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ABSTRACT

RELIABILITY ANALYSIS OF CONSECUTIVE-k
SYSTEMS IN A STRESS-STRENGTH SETUP

FATİH AKICI

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Serkan Eryılmaz

June 2010

This thesis is concerned with the study of reliability of consecutive-k sys-

tems in a stress-strength setup. The exact reliability expression for the linear

consecutive-k-out-of-n:F system is obtained whenever the first c components of

the system are subjected to one kind of a random stress and the remaining n− c
components are subjected to another kind of a random stress. The maximum

likelihood and minimum variance unbiased estimators of the reliability are also

obtained.

Keywords: Consecutive k-out-of-n system, Point estimator, Reliability, Stress-

strength reliability.



ÖZ

ARDIL-k SİSTEMLERİN ETKİ-DAYANIKLILIK
KURULUMU ALTINDA GÜVENİLİRLİK ANALİZİ

FATİH AKICI

Uygulamalı İstatistik, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Prof. Dr. Serkan Eryılmaz

Haziran 2010

Bu tez ardıl-k sistemlerin güvenilirliklerinin etki-dayanıklılık kurulumu altında

incelenmesi üzerinedir. Doğrusal ardıl n’den k’lı:F sistemin tam güvenilirlik

ifadesi, sistemin ilk c bileşeninin bir tip rastgele etkiye, kalan n− c bileşeninin bir

başka tip rastgele etkiye maruz kaldığı bir durum için ortaya konulmuştur. İlgili

güvenilirliğin en çok olabilirlik ve en küçük varyanslı yansız tahmin edicileri de

elde edilmiştir.

Anahtar Kelimeler : Ardıl n’den k’lı sistem, Etki-dayanıklılık güvenilirliği,

Güvenilirlik, Nokta tahmin edicisi.
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ready to help me whenever I needed. I am indebted to my family who have always

supported me against all odds. I am thankful to TÜBİTAK, the Scientific and
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Chapter 1

Introduction

Linear or circular consecutive-k-out-of-n:F(G) systems are the systems com-

posed of n linearly or circularly ordered components such that the system fails

(works) if and only if at least k consecutive components of it are failed (working).

F is the acronym for failure and G for good. Based on the definition, one can

clearly infer that a consecutive-1-out-of-n:F(G) system is a series (parallel) sys-

tem, while a consecutive n-out-of-n:F(G) system is a parallel (series) system. A

consecutive k-out-of-n:F system (henceforth (C,k, n:F)) is dual of a consecutive-

k-out-of-n:G system (henceforth (C,k, n:G)). Consecutive-k-out-of-n systems are

used in modelling oil pipeline systems, microwave stations in telecom networks,

vacuum systems of electron accelerators etc. Consider an agricultural irrigation

system of length 200 meters carrying a lake’s water to an inclined farm such that

the system has 10 pums which are located 20 meters far from each other. Assume

that each pump is able to send the water 40 meters away. It is clearly seen that

if 1 pump does not work, its preceding neighbour can send the water to the next

pump but if any consecutive 2 pumps fail, then the water cannot be carried to

the high points of the farm so the system fails. This system is an example of

(C,2,10:F) system.

1
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Let ξi be a binary state random variable corresponding to the ith compo-

nent of the system, where ξi = 1(0) denotes the functioning (failing) state of the

ith component, i = 1, 2, . . . , n. A (C,k, n:F) system can be considered as the

series arrangement of the parallel subsystems of all k consecutive components,

or k-windows. Similarly, a (C,k, n:G) system can be considered as the paral-

lel arrangement of the series subsystems of k-windows. Therefore the structure

functions of (C,k, n:F) and (C,k, n:G) systems are given respectively by

φF (ξ1, ξ2, . . . , ξn) =
n−k+1∏
j=1

(
1−

j+k−1∏
i=j

(1− ξi)

)
,

φG(ξ1, ξ2, . . . , ξn) = 1−
n−k+1∏
j=1

(
1−

j+k−1∏
i=j

ξi

)
.

Assume that we have two (C,k, n:F) systems of n = 10 components and let k

be equal to 3. Let the following two realizations be obtained based on the states

of components of the systems.

1101000111 (1.1)

1001001001 (1.2)

The first system fails since there are 3 consecutively failed components (the

5th, 6th and 7th ones), while the second system operates properly despite the

fact that it has more failed components than the first one.

In the literature, a number of reliability expressions for (C,k, n:F) systems

have been obtained under the assumption of i.i.d. components. In this case, the

reliability of (C,k, n:F) system is obtained as
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Rn,k =
n∑
i=0

N(i, k, n)pn−i(1− p)i,

where p is the reliability of each component and N(i, k, n) denotes the number

of ways to arrange i failed components in a line such that no k or more failed

components are consecutive. So the problem is reduced to the problem of finding

N(i, k, n). This number is given by

N(i, k, n) =

bi/kc∑
j=0

(−1)j
(
n− i+ 1

j

)(
n− jk
n− i

)
,

(see, e.g. Kuo and Zuo (2003)).

Actually when analysing the reliability of a (C,k, n:F) system, one realizes

that the reliability should be expressed in a slightly different form as

Rn,k =
M∑
i=0

N(i, k, n)pn−i(1− p)i,

where

M =

{
n− n+1

k
+ 1, if n+ 1 is a multiple of k ,

n−
⌊
n+1
k

⌋
, if n+ 1 is not a multiple of k .

