— (3.19)
oX OX L OX 8x6y 1ayﬁx oy ox” Re %) oy ?ox

Equation (3.18) is subtracted from equation (3.19), thereby pressure was eliminated
from the momentum equation. Final state of the dimensionless equation for fluid

layer was written in the equation (3.20)

8u au e azu: 8v au *azuf 8u1* av: *azvf 8vf8v

+V — -——Uu - -— —=
8y8x 18x8y 8y8y Loy oox oxT tox*t ox oy oy ox

3 3,,* 3,,* 3,,*
1[ o%u au oV OV ] (3.20)

" Rel| ox” ay B
And then stream function was defined. Reference author of the stream function is
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Deng and Martinez. Stream function that is suggestion by Deng and Martinez is

written as follows in equation (3.21).

wlz(L_J—xjf(y) 0<y<¢& (3.21)

in which U is dimensionless velocity, & is the interface position and defines as
h
=1

By using stream function, u and v components of the velocity in fluid layer were

calculated.

u that is x component of the velocity is written in the equation (3.22)

ufz%%lzﬂJ—x)f(y) (3.22)

And v that is y component of the velocity is written in the equation (3.23)
v=—_t(y) (3.23)

Equation (3.20) is rearranged with new velocity components. Equation (3.22) and
equation (3.23) were substituted to the equation (3.20). Be able to make this
arrangement, first, second and third order partial derivative of the x and y component

of the velocity were taken.

Required derivative calculation of the x component of the velocity with respect to x

and y are given in the equation (3.24)

ou” olu"

Doty gEeU0f'w)

ou | ocu "

5 =U-x)f"(y) S =U-x)f7(y) (3.24)
Zu: _ f 1 ( ) asu: _ 0

oxoy y X2y

Required derivative calculation of the y component of the velocity with respect to x

and y are given in the equation (3.25)
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ov oV
L= fl(y) +=0
oy OX
N, il 0 (3.25)
ox ox® '
o’ oV
*—1* = 0 o = > — 0
0y OX 0y “OX

Derivatives in the equation (3.24) and (3.25) are substituted to the equation (3.20)
and equation (3.26) is found.

~(U=)f () F(y)-U=x)F(y)F1(y)+U-x)F(y) 1" (y)+

LU —x)f(y) " (y):%(0+(u ~x) £ (y)-0-0) (3.26)

Equation (3.26) was rearranged and final form of the fluid layer is found in the
equation (3.27).

Re(f(y)f"(y)-f'(y)f"(y))=1"(y) (3.27)

3.4.2 Porous layer

Again dimensionless variables that are used in the nondimensionalization process of
the continuity equation and Navier Stokes equation for porous layer were given.
Dimensionless variables for velocities in the porous layer with subscript 2 are given
in the equation (3.28)

u =22 v =Yz (3.28)

P = (3.29)

Dimensionless velocity components in equation (3.28) and dimensionless
coordinates in equation (3.7) were substituted to continuity equation in equation (3.4)
and equation (3.30) is obtained.

nu, auf N nu, %:0 (3.30)
H ox H oy
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All sides of the equation (3.30) was multiplied with the % Thus continuity
n

equation in equation (3.4) transformed to the dimensionless form and it is written in
the equation (3.31)

Z_§§+ %V_y _o (3.31)

Then dimensionless velocity components in equation (3.28), dimensionless

coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.29)

are substituted to x component of the momentum equation in equation (3.5) and
equation (3.32) was found.

ynU,u; _ NG LMY, Lazuz N 82u2]

3.32
K H ox H?(ox* oy (3.32)

All elements of the equation (3.32) were multiplied with

and equation (3.33)

U2
was found.
oP” T T .
L R 1 (339)
ox" pHU, | ox? oy KpU,

Reynold and Darcy number are substituted to the equation (3.33) and equation (3.34)

was obtained.

ox Rel ox?2  oy”

Then dimensionless velocity components in equation (3.28), dimensionless

P 2 A" .
0--Z Loy, R N, (3.34)
D, Re

coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.29)
are substituted to y component of the momentum equation in equation (3.6) and

equation (3.35) was found.

* 2 op* 2 * 2 *
7nL|in2 :_Pﬁw ayz* +/1|_l|J2W{Z ljzz +‘2y‘j§] (3.35)
X
All elements of the equation (3.35) were multiplied with TE and equation (3.36)
was found.
oo P, _u (3 V) yH . (3.36)
oy pHU,(x* &y? ) KpU,
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Reynold and Darcy number are substituted to the equation (3.36) and equation (3.37)
was obtained.

0=- (3.37)

P 1 (N, o, n .
t—| = t—= |- Vv,
oy Rel ox oy D, Re
After calculations dimensionless form of the momentum equation of porous layer in
x and y direction were found. Unknown variable P, was seen in dimensionless

momentum equation both in x direction and y direction. Same unknown variables

were eliminated from both of the equations.

Be able to complete this process first derivative of the momentum equation in x

direction was taken with respect to y and was written in equation (3.38).

2p* 3, .* S * *
o°P 1[8u2 8u2J n o ou (3.38)

- L g - L z
oxoy Reloxoy oy D, Re oy

Also first derivative of the momentum equation in y direction was taken with respect
to x and result was written in equation (3.39).

0=

op. 1 (asv;+ oV, j n ov, (3.39)

_8y*—§x*+ Rel ox®  oy?ox ) D,Reox”
Equation (3.39) is subtracted from equation (3.38), thereby pressure was eliminated
from the momentum equation. Final state of the dimensionless equation for fluid
layer was written in the equation (3.40)

_1 8*3“3*+83lf:—83‘f;— 8*3v;* o aug_@g (3.40)
Rel| ox?oy"  oy® ox° oy“?ox D,Rel oy" ox

Stream function adopted by Deng and Martinez is given in the equation (3.41)

v, =U-x).9(y) E<y<1 (3.41)

By using stream function, u and v components of the velocity in fluid layer were

calculated.
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u that is x component of the velocity is written in the equation (3.42)

0 =%= U-%).9'(y) (3.42)

And v that is y component of the velocity is written in the equation (3.43)

.0
v, =-22=g(y) (3.43)

Equation (3.40) is rearranged with new velocity components. Equation (3.42) and
equation (3.43) were substituted to the equation (3.40). Be able to make this
arrangement, first, second and third order partial derivative of the x and y component

of the velocity were taken.

Required derivative calculation of the x component of the velocity with respect to X

and y are given in the equation (3.44)

ou, ' ou’
==U-x)g"(y) 2 =_gqg'
TV U0y %o (3.44)
*2 = —X *2 = '
ay 2 g y 8)( 2
ul G " o°u 5
ay*g _( _X)g (y) aX*Zay*

Required derivative calculation of the y component of the velocity with respect to x

and y are given in the equation (3.45)

* 3, *

£=0 g (y)
X" oy
3.45
82VZ _nll ( ) asv: _ ( )
@”_g y oy2ox

Derivatives in the equation (3.44) and (3.45) are substituted to the equation (3.20)
and equation (3.46) is found.

n
D, Re

ozé[@ —x)g'V(y)j— [(U g (y)j (3.46)

All compents of the equation (3.46) is multiplied with Re and divided by (U-x) and
finally equation (3.47) was found.
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0=¢"(y-2-9"®) (3.47)

a

3.5 Boundary Conditions

In this type of physical problems, an interface section in between fluid layer and
porous layer is very critical part of the problem. Many different types of boundary
conditions at the interface are improved by different researchers. For instance,
continuity of tangential velocity, continuity of both shear stress and normal stress,
discontinuity of shear stress, discontinuity of both tangential velocity and interfacial
velocity are seen as boundary conditions in different studies. Correct specification of
boundary conditions is the essential part of the mathematical modelling. In this
study, the continuity of the velocity vector and shear stress are used as the boundary
conditions. In addition to these equations, an extra equation that is derived is used as

the boundary condition. Dimensionless boundary conditions are;

At the top of the fluid layer (y=0), x and y components of the velocity are

ZEro.

U =U-%).1'(0) gy=0 — {f'(o)zo (3.48)
v, = £(0) f(0)=0

e At the bottom of the porous layer (y=1), horizontal component of the vecity is

equal to zero, only vertical component of the velocity exists.

