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NUMERICAL MODELLING OF UNIFOM FLOW OVER A POROUS 

PLANE WITH SUCTION PERPENDICULAR TO THE SURFACE BY 

USING SEMI ANALYTICAL NUMERICAL METHODS 

 

SUMMARY 

 

In this thesis numerical modelling of uniform flow over a porous plane with suction 

in vertical direction to the plane by using semi analytical numerical methods were 

carried out. Semi analytical numerical methods are differential quadrature method 

and method of moments. 

In the first section purpose of the thesis and literature review were given. Then in the 

theory section, required theoretical information was given. Continuity equation, 

momentum equation and Biot’s theory of poroelasticity were used as governing 

equations. Reynold and Darcy are dimensionless numbers. In the mathematical 

modelling section, firstly problem was defined. In this study the flow is 2 

dimensional, incompressible, viscous and Newtonian. So density and viscosity are 

constant. By using equations in the theory section, dimensionless governing 

equations of the problem were found. After that employing the suggestion by Deng 

and Martinez, stream function was selected. Final form of the fluid layer equation 

and porous layer equation were found. Defining boundary conditions at the interface 

is the most important part of the mathematical modelling. In this study continuity of 

the velocity vector and shear stress were used as boundary conditions.  

In other sections, semi analytical numerical methods were explained and velocity 

distribution in the fluid layer and porous layer are found. In the result section, graphs 

were plotted and were interpreted in the section. Also approximate estimate of the 

error calculation was done. According to this, it is seen that error was reduced with 

increasing number of grid points. 

It is easily seen from the graphics that vertical velocity increases from top to the 

bottom because of the suction perpendicular to the surface. And at the bottom no 

horizontal velocity component exists. Thanks to this study alternative semi analytical 

solution to a two dimensional flow is derived. Without empirical constants 

meaningful solutions are obtained. 
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YÜZEYE DİK YÖNDE EMME OLAN GÖZENEKLİ ORTAMA GELEN 

ÜNİFORM AKIŞIN YARI ANALİTİK YÖNTEMLERLE SAYISAL 

MODELLENMESİ 

 

 

ÖZET 

Bugüne kadar gözenekli ortam hakkında çok fazla çalışma yapılmıştır. Çünkü 

gözenekli ortam günlük hayatımızda her alanda karşımıza çıkmaktadır. Küçük 

ölçekte düşündüğümüzde kanın mikroskobik seviyedeki akışından büyük ölçekte 

jeotermal bilimlere kadar geniş bir alanda gözenekli ortam problemini görebilmek 

mümkündür. Gelişen teknoloji ile beraber ortaya çıkan çalışmalar daha kapsamlı 

sonuçlar vermeye başladıkça gözenekli ortam günden güne daha büyük bir önem 

kazanmıştır. Biyomekanik sistemlerdeki taşıma işlemlerinden havacılıkta kullanılan 

kabin içi filtre tasarımına kadar geniş bir uygulama alanında yapılan çalışmalar 

günümüzde de devam etmektedir. Nükleer mühendislik, biyomedikal sistemler, 

havacılık, jeotermal bilimler sadece birkaç örnektir. Bu kadar sık karşılaştığımız bir 

ortama gözenekli ortam diyebilmemiz için bazı şartlara ihtiyacımız vardır. İlk 

şartımız malzeme kendi boyutları ile karşılaştırıldığında çok küçük boşluklara sahip 

olmalıdır ve bu boşluklar hava ya da su gibi akışkanlar ile dolu olmalıdır. İkinci şart 

ise akışkan katı malzemenin bir ucundan girip diğer ucundan çıkabilmelidir. 

Bahsedilen bu iki şart sağlandığında bulunan ortam gözeneklidir kabulü yapılabilir. 

Bu çalışmada yüzeye dik yönde emme olan gözenekli bir ortama gelen üniform 

akışın yarı analitik yöntemlerle sayısal modellenmesi üzerine çalışılmıştır.  

Bu çalışmada yüzeye dik yönde emme olan gözenekli ortama gelen üniform akışın 

iki farklı yarı analitik yöntem kullanarak sayısal modellemesi yapılmıştır. Kullanılan 

yarı analitik yöntemler diferansiyel kuadratur yöntemi (DQM) ve moment 

yöntemidir (MoM). Birinci bölümde öncelikle çalışmanın önem ve içeriğinden 

bahsedilmiş ve sonra konu ile ilgili yapılan diğer çalışmalar hakkında bilgi 

verilmiştir. 

İkinci bölümde matematiksel modelleme kısmında gerekli olan teorik bilgilerden 

bahsedildi. Öncelikle bölümün amacı ve kapsamından bahsedildi. Devamında 

akışkan hareketini yöneten denklemler verildi. Süreklilik ve momentumun korunumu 

denklemleri akışkanı tanımlamak için kullanılan denklemlerdir. Ayrıca akışkanı 

tanımlayan denklemleri düzenlerken ihtiyaç duyulan boyutsuz sayılar hakkında da 

bilgi verildi. Reynold sayısı ve Darcy sayısı matematiksel modelleme bölümünde 

kullanılan boyutsuz sayılardır. Teori kısmının bir diğer önemli kısmı ise gözenekli 

ortam akışını tanımlayan modeli belirlemektir. Akış modellerini tanımlayan 

denklemler ilk olarak deneysel çalışma sonucu elde edilen ve deneysel katsayılar 

içeren denklemlerdir. Gözenekli ortamda akışı tanımlayan ilk yasa Henry Darcy 

tarafından 1856 yılında geliştirilmiştir. Darcy yasası Reynold sayısının 1’den küçük 

olduğu, yani düşük hızlı, sıkıştırılamaz ve Newtonyen akışkanlar için geçerlidir. 

Darcy denklemi deneysel bir bağıntıdır ve Reynold sayısının 1den büyük olduğu,  

yani yüksek hızlı akışlarda Darcy denklemi geçersiz olmaya başlar. Çünkü Darcy 

denklemi akışın doğrusal olmayan etkisini modelleyemez. Ayrıca denklem viskoz 
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etkileri de içermemektedir. 1947 yılında Brinkman tarafından Darcy denklemi tekrar 

düzenlenmiştir ve Darcy denkleminin içermediği viskoz etkiler Brinkman 

denkleminde sağlanmıştır. Diğer önemli denklem ise 1931 yılında Richard tarafından 

geliştirilmiştir.  

Üçüncü bölüm matematiksel modelleme kısmına ayrılmıştır. Giriş kısmında 

öncelikle bölümün içeriğinden, problemin detaylarından ve akışı tanımlamak için 

yapılan kabullerden bahsedilmiştir. Bu çalışmada iki boyutlu akış için sıkıştırılamaz, 

viskoz ve Newtonyen olduğu kabulü yapılmıştır. Problem gözenekli ortam ve 

akışkan ortam olmak üzere iki farklı ortamdan meydana gelmektedir.  Girişin 

devamında gözenekli ortamı tanımlayan model seçimi yapılmıştır. Gözenekli ortamı 

tanımlayan denklem için Biot’un poroelastisite teorisinden faydalanılmıştır. Referans 

olarak kullanılan Deng ve Martinez’in çalışmasında ise Brinkman denklemi 

kullanılmıştır. Kabuller yapılıp akışkan ve gözenekli ortamları tanımlayan modeller 

belirlendikten sonra yüzeye dik yönde emme olan gözenekli akış probleminin 

matematiksel modellemesine geçilmiştir. Bu kısmı tamamlarken teori bölümünde 

verilmiş olan akışkan hareketini yöneten süreklilik ve momentum denklemleri ile 

boyutsuz sayılardan yararlanılmıştır. Problemi matematiksel olarak tanımladıktan 

sonra iki farklı bölüm için de denklemlerin boyutsuz halleri bulunmuştur. Gözenekli 

ortamın matematiksel ifadesi dördüncü dereceden lineer bir diferansiyel denklem 

iken akışkan ortamın matematiksel ifadesi dördüncü dereceden lineer bir diferansiyel 

denklem olarak bulunmuştur. Problemin matematiksel ifadesini bulduktan sonra 

diğer bir husus bulunan denklemleri çözebilmek için gereken yeter sayıdaki 

başlangıç ve sınır şartlarını belirlemektir.  Bu çalışmada iki ortam için de bulunan 

denklemleri çözebilmek için toplamda 8 tane şart gerekmektedir. Problemin üst 

yüzeyinde iki hız bileşeninin de sıfıra eşit olması, alt yüzeyde sadece emme kaynaklı 

y yönünde hız bileşeninin oluşu, iki yüzeyin kesişim noktasında da hızların 

sürekliliği ve kayma gerilmesinin sürekliliği başlangıç ve sınır şartları olarak 

belirlenmiştir. Özellikle iki ortamın kesişiminde kullanılan sınır şartları farklı 

problemlere ve çalışmalara göre değişiklik göstermektedir ve sadece bu sınır şartları 

üzerine yapılan farklı çalışmalar mevcuttur. 

Dördüncü bölümde çalışmada kullanılan yarı analitik yöntemlerden biri olan 

diferansiyel kuadratur yöntemi anlatılmıştır. Öncelikle genel hatlarıyla yöntemin 

tarihçesi ve yapısı verilmiştir. DQM ilk defa Bellman tarafından 1971 yılında ortaya 

konmuştur. Devamında yöntemin içinde bulunan ağırlıklı katsayıları hesaplamak için 

geliştirilen farklı yaklaşımlar ve bu yaklaşımların birbirlerine göre avantaj ve 

dezavantajlarından bahsedilmiştir. Diferansiyel kuadratur yönteminde çözümün 

hassasiyeti hem düğüm noktası sayısına hem de düğüm noktalarının dağılımına 

bağlıdır. Lineer türden denklemlerin çözümünde eşit aralıklı düğüm noktası seçimi 

yeterliyken lineer olmayan denklemlerde durum değişmektedir. Çalışmada sınır 

şartlarına yaklaşıldığında sonuçlar kötüleştiği için sınırlara doğru daha sık adım 

aralıklarının kullanıldığı Chebyshev-Gauss-Lobatto nokta dağılımı tercih edilmiştir. 

Diferansiyel kuadratur yönteminin detayları verildikten sonra akışkan ortam ve 

gözenekli ortam denklemleri DQM ile çözülmüştür. 

Beşinci bölüm ise ağırlıklı artıklar yöntemlerinden moment yöntemine ayrılmıştır. 

Moment yöntemi 1947 yılında Yamada tarafından geliştirilmiştir ve 1951 yılında 

Fujita yöntemin gelişmesine katkıda bulunmuştur. 4 madde takip edilerek bütün 

ağırlıklı artıklar yöntemiyle sonuca ulaşmak mümkündür. Öncelikle bilinmeyen 

katsayılar ile problemi tanımlayacak olan bir polinom oluşturulur. İkinci adımda bu 

polinom başlangıç ve sınır şartları tarafından sağlanır ve dolayısı ile bu şartlara göre 
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bilinmeyen sayısı düşürülür. Üçüncü adımda problemi tanımlayan artık fonksiyon 

belirlenir. Ve son adımda ağırlıklı artık fonksiyonları sıfıra eşitlenerek bilinmeyen 

tüm katsayılar bulunarak problem çözülmüş olur.  

Altıncı bölüm ise sonuç bölümüdür. Bu bölümde gözenekli ortam ve akışkan ortam 

için DQM ve MoM yöntemleri kullanılarak bulunan x ve y yönündeki hız 

bileşenlerinin grafikleri çizilmiş ve hata hesabı yapılmıştır. 

Son bölüm olan yedinci bölümde de sonuçlar değerlendirilip çalışma 

tamamlanmıştır. 
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1. INTRODUCTION 

In the introduction section, firstly purpose of the thesis was given for creating 

general point of view and then important developments of flow in the porous media 

were shared. 

1.1 Purpose of Thesis 

Fluid flow behavior in porous media is conundrum. This study deals with study on 

numerical modelling of uniform flow over a porous plane with suction perpendicular 

to the plane by using semi analytical numerical methods. In recent years, the study of 

flow over a porous plane with downward suction has gained a lot of importance 

because porous plane with downward suction has wide range of application areas. 

Several sciences that have carried out many researchers in this field are geothermal 

science, biological transport process in biological sciences, flow filtration and energy 

engineering disciplines. A porous medium is defined by the total volume fraction, 

which are fluid layer and porous layer. In contrast to the dynamics of large fluid 

compartments, the dynamics of fluids in porous media is more complicated. There 

are many reasons for this. First and the most important reason is efficient dissipation 

of the fluid’s kinetic energy in porous media. The other reason is complexity of the 

internal dynamic for multiple fluids. Be able to make correct assumptions and 

identify negativities, many scientists focus on this issue. Most research issue through 

porous media problems are focus on the defining interface. 