The problem again reduces to evaluating the same quantity N(i, k, n). For

many other solutions and approaches to obtaining N(i, k, n) under the indepen-

dence assumption, see Kuo and Zuo (2003). However, the most successful solution

to this variable is given by using minimal and maximal signatures in the cases of

i.i.d. and exchangeable components. For this, see Navarro et al. (2007), Eryılmaz

(2010a) and Eryılmaz (2010b).
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When 2k ≥ n, the following simpler expression of system reliability is given

by Kuo and Zuo (2003):

Rn,k =

{
1, 0 ≤ n < k ,

1− qk − (n− k)pqk, k ≤ n < 2k .

In a dynamic setup, components of a system are assumed to have two states:

surviving up to time t or failing before t. Let the survival probability of a com-

ponent be denoted by R(t) = P{T > t}, where T represents the lifetime of that

component. The dynamic reliability expression -or survival function- Rn,k(t) of

a (C,k, n:F) system under the i.i.d. assumption is given by replacing p with R(t)

in the static reliability equation as

Rn,k(t) =
n∑
i=0

N(i, k, n)R(t)n−i(1−R(t))i,

The upper limit of the summation and the quantity N(i, k, n) are again a

matter of interest and their solutions are the same as in the static case. The

mean time to failure of a (C,k, n:F) system composed of independent and identical

components is given by Kuo and Zuo (2003) in the following two forms.

MTTF =
M∑
i=0

N(i, k, n)
i∑

j=0

(−1)j
(
i

j

)
E(T1,n−i+j),

and

MTTF =
M∑
i=0

N(i, k, n)(
n
i

) E(Ti+1,n − Ti,n),

where Ti,n denotes the ith order statistic of a sample of size n from CDF F (t)

and M is defined above.
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Dependence among components of any kind of a system is a more realistic

assumption because of the common production and operating environments in

which the components take place together. Therefore it is seen in the litera-

ture that combinatorial methods are not helpful for the reliability analysis of

consecutive-k systems having dependent components. In the dependence case,

runs-based approaches have been more successful to obtain reliability expressions

of this kind of systems.

Based on the definition, the probability of survival, that is, the reliability of

a (C,k, n:F) system can be defined by the longest run random variable:

Rn,k = P{L0
n < k},

where L0
n denotes the longest run of failures in ξ1, ξ2, . . . , ξn. The reliability of a

(C,k, n:G) system can be defined similarly:

Rn,k = P{L1
n ≥ k},

where L1
n denotes the longest run of successes in ξ1, ξ2, . . . , ξn.

In the dynamic setup, the lifetime of a (C,k, n:F) system composed of depen-

dent components is given by Eryılmaz (2009) as

Tn,k = min(T [1:k], T [2:k+1], . . . , T [n−k+1:n]),

where T [j:m] = max(Tj, . . . , Tm), for 1 ≤ j < m ≤ n. For 2k ≥ n the survival

function of a (C,k, n:F) system is obtained as

Rn,k(t) = P (Tn,k > t) = 1−
n∑
i=k

[
P (T [i−k+1:i] ≤ t)− P (T [i−k+1:i+1] ≤ t)

]
,
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where for convenience P (T [n−k+1:n+1] ≤ t) = 0.

It is recorded in Eryılmaz (2009) that the reliability Rn,k(t) is always a lower

bound for the survival function of a (C,k, n:F) system for any k.

(C,k, n:F) system was first introduced by Kontoleon(1980) and have been

very popular since that time. Kuo and Zuo (2003) is the most extensive study

of the topic. For understanding the longest run statistic, the reader should see

Balakrishnan and Koutras (2002) as well as Fu and Lou (2003). See also Fu et al.

(2003), Boland and Samaniego (2004), Eryılmaz (2007) and Navarro and Eryılmaz

(2007). Griffith (1986) considered consecutive-k-within-m-out-of-n:F systems,

which is a generalization of (C,k, n:F) systems, which becomes a (C,k, n:F) and a

k-out-of-n:F system when m is selected as k and n, respectively. After that time,

this generalization of the topic has also been well-studied. (C,k, n:F) systems

have also been used in a combined form with k-out-of-n systems, see Zuo et al.

(2000). Since it is not easy to derive exact formulas for the reliability of (C,k, n:F)

systems, obtaining bounds for this reliability has been very attractive. For various

bounds for the system reliability, see Eryılmaz et al. (2009) and the references

therein. For the design problem, see Yun et al. (2007).

We proceed our study by explaining the ”Stress-Strength Reliability” concept.



Chapter 2

Stress-Strength Reliability

The stress-strength reliability has been widely studied in the literature. The

elementary setup of the stress-strength reliability is as follows. Let the compo-

nents of the system are exposed to an external force called stress, while they

have an internal ability to endure the stress, which is called strength. Strength

and stress are called load and resistance in hydrosystems engineering. Let X be

a stress applied to the system having a random strength Y . The state of the

system is defined by the following binary random variable.

ξ =

{
1, if Y > X,

0, if Y ≤ X.

So, the reliability of the system is

R = E[ξ] = P{Y > X}.

7
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For a simple illustration of the stress-strength reliability of a one-component

system, assume that the cumulative distribution functions of the strength random

variable Y and the stress random variable X be

F (x) = P (Y ≤ x) = 1− exp(−θx)

G(x) = P (X ≤ x) = 1− exp(−αx), x > 0, θ > 0, α > 0,

respectively. Then the reliability is found as

R = P{Y > X} =

∫ ∞
0

P{Y > X|X = x}dFX(x)

=

∫ ∞
0

exp(−θx)d(1− exp(−αx))

=
1

1 + θ
α

.

