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Supervisor

Thesis Committee Member Thesis Committee Member

Director

ii



ABSTRACT

ORDER STATISTICS IN OUTLIER MODELS

KEREM TÜRKYILMAZ

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2009

In this study, order statistics from single and multiple outlier models are

considered. The marginal and joint distributions of the corresponding order

statistics are derived. Robust estimations for normal distribution in single outlier

model are investigated, numerical results and Bias and MSE tables of these

estimators are obtained. Moreover, probability of rth order statistic being outlier

is derived whenever there is one or two outlier in the sample. A robust estimator

based on this probability is provided and MSE, Bias results of this estimator of

mean for normal distribution are presented. Conditional probablity of maximum

and minimum order statistics given that rth order statistic is outlier is derived.

Also, the empirical distribution function for single outlier model is provided.

Keywords: order statistics, outliers, single-outlier model, multiple-outlier model,

robust estimators, location outlier, scale outlier.



ÖZ

SAPAN DEĞER MODELLERİNDE SIRA
İSTATİSTİKLERİ

KEREM TÜRKYILMAZ

Uygulamalı İstatistik, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Prof. Dr. İsmihan Bayramoğlu

Haziran 2009

Bu çalışmada, tekli ve çoklu sapan değer modellerinde sıra istatistiklerinin

üzerinde durulmuştur. Bu sıra istatistiklerinin dağılım ve ortak dağılım

fonksiyonları elde edilmiştir. Tekli sapan değer modelinde, normal dağılım için

sağlam tahmin ediciler araştırılmıştır. Bu tahmin ediciler için sayısal sonuçlar,

Bias ve ortalama hata kareleri tabloları elde edilmiştir. Ayrıca, bir veya iki sapan

değerli modelde r. sıra istatistiğinin sapan değer olma olasılığı hesaplanmıştır.

Bu olasılığa dayanarak normal dağılımın ortalaması için, bir sağlam tahmin

edici önerilip Bias, ortalama hata kareleri değerleri bulunmuştur. r. sıra

istatistiğinin sapan değer olma olasılığı koşulu altında minimum ve maksimum

sıra istatistiklerinin dağılımları elde edilmiştir. Buna ek olarak, tekli sapan değer

modeli için ampirik dağılım fonksiyonu hesaplanmıştır.

Anahtar Kelimeler : sıra istatistikleri, sapan değerler, tekli sapan değer modeli,

çoklu sapan değer modeli, sağlam tahmin ediciler, yer sapan değeri, ölçek sapan

değeri.
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Introduction

In classical statistics, an outlier is an observation that lies numerically distant

from the rest of data in a random sample from a population. Since the earliest

attempts to interpret data, there has been a concern for outlying observations

in data sets. These outliers are generally considered as reducer of information

about data. Therefore, it is reasonable to attempt to interpret means and to

seek methods for handling outliers. Sometimes rejecting outliers may be improve

fitness of the data, or applying methods of decreasing their effect in statistical

analysis.

Peirce has stated the concept of outlier and outlier problem in 1852 by his

following words: “In almost every true series of observations, some are found,

which differ so much from the others as to indicate some abnormal source of

error not contemplated in the theoretical discussions, and the introduction of

which into the investigations can only serve to perplex and mislead the inquirer.”

The earliest method for dealing with outliers was introduced by Chauvenet in

1863.

Outlier definition can be defined in terms of distributions rather than

numerical distance between observations. Assume that an experimenter wants

to obtain n observations from population with distribution function F . It may

happen that one or more observations among this sample is obtained from

population with distribution function G. These observations are called outliers.

In this case, in ordered sample, outliers may not be extremes. More precisely,

outliers are observations only having different distributions. For example, in

a population with continuous distribution with p.d.f. having two modes, the

1
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outliers may fall into interval, where the p.d.f. has minimum value between

two modes. Clearly, none of these outliers will be extreme value of the sample.

Therefore, distribution of order statistics from independent non-identical random

variables are closely related with the outlier models.

Since the early 20th century, important studies on order statistics and their

properties have been presented. The first fundamental book describing this

theory is David (1981). Arnold et al. (1992) and David and Nagaraja (2003)

include new developments on order statistics from independent and identically

distributed (i.i.d.) and independent but not necessarily identically distributed

(i.n.i.d.) random variables. The distribution theory of order statistics from

i.n.i.d. random variables were first described in Vaughan and Venables (1972)

by involving permanent, a concept defined similar to the determinant except

that it does not have alternating sign, i.e. taking all terms in the summation

of the definition of determinant to be positive. For a recent review describing

the theory of order statistics from i.n.i.d. case and also including interesting

results on outliers and robustness, we refer Balakrishnan (2007). Permanent

expressions for the distribution function of i.n.i.d. order statistics allow to obtain

some recurrence relations, using the expansion of the permanent by some of the

rows. However, in some cases, where the applications of order statistics from the

i.n.i.d. random variables are considered, the usage of the permanent expressions

for the distributions of i.n.i.d. order statistics causes some difficulties connected

with the complexity of operations. Despite researches are generally focused on

the order statistics from i.i.d. variables, after 1970’s order statistics and outlier

models are considered together under robust estimation subject. Early studies

were on single outlier model by H. A. David, V. S. Shu, V. Barnett and T. Lewis

but in the last two decades, by the help of researches on order statistics from

independent non identical random variables, important contributions on multiple

outlier models have been made by N. Balakrishnan, A. Childs, H. A. David.



Chapter 1

Order statistics from single

outlier model

The distribution theory of order statistics from independent identically

distributed random variables has been well studied in the literature. However,

in the case of non-identically distributed random variables the situation becomes

complex, and the distribution theory of order statistics, in this case, still has

problems to be solved. A single-outlier model can be considered as follows.

Assume that a collection of n independent random variables X1, ..., Xn is

considered. Furthermore, n− 1 of these random variables, say, X1, ..., Xn−1 have

cumulative distribution function F (x) and one of them, say, Xn has different

distribution function G(x). Let X1:n ≤ ... ≤ Xn:n be the order statistics

constructed from sample X1, ..., Xn containing one outlier. In this chapter, we

describe the distribution theory of order statistics from single outlier model.