In both theoretical perspective and experimental perspective, the analysis of interface 

conditions is very important and updated. Many different types of boundary 

conditions at the water porous interface have been discussed.  In this study continuity 

of velocity and continuity of shear stress are used as a boundary conditions as seen in 

the mathematical modelling section. Another important thing is defining porous flow 

model. As will mentioned in the theory section, there are 4 different porous flow 

models which are Brinkman equation, Darcy’s equation, Richard’s equation and 

Biot’s theory of poroelasticity.  
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The equation of uniform flow over a porous plane with downward suction is solved 

by using different numerical techniques. One of them is differential quadrature 

method and the other one is the method of moments. In the next subtitle of the study, 

historical development of the studies about porous media is given. Then required 

background to understand the mathematical modelling of the problem was explained. 

After this, mathematical modelling of the problem was given. And numerical 

methods are defined and solution procedures were mentioned. In conclusion, results 

of each numerical method is found and compared according to each other.  

1.2 Literature Review 

In recent years rather a lot of interest has been taken in the development of flow in 

the porous media by reason of its importance in a variety of natural phenomena, 

biological sciences, energy stocking systems, geothermal sciences and industrial 

processes. The developments started with experimental studies in 1856 and have 

been continuing to this day by using different boundary conditions and variable 

geometrical structures.  

First empirical studies are done by Darcy in 1856 [1]. It was an important starting 

point for theoretical studies because it is impossible to solve empirically three 

dimensional more general cases. Darcy’s study is the extension to more general cases 

that are difficult to perform experimentally. This kind of cases deserving theoretical 

studies. The first studies which are especially difficult to perform experimentally are 

groundwater flows and oil recovery processes. After Darcy’s study, theoretical 

studies also started. 

A large number fluid particles flowing in pores are seen in the porous media. It is 

very difficult to determine initial and final position of the fluid particles in the flow. 

Flow through channel in porous media problems are known as Berman flow. 

Because he was the first one to interest with this issue in 1953. Flow in a channel 

with a permeable bottom and uniform outward suction is studied by Berman. He 

investigated effect of wall porosity on the two dimensional laminar flow of an 

incompressible fluid in a channel.  According to Berman’s work, the effect of the 

channel dimensions, position coordinates and fluid properties on the velocity 

components and the pressure are defined. He reduced the Navier Stokes equation to 

the third order, nonlinear, ordinary differential equation [2]. Further contribution has 
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been made by Sellars in 1955 [3]. He extended the problem that is studied by 

Berman by using very high Reynold numbers. In 1956 Seo Young studied on 

numerical modelling of heat transfer in a channel with fluid saturated porous media. 

By using finite element techniques, the two dimensional equation were solved [4]. In 

1979 the flow in a channel with one porous wall is studied by Green [5]. 

More particularly flow through porous media problems are focused on the boundary 

conditions at the interface separating the pore fluid from the porous medium flow. 

This has been an important research issue since the Beavers and Joseph in 1967 [6]. 

These authors postulated a discontinuity in the interfacial tangential velocity.  In 

1995, Ochoa-Tapia and Whitaker postulated continuity of tangential velocity and 

discontinuity of shear stress [7]. In 1999, Cieszko and Kubik adopted discontinuity 

of both tangential velocity and shear stress [8]. Deng and Martinez postulated 

continuity of tangential and discontinuity of shear stress in 2005 [9]. They used 

Brinkman-extended Darcy law relationship to define the porous medium. Continuity 

of the velocity vector at the viscous zone interface is studied by Bars and Worster in 

2006 [10]. Multiple domain models which include more complex formulations such 

as the Brinkman equation are retained in the upscaling process by Auriault in 2009 

[11]. 
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2. THEORY 

2.1 Introduction 

In this section, the problem described in different point of views. In order to 

understand mathematical modelling of the uniform flow over a porous plane with 

suction perpendicular to the plane easily requires to theoretical knowledge. Before 

mathematical modelling, some required informations were given for understanding 

easily such as governing equations, dimensionless numbers, different pore flow 

models and so on. Understanding the equations that are mentioned above are 

necessary to understand the core of the problem. After the preliminary informations, 

mathematical modeling was given. 

2.2 Governing Equations 

Fundamental governing equations of the fluid dynamics which are the basic 

equations of the physical systems are conservation of mass (the equation of 

continuity), conservation of momentum (the Navier Stokes equations) and 

conservation of energy equations (first law of thermodynamics). Complete 

understanding of these equations make it possible to apply other specific cases and 

tasks. Governing equations are based upon conservation of mass, conservations of 

energy and Newton’s second law.  

2.2.1 Continuity equation 

The starting point of the all conservation law is  

…………………………………
_

( . )
D

V
Dt t

 



  


…………………………...(2.1) 

in which  is any property of the fluid, D represent the material derivative,  is the 

divergence operator, t is time and 
_

V is the velocity. 

 Basically the law of conservation of mass is  
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………………………………….. .m V const  ……………………………...(2.2) 

in which  is density and V is volume. According to principle of mass conservation, 

observed fluid size and shape will change, its mass will remain same. Mathematical 

representation of the mass conservation is  

…………………………  
D D DV D

m V V
Dt Dt Dt Dt


    …………………...(2.3) 

Be able to arrange equation, alternative expressions were given. The rate of volume 

increase of a particle per unit volume is equal to total strain rate. This relation was 

given in equation (2.4) 

………………………………..
1

xx yy zz

DV

V Dt
     ……………………….....(2.4) 

in which  represents the strain rate. Another expression for strain rate that was 

written in equation (2.5) is relate with velocity 

…………………....
_ _

.xx yy zz

u v w
V divV

x y z
  

  
       

  
……………...(2.5) 

The improved expression for rate of volume increase of a particle is arranged in 

equation (2.6).  

…………………………………….
_DV

VdivV
Dt

 ………………………………(2.6) 

Equation (2.6) is substituted to the equation (2.3). Then all sides of the equation are 

divided by volume and equation of continuity is obtained in its general form. 

………………………………….
_

0
D

divV
Dt


  ……………………………..(2.7) 

Equation (2.7) is equal to the equation (2.8) 

………………………………… 
_

( ) 0div V
t





 


………………………….....(2.8) 

Equation (2.8) is called as continuity equation in conservation form. It refers to 

unsteady flow in a compressible flow. 
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2.2.2 Momentum equation  

The principle of conservation of momentum is an application of Newton’s second 

law of motion. 

………………………………………. F ma …………………………………..(2.9) 

in which m is mass and a is acceleration. Each element of the equation (2.9) is 

divided by the volume. We worked with velocity and density instead of acceleration 

and mass. Hence we arranged equation (2.9) 

……………………………..

_

body surface

DV F
f f

Dt V
    …………………….…(2.10) 

in which f is applied force per unit volume on the fluid particle.  

It is divided into two different types which are body forces and surface forces. The 

body forces apply to the entire mass and formulation is 

……………………………………... bodyf g ………………………………...(2.11) 

in which g is acceleration of gravity and    is density. 

The surface forces that are shown in Figure 2.1 are applied by external stresses. All 

stresses that are seen in the Figure 2.1 are positive. 

 

Figure 2.1: Notation for stresses. 
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The stress tensor can be written as 

…………………………………

xx xy xz

ij yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

……………………….....(2.12) 

Net force on the element in the x direction due to stress is written in the equation 

(2.13). 

…………….. ,

yxxx zx
x net x y z y x z z x ydF d d d d d d d d d

x y z

      
      

      
…….....(2.13) 

,x netdF  is divided by volume x y zd d d . Hence force per unit volume is found and 

written in the equation (2.14) 

…………………………………. .
ij

surface ij

j

f
x





  


…………………………..(2.14) 

Equation (2.14) is substituted to the equation (2.10).  

………………………………….. . ij

DV
g

Dt
    …………………………..(2.15) 

It remains only to express . ij in terms of the velocity V. This is done by relating 

ij to ij by using some viscous deformation rate law for a Newtonian Fluid. The 

simpler form of the viscous deformation law is given in the equation (2.16).  

……………………………… 2xx xxp K C divV     ……………………......(2.16) 

Indicial notation form of the simpler form of the viscous deformation law is written 

in the equation (2.17).  

………………………...
ji

ij ij ij

j i

uu
p divV

x x
    

 
        

…………...……(2.17) 

in which   is volume viscosity or dilatational viscosity. Hence representation of 

. ij in terms of the velocity component  is calculated.  
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Representations of surface forces and body forces in desired form are substituted to 

the equation (2.10). Found equation is the famous equation of motion that name is 

Navier Stokes equation that named after Claude Louis Navier and George Gabriel 

Stokes. Indicial notation of the Navier Stokes equation as a single vector equation is  

……………..
ji i k

i ij ij

j j i k

uDu u u
g p

Dt x x x x
     

    
                 

………..(2.18) 

If the flow is incompressible, k
ij

k

u

x
 




 is equal to zero. The flow is incompressible in 

this study. Vectorial representation of the Navier Stokes equation in three different 

directions is 

x direction 

…………
2 2 2

2 2 2x

u u u u P u u u
u v z g

t x y z x x y z
  

         
          

          
……(2.19) 

y direction 

…………
2 2 2

2 2 2y

v v v v P v v v
u v z g

t x y z y x y z
  

         
          

          
…….(2.20) 

z direction 

…….....
2 2 2

2 2 2w

w w w w P w w w
u v z g

t x y z w x y z
  

         
          

          
…..(2.21) 

2.3 Dimensionless Numbers 

There are too many reasons for using dimensionless numbers. To begin with, 

dimensionless numbers are not just numbers. They contain significant informations 

about characteristic of a given flow. Dimensionless numbers give information about 

how the system will behave and allow for comparisons between different systems. 

Also helps us to scale problem. This minimize the numerical errors of the study. In 

this way complexity of the problem abates. In the subtitle of the dimensionless 

numbers section, some important dimensionless numbers that was used in the 

mathematical section were given. 
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2.3.1 Reynolds number 

The history of the Reynolds number that back to in 1908 that is still valid today. 

Reynold is the ratio of inertial forces to viscous forces. Formulation of the Reynolds 

number is 

…………………………………….... Re
VL


 ………………………………..(2.22) 

in which  is density, L is length, V is velocity and   is dynamic viscosity of fluid. 

Reynolds number is used to analyze different flow regimes such as laminar, turbulent 

and transitional. High Reynolds number means that inertial forces are higher than 

viscous forces. When the inertial forces are dominant, flow is named as turbulent. 

Smaller Reynolds number means viscous forces are bigger than inertial forces. When 

the viscous forces are dominant, flow is named as laminar  

2.3.2 Darcy number 

Darcy number gives information about effect of the permeability of the medium 

versus its cross sectional area. Formulation of the Darcy number is  

……………………………………….
2

pk
Da

H
 ………………………………..(2.23) 

in which pk  is permeability of the porous medium and H is the total height of the 

channel. 

2.4 Porous Flow Models 

The importance of research in flow, heat and mass transfer in porous media are 

increase during the past several decades. The importance of this research comes from 

in many engineering applications. Viscous flow through porous media has a wide 

range of application area such as thermal insulation, air filter technology, petroleum 

industries, electronic cooling, geothermal systems, biological systems and so on [12]. 

As a consequence of these wide range of application area defining equations that 

describing viscous flow through porous media attract considerable great theoretical 

and experimental attention from the scientific community.  Be able to reduce 

complexity of these physical problems, porous media models are improved by 
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scientist and they are used widely in the literature. Fundamentally there are three 

porous media models used in the theoretical studies. These three models are 

Brinkman’s equation, Darcy’s equation and Richard’s equation. Each porous media 

model has own specific advantages.  

2.4.1 Brinkman equation 

As mentioned before, there has been increasing rate of interest on heat and fluid 

flows through porous media from varying disciplines such as engineering and 

science. The Brinkman equations describe flow through porous media where 

momentum transport by shear stresses in the fluid is important.   

The Brinkman equation is applicable for fluid that moves at high velocities and high 

permeability areas. The common problem type that is solved by using Brinkman 

equation is combinations of free flow and porous media. These type of problems are 

seen in the filtration problem and separation problem of the chemical reaction 

engineering such as modelling of porous catalysts in monolithic reactors. In the 

Brinkman equation, velocity and pressure are dependent parameters.  

……………………………….
( )

( )
p

brdiv u Q
t

 



 


…………………………(2.24) 

in which brQ  is fluid source, p  represent porosity. The momentum equation in the 

Brinkman form is  

…....
1 2

( . ) ( ( ) ) ( )
3

T

p p p

u u
u div divp div divu divu divu I

t


 

  

     
                

v…….    