For a brief and extensive review of the topic, see Johnson (1988) and Kotz et

al. (2003). The importance of these type of models arises from their possibility

of being applied to many different areas from chemicals to process control, see

Nadarajah and Kotz (2006). In the literature these models are studied for one-

component systems, that is, one stress and one strength random variables are

taken into consideration, evaluation and estimation of the probability P (Y > X)

is studied. For example see Pal et al. (2005), Ali and Woo (2005), Kundu and

Gupta (2006), Baklizi (2008a) and (2008b). An et al. (2008) studied the relia-

bility of a component which has discrete strength and stress variables by using

universal generating functions. Banerjee and Biswas (2003) formulated the stress-

strength problem in a regression seup.

In a more realistic model, it is logical to assume a system of n components, of

which ith component is subjected to a stress denoted by Xi, and has the strength

Yi. The states of components are defined in terms of stress and strength random

variables as follows.
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ξi =

{
1, if Yi > Xi,

0, if Yi ≤ Xi,

for i = 1, 2, . . . , n.

The reliability of the ith component is defined as

E[ξi] = P{Yi > Xi}.

The reliability of systems in stress-strength scheme has been studied under

various assumptions. Bhattacharyya and Johnson (1974) gave the MVU estima-

tion of a k-out-of-n system and obtained its asymptotic distribution. They also

obtained the uniformly most accurate unbiased confidence interval for the system

reliability. Paul and Uddin (1974) evaluated system reliability under the assump-

tion of non-identical strengths and a common stress. Eryılmaz (2008a) assumed a

common stress random variable X applied to all the components, while n1 of the

components are of one kind and their strengths are independent and identically

distributed as F (1), the remaining n− n1 of the components are of another kind

and their strengths are independent and identically distributed as F (2). Actually

in this setup n1 is considered to be a change point of the strengths of the com-

ponents. He obtained the exact stress-strength reliability RG
n,k of a (C,k, n:G)

system for the case 2k ≥ n = n1 + n2 as

RG
n,k = P{Ln ≥ k} =

n∑
j=k

p(j, k),

where
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p(j, k) =



g(0, 0, 1, 0)−
∑k−1

m=0 g(m, 0, 2, 0), if k ≤ j ≤ n1 − 1,

g(0, 0, 0, 1)−
∑k−1

m=j−n1
g(m+ n1 − j, j − n1, 1, 1)

−
∑j−n1−1

m=0 g(0,m, 0, 2), if n1 ≤ j ≤ n− 1,

1−
∑k−1

m=n−n1
g(m+ n1 − n, n− n1, 1, 0)

−
∑n−n1−1

m=0 g(0,m, 0, 1), if j = n,

and g(a, b, c, d) is defined as

g(a, b, c, d) = EFX
[(1− F (1)(X))a(1− F (2)(X))b(F (1)(X))c(F (2)(X))d]

=

∫
(1− F (1)(x))a(1− F (2)(x))b(F (1)(x))c(F (2)(x))ddFX(x).

He stated as a corollary that the reliability RG
n,n of a series system is given

under this setup as

RG
n,n = g(n1, n2, 0, 0),

and the reliability RG
n,1 of parallel systems are given as

RG
n,1 = 1− g(0, 0, n1, n2).

Given that the stress and strength random variables are exponentially dis-

tributed, he also obtained the MVU estimate of the system reliability of a

(C,k, n:G) system. He also suggested a nonparametric MVU estimator of the

system reliability for this case. Eryılmaz (2008b) constituted a multivariate

stress-strength model for a coherent system of n independent subsystems, each

of which composed of m dependent elements by using conditional orderings. The

term conditional orderings was first proposed by Bairamov (2006) for multivari-

ate observations as follows. Let X1,X2, . . . ,Xn ∈ S ⊆ Rm be i.i.d. random

vectors with m-variate c.d.f. F(x) and p.d.f. f(x), where x = (x1, x2, . . . , xm)
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and S is the support of X. Consider the real-valued function N(x) : Rm → R,

x = (x1, x2, . . . , xm), which is continuous in its arguments satisfying N(x) ≥ 0

for all x ∈ Rm with N(x)=0 if and only if x=0, where 0 is the m-vector of 0’s.

N(X1),N(X2), . . . ,N(Xn) are i.i.d. random variables with c.d.f. P{N(Xi) ≤
x}, x ∈ R. The function N(x) introduces partial ordering among X1,X2, . . . ,Xn

and X1 is named to be conditionally less than X2 if N(X1) ≤ N(X2), which is

denoted by X1 ≺ X2. Letting X(r) denote the rth smallest among X1,X2, . . . ,Xn

with respect to N(x) then X(1),X(2), . . . ,X(n) are called conditionally N-ordered

statistics. Eryılmaz (2008b) considered a coherent system of n independent com-

ponents, which are in fact subsystems consisting of m dependent elements, that

is, Yi = (Y 1
i , Y

2
i , . . . , Y

m
i ), i = 1, 2, . . . , n denote the random strength vector of

the ith component. He also considered that the elements are subjected to a com-

mon random stress X = (X1, X2, . . . , Xm). The reliabilities of a system when the

components are connected in series, parallel and k-out-of-n followingly.

The reliability RS of a system when its components are connected is series is

given as

RS = P{Y ≺ X(1)} = P{N(Y) ≤ N(X(1))} =

∫
. . .

∫ n∏
j=1

(1− hj(y))g(y)dy,

while the reliability function RP is given as follows when the components are

connected in parallel

RP = P{Y ≺ X(n)} = P{N(Y) ≤ N(X(n))} = 1−
∫
. . .

∫ n∏
j=1

hj(y)g(y)dy,
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and as a generalization of these two, when the components form a k-out-of-n

system,

Rn,k = P{Y ≺ X(n−k+1)} = P{N(Y) ≤ N(X(n−k+1))}

=

∫
. . .

