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Prof. Dr. İsmihan Bayramoğlu
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ABSTRACT

MODIFICATIONS OF BIVARIATE BINOMIAL
DISTRIBUTION AND CONDITIONAL BIVARIATE

ORDER STATISTICS

Gülder KEMALBAY

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2013

In this thesis, the new trivariate discrete distributions which are modifications

of the bivariate binomial distribution are obtained. These new discrete distribu-

tions present a theoretical interest as well as can be used in many probability

models, especially in distribution theory of conditional bivariate order statistics.

The distributional properties of bivariate order statistics are studied and derived

under the condition that certain values of the underlying random vectors (X, Y )

are truncated and fall in the threshold set {(t, s) ∈ R2 : t ≤ u, s ≤ v}, (u, v) ∈ R2.

Keywords: Bivariate binomial distribution, bivariate order statistics, conditional

distributions.
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ÖZ

İKİ DEĞİŞKENLİ BİNOM DAĞILIMININ
MODİFİKASYONLARI VE KOŞULLU İKİ DEĞİŞKENLİ

SIRA İSTATİSTİKLERİ

Gülder KEMALBAY

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Prof. Dr. İsmihan Bayramoğlu

Haziran 2013

Bu tezde, iki değişkenli binom dağılımının modifikasyonu yapılarak bazı yeni

üç değişkenli kesikli dağılımlar bulunmuştur. Bu dağılımlar teorik olarak önemli

oldukları kadar bir çok olasılık modellerinde ve özellikle koşullu sıra istatistik-

leri teorisinin gelişiminde kullanılabilir. Sonlu sayıda rastgele (X, Y ) vektörlerin

kırpılması ve {(t, s) ∈ R2 : t ≤ u, s ≤ v}, (u, v) ∈ R2 eşik kümesine düşmesi

koşulu altında iki değişkenli sıra istatistiklerinin dağılımı elde edilmiş ve dağılım

özellikleri çalışılmıştır.

Anahtar Kelimeler : İki değişkenli binom dağılımı, iki değişkenli sıra istatistikleri,

koşullu dağılımlar .
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Chapter 1

Introduction

Let (X1, Y1), ..., (Xn, Yn) be independent copies of the bivariate random vector

(X, Y ) with joint distribution function FX,Y (x, y). Denote by Xr:n and Ys:n the rth

and sth order statistics of X1, X2, ..., Xn and Y1, Y2, ..., Yn, respectively. The joint

distribution of bivariate order statistics (Xr:n, Ys:n) can be easily derived from the

bivariate binomial distribution, which was first introduced by Aitken and Gonin

[3] in connection with the fourfold sampling scheme.

Recently, Bairamov and Gultekin [8] considered the new trivariate and quadri-

variate distributions constructed on the basis of the bivariate binomial distribution.

Durante and Jaworski [16] considered the conditional distribution function of

random variables (X, Y ) given (X, Y ) ∈ <, where < is a Borel set in R2 with joint

distribution function

H<(x, y) = P{X ≤ x, Y ≤ y | (X, Y ) ∈ <},

and using this conditional distribution, introduced a threshold copula. The thresh-

old copula has interesting and important applications for studying the dependence

among financial markets, especially regarding spatial contagion. For more recent

1



CHAPTER 1. 2

result concerning threshold copulas and contagion, see [5], [10], and [30]. For

some interesting applications of order statistics and their concomitants, bivariate

distributions and copulas, in insurance, see [17], [1] and [32].

It can be seen that the bivariate order statistics are also important for the

construction of new bivariate distributions with high correlation. For example,

Baker’s-type distributions are constructed on the basis of distributions of bivariate

order statistics and attract significant interest in the statistical literature: See, e.g.,

[7] and [23].

The conditional bivariate order statistics can also be used in reliability analysis

for studying the mean residual life functions of complex systems. The statistical

theory of reliability considers systems that consist of n components, and the life-

times of these components are assumed to be nonnegative random variables. Re-

cently, Bairamov [6] considered complex systems that consist of n elements, which

each contain two or more components, and studied the reliability properties of

such systems. Let a system consists of n elements, and assume that each element

has two components, (Ai, Bi), i = 1, 2, ..., n. Let Xi be the lifetime of the compo-

nent Ai and Yi be the lifetime of the component Bi, i = 1, 2, ..., n. Then, (Xi, Yi)

represents the lifetime of the ith element. Assume that the components of the ith

element are dependent, i.e., Xi and Yi are dependent random variables with joint

distribution function F (x, y). As an example, [6] considered (r, s)− out− of − n
systems, which function if and only if at least r of the n components A1, A2, ..., An

and s of the n components B1, B2, ..., Bn function. Then, the reliability of such a

system is

P{T > t} = P{Xn−r+1:n > t, Yn−s+1:n > t},

where T is the lifetime of the system and (Xr:n, Ys:n) is the vector of bivariate rth

and sth order statistics constructed from the sample (X1, Y1), (X2, Y2), ..., (Xn, Yn).