 ……………………………….. 1

2

br

p

Q
k u f




 

    
 

…………………………..(2.25) 

in which I is identity matrix, T denotes temperature,   is the dynamic viscosity,  k 

denotes the porosity tensor and f represents volume forces and gravity 
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2.4.2 Darcy’s law equation 

Darcy’s Law equation has been investigated the flow of fluids through permeable 

material by a French hydraulic engineer named Henry Darcy in 1856. In the Darcy’s 

equation fluid viscosity, pore structure and pressure gradient are the base parameters 

in order to define the fluid velocity.  It has a major solving effectiveness for low fluid 

velocity due to friction resistance. Darcy’s velocity is given by 

……………………………..... ( )
k

u divp gdivh


   ………………………...(2.26) 

in which k is the porous media permeability, u is Darcy’s velocity 

2.4.3 Richard’s equation 

The Richard’s equation has been introduced by Richards in 1931. The Richard’s 

equation is basic theoretical equation for vertical unsaturated flow. It has many 

variations but both forms of Richard’s equation are used in unsaturated-zone 

modelling. By using Reynolds Transport Theorem, one directional flow in an 

unsaturated porous media is 

…………………………………….. 0
q

t z

 
 

 
……………………………….(2.27) 

in which   and q are unknowns. Experimental expression that is proven by Darcy is  

……………………………………….. q Ki  ………………………………...(2.28) 

in the above expression, K is hydraulic conductivity and i is hydraulic gradient. This 

expression is only valid for saturated flow. Formulation of the hydraulic gradient is  

…………………………………...
p

i z
z g

 
  
  

……………………………..(2.29) 

Mathematical representation of the hydraulic conductivity is  

…………………………………....
p

z H
g

 
  

 
……………………………...(2.30) 

in which H is equal to suction head and gravity head 
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In unsaturated conditions, the expression for Darcy velocity is 

……………………………………..
H

q K
z


 


………………………………..(2.31)

This expression should be valid for unsaturated conditions. Be able to satisfy this, 

hydraulic conductivity H should be function of both   and z 

…………………………………...
( )z

q K
z

 
 


…………………………….(2.32) 

……………………………………
z z

  



  


  
………………………………(2.33) 

in which   is the volumetric soil water content, 
z




 is the gradient of water content 

in vertical direction, 







 is specific water capacity. 

……………………………….... ( 1)q K
z

 



 
  

 
…………………………...(2.34) 

soil water diffusivity D is equal to 

……………………………………… D K








……………………………….(2.35)

D is substituted to the equation 

………………………………….. q D K
z

 
    

……………………………(2.36) 

One directional Richard’s Equation in an unsaturated porous media is 

………………………………… D K
t z z

    
     

…………………………(2.37) 

Thanks to   based form, calculation is faster than alternatives.  
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3. MATHEMATICAL MODELLING 

3.1 Introduction 

In the present study, numerical modelling of uniform flow over a porous plane with 

downward suction by using semi analytical numerical methods was studied. 

Numerical models that mentioned before are differential quadrature method and 

method of moments. Schematic diagram of the study that a steady uniform flow 

passes through a porous plane is seen in the Figure 3.1. 

 

Figure 3.1: Schematic representation of the problem. 

In the mathematical modelling section, the problem was divided into two different 

sections such as fluid layer and porous layer as seen in the schematic representation. 

The subscript 1 and 2 were used to separate the fluid layer and the porous layer from 

each other. According to this two different layer, the governing equations and 

dimensionless governing equations were derived. Remaining variables such as U, H 

and so on that are seen in the figure were explained in the section of governing 

equations and dimensionless governing equations. After obtaining final mathematical 

expressions of the layers, boundary conditions were defined.  

Before starting to mathematical modelling, the assumptions that are followed during 

the modelling are given.  
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 The first one is defining dimension. The problem is considered two 

dimensional; 

 The fluid is Newtonian; 

 The fluid is viscous and incompressible;  

 Viscosity of the fluid is constant; 

 Gravity effect is neglected; 

 Porous medium is saturated, isotropic and homogeneous; 

 Solid matrix is unmovable and rigid; 

3.2  Deciding Porous Flow Models 

Darcy’s, Brinkman’s and Richard’s equations are popularly employed to treat the 

porous media flow. However, these equations contain empirical constants that lead to 

cumbersome during the solving stages. In this study, Biot’s theory of poroelasticity is 

used. By using Biot’s theory, I overcome the problem without evaluation of the 

empirical constants. Creation of the discontinuity is the another negativity of the 

Darcy, Brinkman and Richard’s equation. For example Navier Stokes equations is 

second order and Darcy is first order equation. This situation also leads to 

discontinuity in the interface of the two different layers. Be able to solve this 

difficulty, different boundary conditions are used at the interface of the problem. 

This is the most difficult part of the mathematical modelling section. In this study, 

Biot’s theory of poroelasticity is used and with Brinkman extended Darcy’s equation. 

3.3 Governing Equations 

The continuity equation and the equation of motion were used to describe the fluid. 

As mentioned before, fluid flow is two dimensional. The Navier Stokes equations in 

x and y directions were used to express the flow. 

3.3.1 Fluid layer 

The continuity equation is seen in the equation (3.1) 

……………………………………. 1 1 0
u v

x y

 
 

 
………………………..………(3.1)                                            
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in which subscript 1 denotes fluid layer, 1u and 1v  are components of the velocity in x 

and y direction. 

Equations of motion in x and y direction are seen in the equation (3.2) and (3.3) 

……………………….
2 2

1 1 1 1 1
1 1 2 2

1u u P u u
u v

x y x x y



 

     
     

     
……………...(3.2) 

……………………….
2 2

1 1 1 1 1
1 1 2 2

1v v P v v
u v

x y y x y



 

     
     

     
………………(3.3) 

in which   is dynamic viscosity of fluid,   is density of fluid and P  is pressure in 

the fluid layer. 

3.3.2 Porous layer 

In the theory section of the study, three different porous flow models that are taken 

place in literature were given. In the present paper, simplified version of Biot’s 

theory of poroelasticity is used to describe the porous medium flow and Brinkman-

extended Darcy equation as the equation of motion was used by Deng and Martinez 

who are owners of the reference study. 

The continuity equation for the porous layer is given by the equation (3.4) 

………………………………..
   2 2

0
nu nv

x y

 
 

 
…………………………....(3.4)            

in which subscript 2 denotes porous layer, n is porosity, 2u and 2v  are components of 

the velocity in x and y direction. 

Equations of motion in x and y direction are given by in the equation (3.5) and (3.6) 

…………………………..
2 2

2 2 2 2

2 2

nu P u u

K x x y



   

    
   

……………………...(3.5)                                

                                                                          

 

…………………………..
2 2

2 2 2 2

2 2

nv P v v

K y x y



   

    
   

………………………(3.6)

 

in which K is the hydraulic conductivity, 2P  is pressure in porous layer. 
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3.4 Dimensionless Governing Equations 

Nondimensionalization is a technique that can simplify complex mathematical 

problem and reduces the number of variables in the problem.  It is most desirable 

technique such complex problems that contain so many variables and equations. This 

method creates relationship between variables in terms of nondimensional 

parameters such as Reynolds number, Darcy number, Prandtl number, Froude 

number and so on. In this part of the study, all equations that are found in the 

governing equations section via continuity and Navier Stokes equations are 

converted to dimensionless governing equations. Thus the labor of calculation 

reduced. 

3.4.1 Fluid layer 

Dimensionless variables that are used in the nondimensionalization process of the 

continuity equation and Navier Stokes equation were given. Dimensionless variables 

for coordinates are given in the equation (3.7)  

……………………………. * x
x

H
           * y

y
H

 …………………………..….(3.7) 

in which H is the total height of the channel 

Dimensionless variables for velocity components are given in the equation (3.8) 

……………………………. * 1
1

w

u
u

U
            * 1

1

w

v
v

U
 …………………………...(3.8) 

in which wU   is the uniform suction velocity at porous wall 

Dimensionless variable for pressure was given in the equation (3.9) 

……………………………………… * 1
1 2

w

P
P

U
 ………………………………....(3.9) 

Dimensionless velocity components in equation (3.8) and dimensionless coordinates 

in equation (3.7) were substituted to continuity equation in equation (3.10).  

………………………………..
* *

1 1

*
0w wU Uu v

H x H y

 
 

 
……………………..……(3.10)

 

Thus continuity equation in equation (3.1) was converted to dimensionless form in 

equation (3.11).  
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…………………………………….
* *

1 1

*
0

u v

x y

 
 

 
……………………………...(3.11) 

Dimensionless velocity components in equation (3.8), dimensionless coordinates in 

equation (3.7) and dimensional pressure coordinate in equation (3.9) are substituted 

to x component of the momentum equation in equation (3.2) and equation (3.12) was 

found.  

……….. 1 1 1 1 1 1 1

* * * * * 2 * 2 *2

* * * 2 *2 2 *2

w w w w w w w
u U U u v U U u P u uU U U

H x H y H x H x H y

 

 

     
     

      

…(3.12) 

All components of the equation (3.12) were multiplied with 
w w

H

U U
and equation 

(3.13) was found. 

………………….. 1 1 1 1 1

1 1

* * * 2 * 2 *

* *

* * * *2 *2

w

u u P u u
u v

x y x HU x y





     
     

      

…………....(3.13)

 

in which 
wHU




 is inverse of the dimensionless Reynolds number. This 

dimensionless number is substituted to momentum equation in x direction and 

equation (3.14) was found.  

…………………….. 1 1 1 1 1

1 1

* * * 2 * 2 *

* *

* * * *2 *2

1

Re

u u P u u
u v

x y x x y

     
     

      

……………...(3.14)

 

Be able to calculate dimensionless form of the y component of the momentum 

equation, dimensionless velocity components in equation (3.8), dimensionless 

coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.9) 

are substituted to the equation (3.3) and equation (3.15) was found. 

………... 1 1 1 1 1 1 1

* * * * * 2 * 2 *2

* * * 2 *2 2 *2

w w w w w w w
u U U v v U U v P v vU U U

H x H y H y H x H y

 

 

     
     

      

…(3.15) 

Again all components of the equation (3.15) were multiplied with 
w w

H

U U
and 

equation (3.16) was found. 
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………………….... 1 1 1 1 1

1 1

* * * 2 * 2 *

* *

* * * *2 *2

w

v v P v v
u v

x y y HU x y





     
     

      

…………...(3.16)

in which 
wHU




 is inverse of the dimensionless Reynolds number. This 

dimensionless number is substituted to momentum equation in y direction and 

equation (3.17) was found.  

…………………….. 1 1 1 1 1

1 1

* * * 2 * 2 *

* *

* * * *2 *2

1

Re

v v P v v
u v

x y y x y

     
     

      

………………(3.17)

After calculations dimensionless form of the momentum equation in x and y 

direction were found. Unknown variable 
1

*P  was seen in dimensionless momentum 

equation both in x direction and y direction. Same unknown variables were 

eliminated from both of the equations. Be able to complete this process first 

derivative of the momentum equation in x direction was taken with respect to y and 

was written in equation (3.18). 

..… 1 1 1 1 1 1 1 1 1

1 1

* * 2 * * * 2 * * 3 * 3 *

* *

* * * * * * *2 * * *2 * *3

1

Re

u u u v u u P u u
u v

y x x y y y y x y x y y

         
       

             

.(3.18) 

Also first derivative of the momentum equation in y direction was taken with respect 

to x and result was written in equation (3.19). 

……. 1 1 1 1 1 1 1 1 1
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1
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x x x x y y x y x x y x
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       

             

 (3.19) 

Equation (3.18) is subtracted from equation (3.19), thereby pressure was eliminated 

from the momentum equation. Final state of the dimensionless equation for fluid 

layer was written in the equation (3.20) 

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

* * 2 * * * 2 * * * 2 * * * 2 *

* * * *

* * * * * * *2 * * *2 * * * *

u u u v u u u v v v v v
u v u v

y x x y y y y x x x x y y x

           
       

             
 

………………. 1 1 1 1

3 * 3 * 3 * 3 *

*2 * *3 *3 *2 *

1

Re

u u v v

x y y x y x

    
    

       

………………………..(3.20) 

And then stream function was defined. Reference author of the stream function is 
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Deng and Martinez.  Stream function that is suggestion by Deng and Martinez is 

written as follows in equation (3.21).  

………………………….  
__

1 U x f y
 

  
 

          0 y   …………………..(3.21) 

in which 
__

U  is dimensionless velocity,   is the interface position and defines as 

h

H
  .  

By using stream function, u and v components of the velocity in fluid layer were 

calculated.  

u that is x component of the velocity is written in the equation (3.22) 

………………………………    
1

* '1u U x f y
y


  


……………………….(3.22)

And v that is y component of the velocity is written in the equation (3.23)

 

………………………………  
1

* 1v f y
x


  


………………………………(3.23)

 

Equation (3.20) is rearranged with new velocity components. Equation (3.22) and 

equation (3.23) were substituted to the equation (3.20). Be able to make this 

arrangement, first, second and third order partial derivative of the x and y component 

of the velocity were taken. 

Required derivative calculation of the x component of the velocity with respect to x 

and y are given in the equation (3.24) 

…………………..

1
1

1 1

1 1
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y y
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x y x y

 
   

 
   

    
  

  
   
     

…………...…(3.24)  

Required derivative calculation of the y component of the velocity with respect to x 

and y are given in the equation (3.25) 
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…………………………….

1
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* * *2 *
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I
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y x y x

  
 

  
   

  
  

  
  

     

………………...……(3.25) 

Derivatives in the equation (3.24) and (3.25) are substituted to the equation (3.20) 

and equation (3.26) is found. 

