ORDER STATISTICS IN OUTLIER MODELS

KEREM TURKYILMAZ

JUNE 2009



ORDER STATISTICS IN OUTLIER MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF
NATURAL AND APPLIED SCIENCES OF

IZMIR UNIVERSITY OF ECONOMICS

BY
KEREM TURKYILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

IN THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

JUNE 2009



M.S. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “ORDER STATISTICS IN OUTLIER
MODELS” completed by KEREM TURKYILMAZ under supervision of
Prof. Dr. Ismihan Bayramoglu and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ismihan Bayramoglu
Supervisor

Thesis Committee Member Thesis Committee Member

Director

i



ABSTRACT
ORDER STATISTICS IN OUTLIER MODELS

KEREM TURKYILMAZ
M.S. in Applied Statistics
Graduate School of Natural and Applied Sciences
Supervisor: Prof. Dr. Ismihan Bayramoglu
June 2009

In this study, order statistics from single and multiple outlier models are
considered. The marginal and joint distributions of the corresponding order
statistics are derived. Robust estimations for normal distribution in single outlier
model are investigated, numerical results and Bias and MSE tables of these
estimators are obtained. Moreover, probability of rth order statistic being outlier
is derived whenever there is one or two outlier in the sample. A robust estimator
based on this probability is provided and MSE, Bias results of this estimator of
mean for normal distribution are presented. Conditional probablity of maximum
and minimum order statistics given that rth order statistic is outlier is derived.
Also, the empirical distribution function for single outlier model is provided.

Keywords: order statistics, outliers, single-outlier model, multiple-outlier model,

robust estimators, location outlier, scale outlier.
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SAPAN DECER MODELLERINDE SIRA
[STATISTIKLERI

KEREM TURKYILMAZ
Uygulamali Istatistik, Yiiksek Lisans
Fen Bilimleri Enstitiisii
Tez Yoneticisi: Prof. Dr. Ismihan Bayramoglu
Haziran 2009

Bu calismada, tekli ve coklu sapan deger modellerinde sira istatistiklerinin
tizerinde durulmustur. Bu sira istatistiklerinin dagilim ve ortak dagilim
fonksiyonlar: elde edilmistir. Tekli sapan deger modelinde, normal dagilim igin
saglam tahmin ediciler aragtirilmigtir. Bu tahmin ediciler i¢in sayisal sonuclar,
Bias ve ortalama hata kareleri tablolar1 elde edilmistir. Ayrica, bir veya iki sapan
degerli modelde r. sira istatistiginin sapan deger olma olasiligi hesaplanmigtir.
Bu olasiliga dayanarak normal dagilimin ortalamasi igin, bir saglam tahmin
edici onerilip Bias, ortalama hata kareleri degerleri bulunmustur. r. sira
istatistiginin sapan deger olma olasiligi kosulu altinda minimum ve maksimum
sira istatistiklerinin dagilimlar: elde edilmistir. Buna ek olarak, tekli sapan deger

modeli i¢in ampirik dagilim fonksiyonu hesaplanmisgtir.

Anahtar Kelimeler: sira istatistikleri, sapan degerler, tekli sapan deger modeli,
¢oklu sapan deger modeli, saglam tahmin ediciler, yer sapan degeri, 6l¢ek sapan

degeri.
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Introduction

In classical statistics, an outlier is an observation that lies numerically distant
from the rest of data in a random sample from a population. Since the earliest
attempts to interpret data, there has been a concern for outlying observations
in data sets. These outliers are generally considered as reducer of information
about data. Therefore, it is reasonable to attempt to interpret means and to
seek methods for handling outliers. Sometimes rejecting outliers may be improve
fitness of the data, or applying methods of decreasing their effect in statistical

analysis.

Peirce has stated the concept of outlier and outlier problem in 1852 by his
following words: “In almost every true series of observations, some are found,
which differ so much from the others as to indicate some abnormal source of
error not contemplated in the theoretical discussions, and the introduction of
which into the investigations can only serve to perplex and mislead the inquirer.”
The earliest method for dealing with outliers was introduced by Chauvenet in
1863.

Outlier definition can be defined in terms of distributions rather than
numerical distance between observations. Assume that an experimenter wants
to obtain n observations from population with distribution function F. It may
happen that one or more observations among this sample is obtained from
population with distribution function G. These observations are called outliers.
In this case, in ordered sample, outliers may not be extremes. More precisely,
outliers are observations only having different distributions. For example, in

a population with continuous distribution with p.d.f. having two modes, the

1
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outliers may fall into interval, where the p.d.f. has minimum value between
two modes. Clearly, none of these outliers will be extreme value of the sample.
Therefore, distribution of order statistics from independent non-identical random

variables are closely related with the outlier models.

Since the early 20th century, important studies on order statistics and their
properties have been presented. The first fundamental book describing this
theory is David (1981). Arnold et al. (1992) and David and Nagaraja (2003)
include new developments on order statistics from independent and identically
distributed (i.i.d.) and independent but not necessarily identically distributed
(in.i.d.) random variables. The distribution theory of order statistics from
in.i.d. random variables were first described in Vaughan and Venables (1972)
by involving permanent, a concept defined similar to the determinant except
that it does not have alternating sign, i.e. taking all terms in the summation
of the definition of determinant to be positive. For a recent review describing
the theory of order statistics from in.i.d. case and also including interesting
results on outliers and robustness, we refer Balakrishnan (2007). Permanent
expressions for the distribution function of i.n.i.d. order statistics allow to obtain
some recurrence relations, using the expansion of the permanent by some of the
rows. However, in some cases, where the applications of order statistics from the
i.n.i.d. random variables are considered, the usage of the permanent expressions
for the distributions of i.n.i.d. order statistics causes some difficulties connected
with the complexity of operations. Despite researches are generally focused on
the order statistics from i.i.d. variables, after 1970’s order statistics and outlier
models are considered together under robust estimation subject. Early studies
were on single outlier model by H. A. David, V. S. Shu, V. Barnett and T. Lewis
but in the last two decades, by the help of researches on order statistics from
independent non identical random variables, important contributions on multiple
outlier models have been made by N. Balakrishnan, A. Childs, H. A. David.



Chapter 1

Order statistics from single

outlier model

The distribution theory of order statistics from independent identically
distributed random variables has been well studied in the literature. However,
in the case of non-identically distributed random variables the situation becomes
complex, and the distribution theory of order statistics, in this case, still has
problems to be solved. A single-outlier model can be considered as follows.
Assume that a collection of n independent random variables Xi,..., X, is
considered. Furthermore, n — 1 of these random variables, say, X7, ..., X,,_1 have
cumulative distribution function F(z) and one of them, say, X, has different
distribution function G(z). Let Xi., < .. < X,.,, be the order statistics
constructed from sample X, ..., X, containing one outlier. In this chapter, we

describe the distribution theory of order statistics from single outlier model.

