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ABSTRACT

ORDER STATISTICS FROM NONIDENTICALLY
DISTRIBUTED RANDOM VARIABLES AND

EXCEEDANCES

Göknur Giner

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2013

Order statistics and exceedances for some general models of independent but

not necessarily identically distributed (INID) random variables are considered.

The distributions of order statistics from INID sample are described in terms

of symmetric functions. Some exceedance models based on order statistics from

INID random variables are considered, the limit distributions of exceedance statis-

tics are obtained. For the model of INID random variables referred as Fα-scheme

introduced by [62] the limiting distribution of exceedance statistics has been de-

rived. This distribution is expressed in terms of permutations with inversions,

Gaussian hypergeometric function and incomplete beta function. Some applica-

tions in insurance models have also been discussed.

Keywords: Order statistics, INID random variables, exceedances, symmetric func-

tions, Gaussian hypergeometric distribution, permutations with inversions.
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ÖZ

FARKLI DAĞILIMLARA SAHİP RASGELE
DEĞİŞKENLERİN SIRA İSTATİSTİKLERİ VE AŞAN

İSTATİSTİKLER

Göknur Giner

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Prof. Dr. İsmihan Bayramoğlu

Haziran 2013

Bağımsız ve farklı dağılımlara sahip rasgele değişkenlerin bazı modelleri için sıra

istatistikleri ve aşan istatistikler kullanıldı. Ayrıca farklı dağılıma sahip rasgele

değişkenlerin sıra istatistiklerine ait dağılımlar simetrik fonksiyonlar yardımıyla

tanımlandı. Farklı dağılımlara sahip rasgele değişkenlerin sıra istatistikleri temel

alınan aşan istatistiklerin asimptotik dağılımları elde edildi. Söz konusu dağılım

bulunurken ilk defa [62] tarafından önerilmiş olan Fα-düzeni kullanıldı. Bu

dağılım tersinmeli permütasyonlar, Gauss hipergeometrik ve tamamlanmamış

beta fonksiyonları ile ifade edildi. Son olarak da sigortacılık modelleri ile igili

bazı uygulama önerilerinden söz edildi.

Anahtar Kelimeler : Sıra istatistikleri, farklı dağılıma sahip rasgele değişkenler,

aşan istatistikler, simetrik fonksiyonlar, Gauss hipergeometrik dağlımı, tersinmeli

permütasyonlar.
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Chapter 1

Introduction

This dissertation centers around the problem of obtaining the distribution of

independent and non-identically distributed (INID) random variables. The study

presented deals with the main difficulties of the given problem and also suggests a

useful method which makes the calculations easier. With the help of this method

which is called Fα scheme first presented by [62], we obtained the asymptotic

distribution function of exceedances. An overview of the other relevant paper

and researches are useful to note that at this point.

The developments on order statistics compiled in [73] through early 1960’s.

The book [73] was primarily the contributions of several tables. Comprehensive

tables have also been prepared by [40]. Based on their growing amount of im-

portance and popularity, a considerable amount of research has investigated the

order statistics. There have been books written on many different aspects of

them. The first essential book describing the theory of order statistics is [28].

This book was the culmination of H. A. David’s work from 1971. [2] and [29]

include new developments on order statistics from independent and identically

distributed (IID), INID and dependent random variables. [20] and [21] are two

volumes on theory and applications of order statistics. Books written by [52],

[34], [70], [69] and [30] first presented the asymptotic theory of order statistics.

The theory and applications of order statistics from IID random variables are

both studied well. However, there are not many developments on the theory of

1



CHAPTER 1. INTRODUCTION 2

order statistics from arbitrarily dependent random variables because of difficul-

ties in calculating the joint probability density function (pdf)’s. They are not

factorized as they are in the case of IID. The marginal distribution function of an

order statistic from arbitrary dependent random variables is given in [29]. The

joint distribution function of two or more order statistics from dependent ran-

dom variables can be found in [60]. The distribution theory of order statistics

from INID random variables first mentioned in [78] and it involves the concept of

permanents which is similar to the determinant except that the permanent does

not have an alternating sign. The signs of all the terms in the summation given

in the definition of the determinant are positive in the calculation of permanent.

[17] is an excellent review which gives the theory of order statistics from INID

case. [39] is also a study in the mean residual life functions for INID random

variables in the system level.

Another key concept considered in this dissertation is exceedance statistics

which denotes the total number of observations exceeding a random threshold

value. The concept of a random threshold was first used by [38] and [31]. In

this context, exceedance statistics have received a growing amount of attention

among researchers like [71], [74], [82] and [75] and even earlier in [80], [81]. First

fundamental source in the area is the chapter “The distribution of exceedance”

in the book [36]. Further discussions can be found in [28], [48], [79] and [52].

Based on exceedance statistics, several theoretical studies are contributed to the

area. Papers that examine the exceedance statistics in record model are [3],

[5],[6], [13], [12] and the book is [4]. Exceedance models in multivariate FGM

are introduced in the work of [7] and also [8] used exceedances in the progressive

type II censoring scheme. The reader may refer to the literature [14] and [15] for

the discussion on the distributions of exceedances of generalized order statistics.

In [9] the joint behaviour of precedence and exceedances in random threshold

models are obtained and lastly, [10] addresses the waiting times of exceedance

statistics in random threshold models.

In Chapter 1, the fundamental definitions and distributional properties of the

order statistics from IID and arbitrarily dependent random variables are given.
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In Chapter 2, INID random variables are considered, and the distributions

of order statistics are described in terms of permanents and the symmetric func-

tions. Permanents, symmetric functions and their properties are also given, and

the recurrence relations between the distributions of order statistics from INID

random variables are provided.

In Chapter 3, we introduce the exceedance statistics which is one of the main

concepts of this study. We extensively review the literature on exceedance statis-

tics which includes the distribution of IID and INID random variables and arbi-

trarily dependent random variables with respect to a random threshold. Various

exceedance models are included in the last section of the chapter.

In Chapter 4, the major contribution of the dissertation, the exceedance model

from INID random variables is considered. The asymptotic distribution of given

exceedance statistic has been derived, and for a special model of INID random

variables the limiting distribution is studied. Behaviour of the numerical charac-

teristics of derived limiting distribution, such as mean, variance and skewness are

also interpreted. We focus on how the methodological considerations have been

put into practice in insurance models. Lastly, chapter 5, the concluding remarks

are given in the final chapter.
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1.1 Order statistics from IID random variables

Suppose that X1, X2, . . . , Xn are independent and identically distributed random

variables with absolutely continuous cumulative distribution function F (x) and

X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the corresponding order statistics. The joint pdf of

Xr1:n, Xr2:n, . . . , Xrk:n (1 ≤ r1 < r2 · · · < rk ≤ n) is for x1 ≤ x2 ≤ · · · ≤ xk,

fr1,r2,...,rk(x1, x2, . . . , xk)

=
n!

(r1 − 1)!(r2 − r1 − 1)! · · · (n− rk)!
(1.1)

F r1−1(x1)f(x1)[F (x2)− F (x1)]r2−r1−1f(x2)

[F (x3)− F (x2)]r3−r2−1f(x3) · · · [1− F (xk)]
n−rkf(xk)

Defining x0 = −∞, xk+1 = +∞, n0 = 0, r0 = 0, rk+1 = n + 1, we can simplify

the equation (1.1) as

fr1,r2,...,rk(x1, x2, . . . , xk)

=

[
n!

k∏
j=1

f(xj)

]
k∏
j=0

{
[F (xj+1)− F (xj)]

rj+1−rj−1

(rj+1 − rj − 1)!

}
(1.2)

Since there are n! equally likely orderings of the xi, it is clear that the joint

pdf of all n order statistics is

f1,2,...,n(x1, x2, . . . , xn) = n!f(x1)f(x2) . . . f(xn)

= n!
n∏
i=1

f(xi), x1 ≤ x2 ≤ · · · ≤ xn (1.3)

Let fr,s(x, y) denotes the joint pdf of Xr:n and Xs:n (1 ≤ r < s ≤ n).
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Then for x ≤ y, we can obtain fr,s:n(x, y) by integrating out (1.3) the variables

(X1:n, . . . , Xr−1:n), (Xr+1:n, . . . , Xs−1:n) and (Xs+1:n, . . . , Xn:n)

fr,s:n(x, y) = n!f(x)f(y)


x∫

−∞

· · ·
x2∫
−∞

f(x1) · · · f(xr−1)dx1 · · · dxr−1


×


y∫
x

· · ·
xr+2∫
x

f(xr+1) · · · f(xs−1)dxr+1 · · · dxs−1


×


∞∫
y

· · ·
xs+2∫
y

f(xs+1) · · · f(xn)dxs+1 · · · dxn


= n!f(x)f(y)

[F (x)]r−1

(r − 1)!
× [F (y)− F (x)]s−r−1

(s− r − 1)!
× [1− F (y)]n−s

(n− s)!

=
n!

(r − 1)!(s− r − 1)!(n− s)!
[F (x)]r−1[F (y)− F (x)]s−r−1

[1− F (y)]n−sf(x)f(y), (1.4)

−∞ < x1 < · · · < xr−1 < x < xr+1 < · · · < xs−1 < y < xs+1 < · · · < xn <∞.

By letting r = 1 and s = n, the joint distribution function of the first and the

largest order statistics becomes

f1,n(x, y) = n(n− 1)[F (y)− F (x)]n−2f(x)f(y), −∞ < x < y <∞. (1.5)

For x < y, the joint cdf of Xr:n and Xs:n, denoted by Fr,s(x, y) can be obtain

by integration of fr,s(x, y) as follows:

Fr,s(x, y) =

x∫
−∞

y∫
−∞

n!

(r − 1)!(s− r − 1)!(n− s)!
F r−1(x)[F (y)− F (x)]s−r−1

[1− F (y)]n−sdF (x)dF (y) (1.6)
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For discrete case, we have for x < y

Fr,s(x, y) = P{at least r ofXi’s ≤ x, at least s ofXi’s ≤ y} (1.7)

=
n∑
j=s

j∑
i=r

P{exactly i ofXi’s ≤ x, at least j ofXi’s ≤ y}

=
n∑
j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j,

and for x ≥ y

Fr,s(x, y) = Fs(y).

We can obtain the marginal distribution of Xr:n (1 ≤ r ≤ n), say fr:n(x), by

integrating out (1.3) the variables (X1:n, . . . , Xr−1:n) and (Xr+1:n, . . . , Xn:n)

fr:n(x) = n!f(x)


x∫

−∞

· · ·
x2∫
−∞

f(x1) · · · f(xr−1)dx1 · · · dxr−1


×


∞∫
x

· · ·
xr+2∫
x

f(xr+1) · · · f(xn)dxr+1 · · · dxn


= n!f(x)

[F (x)]r−1

(r − 1)!
× [1− F (x)]n−r

(n− r)!

=
n!

(n− r)!(r − 1)!
[F (x)]r−1[1− F (x)]n−rf(x), (1.8)

−∞ < x1 < · · · < xr−1 < x < xr+1 < · · · < xn <∞.

Distribution of the range statistics

Range is the difference between the largest and the smallest observation in the

sample, i.e. the special case of spacing Zrs = Xs:n −Xr:n (1 ≤ r < s ≤ n) where

r = 1 and s = n.
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Let us start with the pdf of Zrs. To find the pdf of Zrs = Xs:n −Xr:n we put

zrs = y − x in (1.4) and the Jacobian is unit in modulus for transformation from

x, y to x, zrs. Hence we get

fr,s(x, zrs) = n!
(r−1)!(s−r−1)!(n−s)!

∞∫
−∞

F r−1(x)[F (x+ zrs)− F (x)]s−r−1

f(x+ zrs)[1− F (x+ zrs)]
n−sdF (x).

Therefore, for the case r = 1, s = n, Zrs becomes the range statistics. Let us

denote Z1n = R, thus the pdf of R can be obtained as follows:

fR(t) = n(n− 1)

∞∫
−∞

[F (x+ t)− F (x)]n−2f(x+ t)dF (x). (1.9)

The cdf of R is

FR(t) = n
∞∫
−∞

f(x)
t∫

0

(n− 1)f(x+ t
′
)[F (x+ t

′
)− F (x)]n−2dt

′
dx

= n
∞∫
−∞

f(x)[F (x+ t
′
)− F (x)]n−1|t

′
=t

t′=0
dx

= n
∞∫
−∞

[F (x+ t)− F (x)]n−1dF (x)

(1.10)

1.2 Order Statistics from dependent random

variables

Let X1, X2, . . . , Xn be arbitrarily dependent continuous random variables with

joint pdf f(x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ Rn. The joint pdf of the correspond-

ing order statistics X1:n, X2:n, . . . , Xn:n can be easily obtained by considering the

limit of
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1

δx1 · · · δxn
P{x1 < X1:n < x1 + δx1, . . . , xn < Xn:n < xn + δxn}

=
1

δx1 · · · δxn

∑
i1,i2,...,in

P{x1 < Xi1 < x1 + δx1, . . . ,

xn < Xin < xn + δxn, Xi1 < Xi2 < · · · < Xin}

as δxi → 0, i = 1, 2, .., n. Let fX1:n,X2:n,...,Xn:n denotes the joint pdf of

X1:n, X2:n, . . . , Xn:n, then

fX1:n,X2:n,...,Xn:n(x1, x2, . . . , xn)

=


∑

℘1,2,...,n

f(xi1 , xi2 , . . . , xin) if x1 < x2 < · · · < xn

0 otherwise
, (1.11)

where ℘1,2,...,n is the class of all n! permutations (i1, i2, . . . , in) of (1, 2, . . . , n) and

the sum extends over all permutations.