                 '' ' ' II I IIU x f y f y U x f y f y U x f y f y      
 

……………           
1

0 0 0
Re

III IVU x f y f y U x f y       ………….(3.26)

 

Equation (3.26) was rearranged and final form of the fluid layer is found in the 

equation (3.27).  

………………….           Re III I II IVf y f y f y f y f y  ………………..(3.27) 

3.4.2 Porous layer 

Again dimensionless variables that are used in the nondimensionalization process of 

the continuity equation and Navier Stokes equation for porous layer were given. 

Dimensionless variables for velocities in the porous layer with subscript 2 are given 

in the equation (3.28) 

………………………………. * 2
2

w

u
u

U
                * 2

2

w

v
v

U
 ……………..……..(3.28)

      

 

Dimensionless variable for pressure was given in the equation (3.29) 

……………………………………… * 2
2 2

w

P
P

U
 ……………………………….(3.29)

 

Dimensionless velocity components in equation (3.28) and dimensionless 

coordinates in equation (3.7) were substituted to continuity equation in equation (3.4) 

and equation (3.30) is obtained.  

……………………………….
* *

2 2

*
0w wnU nUu v

H x H y

 
 

 
………………………...(3.30) 
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All sides of the equation (3.30) was multiplied with the 
w

H

nU
. Thus continuity 

equation in equation (3.4) transformed to the dimensionless form and it is written in 

the equation (3.31) 

…………………………………….
* *

2 2

*
0

u v

x y

 
 

 
……………………………...(3.31) 

Then dimensionless velocity components in equation (3.28), dimensionless 

coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.29) 

are substituted to x component of the momentum equation in equation (3.5) and 

equation (3.32) was found.  

……………………. 2

2 ** 2 * 2

2 2 2
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U PnU u U u u
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    
    

   
……………..(3.32) 

All elements of the equation (3.32) were multiplied with 
2

w

H

U
 and equation (3.33) 

was found. 

…………………….. 2

* 2 * 2 *
*2 2
2* *2 *2
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 
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   
     

   
……………(3.33) 

Reynold and Darcy number are substituted to the equation (3.33) and equation (3.34) 

was obtained. 

……………………... 2 2

* 2 *2 *
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  
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    

………………..(3.34) 

Then dimensionless velocity components in equation (3.28), dimensionless 

coordinates in equation (3.7) and dimensional pressure coordinate in equation (3.29) 

are substituted to y component of the momentum equation in equation (3.6) and 

equation (3.35) was found.  

……………………. 2
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……………...(3.35) 

All elements of the equation (3.35) were multiplied with 
2

w

H

U
 and equation (3.36) 

was found. 
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…………….(3.36) 
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Reynold and Darcy number are substituted to the equation (3.36) and equation (3.37) 

was obtained. 

……………………... 2

* 2 * 2 *
*2 2
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   
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…………….….(3.37) 

After calculations dimensionless form of the momentum equation of porous layer in 

x and y direction were found. Unknown variable *

2P  was seen in dimensionless 

momentum equation both in x direction and y direction. Same unknown variables 

were eliminated from both of the equations.  

Be able to complete this process first derivative of the momentum equation in x 

direction was taken with respect to y and was written in equation (3.38). 

…………………… 2 2

2 * 3 *3 * *
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………….(3.38) 

Also first derivative of the momentum equation in y direction was taken with respect 

to x and result was written in equation (3.39). 

………………….. 2

* 3 * 3 * *
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……………(3.39) 

Equation (3.39) is subtracted from equation (3.38), thereby pressure was eliminated 

from the momentum equation. Final state of the dimensionless equation for fluid 

layer was written in the equation (3.40)

 

………….. 2

3 *3 * 3 * 3 * * *

2 2 2 2 2
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……(3.40) 

Stream function adopted by Deng and Martinez is given in the equation (3.41) 

………………………..
__

2 ( ). ( )U x g y                     1y   ……………..….(3.41) 

By using stream function, u and v components of the velocity in fluid layer were 

calculated. 
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u that is x component of the velocity is written in the equation (3.42) 

……………………………….
2

__
* 2 ( ). ( )Iu U x g y

y


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
………………………(3.42) 

And v that is y component of the velocity is written in the equation (3.43)

 

…………………..…………….  * 2
2v g y

x


  


…………………………….(3.43) 

Equation (3.40) is rearranged with new velocity components. Equation (3.42) and 

equation (3.43) were substituted to the equation (3.40). Be able to make this 

arrangement, first, second and third order partial derivative of the x and y component 

of the velocity were taken. 

Required derivative calculation of the x component of the velocity with respect to  x 

and y are given in the equation (3.44)   

……………………….
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……………….(3.44) 

Required derivative calculation of the y component of the velocity with respect to x 

and y are given in the equation (3.45) 

…………………………..
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………………...….(3.45) 

Derivatives in the equation (3.44) and (3.45) are substituted to the equation (3.20) 

and equation (3.46) is found. 

………………….
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All compents of the equation (3.46) is multiplied with Re and divided by 
__

( )U x  and 

finally equation (3.47) was found. 
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……………………………. 0 ( ) ( )IV II

a

n
g y g y

D
  ……………………...……..(3.47) 

3.5 Boundary Conditions 

In this type of physical problems, an interface section in between fluid layer and 

porous layer is very critical part of the problem. Many different types of boundary 

conditions at the interface are improved by different researchers. For instance, 

continuity of tangential velocity, continuity of both shear stress and normal stress, 

discontinuity of shear stress, discontinuity of both tangential velocity and interfacial 

velocity are seen as boundary conditions in different studies. Correct specification of 

boundary conditions is the essential part of the mathematical modelling. In this 

study, the continuity of the velocity vector and shear stress are used as the boundary 

conditions. In addition to these equations, an extra equation that is derived is used as 

the boundary condition.  Dimensionless boundary conditions are; 

 At the top of the fluid layer (y=0), x and y components of the velocity are 

zero. 
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……………...(3.48) 

 At the bottom of the porous layer (y=1), horizontal component of the vecity is 

equal to zero, only vertical component of the velocity exists. 

…………………
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…………….(3.49) 

 As mentioned before, at the interface section of the fluid and porous layer 

y   continuity of velocity vector is satisfied 

…………………… ( ) ( )I Ig f                 ( ) ( )g f  ……………...(3.50) 

 At the interface fluid layer and porous layer, continuity of the shear stress is 

satisfied. Formulation of the shear stress is 
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………………………………….
u

dy
 


 ……………………...………(3.51) 

Shear stress in fluid layer is   

………………………….
__
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Shear stress in porous layer is   

………………………….
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
   ………………….(3.53) 

Equation (3.52) and equation (3.53) are combined and equation (3.54) is 

found  

………………
__ __

( ) ( ) ( ) ( ) ( ) ( )II II II IIU x g y U x f y g y f y      ……(3.54) 

 In addition to this, equation (3.27) and equation (3.47) are combined by 

integrating them and equation (3.55) is obtained 
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4.    DIFFERENTIAL QUADRATURE METHOD 

4.1 Introduction 

Every process in nature can be expressed by differential equations. For this reason, 

differential equations take an important place in science and engineering because 

engineers can examine the change of the critical variables that have a place in system 

thanks to differential equations. And also, it is easier to understand physical 

phenomena through differential equations. In addition, a differential equation is a 

way to describe the physical pheonomenas in the same language through all over the 

world by constructing mathematical models. Poisson, Navier Stokes, Helmholtz, 

linear wave and advection convection equations are example of partial differential 

equation. Poisson’s equation is a partial differential equation of elliptic type with a 

wide range of applications such as electrostatics, mechanical engineering and so on. 

Navier Stokes equations describe the motion of the fluid. Helmholtz equation 

simulates the microwaves. All of these equations that we only mention a few 

examples are partial differential equations. Be able to developing result to these 

equations is as important as identification of the equation. 

To solve these partial differential equations, many methods are used such as finite 

difference, finite volume and finite element and so on. All the time, there are 

expected properties from the selected method that has the advantage compared to 

others. While deciding on methods that will be applied to the equation, some criteria 

like that higher accuracy, less computation time by using less grid point, the stability 

of the solution are very important.  

Differential quadrature method (DQM) is also a different numerical technique that 

was presented by Bellman and his associates in the early 1970’s is used in the 

solution of ordinary differential equations (ODE’s) or partial differential equations 

(PDE’s) of the initial and boundary value problems. Since that time, this method has 

been successfully applied to the different kind of problems in engineering and 

medical science. This method directly aimed to be alternative to the FDM that 
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requires long computation time and it has numerical stability problem. If the DQM 

compared with the other numerical technique such as the FV, FD and FE methods, 

this method exhibits higher accuracy and efficiency with little computational effort 

by using a considerably small number of grid points [13].  

4.2 Chronological Development 

Differential Quadrature Method that is used for solving ordinary or partial 

differential equation is developed by Richard Bellman in 1970. In 1971 introductory 

paper is published by Bellman and Casti. But this paper did not include application 

or any information about calculations of the weighting coefficients [14]. Subsequent 

paper that is published by Bellman et al in 1972 include various applications of the 

DQM and information about the calculation of the weighting coefficients [15]. 

Results are compared with the exact results. 

After these two paper, differential quadrature method is seen in several areas such as 

hearth model for estimating heart parameters for cardiograms [16]. Thus the method 

developed quickly. Applications of DQM are found in the different scientific sector 

such as biosciences, structural mechanics, transport processes and so on. It is claimed 

that high accurate solutions are found thanks to differential quadrature method by 

spending minimum computational effort. 

DQM is used for the transient analysis of isothermal chemical reactors by Wang in 

1982 and it was extended by Naadimuthu for isothermal chemical reactor that 

involved two initial boundary value equations in terms of partial pressure and 

temperature.  

Civan and Sliepcevich undertook variety application of the quadrature method to 

engineering problems for different transport phenomena type models. In 1986 an 

application of the DQM in nuclear engineering problems was undertaken by Passow. 

Most important improvements are seen after the method is applied to the structural 

mechanics problems. Subsequent to these works, nonlinear static flexure of thin 

circular plate is solved with differential quadrature method.  

In this thesis mathematical equation of uniform flow over a porous plane with 

downward suction that is fourth order nonlinear differential equation is solved by 

using differential quadrature method. 
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4.3 Structure of the Differential Quadrature Method 

The idea of differential quadrature method is first order derivative of a function with 

respect to a coordinate direction is approximated by a weighted linear sum of all 

values in the same domain and along same direction. The most critical point of the 

DQM is computation of the weighting coefficients for the discretization of the first 

and second order derivatives. Taking into consideration Figure 4.1 that represents the 

one dimensional problem. 

 

Figure 4.1: One-dimensional problem. 

Mathematical representation of the DQM that is expressed before is written in the 

equation 4.1, 

……………………..
1

( ) ( ),    for i=1,2,...,N

i

N

x i ij j

jx

df
f x a f x

dx 

  ……………..1(4.1) 

where ( )x if x  is the first order derivative of the function, N represent the number of 

grid points in the domain, j represents the grid point (i.e. number of column), 

i represents the dimension of the problem (i.e. number of row), 
ija is the weighting 

coefficients, 
jx is the value of the grid points, ( )jf x  is the value of the function at 

different grid points. Also calculated weighting coefficients 
ija are different at 

different locations according to coordinate axis.  

Representation of the DQM formulation through matrices is as seen in equation 

(4.2). 

…….................................  '

1 11 12 1

(1)

(2)

( )   ...... .

.

( )

N

f

f

f x a a a

f N

 
 
  

  
 
 
  

……………….….…(4.2) 

Two dimensional grid structure can be seen from the Figure 4.2. Number of rows and 

columns in two dimension is N. 
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Figure 4.2: Two-dimensional problem. 

Two-dimensional matrix representation of the DQM is given in the equation (4.3). 

……  ……………….

'

111 12 1

'

21 22 2 2

'
1 2

( )  .......... (1)

  ......... ( )(2)

.      .                .    .      .

.      .                .    .      .

  ....... ( ) ( )

N

N

N N NN N

f xb b b f

b b b f xf

b b b f N f x

   
   
    

   
   
   
      





 
 
 
 
 

......………....…….(4.3) 

Weighting coefficients 
ija and 

ijb are depend on the coordinates, therefore they are 

different from each other. Weighting coefficients are bridge to link between 

derivatives and functional values at the mesh points. As can be easily understood 

from the matrix form, weighting coefficients and functional values are used for 

computing the derivatives of the function at ix . Calculations of the derivatives of 

function at given point is given in equation (4.4). 

……..……………….

'

11 12 1 1

'

21 22 2 2

'

1 2

(1)   (2) .....+ ( ) ( )

(1)   (2) ....+ ( ) ( )

   ...............................................................

(1)  (2) ...+ ( ) ( )        

N

N

N N NN N

b f b f b f N f x

b f b f b f N f x

b f b f b f N f x

  

  

  

…….……(4.4) 

Computation of the weighting coefficients that depends on the selected test functions 

is done by two different fundamental approaches. One of them is polynomial-based 

differential quadrature (PDQ) and the other one is Fourier expansion-based 

differential quadrature (FDQ). PDQ is the one that will be used in the thesis. 