1.1 Distributions of order statistics

By considering combinatorial arguments and the outlier Xn may fall in the

intervals (−∞, x], (x, x+∆x] and (x+∆x,∞]. The density function of Xr:n (1 ≤

3



CHAPTER 1. ORDER STATISTICS FROM SINGLE OUTLIER MODEL 4

r ≤ n) can be obtained as

fr:n(x) =
(n− 1)!

(r − 2)!(n− r)!
{F (x)}r−2G(x)f(x){1− F (x)}n−r

+
(n− 1)!

(r − 1)!(n− r)!
{F (x)}r−1g(x){1− F (x)}n−r

+
(n− 1)!

(r − 1)!(n− r − 1)!
{F (x)}r−1f(x)

× {1− F (x)}n−r−1{1−G(x)}, x ∈ R

when r = 1 and r = n, the first and last terms do not appear in the formula

respectively. Similar argument can be given for finding the joint density function

of Xr:n and Xs:n (1 ≤ r < s ≤ n) as

fr,s:n(x, y) =
(n− 1)!

(r − 2)!(s− r − 1)(n− s)!
{F (x)}r−2G(x)f(x)

× {F (y)− F (x)}s−r−1f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)(n− s)!
{F (x)}r−1g(x)

× {F (y)− F (x)}s−r−1f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 2)(n− s)!
{F (x)}r−1f(x)

× {F (y)− F (x)}s−r−2{G(y)−G(x)}f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)(n− s)!
{F (x)}r−1f(x)

× {F (y)− F (x)}s−r−1g(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)(n− s− 1)!
{F (x)}r−1f(x)

× {F (y)− F (x)}s−r−1f(y){1− F (y)}n−s−1{1−G(y)}

−∞ < x < y <∞

where the first, middle and last terms do not appear when r = 1, s = r + 1

and s = n, respectively.
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1.2 Robust estimation

Statistical methods heavily depend on a number of assumptions. These

assumptions generally aim at formalizing statistical model, at the same time,

aim at making result of the statistical model manageable from the computational

and theoretical points of view. Usually, it is thought that the formalized models

are simple forms of reality, and that they are best approximations. The generally

used model formalization is the assumption of the observed data obtained from

the population which has normal distribution. This assumption constitutes the

basis of the classical statistical methods. The classical statistics are quite easy to

compute with the modern computational methods. Unfortunately, computational

and theoretical easiness is not always sufficient for practice of statistics and data

analysis.

In practice, it is usually encountered that some observations may violate

normality assumption of classical statistical models. Such data are called

outliers and even one outlier can lead the classical methods to have poor results.

Moreover, the power of classical tests can be quite low, and their confidence level

may be unreliable for the classical confidence level.

Robust statistics provide an alternative approach to the classical statistical

methods. The aim of this approach is to find methods that produce reliable

parameter estimations and corresponding tests, confidence intervals, even if

classical approach assumptions are violated. If there is no outlier in the sample,

robust method and classical method give approximately same results.
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1.3 Robust estimation in the presence of

outliers

Let us have n independent continuous random variables Xj (j = 1, ..., n− 1) and

Y, such that

Xj has cdf F (x) and pdf f(x)

Y has cdf G(x) and pdf g(x),

where Y represents an outlier. Let Zr:n, r = 1, ..., n, denote rth order statistic

of the combined sample. Then the pdf of Zr:n is given by

hr:n(x) = fr−1:n−1(x)G(x) +

(
n− 1

r − 1

)
F r−1(x)[1− F (x)]n−rg(x)

+fr:n−1(x)[1−G(x)]

where, fr:n−1(x) is the pdf of Xr:n−1.

We consider the location shift case, G(x) = F (x − λ). Then we can write Y =

Xn+λ, where Xn has cdf F (x) and independent of X1, ..., Xn−1 then we can write

the dependence on λ as

hr:n(x;∞) = fr:n−1(x) r = 1, ..., n− 1

hr:n(x;−∞) = fr−:n−1(x) r = 2, ..., n.

To see how Zr:n(λ) behaves as a function of λ. Lowercase x, y, z will as usual

denote realizations of X, Y, Z. Adding y = xn + λ into the ordered sample of size

n− 1. Then for any fixed values of x1, ..., xn we have

z1:n(λ) =

{
xn + λ if xn + λ ≤ x1:n−1

x1:n−1 if xn + λ > x1:n−1

and for r = 2, ..., n− 1

zr:n(λ) =


xr−1:n−1 if xn + λ ≤ xr−1:n−1

xn + λ if xr−1:n−1 < xn + λ ≤ xr:n−1

xr:n−1 if xn + λ > xr:n−1
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and

zn:n(λ) =

{
xn−1:n−1 if xn + λ ≤ xn−1:n−1

xn + λ if xn + λ > xn−1:n−1

Hence zr:n(λ) is a nondecreasing function of λ with zn:n(∞) = ∞, z1:n(−∞) =

−∞ and otherwise zr:n(∞) = xr:n−1, zr:n−1(−∞) = xr−1:n−1.

For the finite λ if E(X) exists so does µr:n(λ) = E[Zr:n(λ)], r = 1, ..., n. We write

µr:n(0) = µr:n, etc. Using the monotone convergence theorem it follows that, for

r = 1, ..., n− 1,

lim
λ→∞

E[Zr:n(λ)] = E[ lim
λ→∞

Zr:n(λ)],

µr:n(∞) = E[Xr:n−1] ≡ µr:n−1

Similarly, for r = 2, ..., n

lim
λ→−∞

E[Zr:n(λ)] = E[ lim
λ→−∞

Zr:n(λ)],

µr:n(−∞) = E[Xr−1:n−1] ≡ µr−1:n−1

and

µ1:n(−∞) = −∞, µn:n(∞) =∞.

1.4 Sensitivity curves

It is reasonable to look at the difference tn(x1, ..., xn−1, x)− tn−1 for evaluate how

sensitive an estimate tn−1 = tn−1(x1, ..., xn−1) is to the values of an additional

observation x.

Obviously, for an estimator to be robust, this difference should remain within

reasonable bounds as x ranges through its possible values.