U, =U-29'® aty=1 = {9' ®=0 (3.49)
v, =g(1) g(n) =1

e As mentioned before, at the interface section of the fluid and porous layer

y = & continuity of velocity vector is satisfied

9'(&)=1"() 9(s)=1(5) (3.50)

e At the interface fluid layer and porous layer, continuity of the shear stress is

satisfied. Formulation of the shear stress is
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=y 3.51
TTHY (3.51)
Shear stress in fluid layer is
r=u S = @0 () (352)
y
Shear stress in porous layer is
0 _
£ ugE = uU=0g" () (353)

Equation (3.52) and equation (3.53) are combined and equation (3.54) is
found

#U-xg"(N=u0-0f"(N=9"(N=1"(y) (354

In addition to this, equation (3.27) and equation (3.47) are combined by

integrating them and equation (3.55) is obtained

g"(="1" (§)+& F1 (&) +R(F7 (&) - ()" (©) (3.55)
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4. DIFFERENTIAL QUADRATURE METHOD

4.1 Introduction

Every process in nature can be expressed by differential equations. For this reason,
differential equations take an important place in science and engineering because
engineers can examine the change of the critical variables that have a place in system
thanks to differential equations. And also, it is easier to understand physical
phenomena through differential equations. In addition, a differential equation is a
way to describe the physical pheonomenas in the same language through all over the
world by constructing mathematical models. Poisson, Navier Stokes, Helmholtz,
linear wave and advection convection equations are example of partial differential
equation. Poisson’s equation is a partial differential equation of elliptic type with a
wide range of applications such as electrostatics, mechanical engineering and so on.
Navier Stokes equations describe the motion of the fluid. Helmholtz equation
simulates the microwaves. All of these equations that we only mention a few
examples are partial differential equations. Be able to developing result to these

equations is as important as identification of the equation.

To solve these partial differential equations, many methods are used such as finite
difference, finite volume and finite element and so on. All the time, there are
expected properties from the selected method that has the advantage compared to
others. While deciding on methods that will be applied to the equation, some criteria
like that higher accuracy, less computation time by using less grid point, the stability

of the solution are very important.

Differential quadrature method (DQM) is also a different numerical technique that
was presented by Bellman and his associates in the early 1970°s is used in the
solution of ordinary differential equations (ODE’s) or partial differential equations
(PDE’s) of the initial and boundary value problems. Since that time, this method has
been successfully applied to the different kind of problems in engineering and

medical science. This method directly aimed to be alternative to the FDM that
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requires long computation time and it has numerical stability problem. If the DQM
compared with the other numerical technique such as the FV, FD and FE methods,
this method exhibits higher accuracy and efficiency with little computational effort

by using a considerably small number of grid points [13].

4.2 Chronological Development

Differential Quadrature Method that is used for solving ordinary or partial
differential equation is developed by Richard Bellman in 1970. In 1971 introductory
paper is published by Bellman and Casti. But this paper did not include application
or any information about calculations of the weighting coefficients [14]. Subsequent
paper that is published by Bellman et al in 1972 include various applications of the
DQM and information about the calculation of the weighting coefficients [15].

Results are compared with the exact results.

After these two paper, differential quadrature method is seen in several areas such as
hearth model for estimating heart parameters for cardiograms [16]. Thus the method
developed quickly. Applications of DQM are found in the different scientific sector
such as biosciences, structural mechanics, transport processes and so on. It is claimed
that high accurate solutions are found thanks to differential quadrature method by

spending minimum computational effort.

DQM is used for the transient analysis of isothermal chemical reactors by Wang in
1982 and it was extended by Naadimuthu for isothermal chemical reactor that
involved two initial boundary value equations in terms of partial pressure and

temperature.

Civan and Sliepcevich undertook variety application of the quadrature method to
engineering problems for different transport phenomena type models. In 1986 an
application of the DQM in nuclear engineering problems was undertaken by Passow.
Most important improvements are seen after the method is applied to the structural
mechanics problems. Subsequent to these works, nonlinear static flexure of thin

circular plate is solved with differential quadrature method.

In this thesis mathematical equation of uniform flow over a porous plane with
downward suction that is fourth order nonlinear differential equation is solved by

using differential quadrature method.
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4.3 Structure of the Differential Quadrature Method

The idea of differential quadrature method is first order derivative of a function with
respect to a coordinate direction is approximated by a weighted linear sum of all
values in the same domain and along same direction. The most critical point of the
DQM is computation of the weighting coefficients for the discretization of the first
and second order derivatives. Taking into consideration Figure 4.1 that represents the

one dimensional problem.

2 E

7
“ha s i N E:

Figure 4.1: One-dimensional problem.

Mathematical representation of the DQM that is expressed before is written in the

equation 4.1,

df
f, (x) =X

Xi

N
=>a;f(x;), fori=1,2,.,N 4.1)
j=1

where f,(X) is the first order derivative of the function, N represent the number of
grid points in the domain, jrepresents the grid point (i.e. number of column),
i represents the dimension of the problem (i.e. number of row), ga; is the weighting
coefficients, x ;is the value of the grid points, f(x;) is the value of the function at
different grid points. Also calculated weighting coefficients a;are different at

different locations according to coordinate axis.

Representation of the DQM formulation through matrices is as seen in equation
4.2).

f(2)
f(2)
f‘(xl) = [au By eeee &y ] ' (4.2)

f(N)

Two dimensional grid structure can be seen from the Figure 4.2. Number of rows and

columns in two dimension is N.
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Figure 4.2: Two-dimensional problem.

Two-dimensional matrix representation of the DQM is given in the equation (4.3).

by By by J[F@ ) [ |
by, By oo b,y || f(2) f'(x,)
=l - (4.3)

By By e By | LT | £(%,) |

Weighting coefficients a;and b, are depend on the coordinates, therefore they are

different from each other. Weighting coefficients are bridge to link between
derivatives and functional values at the mesh points. As can be easily understood
from the matrix form, weighting coefficients and functional values are used for

computing the derivatives of the function at x,. Calculations of the derivatives of

function at given point is given in equation (4.4).

b, f@+ b, f(2)+....+b, F(N)=f(x)
by, f () + by, f(2)+..4by F(N) = (%) (4.4)

by, f @)+ by, f(2)+..+ by, F(N)=f (x,)

Computation of the weighting coefficients that depends on the selected test functions
is done by two different fundamental approaches. One of them is polynomial-based
differential quadrature (PDQ) and the other one is Fourier expansion-based
differential quadrature (FDQ). PDQ is the one that will be used in the thesis.

4.4 Computation of Weighting Coefficients for the First Order Derivative

Calculation of the weighting coefficients which is the most important step of the

DQM has three different approaches that belong to Bellman, Quan and Chang, Shu.
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4.4.1 Bellman’s approaches

Bellman et al. (1972) have two approaches to compute the weighting coefficientsa; .

The difference between Bellman’s two approaches is the result from the difference in

test function.

4.4.1.1 First approach
In Bellman’s first approach, test functions are chosen as seen in (4.5),

g, (x) = x*, k=0,1,...,N-1 (4.5)
where k’s interval gives N test functions and rows and columns are taken from 1 up
to N. Rows and columns in this amount give the total number of weighing
coefficients as NxN . As a consequence the following NxN algebraic equations (4.6)

for a; are obtained.

N
Z:aijxj =1 for i=1,2,...,N (4.6)
=1

N
Zaiszf = k*Xikfl, k=2.3,...., N-1

In this approach, if N is large, the matrix is ill-conditioned and for this reason it is
difficult to take the inverse of the matrix. In the application of DQM, if Bellman’s
first approach is used, grid points should be less than 13 for avoiding ill condition

situation.

4.4.1.2 Second approach

In the second approach different test function is used by Bellman. The test function

was chosen as in the equation (4.7).

L .
gk(x)_ (X—XK)L(,\IJ)(XK)’ k=1,2,....,N ( )

where L, (x)is the Legendre polynomial and first order derivative of the L, (X) is
LY (x,). Selected x, should be the roots of the Legendre polynomial. By using this
test function, simple algebraic formulations to compute weighting coefficient a; is

obtained by Bellman et al. are given in equation (4.8) and (4.9).
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LY (x)

i = X)) fori=j (4.8)
1-2x
& =- T~
2Xi (Xi -1) (4.9

When second approach is compared with first approach, it is clear that computation
of the weighting coefficients by using second approach is easier. But first approach
has greater flexibility in implementation. On the other hand, in the second approach
one should use the Legendre polynomials of degree N. Therefore, first approach is

easily applied to the practical applications.