4.4 Computation of Weighting Coefficients for the First Order Derivative 

Calculation of the weighting coefficients which is the most important step of the 

DQM has three different approaches that belong to Bellman, Quan and Chang, Shu. 
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4.4.1 Bellman’s approaches  

Bellman et al. (1972) have two approaches to compute the weighting coefficients
ija . 

The difference between Bellman’s two approaches is the result from the difference in 

test function. 

4.4.1.1 First approach 

In Bellman’s first approach, test functions are chosen as seen in (4.5), 

…………………….. ( ) , k=0,1,...,N-1k

kg x x ……………………....………(4.5) 

where k’s interval gives N test functions and rows and columns are taken from 1 up 

to N. Rows and columns in this amount give the total number of weighing 

coefficients as NxN . As a consequence the following NxN algebraic equations (4.6) 

for 
ija  are obtained. 

………………...

1

1

1

1

0

1  for i=1,2,...,N

* ,  k=2,3,....,N-1

N

ij

j

N

ij j

j

N
k k

ij j i

j

a

a x

a x k x









 
 

 
  

 
 
 

 
  







…......…(4.6) 

In this approach, if N is large, the matrix is ill-conditioned and for this reason it is 

difficult to take the inverse of the matrix. In the application of DQM, if Bellman’s 

first approach is used, grid points should be less than 13 for avoiding ill condition 

situation. 

4.4.1.2 Second approach 

In the second approach different test function is used by Bellman. The test function 

was chosen as in the equation (4.7). 

…………… ……..
(1)

( )
( ) ,  k=1,2,....,N

( ) ( )

N
k

k N k

L x
g x

x x L x



……….……...……….(4.7) 

where  ( )NL x is the Legendre polynomial and first order derivative of the ( )NL x  is 

(1) ( )N kL x . Selected kx should be the roots of the Legendre polynomial. By using this 

test function, simple algebraic formulations to compute weighting coefficient ija is 

obtained by Bellman et al. are given in equation (4.8) and (4.9). 
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…………………………....
(1)

(1)

( )
,  for i j

( ) ( )

N i
ij

i J N j

L x
a

x x L x
 


……………......…..…(4.8) 

…………………………………

1 2

2 ( 1)

i
ii

i i

x
a

x x





……………………………..…..(4.9)

When second approach is compared with first approach, it is clear that computation 

of the weighting coefficients by using second approach is easier. But first approach 

has greater flexibility in implementation. On the other hand, in the second approach 

one should use the Legendre polynomials of degree N. Therefore, first approach is 

easily applied to the practical applications.  

4.4.2 Quan and Chang’s Approach 

To resolve deficiencies that encountered during the calculations of the weighted 

coefficients in the Bellman’s approaches, many studies were done on the issue. One 

of the most important works is done by Quan and Chang (1989). In the Quan and 

Chang’s approach, Lagrange interpolation polynomials are used as a test functions 

and there is no restriction for the selection of the grid points. Test function is given in 

equation (4.10), 

……………………………
(1)

( )
( ) ,  k=1,2,....,N

( ) ( )
k

k k

M x
g x

x x M x



……………(4.10) 

where calculations of the M(x) given in the equation (4.11) 

………………………………. 1 2( ) ( )( )....( )NM x x x x x x x    ……….…..….(4.11) 

Another representation of the equation (4.11) is given in equation (4.12). 

…………………………………..
(1)

1,

( ) ( )
N

i i k

k k i

M x x x
 

  ………….………….(4.12) 

After substituting equation (4.11) and (4.12) into (4.10), the formula that is used for 

calculating the coefficients is obtained and given in equation (4.13) and (4.14).  

…………………….
1,

( )1
 , for j i

( ) ( )

N
i k

ij

k k ij k j k

x x
a

x x x x 


 

 
 ………………....….(4.13) 

…………………………………..…
1,

1

( )

N

ii

k k i i k

a
x x 




 ………………….…....((4.14) 
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4.4.3 Shu’s general approach 

Shu’s general approach contains all approaches that are Quan and Chang’s approach 

and Bellman’s approach. It is based on four basic polynomial type which are given in 

the equation (4.15), (4.16), (4.17) and (4.18) 

………………………… ( ) 1 , k=1,2,...,Nk

kr x x  .............................................(4.15) 

………………………
(1)

( )
( )  , k=1,2,...,N

( ) ( )

N
k

k N k

L x
r x

x x L x



...............................(4.16) 

………………………
(1)

( )
( )  , k=1,2,...,N

( ) ( )
k

k k

M x
r x

x x M x



...............................(4.17) 

………………….. 1 1( ) 1 , ( ) ( ) ( ) , k=1,2,...,Nk k kr x r x x x r x    ………...……(4.18) 

( )M x  is defined in equation (4.11) and (4.12) and ( )NL x  is the Legendre 

polynomial. If ( )M x  and ( )NL x are compared with each other, it is easily seen 

that ( )NL x  that is only applicable at the Legendre collocation points is a subset of the 

( )M x . 

The expressions that are used for the calculating the weighting coefficients defined 

by the Shu are given in the equation (4.19) and (4.20). 

…………………………
(1)

(1)

( )
,  for i j

( ) ( )

i
ij

i J j

M x
a

x x M x
 


………...…...……..…(4.19) 

………………………………
(2)

(1)

( )

2 ( )

i
ii

j

M x
a

M x
 .................................... .................(4.20) 

Another calculation way for equation (4.20) is given in the equation (4.21). Equation 

(4.20) and (4.21) are two different formulations to make the same calculations. 

…………………………...
1 1,

0 or  
N N

ij ii ij

j j j i

a a a
  

    ……….……….....……..(4.21) 

So far shown formulas are valid for computation of weighting coefficients for the 

first order derivative. In this thesis work, Shu’s general approach is used. Another 

consideration is computation of weighting coefficients for the second and higher 

order derivatives. 
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4.5 Computation of Weighting Coefficients for the Second and Higher Order 

Derivatives 

As seen from the equation (4.22), although calculation of the weighting coefficient is 

different, expression for computing the second and higher order derivatives is very 

similar with equation (4.1) for calculating first order derivatives. 

………………..
2

(2)

2
1

( ) ( ),    for i=1,2,...,N

i

N

x i ij j

jx

d f
f x b f x

dx 

  ……….………(4.22) 

Where (2) ( )x if x  is the second order derivative of the function, N represent the 

number of grid points in the domain, j represents the grid point (i.e. number of 

column), i represents the dimension of the problem (i.e. number of row), 
ijb is the 

weighting coefficients, 
jx is the value of the grid points, ( )jf x  is the value of the 

function at different grid points. Also again calculated weighting coefficients 
ijb are 

different at different locations according to coordinate axis.  

4.5.1 Weighting coefficients for the second order derivatives 

Two approaches will be explained for calculations of the weighting coefficients for 

the second order derivatives. One of them is Quan and Chang’s approach and the 

other one is Shu’s general approach. 

4.5.1.1 Quan and Chang’s approach 

According to Quan and Chang’s approach, through Lagrange interpolation 

polynomials weighting coefficients are calculated as given in the equation (4.23) and 

(4.24). 

……………
1, ,1, ,

2 1
 , for  

N N
i k

ij

l l i jk k i jj i j k i l

x x
b i j

x x x x x x  

  
        

 ………....…(4.23) 

………………….
1

1, 1,

1 1
2

N N

ii

k k i l k l ii k i l

b
x x x x



    

  
   

   
  …………………………(4.24) 
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4.5.1.2 Shu’s general approach 

According to Shu’s general approach calculation of the weighting coefficients for the 

second and higher order derivatives is similar with coefficients for first order 

derivatives and polynomial based approximation is used and formulations are given 

in the equation (4.25) and (4.26). 

…………….……..
1

2 , for ij ij ii

i l

b a b i j
x x

 
   

 
……………….…….…...…(4.25) 

…………………….
1 1,

0 or b  
N N

ij ii ij

j j j i

b b
  

    ………………………………..(4.26) 

4.5.2 Matrix multiplication approach for the second and higher order 

derivatives 

This notation in equation (3.27) is used for second and higher order derivative 

calculations. 

……………………………………..
2

2

f f

x x x

   
  

   
……………………..….…(4.27) 

After reminding equation (4.28) and (4.29) again, ija for first order derivatives and 

ijb for second order derivatives, if we substitute DQM approximations in the equation 

(4.22) to the equation (4.27)  

………….…........................

'

111 12 1 1

'

21 22 2 2 2

'
1 2

  ..........

  ......... 

.      .                .    .      .

.      .                .    .      .

  ....... 

N

N

N N NN N N

ya a a y

a a a y y

a a a y y

    
    
    

                           .......…..………..(4.28) 

                     …………         

''

111 12 1 1

''

21 22 2 2 2

''
1 2

  ..........

  ......... 

.      .                .    .      .

.      .                .    .      .

  ....... 

N

N

N N NN N N

yb b b y

b b b y y

b b b y y

    
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    

                        

                   ….…(4.29) 

First derivative is taken and substituted to the equation (4.30). 
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……………………….. (2) (1)

1

( ) ( )
N

x i ik x k

k

f x a f x


 ………………………………. (4.30) 

Deficit representation of the equation (4.30) is given in the equation (4.31). 

……………….
(2)

1 1 1 1

( ) ( ) ( )
N N N N

x i ik kj j ik kj j

k j k j

f x a a f x a a f x
   

    ………...…….... (4.31) 

If i=1 then, first row elements are found with variable k is given in equation (4.32). 

………  (2)

1 1 1 1 1 2 2 1 1

1

( ) ( ) ( ) ... ( )
N

x k k k k k kN N

k

f x a a f x a a f x a a f x


    ………………… 

……….
1 1 1 1 2 2 1 1

1 1 1

( ) ( ) ... ( )
N N N

k k k k k kN N

k k k

a a f x a a f x a a f x
  

      ………………..(4.32) 

For finding the first row elements without variables, variables of k’s are substituted 

into the equation (4.32) and equation (4.33) is derived. 

……………

 

 

11 11 1 12 21 1 13 31 1 1 1 1
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.

.
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N N

a a f x a a f x a a f x a a f x

a a f x a a f x a a f x a a f x

    

    
…………… 

…………..  11 1 12 2 13 3 1( ) ( ) ( ) ... ( )N N N N N N N NN Na a f x a a f x a a f x a a f x     …(4.33) 

If we convert equation (4.33) to the matrix form, equation (4.34) is obtained. 

     

     
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 
 
 
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 
 
 
          

  (4.34)  

It is easily seen matrix multiplication approach from the matrix form and represented 

in the equation (4.35). 

……………..
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Matrix multiplication approach for second order derivative is given in the equation 

(3.36). 

……………………….  

'' '

1 1 1
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     .      .    .

     .      .    .
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……………..…(4.36) 

And general form of the this approach is seen from the equation (4.37). 

………………………….

1 1

2 2

     .    .

     .    .

m

m

m

m
NN

y y

y y

A

yy
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      
  
  
    

…………………………………… (4.37) 

4.6 Grid Point Distribution 

In order to solve an engineering problem with differential quadrature method, 

primarily type of grid distribution should be selected. Two of them that are uniform 

grid and Chebyshev-Gauss-Lobatto grid will be examined. 

4.6.1 Uniform grid 

In uniform grid distribution, points are selected at equal intervals in each direction of 

coordinate axes. As seen from the Figure 4.3, step size is fixed. Selection of the 

points from uniform grid distribution is very simple. Therefore, it is easily applicable 

to the problems but accuracy of the results depends on the problem. Grid selection is 

done by trial and error method to choose the most accurate grid distribution. 
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………………….. ………

….……………………… Figure 4.3: Uniform grid distribution. 

4.6.2 Chebyshev-Gauss-Lobatto grid 

Another option is Chebyshev-Gauss-Lobatto grid. In any problem, the results 

become worse when close to the boundary conditions. For this reason, increasingly 

frequent distribution towards boundary conditions point is selected in the 

Chebyshev-Gauss-Lobatto grid as seen from the Figure 4.4. 

………………….… ……….… 

Figure 4.4: Chebyshev-Gauss-Lobatto grid distribution. 

Accurate and reliable solutions that are more quickly convergent are obtained 

through Chebyshev-Gauss-Lobatto grid. Formulation of the Chebyshev-Gauss-

Lobatto grid distribution is written in the equation (4.38) 

………………………. 1 cos ,  i=1,2,...,N
2

i

b a i
x a

N

  
   

 
……….……….…(4.38) 
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4.7  Solution of the Problem with Differential Quadrature Method 

As found in the mathematical section of the study, flow is separated into two 

different layers, the fluid layer and the porous layer. In this problem, equations 

contain nonlinearities. For this reason, Quan and Chang approach cannot be used. By 

using lagrange interpolation polynomial, fluid layer formulation is written in the 

equation (4.39). 