1.1 Distributions of order statistics

By considering combinatorial arguments and the outlier X,, may fall in the

intervals (—oo, z|, (z,z+ Az] and (x+ Az, oo]. The density function of X, (1 <
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r < n) can be obtained as

_ (n_l)' x r—2 x x . )T
frnli) = e P @) 26 ) )1~ P}

! r—1 n—r
P D @Y @~ @)

! r—1
= Din—r =1 @ @)

x{1—-F(x)}" "Y1 -G(2)}, r€R

when » = 1 and r = n, the first and last terms do not appear in the formula
respectively. Similar argument can be given for finding the joint density function
of X, and X, (1 <7 <s<mn)as
(n—1)! -2
r,8:n ) = F " G

< {F(y) = Fl)} " {1 = F(y)}"™

(n—1)! r—1
TG —r= D= @)

X {F(y) = Fa) " fy){l = F(y)}"~°
(n_ 1)' r—1
oD —r— gy @)

x {F(y) = Fa) " {G(y) — G)} ({1 - Fly)}"~
(n—1)! r—1
T oD —r= D= @)
x {F(y) — F(a)} " gy){1 - F(y)}"™
(n—1)! r—1
* r—=D(s=r—1)(n—s—1)! @) /(@)
X {F(y) = Fl@) P f){1 - Fiy)}" {1 - G(y)}

—0<r <y <00

where the first, middle and last terms do not appear when r = 1, s = r + 1

and s = n, respectively.
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1.2 Robust estimation

Statistical methods heavily depend on a number of assumptions. These
assumptions generally aim at formalizing statistical model, at the same time,
aim at making result of the statistical model manageable from the computational
and theoretical points of view. Usually, it is thought that the formalized models
are simple forms of reality, and that they are best approximations. The generally
used model formalization is the assumption of the observed data obtained from
the population which has normal distribution. This assumption constitutes the
basis of the classical statistical methods. The classical statistics are quite easy to
compute with the modern computational methods. Unfortunately, computational
and theoretical easiness is not always sufficient for practice of statistics and data

analysis.

In practice, it is usually encountered that some observations may violate
normality assumption of classical statistical models. Such data are called
outliers and even one outlier can lead the classical methods to have poor results.
Moreover, the power of classical tests can be quite low, and their confidence level

may be unreliable for the classical confidence level.

Robust statistics provide an alternative approach to the classical statistical
methods. The aim of this approach is to find methods that produce reliable
parameter estimations and corresponding tests, confidence intervals, even if
classical approach assumptions are violated. If there is no outlier in the sample,

robust method and classical method give approximately same results.
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1.3 Robust estimation in the presence of

outliers

Let us have n independent continuous random variables X; (7 =1,...,n—1) and

Y, such that

X; has cdf F(z) and pdf f(x)
Y has cdf G(z) and pdf g(z),

where Y represents an outlier. Let Z,.,, r = 1,...,n, denote rth order statistic
of the combined sample. Then the pdf of Z,., is given by

)F"‘l(x)[l @I g()

n—1

hen(z) = frcim—1(2)G(x) + <7“ 1

+frna1(z)[1 = G(z)]

where, f,.,_1(z) is the pdf of X,.,, .
We consider the location shift case, G(z) = F(z — A). Then we can write Y =
X,+ A\, where X, has cdf F(x) and independent of X7, ..., X,,_; then we can write

the dependence on A\ as
hpp(z;00) = frpoa(z) r=1,..,n—-1
hp(x;—00) = fromoa(z) r=2,..,n
To see how Z,.,(\) behaves as a function of \. Lowercase z,y,z will as usual

denote realizations of X, Y, Z. Adding y = x,, + A into the ordered sample of size

n — 1. Then for any fixed values of xy, ..., z, we have

nt N if xp < 2T
Zl:n()\):{x+ if T, + Tim—1

Tim—1 Uf Tp+ A>T

and forr=2,...n—1
Tr—1:n—1 Zf T + )\ S Tr—1:n—1

Zrin()‘) = Tn + )\ Zf Tr_1n—1 < Tp + )\ S Lrin—1
Lrin—1 lf L, + )\ > Tpip—1
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and
Tpn—1:n— i Ty + A S Tpn—1mn—
Znn(/\) _ 1in—1 f 1 1
Tn + A Zf Tp + A > Tpn—1:n—-1

Hence z,.,(\) is a nondecreasing function of A with z,.,(00) = 00, z1.,(—00) =
—oo and otherwise 2,.,(00) = Tyum—1, Zrm—1(—00) = Tp_1—1.

For the finite A if E(X) exists so does pi,n(A) = E[Z,n(N)], 7 = 1,...,n. We write
trn(0) = fiyy, ete. Using the monotone convergence theorem it follows that, for
r=1,...n—1,

lim E[Z.,(\)] = E[lim Z,.,()\)],

A—00 A—00

Mr:n(oo) = E[szn—l]E,ur:n—l

Similarly, for r =2,....,n

lim E[Z(N)] = E[ lim Z.(\),

A——00

Hrzn(_oo> = E[erl:nfl]z,urfltnfl

and

fi1:n(—00) = —00,  HUp:n(00) = 00.

1.4 Sensitivity curves

It is reasonable to look at the difference t,(x1, ..., x,_1,x) — t,_1 for evaluate how
sensitive an estimate ¢, 1 = t,_1(x1,...,x,_1) is to the values of an additional

observation x.

Obviously, for an estimator to be robust, this difference should remain within
reasonable bounds as x ranges through its possible values.
The graph of nlt, (z)—t,_1] against z is called as a sensitivity curve. By replacing
x1,...,Tp_1 by the expected values of the order statistics in samples of n — 1,

stylized sensitivity curves can be obtained.
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1.5 Robust estimation for normal distribution

In the case of the normal distribution, location and scale outlier model can be

considered as:
1. Location-outlier model:

X1, Xpo1 2 N(0,1) and X, < N(\, 1)
ii. Scale-outlier model:

X1, Xpo1 2 N(0,1) and X, £ N(0,0?)