The mean residual life function of an (r, s) − out − of − n system with intact
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components at time t is

Φr,s:n(t) = E{T − t | X1:n > t, Y1:n > t}

= E{T (t)
r,s:n},

where T
(t)
r,s:n is a conditional random variable defined as T

(t)
r,s:n ≡ (Xn−r+1:n −

t, Yn−s+1:n − t | {none of the components has failed at time t}). It is clear that to

evaluate Φr,s:n(t), we must know the survival function of the conditional random

variable T
(t)
r,s:n, i.e., the survival function of conditional order statistics.

In this thesis, we consider the joint distribution of bivariate order statis-

tics (Xr:n, Ys:n) under the condition that h of the random observations

(X1, Y1), ...., (Xn, Yn) are truncated, i.e., they fall in the set Buv = {(t, s) ∈ R2 :

t ≤ u, s ≤ v}, (u, v) ∈ R2, assuming P{(X, Y ) ∈ Buv} > 0. This conditional dis-

tribution is derived using novel modifications of the bivariate binomial distribution

introduced in the chapter of main results of this thesis.

This thesis is organized as follows: In the second chapter, we give a brief in-

troduction to the bivariate binomial distribution and its some extensions. In the

third chapter, the joint distribution of bivariate order statistics is presented by the

help of bivariate binomial distribution. In the chapter of main results, we con-

sider novel trivariate distributions obtained from bivariate binomial distribution

by introducing new events in a fourfold model. Then, using the modified trivariate

distributions, the conditional distribution of bivariate order statistics (Xr:n, Ys:n),

1 ≤ r, s ≤ n constructed from bivariate observations (Xi, Yi), i = 1, 2, ..., n is de-

rived, where we assume that a certain number of these observations are truncated.

As a special case, the distribution function of conditional bivariate extreme order

statistics is presented and some dependence properties are obtained. Furthermore,

some numerical and graphical results are illustrated.



Chapter 2

Bivariate Binomial Distribution

and Its Extensions

The bivariate and multivariate binomial distributions have appeared in several

studies as a natural extension of the univariate binomial distribution to the two

and higher dimensional case. These distributions arise in many fields of statistics

and probability while for example studying order statistics, exceedances, strategic

games and reliability theory.

Aitken and Gonin [3] was the first who introduced the bivariate binomial dis-

tribution in connection with the fourfold sampling scheme with replacement. They

considered a population where each individual can be classified either A or Ac and

simultaneously B or Bc. They explained the bivariate binomial distribution with

2 × 2 contingency table by writing the probabilities of AB, ABc, AcB and AcBc

on each cell and fixing the total sample size n which is allocated into each four

cells.

As the limiting form of bivariate binomial distribution, [33], [20] derived the

4



CHAPTER 2. 5

bivariate Poisson distribution.

The canonical expansion of Aitken and Gonin’s bivariate binomial distribution

was given by [18] related to a series bilinear in Krawtchouk’s polynomials. How-

ever, [19] showed that the trinomial and bivariate binomial distributions have a

similar structure and actually the trinomial distribution is a special case of bivari-

ate binomial distribution. In Aitken and Gonin’s model if one assumes that the A

and B can not occur at the same time, i.e. P (AB) = 0, then bivariate binomial

distribution coincides with the trinomial distribution.

Moreover, Aitken and Gonin’s model has been studied with different aspects by

several authors. The maximum likelihood estimators were given by [22]. [21] stud-

ied the conditional distribution, regression functions and conditions for bivariate

Poisson and Gaussian limits. [25] discussed the conditional distribution of more

general version of Aitken and Gonin’s model which was introduced by [18] and

[21]. [29] proposed the conditional distributions related to a trivariate binomial

distribution.

Also, some characterization of bivariate and multivariate binomial distributions

have been studied. [31] established a characterization for multinomial distribution.

[15] obtained a characterization for multivariate binomial distribution with univari-

ate marginals. Recently, a characterization of the trivariate binomial distribution

based on the distribution of the sum of two trivariate random vectors was given

by [12].