………………….
1

1

1

( 1[ ])

( ) [ ]

( 1[ ] 1[ ])
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jm
j i
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i

j
j i

y Y j

f y F i

Y i Y j




















                   1,2,..,i m …...(4.39) 

Porous layer equation is given in the equation (4.40) 

………………….
1

1

1

( 2[ ])

( ) [ ]

( 2[ ] 2[ ])

m
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j i
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i

j
j i

y Y j

g y G i

Y i Y j




















                  1,2,..,i m …çç(4.40) 

in which m represents number of grid points in the domain, Y1[j] and  Y2[j] are 

found according to grid distribution, F[i] and G[i] are unknown values  of the 

functions at different grid points. 

In this study Chebyshev-Gauss-Lobatto grid distribution is used. Defined range of 

the fluid layer starts from 0 and ending at -0.9 and porous layer starts from -0.9 and 

ending at -1. According to intervals, frequent distribution towards boundary 

conditions is used. 

Firstly, all boundary conditions are substituted to the equation (4.39) and (4.40). 

Then the equation (4.39) and (4.40) are substituted to the equation (4.41) and (4.42).   

………………………… 2 ( ) ( )IV II

a

n
R g y g y

D
  …………………………..….(4.41) 

………………….           1 ReIV III I IIR f y f y f y f y f y   …………...(4.42) 
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The equation (4.41) and (4.42) are set to zero and unknown values of the function are 

found. This stages are followed for 12 different grid points and graphs are shown at 

the results section. 
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5. WEIGHTED RESIDUAL METHODS 

5.1 Introduction 

The method of weighted residuals is a type of approximate solutions of differential 

equations that are valid only at certain points rather than at each point. All 

engineering problems could be represented by non-linear differential equations. 

Mathematical representation of the uniform flow over a porous plane with suction 

perpendicular to the surface is an example of non-linear differential equations. The 

method of weighted residual is an approximation technique for solving differential 

equations.  Through the method of weighted residual (WRM) a solution can be 

approximated numerically. A weighted residual method uses a finite number of 

functions. The method is a slight extension of that used for boundary value problems.  

The basic concept of the WRM is to drive a residual error to zero through a set of 

conditions. To obtain the approximate solution for the equation given in the 

differential form, approximation function is selected and is substituted to the 

differential equation. And the differential function is found in terms of 

approximation function. Result that is different than the zero is named as residual. 

This value that was obtained is multiplied by the specific weighted functions and the 

resulting product is tried to minimize. Five steps of implementing the method of 

weighted residual can be listed as; 

1. The trial function with unknown coefficients is written by expanding unknown 

solution in a set of basis functions 

2. The trial function is satisfied by the boundary conditions and initial conditions. 

This process reduces the number of unknown coefficients. 

3. Residual is defined. 

4. Weighted residual is set to zero and equations are solved. 
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5. The error is examined by setting up successive approximations, and converge is 

shown the number of basis functions increase. 

In mathematical analysis, the Weierstrass approximation theorem shows that every 

continuous function defined on a closed interval a x b   can be approximated by 

polynomial function [17]. Calculation of the polynomials with computer facilities is 

very simple. For the numerical solution of uniform flow over a porous plane with 

downward suction, weighted residual method is applied by using Weierstrass 

theorem and trial function is defined as 5th, 6th, 7th, 8th, 9th and  10th order 

polynomials. There are five types of weighted residual methods which are 

subdomain method, collocation method, least squares method, Galerkin method and 

method of moments. Each method is developed in different country and time 

interval. All methods were unified in 1956 by Crandall [18]. In this thesis uniform 

flow over a porous plane with downward suction is solved by method of moments.  

5.2 Method of Moments 

The method of moments is the oldest method of deriving point estimators. Firstly, the 

method of moments is improved by Yamada in 1947 and Fujita contributed to 

method in 1951 [18]. At the outset, laminar boundary layer problems and nonlinear 

transient diffusion problems are solved by using method of moment. In the method 

of moments, weighted functions are defined as power of independent variations. 

……………………………………………….. 1;n

nw    n=1,2,...,N ……………………..………(5.1) 

……………………………………….. 1 0;n

nw Rd R d
 

      n=1,2,...,N………...…...…….(5.2) 

The method of moments forces the residual to zero. 

5.2.1 Solution of the problem by using method of moments 

Mathematical representation of the uniform flow over a porous plane with downward 

suction is found in the mathematical section of the thesis. As mentioned before, the 

problem is separated two layer which are fluid layer and porous layer. Mathematical 

representation of each layer are different from each other. Final state of the fluid  
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layer equation is rewritten in the equation (5.3) as found in the equation (3.27).   

…………………….………..           Re III I II IVf y f y f y f y f y  ………………….(5.3) 

And final state of the porous layer equation is written in the equation (5.4) as found 

in the equation (3.47).   

……………………………. 0 ( ) ( )IV II

a

n
g y g y

D
  …………...…………………(5.4) 

Be able to calculate f and g functions via method of moments, functions of the form 

by a polynomial degree 7 with respect to Weierstrass approximation theorem are 

defined for fluid layer and porous layer. These seventh degree polynomials contain 

totally 16 unknown coefficients. Trial function of fluid layer f is defined as  

………………………………..
7

0

[ ] i

i

f F i y


 ……………………………………(5.5) 

in which F[i] is the leading coefficient.  

Explicit representation of the fluid layer formulation is  

…… 1 2 3 4 5 6 7[0] [1] [2] [3] [4] [5] [6] [7]f F F y F y F y F y F y F y F y        ...(5.6) 

Trial function of porous layer g defined as  

………………………………….
7

0

[ ] i

i

g G i y


 ………...………………………..(5.7) 

in which G[i] is the leading coefficient. Explicit representation of the porous layer 

formulation is  

…… 1 2 3 4 5 6 7[0] [1] [2] [3] [4] [5] [6] [7]g G G y G y G y G y G y G y G y        ...(5.8) 

The trial functions of fluid and porous layer are stated with unknown coefficients. 

According to theorem every continuous function can be approximated in an interval.  

Following solution procedure is defining residual function. In this study we have two 

different residual functions that depend on the layers.  

Residual function for fluid layer is calculated as   

…………………           1 ReIV III I IIR f y f y f y f y f y   ..………….(5.9) 

Residual function of the fluid layer involves the first, second, third and fourth order 

derivatives of the trial function. 
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…… 2 3 4 5 6' [1] 2 [2] 3 [3] 4 [4] 5 [5] 6 [6] 7 [7]f F F y F y F y F y F y F y       ....(5.10) 

……. '' 2 3 4 52 [2] 6 [3] 12 [4] 20 [5] 30 [6] 42 [7]f F F y F y F y F y F y      …..….(5.11) 

……...... ''' 2 3 46 [3] 24 [4] 60 [5] 120 [6] 210 [7]f F F y F y F y F y     ………….(5.12) 

…………........ '''' 2 324 [4] 120 [5] 360 [6] 840 [7]f F F y F y F y    .…………….(5.13) 

Derivatives of the equation (5.6) as seen in the equation (5.10-5.13) is substituted to 

the equation (5.9) and R1 is found in terms of unknown coefficients 

2 31 24 [4] 120 [5] 360 [6] 840 [7] Re( (2 [2] 6 [3] ....))R F F y F y F y F F y       ..(5.14) 

The coefficients that the residual function depends on are given in the equation 

(5.15)  

.......................... 1 ( [0], [1], [2], [3], [4], [5], [6], [7])R f F F F F F F F F ………….(5.15) 

Residual function for porous layer is calculated as  

…………………………….. 2 ( ) ( )IV II

a

n
R g y g y

D
  ………………………….(5.16) 

Residual function of the fluid layer involves the first, second, third and fourth order 

derivatives of the trial function. 

........ 2 3 4 5 6' [1] 2 [2] 3 [3] 4 [4] 5 [5] 6 [6] 7 [7]g G G y G y G y G y G y G y       ….(5.17) 

……...... '' 2 3 4 52 [2] 6 [3] 12 [4] 20 [5] 30 [6] 42 [7]g G G y G y G y G y G y      ….(5.18) 

………....... ''' 2 3 46 [3] 24 [4] 60 [5] 120 [6] 210 [7]g G G y G y G y G y     ……….(5.19) 

………….......... '''' 2 324 [4] 120 [5] 360 [6] 840 [7]g G G y G y G y    ……...…….(5.20) 

Derivatives of the equation (5.8) is substituted to the equation (5.16) and R2 is found 

in terms of unknown coefficients 

2 3 22 24 [4] 120 [5] 360 [6] 840 [7] (2 [2] 6 [3] 12 [4]
n

R G G x G y G y G G y G y
Da

        

…………………… 3 4 520 [5] 30 [6] 42 [7] )G y G y G y   ………………………(5.21) 

The coefficients that the residual function depends on are given in the equation 

(5.22). 

………………….. 2 ( [0], [1], [2], [3], [4], [5], [6], [7])R g G G G G G G G G .............(5.22) 
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Before forcing the residual to zero, the number of unknowns are reduced by using 

boundary conditions. Boundary conditions are written in terms of trial functions. 

Each boundary condition eliminates one unknown coefficient. 

As found before, at the top of the fluid layer x and y components of the velocity are 

zero. Be able to stagnate fluid at the top, boundary conditions that are (0) 0f   and 

(0) 0If   should be satisfied. When these boundary conditions are satisfied 2 

coefficients of the trial function of the fluid layer can be found.  

………………………………. (0) 0 [0] 0f F   …...……………………….(5.23) 

……………………...………. (0) 0 [1] 0If F   ………...………………….(5.24) 

Final stage of the fluid layer equation is  

……………….. 2 3 4 5 6 7[2] [3] [4] [5] [6] [7]f F y F y F y F y F y F y      .......(5.25)  

The coefficients that the f function depends on are given 

………….……… ( [2], [3], [4], [5], [6], [7])f f F F F F F F ................................(5.26) 

Same calculations are done for porous layer equation and intersection point of the 

porous and fluid layer. As found in the mathematical modelling section, at the 

bottom of porous layer (1)ng  is equal to 1 and (1)Ig  is equal to 0. 

………
1

(1) 1 [0] [1] [2] [3] [4] [5] [6] [7]ng G G G G G G G G
n

          .....(5.27) 

Other boundary condition is  

……………………...…………… '(1) 0g  …………………………………….(5.28) 

................. '(1) [1] 2 [2] 3 [3] 4 [4] 5 [5] 6 [6] 7 [7] 0g G G G G G G G        ……(5.29) 

At the interface of fluid and porous layer continuity of velocity vector is satisfied 

……………………………… ( ) ( )g n f  ………………………………….(5.30) 

2 3 4 5 6( [0] [1](0.9) [2](0.9) [3](0.9) [4](0.9) [5](0.9) [6](0.9)n G G G G G G G      
7 2 3 4 5 6 7[7](0.9) ) [2](0.9) [3](0.9) [4](0.9) [5](0.9) [6](0.9) [7](0.9)G F F F F F F      

                   (5.31) 

……………………………...… ( ) ( )I Ig f  ……………..……………….(5.32) 
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2 3 4 5 6[1] 2 [2](0.9) 3 [3](0.9) 4 [4](0.9) 5 [5](0.9) 6 [6](0.9) 7 [7](0.9)G G G G G G G      

 

2 3 4 5 62 [2](0.9) 3 [3](0.9) 4 [4](0.9) 5 [5](0.9) 6 [6](0.9) 7 [7](0.9)F F F F F F       

(5.33) 

At the interface section between porous and fluid layer, continuity of shear stress is 

satisfied 

………………………………… ( ) ( )II IIg f  ………………………….….(5.34) 

2 3 4 52 [2] 6 [3](0.9) 12 [4](0.9) 20 [5](0.9) 30 [6](0.9) 42 [7](0.9)G G G G G G       

2 3 4 52 [2] 6 [3](0.9) 12 [4](0.9) 20 [5](0.9) 30 [6](0.9) 42 [7](0.9)F F F F F F      

                                                                                                                                                       (5.35) 

The last boundary condition that is obtained by derivation of fluid layer and porous 

layer equation is 

……………….
2

( ) ( ) ( ) ( ( ) ( ) ( ))III II I I IIn
g f f R f f f

Da
         ……...…(5.36) 

2 324 [4] 120 [5](0.9) 360 [6](0.9) 840 [7](0.9)G G G G   

2 3 4 52 [2] 6 [3](0.9) 12 [4](0.9) 20 [5](0.9) 30 [6](0.9) 42 [7](0.9)F F F F F F      

2 3 4 5 6(2 [2](0.9) 3 [3](0.9) 4 [4](0.9) 5 [5](0.9) 6 [6](0.9) 7 [7](0.9) )
n

F F F F F F
Da

     

2 3 4 5 6 2((2 [2](0.9) 3 [3](0.9) 4 [4](0.9) 5 [5](0.9) 6 [6](0.9) 7 [7](0.9) )R F F F F F F      

2 3 4 5 6 7( [2] [3] [4] [5] [6] [7] )*F y F y F y F y F y F y      

2 3 4 5*(2 [2] 6 [3](0.9) 12 [4](0.9) 20 [5](0.9) 30 [6](0.9) 42 [7](0.9) ))F F F F F F      

                                                                                                                                                         (5.37) 

Thanks to boundary conditions eight unknown coefficients are found. Remaining 

informations that are required for calculating eight unknown coefficients are 

obtained by integration of the residual function. First four equations are valid for 

fluid layer.  