For the sample size up to 20, the values of means, variances and covariances
of order statistics for different selection of A and ¢ were tabulated by H. A. David
(1977). By the help of these tables, several linear estimators of the normal mean
established by Arnold and Balakrishnan (1989), such as

i. Sample mean:

1ii. Trimmed means:

iii. Winsorized means:

WVL(r) = % [nf X@':n + (T + 1)[Xr+1:n + an:n]]

1=r+2

iv. Modified maximum likelihood estimators:

n—r—1
Mn(r) = % [ Z in + (]- + Tﬁ)[Xr-l—l:n + Xn—’r:n]
1=r+2
where m = . — 21 + 206, = (g(hs) — g(h1)),/(hs — hn), by = F~(1 — ¢ -

\/q<1—q>/n>,h2:F—1<1—q+\ﬁ<1—q>/n>,q:r/n7F /f -,

F(z) = e /2, and g(h) = f(h)/(1 - F(h)).
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v. Linearly weighted means:

Zp

1 < )
Ln(T) = 5/n 2 Z(QZ - 1)[X7'+i:n + Xn7r7i+1:n]
2 i=1

for even values of n;

vi. Gastwirth mean:

for even values of n, where [Z] denotes the integer part of .

The plot of bias versus A obviously has some similarity with the sensitivity
curve, and for n = 10 is compared with the corresponding stylized sensitivity

curve in figure below for four well known estimators (Xiq, Tho(1), Wio(2), Ti0(4))

g
o
T

~
(-]

1
B
=

BIAS X 10
n

13728

-
Y
o

0.5 1.0 .5 0 2.5 .0
OUTLIER SHIFT

The median T10(4) has, uniformly minimum bias in the class of L estimators.
It is easy to see that the bias is monotonically increasing in A\. But the median

has uniformly larger MSE than the less severely trimmed means.
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By using the tables of means, variances and covariances of order statistics
from a single location outlier normal model by David(1977), in the tables below,
bias and MSE of all these estimators are presented (Balakrishnan(2007)).

A

Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 =0

Xin 0.10000 010250 011000  0.12250 014000  0.19000  0.26000 o0

Tia(1) 0.10534 0.10791 0.11471  0.12387  0.13285 0.14475 0.14865  0.14942
Tia(2) 0.11331  0.11603  0.12297  0.13132  0.13848 0.14580 014730 0.14745
Medig 0.13833 0.14161  0.14964  0.15852  0.16524 017072 017146 0.17150
Win(1) 010437  0.10693 011403 0.12405  0.13460 0.15039 015627 015755
Win(2) 0.11133  0.11402 0.12106 012005 0.13805 0.14713 0.14926  0.14950
Mio(1) 0.10432  0.10688  0.11396  0.12385  0.13430 0.14950 015513 0.15581
Mio(2) 011125 011395 0.12097 012074 013770 0.14649 0.14833 014876
Lin(1) 0.11371  0.11644 0.12337  0.13169 0.13882 0.14626 014797  0.14320
L1o(2) 0.12007 012386 0.13105  0.13933  0.14598  0.15206 015310  0.15318
Glin 012256  0.12549  0.13276  0.14111 014777 015376 015472 0.15470

Table 1. MSE of various estimators of u for n = 10 when a single outlier is from

N(u+ A, 1) and the others from N(u,1)

A
Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 a0
X10 0.0 005000 010000 015000 020000  0.30000 040000 a0
Tio(1) 00 0045912 0.09325 012870 015400 017871 018470 0.18563
Tiol(2) 0.0 004369 0.09023 012041 013904 0.15311 0.15521 0.15538
Medig 0.0 004332 008768 011381 012795 0.13642  0.13723  0.13726
Win(1) 0.0 0045938 0.09506 013368 016208 0.19407  0.20239  0.2037T

Wio(2) 0.0 004889  0.00156 012380 014497 016217 016504 0.16530
Minil) 0.0 0.04934 0.09484 0.13311 016194 0.19220 020037 0.20169
M1oi2) 0.0 0.04886  0.09137  0.12342 014418 0.16091  0.16369 0.16394

Lani1) 0.0 004369  0.09024  0.12056 013954  0.154539 015727 0.15758
L1o(2) 0.0 004850 008802 011700 013328 0.14436  0.14576  0.14585
Gin 0.0 0.04847 0.08873 0.11649 0.13237 0.14285 0.14407 0.14414

Table 2. Bias of various estimators of p for n = 10 when a single outlier is from

N(p+ A, 1) and the others from N(u, 1)

It can be seen that from the tables above, even if median provides the best

prediction in single outlier model in terms of bias, it causes a higher MSE than
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other robust estimators. The trimmed mean, modified maximum likelihood and

linearly weighted mean estimators seem to be more robust and efficient.

3,00 -

250 2 ——3_10
s
2 500 —=—T_10(1)
o a Med_10
g 1,50 w1001
» —e—M_10(1)
£ 1,00 1
3 ——L_10(1)

050 —+—G_10

D,DD T T T T T T 1

o0 o5 10 15 20 30 40
Outlier shift

Figure 2. MSE of various estimators of y for n = 10 when a single outlier is from

N(p+ A, 1) and the others from N(u, 1)

s X 10
T_10(1)
Med_10

W 10(1)

—eM_10(1)

Lt

- G_10

Bias x 10

0.0 0.5 1.0 1.5 2.0 3.0 4.0
Qutlier shift

Figure 3. Bias of various estimators of u for n = 10 when a single outlier is from

N(p+ A, 1) and the others from N(u, 1)
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Similarly, estimators of the location parameter p can be considered in a single
scale outlier normal model and results for several estimators have been obtained
in the following table. In this situation, because of the estimators are unbiased,
it is sufficient to evaluate variances of them to compare mean square errors.
The trimmed mean, modified maximum likelihood and linearly weighted mean

estimators again seem to be quite robust according to this table.

-
Estimator 0.5 1.0 2.0 3.0 4.0 oo

X 0.09250  0.10000  0.13000 018000  0.25000 o0

Tio(1) 000491 0.10534 0.12133 012055 013417 0.14042
Tio(2) 000053 0.11331 012773 013380 013717 0.14745
Medp 011728 0.13833 0.15375 0.15953  0.16249 0.17150
Wio(1) 000571 010437 012215 0013221 013801 0.15754
Win(2) 000072 011133 012664  0.13365  0.13745  0.140950
Mip(1) 000548 010432 012187 013171 0.13735 0.15581
Mip(2) 000040  0.11125% 0.12638 0.13328 0.13699  0.14876
Lin(1) 0.09934 0.11371  0.12815 013436  0.13769  0.14820
L1n(2) 010432 012097  0.13531  0.14101 0.14398 0.15318
Gio 010573 012256 013703 014270 0.14565 0.15479

Table 3. Variance of various estimators of p for n = 10 when a single outlier is from

N(u, %) and the others from N (p, 1)



Chapter 2

Order statistics from multiple

outlier model

In single outlier model, density function of X,., and joint density function of
(Xyn, Xsn) can be evaluated by direct approach. It can be observed that in the
expressions of density functions of order statistics, they have three and five terms
respectively. However, if we consider two outliers in the sample, the marginal
density of X, has five terms and joint density of (X,.,, Xs.,) have thirteen
terms. For this reason, the theory of order statistics in the presence of two or
more outliers remains many unsolved problems. Hence, in multiple outlier models,
we need different special methods. Permanents, described in the following section

are useful tool to deal with these models.