[9] proposed a new formulation of the bivariate binomial distribution with the

meaning of each of random variables has marginally a binomial distribution and

have non-zero correlation. Recently, [8] considered the novel trivariate and quadri-

variate distributions constructed on the basis of the bivariate binomial distribution.

In this chapter, we consider the bivariate binomial distribution and its some

modifications. As an extension of this probability model, we present the study

of [8] where the new class of multivariate discrete distribution with binomial and
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multinomial marginals is proposed.

2.1 Bivariate Bernoulli Distribution

Let us consider a discrete bivariate random variable (X, Y ) taking four possible

values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities p00, p01, p10, p11, respectively. Let

us define the joint probabilities as follows

P{X = 0, Y = 0} = p00, P{X = 0, Y = 1} = p01,

P{X = 1, Y = 0} = p10, P{X = 1, Y = 1} = p11,

where p00 + p01 + p10 + p11 = 1 and marginal probabilities are

p00 + p01 = p0+, p10 + p11 = 1− p0+ = p1+,

p00 + p10 = p+0, p01 + p11 = 1− p+0 = p+1.

This probability model can be described in the following 2× 2 contingency table:

X \ Y 0 1
∑

0 p00 p01 p0+

1 p10 p11 p1+∑
p+0 p+1 1

It is clear that marginal distributions of X and Y follow univariate Bernoulli

law with parameters (p10 + p11) and (p10 + p11), respectively. Then the expected

value and variance of X and Y is given as

E(X) = p10 + p11, E(Y ) = p01 + p11,

V ar(X) = (p10 + p11)(p00 + p01), V ar(Y ) = (p01 + p11)(p00 + p10).
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The covariance between X and Y is given

Cov(X, Y ) = p11 − (p10 + p11)(p01 + p11)

= p00p11 − p10p01,

and the correlation coefficient of (X, Y )

ρ(X, Y ) =
p00p11 − p10p01√

(p10 + p11)(p00 + p01)
√

(p01 + p11)(p00 + p10)
,

where

ρ =

{
−1

+1

if p00 = p11 = 0,

if p01 = p10 = 0.

The probability generating function of random variables (X, Y ) with bivariate

Bernoulli distribution is given as

Φ(t, s) =
1∑

i,j=0

tisjpij

= p11ts+ p10t+ p01s+ p00.

As in the univariate case, several bivariate distributions with binomial, Pois-

son, geometric, exponential or gamma marginals are naturally arise from bivariate

Bernoulli distribution. For more details about the bivariate distributions gen-

erated by the bivariate Bernoulli distribution, one can see [28] we consider the

bivariate binomial distribution as sum of the n mutually independent random

variables (X1, Y1), (X2, Y2), ..., (Xn, Yn) which have identically bivariate Bernoulli

distribution.
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2.2 Bivariate Binomial Distribution

In this section, we will derive the distribution of the sum of n independent bivariate

Bernoulli random variables (X1, Y1), (X2, Y2), ..., (Xn, Yn). Let us denote the sum

of random variables by

ξ =
n∑
i=1

Xi and η =
n∑
i=1

Yi.

Then we will obtain the probability of P{ξ = i, η = j} for all i, j satisfying

0 ≤ i, j ≤ n which is the main subject of this section. First, we define the fourfold

sampling scheme as follows:

Fourfold Sampling Scheme

Suppose that our population consists of two independent samples and each

sample has two individuals, A, Ac and B, Bc, with probabilities P (AB) = π11,

P (ABc) = π12, P (AcB) = π21 and P (AcBc) = π22, where
∑

ij πij = 1. More

precisely, in this scheme, the event A occurs together with B or Bc and the event

B occurs together with A or Ac. Therefore, the possible outcomes of the experiment

are AB, ABc, AcB and AcBc. We will refer to this sampling scheme as the fourfold

sampling scheme (or fourfold model).

Now, a bivariate binomial distribution in fourfold sampling scheme can be

described as follows:

Under random sampling with replacement n times, let ξ denotes the number of

trials in which A appears and η denotes the number of trials in which B appears,

respectively. The joint probability mass function of (ξ, η) is given as follows:

P (i, j) ≡ P{ξ = i, η = j} =

min(i,j)∑
k=max(0,i+j−n)

n!

k!(i− k)!(j − k)!(n− i− j + k)!

× πk11πi−k12 πj−k21 πn−i−j+k22 , (2.1)
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where i = 0, ..., n; j = 0, ..., n.