4.4.2 Quan and Chang’s Approach

To resolve deficiencies that encountered during the calculations of the weighted
coefficients in the Bellman’s approaches, many studies were done on the issue. One
of the most important works is done by Quan and Chang (1989). In the Quan and
Chang’s approach, Lagrange interpolation polynomials are used as a test functions
and there is no restriction for the selection of the grid points. Test function is given in
equation (4.10),

M (x)
(X—x)M (l)(xk)‘

g, (x) = k=1,2,....N (4.10)

where calculations of the M(x) given in the equation (4.11)
M (X) = (X = %) (X = X,)....(X X ) (4.11)

Another representation of the equation (4.11) is given in equation (4.12).

M (l)(xi) = ﬁ (% = %) (4.12)

k=1k=i

After substituting equation (4.11) and (4.12) into (4.10), the formula that is used for

calculating the coefficients is obtained and given in equation (4.13) and (4.14).

1 N6 —X,) -
a; = ' ,forj=i (4.13)
J (Xj_xk)k];[kii (Xj_xk)
N
a; = ! (4.14)
krei (X —X)
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4.4.3 Shu’s general approach

Shu’s general approach contains all approaches that are Quan and Chang’s approach

and Bellman’s approach. It is based on four basic polynomial type which are given in
the equation (4.15), (4.16), (4.17) and (4.18)

r(x)=x*-1,k=1.2,.,N (4.15)
_ Ly (X) _
r.(x) = (x—xk)LN(l)(xk) . k=1,2,....N (4.16)
_ M (x) _
r.(x)= XX MO(x) k=1,2,...,N (4.17)
r(x)=1, r.(x)=x-x_)n,(x), k=1,2,...,N (4.18)

M(x) is defined in equation (4.11) and (4.12) and L,(x) is the Legendre
polynomial. If M(x) and L, (x)are compared with each other, it is easily seen
that L, (x) that is only applicable at the Legendre collocation points is a subset of the
M (X) .

The expressions that are used for the calculating the weighting coefficients defined
by the Shu are given in the equation (4.19) and (4.20).

MO L
aij - (Xi _ XJ)M (l)(xj) ) fori= J (419)
0 = MP) (4.20)
" 2M@(x;) '

Another calculation way for equation (4.20) is given in the equation (4.21). Equation

(4.20) and (4.21) are two different formulations to make the same calculations.

iaij =0org;=— Y & (4.21)

j=1 j=1, j#i

So far shown formulas are valid for computation of weighting coefficients for the
first order derivative. In this thesis work, Shu’s general approach is used. Another
consideration is computation of weighting coefficients for the second and higher

order derivatives.
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4.5 Computation of Weighting Coefficients for the Second and Higher Order

Derivatives

As seen from the equation (4.22), although calculation of the weighting coefficient is
different, expression for computing the second and higher order derivatives is very

similar with equation (4.1) for calculating first order derivatives.

fx(Z) (Xi) =

d?f .
- =2 b f(x;), fori=1,2,..N (4.22)
X; j=t

Where f?(x) is the second order derivative of the function, N represent the
number of grid points in the domain, jrepresents the grid point (i.e. number of
column), irepresents the dimension of the problem (i.e. number of row), b;is the
weighting coefficients, xis the value of the grid points, f(x,) is the value of the
function at different grid points. Also again calculated weighting coefficients b, are

different at different locations according to coordinate axis.

4.5.1 Weighting coefficients for the second order derivatives

Two approaches will be explained for calculations of the weighting coefficients for
the second order derivatives. One of them is Quan and Chang’s approach and the

other one is Shu’s general approach.

4.5.1.1 Quan and Chang’s approach

According to Quan and Chang’s approach, through Lagrange interpolation
polynomials weighting coefficients are calculated as given in the equation (4.23) and
(4.24).

b, =2 (lﬁ[ Xi”‘k}[i L j,fori;tj (4.23)

Xy =X \k=nk,j X5 — X )=, X — X

N-1 1 N 1
b; =2 [ 2 J (4.24)
k=tk=i| K — X \=kasl=i Xj — X

36



4.5.1.2 Shu’s general approach

According to Shu’s general approach calculation of the weighting coefficients for the
second and higher order derivatives is similar with coefficients for first order
derivatives and polynomial based approximation is used and formulations are given
in the equation (4.25) and (4.26).

b, =23, | b; - ,fori= | (4.25)
j j X — X,
N N
Db, =00rb;=—>" b (4.26)
j=1 J=1, j=i

4.5.2 Matrix multiplication approach for the second and higher order
derivatives

This notation in equation (3.27) is used for second and higher order derivative
calculations.

2
of :ﬁ(ﬁ) 4.27)
OX OX \ OX

After reminding equation (4.28) and (4.29) again, a for first order derivatives and

b, for second order derivatives, if we substitute DQM approximations in the equation

(4.22) to the equation (4.27)

[ETE: P ay |y Y
a21 a22 ......... aZN y2 y2
| Ang Byg e aw | (Yn _le | (4.28)
Y [ AR I A
b21 b22 ......... bZN y2 y2
_le bz e buy 1 UUn _y;l i (4.29)

First derivative is taken and substituted to the equation (4.30).
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(2) (X ) Z alk fx(l) (Xk (430)

Deficit representation of the equation (4.30) is given in the equation (4.31).

f @ (X ) Zamzakj f (X ) ZN:ialkakj f (X ) (431)

k=1 j=1

If i=1 then, first row elements are found with variable k is given in equation (4.32).

N
20 =2 (A F () + @y, F(x) +..+aya f (%))
k=1

N N N
= Zaikaklf (X)) + Zaikakz f(x)+...+ ZaikakN f(Xy) (4.32)
k=1 k-1 =]

For finding the first row elements without variables, variables of k’s are substituted
into the equation (4.32) and equation (4.33) is derived.

+{anay F () + 2,8, f (4) + a8, T 00+ + ayay, (4}

+{ana, (%) +a,a,, f(6) + 88, f (%) + ..+ aay, T 00)}

+{ayay f(xy) +apan F (X)) +aua F () +.+ayay f(x)}  (4.33)

If we convert equation (4.33) to the matrix form, equation (4.34) is obtained.

(8,8, + 8,8, + ..+ Ay ) (B8, + 885, + . Ay, ) e (BB + 818, + ot BBy )

_(aNlaiI.l +a’N2a‘21 +"'+aNNaN1) (aNla'.I.Z +aN2a’22 +"'+aNNaN2)""(aNla1N + a'NZaZN to.+ aNNa'NN )_
(4.34)

It is easily seen matrix multiplication approach from the matrix form and represented
in the equation (4.35).

[y, Ay e ay |8, 8, e ay (v Yy
Byp gy vevvenene By || Bgp By e AN || Y2 Y2

- . (4.35)
_a‘Nl aNZ """" a'NN B _a'Nl a‘NZ """" a'NN B yN _yN i
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Matrix multiplication approach for second order derivative is given in the equation
(3.36).

v | v ] Y,
Y, Y, Y,

J=Al L= ALAL = AYY] (4.36)
_y;u | _Y'N | Yn

And general form of the this approach is seen from the equation (4.37).

AN i
Y Y,

=Amd . (4.37)
W] In

4.6 Grid Point Distribution

In order to solve an engineering problem with differential quadrature method,
primarily type of grid distribution should be selected. Two of them that are uniform

grid and Chebyshev-Gauss-Lobatto grid will be examined.

4.6.1 Uniform grid

In uniform grid distribution, points are selected at equal intervals in each direction of
coordinate axes. As seen from the Figure 4.3, step size is fixed. Selection of the
points from uniform grid distribution is very simple. Therefore, it is easily applicable
to the problems but accuracy of the results depends on the problem. Grid selection is

done by trial and error method to choose the most accurate grid distribution.
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Figure 4.3: Uniform grid distribution.

4.6.2 Chebyshev-Gauss-Lobatto grid

Another option is Chebyshev-Gauss-Lobatto grid. In any problem, the results
become worse when close to the boundary conditions. For this reason, increasingly
frequent distribution towards boundary conditions point is selected in the
Chebyshev-Gauss-Lobatto grid as seen from the Figure 4.4.

Y o

(%, %)

-
I

-

v
A

Figure 4.4: Chebyshev-Gauss-Lobatto grid distribution.