If X1, X2, . . . , Xn are exchangeable, i.e. f(x1, x2, . . . , xn) = f(xi1 , xi2 , . . . , xin),

∀(i1, i2, . . . , in) ∈ ℘1,2,...,n and fXj(x) = fX(x), j = 1, 2 . . . , n, then we have

fX1:n,X2:n,...,Xn:n(x1, x2, . . . , xn)

=

{
n!f(x1 , x2 , . . . , xn) if x1 < x2 < · · · < xn

0 otherwise
(1.12)

The marginal pdf’s of order statistics Xk1:n, Xk2:n, . . . , Xkr:n, 1 ≤ k1 < k2 <

· · · < kr ≤ n in case of arbitrarily dependent random variables can be obtained

by integrating (1.11) as follows:
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fXk1:n,Xk2:n,...,Xkr :n(xk1 , xk2 , . . . , xkr)

=

∞∫
−∞

xn−1∫
−∞

· · ·
xkr∫
−∞

xr−1∫
−∞

· · ·

xk2+1∫
−∞

xk2−1∫
−∞

· · ·

xk1+1∫
−∞

xk1−1∫
−∞

· · ·
x3∫
−∞

x2∫
−∞

fX1:n,X2:n,...,Xn:n(x1, x2, . . . , xn)× dx1dx2 · · · dxk1−1

×dxk1+1 · · · dxkr−1dxkr+1 · · · dxn

=
∑

℘1,2,...,n

∞∫
−∞

xn−1∫
−∞

· · ·
xkr∫
−∞

xr−1∫
−∞

· · ·

xk2+1∫
−∞

xk2−1∫
−∞

· · ·

xk1+1∫
−∞

xk1−1∫
−∞

· · ·
x3∫
−∞

x2∫
−∞

(1.13)

f(xi1 , xi2 , . . . , xin)× dx1dx2 · · · dxk1−1
dxk1+1 · · · dxkr−1dxkr+1 · · · dxn.

The marginal pdf’s of order statistics Xk1:n, Xk2:n, . . . , Xkr:n, 1 ≤ k1 < k2 <

· · · < kr ≤ n in case of exchangeable random variables can be obtained by

integrating (1.12) as follows:

fXk1:n,Xk2:n,...,Xkr :n(xk1 , xk2 , . . . , xkr)

= n!

∞∫
−∞

xn−1∫
−∞

· · ·
xkr∫
−∞

xr−1∫
−∞

· · ·

xk2+1∫
−∞

xk2−1∫
−∞

· · ·

xk1+1∫
−∞

xk1−1∫
−∞

· · ·
x3∫
−∞

x2∫
−∞

(1.14)

f(x1 , x2 , . . . , xn)× dx1dx2 · · · dxk1−1
dxk1+1 · · · dxkr−1dxkr+1 · · · dxn.



Chapter 2

Order statistics from INID

random variables

Definitions and properties of order statistics from INID random variables and

permanents presented in this chapter mainly refer to work in [17], [29] and [2]. In

addition, we give the definitions and the recurrence relations of the order statistics

from INID random variables in the meaning of symmetric functions.

Suppose that X1, X2, . . . , Xn are independent random variables with the cu-

mulative distribution functions (cdf) F1(x), F2(x), . . . , Fn(x) and the probability

density functions f1(x), f2(x), . . . , fn(x), ∀x ∈ R respectively. Let X1:n ≤ X2:n ≤
· · · ≤ Xn:n be the corresponding order statistics.

10
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We can show that the joint density function of Xr1:n, Xr2:n, . . . , Xrk:n which is

denoted by fr1,r2,...,rk(x1, x2, . . . , xk) for 1 ≤ r1 < r2 < · · · < rk ≤ n is

fr1,r2,...,rk(x1, x2, . . . , xk)

= 1
(r1−1)!(r2−r1−1)!···(rk−rk−1−1)!(n−rk)!

∑
℘1,2,...,n

k∏
j=1

firj (xj)

r1−1∏
j=1

Fij(x1)

×
r2−1∏
j=r1+1

[Fij(x2)− Fij(x1)] · · ·
rk−1−1∏
j=rk−2+1

[Fij(xk−1)− Fij(xk−2)]

×
n−rk−1∏
j=rk−1+1

[1− Fij(xk)], (2.1)

−∞ < x1 < x2 < · · ·xk < ∞ and where
∑

℘1,2,...,n

denotes the sum over all n!

permutations (j1, j2, . . . , jn) of (1, 2, . . . , n).

Let Fr1,r2,...,rk(x1, x2, . . . , xk) denotes the cdf of Xr1:n, Xr2:n, . . . , Xrk:n for 1 ≤
r1 < r2 < · · · < rk ≤ n. Then Fr1,r2,...,rk(x1, x2, . . . , xk) can be expressed as

follows

Fr1,r2,...,rk(x1, x2, . . . , xk)

=
∑ 1

j1!j2! · · · jk+1!

k∏
j=1

firj (xj)

r1−1∏
j=1

Fij(x1)

×
r2−1∏
j=r1+1

[Fij(x2)− Fij(x1)] · · ·
rk−1−1∏
j=rk−2+1

[Fij(xk−1)− Fij(xk−2)]

×
n−rk−1∏
j=rk−1+1

[1− Fij(xk)], (2.2)

−∞ < x1 < x2 < · · · < xk < ∞ and where the sum is over all j1, j2, . . . , jk+1

with j1 ≥ r1, j1 + j2 ≥ r2, . . . ,
k∑
i=1

ji ≥ rk and j1 + j2 + · · ·+ jk = n.

The joint probability density function of all n order statistics can be obtained

from (2.1) as
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fX1:n,X2:n,...,Xn:n(x1, x2, . . . , xn)

=


∑

℘1,2,...,n

fi1(x1)fi2(x2) · · · fin(xn) −∞ < x1 < x2 < · · · < xn <∞

0 otherwise

or it can be written explicitly in the form

fX1:n,X2:n,...,Xn:n(x1, x2, . . . , xn)

=


∑

℘1,2,...,n

n∏
j=1

fij(xj) −∞ < x1 < x2 < · · · < xn <∞

0 otherwise,

(2.3)

where
∑

℘1,2,...,n

denotes the sum over all n! permutations (j1, j2, . . . , jn) of

(1, 2, . . . , n).

Similarly, the following joint density function for Xr:n and Xs:n (1 ≤ r < s ≤
n) may be defined as

fr,s:n(x, y) =
1

(r − 1)!(s− r − 1)!(n− s)!
∑

℘1,2,...,n

Fi1(x) · · ·Fir−1(x)fir(x)

×[Fir+1(y)− Fir+1(x)] · · · [Fis−1(y)− Fis−1(x)]

×fis(x)× [1− Fis+1(y)] · · · [1− Fin(y)],

−∞ < x < y <∞ or explicitly,

fr,s:n(x, y) =
1

(r − 1)!(s− r − 1)!(n− s)!
∑

℘1,2,...,n

fir(x)fis(x)
r−1∏
j=1

Fij(x)

×
s−1∏
j=r+1

[Fij(y)− Fij(x)]
n∏

j=s+1

[1− Fij(y)], (2.4)

−∞ < x < y <∞.
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The joint cumulative distribution function of Xr:n and Xs:n is

Fr,s(x, y) =
n∑
i=r

n−i∑
j=max(0,s−i)

1

(i− 1)!(j − i− 1)!(n− j)!
∑

℘1,2,...,n

i∏
l=1

Ftl(x)×

×
i+j∏
l=i+1

(Ftl(y)− Ftl(x))
n∏

l=i+j+1

(1− Ftl(y)), (2.5)

where the summation ℘1,2,...,n extends over all n! permutations (t1, t2, . . . , tn) of

(1, 2, . . . , n).

We can derive the pdf and the cdf of Xr:n for 1 ≤ r ≤ n as follows respectively,

fr:n(x) =
1

(r − 1)!(n− r)!
∑

℘1,2,...,n

Fi1(x) · · ·Fir−1(x)fir(x)

×[1− Fir+1(x)] · · · [1− Fin(x)] (2.6)

and

Fr:n(x) = P{Xr:n ≤ x}

= P{at least r ofX ′s are ≤ x}

=
n∑
i=r

P{exactly i ofX ′s are ≤ x}

=
n∑
i=r

1

i!(n− i)!
∑

℘1,2,...,n

i∏
l=1

Fjl(x)
n∏

l=i+1

[1− Fjl(x)], (2.7)

where
∑

℘1,2,...,n

denotes the sum over all n! permutations (j1, j2, . . . , jn) of

(1, 2, . . . , n).
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2.1 Order statistics based on permanents

The distribution theory of order statistics from INID random variables involving

permanents made its first appearance in [78]. [17] also gives a comprehensive

review of the recent developments on this subject based on permanents.

2.1.1 Permanents

Permanent function is investigated by [26] and [24] in their respected memoirs.

Since then, many mathematicians contributed to the subject. The monograph on

permanents written by [42] is a superior reference for anyone interested in theory

of permanents. In [26], it is distinguished determinants as alternating symmetric

functions from determinants as ordinary symmetric functions. In the same paper,

it is also introduced a subclass of symmetric functions given the name permanents

by [58]. Permanent is a concept defined similar to the determinant except that

it does not have an alternating sign, that is, no sign changes occur.

Definition 2.1. The permanent of an n× n square matrix Z = (zkm) is defined

as

PerZ =

∣∣∣∣∣∣∣∣∣∣


z11 z12 · · · z1n

z21 z22 · · · z2n

· · · · · · · · · · · ·
zn1 zn2 · · · znn


∣∣∣∣∣∣∣∣∣∣

=
∑

℘1,2,...,n

n∏
m=1

zmkm , (2.8)

where ℘1,2,...,n is the class of all n! permutations (k1, k2, . . . , kn) of (1, 2, . . . , n)

and the sum extends over all permutations.

2.1.2 Elementary properties of permanents

Permanents and determinants share many properties because of the similarity of

their definition. However, permanents do not hold two key properties of deter-

minants which are the multiplicative property and the invariance under certain
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elementary matrix operations. Permanent functions have the following funda-

mental properties.

Property 1 If the rows or columns of matrix Z are permuted, the value of PerZ

does not change.

Property 2 The permanent of a matrix can be expanded by any row or column.

Let Zk,m denotes the sub-matrix of order n− 1 obtained from Z by deleting the

k − th row and the m− th column, then

PerZ =
n∑
k=1

zkmPerZk,m, m = 1, 2, . . . , n

=
n∑

m=1

zkmPerZk,m, k = 1, 2, . . . , n.

Property 3 Let c be a constant and Z1 denotes the matrix obtained from Z

multiplying the elements in the k − th row by c, m = 1, 2, . . . , n, then

PerZ1 = cPerZ.

Property 4 Let Z2 denotes the matrix obtained from Z by adding tk,m to the

elements in the k − th row, m = 1, 2, . . . , n and Z1 be the matrix obtained from

Z by replacing the elements in the k − th row by tk,m, m = 1, 2, . . . , n, then

PerZ2 = PerZ + PerZ1.

2.1.3 Distributions of order statistics by permanents

Let X1, X2, . . . , Xn be independent random variables having the cumula-

tive distributions F1(x), F2(x), . . . , Fn(x) and the probability density functions

f1(x), f2(x), . . . , fn(x), ∀x ∈ R respectively, and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the

corresponding order statistics.

From the identity (2.6) and (2.8) we can easily see that fr:n(x), the pdf of rth
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orders statistics can be written in terms of permanents as

fr:n(x) =
1

(r − 1)!(n− r)!
PerZ1,∀x ∈ R (2.9)

where

Z1 =


F1(x) F2(x) · · · Fn(x)

f1(x) f2(x) · · · fn(x)

F 1(x) F 2(x) · · · F n(x)


}r − 1

}1
}n− r

and F i(x) = 1− Fi(x) for i = 1, 2, . . . , n.

It is easy to express the cdf of rth order statistics given in (2.7) using perma-

nents, as given in the following equation

Fr:n(x) =
n∑
i=r

1

i!(n− i)!
PerT1,∀x ∈ R (2.10)

where

T1 =

[
F1(x) F2(x) · · · Fn(x)

F 1(x) F 2(x) · · · F n(x)

]
}i
}n− i

On taking (2.4) and (2.8) into account we deduce the joint density fr,s:n(x, y)

for 1 ≤ r < s ≤ n in the form as follows

fr,s:n(x, y) =
1

(r − 1)!(s− r − 1)!(n− s)!
PerZ2, ∀x, y ∈ R, (2.11)

where

Z2 =



F1(x) F2(x) · · · Fn(x)

f1(x) f2(x) · · · fn(x)

F1(y)− F1(x) F2(y)− F2(x) · · · Fn(y)− Fn(x)

f1(y) f2(y) · · · fn(y)

F 1(y) F 2(y) · · · F n(y)



}r − 1

}1
}s− r − 1

}1
}n− s

Similarly, from (2.1) the joint pdf of Xr1:n, Xr2:n, . . . , Xrk:n for 1 ≤ r1 < r2 <
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· · · < rk ≤ n can be written based on permanents as

fr1,r2,...,rk(x1, x2, . . . , xk) =
1

(r1 − 1)! · · · (rk − rk−1 − 1)!(n− rk)!
PerZk, (2.12)

−∞ < x1 < x2 < · · · , xk <∞ and where

Zk =



F1(x1) · · · Fn(x1)

f1(x1) · · · fn(x1)

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)

f1(x2) · · · fn(x2)

· · · · · · · · ·
F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)

f1(xk) · · · fn(xk)

F 1(xk) · · · F n(xk)



}r1 − 1

}1
}r2 − r1 − 1

}1
...

}rk − rk−1 − 1

}1
}n− rk

We can show that the joint cdf of Xr1:n, Xr2:n, . . . , Xrk:n for 1 ≤ r1 < r2 <

· · · < rk ≤ n

Fr1,r2,...,rk(x1, x2, . . . , xk) =
∑ 1

j1!j2! · · · jk+1!
PerTk, (2.13)

−∞ < x1 < x2 < · · · , xk <∞ and where

Tk =



F1(x1) · · · Fn(x1)

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)

· · · · · · · · ·
F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)

F 1(xk) · · · F n(xk)



}j1

}j2

...