The graph of n[tn(x)−tn−1] against x is called as a sensitivity curve. By replacing

x1, ..., xn−1 by the expected values of the order statistics in samples of n − 1,

stylized sensitivity curves can be obtained.
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1.5 Robust estimation for normal distribution

In the case of the normal distribution, location and scale outlier model can be

considered as:

i. Location-outlier model:

X1, ..., Xn−1
d
= N(0, 1) and Xn

d
= N(λ, 1)

ii. Scale-outlier model:

X1, ..., Xn−1
d
= N(0, 1) and Xn

d
= N(0, σ2)

For the sample size up to 20, the values of means, variances and covariances

of order statistics for different selection of λ and σ were tabulated by H. A. David

(1977). By the help of these tables, several linear estimators of the normal mean

established by Arnold and Balakrishnan (1989), such as

i. Sample mean:

X̄n =
1

n

n∑
i=1

Xi:n

ii. Trimmed means:

Tn(r) =
1

n− 2r

n−r∑
i=r+1

Xi:n

iii. Winsorized means:

Wn(r) =
1

n

[
n−r−1∑
i=r+2

Xi:n + (r + 1)[Xr+1:n +Xn−r:n]

]

iv. Modified maximum likelihood estimators:

Mn(r) =
1

m

[
n−r−1∑
i=r+2

Xi:n + (1 + rβ)[Xr+1:n +Xn−r:n]

]
where m = n− 2r + 2rβ, β = (g(h2)− g(h1))/(h2 − h1), h1 = F−1(1− q −√
q(1− q)/n), h2 = F−1(1−q+

√
q(1− q)/n), q = r/n, F (h) =

∫ h

−∞
f(z)dz,

f(z) = 1√
2π
e−z

2
/2, and g(h) = f(h)/(1− F (h)).
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v. Linearly weighted means:

Ln(r) =
1

2(n
2
− r)2

n
2
−r∑
i=1

(2i− 1)[Xr+i:n +Xn−r−i+1:n]


for even values of n;

vi. Gastwirth mean:

Gn = 0.3(X[n
3
]+1:n +Xn−[n

3
]:n) + 0.2(Xn

2
:n +Xn

2
+1:n)

for even values of n, where [n
3
] denotes the integer part of n

3
.

The plot of bias versus λ obviously has some similarity with the sensitivity

curve, and for n = 10 is compared with the corresponding stylized sensitivity

curve in figure below for four well known estimators (X̄10, T10(1), W10(2), T10(4))

The median T10(4) has, uniformly minimum bias in the class of L estimators.

It is easy to see that the bias is monotonically increasing in λ. But the median

has uniformly larger MSE than the less severely trimmed means.
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By using the tables of means, variances and covariances of order statistics

from a single location outlier normal model by David(1977), in the tables below,

bias and MSE of all these estimators are presented (Balakrishnan(2007)).

Table 1. MSE of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)

Table 2. Bias of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)

It can be seen that from the tables above, even if median provides the best

prediction in single outlier model in terms of bias, it causes a higher MSE than
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other robust estimators. The trimmed mean, modified maximum likelihood and

linearly weighted mean estimators seem to be more robust and efficient.

Figure 2. MSE of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)

Figure 3. Bias of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)
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Similarly, estimators of the location parameter µ can be considered in a single

scale outlier normal model and results for several estimators have been obtained

in the following table. In this situation, because of the estimators are unbiased,

it is sufficient to evaluate variances of them to compare mean square errors.

The trimmed mean, modified maximum likelihood and linearly weighted mean

estimators again seem to be quite robust according to this table.

Table 3. Variance of various estimators of µ for n = 10 when a single outlier is from

N(µ, τ 2) and the others from N(µ, 1)



Chapter 2

Order statistics from multiple

outlier model

In single outlier model, density function of Xr:n and joint density function of

(Xr:n, Xs:n) can be evaluated by direct approach. It can be observed that in the

expressions of density functions of order statistics, they have three and five terms

respectively. However, if we consider two outliers in the sample, the marginal

density of Xr:n has five terms and joint density of (Xr:n, Xs:n) have thirteen

terms. For this reason, the theory of order statistics in the presence of two or

more outliers remains many unsolved problems. Hence, in multiple outlier models,

we need different special methods. Permanents, described in the following section

are useful tool to deal with these models.

2.1 Permanents

The permanent of an n× n matrix A = (ai,j) is defined as

Per(A) =
∑
P

n∏
j=1

aj,ij ,

13
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where
∑
P

represents the sum of all n! permutations (i1, i2, ..., in) from (1, 2, ..., n).

The definition of the permanent of a matrix A differs from determinant of A

in that the signatures of the permutations are not taken into account. Some

properties of permanents can be given as follows;

i. If columns or rows of A are permuted, Per(A) does not change.

ii. Let A(i, j) show the sub-matrix of A that obtained by deleting ith row and

jth column, then

Per(A) =
n∑
i=1

ai,jPer(A(i, j)), j = 1, 2, ..., n

=
n∑
j=1

ai,jPer(A(i, j)), i = 1, 2, ..., n

iii. If we change ith row of matrix A by c × ai,j, j = 1, 2, ..., n and new matrix

A∗ have the property

Per(A∗) = cPer(A)

2.2 Distribution of order statistics in terms of

the symmetric functions

Let X1, X2, ..., Xn be independent but not necessarily identically distributed

random variables with cumulative distribution functions (cdf) F1(x), F2(x), ..., Fn(x)

and X1:n, X2:n, ..., Xn:n be corresponding order statistics. If F1, F2,...,Fn are

absolutely continuous with corresponding probability density functions (pmf)

f1, f2, ..., fn, then the joint pmf of X1:n, X2:n, ..., Xn:n is

f1,2,...,n(x1, x2, ..., xn) =
∑
℘

n∏
j=1

fij (xj),

where the summation ℘ extends over all permutations (i1, i2, ..., in) of 1, 2, ..., n.