Accurate and reliable solutions that are more quickly convergent are obtained
through Chebyshev-Gauss-Lobatto grid. Formulation of the Chebyshev-Gauss-
Lobatto grid distribution is written in the equation (4.38)

X :b_Ta(l—coslﬁﬂj+a, i=1,2,...,N (4.38)

40



4.7 Solution of the Problem with Differential Quadrature Method

As found in the mathematical section of the study, flow is separated into two
different layers, the fluid layer and the porous layer. In this problem, equations
contain nonlinearities. For this reason, Quan and Chang approach cannot be used. By
using lagrange interpolation polynomial, fluid layer formulation is written in the
equation (4.39).

[To-vai
fy)=Y BE FIi] i=12,..m  (4.39)
= H(Yl[i]—Yllj])

j#i

Porous layer equation is given in the equation (4.40)

ﬁ(y—vzm)
m m};i Gli] i=12,..m (4.40)
ST 2i-Y 241y

j=1
J#i

g(y) =

in which m represents number of grid points in the domain, Y1[j] and Y2][j] are
found according to grid distribution, F[i] and G[i] are unknown values of the

functions at different grid points.

In this study Chebyshev-Gauss-Lobatto grid distribution is used. Defined range of
the fluid layer starts from 0 and ending at -0.9 and porous layer starts from -0.9 and
ending at -1. According to intervals, frequent distribution towards boundary

conditions is used.

Firstly, all boundary conditions are substituted to the equation (4.39) and (4.40).
Then the equation (4.39) and (4.40) are substituted to the equation (4.41) and (4.42).

R2= g'V(y)—Dlg”(y) (4.41)

a

R1=f" (y)-Re(f(y)f" (y)-f'(y)f"(y)) (4.42)
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The equation (4.41) and (4.42) are set to zero and unknown values of the function are
found. This stages are followed for 12 different grid points and graphs are shown at

the results section.
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5. WEIGHTED RESIDUAL METHODS

5.1 Introduction

The method of weighted residuals is a type of approximate solutions of differential
equations that are valid only at certain points rather than at each point. All
engineering problems could be represented by non-linear differential equations.
Mathematical representation of the uniform flow over a porous plane with suction
perpendicular to the surface is an example of non-linear differential equations. The
method of weighted residual is an approximation technique for solving differential
equations. Through the method of weighted residual (WRM) a solution can be
approximated numerically. A weighted residual method uses a finite number of

functions. The method is a slight extension of that used for boundary value problems.

The basic concept of the WRM is to drive a residual error to zero through a set of
conditions. To obtain the approximate solution for the equation given in the
differential form, approximation function is selected and is substituted to the
differential equation. And the differential function is found in terms of
approximation function. Result that is different than the zero is named as residual.
This value that was obtained is multiplied by the specific weighted functions and the
resulting product is tried to minimize. Five steps of implementing the method of

weighted residual can be listed as;

1. The trial function with unknown coefficients is written by expanding unknown

solution in a set of basis functions

2. The trial function is satisfied by the boundary conditions and initial conditions.

This process reduces the number of unknown coefficients.
3. Residual is defined.

4. Weighted residual is set to zero and equations are solved.
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5. The error is examined by setting up successive approximations, and converge is

shown the number of basis functions increase.

In mathematical analysis, the Weierstrass approximation theorem shows that every
continuous function defined on a closed interval a<x<b can be approximated by
polynomial function [17]. Calculation of the polynomials with computer facilities is
very simple. For the numerical solution of uniform flow over a porous plane with
downward suction, weighted residual method is applied by using Weierstrass
theorem and trial function is defined as 5", 6" 7 8" 9" and 10" order
polynomials. There are five types of weighted residual methods which are
subdomain method, collocation method, least squares method, Galerkin method and
method of moments. Each method is developed in different country and time
interval. All methods were unified in 1956 by Crandall [18]. In this thesis uniform

flow over a porous plane with downward suction is solved by method of moments.
5.2 Method of Moments

The method of moments is the oldest method of deriving point estimators. Firstly, the
method of moments is improved by Yamada in 1947 and Fujita contributed to
method in 1951 [18]. At the outset, laminar boundary layer problems and nonlinear
transient diffusion problems are solved by using method of moment. In the method

of moments, weighted functions are defined as power of independent variations.
w, =" n=1,2,...,N (5.1)

[w,Rdy = [Ry™dy =0; n=1,2,...N (5.2)
n n

The method of moments forces the residual to zero.

5.2.1 Solution of the problem by using method of moments

Mathematical representation of the uniform flow over a porous plane with downward
suction is found in the mathematical section of the thesis. As mentioned before, the
problem is separated two layer which are fluid layer and porous layer. Mathematical

representation of each layer are different from each other. Final state of the fluid
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layer equation is rewritten in the equation (5.3) as found in the equation (3.27).
Re(f(y)f" (y)-f'(y)t"(y))=1"(y) (5.3)

And final state of the porous layer equation is written in the equation (5.4) as found
in the equation (3.47).

0=¢"(y-2-9"®) (5.4)

a

Be able to calculate f and g functions via method of moments, functions of the form
by a polynomial degree 7 with respect to Weierstrass approximation theorem are
defined for fluid layer and porous layer. These seventh degree polynomials contain
totally 16 unknown coefficients. Trial function of fluid layer f is defined as

f =iF[i]yi (5.5)

in which FJ[i] is the leading coefficient.
Explicit representation of the fluid layer formulation is
f = F[0]+ F[1]y" + F[2]y? + F[3]y® + F[4]y" + F[5]y® + F[6]y® + F[7]y’" (5.6)

Trial function of porous layer g defined as
7 .
g = G[ily' (5.7)
i=0

in which G[i] is the leading coefficient. Explicit representation of the porous layer

formulation is
g = G[0]+G[1ly"' +G[2]y* + G[3]y* + G[4]y* + G[5]y® + G[6]y® + G[7]y’ (5.8)

The trial functions of fluid and porous layer are stated with unknown coefficients.
According to theorem every continuous function can be approximated in an interval.
Following solution procedure is defining residual function. In this study we have two

different residual functions that depend on the layers.
Residual function for fluid layer is calculated as
R1= " (y)-Re(f(y)f" (y)-f'(y)f"(y)) (5.9)

Residual function of the fluid layer involves the first, second, third and fourth order

derivatives of the trial function.

45



f'= F[1]+2F[2]y + 3F[3]y? + 4F[4]y® + 5F[5]y* + 6F[6]y° + 7TF[7]y®  (5.10)
f* = 2F[2]+6F[3]y +12F[4]y? + 20F[5]y* +30F [6]y* + 42F [7]y® (5.11)
f* = 6F[3]+24F[4]y +60F[5]y® +120F[6]y* + 210F [7]y* (5.12)

f~ = 24F[4]+120F[5]y +360F [6]y? +840F[7]y® (5.13)

Derivatives of the equation (5.6) as seen in the equation (5.10-5.13) is substituted to
the equation (5.9) and R1 is found in terms of unknown coefficients

R1=24F[4]+120F[5]y + 360F[6]y? + 840F[7]y* — Re(—(2F[2] + 6F[3]y....)) (5.14)

The coefficients that the residual function depends on are given in the equation
(5.15)

R1= f(F[O], F[1], F[2], F[3], F[4], F[5], F[6], F[7]) (5.15)

Residual function for porous layer is calculated as

R2=9'V(y)—Dlg"(y) (5.16)

a

Residual function of the fluid layer involves the first, second, third and fourth order

derivatives of the trial function.
g'=G[1]+2G[2]y +3G[3]y? + 4G[4]y® + 5G[5]y* +6G[6]y° + 7G[7]y®  (5.17)
g =2G[2]+6G[3]y +12G[4]y* + 20G[5]y® + 30G[6]y* + 42G[7]y>  (5.18)
g" = 6G[3]+24G[4]y + 60G[5]y? +120G[6]y® + 210G[7]y* (5.19)
g~ = 24G[4]+120G[5]y + 360G[6]y? +840G[7]y® (5.20)
Derivatives of the equation (5.8) is substituted to the equation (5.16) and R2 is found
in terms of unknown coefficients

R2 = 24G[4] +120G[5]x + 360G[6]y2 + 840G[7]y® —Dia(zc;[z] +6G[3]y +12G[4]y?