∫
u(x)

n∑
i=1

∑
Pi

n−k∏
l=1

hjl(x)
n∏

l=n−k+2

(1− hjl(x))fi(x)dx,

where u(x) = P{N(Y) ≤ N(X)} is the structural function associated with Y.

Eryılmaz (2008c) generalized the binary setup to a multi-state setup by using

a function ξ = K(Y −X), K : R→ S which is called “kernel function”. Selecting

the range S to be a continuous or discrete set, one can obtain a continuous or

discrete definition of the state random variable ξ. Selecting S as {0, 1} yields

us to the usual binary setup. A multi-state setup of system reliability arises

from the logical need to assign not only failure and success to the component

states, but also many states between proper failure and proper success to the

component states. Therefore in real life situations the state of a system can

be located at a place between [0,1] interval. Consider two new better than used

light bulbs. Let currently both of them be working but the first one be newer

than the second one. Assigning 1 to both of their states would yield a shortness

in the reliability analysis. The two bulbs are currently working but in fact the

second one is more near to failure than the first one is. Therefore assigning a

larger number to the state of the first light bulb will be more rational. Let K

be a continuous function having an inverse K−1 and let S = [0, 1]. The event

{ξ > K(0)} ≡ {Y > X} denotes the survival of the system and the survival level

of the system is determined by the values on the interval (K(0),1]. The system

reliability under this setup is expressed as P{ξ > s}. For reliability analysis of

a multi-state system, the probability P{ξ > s} is evaluated for s > K(0) and

s ≤ K(0). Letting X and Y have continuous c.d.f.’s F and G respectively, the

reliability of the system, that is, the probability of the system state to be above

state s is evaluated as
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P{ξ > s} =

∫ ∫
K(y−x)>s

dF (x)dG(y).

For an illustration, let F (x) = 1−exp(−θx) and G(x) = 1−exp(−αx), x ≥ 0.

Then for 0 < s < 1, the reliability R(s) of the system is found as

R(s) = P (ξ > s) =

{
1− α

α+θ
exp(θK−1(s)), if s ≤ K(0),

θ
α+θ

exp(−αK−1(s)), if s > K(0),

and P (ξ > 0) = 1 and P (ξ > 1) = 0.

Eryılmaz(2008c) also computed the probability of a system to be in a specific

state in the case of a discrete selection of the support S as S = 0, 1, . . . ,M under

the exponentially distributed stress and strength random variables assumption as

follows.

Let S1 = {0, 1, . . . ,M1} ⊂ S represent the states determining the levels

of failure and S/S1 denote the set of states representing the levels of opera-

tion. Define the intervals I0 = (a0, a1], I1 = (a1, a2], . . . , IM1 = (aM1 , 0], IM1+1 =

(0, aM1+1], IM1+2 = (aM1+1, aM1+2], . . . , IM = (aM−1, aM), where −∞ ≡ a0 < a1 <

. . . < aM1 < 0 < aM1+1 < . . . < aM ≡ ∞. The kernel function K can be

constructed as

K(x) = i⇔ x ∈ Ii, i = 0, 1, . . . ,M1 − 1,

K(x) = M1 ⇔ x ∈ IM1 ,

K(x) = M1 + 1⇔ x ∈ IM1+1,

K(x) = i⇔ x ∈ Ii, i = M1 + 2, . . . ,M.

Now consider the exponential setup below.
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Let F (x) = 1− exp(−θx) and G(x) = 1− exp(−αx), x ≥ 0. Then

P (ξ = i) =

{
α
α+θ

(exp(θai+1)− exp(−θai), if i = 0, 1, . . . ,M1 − 1,
θ

α+θ
(exp(−αai−1)− exp(−αai), if i = M1 + 2, . . . ,M − 1,M,

and

P{ξ = M1} =
α

α + θ
(1− exp(θaM1)),

P{ξ = M1 + 1} =
θ

α + θ
(1− exp(−αaM1+1)).

Eryılmaz (2010) studied stress-strength reliability of coherent structures and

obtained exact reliability expression in terms of the number of path sets of the

structure under exchangeability assumption. Another assumption in that pa-

per was the common stress assumption, which made the analysis more difficult

because of making the states of components dependent on each other. He also

obtained a lower bound and approximation for the system reliability and gave

MLE and MVU estimates of it.

The stress and strength random variables have also been modelled by stochas-

tic processes in the literature.This scheme yields a dynamic (time-dependent)

analysis of the stress-strength model. In this setup, X(t) and Y (t) is consid-

ered as the stress experienced at time t and the strength of the system at time

t. Letting Z(t) = Y (t) − X(t), the lifetime T of the system is expressed as

T = inf{t : t ≥ 0, Z(t) ≤ 0} and the reliability R(t0) of the system at time

t0 > 0 is R(t0) = P (T > t0) = P (inf0<t≤t0Z(t) > 0). The ones who consid-

ered this setup first, Basu and Ebrahimi (1983) assumed X(t) and Y (t) be two

independent Brownian motions with mean value functions µ1t and µ2t and with

covariance kernels σ2
1min(s, t) and σ2

2min(s, t), resulting in Z(t) also be a Brow-

nian motion. Whitmore (1990) made some comments about and extensions of

the stochastic reliability concept. Ebrahimi and Ramallingam (1993) generalized
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this model and by using the stopped processes X∗(t) and Y ∗(t) they showed that

Z∗(t) = Y ∗(t) − X∗(t) is a homogenous Markov process. Basu and Lingham

(2003) contributed to this model by estimating the parameters of the model in a

Bayesian perspective.

In this thesis, we will deal with a non-dynamic system having a change point.