………………………………………..
0.9

0

1 0R dy  …………………………...(5.38) 
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…………………………………..
0.9

0

1 0R ydy  ….…………….…………………(5.39) 

…………………………………..
0.9

2

0

1 0R y dy  ….……………………………...(5.40) 

…………………………………..
0.9

3

0

1 0R y dy  …….………………………….(5.41) 

Last four equations are valid for porous layer. 

……………………………………
1

0.9

2 0R dy  ………………………………...(5.42) 

……………………….…………..
1

0.9

2 0R ydy  …….....………….……………(5.43) 

…………………………………..
1

2

0.9

2 0R y dy  ……………...………………...(5.44) 

…………………………………..
1

3

0.9

2 0R y dy  ….…………………………….(5.45) 

The number of equation is enough to solve the problem, 8 equations and 8 

unknowns. MATHEMATICA functions are used to solve the problem. The result of 

the ( )f y  function that is relate with the y component of the velocity in fluid layer is 

given in the equation 

-14 2 3 4 5 6 7( ) -9.433*10 y + 2.236 y -0.541y +0.528461y -2.857y +2.811y -1.213yf y   

                                                                                                                              (5.42) 

In the same way, the result of the ' ( )f y  function that is relate with the x component 

of the velocity in the fluid layer is written in the equation 

… 14 2 3 4 5 6'( ) -9.433*10 +4.471y-1.623y +2.114y -14.284y +16.865y -8.490yf y  (5.43) 

The result of the ( )g y  function that gives information about y component of the 

velocity in porous layer is seen in the equation 

2 3 4 5 6 7( ) -10373+73113y-221053y +371638y -375174y +227398y -76613y +11067yg y 

                                                                                                                                                         (5.44) 
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In the same way, the result of the ' ( )g y  function that is relate with the x component 

of the velocity in the porous layer is written in the equation 

  6 2 6 3 6 4 5 6g'(y)=73113-442107y+1.115*10 y -1.501*10 y +1.137*10 y -459680y +77470y     (5.45) 

Equation (5.46) represents the shear stress function at the porous wall, when y=1 is 

substituted to the equation.  

…… 6 6 2 6 3 4 5g'(y)=442107+2.235*10 y-4.503*10 y +4.548*10 y -2298400y +464820y …(5.46) 

Same stages are done for 5th, 6th, 8th, 9th and 10th order polynomials. Obtained 

polynomials for porous and fluid layers by using 6th order polynomial are given in 

the equation (5.47) and (5.48).  

…
-18 2 3 4 5 6( ) -6.6226*10 y+2.3741y -0.6608y -1.1823y +1.5965y -1.1640yf y  .......(5.47) 

2 3 4 5 6( ) -2795.89+17015.02y-43181.14y +58510.66y -44642.52y +18183.86y -3088.99yg y 

                                                                                                                                                        (5.48) 

Derivatives of the equation (5.47) and (5.48) are given in the equation (5.49) and 

(5.50) 

…… ' -18 2 3 4 5( ) -6.6226*10 +4.7482y-1.9823y -4.7291y +7.9825y -6.9843yf y  ...(5.49)

' 2 3 4 5( ) 17015.02-86362.27y+175531.98y -178570.10y +90919.32y -18533.96yg y  (5.50) 

Obtained polynomials that define ( )f y , ( )g y ,  ' ( )f y  and ' ( )g y  functions for 

porous and fluid layers by using 8th order polynomial are given in the equation 

(5.51)-(5.54) 

10 2 3 4 5 6 7 8( ) =  1.9301*10 y+2.2310y -0.5434y -0.2104y +0.4334y -2.5871y +2.7140y -1.07337yf y 

 

(5.51) 

2 6 3 6 4 6 5( ) = -30536.05+243341.03y-849596.76y +1.70*10 y -2.12*10 y +1.70*10 yg y   

………………………… 6 7 8-852278.42y +244431.82y -30705.09y ……………….…………… …  ..(5.52) 

… ' -18 2 3 4 5( ) -6.6226*10 +4.7482y-1.9823y -4.7291y +7.9825y -6.9843yf y     ….(5.53) 

' 2 3 4( ) 17015.02-86362.27y+175531.98y 178570.10y +90919.32yg y     

  ……………………………………………… 5-18533.96y …………………………………………………..(5.54) 
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The graphs of the functions for all polynomials were given in the results section of 

the study. 
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6. RESULTS 

After finding equations that define fluid layer and porous layer by using semi 

analytical numerical methods which are differential quadrature method and method 

of moments, distribution of each velocity component is found and discussed as 

follows by employing the relation between stream function and velocity components.  

As mentioned before, reference study in this study is Deng and Martinez’s study. Be 

able to obtain close results to the reference study, dimensionless numbers and 

constants are selected as same with reference study. According to this, Re=5, 

Da=0.001, n=0.9 and  =0.9 

Figure 6.1 and Figure 6.2 depict the horizontal component of the velocity in fluid 

layer in the defined interval ( 0.9 0y   ) by using two different method. At the 

top of the fluid layer, horizontal component of the velocity is zero as a result of the 

no slip boundary condition. x component of the velocity increases until reaching the 

maximum value that is approximately 1.6 at roughly y=0.5. It is not clearly seen 

from the Figure 6.1 but the best result of the differential quadrature method is 

obtained by using N=15 grid points and N=4 is the worst result. As seen from the 

Figure 6.2 in which method of moments approximation is used, the best result of the 

method of moment approximation is obtained by using 10th degree polynomial. 

Figure 6.3 and Figure 6.4 demonstrate horizontal velocity distribution in porous layer 

in the defined interval ( 1 0.9y    ). At the bottom, x component of the velocity 

is equal to zero as shown in the graphics. Figure 6.5 and Figure 6.6 represents 

horizontal velocity combination in porous layer and fluid layer. At the end of the 

graphics, approximate estimate of the error for velocity at different location was 

added.  Vertical velocity component distribution in fluid layer was given in the 

Figure 6.7 and Figure 6.8.  At the top of the fluid layer, no slip boundary condition 

exists and velocity increases with the fluid depth. Cause of this rate of increase is 

downward suction at the bottom. Vertical velocity component distribution in porous 

layer is plotted in the Figure 6.9 and 6.10. Combining fluid layer and porous layer 
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graphics, Figure 6.11 and Figure 6.12 that depict whole velocity profile of the 

vertical component of the fluid was plotted.  

 

Figure 6.1: Horizontal velocity distribution in fluid layer (DQM). 

 

Figure 6.2: Horizontal velocity distribution in fluid layer (MoM). 
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Figure 6.3: Horizontal velocity distribution in porous layer (DQM). 

 

Figure 6.4: Horizontal velocity distribution in porous layer (MoM). 
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Figure 6.5: Horizontal velocity distribution (DQM). 

 

Figure 6.6: Horizontal velocity distribution (MoM). 
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Figure 6.7: Vertical velocity distribution in fluid layer (DQM). 

 

Figure 6.8: Vertical velocity distribution in fluid layer (MoM). 
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Figure 6.9: Vertical velocity distribution in porous layer (DQM). 

 

Figure 6.10: Vertical velocity distribution in porous layer (MoM). 
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Figure 6.11: Vertical velocity distribution (DQM). 

 

Figure 6.12: Vertical velocity distribution (MoM). 
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In addition to these figures, the best results are compiled in a graphic. Figure 6.13 

and Figure 6.14 are plotted to show that results agree very well. 

 
Figure 6.13: Horizontal velocity with high accuracy. 
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Figure 6.14: Vertical velocity with high accuracy. 

At the end of the graphics, the tables that show values of the velocity component in 

different locations and approximate estimate of the error for velocity are added. 

Table 6.1 and Table 6.3 that are obtained by using differential quadrature method are 

values of the vertical and horizontal velocity in different locations. It can be easily 

seen from the Table 6.2 and the Table 6.4 that error was reduced with increasing 

number of grid points. 
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Table 6.1: Values of the vertical velocity in different locations (DQM). 

 

Table 6.2: Approximate estimate of the error for velocity in vertical direction (DQM). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

0,0000 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15

-0,1000 61,9080 8,3233 3,3940 0,6938 0,5696 0,0505 0,0354 0,0106 0,0092 0,0000 0,0000

-0,2000 47,3979 4,0966 2,3654 0,0109 0,3317 0,0189 0,0128 0,0109 0,0083 0,0000 0,0000

-0,3000 35,5849 1,0678 1,8200 0,2391 0,2565 0,0233 0,0184 0,0033 0,0005 0,0000 0,0000

-0,4000 25,8758 0,9033 1,5437 0,3098 0,2173 0,0302 0,0153 0,0038 0,0006 0,0000 0,0000

-0,5000 17,8777 1,9769 1,3750 0,3285 0,1790 0,0358 0,0114 0,0036 0,0006 0,0000 0,0000

-0,6000 11,3460 2,3207 1,1972 0,3345 0,1445 0,0338 0,0099 0,0029 0,0000 0,0000 0,0000

-0,7000 6,1705 2,1026 0,9422 0,3114 0,1156 0,0284 0,0088 0,0027 0,0003 0,0000 0,0000

-0,8000 2,4019 1,4963 0,5984 0,2262 0,0798 0,0223 0,0055 0,0022 0,0003 0,0001 0,0000

-0,9000 0,3708 0,7055 0,2358 0,0884 0,0292 0,0089 0,0020 0,0010 0,0003 0,0001 0,0000

-0,9100 0,2823 0,6169 0,2016 0,0746 0,0243 0,0068 0,0021 0,0005 0,0005 0,0004 0,0000

-0,9200 0,2173 0,5224 0,1679 0,0617 0,0192 0,0056 0,0023 0,0003 0,0003 0,0000 0,0000

-0,9300 0,1655 0,4237 0,1344 0,0488 0,0149 0,0044 0,0017 0,0000 0,0000 0,0000 0,0000

-0,9400 0,1237 0,3218 0,1019 0,0366 0,0113 0,0032 0,0015 0,0003 0,0003 0,0002 0,0000

-0,9500 0,0259 0,2973 0,1225 0,0035 0,0150 0,0030 0,0020 0,0020 0,0000 0,0000 0,0000

-0,9600 0,0369 0,2229 0,0717 0,0255 0,0078 0,0022 0,0010 0,0001 0,0001 0,0000 0,0000

-0,9700 0,0549 0,1340 0,0446 0,0164 0,0040 0,0014 0,0006 0,0001 0,0001 0,0000 0,0000

-0,9800 0,0270 0,0630 0,0221 0,0079 0,0021 0,0006 0,0003 0,0000 0,0000 0,0000 0,0000

-0,9900 0,0080 0,0160 0,0067 0,0023 0,0004 0,0002 0,0004 0,0004 0,0004 0,0004 0,0000

-1,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 6.3:  Values of the horizontal velocity in different locations (DQM). 

 
 

 

Table 6.4: Approximate estimate of the error for velocity in horizontal direction 
(DQM) 

y

0,00000 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12 N=13 N=14 N=15

-0,10000 53,9319 5,8524 2,7119 0,1785 0,3652 0,0116 0,0209 0,0009 0,0012 0,0000 0,0000

-0,20000 34,3986 0,3607 1,5976 0,4141 0,2044 0,0341 0,0170 0,0021 0,0009 0,0000 0,0000

-0,30000 19,2096 2,8759 1,2186 0,4458 0,1842 0,0362 0,0121 0,0034 0,0000 0,0009 0,0000

-0,40000 7,0352 4,2071 1,1055 0,3792 0,1343 0,0441 0,0091 0,0021 0,0007 0,0000 0,0000

-0,50000 2,9829 3,9781 0,9132 0,3622 0,0695 0,0363 0,0081 0,0025 0,0000 0,0000 0,0000

-0,60000 11,4494 2,4561 0,3862 0,3236 0,0246 0,0197 0,0031 0,0012 0,0006 0,0000 0,0000

-0,70000 18,8836 0,3036 0,6782 0,0461 0,0413 0,0020 0,0041 0,0000 0,0000 0,0000 0,0000

-0,80000 26,1522 5,0907 2,6371 0,8085 0,3012 0,0604 0,0195 0,0037 0,0009 0,0000 0,0000

-0,90000 45,6798 27,7590 9,8776 3,9023 1,3873 0,4013 0,1193 0,0297 0,0067 0,0009 0,0000

-0,91000 63,5625 42,8772 13,7527 5,2447 1,7929 0,5160 0,1535 0,0379 0,0090 0,0013 0,0000

-0,92000 147,4574 71,0468 19,8182 7,1555 2,3452 0,6694 0,1987 0,0499 0,0113 0,0018 0,0000

-0,93000 -252,7805 121,9817 28,4585 9,6613 3,0607 0,8687 0,2572 0,0657 0,0150 0,0025 0,0000

-0,94000 -70,9399 217,3574 40,2371 12,8669 3,9707 1,1271 0,3307 0,0855 0,0199 0,0000 0,0000