}jk
}jk+1

and the sum is over j1, j2, . . . , jk+1 with j1 ≥ r1, j1 + j2 ≥ r2, . . .
k∑
i=1

ji ≥ rk and

j1 + j2 + · · ·+ jk = n.
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2.2 Order statistics based on symmetric func-

tions

In this section, we present the distributions of order statistics from INID random

variables based on the symmetric functions. Permanent expressions for the distri-

bution function of INID order statistics allow us to gain some recurrence relations

using the expansion of the permanent by some of the rows. However, in some

cases when the applications of order statistics from the INID random variables are

considered, the usage of the permanent expressions for the distributions of INID

order statistics causes some difficulties connected with the complexity of opera-

tions. For instance, the mean residual life function of parallel and k−out−of−n
coherent systems when the life length of the components is INID random vari-

ables can not easily be calculated using permanent expressions. Therefore, the

calculations involving the joint distributions of order statistics from INID random

variables cover technical difficulties, the results are complicated and are not con-

venient for applications. The representations of distributions of order statistics

from INID random variables in terms of symmetric functions have an advantage

if one uses the derivatives and integration in calculations.

For this reason, we give the definition and the some properties of symmetric

functions in the following subsection.

2.2.1 Symmetric functions

The books [54] and [76] can be used as guides for giving the following definitions.

Definition 2.2. Let λ = (λ1, . . . , λn) ∈ Rn (n ≥ 1) and Sr(λ1, . . . , λn) denotes

the rth elementary symmetric function, where 1 ≤ r ≤ n. Sr(λ1, . . . , λn ≥ n) is

defined as

Sr(λ1, . . . , λn) =
∑

1≤i1≤···≤ir≤···≤in

λi1 . . . λin , (2.14)

that is, Sr(λ1, . . . , λn) is the sum of all products of r distinct variables chosen

from n variables.
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Definition 2.3. Let Ψr(λ1, . . . , λn) denotes the rth complete symmetric function,

in variables λ1, . . . , λn.Ψr(λ1, . . . , λn) is expressed as

Ψr(λ1, . . . , λn) =
∑

α1+...+αn=r

λα1
1 . . . λαnn , (2.15)

where the summation extends over all choices of α1, . . . , αn ∈ {0, 1, . . . , r}.

Both elementary and the complete symmetric functions satisfy the following

condition

Sr(λ1, . . . , λn) = Ψr(λ1, . . . , λn) =

{
1, r < 0 or r > n

0, r = 0

For other types of symmetric functions, one can see [76].

Generating functions for elementary and the complete symmetric functions

can be defined as follows, respectively

Φ(λ) =
n∏
i=1

(1− λiλ) =
n∑
r=0

(−1)rSr(λ1, . . . , λn)λr (2.16)

and
1

Φ(λ)
=
∞∑
r=0

Ψr(λ1, . . . , λn)λr. (2.17)

Since Φ(x)
1

Φ(x)
= 1, then

n∑
r=0

(−1)rSr(λ1, . . . , λn)Ψn−r(λ1, . . . , λn) = 0,

n ≥ 1.

The following recurrence relations of the symmetric functions may be obtained

from (2.16) and (2.17) respectively

Sr(λ1, . . . , λn) = Sr(λ1, . . . , λn−1) + λnSr−1(λ1, . . . , λn−1) (2.18)
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and

Ψr(λ1, . . . , λn) = Ψr(λ1, . . . , λn−1) + λnΨr−1(λ1, . . . , λn) (2.19)

for r ≥ 1 and n ≥ 2.

2.2.2 Distributions of order statistics by symmetric func-

tions

Let X1, X2, . . . , Xn be independent but not necessarily identically distributed

random variables with cumulative distribution functions F1(x), F2(x), . . . , Fn(x)

and X1:n ≤ X2:n ≤ . . . ≤ Xn:n be corresponding order statistics.

For any borel set B ∈ <, where < is the Borel σ−algebra of subsets of the set

of real numbers R, consider the indicator

IXi(B) =

{
1, Xi ∈ B
0, Xi /∈ B

,

i = 1, 2, . . . , n and let ν∗(B) =
n∑
i=1

IXi(B).

Define the empirical distribution of the INID sample X1, X2, . . . , Xn as

P ∗n(B) = ν∗(B)
n
.

It is clear that

EIXi(B) = P{Xi ∈ B} =

∫
B

dFi(x) ≡ Pi(B)

and

V ar(IXi(B)) = Pi(B)(1− Pi(B)).

It’s also obvious that EP ∗n(B) = 1
n

n∑
i=1

Pi(B) and V ar(P ∗n(B)) = 1
n2

n∑
i=1

Pi(B)(1−

Pi(B)).
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The empirical distribution function of the INID sample then is defined as

F ∗n(x) = P ∗n((−∞, x]) =
1

n

n∑
i=1

IXi(x),

where IXi(x) = 1 if Xi ≤ x and IXi(x) = 0, otherwise.

According to the Kolmogorov’s theorem the sequence of mutually indepen-

dent random variables ξ1, ξ2, . . . , ξn, . . . obeys the strong law of large numbers, if
∞∑
n=1

V ar(ξn)
n2 <∞ (see [35], Page 215).

Since
V ar(IXn(B))

n2
=
Pn(B)(1− Pn(B))

n2
≤ 1

n2

then the series
∞∑
n=1

V ar(IXn(B))

n2

converges.

Then the sequence of mutually independent random variables IX1(B), . . . , IXn(B), . . .

obeys the strong law of large numbers, i.e. as n→∞, with probability 1

1

n

n∑
i=1

IXi(B)− 1

n

n∑
i=1

EIXi(B)→ 0. (2.20)

From (2.20) we have

P ∗n(B)− 1

n

n∑
i=1

Pi(B)→ 0, B ∈ <

and

F ∗n(x)− 1

n

n∑
i=1

Fi(x)→ 0, x ∈ R.

Lemma 2.1 For any B ∈ < and x ∈ R

P{nP ∗n(B) = k} =
1

k!(n− k)!

∑
℘1,2,...,n

k∏
i=1

Pji(B)
n∏

i=k+1

(1− Pji(B))
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and

P{nF ∗n(x) = k} =
1

k!(n− k)!

∑
℘1,2,...,n

k∏
i=1

Fji(x)
n∏

i=k+1

(1− Fji(x)),

where the summation ℘1,2,...,n extends over all n! permutations (j1, j2, . . . , jn) of

(1, 2, . . . , n).

Denote now

A(n, k;x) =

(
n

k

)
xk(1− x)n−k, (2.21)

0 ≤ x ≤ 1, k = 0, 1, 2, . . . , n; n ≥ 1 and the symmetric function

B(n, k;x1, x2, . . . , xn) =
1

k!(n− k)!

∑
℘1,2,...,n

k∏
i=1

xji

n∏
i=k+1

(1− xji), (2.22)

k = 0, 1, 2, . . . , n; n ≥ 1, 0 ≤ xl ≤ 1, l = 1, 2, . . . , n, where the summation

℘1,2,...,n extends over all n! permutations (j1, j2, . . . , jn) of (1, 2, . . . , n) assuming
j∏

i=j+1

ai are equal to 1.

It is useful to note that

B(n, n;x1, x2, . . . , xn) = x1x2 · · ·xn

and

B(n, 0;x1, x2, . . . , xn) = (1− x1)(1− x2) · · · (1− xn).

Since B(n, k;xj1 , xj2 , . . . , xjn) = B(n, k;x1, x2, . . . , xn) for all n! permutations

(j1, j2, . . . , jn) of (1, 2, . . . , n), then

P{nF ∗n(x) = k} = B(n, k;F1(x), F2(x), . . . , Fn(x)). (2.23)

If F1 = F2 = · · · = Fn = F , then (2.23) becomes

P{nF ∗n(x) = k} = A(n, k;F (x)). (2.24)
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The following recurrence relation can be useful.

Lemma 2.2 For 0 ≤ xl ≤ 1, l = 1, 2, . . . , n, the following recurrence relation is

valid for k = 1, 2, . . . , n− 1 and n ≥ 2

B(n, k;x1, x2, . . . , xn) = B(n− 1, k;x1, x2, . . . , xn−1)x̄n

+B(n− 1, k − 1;x1, x2, . . . , xn−1)xn, (2.25)

where x̄n = 1− xn.

Proof. We can prove that assertion expressing the symmetric function

B(n, k;x1, x2, . . . , xn) by permanent.

B(n, k;x1, x2, . . . , xn)

=
1

k!(n− k)!

∑
℘1,2,...,n

xj1xj2 · · ·xjk x̄jk+1
· · · x̄jn

=
1

k!(n− k)!
PerA1 (2.26)

where x̄i = 1− xi, i = 1, 2, . . . , n and

PerA1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 x2 · · · xn

· · · · · · · · · · · ·
x1 x2 · · · xn

x̄1 x̄2 · · · x̄n

· · · · · · · · · · · ·
x̄1 x̄2 · · · x̄n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
k times

}
n− k times

It is easy to see that expanding the permanent along the last column we have
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 x2 · · · xn

· · · · · · · · · · · ·
x1 x2 · · · xn

x̄1 x̄2 · · · x̄n

· · · · · · · · · · · ·
x̄1 x̄2 · · · x̄n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
k times

}
n− k times

= kxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 x2 · · · xn−1

· · · · · · · · · · · ·
x1 x2 · · · xn−1

x̄1 x̄2 · · · x̄n−1

· · · · · · · · · · · ·
x̄1 x̄2 x̄n−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
k − 1 times

}
n − k times

(2.27)

+(n− k)x̄n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 x2 · · · xn−1

· · · · · · · · · · · ·
x1 x2 · · · xn−1

x̄1 x̄2 · · · x̄n−1

· · · · · · · · · · · ·
x̄1 x̄2 · · · x̄n−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

}
k times

}
n− k − 1 times

(2.28)

From (2.26) and (2.28), we obtain the assertion of the lemma.

Using (2.25) the cdf of rth order statistic Xr:n given in (2.7) can be shown in

terms of symmetric functions as

Fr:n(x) =
n∑
i=r

B(n, i, F1(x), F2(x), . . . , Fn(x)). (2.29)
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and the relevant recurrence relationship may be expressed by using Lemma 2.2

as

Fr:n(x) = F̄n(x)Fr:n−1(x) + Fn(x)Fr−1:n−1(x), 1 ≤ r < n. (2.30)

where Fr:n−1 denote the cdf of the rth order statistic from INID random variables

X1, X2, . . . , Xn−1 with corresponding cdf’s F1, F2, . . . , Fn−1.

The relation given in (2.30) may be obtained using Lemma 2.2

Fr:n(x) =
n∑
i=r

B(n, i, F1(x), F2(x), . . . , Fn(x))

=
n−1∑
i=r

B(n, i, F1(x), F2(x), . . . , Fn(x)) + B(n, n, F1(x), F2(x), . . . , Fn(x))

= F̄n(x)
n−1∑
i=r

B(n− 1, i, F1(x), F2(x), . . . , Fn−1(x))

+ Fn(x)
n−1∑
i=r

B(n− 1, i− 1, F1(x), F2(x), . . . , Fn−1(x))

+ Fn(x)B(n− 1, n− 1, F1(x), F2(x), . . . , Fn−1(x))

= F̄n(x)Fr:n−1(x) + Fn(x)
n−2∑
j=r−1

B(n− 1, j, F1(x), F2(x), . . . , Fn−1(x))

+ Fn(x)B(n− 1, n− 1, F1(x), F2(x), . . . , Fn−1(x)),

For r = n we have Fn:n(x) = Fn−1:n−1(x)Fn(x). Note that (2.30) and related

recurrence equalities can be found in ([29], p. 105).
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Since,

P{nF ∗n(x) = i} = B(n, i, F1(x), F2(x), . . . , Fn(x)), i = 0, 1, 2, . . . , n,

then
n∑
i=0

B(n, i, F1(x), F2(x), . . . , Fn(x)) = 1. (2.31)

We also have,

P{Xr:n ≤ x} =
n∑
i=r

P{nF ∗n(x) = i}.

Now, for 0 ≤ xt < yt ≤ 1, t = 1, 2, . . . , n denote by

C(n, i, j;x1, x2, . . . , xn; y1, y2, . . . , yn)

=
1

i!(j − i)!(n− j)!
∑

℘1,2,...,n

i∏
l=1

xtl

×
j∏

l=i+1

(ytl − xtl)
n∏

l=j+1

(1− ytl), (2.32)

where the summation ℘1,2,...,n extends over all n! permutations (t1, t2, . . . , tn) of

(1, 2, . . . , n).

Lemma 2.3 Let 0 ≤ xt < yt ≤ 1, t = 1, 2, . . . , n. The following recurrence

relation is valid for 1 ≤ i < j < n and n ≥ 3

C(n, i, j;x1, x2, . . . , xn; y1, y2, . . . , yn)

= xnC(n− 1, i− 1, j − 1;x1, x2, . . . , xn−1; y1, y2, . . . , yn−1)

+(yn − xn)C(n− 1, i, j − 1;x1, x2, . . . , xn−1; y1, y2, . . . , yn−1)

+(1− yn)C(n− 1, i, j;x1, x2, . . . , xn−1; y1, y2, . . . , yn−1). (2.33)
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Proof. The proof can be made by mathematical induction or can be obtained

from permanent expressions. Xr:n and Xs:n

C(n, i, j;x1, x2, . . . , xn; y1, y2, . . . , yn) =
1

i!(j − i)!(n− j)!
PerA2 (2.34)

where

PerA2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 · · · xn
...

...

x1 · · · xn

y1 − x1 · · · yn − xn
...

...

y1 − x1 · · · yn − xn

1− y1 · · · 1− yn
...

...

1− y1 · · · 1− yn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 i times

 j-i times

 n-j times

It is easy to expand PerA2 as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 · · · xn
...

...

x1 · · · xn

y1 − x1 · · · yn − xn
...

...

y1 − x1 · · · yn − xn

1− y1 · · · 1− yn
...

...

1− y1 · · · 1− yn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 i times

 j-i times

 n-j times



CHAPTER 2. ORDER STATISTICS FROM INID RANDOM VARIABLES 28

= ixn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 · · · xn−1

...
...

x1 · · · xn−1

y1 − x1 · · · yn−1 − xn−1

...
...

y1 − x1 · · · yn−1 − xn−1

1− y1 · · · 1− yn−1

...
...

1− y1 · · · 1− yn−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 i-1 times

 j-i times

 n-j times

+(j − i)(yn − xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 · · · xn−1

...
...

x1 · · · xn−1

y1 − x1 · · · yn−1 − xn−1

...
...

y1 − x1 · · · yn−1 − xn−1

1− y1 · · · 1− yn−1

...
...