For any borel set B ∈ <, where < is the Borel σ−algebra of subsets of the set of



CHAPTER 2. ORDER STATISTICS FROM MULTIPLE OUTLIER MODEL15

real numbers R consider indicators IXi
(B) =

{
1, Xi ∈ B
0, Xi /∈ B

, i = 1, 2, ..., n and

let ν∗(B) =
n∑
i=1

IXi
(B). Define the empirical distribution of the I.N.I.D. sample

X1, X2, ..., Xn as P ∗n(B) = ν∗(B)
n
. It is clear that EIXi

(B) = Pi{Xi ∈ B} =∫
B

dFi(x) ≡ Pi(B) and var(IXi
(B)) = Pi(B)(1− Pi(B)) and EP ∗n(B) =

n∑
i=1

Pi(B)

and var(P ∗n(B)) =
n∑
i=1

Pi(B)(1−Pi(B)). The empirical distribution function of the

I.N.I.D. sample then is defined as F ∗n(x) = P ∗n((−∞, x]). Since 1
n2

n∑
i=1

IXi
(B)→ 0

as n→∞, then the sequence of independent random variables obeys the strong

low of large numbers, i.e. for any ε > 0 and η > 0 there exists n0 such that

for arbitrary s and for all n, satisfying n0 ≤ n ≤ n0 + s, the probability of the

inequality

max
n0≤n≤n0+s

∣∣∣∣∣P ∗n(B)− 1

n

n∑
i=1

Pi(B)

∣∣∣∣∣ < ε and max
n0≤n≤n0+s

∣∣∣∣∣F ∗n(x)− 1

n

n∑
i=1

Fi(x)

∣∣∣∣∣ < ε

is greater than 1− η, for any B ∈ < and x ∈ R.

Lemma 1. For any B ∈ < and x ∈ R

P{nP ∗n(B) = k} =
∑
Sk

k∏
i=1

Pji(B)
n∏

i=k+1

(1− Pji(B))

and

P{nF ∗n(x) = k} =
∑
Sk

k∏
i=1

Fji(x)
n∏

i=k+1

(1− Fji(x)),

where the summation Sk extends over all permutations j1, j2, ..., jn of 1, 2, ..., n

for which j1 < j2 < ... < jk and jk+1 < jk+2 < ... < jn.

Denote now

B(n, k;x) =

(
n

k

)
xk(1− x)n−k

and the symmetric function

B(n, k;x1, x2, ..., xn) =
∑
Sk

k∏
i=1

xji

n∏
i=k+1

(1− xji), 1 ≤ k ≤ n.
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It is clear that B(n, k;xj1 , xj2 , ..., xjn) = B(n, k;x1, x2, ..., xn) for all n!

permutations (j1, j2, ..., jn) of (1, 2, ..., n).

P{nF ∗n(x) = k} = B(n, k;F1(x), F2(x), ..., Fn(x)).

It is clear that if F1 = F2 = · · · = Fn = F then

P{nF ∗n(x) = k} = B(n, k;F (x)).

The following recurrence relation will be useful.

Lemma 2.

B(n, k;x1, x2, ..., xn) = B(n− 1, k;x1, x2, ..., xn−1)x̄n

+B(n− 1, k − 1;x1, x2, ..., xn−1)xn,

where x̄ = 1− x.

The cdf of r−th order statistic Xr:n is

Fr(x) = P{Xr:n ≤ x} (2.1)

=
n∑
i=r

∑
Sk

k∏
i=1

Fji(x)
n∏

i=k+1

(1− Fji(x))

(see David and Nagaraja (2003)) and in terms of B(n, k;x1, x2, ..., xn) it can be

written as

Fr(x) =
n∑
i=r

B(n, i, F1(x), F2(x), ..., Fn(x)). (2.2)

Using Lemma 2 we can write

Fr(x) =
n∑
i=r

B(n, i, F1(x), F2(x), ..., Fn(x))

= F̄n(x)
n∑
i=r

B(n− 1, i, F1(x), F2(x), ..., Fn−1(x))

+Fn(x)
n∑
i=r

B(n− 1, i− 1, F1(x), F2(x), ..., Fn−1(x))
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= Fr:n−1(x)F̄n(x) + Fn(x)Fr−1:n−1(x), (2.3)

where Fi:n−1 denotes the cdf of the i−th order statistic from I.N.I.D. random

variables X1, X2, ..., Xn−1 with corresponding cdf’s F1, F2, ..., Fn−1. Note that

(2.3) and related recurrence equalities can be found in David and Nagaraja (2003,

p. 105)). Since,

P{nF ∗n(x) = i} = B(n, i, F1(x), F2(x), ..., Fn(x)),

i = 0, 1, 2, ..., n

then
n∑
i=0

B(n, i, F1(x), F2(x), ..., Fn(x)) = 1. (2.4)

We have also,

P{Xr:n ≤ x} =
n∑
i=r

P{nF ∗n(x) = i}.

2.3 Log-concavity

Log-concavity of the distribution functions of the order statistics can be showed

by Alexandroff inequality which is important result in permanents theory of

non-negative matrices. A sequence of non-negative numbers α1, α2, ..., αn is log-

concave if α2
1 ≥ αi−1αi+1 (i = 2, 3, ...n − 1). Some properties of log-concavity

can be given as follows; Let α1, α2, ..., αn and β1, β2, ..., βn be two log-concave

sequences. Then the statements below hold.

i. 1. If αi > 0 for i = 1, 2, ..., n, then

αi
αi−1

>
αi+1

αi
, i = 2, ..., n− 1

which means, αi

αi−1
is non-increasing in i.

ii. if αi > 0 for i = 1, 2, ..., n, then α1, α2, ..., αn is unimodal, i.e.

α1 ≤ α2 ≤ ... ≤ αk ≥ ak+1 ≥ ... ≥ an

for some k (1 ≤ k ≤ n)
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iii. The sequence α1β1, α2β2, ..., βnαn is log-concave.

iv. The sequence γ1, γ2, ..., γn is log-concave, where

γk =
k∑
i=1

αiβk+1−i k = 1, 2, ..., n.

v. The sequences α1, α1 + α2, ...,
∑n

i=1 ai and αn, αn−1 + αn, ...,
∑n

i=1 ai are both

log-concave.

vi. The sequence of combinatorial coefficients

(
n

i

)
, i = 0, 1, ..., n is log-

concave.