2.1 Permanents

The permanent of an n X n matrix A = (a; ;) is defined as

Per(A) = ZHajyij,

P j=1

13
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where > represents the sum of all n! permutations (i1, is, ..., 4,) from (1,2, ..., n).
P

The definition of the permanent of a matrix A differs from determinant of A

in that the signatures of the permutations are not taken into account. Some

properties of permanents can be given as follows;

i. If columns or rows of A are permuted, Per(A) does not change.

ii. Let A(7,j) show the sub-matrix of A that obtained by deleting ith row and
Jth column, then

n

Per(A) = Zai,jPer(A(i,j)), j=12,...n

=1

= Y aiPer(A(i,j)), i=1,2,..n
j=1

iii. If we change ith row of matrix A by ¢ X a;;, j =1,2,...,n and new matrix
A* have the property
Per(A*) = cPer(A)

2.2 Distribution of order statistics in terms of

the symmetric functions

Let X, Xs,..., X, be independent but not necessarily identically distributed
random variables with cumulative distribution functions (cdf) Fy(z), Fa(x), ..., Fy,(z)
and Xi.,, Xo, ..., Xpn be corresponding order statistics. If Fy, Fy,...,F, are
absolutely continuous with corresponding probability density functions (pmf)
f1, fay .oy fn, then the joint pmf of Xi.,, Xo.,, ..., Xy 1S

f1,2 ..... n($1,$2, ,iUn) = ZHfij(xj),

p Jj=1

where the summation p extends over all permutations (i1, iz, ...,4,) of 1,2, ... n.

For any borel set B € R, where R is the Borel o—algebra of subsets of the set of
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real numbers R consider indicators Iy, (B) = ,i=1,2,...,n and
0, X;¢B

let v*(B) = > Ix,(B). Define the empirical distribution of the I.N.I.D. sample
i=1

X1, X5, ... X, as Pr(B) = Y8 Tt is clear that Ely,(B) = P{X; € B} =

n

[ dF;(xz) = Pi(B) and var(Ix,(B)) = P,(B)(1 — Pi(B)) and EP;(B) = Zn: P,(B)

B i=1

and var(P*(B)) = i P;(B)(1—P;(B)). The empirical distribution function of the
i=1

LN.LD. sample then is defined as F}(z) = P;((—o0,z]). Since 5 i Ix,(B)—0
as n — oo, then the sequence of independent random variables obze:;fs the strong
low of large numbers, 7.e. for any ¢ > 0 and n > 0 there exists ng such that
for arbitrary s and for all n, satisfying ng < n < ng + s, the probability of the
inequality

<e

no<n<ng+s no<n<no+s

1 n
max |P(B)— — E P(B)| <e and  max
n
i=1

AOEES SAE

is greater than 1 — 7, for any B € ® and = € R.

Lemma 1. Forany BEe Rand z € R

n

PinPy(B) =k} =) [[£.(B) [] 0~ Fi(B)

Sy i=1 i=k+1
and

P{nF;(z) =k} = ] Fi(x) [] 0~ F@),

Sj i=1 i=k+1
where the summation Sy extends over all permutations ji, jo,...,J, of 1,2,....n

for which jl < j2 < ... < ]k and jk+1 < jk+2 < ... < jn

Denote now
B(n,k;x) = (Z) ¥ (1 — ) *

and the symmetric function

k n
B(n,k;xy, 29, ..., 2,) = ZH$] H (1—2;),1<k<n.

Sp i=1  i=k+1
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It is clear that B(n,k;z;,zj,,....x;,) = DB(n,kjzi,2q,...,2,) for all n!

permutations (j1, j2, ..., Jn) of (1,2, ....n).
P{nF:(z) =k} = B(n,k; F1(z), F5(x), ..., F,,(x)).
It is clear that if /| = Fy, =--- = F,, = F then

P{nF;(z) =k} = B(n,k; F(z)).

The following recurrence relation will be useful.

Lemma 2.

B(n,k;xy, 29, ...,x,) = B(n—1,kx,29,...,T0_1)Tn

+B(n— 1,k — 121,29, ..., Tp_1)Tn,

where z =1 — z.

The cdf of r—th order statistic X,.,, is

F.(x) = P{X,, <z} (2.1)
i=r S i=1 i=k+1

(see David and Nagaraja (2003)) and in terms of B(n, k;x1, s, ...,x,) it can be

written as
= > B(n,i Fie), Fafe), o Fa(a)) (2.2)

Using Lemma 2 we can write
Fr(‘r) = ZB(H,Z,F1($),F2($),,Fn(l'))
- ZB —1,i, Fi(z), Fa(2), ..., F_1(2))

z) Z B(n—1,i—1,F(x), Fy(z), ..., Fr_1(z))
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= Frn1(2)Fy(z) + Fu(2)Fr 1.1 (), (2.3)

where Fj.,,_; denotes the cdf of the ¢—th order statistic from I.N.I.D. random
variables X1, X, ..., X,,_1 with corresponding cdf’s Fi, F5,..., F,,_1. Note that
(2.3) and related recurrence equalities can be found in David and Nagaraja (2003,
p. 105)). Since,

P{nF:(z) = i} = B(n,i, Fi(z), F5(z),..., F.(x)),
i = 0,1,2,...n

then

n

> B(n,i, Fi(z), Fy(), .., Fu(x)) = 1. (2.4)

=0
We have also,

P{X, <x} =) P{nF;(z) =i}

2.3 Log-concavity

Log-concavity of the distribution functions of the order statistics can be showed
by Alexandroff inequality which is important result in permanents theory of
non-negative matrices. A sequence of non-negative numbers oy, o, ..., a,, is log-
concave if a? > a; ja;11 (1 = 2,3,..n — 1). Some properties of log-concavity
can be given as follows; Let aq,as,...,a, and (1, (s, ..., 3, be two log-concave

sequences. Then the statements below hold.

i. 1. Ifa;>0fore=1,2,...,n, then

0%} S Q41

, 1=2,...,n—1

=
Q1 Q;

€7
-1

which means, is non-increasing in .
ii. if a; >0 forv=1,2,...,n, then oy, as, ..., a;, is unimodal, i.e.
o L as < LS ap 2 gy 2 . 2 Ay

for some k (1 <k <mn)
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iii. The sequence a3, asfs, ..., Bra, is log-concave.

iv. The sequence vy, Yo, ..., ¥, is log-concave, where
k
Ve = E Oéiﬁk+1,i k= 1,2, .
i=1

v. The sequences oy, a1 + az, ..., » iy @ and Qp, Q1 + G, ..y iy @; are both

log-concave.

n
vi. The sequence of combinatorial coefficients ( . ) , ¢ = 0,1,....,n is log-
i

concave.