1− y1 · · · 1− yn−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 i times

 j-i-1 times

 n-j times
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+(n− j)(1− yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



x1 · · · xn−1

...
...

x1 · · · xn−1

y1 − x1 · · · yn−1 − xn−1

...
...

y1 − x1 · · · yn−1 − xn−1

1− y1 · · · 1− yn−1

...
...

1− y1 · · · 1− yn−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 i times

 j-i times

 n-j-1 times

Now we can be express the joint distribution function of order statistics Xr:n

and Xs:n in terms of the symmetric function C(n, i, j;x1, x2, . . . , xn; y1, y2, . . . , yn)

as follows:

Fr,s(x, y) =
n∑
j=s

j∑
i=r

C(n, i, j;F1(x), F2(x), . . . , Fn(x);

F1(y), F2(y), . . . , Fn(y)). (2.35)

Using Lemma 2.3 one can write the following recurrence relation for

1 ≤ r < s ≤ n, n ≥ 3

Fr,s:n(x, y) = Fn(x)Fr−1,s−1:n−1(x, y) + [Fn(y)− Fn(x)]×

×Fr,s−1:n−1(x, y) + (1− Fn(y))Fr,s:n−1(x, y), (2.36)

where Fr,s−1:n−1(x, y) is the joint cdf rth and (s− 1)st order statistics from INID

random variables X1, X2, . . . , Xn−1 with corresponding cdf’s F1, F2, . . . , Fn−1. (see

also [28], P.106).

Indeed, one can write
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Fr,s(x, y)

=
n∑
i=r

n−i∑
j=max(0,s−i)

C(n, i, j;F1(x), F2(x), . . . , Fn(x);F1(y), F2(y), . . . , Fn(y))

=
n∑
i=r

n−i∑
j=max(0,s−i)

[Fn(x)C(n− 1, i− 1, j − 1;F1(x), F2(x), . . . , Fn−1(x);F1(y);

F1(y), F2(y), . . . , Fn−1(y)) + (Fn(y)− Fn(x))C(n− 1, i, j − 1;

F1(x), F2(x), . . . , Fn−1(x);F1(y), F2(y), . . . , Fn−1(y))

+(1− Fn(y))B(n− 1, i, j;F1(x), F2(x), . . . , Fn−1(x);F1(y), F2(y), . . . , Fn−1(y))]

=
n−1∑
i=r

n−i∑
j=max(0,s−i)

Fn(x)C(n− 1, i− 1, j − 1;F1(x), F2(x), . . . , Fn−1(x);

F1(y), F2(y), . . . , Fn−1(y))

+
n−1∑
i=r

n−i∑
j=max(0,s−i)

(Fn(y)− Fn(x))C(n− 1, i, j − 1;F1(x), F2(x), . . . , Fn−1(x);

F1(y), F2(y), . . . , Fn−1(y))

+
n−1∑
i=r

n−i∑
j=max(0,s−i)

(1− Fn(y))C(n− 1, i, j;F1(x), F2(x), . . . , Fn−1(x);

F1(y), F2(y), . . . , Fn−1(y))

= Fn(x)Fr−1,s−1:n−1(x, y) + [Fn(y)− Fn(x)]Fr,s−1:n−1(x, y)

+(1− Fn(y))Fr,s:n−1(x, y).



Chapter 3

Exceedance Models

The exceedance statistics denote the total number of observations over a ran-

dom threshold. Random thresholds were first used in the work of [38] and [31].

Exceedance models with random thresholds are generally constructed consider-

ing two independent random samples. After determining the random thresholds

based on the first sample, one can investigate the behaviour of the observations

in the second sample regarding the behaviour of these random thresholds. Ran-

dom threshold values make the problem of finding the distribution of exceedance

statistics complicated and difficult. However, if the threshold value is fixed, then

the calculation is easier and closely related to the binomial model. A particular

type of such a problem for the threshold being an order statistic from the initial

sample is related to the concept of tolerance limits ([71]) and invariant confidence

intervals containing the future observations ([16]). In the 1950’s, the theory of

tolerance limits were widely studied (see [38], [31], [74], [82]).

Exceedance statistics are also used for constructing a test for whether two

monitored random samples are from the same population. Non-parametric tests

of identity of distributions with respect to the exceedances have been demon-

strated by [49], [50], [56], [44] and [47]. Another aspect of the theory of ex-

ceedances is being closely related to the inverse hypergeometric distribution (see

[77], [38] and [74]).

31
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3.1 Exceedances based on order statistics

3.1.1 Invariant confidence intervals

Invariant confidence intervals containing a future observation which is introduced

by [16] is an important concept to mention in support of the use of order statistics

as a random thresholds.

Definition 3.1. Let X1, X2, . . . , Xn be a random sample of size n with

distribution function F ∈ F, where F is some class of distribution func-

tions. Assume that g1(.) and g2(.) are two Borel functions satisfying

g1(x1, x2, . . . , xn) ≤ g2(x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ Rn. The random in-

terval (g1(X1, X2, . . . , Xn), g2(X1, X2, . . . , Xn)) is called an invariant confidence

interval containing the future observations for class F, if ∃α ∈ (0, 1) such that

P{Xn+1 ∈ (g1(X1, X2, . . . , Xn), g2(X1, X2, . . . , Xn))} = α, ∀F ∈ F.

The quantity α is the same for all F ∈ F and is called a confidence level of an

invariant interval. Let Fc be the class of all continuous distribution functions and

F = Fc.

It is known from [16] that under some certain conditions any invariant con-

fidence interval for the class Fc can be constructed only by the order statistics.

Therefore g1(X1, X2, . . . , Xn) = Xr:n, g2(X1, X2, . . . , Xn) = Xs:n, 1 ≤ r < s ≤ n,

whereX1:n ≤ X2:n ≤ · · · ≤ Xn:n are order statistics obtained fromX1, X2, . . . , Xn,

which is defined with the probability 1, and

P{Xn+1 ∈ (Xr:n, Xs:n)} =
s− r
n+ 1

, (3.1)

i.e. (Xr:n, Xs:n) is a distribution free confidence interval containing a future ob-

servation in the class of all absolutely continuous distribution functions Fc.
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3.1.2 Exceedances from IID random variables

Suppose that X = (X1, X2, . . . , Xn) is a random sample of size n from a popu-

lation with an unknown absolutely continuous cumulative distribution function

FX(.). Now suppose further observations Xn+1, Xn+2, . . . , Xn+N are drawn from

the same population, independent from X. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be

the order statistics related to the first sample, where 1 ≤ r ≤ n. It is easy to

obtain the probability of a future observation being greater than the rth largest

observation in the initial sample

P (Xn+i ∈ (Xr:n,∞)) =
n− r + 1

n+ 1
, i = 1, . . . , N (3.2)

Denote the number of future observations exceeding the rth largest value in

the first sample by Sr =
N∑
i=1

I{(Xr:n,∞)}(Xn+i), where

I{(Xr:n,∞)}(Xn+i) =

{
1, Xn+i ∈ (Xr:n,∞)

0, otherwise

The distribution of the number of exceedances in N future observations over

the rth largest value of the first sample is

P (Sr = x) =
r
(
n
r

)(
N
x

)
(N + n)

(
N+n−1
m+x−1

) , (3.3)

where 1 ≤ r ≤ n, 0 ≤ x ≤ N .

It can be obtained as shown below
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P{Sr = x}

=

(
N

x

) ∞∫
−∞

P{Xn+1 ≤ t, . . . , Xn+x ≤ t,Xn+x+1 > t, . . . , XN > t}fr:n(t)dt

=

(
N

x

)(
n

r

)
r

∞∫
−∞

F x+r−1
X (t)(1− FX(t))N−x+n−rdFX(t)

=

(
N

x

)(
n

r

)
rBeta(x+ r,N − x+ n− r + 1)

where Beta(a, b) = (a−1)!(b−1)!
(a+b−1)!

.

Since the probability given in (3.3) depends on only the parameters n, m, and

N , it is distribution-free and it is clear that

N∑
i=0

P (Sr = x) = 1.

Further aspects of given distribution can be found in [38].

Assume that X = (X1, X2, . . . , Xn) is a random sample of size n from a

population with cumulative distribution function FX(·). Consider another sample

Y = Y1, Y2, . . . , YN of size N with cumulative distribution function FY (·) and

independent from X. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics obtained

from the first sample. It is clear that under the hypothesis H0 : FX(·) = FY (·),
(3.1) can be given

P{Yk ∈ (Xr:n, Xs:n)} =
s− r
n+ 1

,

where 1 ≤ r < s ≤ n, k = 1, 2, . . . , N.

Denote the number of future observations Y1, Y2, . . . , YN falling into interval

(Xr:n, Xs:n) by Srs =
N∑
i=1

I{(Xr:n,Xs:n)}(Yk), where

I{(Xr:n,Xs:n)}(Yk) =

{
1, Yk ∈ (Xr:n, Xs:n)

0, otherwise
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The distribution of Srs is

P{Srs = x} =
(s− r)

(
N
x

)(
n
s−r

)
(s− r + x)

(
n+N
x+s−r

) , x = 0, 1, 2, . . . , N (3.4)

(see theorem 2 in [16]) and also the joint pdf of future observations falling into

(Xr:n, Xs:n)

P{Xn+1, Xn+2, . . . , Xn+N ∈ (Xr:n, Xs:n)} =
n!(N + s− r − 1)!

(s− r − 1)!(N + n)!
(3.5)

(see e.g., [16], [44], [56]).

For s = n and r = 1, (3.5) can be easily written as

P{Xn+1, Xn+2, . . . , Xn+N ∈ (X1:n, Xn:n)} =
n(n− 1)

(n+N)!(N + n− 1)!
.

When H0 : FX(·) = FY (·) = F (·), the asymptotic distribution of Srs
N

is

lim
N→∞

sup
0≤x≤1

∣∣∣∣P {SrsN ≤ x

}
− P{Zrs ≤ x}

∣∣∣∣ = 0 (3.6)

where Zrs = FY (Xs:n) − FY (Xr:n) (see [3]). The probability density function of

Zrs given in (page 33, [28]) is

f(zrs) =

{
1

Beta(s−r,n−s+r+1)
zs−r−1
rs (1− zrs)n−s+r if 0 ≤ zrs ≤ 1,

0 otherwise
,

that is, Zrs has a Beta(s − r, n − s + r + 1) distribution. (3.6) can be extended

for any random interval (g1(X1, . . . , Xn), g2(X1, . . . , Xn)) as

lim
N→∞

sup
0≤x≤1

∣∣∣∣P {SrsN ≤ x

}
− P{FY (g2(X1, . . . , Xn))− FY (g1(X1, . . . , Xn)) ≤ x}

∣∣∣∣
= 0,

where g1(X1, . . . , Xn) ≤ g2(X1, . . . , Xn) ∀(x1, x2, . . . , xn) ∈ R (see [3] and [11]).
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When FX(·) is not necessarily equal to FY (·), the statement

lim
N→∞

sup
0≤x≤1

∣∣∣∣P {SrsN ≤ x

}
− P{FY (Xs:n)− FY (Xr:n)} = 0

∣∣∣∣ = 0 (3.7)

is true for any r and s satisfying 1 ≤ r < s ≤ n.

3.2 Exceedance statistics from dependent ran-

dom variables

In this section we present the distributional properties of exceedance statistics of

finite Farlie-Gumbel-Morgenstern (FGM) sequences regarding a random thresh-

old which is studied by [7]. FGM class of multivariate distributions was discussed

by [57], [37] and [33] and improved specifically in the works of [45] and [46] who

introduced an additional parameter to achieve stronger correlation structure.

3.2.1 FGM and s-FGM random variables

First we give the general definitions of random FGM and s-FGM sequences.

Definition 3.2. Let {Xi}i≥1 be a random sequence of random variables with

the cumulative distribution functions F1(x), F2(x), . . . , Fn(x), and α(·, ·) be a

symmetric function (i.e. α(m, k) = α(k,m)). If the joint distribution of

Xi1 , Xi2 , . . . , Xin is

Hi1,i2,...,in(x1, . . . , xn) =
n∏
k=1

Fik(xk)

{
1 +

∑
1≤m<k≤n

α(im, ik)F im(xm)F ik(xk)

}
,

(3.8)

where F (x) = 1 − F (x), then the sequence {Xi}i≥1 is called FGM random se-

quence.

The following definition is important to understand the distributional be-

haviours of exceedances from dependent variates.
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Definition 3.3. Let (X1, X2, . . . , Xn) be a n variate FGM random vector with

the marginal cdfs F1(x), F2(x), . . . , Fn(x), respectively and αn be a real number.

If these random variables have the following joint distribution function

H1,2,...,n(x1, . . . , xn) =
n∏
i=1

Fi(xi)

{
1 + αn

∑
1≤m<k≤n

Fm(xm)F k(xk)

}
, (3.9)

where Fm(x) = 1− Fm(xm) and for a given n the real number αn is admissible,

that is

1 + αn
∑

1≤m<k≤n

εmεk ≥ 0

holds for all εm = ±1 then the random variables (X1, X2, . . . , Xn) are called

simple FGM random variables.

For further discussions on s-FGM distribution, we refer the reader to [7].

3.2.2 Exceedances in multivariate s-FGM distributions

Suppose that X is a random variable with the continuous distribution function

F (·) and Y1, Y2, . . . , YN are s-FGM random variables with identical marginal dis-

tribution and pdf G(xi) and pdf g(xi) (−∞ ≤ xi ≤ ∞, i = 1, . . . , N), respectively.

The joint pdf of (Y 1, Y 2, . . . , YN) is given as follows

h(x1, . . . , xN) =
N∏
i=1

g(xi)

{
1 + αN

∑
1≤m<k≤N

(1− 2G(xm))(1− 2G(xk))

}

with αN satisfying

− 1(
N
2

) ≤ α ≤ 1

[N
2

]
, (3.10)

where [a] denotes the integer part of the real number a.