2.4 Alexandroff’s inequality

A =


a1

...

an


be a non-negative square matrix of order n. Then,

(PerA)2 ≥ Per


a1

...

an−2

an−1

 }2
Per


a1

...

an−2

an

 }2

2.5 Order statistics from independent non-

identical variables in terms of permanents

2.5.1 Distributions and joint distributions

Let X1, X2, ..., Xn be independent random variables from the population where

each Xi has cdf Fi(x) and pdf fi(x), i = 1, 2, ..., n. X1:n ≤ X2:n ≤ ... ≤ Xn:n be
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the order statistics from these n variables. Then, to obtain probability density

function of Xr:n;

P (x < Xr:n ≤ x+ ∆x)

=
1

(r − 1)!(n− r)!
∑
P

Fi1(x)...Fir−1(x){Fir(x+ ∆x)− Fir(x)}

×{1− Fir+1(x+ ∆x)}...{1− Fin(x+ ∆x)}+O((∆x)2)

where
∑
P

represents the sum of all n! permutations (i1, i2, ..., in) from (1, 2, ..., n).

Dividing both side of equality by ∆x and letting ∆x go to zero, density function

of Xr:n is obtained (1 ≤ r ≤ n) as

fr:n(x) =
1

(r − 1)!(n− r)!
∑
P

Fi1(x)...Fir−1(x)fir(x)

×{1− Fir+1(x)}...{1− Fin(x)}, x ∈ R

Permanent representation of fr:n(x) can be rewritten as

fr:n(x) =
1

(r − 1)!(n− r)!
PerA1, x ∈ R

where

A1 =


F1(x) F2(x) ... Fn(x)

f1(x) f2(x) ... fn(x)

1− F1(x) 1− F2(x) ... 1− Fn(x)


}r − 1

}1
}n− r

For finding the joint density function Xr:n and Xs:n (1 ≤ r < s ≤ n);

P (x < Xr:n ≤ x+ ∆x, y < Xs:n ≤ y + ∆y)

=
1

(r − 1)!(s− r − 1)!(n− s)!
∑
P

Fi1(x)...Fir−1(x){Fir(x+ ∆x)− Fir(x)}

×{Fir+1(y)− Fir+1(x+ ∆x)}...{Fis−1(y)− Fis−1(x+ ∆x)}

×{Fis(y + ∆y)− Fis(y)}{1− Fin+1(y + ∆y)}...{1− Fin(y + ∆y)}

+O((∆x)2∆y) +O((∆y)2∆x)

O((∆x)2∆y) represents terms which of Xi’s falling exactly one in (y, y+ ∆y] and

more than one falling in (x, x+ ∆x], and O((∆y)2∆x) represents terms which of

Xi’s falling exactly one in (x, x + ∆x] and more than one falling in (y, y + ∆y],
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dividing both side of equation by ∆x∆y and both goes to zero, density function

of Xr:n and Xs:n (1 ≤ r < s ≤ n) is obtained as

fr,s:n(x, y)

=
1

(r − 1)!(s− r − 1)!(n− s)!
∑
P

Fi1(x)...Fir−1(x)fir(x)

×{Fir+1(y)− Fir+1(x)}...{Fis−1(y)− Fis−1(x)}

×fis(y){1− Fin+1(y)}...{1− Fin(y)}, −∞ < x < y <∞.

It can also be rewritten as permanent form

fr,s:n(x, y)

=
1

(r − 1)!(s− r − 1)!(n− s)!
PerA2, −∞ < x < y <∞.

where

A2 =



F1(x) F2(x) ... Fn(x)

f1(x) f2(x) ... fn(x)

F1(y)− F1(x) F2(y)− F2(x) ... Fn(y)− Fn(x)

f1(y) f2(y) ... fn(y)

1− F1(y) 1− F2(y) ... 1− Fn(y)



}r − 1

}1
}s− r − 1

}1
}n− s

By similar consideration, joint density function of Xr1:n, Xr2:n, ..., Xrk:n ..(1 ≤
r1 < r2 < ... < rk ≤ n.) can be obtain as

fr1,r2,...,rk:n(x1, x2, ..., xk)

=
1

(r1 − 1)!(r2 − r1 − 1)!...(rk − rk−1 − 1)!(n− rk)!
PerAk,

−∞ < x1 < ... < xk <∞.

where

Ak =



F1(x1) ... Fn(x1)

f1(x1) ... fn(x1)

F1(x2)− F1(x1) ... Fn(x2)− Fn(x1)

f1(x2) ... fn(x2)

... ... ...

F1(xk)− F1(xk−1) ... Fn(xk)− Fn(xk−1)

f1(xk) ... fn(xk)

1− F1(xk) ... 1− Fn(xk)



}r1 − 1

}1
}r2 − r1 − 1

}1
}...
}rk − rk−1 − 1

}1
}n− rk
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Moreover, cumulative distribution function Fr:n(x) can be computed by

Fr:n(x) = P (Xr:n ≤ x)

=
n∑
i=r

P (exactly i of X’s are ≤ x)

=
n∑
i=r

1

i!(n− i)!
∑
P

Fj1(x)...Fji(x){1− Fji+1
(x)}...{1− Fjn(x)}

where
∑
P

represents the sum of all n! permutations (j1, j2, ..., jn) from (1, 2, ..., n).

Also it can be written by using permanent representation as;

Fr:n(x) =
n∑
i=r

1

i!(n− i)!
PerB1, x ∈ R

where

B1 =

(
F1(x) F2(x) ... Fn(x)

1− F1(x) 1− F2(x) ... 1− Fn(x)

)
}i
}n− i

Considering similarly, the joint cumulative distribution function ofXr1:n, Xr2:n, ..., Xrk:n

(1 ≤ r1 < r2 < ... < rk ≤ n) may be obtained as

Fr1,r2,...,rk:n(x1, x2, ..., xn) = P (Xr1:n ≤ x1, ..., Xrk:n ≤ xk)

=
∑ 1

j1!j2!...jk+1!
PerBk −∞ < x1 < ... < xk <∞,

where

Bk =



F1(x1) ... Fn(x1)

F1(x2)− F1(x1) ... Fn(x2)− Fn(x1)

... ... ...