2.4 Alexandroff’s inequality

ax
A=
Qp

be a non-negative square matrix of order n. Then,

a1 a1
(PerA)? > Per Per
Ap—2 Ap—2
}2 }2
An—1 (7%

2.5 Order statistics from independent mnon-

identical variables in terms of permanents

2.5.1 Distributions and joint distributions

Let Xy, X, ..., X,, be independent random variables from the population where
each X; has cdf Fi(z) and pdf fi(z), i =1,2,....n. X1, < Xop < ... < X, be
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the order statistics from these n variables. Then, to obtain probability density

function of X,.,;

Pz < XTn<$+A:v)
= T o ) Fa B A0) = By (0)

<{1=F,,(z+An)}. {1 - F, (v + Az)} + O((Az)?)

where > represents the sum of all n! permutations (i1, is, ..., 4, ) from (1,2, ..., n).

P
Dividing both side of equality by Ax and letting Az go to zero, density function
of X,., is obtained (1 <r <n) as

fr:n(x):(T_l TL—T'ZF“ E,_\(2) i, (2)
{1 = F, (@)} A1 = F,(2)}, zeR

Permanent representation of f,.,(z) can be rewritten as

1
fr:n(x): (7"—1) (n—r) P€7”A17 reR
where
Fi(x) F(x) ...  F,(x) br—1
A = fi(z) fo(z) fn(2) H
1-—F(z) 1—F(z) ... 1=F(z)) n—r
For finding the joint density function X,.,, and X, (1 <r < s < n);

Pz < X, <z+Az, y< Xy <y+Ay)

1

= (7,_ 1)!(8—7‘— 1)!(72,—8)! ZFH( lr 1( ){FZ (.T—i—Ax) _ET(I)}

x{Fi,,(y) = By (o + Ax)} A F;,_, (y) — Fi,_, (z + Az)}
x{Fi,(y +Ay) — Fi,(y) {1 — Fi,.,(y + Ay)}..{1 = F,.(y + Ay)}
+0((Ax)*Ay) + O((Ay)*Ax)

O((Ax)%*Ay) represents terms which of X;’s falling exactly one in (y,y + Ay] and
more than one falling in (z,z + Az], and O((Ay)?Ax) represents terms which of
X;’s falling exactly one in (z,z + Az] and more than one falling in (y,y + Ay,
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dividing both side of equation by AxAy and both goes to zero, density function
of X,., and X, (1 <7 < s <n)is obtained as

frsm(z,y)
1
- (7, _ 1)!(8 —r— 1)|(n _ S)' ;F’Zl(m)ﬂr—l(x)flr(x)

X{Fiy i (v) = Fipy ()} A F, L (y) — By ()}
i1 =F, ()} {1-F,(y)}, —oo<z<y<oo.

It can also be rewritten as permanent form

fr,s:n(x7y)
1
= (r—1)!(3—7’—1)!(71—8)!]36“42’ —00 <z <y < oo.
where
Fi(x) Fy(x) F,(x) br—1
filx) fa(x) fulz) H
Az = Fi(y) — Fi(z) Faly) — B(z) .. Fu(y) —Fuz) | }s—r—1
fiy) fa(y) Faly) 1
1— Fi(y) 1=Fy) .. 1-F(@) jn—s

By similar consideration, joint density function of X, .., Xypim, oo Xppin (1 <

71 < 7re < ..<rp<n.) can be obtain as

frl,rg,...,rk:n(xb T2y enny xk)

1
- PerA
(ri — D (rg —ry — Dl(re — riey — DY (n — 7p)! ek

—00 < I <. < T <O0.

where
Fi(xy) Fo(xy) by —1
fi(z) fala1) 1
Fl(l’g) — Fl(l'l) Fn(l'g) — Fn(JIl) }7"2 — T — 1
Ak _ fl(l'g) fn(ﬁg) {1
Fl(ﬂfk) — Fl(l’kfl) Fn($k> — Fn(:vk,l) }Tk — Tp—1 — 1

1 — Fi(xp) 1 — F,(x) tn —rg
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Moreover, cumulative distribution function F,.,(x) can be computed by
Fr:n(x) = P(Xr:n S QZ’)

= Z P(exactly i of X’s are < )

= 3 G S @B L = B (@)1 = B (0)

where » represents the sum of all n! permutations (j1, ja, ..., jn) from (1,2, ..., n).
P

Also it can be written by using permanent representation as;

n

1
Fo.(x) = Z —i!(n — ,)!PerBl, reR

i=r

where

B — Fi(x) F(z) ... Fu(x) }i
U R@) 1-B@) .. 1- Ey()

Considering similarly, the joint cumulative distribution function of X, .., Xyyum, ..., Xopin

(1 <71 <ry<..<rp<mn)may be obtained as

Frl,rg,...,rk:n(xla T, 71771) = P(Xm:n S Zy, ~-'7X7’k:n S ZEk)
1
= ZfPeer —00<x < ... < T < 00,
Jilgale Jer!
where
Fl(iCl) Fn(xl) }jl
Fi(xo) — Fi(z1) ... Fu(x) — Fo(n) }i2
B, =

Fl(mk) — Fl(xk:—l) Fn(xk) — Fn({L‘k_l) }]k
1-— Fl({lfk) 1-— Fn(xk) }jk-‘rl

and ) is over ji, ja, ..., Jer1 With j1 > 71, ji+ja > 1o oy itk > 1 and i+
o+ Jk + Jir1 = n. It can be clearly seen that by using independent non-identical
distribution of order statistics, distribution of order statistics from multiple outlier
model may be obtained. For example; Three outliers model wherein X1, Xs, ..., X,
are independent random variables with X7, X5, ...X,,_3 being from a population

with cumulative distribution function F'(z) and probability density function f(z)
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and X, o, X,,_1, X,, being outliers from a different population with cumulative

distribution G(x) and probability density function of g(x).

frn(z) = = Dl(n— 7a)!PerEl, reR
where
F(x) F(x) G(x) G(x) G(x) r—1
B = f() flx)  glx) g(x) g(x) H
\1—F(a:) 1—F(a:)11—G(ac) 1-G(z) 1-G(x) tn—r
n—3

2.5.2 Log-concavity

Alexandroft’s inequality leads the log-concavity of distribution functions of order

statistics. The following theorem presents this interesting result.

Theorem 2.1 Let X, < X5, < ... < X,., show the order statistics from
n independent non-identical variables with cumulative distribution functions
Fi(z), Fy(x), ..., F,(x). Then for fixred x, the sequences {F,.,(x)}I'_, and {1 —
F..(z)}'_, are both log-concave. Moreover, if the underlying variables are

all continuous with respective densities fi(x), fa(x), ..., fu(x) then the sequence
{frn(2)}I_, is also log-concave. (see Balakrishnan (2007)).