Denote the number of observations of Y1, Y2, . . . , YN ’s falling into interval
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(−∞, X) by S =
N∑
k=1

I{(−∞,X)}(Yk), where

I{(−∞,X)}(Yk) =

{
1, Yk ∈ (−∞, X)

0, otherwise

The exact distribution of S is obtained by [7] as given in the following theorem

Theorem 3.1 For any integer N ≥ 1 and real number α satisfying (3.10)

P{S = k} =
(
N
k

) [
E(Gk(X)G

N−k
(X)) + αN

(
k(k−1)

2
E(Gk(X)G

N−k+2
(X))

−k(N − k)E(Gk+1(X)G
N−k+1

(X))

+ (N−k)(N−k−1)
2

E(Gk+2(X)G
N−k

(X))
)]

(3.11)

where k = 0, 1, . . . , N and G(x) = 1−G(x). (see theorem 4.1 in [7]).

Proof.

P{S = k}

=
(
N
k

)
P{Yi1 ≤ X, . . . , Yik ≤ X, Yik+1

> X, . . . , YiN > X}

=
(
N
k

) ∞∫
−∞

P{Yi1 ≤ x, . . . , Yik ≤ x, Yik+1
> x, . . . , YiN > x}f(x)dx

=

∞∫
−∞

x∫
−∞

· · ·
x∫

−∞

∞∫
x

· · ·
∞∫
x

h1,...,k...,N(x1, . . . , xN)dx1 . . . dxNdF (x)

=
(
N
k

) ∞∫
−∞

x∫
−∞

· · ·
x∫

−∞

∞∫
x

· · ·
∞∫
x

[
N∏
i=1

g(xi)

{
1 + αN

∑
1≤m<k≤N

(1− 2G(xm))

(1− 2G(xk))}]× dx1 . . . dxNdF (x)

,
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By changing variable G(xi) = zi, i = 1, . . . , N we obtain the following inte-

gration

=
(
N
k

) ∞∫
−∞

G(x)∫
0

· · ·
G(x)∫
0

1∫
G(x)

· · ·
1∫

G(x)

[
1 + αN

∑
1≤m<k≤N

(1− 2zm)(1− 2zk)

]
du1 . . . dzNdF (x)

=
(
N
k

) ∞∫
−∞

[
Gk(x)G

N−k
(x) + αN

(
k(k − 1)

2
Gk(x)G

N−k+2
(x)

−k(N − k)Gk+1(x)G
N−k+1

(x)

+ (N−k)(N−k−1)
2

Gk+2(x)G
N−k

(x)
]
dF (x)

Corollary 3.2 It is easy to obtain that under the hypothesis F (·) = G(·)

P{S = k}

=
(
N
k

) [
B(k + 1, N − k + 1) + αN

(
k(k−1)

2
B(k + 1, N − k + 3)

−k(N − k)B(k + 2, N − k + 2)

+ (m−k)(m−k−1)
2

B(k + 3, N − k + 1) )]

k = 0, 1, . . . , N and − 1

(N2 )
≤ α ≤ 1

[N2 ]
, where B(a, b) is a beta function.

Assume that X1, X2, . . . , Xn is the finite s-FGM sequence of random variables

and Y1, Y2, . . . , YN , . . . is a sequence of IID random variables with distribution

function F and G, respectively. Let X1:n ≤ X1:n ≤ · · · ≤ X1:n be the order

statistics corresponding to X1, X2, . . . , Xn.

Denote the number of observations of Y1, Y2, . . . , YN ’s falling into interval
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(−∞, Xr:n) by T =
N∑
i=1

I{(−∞,Xr:n)}(Yk), where

I{(−∞,Xr:n)}(Yk) =

{
1, Yk ∈ (−∞, Xr:n)

0, otherwise

The exact distribution of S is obtained by [7] as given in the following theorem

Theorem 3.3 It is true that under the hypothesis F (·) = G(·) for any integer

N ≥ 1 and 1 ≤ r ≤ n

P{T = k}

=
(
N
k

) n∑
i=r

(−1)i−r
(
i−1
r−1

)(
n
i

)
[iB(i+ k,N − k + 1)

+αn

(
i2(i−1)

2
B(i+ k,N − k + 3)− i(i− 1)B(i+ k + 1, N − k + 2)

)]
(3.12)

k = 0, 1, . . . , N and − 1

(N2 )
≤ α ≤ 1

[N2 ]
, where B(a, b) is a beta function.

Proof.

P{T = k}

=
(
N
k

)
P{Yi1 ≤ Xr:n, . . . , Yik ≤ Xr:n, Yik+1

> Xr:n, . . . , YiN > Xr:n}

=
(
N
k

) ∞∫
−∞

P{Yi1 ≤ x, . . . , Yik ≤ x, Yik+1
> x, . . . , YiN > x}fr:n(x)dx

(3.13)

It is important to note that for symmetrically distributed random variables

the distribution function of the rth largest order statistic can be given (page 99

in [29])

P (Xr:n ≤ x) =
n∑
i=r

(−1)i−r
(
i− 1

r − 1

)(
n

i

)
P (Xi:i ≤ x) (3.14)
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Since for any s-variate marginals of X1, X2, . . . , Xn the αi is equal to αn,

P (Xi:i ≤ x) = F i(x)

{
1 + αn

i(i− 1)

2
(1− F (x))2

}
.

Substituting (3.14) in (3.13), we obtain the following equation

P{T = k}

=
(
N
k

) ∞∫
−∞

Gk(x)(1−G(x))N−k
n∑
i=r

(−1)i−r
(
i− 1

r − 1

)(
n

i

)

×
{
iF i−1(x)f(x) + αn

i2(i−1)
2

F i−1(x)(1− F (x))2f(x)

−αni(i− 1)F i(x)(1− F (x))f(x)} dx

Since F (·) = G(·) and using the transformation F (x) = z, one can easily get

P{T = k}

=
(
N
k

) n∑
i=r

(−1)i−r
(
i−1
r−1

)(
n
i

)i
1∫

0

zi+k−1(1− z)N−kdz

+αn
i2(i−1)

2

1∫
0

zi+k−1(1− z)N−k+2dz − αni(i− 1)

1∫
0

zi+k(1− z)N−k+1dz

 .

Corollary 3.4 For r = n, (3.12) becomes

P{T = k} =
(
N
k

)
[nB(n+ k,N − k + 1)

+αn

(
n2(n−1)

2
B(n+ k,N − k + 3)− n(n− 1)B(n+ k + 1, N − k + 2)

)]
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3.3 Various examples of exceedance models

In this section we aim to create an understanding of the theory and applications of

exceedances for the reader by discussing the findings and developments presented

in several early and recent research papers.

3.3.1 Statistical prediction with respect to the tolerance

limits

In the early 1940’s, exceedance statistics are used by [81] in statistical quality

control to make statistical predictions about measurements on a specific quality

characteristic in the future production. [81] first supposed that a random sample

X = (X1, X2, . . . , Xn) of n observations of a certain characteristic are continuous

random variables with common pdf f(x).

Considering the order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n corresponding

to the given sample, the problem of tolerance limits for one or two quality

characteristics based on the initial sample is discussed. After a future sample

Y = (Y1, Y2, . . . , Ym) of size m, the problems of prediction related to the second

sample are considered in [81].

These problems can be briefly addressed as

1. What is the probability that at least m0 of the values of X in the second

sample will exceed the smallest observation in the initial sample?

2. What is the probability that at least m0 of the values of X in the second

sample will lie between the smallest and the largest observation in the initial

sample?

Now it is interesting to see the findings about the given problems in the following

sections.
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General probability formula

Define 100Sα% tolerance limits Tlower(x1, x2, . . . , xn) and Tupper(x1, x2, . . . , xn) for

probability level α as two functions of the X ′s in the first sample. The probability

that at least 100Sα% observations of the second indefinitely large sample will fall

between Tlower and Tupper is α which is

P

{∫ Tupper

Tlower

dF (x) ≥ Sα

}
= α. (3.15)

When the size of the future sample is finite, the same notation can be used.

However, this time we are interested in the largest integer mα such that the

probability that at least 100Sα% (S = mα
m

) of the Y ′s will lie between Tlower and

Tupper is at least α.

Now considering the tolerance limits are the order statistics, the results might

be simple and independent of the pdf f(x). Remember X1:n ≤ X2:n ≤ · · · ≤ Xn:n

are the order statistics obtained from the initial sample. Assume that r1, r2, . . . , rk

are the integers such that 1 ≤ r1 < r2 < · · · < rk ≤ n. Let xr1 , xr2 , . . . , xrk

be real numbers. By integrating the product of the conditional probability

that m1,m2, . . . ,mk+1 of the values from second sample will fall in the inter-

vals (−∞, xr1), (xr1 , xr2), . . . , (xrk ,∞) respectively given that the joint pdf of

Xr1:nXr2:n, . . . , Xrk:n and the joint pdf of Xr1:nXr2:n, . . . , Xrk:n (given in (1.1)))

with respect to the x′s we obtain

P{m0,m1, . . . ,mk+1} =

m!n!(m1 + r1 − 1)!(m2 + r2 − r1 − 1)! · · · (mk + rk − rk−1 − 1)!(mk+1 + n− rk)!
(r1 − 1)!(r2 − r1 − 1)! · · · (rk − rk−1 − 1)!(n− rk)!(m+ n)!m1!m2! · · ·mk+1!

(3.16)
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One tolerance limit

Considering only one tolerance limit for instance the smallest value, Tlower = X1:n,

the probability that m0 of the m future observations will exceed the smallest value

of the first sample can be simply obtained using (3.16) for k = 1, r1 = 1, m2 = m0

and m1 = m−m0

g1(m0) =
nm!(m0 + n− 1)

m0!(m+ n)!
(3.17)

Analogously, the probability that m0 of the m future observations will exceed

the largest value of the first sample can be simply obtained using (3.16) for k = 1,

r1 = n, m1 = m0 and m2 = m−m0.

The recurrence relation

g1(m0 − 1) =
m0

m0! + n+ 1
g1(m0) (3.18)

makes it easy to calculate the values of g1(m0).

Two tolerance limits

Now considering two tolerance limits such that the smallest (X1:n) and the largest

(Xn:n) observations of the first sample, using (3.16) for k = 2, r1 = 1, r2 = n,

m2 = m0, m3 = m−m0 −m1 we obtain the joint distribution of m0 and m1

g(m0,m1) = n(n− 1)
m!(m0 + n− 2)

m0!(m+ n)!
(3.19)

Summing up (3.19) with reference to m1 from 0 to m−m0, the probability

that m0 of the m future observations will lie between X1:n and Xn:n is

g2(m0) = n(n− 1)(m−m0 + 1)
m!(m0 + n− 2)

m0!(m+ n)!
(3.20)
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and the recurrence relation is

g2(m0 − 1) =
m0(m−m0 + 2)

m0!(m−m0 + 1)(m0 + n− 2)
g2(m0).

The remainder of the paper [81] will focus on further discussions, such as

tolerance limits for two quality characteristics and the problems

1. For given values of n, m and level of significance (α), what is the largest

integer mα such that the probability is at least α that m0 ≥ mα?

2. What is the limiting value of Sα = mα
m

as m increases indefinitely (i.e. the

second sample is the population)?

3.3.2 Some distribution free properties of statistics based

on record values

Record values and exceedance statistics are of great importance in several re-

search areas and real-life problems such as weather, economic and sports data.

The statistical study of record values started with Chandler (1952). However

it has now spread in different areas. As we mentioned before many theoretical

studies based on exceedance statistics are also contributed to the studies of record

statistics. For further details, we refer [1], [34], [61] and [64] to the reader. In this

section we examine a couple of leading papers in this area which are [79] and [3].

The exceedance statistics in record models considered in [3] can be summa-

rized as given in the following part.

Let X1, X2, . . . , Xn be a sequence of IID random variables with continu-

ous cumulative distribution function (cdf) F (·). Suppose that the sequence

U(1), U(2), . . . , U(n) is a sequence of upper record times defined as;

U(k) =

{
1, k = 1

min{j : j > U(n− 1), Xj > XU(n−1)}, k = n
(3.21)
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where k > 1 and XU(n) denotes the nth upper record value. It’s known that the

distribution function of XU(r) (see [1]), for r = 1, 2, . . . , n

Fr(x) = P{XU(r)≤x} =
1

(r − 1)!

x∫
−∞

(
ln

1

1− F (u)

)r−1

f(u)du, −∞ < x <∞.

(3.22)

Hence the pdf of XU(r) may be easily seen as

fr(x) =
1

(r − 1)!

(
ln

1

1− F (x)

)r−1

, −∞ < x <∞. (3.23)

Suppose that Y1, Y2, . . . , Ym is another sequence of IID random variables

with continuous cumulative distribution function(cdf) F (·). Consider the record

values XU(1), XU(2), . . . , XU(n) and Y1, Y2, . . . , Ym, for any i = 1, 2, . . . ,m and

r = 1, 2, . . . it is true that

P{Yi < XU(r)} = 1− 1

2r
(3.24)

which can be proved as

P{Yi ≤ XU(r)}

=

∞∫
−∞

P (Yi < x)fr(x)dx

=
1

(r − 1)!

∞∫
−∞

F (u)

(
ln

1

1− F (u)

)r−1

dF (u)

=
1

(r − 1)!

1∫
0

u

(
ln

1

1− u

)r−1

du

=
1

(r − 1)!

∞∫
0

(z)r−1 (1− e−z)e−zdz

= 1− 1

2r
.



CHAPTER 3. EXCEEDANCE MODELS 47

It’s clear that for any k, r = 1, 2, . . . and s > r

P{XU(r) < Yi < XU(s)} =
1

2r
− 1

2s
.

Define ξi(r) = 1 if Yi < XU(r) and ξi(r) = 0 otherwise for given r and denote

the number of observations Y1, Y2, . . . , Ym which are less then XU(r) by Sm(r) =
m∑
i=1

ξi(r). It’s important to note that since ξ1(r), ξ2(r), . . . , ξm(r) are generally

dependent, we cannot consider Bernoulli trials here. The exact distribution of

Sm(r) is derived in [3] as In particular, for any m = 1, 2, . . . and r = 1, 2, . . .

P{Sm(r) = k} =

(
m
k

)
(r − 1)!