F1(xk)− F1(xk−1) ... Fn(xk)− Fn(xk−1)

1− F1(xk) ... 1− Fn(xk)



}j1
}j2
...

}jk
}jk+1

and
∑

is over j1, j2, ..., jk+1 with j1 ≥ r1, j1+j2 ≥ r2 , ..., j1+...+jk ≥ rk and j1+

...+ jk + jk+1 = n. It can be clearly seen that by using independent non-identical

distribution of order statistics, distribution of order statistics from multiple outlier

model may be obtained. For example; Three outliers model whereinX1, X2, ..., Xn

are independent random variables with X1, X2, ...Xn−3 being from a population

with cumulative distribution function F (x) and probability density function f(x)
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and Xn−2, Xn−1, Xn being outliers from a different population with cumulative

distribution G(x) and probability density function of g(x).

fr:n(x) =
1

(r − 1)!(n− r)!
PerE1, x ∈ R

where

E1 =


F (x) ... F (x)

f(x) ... f(x)

1− F (x) ... 1− F (x)︸ ︷︷ ︸
G(x) G(x) G(x)

g(x) g(x) g(x)

1−G(x) 1−G(x) 1−G(x)


}r − 1

}1
}n− r

n− 3

2.5.2 Log-concavity

Alexandroff’s inequality leads the log-concavity of distribution functions of order

statistics. The following theorem presents this interesting result.

Theorem 2.1 Let X1:n ≤ X2:n ≤ ... ≤ Xn:n show the order statistics from

n independent non-identical variables with cumulative distribution functions

F1(x), F2(x), ..., Fn(x). Then for fixed x, the sequences {Fr:n(x)}nr=1 and {1 −
Fr:n(x)}nr=1 are both log-concave. Moreover, if the underlying variables are

all continuous with respective densities f1(x), f2(x), ..., fn(x) then the sequence

{fr:n(x)}nr=1 is also log-concave. (see Balakrishnan (2007)).

Proof. For i = 1, 2, ..., n,

αi = Per

(
F1(x) F2(x) ... Fn(x)

1− F1(x) 1− F2(x) ... 1− Fn(x)

)
}i
}n− i

Since the matrix above is non-negative, an application of Alexandroff’s inequality

leads;

α2
i ≥ αi−1αi+1, i = 2, 3, ..., n− 1

Therefore, the sequence {αi}ni=1 is log-concave. The coefficients
{

1
i!(n−i)!

}n
i=1

form

a log-concave sequence, this leads the sequence
{

αi

i!(n−i)!

}n
i=1

is also log-concave.
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From the permanent representation of the cumulative distribution function of

Xr:n and property (v), we have the log-concavity of the sequence {Fr:n(x)}ni=1 .

Also according to property (v) partial sums of
{

αi

i!(n−i)!

}n
i=1

from the left form a

log-concave sequence that leads the log-concavity of {1− Fr:n(x)}ni=1 . By similar

consideration it is easy to see that {fr:n(x)}ni=1 is also log-concave.



Chapter 3

Main results

In the robust estimation for the normal distribution, the constructions of

estimators for the parameter µ are based on the idea of removing r maximum

and minimum terms from ordered sample. The reason for this procedure is

to eliminate outliers from the sample, and provide more robust estimators for

the parameters by neutralizing the influence of outliers. However, outliers in

the sample are not always the extremes. The outliers in the sample are those

observations that have different distributions. Therefore, they can fall in the

middle part of ordered sample. For example, let X1, X2, ...Xn−1 be a sample from

a population with cumulative distribution function F (x) and Xn be a sample

value from a population with cumulative distribution function G(x). In ordered

sample, X1:n ≤ X2:n ≤ ... ≤ Xn:n outlier Xn may take place of kth order

statistics Xk:n, 1 < k < n . Estimators of µ for the normal distribution; sample

mean(X̄), trimmed mean(Tn(r)) , winsorised mean(Wn(r)), modified maximum

likelihood(Mn(r)), linearly weighted mean(Ln(r)) are unable to eliminate this

type of outliers.

24
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3.1 Probability of “Xr:n is outlier”

Let X1, ..., Xn−1 be from a population with cumulative distribution function F (x)

and Xn from a population with cumulative distribution function G(x). To find

an estimation of the parameter µ for the normal distribution by considering rth

order statistic is outlier, probability that Xr:n is outlier required to be obtained.

P{Xr:n is outlier} =

(
n− 1

r − 1

)
P{X1 < X

′

r, X2 < X
′

r, ...,

Xr−1 < X
′

r, Xr+1 > X
′

r, ..., Xn > X
′

r} =

=

(
n− 1

r − 1

) ∞∫
−∞

P{X1 < X
′

r, X2 < X
′

r, ...,

Xr−1 < X
′

r, Xr+1 > X
′

r, ..., Xn > X
′

r|X
′

r = t}P{X ′r = t}dt

=

(
n− 1

r − 1

) ∞∫
−∞

P{X1 < t,X2 < t, ...,

Xr−1 < t,Xr+1 > t, ..., Xn > t}P{X ′r = t}dt

=

(
n− 1

r − 1

) ∞∫
−∞

F r−1(t)(1− F (t))n−rdG(t)

where X
′
r denotes the random variable which have distribution function G(x).

Example 3.1. Let X1, X2, ..., Xn−1 be from a population with cumulative

distribution function F (x) which is Uniform(0, 1) and outlier Xn has cumulative

distribution function G(x) where

G(x) =


0 x < 0

xθ 0 ≤ x < 1

1 x > 1

F (x) =


0 x < 0

x 0 ≤ x < 1

1 x > 1
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P{Xr:n is outlier} =

(
n− 1

r − 1

) ∞∫
−∞

F r−1(t)(1− F (t))n−rdG(t)

=

(
n− 1

r − 1

) 1∫
0

xr−1(1− x)n−rθxθ−1dx

=

(
n− 1

r − 1

)
θ

1∫
0

xr+θ−2(1− x)n−rdx

=

(
n− 1

r − 1

)
θβ(r + θ − 1, n− r + 1)

Example 3.2. Let X1, X2, ..., Xn−1 be a sample from a population with

cumulative distribution function F (x) and outlier Xn has cumulative distribution

function G(x) where

F (x) =

{
1− e−x x ≥ 0

0 x < 0
G(x) =

 1− e
−
x

δ x ≥ 0

0 x < 0

The probability that Xr:n is the outlier is given by

P{Xr:n is outlier} =
Γ(n)Γ(n− i+ (1/δ))

δΓ(n+ (1/δ))Γ(n− i+ 1)

(Kale and Sinha, 1971) (Numerical verification of this result with our formula

can be found in appendix section 2.)