Proof. For1=1,2,...,n,

Oé':P(B?“( Fi(z) Fy() Fy(z) ) b
7 1—F1(l’) 1—F2($) 1—Fn(x) }n—l

Since the matrix above is non-negative, an application of Alexandroff’s inequality
leads;

2 .
«; Z A 1011, 122,3,...,71—1

n

Therefore, the sequence {«;})_, is log-concave. The coefficients {m} form
) =1

n
a log-concave sequence, this leads the sequence { —*~ is also log-concave.
) il(n—1i)! i=1
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From the permanent representation of the cumulative distribution function of

n

X, and property (v), we have the log-concavity of the sequence {F,.,(x)},_; .
Also according to property (v) partial sums of {m} from the left form a
=)t )iy

log-concave sequence that leads the log-concavity of {1 — F.,,(z)};_, . By similar

consideration it is easy to see that {f..,(z)}._, is also log-concave. O



Chapter 3

Main results

In the robust estimation for the normal distribution, the constructions of
estimators for the parameter ;1 are based on the idea of removing r maximum
and minimum terms from ordered sample. The reason for this procedure is
to eliminate outliers from the sample, and provide more robust estimators for
the parameters by neutralizing the influence of outliers. However, outliers in
the sample are not always the extremes. The outliers in the sample are those
observations that have different distributions. Therefore, they can fall in the
middle part of ordered sample. For example, let X7, X5, ...X,,_1 be a sample from
a population with cumulative distribution function F(z) and X, be a sample
value from a population with cumulative distribution function G(z). In ordered
sample, X1, < X, < .. < X,,., outlier X,, may take place of kth order
statistics Xy.,, 1 < k < n . Estimators of u for the normal distribution; sample
mean(X), trimmed mean(T;,(r)), winsorised mean(W,(r)), modified maximum
likelihood (M, (7)), linearly weighted mean(L,(r)) are unable to eliminate this

type of outliers.

24
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3.1 Probability of “X,., is outlier”

Let X1, ..., Xn—1 be from a population with cumulative distribution function F'(z)
and X, from a population with cumulative distribution function G(z). To find
an estimation of the parameter p for the normal distribution by considering rth

order statistic is outlier, probability that X,., is outlier required to be obtained.

n—1

P{X,., is outlier} = ( ) P{X, <X, Xy < X, ...,

r—1

X, < X Xep > X000 X, > X)) =

n—1 T ’ ’
= ( ] ) /P{X1 <XT,X2 < Xr?"'?
r —

—00

Xoo1 < X Xop1 > X0, X, > X | X, =tYP{X, = t}dt

n—1 7
= ( )/P{X1<t,X2<t,...,
r—1

—00

Xoo1 < 6L Xpq >t X, > P{X, =t}dt
— ( n—1 ) /F’"l(t)(l — F(t))""dG(t)

r—1

where X denotes the random variable which have distribution function G(x).

Example 3.1. Let X, X,,...,X,,_1 be from a population with cumulative
distribution function F'(x) which is Uniform(0, 1) and outlier X,, has cumulative

distribution function G(x) where

0 <0 0 <0
Glz)y=q 2/ 0<z<1 Flz)=< z 0<z<1
1 x>1 1 z>1
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P{X,., is outlier} = ( n:ll ) /FT—l(t)(l — F(t))""dG(t)
n—1 / r—1 n—rp,.0—1
= <T1>O/x (1 —x)" 02" dx
_ n—1 / xr+972 2" dx
. ( " ) o [

Example 3.2. Let X;,X,,...,X,_1 be a sample from a population with
cumulative distribution function F'(z) and outlier X,, has cumulative distribution

function G(z) where

X
1—e™™ >0 s
F(z) = CTET Gy = 1me 0 w0

The probability that X, is the outlier is given by

I'(n)I'(n—1i+(1/9))
L (n+ (1/6)I'(n—i+1)

P{X,., is outlier} =

(Kale and Sinha, 1971) (Numerical verification of this result with our formula

can be found in appendix section 2.)

Similarly, probability that rth order statistic is outlier, whenever two outlier
in the sample can be obtained. Let Xi,..., X,_5 be from a population with

cumulative distribution function F(z) and X,_;, X, from a population with
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cumulative distribution function G(x).
P{X,., is outlier} =

n—2 ’ ’ ’ ’ ’
N ( 2>P{X1 < Xr7 "-aXr—Q < Xr7XT—1 < XT7XT+1 > Xr7 7Xn > XT}+
r

- 2 / / / / / ’
+<n : )p{Xl < X Xy < X Xy < X Xy > X Xy > XL Xy > X M
7" R—
- 2 / / 12 / 12
+<n 2)p{X1 <X X < X X < X Xt > Xy X > XL
r —
TL - 2 / ! ! !
+< 1 )P{Xl < X?"717 "'JXT‘—2 < X?"717X71+1 < X,,,717X7- > X7'717
T‘ J—
XT+2 > X;—la 7Xn > X;"—l}
_ 2 [e%e)
_ 2(” 2) [ Fr2(2)G(x)(1 — F(x))""dG(z)+
T — —00
n—2\
w2("72) T P - 6 - Fwy et
r — —00

where X, ,, X denote the random variables which have distribution function

G(z).

Example 3.3. Let X, Xs,...,X,_» be from a population with cumulative
distribution function F(z) and outlier X, ;, X,, has cumulative distribution

function G(x) where
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The probability that X,., is the outlier is given by
P{X,., is outlier} =

- 2(” N 2> [ Fr2(2)G(2)(1 - F(x))""dG(z)+

r—2/) “s

w2 2) [ Fr1(2)(1 - G(2))(1 — F(x))""1dG(x)

(
- 2(” - 2> 20(1 _emyr2(] - e%

)e ™) rd(1—e )+

3.2 An estimator for the mean of normal

distribution

Multiplying order statistics with the respected probability that is not outlier and
dividing the number of non-outlier observations gives an estimator of parameter
w1 for the normal distribution.

n

1
X" = 1— a;)X;
n — 1 ;( al) mwn

where «; denotes the P{ X, is outlier}. It can be easily seen that if there is no

outlier in the sample,

o = (”‘1> / PN () (1 — F(1)" 7 dF (1)

r—1

= ( ::11 ) /lur‘l(l —u)""du

(n—1)! (r—1Dl(n—r)!
(r—1!n—r)! n!

SRS
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Hence, the estimator X* turns into sample mean (X)

The tables below show the bias, mean squared error and variance of X* that
enable us to have an idea about this estimator and others. Mathematical software
Mathcad is used to computation of bias, mean squared error and variance of X*.