This means that the behaviour of the components change at a certain point.

One can consider a change point either in the stress variables or in the strength

variables or in both of them. Existence of the change point c for either case

differentiates the reliabilities of the components which are located before the

change point than the ones located after it. We say that a point c is the change

point of the system when the reliabilities of the components are in the form

E[ξi] = P (ξi = 1) =

{
p1, if 1 ≤ i ≤ c,

p2, if c+ 1 ≤ i ≤ n,

for p1 6= p2.

We consider a system composed of n components of which strengths

Y1, Y2, . . . , Yn are independent and identically distributed, and the first c com-

ponents of the system are subject to the stress X1 and the remaining n − c

components of the system are subject to the stress X2, where X1 and X2 are in-

dependent and nonidentical random variables. Because of this scheme, the point

c is called the change point of the system.

The following example will utilize the change point model considered in this

study. Starting from 2003, Turkey has been buying gas from Russia via the Blue

Stream gas pipeline. This pipeline starts from Novorossiysk, Russia, passes across

the Black Sea, enters into Turkey from Samsun and ends in Ankara. Once gas is

processed in the gas station and leaves the Russian shore, the pipes go approx-

imately 2140 meters under the sea, and in Samsun it leaves the sea and enters

soil, which is a dryer environment. Clearly, the pipeline experiences traveling in

two different environments: water and soil. The pipes in different environments
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are subject to different stress factors, such as hydrosulfur, pressure, temperature,

corrosion and oxidation. Even if the pipes are identical, their reliabilities will

be different because of these different stress factors. In this example, the pipe

corresponding to Samsun can be considered as a change point of the system.

We now define formally the reliabilities of components of the change point

model which we will study in this thesis.

Definition. Let Y1, Y2, . . . , Yn be independent and identically distributed random

strengths of the components of a system. Let X1 and X2 be two random stresses

such that the components 1,2,. . . ,c are subject to the random stress X1, and the

components c + 1, c + 2, . . . , n are subject to the random stress X2. Define the

state random variables of the components as follows.

ξi =

{
1, if Yi > X1,

0, if Yi ≤ X1,

for i = 1, 2, . . . , c, and

ξi =

{
1, if Yi > X2,

0, if Yi ≤ X2,

for i = c+ 1, c+ 2, . . . , n.

Then the reliability of each component in the first group is

E[ξi] = P (Yi > X1),

for i = 1, 2, . . . , c,

and the reliability of each component in the second group is

E[ξi] = P (Yi > X2),

for i = c+ 1, c+ 2, . . . , n.

It should be noted that the random variables ξ1, ξ2, . . . , ξn are dependent which

makes the reliability analysis difficult.
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Consecutive-k Systems in

Stress-Strength Setup

In this chapter we present main contributions of this study. We obtain exact

reliability expression and its maximum likelihood and uniformly minimum vari-

ance unbiased estimators.

We have mentioned in the introduction that the longest run statistic have

been efficiently used by the researchers to study the reliability of consecutive-k-

out-of-n systems. With the use of longest run statistic, Eryılmaz (2009) obtained

exact reliability formulas for consecutive-k-out-of-n systems when 2k ≥ n with-

out making any assumption on the dependence among the components, i.e. the

components were considered to be arbitrarily dependent. He also calculated some

important reliability characteristics such as mean time to failure, failure rate and

mean residual lifetime functions and also obtained approximations to the relia-

bility function which is also an important problem in reliability analysis. For the

case 2k ≥ n, Eryılmaz (2009) showed that, the reliability Rn,k of a (C,k, n:F)

system is represented as

17
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Rn,k = 1−
n∑
i=k

P (ξi−k+1 = 0, . . . , ξi = 0)

+
n−1∑
i=k

P (ξi−k+1 = 0, . . . , ξi+1 = 0), (3.1)

which is an important contribution on which we construct a change point

model for a stress-strength setup. We present our main findings below.

3.1 Exact Reliability Expression

Now we deal with our main problem. Assume that the strengths Y1, Y2, . . . , Yn are

independently and identically distributed as F , the first stress X1 is distributed

as G1, and the second stress X2 is distributed as G2. To find the reliability of the

system, we should evaluate (3.1) under these assumptions. That is, we should

find the quantity
∑n

i=k P (ξi−k+1 = 0, . . . , ξi = 0) using the following arguments.

1. If c < i− k + 1:

P (ξi−k+1 = 0, . . . , ξi = 0) = P (Yi−k+1 ≤ X2, . . . , Yi ≤ X2)

=

∫ ∞
0

(F (x))kdG2(x)

2. If i− k + 1 ≤ c < i:

P (ξi−k+1 = 0, . . . , ξi = 0) = P (Yi−k+1 ≤ X1, . . . , Yc ≤ X1,

Yc+1 ≤ X2, . . . , Yi ≤ X2)

=

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−c

dG1(x1)dG2(x2)

3. If c ≥ i:

P (ξi−k+1 = 0, . . . , ξi = 0) = P (Yi−k+1 ≤ X1, . . . , Yi ≤ X1)

=

∫ ∞
0

(F (x))kdG1(x)
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Therefore

n∑
i=k

P (ξi−k+1 = 0, . . . , ξi = 0) =
c∑
i=k

∫ ∞
0

(F (x))kdG1(x)

+

min(c+k−1,n)∑
i=max(c+1,k)

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−cdG1(x1)dG2(x2)

+
n∑

i=c+k

∫ ∞
0

(F (x))kdG2(x) (3.2)

Likewise, we should find
∑n−1

i=k P (ξi−k+1 = 0, . . . , ξi+1 = 0) by using

1. If c < i− k + 1:

P (ξi−k+1 = 0, . . . , ξi+1 = 0) = P (Yi−k+1 ≤ X2, . . . , Yi+1 ≤ X2)