∞∫
0

e−z(m−k+1)(1− e−z)kzr−1dz (3.25)

where k = 0, 1, . . . ,m. Proof of (3.25) is given

P{Sm(r) = k}

=
(
m
k

)
P{Y1 < XU(r), . . . , Yk < XU(r), Yk+1 > XU(r), . . . , Ym > XU(r)}

=
(
m
k

) ∞∫
−∞

P{Y1 < z, . . . , Yk < z, Yk+1 > z, . . . , Ym > z}fr(z)dz

=
(
m
k

) ∞∫
−∞

z∫
−∞

· · ·
z∫

−∞︸ ︷︷ ︸
k

∞∫
z

· · ·
∞∫
z︸ ︷︷ ︸

m-k

1

(r − 1)!

(
ln

1

1− F (z)

)r−1

×dF (x1) · · · dF (xm)dz
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=
(mk)

(r−1)!

∞∫
−∞

(1− F (z))m−kF k(z)

(
ln

1

1− F (z)

)r−1

dF (z)

=
(mk)

(r−1)!

1∫
0

(1− t)m−ktk
(

ln
1

1− t

)r−1

dt

=
(mk)

(r−1)!

∞∫
0

e−u(m−k+1)(1− e−u)kur−1du

It’s true that

lim
m→∞

sup
0≤x≤1

∣∣∣∣∣∣P
{
Sm(r)

m
≤ x

}
− 1

(r − 1)!

x∫
0

(
ln

1

1− u

)r−1

du

∣∣∣∣∣∣ = 0. (3.26)

3.3.3 Models of exceedances based on records

[79] considered more general models of exceedances based on records of two inde-

pendent sequences {Xn}n≥1 and {Yn}n≥1 with distribution functions FX(·) and

FY (·), respectively. Investigating the behaviour of a sequence of IID random

variables with respect to a random threshold, three exceedance statistics are in-

troduced and their exact and asymptotic distributions are derived in [79]. Now

we present the interesting theoretical results of this paper.

Let X be a random variable with a distribution function FX(·) and Y =

{Y1, Y2, . . . , Ym} be a sequence of IID random variables with a common distri-

bution FY (·), independent of X. Let Y1:m, . . . , Ym:m be the corresponding order

statistics. Denote the number of observations in the sample Y which is below the

random threshold X by

Sr = #{r ≤ m : Yr ≤ X},

for m ≥ 1. It can also be defined as follows

Sr = max{r ≤ m : Yr:m ≤ X}.
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For any integer m ≥ 1, the distribution, mean and variance of Sm are given

as

P{Sr = x} =

(
m

x

)
E(F x

Y (X)F
m−x
Y (X)), x = 0, 1, . . . ,m,

E(Sr) = mE(FY (X)) and V ar(Sr) = mE(FY (X)F Y (X)) + m2V ar(FY (X)),

where F Y (X)) = 1− FY (X).

Secondly, the number Tr of Y ’s below the random level X in a sample of the

size Tr +m with the last observation exceeding the level X is considered.

For any integer m ≥ 1

Tr = #{r ≥ 0 : Sm+r−1 = r, Ym+r > X}

In terms of order statistics

Tr = min{r ≥ 0 : Yr+1:m+r > X}

The distribution and the first two conditional moments of Tr can be given as

follows.

Assume that P (FY (X) < 1) > 0. For any integer m ≥ 1

P (Tr = x) =

(
m+ x− 1

m− 1

)
E(F x

Y (X)F
m

Y (X)), x = 0, 1, . . .

E(Tr) = mE( FY (X)

FY (X)
I(0,1)(FY (X))) and

V ar(Tr) = mE(FY (X)

F 2
Y (X)

I(0,1)(FY (X))) +m2V ar( FY (X)

FY (X)
I(0,1)(FY (X)))

The last exceedance investigated in [79] was the number of records K of the

sequence Y falling below the random threshold X. Let U(r) be the rth record

time for the sequence Y, r = 1, 2, . . . , i.e. U(1) = 1 and U(r) = min{i >
U(r − 1) : Yi > YU(r−1)}, r = 2, 3, . . . Then

K = min{r ≥ 0 : YU(r+1) > X}.
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Assume that P (FY (X) < 1) > 0. The exact distribution, mean and variance of

K is

P (K = x) =
1

x!
E(F Y (X)(− log(F Y (X)))rI(0,1)(FY (X))), x = 0, 1, . . .

E(K) = −E(log(F Y (X))I(0,1)FY (X)) and

V ar(K) = −E(log(F Y (X))I(0,1)FY (X)) + V ar(log(F Y (X))I(0,1)FY (X))



Chapter 4

Main Results

Assume that X1, X2, . . . , Xn are independent random variables with continuous

distribution functions F1(t), F2(t), . . . , Fn(t), respectively and Y1, Y2, . . . , Ym are

independent copies of random variable Y with continuous distribution function G.

Let X1:n ≤ · · · ≤ Xn:n be the order statistics constructed from X1, X2, . . . , Xn.

For 1 ≤ r < s ≤ n, let us define the random variable

Sm =
m∑
i=1

ξi,

where ξi is zero when Yi1 ∈ (Xr:n, Xs:n) and 1 otherwise. It is clear that Sm is

the number of observations falling into random threshold (Xr:n, Xs:n) and is the

exceedance statistic defined as

P{Sm = k}

=
∑

i1,i2,...,im

P{ξi1 = 1, . . . , ξik = 1, ξik+1
= 0, . . . , ξim = 0}

=
∑

i1,i2,...,im

P{Yi1 ∈ (Xr:n, Xs:n), . . . , Yik ∈ (Xr:n, Xs:n), (4.1)

Yik+1
/∈ (Xr:n, Xs:n), . . . , Yim /∈ (Xr:n, Xs:n)}

51
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The distribution theory of exceedance statistics have been studied in numerous

papers which appeared in recent years in statistical literature. See e.g. [3], [79],

[5], [6], [7], [13], [12] and [4].

In general, the derivation of the distribution of exceedance statistic Sm faces

technical difficulties connected with the permanent expressions for joint distribu-

tion function. Indeed, one has

P{Sm = k} =
∑

i1,i2,...,im

∫ ∫
P{Yi1 ∈ (x, y), . . . , Yik ∈ (x, y), (4.2)

Yik+1
/∈ (x, y), . . . , Yim /∈ (x, y)}fr,s(x, y)dxdy,

where the summation extends over all m! permutations (i1, i2, . . . , im) of

1, 2, . . . ,m.

Considering the formula (1.4) one can observe that even for the special distri-

butions F1, F2, . . . , Fn the calculation of P{Sm = k} meets with great difficulties

and the formula that can be obtained is not convincing for applications. How-

ever, the asymptotic distribution of Sm
m

can be found by using the functional

representations using empirical distribution functions.

In this study we focus on asymptotic distributions of exceedance statistics

based on INID random variables. We show that Sm
m

converges in distribution to

the random variable G(Xs:n)−G(Xr:n). Afterwards, we investigate some special

distributions for which the distribution of exceedance statistics can be expressed

in a good form. More precisely, we consider the Fα scheme introduced by [62]

(see also [62], [67], [68]) and in a special case when r = 1 and s = n derive the

distribution function of G(Xn:n)−G(X1:n).

Theorem 4.1 Assume that X1, X2, . . . , Xn, . . . and Y1, Y2, . . . , Yn, . . . are idepen-

dent. It is true that

lim
m→∞

sup
0≤x≤1

{∣∣∣∣P {Smm ≤ x

}
− P {Wrs ≤ x}

∣∣∣∣} = 0, (4.3)

where Wrs = G(Xs:n)−G(Xr:n).
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Proof. We have

Sm =
m∑
i=1

ξi =
m∑
i=1

I{(Xr:n Xs:n)}(Yi) (4.4)

where IA(x) = 1 if x ∈ A and IA(x) = 1 if x /∈ A. Using the representation (4.4)

and conditioning on Xr:n and Xs:n we can write

P
{
Sm
m
≤ x

}
= P

{
1

m

m∑
i=1

I{(Xr:n,Xs:n)}(Yi) ≤ x

}

=

∞∫
−∞

∞∫
−∞

P

{
1

m

m∑
i=1

I{(Xr:n,Xs:n)}(Yi) ≤ x|Xr:n = t,Xs:n = z

}
dFXr:n,Xs:n(t, z)

=

∞∫
−∞

∞∫
−∞

P

{
1

m

m∑
i=1

I{(t,z)}(Yi) ≤ x

}
dFXr:n,Xs:n(t, z) (4.5)

=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

I{(t,z)}(u)dG∗m(u) ≤ x

 dFXr:n,Xs:n(t, z)

where G∗m(u) = 1
m

m∑
i=1

I{Yi≤u}is the empirical distribution function of sample

Y1, Y2, . . . , Ym.

Denote the functional of G as

=(G) =

∞∫
−∞

I(t,z)(u)dG(u) (4.6)

and then

=(G∗m) =

∞∫
−∞

I(t,z)(u)dG∗m(u).

Since the functional =(.) is continuous according to uniform metric, and using
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Glivenko-Cantelli Theorem P {w : supu |G∗m(u)−G(u)| → 0} = 1 we have

=(G∗m)→ =(G), a.s. as m→∞,

i.e.

P
{
w : lim

m→∞
=(G∗m) = =(G)

}
= 1.

Then from (4.5) we have for m→∞

P
{
Sm
m
≤ x

}
=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

I(t,z)(u)dG∗m(u) ≤ x

 dFXr:n,Xs:n(t, z)

→
∞∫

−∞

∞∫
−∞

P


∞∫

−∞

I(t,z)(u)dG(u) ≤ x

 dFXr:n,Xs:n(t, z)

=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

I(t,z)(u)dG(u) ≤ x | Xr:n = t,Xs:n = z

 dFXr:n,Xs:n(t, z)

= P


∞∫

−∞

I(Xr:n,Xs:n)}(u)dG(u) ≤ x


= P


Xs:n∫
Xr:n

dG(u) ≤ x


= P {G(Xs:n)−G(Xr:n) ≤ x}

Thus the Theorem is proved.

Remark 4.2 The distribution function of the random variable Wrs in case of

independent and identically distributed random variables can be found in [28].

For INID random variables the distribution of Wrs in general has complicated

form. However, for some special cases this distribution can be easily calculated.
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In the following theorem the pdf of W1n = G(Xn:n)−G(X1:n) is derived. It is in-

teresting that this pdf can be expressed in terms of permutations with inversions,

incomplete beta function and hypergeometric functions. For permutation with

inversions see [51] and for incomplete beta function and hypergeometric functions

see [22]. Below we provide information about permutations with inversions which

can be found e.g. [55].

4.1 Asymptotic distribution of the exceedance

statistics from INID random variables

Permutation Inversions

Definition 4.1. Let a1, a2, . . . , an be a permutation of the set {1, 2, . . . , n}. If

i < j and ai > aj, the pair (ai, aj) is called an “inversion” of the permutation.

For example, the permutation 4312 has five inversions which are (4, 3), (4, 1),

(4, 2), (3, 1) and (3, 2). Each inversion is a pair of elements that is out of order,

and it’s clear that the only permutation with no inversions is the unordered

permutation. Let In(k) denote the number of permutations of length n with k

inversions. In the following an explicit formula for In(k) when k ≤ n (see [51]) is

given

In(k) =

(
n+ k − 1

k

)
+
∞∑
j=1

(−1)j
(
n+ k − uj − j − 1

k − uj − j

)

+
∞∑
j=1

(−1)j
(
n+ k − uj − 1

k − uj

)
.

The binomial coefficients are defined to be zero when the lower index is neg-

ative. The uj are the pentagonal numbers defined as

uj =
j(3j − 1)

2
j = 1, 2, . . . .



CHAPTER 4. MAIN RESULTS 56

In(k) = In(
(
n
2

)
− k)

k, number of inversions

n\k 0 1 2 3 4 5 6 7 8 9 10 11

1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 5 3 1

5 1 4 9 15 20 22 20 15 9 4 1

6 1 5 14 29 49 71 90 101 101 90 71 49

7 1 6 20 49 98 169 259 359 455 531 573 573

8 1 7 27 76 174 343 602 961 1415 1940 2493 3017

9 1 8 35 111 285 628 1230 2191 3606 5545 8031 11021

10 1 9 44 155 440 1068 2298 4489 8095 13640 21670 32683

Table 1. The exact value of In(k) for specific n and k values

Theorem 4.3 Let X1, X2, . . . , Xn, . . . be a sequence of independent random vari-

ables with the continuous distribution functions F1, F2, . . . , Fn, . . . , respectively

and Y1, Y2, . . . , Ym be independent copies of random variable Y with continuous

distribution function G where

Fi(t) = Gi(t), ∀t ∈ R, i = 1, 2, . . . , n. (4.7)

Consider Wn ≡ W1n = G(Xn:n)−G(X1:n). Then the pdf of W1n is
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fWn(w)

= In(0)

[
wn−2 2(n2)

((n2)+1)

(
1− w(n2)+1

)
+ nwn−1

(
1− w(n2)

)]

+
(n2)∑
i=1

In(i)

{
2(−1)−(i+1)

(
n
2

)
w

(
n+1

2

)
−1Beta

[
1− 1

w
, i+ 1,

(
n
2

)
− i+ 1

]

+n(−1)−(i+1)
((
n
2

)
− i
)
w

(
n+1

2

)
Beta

[
1− 1

w
, i+ 1,

(
n
2

)
− i
]

−n (1− w)iwn−2
2F1

[
1,
(
n
2

)
+ 1, i+ 1, 1− 1

w

]
+ i(−1)−(i+1)

((
n
2

)
− i
)
w

(
n+1

2

)
−1Beta

[
1− 1

w
, i,
(
n
2

)
− 1
]}

(4.8)

if 0 ≤ w ≤ 1 and fW (w) = 0, otherwise. In (4.8) 2F1 [a, b, c, z] is the Gaussian

hypergeometric function which is defined as

2F1 [a, b, c, z] = 1 + ab
1!c
z + a(a+1)b(b+1)

2!c(c+1)
z2 + · · ·

=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

and (x)n = Γ(x+n)
Γ(x)

= x(x + 1) . . . (x + n − 1) for n ≥ 0, and Beta[z, a, b] is the

incomplete beta function defined by

Beta[z, a, b] ≡
z∫
0

ua−1(1− u)b−1du.