+20G[5]y® +30G[6]y* + 42G[7]y®) (5.21)

The coefficients that the residual function depends on are given in the equation
(5.22).

R2 = g(G[0], G[1], G[2], G[3], G[4], G[5], G[6], G[7]) (5.22)
46



Before forcing the residual to zero, the number of unknowns are reduced by using
boundary conditions. Boundary conditions are written in terms of trial functions.

Each boundary condition eliminates one unknown coefficient.

As found before, at the top of the fluid layer x and y components of the velocity are

zero. Be able to stagnate fluid at the top, boundary conditions that are f(0)=0 and

f'(0)=0 should be satisfied. When these boundary conditions are satisfied 2

coefficients of the trial function of the fluid layer can be found.
f(0)=0= F[0] =0 (5.23)
f'(0)=0=F[1]=0 (5.24)
Final stage of the fluid layer equation is
f = F[2]y? + F[3]y® + F[4]y* + F[5]y° + F[6]y° + F[7]ly’  (5.25)
The coefficients that the f function depends on are given
f = f (F[2], F[3], F[4], F[5], F[6], F[7]) (5.26)

Same calculations are done for porous layer equation and intersection point of the
porous and fluid layer. As found in the mathematical modelling section, at the

bottom of porous layer ng(l) is equal to 1 and g'(l) is equal to O.

ng(1) =1= G[0]+ G[1] + G[2] + G[3] + G[4] + G[5] + G[6] + G[7] :% (5.27)

Other boundary condition is
g')=0 (5.28)
9'(1) = G[1] + 2G[2] + 3G[3] + 4G[4] + 5G[5] + 6G[6] + 7TG[7] =0  (5.29)
At the interface of fluid and porous layer continuity of velocity vector is satisfied
gn=1()= (5.30)

n(G[0]+ G[1](0.9) + G[2](0.9)? + G[3](0.9)° + G[4](0.9)" + G[5](0.9)° + G[6](0.9)° +
+G[7](0.9)) = F[2](0.9)? + F[3](0.9)° + F[4](0.9)* + F[5](0.9)° + F[6](0.9)° + F[7](0.9)’
(5.31)

9'(=1"()=> (5.32)
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G[1] + 2G[2](0.9) + 3G[3](0.9)” + 4G[4](0.9)* + 5G[5](0.9)* + 6G[6](0.9)° + 7G[7](0.9)°

= 2F[2](0.9) + 3F[3](0.9) + 4F[4](0.9)° + 5F[5](0.9)* + 6F[6](0.9)° + 7F[7](0.9)°
(5.33)

At the interface section between porous and fluid layer, continuity of shear stress is

satisfied
9" =1"¢)= (5.34)
2G[2]+ 6G[3](0.9) +12G[4](0.9)? + 20G[5](0.9)® + 30G[6](0.9)* + 42G[7](0.9)° =

2F[2]+6F[3](0.9) +12F[4](0.9) + 20F[5](0.9)* + 30F[6](0.9)* + 42F[7](0.9)°
(5.35)

The last boundary condition that is obtained by derivation of fluid layer and porous

layer equation is
g"(&)="f" (§)+% (&) +R(F" (&)= 1(&) 1" (&) (5.36)
24G[4]+120G[5](0.9) + 360G[6](0.9) +840G[7](0.9)° =

= 2F[2]+6F[3](0.9) + 12F[4](0.9)% + 20F[5](0.9)° + 30F[6](0.9)* + 42F[7](0.9)° +

%(ZF[Z](O.Q) +3F[3](0.9) + 4F[4](0.9)° +5F[5](0.9)* + 6F[6](0.9)° + 7F[7](0.9)°) +

+R((2F[2](0.9) + 3F[3](0.9) + 4F[4](0.9)* + 5F[5](0.9)* + 6 F[6](0.9)° + 7TF[7](0.9)°)* —

(F[2]y? + F[3]y® + F[4]ly* + F[5]y° + F[6]y° + F[7]y")*
*(2F[2]+ 6F[3](0.9) + 12F[4](0.9)? + 20F[5](0.9)* + 30F[6](0.9)* + 42F[7](0.9)%))
(5.37)

Thanks to boundary conditions eight unknown coefficients are found. Remaining
informations that are required for calculating eight unknown coefficients are
obtained by integration of the residual function. First four equations are valid for

fluid layer.

0.9
[ Ridy=0 (5.38)
0
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0.9
[ Riydy=0 (5.39)
0

0.9
[ Riy’dy=0 (5.40)
0
0.9
j R1y’dy =0 (5.41)
0

Last four equations are valid for porous layer.

1
[ R2dy =0 (5.42)
0.9
1
[ R2ydy =0 (5.43)
0.9
1
[ R2y*dy =0 (5.44)
0.9
1
[ R2y*dy =0 (5.45)
0.9

The number of equation is enough to solve the problem, 8 equations and 8
unknowns. MATHEMATICA functions are used to solve the problem. The result of

the f (y) function that is relate with the y component of the velocity in fluid layer is

given in the equation

f(y) =-9.433*10™y + 2.236 y2-0.541y°+0.528461y" -2.857y° +2.811y°-1.213y’
(5.42)

In the same way, the result of the f (y) function that is relate with the x component

of the velocity in the fluid layer is written in the equation
f'(y) =-9.433*10 " +4.471y-1.623y* +2.114y*-14.284y* +16.865y° -8.490y° (5.43)

The result of the g(y) function that gives information about y component of the

velocity in porous layer is seen in the equation

g(y) = -10373+73113y-221053y° +371638y°-375174y" +227398y°-76613y° +11067y"
(5.44)
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In the same way, the result of the g (y) function that is relate with the x component

of the velocity in the porous layer is written in the equation
g'(y)=73113-442107y+1.115*10°y*-1.501*10°y* +1.137*10°y*-459680y° +77470y°  (5.45)

Equation (5.46) represents the shear stress function at the porous wall, when y=1 is

substituted to the equation.

g'(y)=442107+2.235*10°y-4.503*10°y2 +4.548*10°y°-2298400y* +464820y° (5.46)

Same stages are done for 5, 6™, 8" 9™ and 10" order polynomials. Obtained
polynomials for porous and fluid layers by using 6™ order polynomial are given in

the equation (5.47) and (5.48).

f(y) =-6.6226*108y+2.3741y>-0.6608y°-1.1823y" +1.5965y°-1.1640y°  (5.47)

g(y) =-2795.89+17015.02y-43181.14y* +58510.66y°-44642.52y* +18183.86y°-3088.99y°
(5.48)

Derivatives of the equation (5.47) and (5.48) are given in the equation (5.49) and
(5.50)

f'(y) =-6.6226*107"°+4.7482y-1.9823y*-4.7291y>+7.9825y*-6.9843y" (5.49)

g'(y) =17015.02-86362.27y+175531.98y>-178570.10y* +90919.32y* -18533.96Y" (5.50)

Obtained polynomials that define f(y), g(y), f (y) and g'(y) functions for
porous and fluid layers by using 8" order polynomial are given in the equation

(5.51)-(5.54)

f(y) = 1.9301¥10°y+2.2310y%-0.5434y°-0.2104y"* +0.4334y°-2.5871y" +2.7140y"-1.07337y*
(5.51)

g(y) = -30536.05+243341.03y-849596.76y>+1.70*10°y*-2.12*10°y* +1.70*10°y° —

-852278.42y° +244431.82y" -30705.09y° (5.52)

f'(y) =-6.6226*107+4.7482y-1.9823y?-4.7291y+7.9825y*-6.9843y°  (5.53)
g'(y) =17015.02-86362.27y+175531.98y? —178570.10y° +90919.32y* —

-18533.96y° (5.54)
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The graphs of the functions for all polynomials were given in the results section of
the study.

o1






6. RESULTS

After finding equations that define fluid layer and porous layer by using semi
analytical numerical methods which are differential quadrature method and method
of moments, distribution of each velocity component is found and discussed as
follows by employing the relation between stream function and velocity components.