Mathcad codes are included in appendix section 1.

A

Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 =
Xl 0.0 0.0061 0.013 0.018 0.021 0.014 0.0041 0.0

Xin 0.0 005000  0.10000  0.15000 020000  0.30000 040000 o0
Tin(1) 0.0 004912 0.00325 012870 015400 017871 0.18470  0.18563
Tini2) 0.0  0.04369 0.09023 0.12041 013904  0.15311  0.15521  0.15538
Medig 0.0 0.04232 008768 011381 012795 0.13642 0.13723  0.13726
Winl 1) 0.0 0.04935 0.09506 0.13368 016295  0.19407  0.20239  0.20377
Win(2) 0.0  0.04889 0.00156  0.12389 0.14497 016217  0.16504  0.16530
Mio(l) 0.0 004934 0.09454  0.13311 016194 0.19229 0.20037  0.20169
Miai2) 0.0 0.04386  0.09137 0.12342 0144158 0.16091  0.16369  0.16394
Linil) 0.0 004369  0.09024 012056 013954 0.15459 0.15727  0.15758
L10i2) 0.0 004350 0.08892  0.11700  0.13328  0.14436 0.14576  0.14585
Gn 0.0 004347  0.08873 0116409 013237 0.14285  0.14407  0.14414

Table 4. Bias of various estimators of y for n = 10 when a single outlier is from

N(p+ A, 1) and the others from N(pu, 1)

As it is seen from the table above, bias of the X* is significantly smaller than
other estimators whenever location outlier observed in the sample. If the distance
between outlier’s location and other sample observations increases, bias of the X*

is decreasing and X* is becoming unbiased for large shiftings of outlier location.
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A

Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 o0

}'I;. 010000 010000 010100 010200  O.10500 010900 011000 0101100
X1n 010000 010250 011000 0.12250 014000  0.19000  0.26000 o0

Tia(l) 010534 010791 011471 0.12387  0.13285 0.14475  0.14865 0.14942
Ti0(2) 0.11331 011603 012297 0.13132 0.13845  0.14580 0.14730  0.14745
Med g 0.135833 0.14161 0.14964 0015852 0016524 0.17072  0.17146 017150
Win(l) 0.10437 010693 0.11403  0.12405  0.13469  0.15039 0.15627  0.15755
Win(2) 011133 011402 012106  0.12095 013805 0.14713  0.14926  0.14950
Mia(l) 0.10432 010688 011396 0.12385 0.13430  0.14950  0.15513  0.15581
Min(2) 011125 011395 0012097 0.12074 013770 0.14649 0.14853 014876
Lin(l) 011371 011644 0.12337  0.13169 0013882 0.14626 014797 0.14520
L1a(2) 012097 012386 013105 0.13933  0.145958  0.15206  0.15310 015318
&o 012256 0.12549 013276 014111 014777 0.15376  0.15472 0.15479

Table 5. MSE of various estimators of y for n = 10 when a single outlier is from

N(p+ A 1) and the others from N(u, 1)

Mean squared errors of X* the for all outlier shifting values of parameter y are
smaller than other estimators which indicate X* predicts p with better accuracy

than others in location outlier case of the normal distribution.

T
Estimator 0.5 1.0 2.0 3.0 4.0 e

Xia 009334 0.09978  0.12821 016632 020968 [

Xin 0.09250 0.10000  0.13000 018000 025000 o0

Tinoil) 0.08491 010534 012133 012955 0.13417  0.14942
Tin(2) 0.089953 011331 01277 0.13389 0.13717  0.14745
Medqig 011728 013833 0.15375  0.15953 0.16249  0.17150
Win(l) 009571 010437 012215 0.13221  0.13801  0.15754
Win(2) 0.09972 0.11133 012664 013365 013745 0.14950
Mio(l) 0.09548 0.10432 012187 013171 0.13735 0.15581
Mia(2) 0.09940 011125 012638  0.13328  0.13699  0.14876
Lia(1) 0.09934 011371 012815 0.13436 0.13769  0.14820
Lyo(2) 0.10432  0.12097  0.13531  0.14101  0.14398 0.15318
10 010573 012256 0.13703 014270 0.14565  0.15479

Table 6. Variance of various estimators of p for n = 10 when a single outlier is from

N(u,7%) and the others from N (p, 1)

Since estimators of the parameter i for the scale outlier model is unbiased, it is
sufficient to compare variances of estimators. From the table above, we observe
that the estimator X* is not accurate for the scale outlier case as in the location

outlier. But it gives better estimate than X for the large values of scale shift.
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3.3 Conditional distributions of maximum and

minimum order statistics

Distributions of order statistics can be recomputed whenever we know that the
rth order statistic is outlier. Conditional distribution of maximum order statistic

may be found as;

P{X,., <t, X,., is outlier}

P{X,.n <t| Xy is outlier} = P{X, is outlier}

P{Xn:n
>X1 < Xn7 "'7Xr—1 < XnaXr > Xer-i-l > Xm "-aXn—l > Xn} =
C:;:}P{Xl S X’m "-7Xr—1 S Xn;Xn S XT S t7 7Xn S Xn—l S t}

t

%i/ﬁ”wﬂﬂﬂ—ﬂﬂfﬂw@>

—00

IN

t, Xy is outlier} = CT1P{X; <t, X <t,.., X, <t

[ @) (F() - F@)™ dG(a)
P{X . < t| X,y is outlier} = ——
T Poi@) - F@) T da)

On the other hand, distribution of minimum order statistic when X,., is outlier

is given can be evaluated as;

P{Xy., <t, X, is outlier}
P{X,., is outlier}
P{Xy., <t, X, isoutlier} = P{X,., is outlier} — P{X1., > t, X,., is outlier}

P{X1., <t| X,., is outlier} =

P{X1, > t, X,y isoutlier} =C/1P{X, >t Xy >t .., X, >t
7X1 Xn7 "'aXT—l < XnaXr > XTHXT‘+1 > Xn; ---vXn—l > Xn} =
= Pt < X1 <X,  t <X, 1 < X0, X >t .., X1 >t}

e}

- qi/wuw4wwlu—FWWﬂww>

t

IN



CHAPTER 3. MAIN RESULTS 32

P{Xy., <t, X,., is outlier} =

Crd [ (@) (1= )™ dG(a) - O:;:ff: (F(z) = P(£)"" (1 - F(x))""dG(x)

Cit | Proita) (1= Fla))"™ dGi(a)

3.4 Empirical distribution function

Let Xi, Xy, ..., X, be random variables with realizations z; = X;(w) € R,7 =
1,2,...,n where X1, X», ..., X,,_1 from the population with cumulative distribution
function F(x) and X, has cumulative distribution function G(z).Empirical

distribution function F*(z,w) based on 1, ..., x,

0 7x < ’rlTL
i
Frz,w) = ﬁZ(l—Sk) i ST < XTjyrn S0 =1,2,...,mn—1
k=1
1 y T > Toep

where S, = P{X., is outlier} and x;, denotes the realization of the random
variable X;.,, with outcome w.