Formula (2.1) can be easily explained: If in n trials A appears together with

B k times, A and Bc appear together i− k times. Then B appears together with

Ac j− k times and Bc appears together with Ac n− i− j+ k times. The bivariate

binomial distribution can be described symbolically as follows:

A \B B Bc

A

π11 k

times

AB

π12 i− k
times

ABc

Ac
π21 j − k

times

AcB

π22 n− i− j + k

times

AcBc

Figure 2.1 Description for Bivariate Binomial Distribution

If the experiment is repeated n times, then k outcomes of the event A can be

realized together with B in

(
n

k

)
ways. Then, i − k outcomes of the event A can

be observed with Bc in

(
n− k
i− k

)
ways and Ac can be realized together with B

in

(
n− k − (i− k)

j − k

)
=

(
n− i
j − k

)
ways. Therefore, in n independent trials, the

number of possible cases when A occurs i times and B occurs j times is

(
n

k

)(
n− k
i− k

)(
n− i
j − k

)
=

n!

k!(i− k)!(j − k)!(n− i− j + k)!

with probability

P (AB)kP (ABc)i−kP (AB
c
)j−kP (A

c
Bc)n−i−j+k,
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where P (AB) = π11, P (ABc) = π12, P (AcB) = π21 and P (AcBc) = π22.

For some discussion of the bivariate and multivariate binomial distributions,

see [20], [18], [19], [31], [15], [21], [26], and [24].

Note that the bivariate binomial distribution can be obtained from the multi-

nomial distribution if one sets AB = C1, AB
c = C2, A

cB = C3, A
cBc = C4,

P (C1) = p11, P (C2) = p12, P (C3) = p21, and P (C4) = p22. If we denote by ζi the

number of cases in which Ci occurs out of n repetitions, where i = 1, 2, 3, 4, then

(ζ1, ζ2, ζ3, ζ4) is multinomial, ξ1 = ζ1 + ζ2 and ξ2 = ζ1 + ζ3.

It is obvious that the marginal distributions of ξ and η are univariate binomial

with parameters (π11 + π12) and (π11 + π21), respectively.

P{ξ = i} =

(
n

i

)
(π11 + π12)

i(1− (π11 + π12))
n−i, i = 0, 1, ..., n;

P{η = j} =

(
n

j

)
(π11 + π21)

j(1− (π11 + π21))
n−j, j = 0, 1, ..., n.

Thus, the expected value and variance of ξ and η can be obtained easily:

E(ξ) = n(π11 + π12), E(η) = n(π11 + π21),

V ar(ξ) = n(π11 + π12)(π21 + π22), V ar(η) = n(π11 + π21)(π12 + π22).

The covariance between ξ and η is given by

Cov(ξ, η) = Cov

(
n∑
i=1

Xi ,

n∑
i=1

Yi

)

=
n∑
i=1

Cov(Xi, Yi)

=
n∑
i=1

[E(XiYi)− E(Xi)E(Yi)]

= n(π22π11 − π21π12).

Note that if i 6= j then Xi and Yj are mutually independent random variables.
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Thus for i 6= j the expected value E(XiYj) = E(Xi)E(Yj) which implies that

Cov(Xi, Yj) = 0. Since the correlation coefficient is invariant under linear transfor-

mation, ρ(ξ, η) = ρ(X, Y ) where (ξ, η) and (X, Y ) are a bivariate random vectors

of bivariate binomial and bivariate Bernoulli distributions, respectively.

2.2.1 Probability Generating Function of Bivariate Bino-

mial Distribution

To obtain the probability generating function of the random vector (ξ, η) with

probability mass function P (i, j) in (2.1), let us define

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

It is obvious that ξ =
n∑
r=1

γr1 and η =
n∑
r=1

γr2. Since the trials are independent,

the probability generating function of the random vector (ξ, η) is given by

Φ(t, s) =

(
1∑

x1,x2=0

tx1sx2qx1,x2

)n

=
(
t1s1q1,1 + t1s0q1,0 + t0s1q0,1 + t0s0q0,0

)n
where

qx1,x2 = P{γr1 = x1, γ
r
2 = x2}; x1, x2 = 0, 1.
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We have

q1,1 = P (AB) = π11,

q1,0 = P (ABc) = π12,

q0,1 = P (AcB) = π21,

q0,0 = P (AcBc) = π22.

Then the probability generating function of bivariate binomial distribution is

Φ(t, s) = (π11ts+ π12t+ π21s+ π22)
n . (2.2)

2.2.2 Poisson Approximation for the Bivariate Binomial

Distribution

It is well known that univariate Poisson distribution function can be obtained by

taking the limit of univariate binomial distribution function as n → ∞ such that

p → 0 and np → λ. By using this fact, [20] presented the similar derivation of

the bivariate Poisson distribution as the limiting form of the bivariate binomial

distribution. However, [11] obtained the same function with more difficult way by

taking limits of the factorial moment generating functions of the bivariate Bernoulli

distribution.