As mentioned before, reference study in this study is Deng and Martinez’s study. Be
able to obtain close results to the reference study, dimensionless numbers and
constants are selected as same with reference study. According to this, Re=5,
Da=0.001, n=0.9 and £=0.9

Figure 6.1 and Figure 6.2 depict the horizontal component of the velocity in fluid

layer in the defined interval (—0.9 <y <0) by using two different method. At the

top of the fluid layer, horizontal component of the velocity is zero as a result of the
no slip boundary condition. x component of the velocity increases until reaching the
maximum value that is approximately 1.6 at roughly y=0.5. It is not clearly seen
from the Figure 6.1 but the best result of the differential quadrature method is
obtained by using N=15 grid points and N=4 is the worst result. As seen from the
Figure 6.2 in which method of moments approximation is used, the best result of the
method of moment approximation is obtained by using 10" degree polynomial.
Figure 6.3 and Figure 6.4 demonstrate horizontal velocity distribution in porous layer

in the defined interval (—1<y <-0.9). At the bottom, x component of the velocity

is equal to zero as shown in the graphics. Figure 6.5 and Figure 6.6 represents
horizontal velocity combination in porous layer and fluid layer. At the end of the
graphics, approximate estimate of the error for velocity at different location was
added. Vertical velocity component distribution in fluid layer was given in the
Figure 6.7 and Figure 6.8. At the top of the fluid layer, no slip boundary condition
exists and velocity increases with the fluid depth. Cause of this rate of increase is
downward suction at the bottom. Vertical velocity component distribution in porous

layer is plotted in the Figure 6.9 and 6.10. Combining fluid layer and porous layer
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graphics, Figure 6.11 and Figure 6.12 that depict whole velocity profile of the
vertical component of the fluid was plotted.
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Figure 6.1: Horizontal velocity distribution in fluid layer (DQM).
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Figure 6.2: Horizontal velocity distribution in fluid layer (MoM).
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Figure 6.3: Horizontal velocity distribution in porous layer (DQM).
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Figure 6.4: Horizontal velocity distribution in porous layer (MoM).
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Figure 6.5: Horizontal velocity distribution (DQM).
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Figure 6.6: Horizontal velocity distribution (MoM).
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Figure 6.7: Vertical velocity distribution in fluid layer (DQM).
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Figure 6.8: Vertical velocity distribution in fluid layer (MoM).
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Figure 6.9: Vertical velocity distribution in porous layer (DQM).
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Figure 6.10: Vertical velocity distribution in porous layer (MoM).
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Figure 6.11: Vertical velocity distribution (DQM).
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Figure 6.12: Vertical velocity distribution (MoM).
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In addition to these figures, the best results are compiled in a graphic. Figure 6.13
and Figure 6.14 are plotted to show that results agree very well.
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Figure 6.13: Horizontal velocity with high accuracy.
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Figure 6.14: Vertical velocity with high accuracy.

At the end of the graphics, the tables that show values of the velocity component in
different locations and approximate estimate of the error for velocity are added.
Table 6.1 and Table 6.3 that are obtained by using differential quadrature method are
values of the vertical and horizontal velocity in different locations. It can be easily
seen from the Table 6.2 and the Table 6.4 that error was reduced with increasing
number of grid points.
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Table 6.1: Values of the vertical velocity in different locations (DQM).

Y

GRID POINTS

0,00

N=4

N=5

N=6

N=7

N=8

N=9

N=10

N=11

N=12

N=13

N=14

N=15

VALUES OF THE VERTICAL VELOCITY

0,10 | 0,03337

0,02061

0,02248

0,02174

0,02189

0,02177

0,02178

0,02177

0,02177 |0,02177

0,02177

0,02177

0,20 | 0,12298

0,08343

0,08700

0,08499

0,08500

0,08472

0,08470

0,08469

0,08468 |0,08469

0,08469

0,08469

-0,30 [0,25312

0,18669

0,18870

0,18533

0,18489

0,18441

0,18437

0,18434

0,184330,18433

0,18433

0,18433

0,40 | 0,40805

0,32417

0,32127

0,31639

0,31541

0,31473

0,31463

0,31458

0,31457 |0,31457

0,31457

0,31457

0,50 | 0,57206

0,48530

0,47590

0,46944

0,46790

0,46707

0,46690

0,46685

0,46683 |0,46683

0,46683

0,46683

0,60 | 0,72942

0,65509

0,64024

0,63266

0,63055

0,62964

0,62943

0,62937

0,62935 |0,62935

0,62935

0,62935

-0,70 [ 0,86440

0,81416

0,79740

0,78995

0,78750

0,78659

0,78637

0,78630

0,78628|0,78628

0,78628

0,78628

0,80 | 0,96128

0,93873

0,92489

0,91939

0,91732

0,91658

0,91638

0,91633

0,91631(0,91631

0,91631

0,91631

0,90 | 1,00433

1,00062

0,99361

0,99127

0,99040

0,99011

0,99002

0,99000

0,98999 |0,98999

0,98999

0,98999

0,91 | 1,00514

1,00231

0,09617

0,99416

0,99342

0,99318

0,99311

0,99309

0,99309 |0,99308

0,99308

0,99308

-0,92 |1,00525

1,00307

0,99786

0,99618

0,99557

0,99538

0,99532

0,99530

0,99530)0,99530

0,99530

0,99530

0,93 | 1,00482

1,00316

0,99893

0,99759

0,99710

0,99695

0,99691

0,99689

0,99689 |0,99689

0,99689

0,99689

0,94 | 1,00402

1,00278

0,99956

0,99855

0,99818

0,99807

0,99804

0,99802

0,99802 |0,99802

0,99802

0,99802

0,95 | 1,00300

1,00274

0,09977

0,99855

0,99858

0,99843

0,99840

0,99838

0,99836 |0,99836

0,99836

0,99836

-0,96 |1,00250

1,00213

0,99990

0,99919

0,99893

0,99885

0,99883

0,99882

0,99882 |0,99882

0,99882

0,99882

0,97 | 1,00193

1,00138

1,00004

0,99959

0,99943

0,99939

0,99938

0,99937

0,99937 |0,99937

0,99937

0,99937

0,98 | 1,00096

1,00069

1,00006

0,99984

0,99976

0,99974

0,99973

0,99973

0,99973 |0,99973

0,99973

0,99973

0,99 | 1,00027

1,00019

1,00003

0,99996

0,99994

0,99994

0,99993

0,99993

0,99993 |0,99993

0,99993

0,99993

-1,00 | 1,00000

1,00000

1,00000

1,00000

1,00000

1,00000

1,00000

1,00000

1,00000 {1,00000

1,00000

1,00000]

Table 6.2: Approximate estimate of the error for velocity in vertical direction (DQM).

GRID POINTS
y

0,0000 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15

-0,1000 | 61,9080 | 8,3233 3,3940 0,6938 0,5696 0,0505 0,0354 | 0,0106 | 0,0092 0,0000 0,0000
x -0,2000 | 47,3979 | 4,0966 2,3654 0,0109 0,3317 0,0189 0,0128 | 0,0109 | 0,0083 0,0000 0,0000
cct) -0,3000 | 35,5849 | 1,0678 1,8200 0,2391 0,2565 0,0233 0,0184 | 0,0033 | 0,0005 0,0000 0,0000
o -0,4000 | 25,8758 | 0,9033 1,5437 0,3098 0,2173 0,0302 0,0153 | 0,0038 | 0,0006 0,0000 0,0000
m -0,5000 | 17,8777 | 1,9769 1,3750 0,3285 0,1790 0,0358 0,0114 | 0,0036 | 0,0006 0,0000 0,0000
I -0,6000 | 11,3460 | 2,3207 1,1972 0,3345 0,1445 0,0338 0,0099 | 0,0029 | 0,0000 0,0000 0,0000
: -0,7000 | 6,1705 2,1026 0,9422 0,3114 0,1156 0,0284 0,0088 | 0,0027 | 0,0003 0,0000 0,0000
o -0,8000 | 2,4019 1,4963 0,5984 0,2262 0,0798 0,0223 0,0055 | 0,0022 | 0,0003 0,0001 0,0000
ﬁ -0,9000 | 0,3708 0,7055 0,2358 0,0884 0,0292 0,0089 0,0020 | 0,0010 | 0,0003 0,0001 0,0000
s -0,9100 | 0,2823 0,6169 0,2016 0,0746 0,0243 0,0068 0,0021 | 0,0005 | 0,0005 0,0004 0,0000
2 -0,9200 | 0,2173 0,5224 0,1679 0,0617 0,0192 0,0056 0,0023 | 0,0003 | 0,0003 0,0000 0,0000
E -0,9300 | 0,1655 0,4237 0,1344 0,0488 0,0149 0,0044 0,0017 | 0,0000 | 0,0000 0,0000 0,0000
w -0,9400 | 0,1237 0,3218 0,1019 0,0366 0,0113 0,0032 0,0015 | 0,0003 | 0,0003 0,0002 0,0000
|<_( -0,9500 | 0,0259 0,2973 0,1225 0,0035 0,0150 0,0030 0,0020 | 0,0020 | 0,0000 0,0000 0,0000
S -0,9600 | 0,0369 0,2229 0,0717 0,0255 0,0078 0,0022 0,0010 | 0,0001 | 0,0001 0,0000 0,0000
< -0,9700 | 0,0549 0,1340 0,0446 0,0164 0,0040 0,0014 0,0006 | 0,0001 | 0,0001 0,0000 0,0000
8 -0,9800 | 0,0270 0,0630 0,0221 0,0079 0,0021 0,0006 0,0003 | 0,0000 | 0,0000 0,0000 0,0000
& -0,9900 | 0,0080 0,0160 0,0067 0,0023 0,0004 0,0002 0,0004 | 0,0004 | 0,0004 0,0004 0,0000
<< -1,0000 | 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 | 0,0000 | 0,0000 0,0000 0,0000
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Table 6.3: Values of the horizontal velocity in different locations (DQM).