=

∫ ∞
0

(F (x))k+1dG1(x)

2. If i− k + 1 ≤ c < i+ 1:

P (ξi−k+1 = 0, . . . , ξi+1 = 0) = P (Yi−k+1 ≤ X1, . . . , Yc ≤ X1,

Yc+1 ≤ X2, . . . , Yi+1 ≤ X2)

=

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−c+1

dG1(x1)dG2(x2)

3. If c ≥ i+ 1:

P (ξi−k+1 = 0, . . . , ξi = 0) = P (Yi−k+1 ≤ X1, . . . , Yi+1 ≤ X1)

=

∫ ∞
0

(F (x))k+1dG1(x)
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Hence

n−1∑
i=k

P (ξi−k+1 = 0, . . . , ξi+1 = 0) =
c−1∑
i=k

∫ ∞
0

(F (x))k+1dG1(x)

+

min(c+k−1,n−1)∑
i=max(c,k)

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−c+1dG1(x1)dG2(x2)

+
n−1∑
i=c+k

∫ ∞
0

(F (x))k+1dG2(x) (3.3)

Using (3.2) and (3.3) in (3.1), the reliability expression of the (C,k, n:F) system

for 2k ≥ n under the abovementioned stress-strength setup is found to be

Rn,k = 1−
c∑
i=k

∫ ∞
0

(F (x))kdG1(x)

−
min(c+k−1,n)∑
i=max(c+1,k)

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−cdG1(x1)dG2(x2)

−
n∑

i=c+k

∫ ∞
0

(F (x))kdG2(x) +
c−1∑
i=k

∫ ∞
0

(F (x))k+1dG1(x)

+

min(c+k−1,n−1)∑
i=max(c,k)

∫ ∞
0

∫ ∞
0

(F (x1))c−i+k(F (x2))i−c+1dG1(x1)dG2(x2)

+
n−1∑
i=c+k

∫ ∞
0

(F (x))k+1dG2(x), (3.4)

where
∑i=b

i=a xi ≡ 0 if a > b, for 2k ≥ n. Note that selecting c = 0 or c =

n, one obtains the reliability of a (C,k,n:F) system of which components have

i.i.d. random strengths and are subjected to a common random stress X2 or X1,

respectively, for 2k ≥ n.
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3.2 Maximum Likelihood and Minimum Vari-

ance Unbiased Estimation

At the very beginning of this subchapter, we obtain the exact reliability expres-

sion for the (C,k, n:F) system under the assumption that strength and stress

random variables have exponential distributions. After that, maximum likeli-

hood estimator (MLE) and minimum variance unbiased estimator (UMVUE) for

the reliability function in the exponential distribution case is obtained.

Let the distributions of strengths Yi, i = 1, 2, . . . , n, and stresses X1 and X2

be

F (x) = P (Yi ≤ x) = 1− exp(−θx),

G1(x) = P (X1 ≤ x) = 1− exp(−αx),

G2(x) = P (X2 ≤ x) = 1− exp(−βx), x > 0, θ > 0, α > 0, β > 0.

The exact reliability formula given in (3.4) for this case is obtained as follows.

Rn,k = 1−
c∑
i=k

k∑
j=0

(
k

j

)
(−1)j

1

1 + j θ
α

−
min(c+k−1,n)∑
i=max(c+1,k)

c−i+k∑
j=0

i−c∑
l=0

(
c− i+ k

j

)(
i− c
l

)
(−1)j+l

1

1 + j θ
α

1

1 + l θ
β

−
n∑

i=c+k

k∑
j=0

(
k

j

)
(−1)j

1

1 + j θ
β

+
c−1∑
i=k

k+1∑
j=0

(
k + 1

j

)
(−1)j

1

1 + j θ
α

+

min(c+k−1,n−1)∑
i=max(c,k)

c−i+k∑
j=0

i−c+1∑
l=0

(
c− i+ k

j

)(
i− c+ 1

l

)
(−1)j+l

1

1 + j θ
α

1

1 + l θ
β

+
n−1∑
i=c+k

k+1∑
j=0

(
k + 1

j

)
(−1)j

1

1 + j θ
β

(3.5)

Thanks to the invariance property of maximum likelihood estimators, one

can easily obtain the maximum likelihood estimator of the system reliability by
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substituting θ, α and β with their maximum likelihood estimators. For this, let

Y1, Y2, . . . , Ym, X
(1)
1 , X

(1)
2 , . . . , X

(1)
m1 and X

(2)
1 , X

(2)
2 , . . . , X

(2)
m2 be samples of size m,

m1 and m2 from strength and stress distributions, respectively. Here, one can ob-

tain the MLE of the system reliability by substituting θ with 1/Ȳ = m/
∑m

i=1 Yi,

α with 1/X̄1 = m1/
∑m1

i=1 X
(1)
i , and β with 1/X̄2 = m2/

∑m2

i=1X
(2)
i , since these

sample means are the MLE estimators of the parameters of exponential random

variables. See for example Casella and Berger (2002).

Considering the reliability expression given in (3.5), one can obtain the Uni-

formly Minimum Variance Unbiased Estimator of the system reliability just by

obtaining the unbiased estimator of

τj,l(θ, α, β) =
1

1 + j θ
α

1

1 + l θ
β

, (3.6)

since the reliability of the system is a linear combination of it. Therefore for

unbiased estimation of the system reliability, it is sufficient to estimate it. For

this, we will use Rao-Blackwell Theorem.