-0,96000 -46,9628 424,9376 56,1952 16,9358 5,1197 1,4343 0,4179 0,1140 0,0201 0,0107 0,0000

-0,97000 -40,3245 1177,7994 78,2760 21,9993 6,4695 1,8219 0,5278 0,1417 0,0323 0,0000 0,0000

-0,98000 -39,4345 -3454,6821 109,7162 27,8617 8,0166 2,2544 0,6554 0,1686 0,0321 0,0000 0,0000

-0,99000 -41,4052 -760,7968 154,6730 33,8800 9,8268 2,6795 0,7858 0,2002 0,0334 0,0000 0,0000

-1,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 6.5 and Table 6.7 that are obtained by using differential quadrature method are 

values of the vertical and horizontal velocity in different locations. Table 6.6 and 

Table 6.8 are approximate estimate of the error for velocity in vertical and horizontal 

direction. Error was reduced with increasing degree of polynomials. If two semi 

analytical methods compared with each other, DQM is more efficient than the MoM 

in terms of computational effort. MoM takes more time than DQM. 
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Table 6.5:  Values of the vertical velocity in different locations (MoM). 

y

0,00 5th 6th 7th 8th 9th 10th

-0,10 0,0178 0,0230 0,0218 0,0217 0,0218 0,0218

-0,20 0,0699 0,0882 0,0852 0,0846 0,0847 0,0847

-0,30 0,1559 0,1893 0,1857 0,1841 0,1843 0,1843

-0,40 0,2744 0,3188 0,3169 0,3143 0,3145 0,3146

-0,50 0,4216 0,4687 0,4695 0,4668 0,4668 0,4668

-0,60 0,5884 0,6286 0,6315 0,6295 0,6293 0,6293

-0,70 0,7581 0,7842 0,7875 0,7864 0,7863 0,7863

-0,80 0,9044 0,9149 0,9167 0,9163 0,9163 0,9163

-0,90 0,9887 0,9897 0,9900 0,9900 0,9900 0,9900

-0,91 0,9918 0,9926 0,9928 0,9928 0,9928 0,9928

-0,92 0,9942 0,9948 0,9949 0,9949 0,9949 0,9949

-0,93 0,9959 0,9963 0,9965 0,9965 0,9965 0,9965

-0,94 0,9971 0,9975 0,9976 0,9976 0,9976 0,9976

-0,95 0,9981 0,9984 0,9985 0,9985 0,9985 0,9985

-0,96 0,9988 0,9990 0,9991 0,9991 0,9991 0,9991

-0,97 0,9993 0,9995 0,9995 0,9995 0,9995 0,9995

-0,98 0,9997 0,9998 0,9998 0,9998 0,9998 0,9998

-0,99 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999

-1,00 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
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Table 6.6 Approximate estimate of the velocity error in vertical direction(MoM) 

y

0,00 6th 7th 8th 9th 10th

-0,10 22,6794 5,1936 0,4710 0,1552 0,0092

-0,20 20,7193 3,5519 0,7021 0,1117 0,0093

-0,30 17,6492 1,9152 0,8832 0,1221 0,0043

-0,40 13,9175 0,6040 0,8228 0,0750 0,0124

-0,50 10,0471 0,1608 0,5773 0,0028 0,0028

-0,60 6,3882 0,4697 0,3223 0,0276 0,0022

-0,70 3,3222 0,4191 0,1373 0,0155 0,0001

-0,80 1,1482 0,1953 0,0426 0,0010 0,0004

-0,90 0,1055 0,0336 0,0038 0,0004 0,0001

-0,91 0,0776 0,0250 0,0027 0,0003 0,0001

-0,92 0,0597 0,0187 0,0020 0,0002 0,0001

-0,93 0,0486 0,0134 0,0014 0,0003 0,0002

-0,94 0,0400 0,0098 0,0026 0,0013 0,0002

-0,95 0,0324 0,0066 0,0007 0,0004 0,0003

-0,96 0,0273 0,0039 0,0012 0,0004 0,0003

-0,97 0,0159 0,0020 0,0020 0,0015 0,0002

-0,98 0,0080 0,0007 0,0000 0,0001 0,0000

-0,99 0,0022 0,0001 0,0000 0,0000 0,0000

-1,00 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 6.7:  Values of the horizontal velocity in different locations (MoM). 

y

0,00 5th 6th 7th 8th 9th 10th

-0,10 0,3515 0,4510 0,4317 0,4291 0,4298 0,4297

-0,20 0,6913 0,8431 0,8283 0,8201 0,8213 0,8213

-0,30 1,0259 1,1661 1,1715 1,1610 1,1612 1,1615

-0,40 1,3390 1,4123 1,4364 1,4304 1,4289 1,4292

-0,50 1,5905 1,5680 1,5958 1,5984 1,5966 1,5965

-0,60 1,7175 1,6053 1,6193 1,6283 1,6279 1,6276

-0,70 1,6333 1,4731 1,4659 1,4753 1,4760 1,4759

-0,80 1,2282 1,0896 1,0707 1,0759 1,0765 1,0765

-0,90 0,3691 0,3334 0,3256 0,3268 0,3270 0,3269

-0,91 0,2707 0,2474 0,2416 0,2425 0,2426 0,2425

-0,92 0,1984 0,1838 0,1791 0,1798 0,1798 0,1798

-0,93 0,1462 0,1365 0,1326 0,1330 0,1330 0,1330

-0,94 0,1089 0,1011 0,0977 0,0980 0,0979 0,0980

-0,95 0,0819 0,0742 0,0713 0,0715 0,0716 0,0716

-0,96 0,0616 0,0533 0,0510 0,0512 0,0514 0,0513

-0,97 0,0451 0,0367 0,0351 0,0353 0,0354 0,0353

-0,98 0,0301 0,0230 0,0221 0,0222 0,0223 0,0222

-0,99 0,0153 0,0111 0,0107 0,0108 0,0108 0,0108

-1,00 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
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Table 6.8: Approximate estimate of the error for velocity in horizontal direction 

(MoM). 

y

0,00 6th 7th 8th 9th 10th

-0,10 22,0505 4,4589 0,6087 0,1568 0,0154

-0,20 18,0044 1,7863 0,9998 0,1546 0,0017

-0,30 12,0182 0,4652 0,9096 0,0198 0,0250

-0,40 5,1923 1,6799 0,4237 0,0994 0,0168

-0,50 1,4343 1,7408 0,1583 0,1077 0,0081

-0,60 6,9908 0,8664 0,5558 0,0270 0,0160

-0,70 10,8737 0,4939 0,6372 0,0495 0,0041

-0,80 12,7184 1,7642 0,4842 0,0511 0,0009

-0,90 10,6888 2,3986 0,3776 0,0358 0,0125

-0,91 9,3861 2,4346 0,3761 0,0326 0,0091

-0,92 7,9525 2,5967 0,3649 0,0056 0,0222

-0,93 7,1020 2,9607 0,3495 0,0609 0,0669

-0,94 7,6601 3,5150 0,3503 0,0716 0,0762

-0,95 10,3548 4,1194 0,3841 0,0214 0,0038

-0,96 15,5323 4,5360 0,4461 0,2132 0,1459

-0,97 22,8646 4,5244 0,5007 0,3990 0,2894

-0,98 31,1156 4,0036 0,4978 0,4149 0,2972

-0,99 38,0224 3,2444 0,4188 0,1891 0,1132

-1,00 0,0000 0,0000 0,0000 0,0000 0,0000
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7. DISCUSSION AND CONCLUSION 

In this study, we consider semi analytical numerical investigation of uniform flow 

over a porous plane with suction perpendicular to the surface by using semi 

analytical numerical methods. Semi analytical numerical methods are differential 

quadrature method and method of moments. Porous media is modeled by using 

Biot’s theory of poroelasticity and in addition to this, Brinkman-extended Darcy 

equation is used in the reference study. At the interface of the fluid layer and porous 

layer, continuity of velocity vector and continuity of shear stress are used.   

It is easily seen from the graphs that vertical velocity increases from top to the 

bottom because of the downward suction. The maximum horizontal velocity is 1.64 

and at the bottom there is no horizontal velocity. Also Deng and Martinez’s study is 

added to the graphs to be reference. At the end of the graphics, approximate estimate 

of the error for velocity are added in the table.  

This study derived an alternative semi analytical solution to a two dimensional flow 

field is derived. Flow field of a two dimensional flow is possible to be solved new 

approaches. Meaningful solutions can be obtained without evaluation of the 

empirical constants. Present approaches and methods are able to simplify the 

equations and algorithm process. The technique and method can be applied to the 

other studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

69 

 

REFERENCES 

[1] Cheng, H. D. A. (2016). Poroelasticity, Third Ed., Springer, Switzerland. 

 

[2] Berman,  A. S. (1953). Laminar Flow in Channels with Porous Walls. Journal of 

Applied Physics, 24(9), 1232-1235.  

 

[3] Sellars, J. R. (1955). Laminar flow in channels with porous walls at high suction 

Reynolds numbers, Journal of Applied Physics, 26(4), 489–490.  

 

[4] Kim, S. Y. (1994). Heat transfer from pulsating flow in a channel filled with 

porous media. International Journal Heat and Mass Transfer, 37(14), 

2025-2033.     

 

[5] Green, G. A. (1979). Laminar flow through a channel with one porous wall.  

Course project in Advanced fluid mechanics 

 

[6] Beavers, G. S., Joseph, D. D. (1967). Boundary conditions at a naturally 

permeable wall. Journal of Fluid Mechanics, 30(2) 197–207. 

[7] Ochoa-Tapia, J., Whitaker, S. (1995). Momentum transfer at the boundary 

between a porous medium and a homogenous fluid: I-theoretical 

development.    International Journal Heat and Mass Transfer, 

38(14), 2635–2646. 

 

[8] Cieszko, M., Kubik, J. (1999). Momentum transfer at the boundary between a 

porous medium and a homogenous fluid: I-theoretical development.    

International Journal Heat and Mass Transfer, 38(14), 2635–2646. 

 

[9] Deng, C., Martinez, D. M. (2005). Momentum transfer at the boundary between 

a porous medium and a homogenous fluid: I-theoretical development.    

International Journal Heat and Mass Transfer, 38(14), 2635–2646. 

 

[10] Bars, M. L., Worster, M. G. (2006). Interfacial conditions between a pure fluid 

and a porous medium: implications for binary alloy solidification. 

Journal of Fluid Mechanics, 550, 149-173. doi: 

10.1017/S0022112005007998 

 

[11] Auriault, J. L. (2009). On the Domain of Validity of Brinkman’s Equation. 

Springer, London.  

 

[12] Vafai, K. (2010). Porous Media: Applications in Biological Systems and 

Biotechnology. First Ed., CRC Press.  

 



 

70 

 

[13] Chang S., (2000). Differential Quadrature and Its Application in Engineering. 

Springer, London. 

 

[14] Bellman R., Casti J. (1971). Differential quadrature and long-term integration, 

J Math Anal App., 134, 235-238. 

 

[15] Bellman R, Kashef BG, and Casti J. (1972). Differential quadrature: A 

technique for the rapid solution of nonlinear partial differential 

equations, J Comput. Phys., 10, 40-52. 

[16] Bellman R, Kashef B, and Vasudevan R. (1974). The inverse problem of 

estimating heart parameters from cardiograms, Math Biosci., 19, 2212 

 

[17] Kinaci, O. K., and Usta, O. (2013). A Method of Moments Approach for 

Laminar Boundary Layer Flows. International Journal of Ocean 

System Engineering, 3(3),111-115. doi: 10.5574/IJOSE.2013.3.3.111 

 

[18] Finlayson, B. A. (1980). The Method of Weighted Residuals and Variational 

Principles. Elsevier 

 



 

71 

 

CURRICULUM VITAE 

PERSONAL INFORMATION 

Name, Abbreviation CEMRE MELIKE PEHLIVAN, M.Sc.  

Addresses Resmi Efendi sok. 34/2 34676 Beylerbeyi İstanbul, TURKEY 

Phone numbers 
+90 554 557 54 07 

+90 216 422 43 09 

E-Mail 
cemrepehlivan@gmail.com 

pehlivance@itu.edu.tr 

Date and place of birth 21.07.1992, Kadikoy - Istanbul / TURKEY 

ACADEMIC QUALIFICATIONS 

09.2015 – 12.2017 | İstanbul Technical University 

                                    Graduate School of Science Engineering and Technology 

     Aeronautics and Astronautics Engineering Program 

09.2010 – 06.2015 | İstanbul Technical University 

                                    Faculty of Aeronautics and Astronautics 

     Astronautical Engineering Program 

PUBLICATIONS 

Pehlivan, C. M., Fidanoglu, M., Ozkol, İ., Komurgoz, G., (2017). DQM Application on 

Classical Problem“Stagnation Point Flow”. International Journal of Mechanical Engineering 

and Robotics Research. Vol. 6, no. 1, 

 

 

mailto:pehlivance@itu.edu.tr