Y

GRID POINTS

0,00

N=4

N=5

N=6

N=7

N=8

N=9

N=10

N=11

N=12

N=13

N=14

N=15

0,10

0,64111

0,41649

0,44238

0,43070

0,43147

0,42990

0,42985

0,42976

0,42976

0,42975

0,42975

0,42975

0,20

1,12497

0,83704

0,84007

0,82686

0,82345

0,82177

0,82149

0,82135

0,82133

0,82133

0,82133

0,82133

0,30

1,45158

1,21767

1,18363

1,16938

1,16419

1,16205

1,16163

1,16149

1,16145

1,16145

1,16144

1,16144

0,40

1,62093

1,51439

1,45325

1,43736

1,43193

1,43001

1,42938

1,42925

1,42922

1,42921

1,42921

1,42921

0,50

1,63304

1,68325

1,61885

1,60420

1,59841

1,59730

1,59672

1,59659

1,59655

1,59655

1,59655

1,59655

-0,60

1,48789

1,68027

1,63999

1,63368

1,62841

1,62801

1,62769

1,62764

1,62762

1,62761

1,62761

1,62761

-0,70

1,18550

1,46148

1,46593

1,47594

1,47526

1,47587

1,47584

1,47590

1,47590

1,47590

1,47590

1,47590

-0,80

0,72585

0,98290

1,03562

1,06367

1,07234

1,07558

1,07623

1,07644

1,07648

1,07649

1,07649

1,07649

-0,90

0,10895

0,20057

0,27764

0,30807

0,32058

0,32509

0,32640

0,32679

0,32689

0,32691

0,32691

0,32691

-0,91

0,03891

0,10679

0,18694

0,21675

0,22875

0,23292

0,23413

0,23449

0,23458

0,23460

0,23460

0,23461

0,92

-0,01665

0,03507

0,12114

0,15108

0,16273

0,16664

0,16776

0,16809

0,16818

0,16820

0,16820

0,16820

0,93

-0,05772

0,01636

0,07443

0,10404

0,11516

0,11880

0,11984

0,12015

0,12023

0,12024

0,12025

0,12025

-0,94

-0,08431

-0,04932

0,04202

0,07032

0,08070

0,08404

0,08500

0,08528

0,08535

0,08537

0,08537

0,08537

0,96

-0,09641

-0,06560

0,02019

0,04609

0,05549

0,05848

0,05933

0,05958

0,05965

0,05966

0,05967

0,05967

0,97

-0,09403

-0,06701

0,00622

0,02862

0,03669

0,03923

0,03996

0,04017

0,04023

0,04024

0,04024

0,04024

0,98

0,07717

-0,05535

0,00156

0,01602

0,02221

0,02415

0,02471

0,02487

0,02491

0,02492

0,02492

0,02492

0,99

-0,04583

0,03241

0,00377

0,00689

0,01042

0,01155

0,01187

0,01196

0,01199

0,01199

0,01199

0,01199

VALUES OF THE HORIZONTAL VELOCITY

1,00

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

0,00000

Table 6.4: Approximate estimate of the error for velocity in horizontal direction

(DQM)

Y

GRID POINTS

0,00000

N=5

N=6

N=7

N=8

N=9

N=10

N=11

N=12

N=13

N=14

N=15

-0,10000

53,9319

5,8524

2,7119

0,1785

0,3652

0,0116

0,0209

0,0009

0,0012

0,0000

0,0000

-0,20000

34,3986

0,3607

1,5976

0,4141

0,2044

0,0341

0,0170

0,0021

0,0009

0,0000

0,0000

-0,30000

19,2096

2,8759

1,2186

0,4458

0,

1842 0,0362

0,0121

0,0034

0,0000

0,0009

0,0000

-0,40000

7,0352

4,2071

1,1055

0,3792

0,

1343 0,0441

0,0091

0,0021

0,0007

0,0000

0,0000

-0,50000

2,9829

3,9781

0,9132

0,3622

0,0695

0,0363

0,0081

0,0025

0,0000

0,0000

0,0000

-0,60000

11,4494

2,4561

0,3862

0,3236

0,0246

0,0197

0,0031

0,0012

0,0006

0,0000

0,0000

-0,70000

18,8836

0,3036

0,6782

0,0461

0,0413

0,0020

0,0041

0,0000

0,0000

0,0000

0,0000

-0,80000

26,1522

5,0907

2,6371

0,8085

0,3012

0,0604

0,0195

0,0037

0,0009

0,0000

0,0000

-0,90000

45,6798

27,7590

9,8776

3,9023

1,3873

0,4013

0,1193

0,0297

0,0067

0,0009

0,0000

-0,91000

63,5625

42,8772

13,7527

5,2447

1,7929

0,5160

0,1535

0,0379

0,0090

0,0013

0,0000

-0,92000

147,4574

71,0468

19,8182

7,1555

2,3452

0,6694

0,1987

0,0499

0,0113

0,0018

0,0000

-0,93000

-252,7805

121,9817

28,4585

9,6613

3,0607

0,8687

0,2572

0,0657

0,0150

0,0025

0,0000

-0,94000

-70,9399

217,3574

40,2371

12,8669

3,9707

1,1271

0,3307

0,0855

0,0199

0,0000

0,0000

-0,96000

-46,9628

424,9376

56,1952

16,9358

5,

1197 1,4343

0,4179

0,1140

0,0201

0,0107

0,0000

-0,97000

-40,3245

1177,7994

78,2760

21,9993

6,4695

1,8219

0,5278

0,1417

0,0323

0,0000

0,0000

-0,98000

-39,4345

-3454,6821

109,7162

27,8617

8,0166

2,2544

0,6554

0,1686

0,0321

0,0000

0,0000

-0,99000

-41,4052

-760,7968

154,6730

33,8800

9,8268

2,6795

0,7858

0,2002

0,0334

0,0000

0,0000

APPROXIMATE ESTIMATE OF THE ERROR

-1,00000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

0,0000

Table 6.5 and Table 6.7 that are obtained by using differential quadrature method are

values of the vertical and horizontal velocity in different locations. Table 6.6 and

Table 6.8 are approximate estimate of the error for velocity in vertical and horizontal

direction. Error was reduced with increasing degree of polynomials. If two semi

analytical methods compared with each other, DQM is more efficient than the MoM

in terms of computational effort. MoM takes more time than DQM.
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Table 6.5: Values of the vertical velocity in different locations (MoM).