Remark 4.4 In special cases when n = 2, n = 3,the pdf given in (4.8) is

fW2(w) = 2− 2w, 0 ≤ w ≤ 1

fW3(w) = 9w − 18w2 + 14w3 − 5w4, 0 ≤ w ≤ 1,
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respectively. It is clear that these densities are polynomial for any n.

Before proving Theorem 4.3 we need some auxiliary lemmas. Also the follow-

ing theorem due to [25] will be used in the proof.

Theorem 4.5 ([25]. see [27] Section 6.4, Theorem B) The number In(k) of

permutations of n with k inversions satisfies the following recurrence relations:

In(k) =
∑

In−1(j)
max(0,k−n+1)≤j≤k

for each n ≥ 1. In(0) = 1 for each n ≥ 1 and I0(k) = 1 for each k ≥ 1.

Lemma 4.6 For any x, y ∈ R and positive integer n the following identity is

valid
n∏
i=1

(yi − xi) = (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi.

Proof. We use mathematical induction. For n = 1 we have

1∏
i=1

(yi − xi) = (y − x) = (y − x)
(1
2)∑
i=0

I1(i)y(1
2)−ixi

= (y − x) [I1(0)y0x0] = (y − x),

and for n = 2 we have

2∏
i=1

(yi − xi) = (y − x)(y2 − x2) = (y − x)2
(2
2)∑
i=0

I2(i)y(2
2)−ixi

= (y − x)2 [I2(0)y1x0 + I2(1)y0x1]

= (y − x)2(x+ y) = (y − x)(y2 − x2).

Therefore the assertion of the lemma is clearly true for n = 1 and n = 2.
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Now, using mathematical induction we will show that if for each n ≥ 1 it is

true that

n∏
i=1

(yi − xi) = (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi,

then
n+1∏
i=1

(yi − xi) = (y − x)n+1

(n+1
2 )∑
i=0

In+1(i)y(n+1
2 )−ixi.

Indeed, one has

n+1∏
i=1

(yi − xi) = (yn+1 − xn+1)
n∏
i=1

(yi − xi)

= (y − x)(yn + yn−1x+ · · ·+ yxn−1 + xn)
n∏
i=1

(yi − xi)

= (y − x)n+1(yn + yn−1x+ · · ·+ yxn−1 + xn)
(n2)∑
i=0

In(i)y(n2)−ixi

= (y − x)n+1
n∑
k=0

(n2)∑
i=0

In(i)y(n2)−i+n−kxi+k

= (y − x)n+1
n∑
k=0

[
In(0)y(n2)+n−kxk + In(1)y(n2)+n−k−1xk+1 + · · ·

+In(
(
n
2

)
− 1)yn+k+1x(n2)+k−1 + In(

(
n
2

)
)x(n2)+k

]
.

Therefore,
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n+1∏
i=1

(yi − xi) = (yn+1 − xn+1)

×
[
In(0)y(n2)+n + In(1)y(n2)+n−1x+ · · ·+ In(

(
n
2

)
)ynx(n2)

+In(0)y(n2)+n−1x+ In(1)y(n2)+n−2x2 + · · ·+ In(
(
n
2

)
)yn−1x(n2)+1

+ · · ·

+In(0)y(n2)+1xn−1 + In(1)y(n2)xn + · · ·+ In(
(
n
2

)
)yx(n2)+n−1

+In(0)y(n2)xn + In(1)y(n2)−1xn+1 + · · ·+ In(
(
n
2

)
)x(n2)+n

]
and

n+1∏
i=1

(yi − xi) = (yn+1 − xn+1)
[
In(0)y(n2)+n

+ (In(0) + In(1)) y(n2)+n−1x

+ (In(0) + In(1) + In(2)) y(n2)+n−2x2 + · · ·

+ (In(0) + In(1) + · · ·+ In(n)) y(n2)xn

+ (In(1) + In(2) + · · ·+ In(n+ 1)) y(n2)−1xn+1

+ (In(2) + In(3) + · · ·+ In(n+ 2)) y(n2)−2xn+2 + · · ·

+ In(
(
n
2

)
+ n)x(n2)+n

]
.

Finally, using Theorem 4.5 one can write
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n+1∏
i=1

(yi − xi) = (yn+1 − xn+1)

[ ∑
In(j)

max(0,0−(n+1)+1)≤j≤0

y(n2)+n +
∑
In(j)

max(0,1−(n+1)+1)≤j≤1

y(n2)+n−1x+ · · ·

+
∑
In(j)

max(0,(n2)+n−(n+1)+1)≤j≤(n2)+n

x(n2)+n


= (yn+1 − xn+1)

[
In+1(0)y(n+1

2 ) + In+1(1)y(n+1
2 )−1x+ · · ·

+In+1(
(
n+1

2

)
)x(n+1

2 )
]

= (y − x)n+1
(n+1

2 )∑
i=0

In+1(i)y(n+1
2 )−ixi,

which proves the Lemma.

Lemma 4.7 Let the conditions of the Theorem 4.3 be satisfied. Denote by H(x, y)

the joint distribution function of G(X1:n) and G(Xn:n). It is true that

H(x, y) = y
n(n+1)

2 − (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi, (4.9)

for 0 ≤ x ≤ y and 0 ≤ y ≤ 1, where In(k) denote the number of permutations of

length n with k inversions.
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Proof.

H(x, y)

= P {G(X1:n) ≤ x,G(Xn:n) ≤ y}

= P {Xn:n ≤ G−1(y)} − P {G−1(x) < X1:n, Xn:n ≤ G−1(y)}

= P {X1 ≤ G−1(y), . . . , Xn ≤ G−1(y)}

−P {G−1(x) < X1 ≤ G−1(y), . . . , G−1(x) < Xn ≤ G−1(y)}

=
n∏
i=1

Fi(G
−1(y))−

n∏
i=1

[Fi(G
−1(y))− Fi(G−1(x))]

=
n∏
i=1

yi −
n∏
i=1

[yi − xi] ,

(4.10)

where G−1(x) = min{t ∈ R : G(t) ≥ x} is the quantile function of G.

Then using Lemma 4.6 the last expression given in (4.10) can be written in

terms of permutation with inversions as

H(x, y) = y
n(n+1)

2 − (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi.

Remark 4.8 [59] showed that

1

(1− t)n
n∏
i=1

(1− ti) =

(n2)∑
i=0

In(i)ti. (4.11)
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Using (4.11) one has

n∏
i=1

(yi − xi) = y
n(n+1)

2

n∏
i=1

(
1−

(
x

y

)i)

= y
n(n+1)

2

(
1−

(
x

y

))n (n2)∑
i=0

In(i)

(
x

y

)i
and

H(x, y) =
n∏
i=1

yi −
n∏
i=1

(yi − xi)

= y
n(n+1)

2

1−
(

1−
(
x

y

))n (n2)∑
i=0

In(i)

(
x

y

)i . (4.12)

Corollary 4.9 Let the function h(x, y) denote the joint probability density func-

tion of G(X1:n) and G(Xn:n). Then

h(x, y) = (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi

×

[
2
(
n
2

)
(y − x)2

+
n
((
n
2

)
− i
)

(y − x)y
− ni

(y − x)x
−
((
n
2

)
− i
)
i

yx

]
(4.13)

for 0 ≤ x ≤ y and 0 ≤ y ≤ 1, where In(k) denote the number of permutations of

length n with k inversions.
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Proof.

h(x, y) = ∂2H(x,y)
∂x∂y

= −
∂2(y−x)n

(n2)∑
i=0

[
In(i)y(

n
2)−ixi

]
∂x∂y

= −
(n2)∑
i=0

In(i)
∂2

[
(y−x)ny(

n
2)−ixi

]
∂x∂y

= (y − x)n
(n2)∑
i=0

In(i)y(n2)−ixi

×
[

2(n2)
(y−x)2

+
n((n2)−i)

(y−x)y
− ni

(y−x)x
− ((n2)−i)i

yx

]
.

Now using Lemma 4.6 and Corollary 4.9 we are ready to prove Theorem 4.3.

Proof. (Proof of Theorem 4.3) It is clear that the probability density function of

Wn = G(Xn:n)−G(X1:n) can be obtained from the joint probability density func-

tion of G(X1:n) and G(Xn:n) − G(X1:n) using the linear transformation. Denote

G(X1:n) = Z1 and G(Xn:n) = Z2. Using transformation T1 = Z1, T2 = Z2−Z1,we

have Z1 = T1, Z2 = T1 + T2. The Jacobian of this transformation equals to 1 and

therefore

fT1,T2(y1, y2) = fZ1,Z2(y1,y1+y2)|J |−1

fT2(w) =

1−w∫
0

fZ1,Z2(y1, y1 + y2)dy1

fWn(w) =

1−w∫
0

fG(X1:n),G(Xn:n)(x, x+ w)dx
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fWn(w) =
1−w∫
0

h(x, x+ w)dx

=
(n2)∑
i=0

In(i)
1−w∫
0

(x+ w)(
n
2)−ixi

[
2
(
n
2

)
wn−2 +

n((n2)−i)wn−1

(x+w)
− niwn−1

x
− ((n2)−i)iwn

(x+w)x

]
dx

= In(0)

[
2(n2)

((n2)+1)
wn−2(1− w(n2)+1) + nwn−1

(
1− w(n2)

)]

+
(n2)∑
i=1

In(i)

{
2(−i)−(i+1)

(
n
2

)
w

(
n+1

2

)
−1Beta

[
1− 1

w
, i+ 1,

(
n
2

)
− i+ 1

]

+n(−1)−(i+1)
((
n
2

)
− i
)
w

(
n+1

2

)
−1Beta

[
1− 1

w
, i+ 1,

(
n
2

)
− i
]

−n(1− w)iw(n−2)
2F1

[
1, 1 +

(
n
2

)
, i+ 1, 1− 1

w

]
+i(−1)−(i+1)

((
n
2

)
− i
)
w

(
n+1

2

)
−1Beta

[
1− 1

w
, i,
(
n
2

)
− 1
]}

for n ≥ 1, 0 ≤ w ≤ 1.

Thus the theorem is proved.

4.2 Some numerical results

4.2.1 Moments of the distribution of W

In Theorem 4.3 for special case of Fi = Gi, we have obtained the expression

of fWn(w), the pdf of the limiting distribution P{W1n ≤ x} = P{G(Xn:n) −
G(X1:n) ≤ x} which is given in (4.8). This pdf presents an independent interest

and below we provide some numerical results and graphs concerning the numerical

characteristics, as first, second and third moments, variance and skewness of the

distribution.
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n E(Wn) E(W 2
n) E(W 3

n) V ar(Wn) Skewness

2 0.333333 0.166667 0.100000 0.0555556 0.565685

3 0.466667 0.269048 0.175000 0.0512698 0.137187

4 0.529293 0.326647 0.222161 0.0464964 0.00484184

5 0.562734 0.360383 0.251653 0.0437131 −0.0377184

6 0.582385 0.381309 0.270722 0.0421366 −0.0492966

7 0.594799 0.395001 0.283555 0.0412154 −0.0502751

8 0.603094 0.404379 0.292525 0.0406568 −0.0480019

9 0.60889 0.411053 0.299006 0.0403066 −0.0451022

10 0.613089 0.415959 0.303826 0.0400806 −0.0424507

Table 2 . Moments, variance and skewness of fWn(w)

for n = 2, . . . , 10.

Below we provide the graphs of the pdf and cdf of Wn for different values of

n.

Figure 1. The graphs of fWn for n = 2, . . . , 9.

Since fW2(w) = 2− 2w, as can be seen from the Figure 1 for n = 2 the pdf of
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W is linear.

Figure 2. The graphs of FWn for n = 2, . . . , 9.

Figure 3 and Figure 4 below provides the graphs of E(Wn), E(W 2
n), E(W 3

n)

and skewness with respect to n.

Figure 3. The graphs of moments and variance with respect to n.
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Figure 4. The graph of skewness with respect to n.

Additionally, from Figure 2-4 and Table 1 it can be seen that the moments

E(Wn), E(W 2
n), E(W 3

n) increase as n increases. The graph of fWn(w) is right

skewed for n = 2, 3 and left skewed for n > 3.

4.2.2 An application in insurance models

Suppose that the stationary series {Yi, i = 1, 2, . . .} exhibits long-range de-

pendence and has a marginal distribution function G with upper endpoint

yG = sup{y : G(y) < 1}. Interest is in upper extreme values of {Yi}, which

we take to be those that exceed a threshold u such that 1−G(u) is small. In his

study of emergency markets, [72] noted that Latin American markets have signifi-

cantly fatter tails than industrial markets. So, depending on the chosen threshold

value u, the industrial markets data coming from regions with stable economics

rarely show extreme realizations. However, the finance data generally exhibit

extreme observations. The key to deriving all statistical models for such extreme

values is the asymptotic theory as u→ yG (see [23], Chapter 2). The most widely

used approach is peaks over threshold method. A motivation of using INID ran-

dom variables to model the extremes can be found in [32]. The authors derive
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and illustrate the advantage of a new model for the distribution of a peaks over

a threshold obtained under a subasymptotic threshold u < yG. The suggested

exceedance modeling involves identifying independent clusters (with possible de-

pendent extremes within the cluster) over u, selecting a cluster maxima Xi in the

ith cluster and fitting these by independent Pareto random variables.

The exceedance models are used also in the modeling of insurance claims,

in the case of existence of observations exceeding predefined thresholds in the

portfolios. In general, under the assumption that the claim sizes are iid random

variables, it is common to use the loss distributions which fit the observed data

well, for example, the lognormal, Weibull, Pareto, Generalized Pareto. However,

these loss distributions fail to fit the data in the case of the existence of long

tails in exceedance models. Since insurance claims data generally includes large

extreme observations and may not be identically distributed, modeling them

with INID random variables is more realistic than the iid case. Focusing on the

exceedances and using the proper distribution in models can provide a new and

efficient approach. The exact distribution and the asymptotic properties of the

number of observations falling near the maximum for iid case have been studied

by [66], [53], [65], [43] and [19].