Similarly, probability that rth order statistic is outlier, whenever two outlier

in the sample can be obtained. Let X1, ..., Xr−2 be from a population with

cumulative distribution function F (x) and Xn−1, Xn from a population with
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cumulative distribution function G(x).

P{Xr:n is outlier} =

=

(
n− 2

r − 2

)
P{X1 < X

′
r, ..., Xr−2 < X

′
r, Xr−1 < X

′
r, Xr+1 > X

′
r, ..., Xn > X

′
r}+

+

(
n− 2

r − 1

)
P{X1 < X

′
r, ..., Xr−2 < X

′
r, Xr+1 < X

′
r, Xr−1 > X

′
r, Xr+2 > X

′
r, ..., Xn > X

′
r}+

+

(
n− 2

r − 2

)
P{X1 < X

′
r−1, ..., Xr−2 < X

′
r−1, Xr < X

′
r−1, Xr+1 > X

′
r−1, ..., Xn > X

′
r−1}+

+

(
n− 2

r − 1

)
P{X1 < X

′
r−1, ..., Xr−2 < X

′
r−1, Xr+1 < X

′
r−1, Xr > X

′
r−1,

Xr+2 > X
′
r−1, ..., Xn > X

′
r−1}

= 2

(
n− 2

r − 2

) ∞∫
−∞

F r−2(x)G(x)(1− F (x))n−rdG(x)+

+2

(
n− 2

r − 1

) ∞∫
−∞

F r−1(x)(1−G(x))(1− F (x))n−r−1dG(x)

where X
′
r−1, X

′
r denote the random variables which have distribution function

G(x).

Example 3.3. Let X1, X2, ..., Xn−2 be from a population with cumulative

distribution function F (x) and outlier Xn−1, Xn has cumulative distribution

function G(x) where

F (x) =

{
1− e−x x ≥ 0

0 x < 0
G(x) =

 1− e
−
x

δ x ≥ 0

0 x < 0
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The probability that Xr:n is the outlier is given by

P{Xr:n is outlier} =

= 2

(
n− 2

r − 2

) ∞∫
−∞

F r−2(x)G(x)(1− F (x))n−rdG(x)+

+2

(
n− 2

r − 1

) ∞∫
−∞

F r−1(x)(1−G(x))(1− F (x))n−r−1dG(x)

= 2

(
n− 2

r − 2

) ∞∫
0

(1− e−x)r−2(1− e
−
x

δ )(e−x)n−rd(1− e
−
x

δ )+

+2

(
n− 2

r − 1

) ∞∫
0

(1− e−x)r−1(e
−
x

δ )(e−x)n−r−1d(1− e
−
x

δ )

3.2 An estimator for the mean of normal

distribution

Multiplying order statistics with the respected probability that is not outlier and

dividing the number of non-outlier observations gives an estimator of parameter

µ for the normal distribution.

X∗ =
1

n− 1

n∑
i=1

(1− αi)Xi:n

where αi denotes the P{Xi:n is outlier}. It can be easily seen that if there is no

outlier in the sample,

αi =

(
n− 1

r − 1

) ∞∫
−∞

F r−1(t)(1− F (t))n−rdF (t)

=

(
n− 1

r − 1

) 1∫
0

ur−1(1− u)n−rdu

=
(n− 1)!

(r − 1)!(n− r)!
(r − 1)!(n− r)!

n!
=

1

n
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Hence, the estimator X∗ turns into sample mean (X̄)

X∗ =
1

n− 1

n∑
i=1

(1− 1

n
)Xi:n

=
1

n

n∑
i=1

Xi:n = X̄

The tables below show the bias, mean squared error and variance of X∗ that

enable us to have an idea about this estimator and others. Mathematical software

Mathcad is used to computation of bias, mean squared error and variance of X∗.

Mathcad codes are included in appendix section 1.

Table 4. Bias of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)

As it is seen from the table above, bias of the X∗ is significantly smaller than

other estimators whenever location outlier observed in the sample. If the distance

between outlier’s location and other sample observations increases, bias of the X∗

is decreasing and X∗ is becoming unbiased for large shiftings of outlier location.
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Table 5. MSE of various estimators of µ for n = 10 when a single outlier is from

N(µ+ λ, 1) and the others from N(µ, 1)

Mean squared errors of X∗ the for all outlier shifting values of parameter µ are

smaller than other estimators which indicate X∗ predicts µ with better accuracy

than others in location outlier case of the normal distribution.

Table 6. Variance of various estimators of µ for n = 10 when a single outlier is from

N(µ, τ 2) and the others from N(µ, 1)

Since estimators of the parameter µ for the scale outlier model is unbiased, it is

sufficient to compare variances of estimators. From the table above, we observe

that the estimator X∗ is not accurate for the scale outlier case as in the location

outlier. But it gives better estimate than X̄ for the large values of scale shift.
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3.3 Conditional distributions of maximum and

minimum order statistics

Distributions of order statistics can be recomputed whenever we know that the

rth order statistic is outlier. Conditional distribution of maximum order statistic

may be found as;

P{Xn:n ≤ t| Xr:n is outlier} =
P{Xn:n ≤ t, Xr:n is outlier}

P{Xr:n is outlier}

P{Xn:n ≤ t, Xr:n is outlier} = Cr−1
n−1P{X1 ≤ t,X2 ≤ t, ..., Xn ≤ t

,X1 ≤ Xn, ..., Xr−1 ≤ Xn, Xr > Xn, Xr+1 > Xn, ..., Xn−1 > Xn} =

= Cr−1
n−1P{X1 ≤ Xn, ..., Xr−1 ≤ Xn, Xn ≤ Xr ≤ t, ..., Xn ≤ Xn−1 ≤ t}

= Cr−1
n−1

t∫
−∞

F r−1(x) (F (t)− F (x))n−r dG(x)