If there is no outlier in the population which means F(z) = G(z), we have
S =85 =..=5, = % Hence, empirical distribution based on iid sample is

obtained as;

0 y T < T1p
Fn(.I',CU): :_1 7'Ii:n§x<xi+1:n 7i:1727'-'7n_1
1 y T > Tpn

Let us denote the jump points at the point X;., by P;.

R - F;(xzn7w) - F*(xi—11”7w) -

n
7 i—1

= nilz(l_sk)_nilz(l_sk)
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1
1- 1

n = =
n—1 n’

IfSi:%thenPZ-:

distributions.

t=1,2,..,n as in the independent identical case of

More precisely;

1-5;
F;(Izn + O) — F:;(l’zn — O)

P
n—1
P(XF € (Xi:n - 07 in + 0))

12

1%

where X is observation with distribution function F. If X,., is and outlier with
a large probability, then we take its effect to be small.

The summation of probabilities at the jump points gives

1

P+..+P, = n_l((1—51)+...+(1_5n)):
= nil((1+...+1)—(Sl+...+Sn))
=1

Consider ap = Ef, (X) = [ xdF,(x), which is the natural estimation by definition
of the Stieltjes integral. Then

Bry(X) = [adFi(a) =Y XouR
=1

n

=1

n—1 n—14%
=1

which leads to our estimator X*.

Similarly, 0% = [(z — ap)?dF,(z) can be redefined by our consideration as

n

Z(Xm - aF*)Q(l - Si)

=1

1
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Appendix

1. Bias, MSE and Variance of estimator X* for Normal distribution.

n:= 10

&

ts=tn 1l =1

oo
BB

F(:) = pnorm(x 1)

f(x) = dnormx, f1 5
G = pnomm(x, gl , g2

A = dnormx, g1, &)

L]
- [cumhi.n(n —“1e- 1)[ Pyt 1 - Fea ™ dnonuix, gl g d

e

n-1

34
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n-1 oo
- . _ =DV R g el — Frn
d= Z Sr J |:(r ~Din- D! w(FlDn TG00 -£00-01 - Flan :| dx

r=12 oo

) _ -0 =1 et
+J [(r—ljl.(ﬂ_rj!x(F(x)) g (1 - F) de

— 0

oo [:n— 1)' " r—]_. P I'I.—I'—l. _
+J [Er—ljl-(n—r—ljlx(F(xD (1 - Fy'™ (1 G(x))}dx

— o0

i SISJ |:I:I‘S—Zj!-|:n—rs)! =(F(0) G001 — B :|dx

. _&_ ) rs—l_ L _—
+J, | (x5 = 13l-(n - 25 % (F) g0 -(1 - F) :|dx

I T S
h'_SﬂJ, [(rl—ljl-(n—rljlx(F(x)) g (1 - FG) }1"

0o (n— 1! . -1 . n-rl-1
+J [(rl—l)!-(n-ﬂ-m x(ECY 10-(1 - FG) (1 G'[:x)):|dx

B(X*) = B SXum)=a+b+d=4119x 107

r=1

k1l = (BE(X*)?=(a+b+d)?*=1.697x107°
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n—1 00
= 2, &2 =2 pen 1 n-t
T (%) J [(r—zj!-(n—r)! - (Flgy G0 -0)-(1 - Fa) }dx
r=2 —
7 @
n- 1! 2 —1 -
| [ A - ro s
o
7 @m-
n- 2 -1 11
e T G S SR S 'U-Gﬁxm}dx
-

o
=[5 12 _ @Dl 2 k™ Lot (L - Fnt
y= (5] J |:(rs—2j!-(n—rsj! X (FCY)T G091 - F(D) }ix

-

(rs — I1l-(n — rg)l

—

L]
v J [&-f-@c@)m*-gﬁx}-cl - F(x))“‘ﬂ dx

Lea]
_ ) (- 17 2 -1 oy n-tl
T = [Sﬂ) J [—(rl T © (FCan g1 - Fexn de

)

” (n- 1! 2 1-1 1-1

n- i ri—- n—tl-
i J [(rl Do F F@ -y G(x))} d

-
k2= S’E(Xpm)’ =z+y+2z=011
r=1
a = |0 fr=lwerEs

oo W
c&j j Ry (PG> 000 500 -(F() - Fao)™™ () (1 - ()™ " dxdly otherwise
— 03 =D
(n—1)!
(r=2)(s—r—1)Yn—2s)!

where Ca =
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h =0 if tZ s
I.8
o K
Cb-j J wy (P g0 (R — B R (L - Fegy™ S dedy otherwise
—- 00 =
(n—1)!
h b=
where Cb = i = 1) — 9!

c =0 if s=r+1wr=s
r.s

= ki
Cc-j j ke (R 60 (RO — PO (0w — Gt e (1 - Fy)™ " ey otherwise

—os T -
(n—1)!
here Cc =
where be (r—1l(s—r—=2)(n—2s)!
d =0 if t=32
1,8
o v
Cd-j J wy- (PO 00 CFCp) - PO gy (1 - FGg)™ " ey otherwise
— i — O
(n—1)!
here C'd =
where (r—=1l(s—r—=1Yn—2s)!
f =0 fs=nwvrzs
I,s

oy

Cf-j j xy (P00 (Fy) - F™™ () (1 = B (1 - Oy ey otherneise
—oe -

(n—1)!

vhere Cf = s —r — )l — s — 1))

1<3:=2-Zn: i [Sr'ss'(ars”Jrs”rs*drs*fr Sj:|=9.465x10"4
r=1s=1

where k3 = QZ ZSTSSE(Xr:nXS:n)

r<s
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Var(X*) = Var(}_ S Xem) = E(Q_5:Xm)?) = (EQ_ 8, X))’

r=1

= Xn: SPE(Xrn)” +2) Y S8 E (X Xam) — (E(Xn: S X))

r<s

= k24 k3 — k1 =0.11078

MSE(X*) = Var(X*) + Bias*(X*)

Since, we considered p = 0 the Bias(X™*) is equal to F(X*) so,

MSE(X*) = k2 + k3 = 0.1108

2. P{X,., is outlier} for exponential distribution

X 3x

0 =1- g

X

Fii=1-¢
fix) = e ¥ A= Te 3

]
k-

n=15 Tt
L+ 4]

combin(n - 1,1 - 1)[ CFean® ot - Fean™ V(g di = 0.154
0

D Tl - 1+ (3]
%P(n+3j-f{n—r+ 1y

=0154
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