;| POLYNOMIAL DEGREE

0,00| 5th | 6th | 7th | 8th | 9th | 10th
-0,10|0,0178 |0,0230|0,0218 | 0,0217 | 0,0218 | 0,0218
-0,20 | 0,0699 | 0,0882 | 0,0852 | 0,0846 | 0,0847 | 0,0847
-0,30 | 0,1559 | 0,1893 | 0,1857 | 0,1841 | 0,1843 | 0,1843
-0,40 | 0,2744 |0,3188|0,3169 | 0,3143 | 0,3145 | 0,3146
-0,50 | 0,4216 | 0,4687 | 0,4695 | 0,4668 | 0,4668 | 0,4668
-0,60 | 0,5884 | 0,6286 | 0,6315 | 0,6295 | 0,6293 | 0,6293
-0,70 | 0,7581 | 0,7842|0,7875 | 0,7864 | 0,7863 | 0,7863
-0,80 | 0,9044 |0,9149|0,9167 | 0,9163 | 0,9163 | 0,9163
-0,90 | 0,9887 | 0,9897 | 0,9900 | 0,9900 | 0,9900 | 0,9900
-0,91 | 0,9918 | 0,9926 | 0,9928 | 0,9928 | 0,9928 | 0,9928
-0,92 [ 0,9942 | 0,9948 | 0,9949 | 0,9949 | 0,9949 | 0,9949
-0,93 [ 0,9959 | 0,9963 | 0,9965 | 0,9965 | 0,9965 | 0,9965
-0,94 | 0,9971 | 0,9975 | 0,9976 | 0,9976 | 0,9976 | 0,9976
-0,95 | 0,9981 | 0,9984 | 0,9985 | 0,9985 | 0,9985 | 0,9985
-0,96 | 0,9988 | 0,9990 | 0,9991 | 0,9991 | 0,9991 | 0,9991
-0,97 | 0,9993 | 0,9995 | 0,9995 | 0,9995 | 0,9995 | 0,9995
-0,98 | 0,9997 | 0,9998 | 0,9998 | 0,9998 | 0,9998 | 0,9998
-0,99 | 0,9999 | 0,9999 | 0,9999 | 0,9999 | 0,9999 | 0,9999
-1,00 | 1,0000 | 1,0000 | 1,0000 | 1,0000 | 1,0000 | 1,0000

VALUES OF THE VERTICAL VELOCITY

Table 6.6 Approximate estimate of the velocity error in vertical direction(MoM)

; POLYNOMIAL DEGREE

0,00 6th 7th 8th 9th 10th
-0,10( 22,6794 | 5,1936 (0,4710| 0,1552 | 0,0092
-0,20|20,7193 | 3,5519 |0,7021|0,1117 | 0,0093
-0,30(17,6492 | 1,9152 |0,8832|0,1221 | 0,0043
-0,40|13,9175| 0,6040 |0,8228|0,0750 | 0,0124
-0,50|10,0471 0,1608 |0,5773 | 0,0028 | 0,0028
-0,60| 6,3882 | 0,4697 (0,3223|0,0276 | 0,0022
-0,70| 3,3222 |0,4191|0,1373|0,0155| 0,0001
-0,80| 1,1482 | 0,1953 |0,0426| 0,0010 | 0,0004
-0,90| 0,1055 | 0,0336 [0,0038|0,0004 | 0,0001
-0,91| 0,0776 | 0,0250 |0,0027 | 0,0003 | 0,0001
-0,92| 0,0597 | 0,0187 (0,0020| 0,0002 | 0,0001
-0,93| 0,0486 | 0,0134 (0,0014|0,0003 | 0,0002
-0,94| 0,0400 | 0,0098 |0,0026|0,0013 | 0,0002
-0,95| 0,0324 | 0,0066 |0,0007|0,0004 | 0,0003
-0,96| 0,0273 | 0,0039 |0,0012 | 0,0004 | 0,0003
-0,97| 0,0159 | 0,0020 (0,0020| 0,0015 | 0,0002
-0,98| 0,0080 | 0,0007 {0,0000|0,0001 | 0,0000
-0,99| 0,0022 | 0,0001 |0,0000 | 0,0000 | 0,0000
-1,00| 0,0000 |0,0000 (0,0000|0,0000 | 0,0000

APPROXIMATE ESTIMATE OF THE ERROR
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Table 6.7: Values of the horizontal velocity in different locations (MoM).

;| POLYNOMIAL DEGREE

000| 5th | 6th | 7th | 8th | oth | 10th
0,10 03515 0,4510 0,4317 0,4291 0,4298 0,4297
0,20 0,6913 0,8431 0,8283 0,8201 0,8213 0,8213
0,30 1,0259 1,1661 1,1715 1,1610 1,1612 1,1615
0,40 1,3390 1,4123 1,4364 14304 1,4289 1,4292
0,50 1,5905 1,5680 1,5958 1,5984 1,5966 1,5965
0,60 1,7175 1,6053 1,6193 16283 1,6279 16276
0,70 1,6333 1,4731 1,4659 14753 1,4760 14759
0,80 1,2282 1,0896 1,0707 1,0759 1,0765 1,0765
0,90 0,3691 0,3334 0,3256 0,3268 0,3270 0,3269
0,91 0,2707 0,2474 0,2416 02425 0,2426 0,2425
0,92 0,1984 0,1838 0,1791 0,1798 0,1798 0,1798
0,93 0,1462 0,1365 0,1326 0,1330 0,1330 0,1330
0,94 0,089 0,1011 0,0977 0,0980 0,0979 0,0980
0,95 0,0819 0,0742 0,0713 0,0715 0,0716 0,0716
0,96 0,0616 0,0533 0,0510 0,0512 0,0514 0,0513
0,97 0,0451 0,0367 0,0351 0,0353 0,0354 0,0353
0,98 0,0301 0,0230 0,0221 0,0222 0,0223 0,0222
0,99 0,0153 0,0111 0,0107 0,0108 0,0108 0,0108
-1,00 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

VALUES OF THE VERTICAL VELOCITY

Table 6.8: Approximate estimate of the error for velocity in horizontal direction
(MoM).

; POLYNOMIAL DEGREE

0,00 6th 7th 8th 9th 10th
-0,10| 22,0505 | 4,4589 |0,60870,1568 | 0,0154
-0,20| 18,0044 | 1,7863 |0,9998 | 0,1546 | 0,0017
-0,30| 12,0182 | 0,4652 |0,9096 | 0,0198 | 0,0250
-0,40| 5,1923 | 1,6799 |0,4237|0,0994 | 0,0168
-0,50| 1,4343 | 1,7408 |0,1583|0,1077 | 0,0081
-0,60| 6,9908 | 0,8664 |0,5558|0,0270 | 0,0160
-0,70(10,8737| 0,4939 |0,6372| 0,0495 | 0,0041
-0,80(12,7184| 1,7642 |0,4842|0,0511 | 0,0009
-0,90(10,6888| 2,3986 |0,3776|0,0358 | 0,0125
-0,91| 9,3861 | 2,4346 |0,3761|0,0326 | 0,0091
-0,92| 7,9525 | 2,5967 |0,3649| 0,0056 | 0,0222
-0,93| 7,1020 | 2,9607 |0,3495| 0,0609 | 0,0669
-0,94| 7,6601 | 3,5150|0,3503|0,0716 | 0,0762
-0,95| 10,3548 | 4,1194 (0,3841|0,0214 | 0,0038
-0,96| 15,5323 | 4,5360 (0,4461|0,2132 | 0,1459
-0,97|22,8646 | 4,5244 10,5007 | 0,3990 | 0,2894
-0,98|31,1156 | 4,0036 (0,4978|0,4149 | 0,2972
-0,99| 38,0224 | 3,2444 (10,4188 0,1891 | 0,1132
-1,00| 0,0000 | 0,0000 |0,0000 | 0,0000 | 0,0000

APPROXIMATE ESTIMATE OF THE ERROR

65






7. DISCUSSION AND CONCLUSION

In this study, we consider semi analytical numerical investigation of uniform flow
over a porous plane with suction perpendicular to the surface by using semi
analytical numerical methods. Semi analytical numerical methods are differential
quadrature method and method of moments. Porous media is modeled by using
Biot’s theory of poroelasticity and in addition to this, Brinkman-extended Darcy
equation is used in the reference study. At the interface of the fluid layer and porous
layer, continuity of velocity vector and continuity of shear stress are used.

It is easily seen from the graphs that vertical velocity increases from top to the
bottom because of the downward suction. The maximum horizontal velocity is 1.64
and at the bottom there is no horizontal velocity. Also Deng and Martinez’s study is
added to the graphs to be reference. At the end of the graphics, approximate estimate

of the error for velocity are added in the table.

This study derived an alternative semi analytical solution to a two dimensional flow
field is derived. Flow field of a two dimensional flow is possible to be solved new
approaches. Meaningful solutions can be obtained without evaluation of the
empirical constants. Present approaches and methods are able to simplify the
equations and algorithm process. The technique and method can be applied to the

other studies.
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