P{Xn:n ≤ t| Xr:n is outlier} =

t∫
−∞
F r−1(x) (F (t)− F (x))n−r dG(x)

∞∫
−∞
F r−1(x) (1− F (x))n−r dG(x)

On the other hand, distribution of minimum order statistic when Xr:n is outlier

is given can be evaluated as;

P{X1:n ≤ t| Xr:n is outlier} =
P{X1:n ≤ t, Xr:n is outlier}

P{Xr:n is outlier}
P{X1:n ≤ t, Xr:n is outlier} = P{Xr:n is outlier}−P{X1:n > t, Xr:n is outlier}

P{X1:n > t, Xr:n is outlier} = Cr−1
n−1P{X1 > t,X2 > t, ..., Xn > t

,X1 ≤ Xn, ..., Xr−1 ≤ Xn, Xr > Xn, Xr+1 > Xn, ..., Xn−1 > Xn} =

= Cr−1
n−1P{t ≤ X1 ≤ Xn, ..., t ≤ Xr−1 ≤ Xn, Xr > t, ..., Xn−1 > t}

= Cr−1
n−1

∞∫
t

(F (x)− F (t))r−1 (1− F (x))n−rdG(x)
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P{X1:n ≤ t, Xr:n is outlier} =

=

Cr−1
n−1

∞∫
−∞
F r−1(x) (1− F (x))n−r dG(x)− Cr−1

n−1

∞∫
t

(F (x)− F (t))r−1 (1− F (x))n−rdG(x)

Cr−1
n−1

∞∫
−∞
F r−1(x) (1− F (x))n−r dG(x)

3.4 Empirical distribution function

Let X1, X2, ..., Xn be random variables with realizations xi = X1(ω) ∈ R, i =

1, 2, ..., n where X1, X2, ..., Xn−1 from the population with cumulative distribution

function F (x) and Xn has cumulative distribution function G(x).Empirical

distribution function F ∗n(x, ω) based on x1, ..., xn

F ∗n(x, ω) =


0 , x < x1:n

1
n−1

i∑
k=1

(1− Sk) , xi:n ≤ x < xi+1:n

1 , x > xn:n

, i = 1, 2, ..., n− 1

where Sk = P{Xk:n is outlier} and xi:n denotes the realization of the random

variable Xi:n with outcome ω.

If there is no outlier in the population which means F (x) = G(x), we have

S1 = S2 = ... = Sn = 1
n
. Hence, empirical distribution based on iid sample is

obtained as;

Fn(x, ω) =


0 , x < x1:n

i
n

, xi:n ≤ x < xi+1:n

1 , x > xn:n

, i = 1, 2, ..., n− 1

Let us denote the jump points at the point Xi:n by Pi.

Pi = F ∗n(xi:n, ω)− F ∗n(xi−1:n, ω) =

=
1

n− 1

i∑
k=1

(1− Sk)−
1

n− 1

i−1∑
k=1

(1− Sk)

=
1− Si
n− 1
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If Si = 1
n

then Pi =
1− 1

n

n−1
= 1

n
, i = 1, 2, .., n as in the independent identical case of

distributions.

More precisely;

F ∗n(xi:n + 0)− F ∗n(xi:n − 0) ≡ Pi =
1− Si
n− 1

∼= P (XF ∈ (Xi:n − 0, Xi:n + 0))

∼= P (XF = Xi:n) = P (XF ≤ Xi:n)− P (XF < Xi:n)

where XF is observation with distribution function F. If Xi:n is and outlier with

a large probability, then we take its effect to be small.

The summation of probabilities at the jump points gives

P1 + ...+ Pn =
1

n− 1
((1− S1) + ...+ (1− Sn)) =

=
1

n− 1
((1 + ...+ 1)− (S1 + ...+ Sn))

= 1

Consider αF = EFn(X) =
∫
xdFn(x), which is the natural estimation by definition

of the Stieltjes integral. Then

EF ∗n (X) =

∫
xdF ∗n(x) =

n∑
i=1

Xi:nPi

=
n∑
i=1

Xi:n
1− Si
n− 1

=
1

n− 1

n∑
i=1

(1− Si)Xi:n = αF ∗

which leads to our estimator X∗.

Similarly, σ2
F =

∫
(x− αF )2dFn(x) can be redefined by our consideration as

σ̂2
F =

1

n− 1

n∑
i=1

(Xi:n − αF ∗)2(1− Si)
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Appendix

1. Bias, MSE and Variance of estimator X∗ for Normal distribution.
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E(X∗) = E(
n∑
r=1

SrXr:n) = a+ b+ d = 4.119× 10−3

k1 = (E(X∗))2 = (a+ b+ d)2 = 1.697× 10−5
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k2 =
n∑
r=1

S2
rE(Xr:n)2 = x+ y + z = 0.11

where Ca =
(n− 1)!

(r − 2)!(s− r − 1)!(n− s)!
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where Cb =
(n− 1)!

(r − 1)!(s− r − 1)!(n− s)!

where Cc =
(n− 1)!

(r − 1)!(s− r − 2)!(n− s)!

where Cd =
(n− 1)!

(r − 1)!(s− r − 1)!(n− s)!

where Cf =
(n− 1)!

(r − 1)!(s− r − 1)!(n− s− 1)!

where k3 = 2
∑∑
r<s

SrSsE(Xr:nXs:n)
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V ar(X∗) = V ar(
n∑
r=1

SrXr:n) = E((
n∑
r=1

SrXr:n)2)− (E(
n∑
r=1

SrXr:n))2

=
n∑
r=1

S2
rE(Xr:n)2 + 2

∑∑
r<s

SrSsE(Xr:nXs:n)− (E(
n∑
r=1

SrXr:n))2

= k2 + k3− k1 = 0.11078

MSE(X∗) = V ar(X∗) +Bias2(X∗)

Since, we considered µ = 0 the Bias(X∗) is equal to E(X∗) so,

MSE(X∗) = k2 + k3 = 0.1108

2. P{Xr:n is outlier} for exponential distribution
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