[41] describes a claim reinsurance treaties model in which X1, X2, . . . , Xk, . . .

are INID random variables that denote the claim sizes arising from a specific

portfolio with continuous cumulative distribution functions F1, F2, . . . , Fk, . . . ,

respectively. Let X1:k ≤ X2:k ≤ · · · ≤ Xk:k be the ordered values of claim

sizes in the given portfolio corresponding to the random sample X1, X2, . . . , Xk.

Let {N1(t), t ≥ 0} be a stochastic process which counts the number of claims

that occur in [0, t], t ≥ 0 and we observe X1, X2, . . . , XN1(t) claims up to time

t > 0. We assume that N1(t) is independent of X ′is. Let Y1, Y2, . . . , Ym, . . . be

the sequence of independent and identically distributed random variables with

the common continuous distribution function G and let us assume that given

N2(t) = m the random sample (Y1, Y2, . . . , YN2(t)) is the unprocessed claim sizes

in another specific portfolio, where {N2(t), t > 0} is another counting process

independent of Y ′s. The following statistic SN2(t) counts the number of claims

from the second portfolio which falls between the lower and the higher claim
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sizes in the first portfolio.

Denote

ξi =

{
1, Yi ∈ (X1:N1(t), XN1(t):N1(t))

0, otherwise

and

SN2(t) =

N2(t)∑
i=1

ξi.

Therefore, conditioning on N1(t) and N2(t), a model for the second claim

sizes can be represented by the probability density function obtained in [41]. The

results can be useful in evaluating the asymptotic distributional properties of the

number of claims whose size falls between the lower and higher thresholds of

the first portfolio. For example, the data can be assumed to be INID with very

special case of Fα scheme as in the paper. This assumption is supported with

the consideration in practical applications saying that the distribution function

of the first claim is greater than the distribution function of the second claim and

so on. Mathematically, this can be written as P{X1 ≤ t} ≥ P{X2 ≤ t} ≥ · · · ≥
P{Xn ≤ t}, . . . therefore the Fα scheme can be accomplished for this case.



Chapter 5

Conclusions

Exceedance models have been of great interest to researchers. Various aspects of

exceedance statistics have been studied by the researches from different disciplines

of science. Especially in quality control models, finance, insurance, modelling

flood risk, etc. This study contributes to the growing body of research that

addresses the impact of exceedances in models mentioned above.

In this dissertation, we explore the distributions of INID order statistics and

the recurrence relations between them regarding the symmetric functions. Af-

terwards we deal with some difficulties of obtaining the limiting distribution of

exceedances when they are from INID random variables. Based on the work of [3]

the asymptotic distribution of exceedance statistics from INID random variables

is derived considering Fα-scheme. Consideration of Fα-scheme in calculation

of such problems contributes to the understanding of a INID random variables

concept and also makes the calculations easier.

Moreover, the function we introduce in this study involves permutations with

inversions and Gaussian hypergeometric function. So we give some detailed in-

formation based on permutations with inversions. The statistical characteristics

of this function and graphical representations of them are derived and included

in the study.
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Appendix A

Mathematica Codes

A.1 Permutations with inversions

The following Mathematica code which provides the coefficients list of the n per-

mutations with the k inversions is retrieved from the website (http://oeis.org/

search?q=1%2C4%2C9%2C15%2C20%2C22&sort=&language=&go=Search) in the

On-Line Encyclopedia of Integer Sequences (OEIS)

In [ 1 ] : = f [ n ] := C o e f f i c i e n t L i s t [ Expand@Product [Sum[ xˆ i ,

{ i , 0 , j } ] ,{ j , n } ] , x ] ; F lat ten [ Array [ f , 9 , 0 ] ]

nn=9;T[ 1 , 1 ] = 1 ;T[ n , 1 ] = 0 ;

T[ n , k ] :=T[ n , k]=Sum[T[ n−i , k−1] ,{ i , 1 , k−1}]

MatrixForm [ Table [T[ n , k ] ,{n , nn} ,{k , nn } ] ] ;

So the coefficients are listed below:

In [ 2 ] : = A[1 ]={1} ;

In [ 3 ] : = A[2 ]={1 ,1} ;

72

http://oeis.org/search?q=1%2C4%2C9%2C15%2C20%2C22&sort=&language=&go=Search
http://oeis.org/search?q=1%2C4%2C9%2C15%2C20%2C22&sort=&language=&go=Search


APPENDIX A. MATHEMATICA CODES 73

In [ 4 ] : = A[3 ]={1 , 2 , 2 , 1} ;

In [ 5 ] : = A[4 ]={1 , 3 , 5 , 6 , 5 , 3 , 1} ;

In [ 6 ] : = A[5 ]={1 , 4 , 9 , 15 , 20 , 22 , 20 , 15 , 9 , 4 , 1} ;

In [ 7 ] : = A[6 ]={1 ,5 ,14 ,29 ,49 ,71 ,90 ,101 ,101 ,90 ,71 ,49 ,29 ,

14 , 5 , 1} ;

In [ 8 ] : = A[7 ]={1 ,6 ,20 ,49 ,98 ,169 ,259 ,359 ,455 ,531 ,573 ,

573 ,531 ,455 ,359 ,259 ,169 ,98 ,49 ,20 ,6 ,1} ;

In [ 9 ] : = A[8 ]={1 ,7 ,27 ,76 ,174 ,343 ,602 ,961 ,1415 ,1940 ,2493 ,

3017 ,3450 ,3736 ,3836 ,3736 ,3450 ,3017 ,2493 ,1940 ,1415 ,961 ,

602 ,343 ,174 ,76 ,27 ,7 ,1} ;

In [ 1 0 ] : = A[9 ]={1 ,8 ,35 ,111 ,285 ,628 ,1230 ,2191 ,3606 ,5545 ,

8031 ,11021 ,14395 ,17957 ,21450 ,24584 ,27073 ,28675 ,29228 ,

28675 ,27073 ,24584 ,21450 ,17957 ,14395 ,11021 ,8031 ,5545 ,

3606 ,2191 ,1230 ,628 ,285 ,111 ,35 ,8 ,1} ;

A.2 Code for the probability density function

fW (n)

In [ 1 1 ] : = e [ n , i ] := I n t e g r a t e [wˆn(n (n − 1)/wˆ2 xˆ i (w + x )

ˆ(n(n−1)/2 − i )+n(n(n−1)/2− i )/wxˆ i (w + x )ˆ( n(n−1)/2− i −1)

−ni /wxˆ( i −1)(w+x )ˆ( n(n−1)/2− i )− i (n (n−1)/2− i ) x ˆ( i −1)(w+x )

ˆ(n(n−1)/2− i −1)) ,{x , 0 , 1 − w} , Assumptions−>n(n−1)/2 >= i

> 0 &&n>1 && 0<w<1]
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In [ 1 2 ] : = k [ n ] :=wˆ(n ) ( n(n−1)/((n(n−1)/2+1)wˆ2)(1−w

ˆ(n(n−1)/2+1))+n/w(1−wˆ(n(n−1)/2)))

In [ 1 3 ] : = r [ n ] := Expand [ k [ n]+Sum[A[ n ] [ [ i +1] ] e [ n , i ] ,

{ i , 1 , Binomial [ n , 2 ] } ] ]

In [ 1 4 ] : = r [ 1 ]

Out [14]= 0

In [ 1 5 ] : = r [ 2 ]

Out [15]= 2−2w

In [ 1 6 ] : = Plot [ r [ 2 ] , {w, 0 , 1 } ]

Out [ 1 6 ] : =

In [ 1 7 ] : = I n t e g r a t e [ r2 [ 2 ] , {w, 0 , s } ]

Out [ 1 7 ] : = 2s−s ˆ2



APPENDIX A. MATHEMATICA CODES 75

In [ 1 8 ] : = Plot [ I n t e g r a t e [ r2 [ 2 ] , {w, 0 , s } ] ,{ s , 0 , 1 } ]

Out[18]=

In [ 1 9 ] : = r3 [ 3 ]

Out [19]= 9w−18wˆ2+14wˆ3−5wˆ4

In [ 2 0 ] : = Plot [ r3 [ 3 ] , {w, 0 , 1 } ]

Out [20]=
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In [ 2 1 ] : = I n t e g r a t e [ r3 [ 3 ] , {w, 0 , s } ]

Out [21]= (9 s ˆ2)/2−6 s ˆ3+(7 s ˆ4)/2− s ˆ5

In [ 2 2 ] : = Plot [ I n t e g r a t e [ ( r3 [ 3 ] , {w, 0 , s } ] ,{w, 0 , 1 } ]

Out [22]=
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In [23]= r4 [ 4 ]

Out [23]= (288wˆ2)/7−144wˆ3+228wˆ4−210wˆ5+(364wˆ6)/

3−44wˆ7+9wˆ8−(31wˆ9)/21

In [ 2 4 ] : = Plot [ r4 [ 4 ] , {w, 0 , 1 } ]

Out[24]=

In [ 2 5 ] : = I n t e g r a t e [ r4 [ 4 ] , {w, 0 , s } ]

Out [25]= (96 s ˆ3)/7−36 s ˆ4+(228 s ˆ5)/5−35 s ˆ6+(52 s ˆ7)/3

−(11 s ˆ8)/2+ s ˆ9−(31 s ˆ10)/210

In [ 2 6 ] : = Plot [ I n t e g r a t e [ r4 [ 4 ] , {w, 0 , s } ] ,{ s , 0 , 1 } ]
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Out[26]=

In[27]:= Plot[r5 [5],{w,0,1}]

Out[27]=
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In[28]:= Plot[ Integrate [r5 [5],{w,0,s}],{ s ,0,1}]
Out[28]=

In[29]:= Plot[r6 [6],{w,0,1}]

Out[29]=

In[30]:= Plot[ Integrate [r6 [6],{w,0,s}],{ s ,0,1}]
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Out[30]=

In[31]:= Plot[r7 [7],{w,0,1}]

Out[31]=

In[32]:= Plot[ Integrate [r7 [7],{w,0,s}],{ s ,0,1}]
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Out[32]=

In[33]:= Plot[r8 [8],{w,0,1}]

Out[33]=

In[34]:= Plot[ Integrate [r8 [8],{w,0,s}],{ s ,0,1}]
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Out[34]=

In[35]:= Plot[r9 [9],{w,0,1}]

Out[35]=
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In[36]:= Plot[ Integrate [r9 [9],{w,0,s}],{ s ,0,1}]
Out[36]=

A.3 Expected value of fW (w)

In [ 3 7 ] : = ex [ n , i ] := I n t e g r a t e [w I n t e g r a t e [ (wˆn

(n(n−1)/wˆ2 xˆ i (w+x )ˆ( n(n−1)/2− i )+n(n(n−1)/2− i )

/wxˆ i (w+x )ˆ( n(n−1)/2− i−1)−ni /w x ˆ( i −1)(w+x )

ˆ(n(n−1)/2− i )− i (n (n−1)/2− i ) x ˆ( i −1)(w+x )ˆ( n(n−1)

/2− i −1))) ,{x ,0 ,1−w} , Assumptions−> n(n−1)/2 >=i>0

&& n>1 && 0<w<1] ,{w, 0 , 1 } ]

In [ 3 8 ] : = kex [ n ] := I n t e g r a t e [w(wˆ(n ) ( n(n−1)/

( ( n(n−1)/2+1)wˆ2)(1−wˆ(n(n−1)/2+1))+n/w(1−w

ˆ(n(n−1)/2)) ) ) ,{w, 0 , 1 } ]

In [ 3 9 ] : = ex [ n ] :=N[ Expand [ kex [ n]+Sum[A[ n ]

[ [ i +1] ] ex [ n , i ] ,

{ i , 1 , Binomial [ n , 2 ] } ] ] ]
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In [ 4 0 ] : = ex [ 1 ]

Out [40]= 0

In [ 4 1 ] : = ex [ 2 ]

Out [41]= 0.333333

In [ 4 2 ] : = ex [ 3 ]

Out [42]= 0.466667

In [43:= ex [ 4 ]

Out [43]= 0.529293

In [ 4 4 ] : = ex [ 5 ]

Out [44]= 0.562734

In [ 4 5 ] : = ex [ 6 ]

Out [45]= 0.582385

In [ 4 6 ] : = ex [ 7 ]

Out [46]= 0.594799

In [ 4 7 ] : = ex [ 8 ]

Out [47]= 0.603094

In [ 4 8 ] : = ex [ 9 ]

Out [48]= 0.60889

A.4 h(x, y) and H(x, y) and their plots

In [ 4 9 ] : = e1 [ n , i ] :=( y−x )ˆn(n(n−1)/(y−x )ˆ2xˆ i ( y )

ˆ(n(n−1)/2− i )+n(n(n−1)/2− i ) / ( y−x ) xˆ i ( y )ˆ ( n(n−1)
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/2− i−1)−ni /(y−x ) x ˆ( i −1)(y )ˆ ( n(n−1)/2− i )− i (n (n−1)

/2− i ) x ˆ( i −1)(y )ˆ ( n(n−1)/2− i −1))

In [ 5 0 ] : = I n t e g r a t e [ x y e1 [ n , i ] ,{ y ,0 , 1} ,{ x , 0 , y} ,

Assumptions −> n(n−1)/2>=i> 0 ]

In [ 5 1 ] : = pdfh [ n ] := S imp l i f y [Sum[A[ n ] [ [ i +1] ] e1 [ n , i ] ,

{ i , 0 , Binomial [ n , 2 ] } ] ]

In [ 5 2 ] : = intpd fh [ n ] := S imp l i f y [ I n t e g r a t e [Sum[A[ n ]

[ [ i +1] ] e1 [ n , i ] ,{ i , 0 , Binomial [ n , 2 ] } ] , { y ,0 , 1} ,{ x , 0 , y } ] ]

In [ 5 3 ] : = pdfh [ 2 ]

Out [53]= 2 ( x + y )

In [ 5 4 ] : = Plot3D [ pdfh [ 2 ] , { y ,0 , 1} ,{ x , 0 , y } ]

Out[54]=
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In [ 5 5 ] : = Plot3D [ pdfh [ 3 ] , { y ,0 , 1} ,{ x , 0 , y } ]

Out[55]=

In [ 5 6 ] : = Plot3D [ pdfh [ 4 ] , { y ,0 , 1} ,{ x , 0 , y } ]

Out[56]=
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