Theorem 3.1 Let Y1, Y2 . . . , Ym, X
(1)
1 , X

(1)
2 , . . . , X

(1)
m1 and X

(2)
1 , X

(2)
2 , . . . , X

(2)
m2 be

random samples from

F (x) = 1− exp(−θx),

G1(x) = 1− exp(−αx),

G2(x) = 1− exp(−βx), x > 0, θ > 0, α > 0, β > 0,

respectively. Then the MVU estimate of τj,l(θ, α, β) is given by
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̂τj,l(θ, α, β) = Qp1,p2(j, l;V1, V2;m,m1,m2),

where p1 = min(V1
j
, 1), p2 = min(V2

l
, 1), V1 = T

T (1) , V2 = T
T (2) , T =

∑m
i=1 Yi, T

(1) =∑m1

i=1X
(1)
i , T (2) =

∑m2

i=1X
(2)
i , and Qp1,p2(j, l;V1, V2;m,m1,m2) =

∫ p2
0

∫ p1
0

[1 −
js(1)

V1
]m−1[1− ls(2)

V2
]m−1(m1 − 1)(1− s(1))m1−2(m2 − 1)(1− s(2))m2−2ds(1)ds(2).

Proof. An unbiased estimate of τj,l(θ, α, β) is

h(Y1, X
(1)
1 , X

(2)
1 ) =

{
1, if Y1 > jX

(1)
1 and Y2 > lX

(2)
1 ,

0, otherwise,

which can be seen from

τj,l(θ, α, β) =
1

1 + j θ
α

1

1 + l θ
β

=

∫ ∫
(1− F (jx1))(1− F (lx2))dG1(x1)dG2(x2)

= P{Y1 > jX
(1)
1 }P{Y2 > lX

(2)
1 }

The unique MVU estimate of τj,l(θ, α, β) is

̂τj,l(θ, α, β) = P{Y1 > jX
(1)
1 , Y2 > lX

(2)
1 |T},

where T = (T, T (1), T (2)), since T is a complete sufficient statistic.
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Let S1 = Y1
T

, S2 = Y2
T

, S(1) =
X

(1)
1

T (1) , S(2) =
X

(2)
1

T (2) . Note that

fS1,S2,S(1),S(2)(s1, s2, s
(1), s(2)|T=t) = (m− 1)2(m1 − 1)(m2 − 1)(1− s1)m−2

(1− s2)m−2(1− s(1))m1−2(1− s(2))m2−2,

0 < si < 1, 0 < s(i) < 1, i = 1, 2.

̂τj,l(θ, α, β) = P{Y1 > jX
(1)
1 , Y2 > lX

(2)
1 |T}

=

∫ ∫
P{S1 >

js(1)

V1

, S2 >
ls(2)

V2

|T, S(1) = s(1), S(2) = s(2)}

dFS(1)(s(1))dFS(2)(s(2))

=

∫ p2

0

∫ p1

0

[1− js(1)

V1

]m−1[1− ls(2)

V2

]m−1(m1 − 1)(1− s(1))m1−2

(m2 − 1)(1− s(2))m2−2ds(1)ds(2).

Now, the problem is to find the limits of the integrals. It is obvious that

0 ≤ js(1)

V1

< S1 ≤ 1,

so, for j 6= 0

s(1) <
V1

j
, if

V1

j
< 1,

s(1) < 1, if
V1

j
≥ 1.

Therefore

p1 =

{
V1
j
, if V1

j
< 1,

1, if Vi
j
≥ 1,
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for j 6= 0 and p1 = 1 for j = 0.

The same logic works for the limits of s2 and we evaluate that

p2 =

{
V2
l
, if V2

l
< 1,

1, if V2
l
≥ 1,

for l 6= 0 and p2 = 1 for l = 0.

3.3 Numerical Results

We now provide numerical results for the exact reliability expression (Rn,k) given

in (3.5), its maximum likelihood estimator (R̂n,k) which is obtained by substitut-

ing the parameters θ, α and β in (3.5) with 1/Ȳ ,1/X̄1 and 1/X̄2, and its minimum

variance unbiased estimator (R̃n,k) given in Theorem (3.1). The mean squared

errors of the two estimators are also presented for performance comparison.

c θ α β Rk,n R̂k,n R̃k,n MSE(R̂k,n) MSE(R̃k,n)

2 1 5 9 0.9405 0.9304 0.9246 0.0023 0.0019

5 1 9 0.2154 0.2120 0.2015 0.0050 0.0051

9 1 5 0.1169 0.1271 0.1183 0.0033 0.0030

1 1 5 9 0.9682 0.9617 0.9681 0.0010 0.0007

5 1 9 0.6711 0.6868 0.6935 0.0124 0.0136

9 1 5 0.3711 0.3738 0.3665 0.0109 0.0111

Table 1. Exact reliability, its MLE and MVU estimators, and mean squared

errors of the estimators when n = 3 and k = 2.
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c θ α β Rk,n R̂k,n R̃k,n MSE(R̂k,n) MSE(R̃k,n)

1 1 5 9 0.9900 0.9873 0.9917 0.0002 0.0001

5 1 9 0.7873 0.7671 0.7799 0.0131 0.0142

9 1 5 0.4530 0.4555 0.4495 0.0193 0.0212

4 1 5 9 0.9692 0.9556 0.9667 0.0015 0.0010

5 1 9 0.2390 0.2485 0.2369 0.0090 0.0089

9 1 5 0.1360 0.1398 0.1299 0.0031 0.0029

Table 2. Exact reliability, its MLE and MVU estimators, and mean squared

errors of the estimators when n = 5 and k = 3.

For obtaining these numerical values, a Monte Carlo simulation study is car-

ried out in MATLAB. Code is available on request. 500 realizations of the given

functions have been simulated, and not more because of the high computational

complexity of the functions. The tables contain the values of the exact and es-

timated reliabilities of (C, 2, 3 : F ) and (C, 3, 5 : F ) systems, respectively. We

calculated the results for m = m1 = m2 = 10, under various selections of c, θ, α, β.

The cases c = 0 and c = n would correspond to the reliability of a (C,k, n:F)

system having i.i.d. component strengths and is subjected to a unique stress,

these selections would not represent a system having a change point in its stress

random variables. Therefore we avoided these selections so as not to step out

of the change point concept, however simulation under these selections is also

possible for comparisons with the results existing in the literature. For every

selection of n, k and c we tried to see the performance of the estimators when-

ever the parameter θ of the strength random variables is lower than, in between,

and greater than the parameters α and β of the stress random variables. It is

seen from the tables that both of the two estimators of the system reliability are

plausible because of their quite low mean squared errors. We observe that there

is no significant difference between the two estimators.
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Coherent Systems in

Stress-Strength Setup

In this chapter, we express the reliability of any coherent system as a linear

combination of reliabilities of series and parallel subsystems, by using minimal

and maximal signatures.

Consider a coherent system of n components. Let ξi denote the state of ith

component of the system, which takes value 1 in case of functioning and 0 in

case of a fail. The structure function Φ of the system takes value 1 in case of

functioning and 0 in case of a fail. So the reliability of a coherent system is

RΦ = P (Φ(ξ1, ξ2, . . . , ξn) = 1).

Let the random variables ξi, i = 1, 2, . . . , n, be exchangeable. Then

P (ξ1 = 0, ξ2 = 0, . . . , ξr = 0, ξr+1 = 1, ξr+2 = 1, . . . , ξn = 1)

=
r∑
i=0

(−1)i
(
r

i

)
P (ξ1 = 1, ξ2 = 1, . . . , ξn−r+i = 1)

=
n−r∑
i=0

(−1)i
(
n− r
i

)
P (ξ1 = 0, ξ2 = 0, . . . , ξr+i = 0)

27
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Navarro et al. (2007) showed that the reliability of any coherent system

can be expressed as a linear combination of the reliabilities of series subsystems

or parallel subsystems. Based on their definition, we can represent the stress-

strength reliability of a coherent system in terms of the reliability of series or

parallel subsystems. Let the components of a coherent system have i.i.d. strength

random variables Y1, Y2, . . . , Yn and be subject to a common stress X. The state

random variables ξi of components take value 1 if Yi > X and 0 if Yi ≤ X. It is

obvious that ξ1, ξ2, . . . , ξn are exchangeable dependent. Therefore the reliability

of any coherent system in this setup can be expressed by one of the following

forms.

RΦ =
n∑
i=1

αiP (Y1:i > X) (4.1)

=
n∑
i=1

βiP (Yi:i > X), (4.2)

where the coefficient vectors (α1, α2, . . . , αn) and (β1, β2, . . . , βn) satisfying∑n
i=1 αi = 1 and

∑n
i=1 βi = 1 are called minimal and maximal signatures, respec-

tively. These representations of system reliability is useful when i-dimensional

exchangeable survival function or distribution function is given.

By using the number of minimal path sets, the minimal and maximal signa-

tures are obtained by Eryılmaz (2010b) as

αi =
∑
j∈Ai

(−1)i+j−n
(

j

n− i

)
rn−j(n),

and

βi =
∑
j∈Bi

(−1)i−j+1

(
n− j
n− i

)
rn−j(n),

where rn−j(n) denotes the number of path sets of the structure Φ having exactly

n − j working components and Ai and Bi are the appropriate sets depending
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on the structure of the system. Thus from (4.1) and (4.2) we observe that it

is enough to evaluate the reliability of series or parallel systems for computing

the stress-strength reliability for any coherent structure. A detailed discussion is

given in Eryılmaz (2010a).

We finally give the minimal and maximal signatures for the (C,k, n:F) system.

Based on Eryılmaz (2010a), it is true for a (C,k, n:F) system that

αi =
M∑

j=n−i

(−1)i+j−n
(

j

n− i

)
rn−j(n)

and

βi =
M∑

j=n−i

(−1)i−j+1

(
n− j
n− i

)
rn−j(n),

where

rn−j(n) =

min([j/k],n−j+1)∑
i=0

(−1)i
(
n− j + 1

i

)(
n− ik
n− j

)
,

and M = n+ 1− n+1
k

if n+ 1 is a multiple of k and M = n− [n+1
k

] if not, where

[x] is the integer part of x.



Chapter 5

Summary and Conclusions

In this thesis, we studied the reliability of consecutive-k-out-of-n:F systems

in a stress-strength setup in a way that the components have independent and

identically distributed strengths and the first c of them are exposed to one type

of a random stress, and the remaining n − c are exposed to another type of a

random stress. Since the states of the components are neither independent nor ex-

changeable, we studied the reliability for the case 2k ≥ n which is mathematically

tractable. We obtained the exact reliability formula for this case. We presented

the maximum likelihood and the minimum variance unbiased estimators for the

system reliability. When we compare these two estimators, we realized that both

of them have very low mean squared errors. We pointed out that the performances

of the two estimators are not singificantly different, therefore it is recommended

to use the maximum likelihood estimator because of its lower computational com-

plexity. A further research problem can be the evaluation of system reliability

under more change points, i.e. more different stress random variables. Another

point that can be considered is assuming the component strengths to be non-i.i.d.

random variables.
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and Kader Akıcı. He completed his high school education in Eskişehir. He began
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