Let us consider the bivariate binomial distribution P (i, j) in (2.1) as n → ∞
such that π11, π12, π21 → 0 and nπ11 → λ11, nπ12 → λ12, nπ21 → λ21 where

π22 = 1− π11 − π12 − π21. Then the limiting form of P (i, j) is given by
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lim
n→∞

P (i, j) ≡ lim
n→∞

P{ξ = i, η = j} ≡ p(i, j)

= lim
n→∞

min(i,j)∑
k=max(0,i+j−n)

n(n− 1)...(n− i)...(n− i− j + k)!

k!(i− k)!(j − k)!(n− i− j + k)!

×
(
λ11
n

)k (
λ12
n

)i−k (
λ21
n

)j−k (
λ22
n

)n−i−j+k

= lim
n→∞

min(i,j)∑
k=max(0,i+j−n)

nn[1− 1
n
]...n[1− i

n
]...n[1− i+j−k−1

n
]

k!(i− k)!(j − k)!

× 1

ni+j−k
(λ11)

k(λ12)
i−k(λ21)

j−k
(

1− λ11 + λ12 + λ21
n

)n−i−j+k

= lim
n→∞

min(i,j)∑
k=max(0,i+j−n)

1[1− 1

n
]...[1− i

n
]...[1− i+ j − k − 1

n
]

× (λ11)
k

k!

(λ12)
i−k

(i− k)!

(λ21)
j−k

(j − k)!

(
1− λ11 + λ12 + λ21

n

)n−i−j+k

= e−(λ11+λ12+λ21)
min(i,j)∑
k=0

(λ11)
k

k!

(λ12)
i−k

(i− k)!

(λ21)
j−k

(j − k)!
; (2.3)

i, j = 0, 1, 2, ...

The probability generating function of bivariate binomial distribution is

Φ(t, s) = (π11ts+ π12t+ π21s+ π22)
n . Then taking limit as n → ∞ such that

nπ11 → λ11, nπ12 → λ12, nπ21 → λ21 where π22 = 1 − π11 − π12 − π21, we ob-

tain the probability generating function of bivariate Poisson distribution which is

denoted by Φ∗(t, s):
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Φ∗(t, s) ≡ lim
n→∞

Φ(t, s)

= lim
n→∞

(π11ts+ π12t+ π21s+ π22)
n

= lim
n→∞

(
λ11
n
ts+

λ12
n
t+

λ21
n
s+ 1− λ11 − λ12 − λ21

n

)n
= lim

n→∞

(
1− λ11 − λ12 − λ21−λ11ts− λ12t− λ21s

n

)n
= e−(λ11+λ12+λ21)+λ11ts+λ12t+λ21s. (2.4)

2.3 Extensions of the Bivariate Binomial Distri-

bution

Based on the construction of bivariate binomial distribution, Bairamov and Gul-

tekin [8] proposed a new trivariate binomial distribution in fourfold sampling

scheme. However, they extended the fourfold sampling scheme to a general model

and introduced a new quadrivariate binomial distributions in the general sampling

scheme. Moreover, they discussed some possible applications of this new class of

discrete distributions in field of lifetesting, exceedances and some strategic games.

2.3.1 Trivariate Binomial Distribution in the Fourfold

Model

Consider a fourfold sampling scheme, i.e., suppose that the outcome of the random

experiment is one of the events A or Ac and simultaneously one of B or Bc with

the probabilities P (AB) = π11, P (ABc) = π12, P (AcB) = π21 and P (AcBc) = π22,

where
∑

ij πij = 1.

Under random sampling with replacement n times, let ξ, η and ζ denote the
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number of occurrences of A, B and AB, respectively. Then the joint probability

mass function of trivariate binomial distribution in fourfold sampling scheme can

be represented in the following theorem:

Theorem 2.1. [8] The joint probability mass function of the random vector

(ξ, η, ζ) is given as

P (i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
n!

h!(i− h)!(j − h)!(n− i− j + h)!
πh11π

i−h
12 πj−h21 πn−i−j+h22 , (2.5)

where h = max(0, i+ j − n), ...,min(i, j); i = 0, ..., n; j = 0, ..., n.

The trivariate binomial distribution in the fourfold sampling scheme can be

described schematically as follows:

A \B B Bc

A

π11 h

times

AB

π12 i− h
times

ABc

Ac
π21 j − h

times

AcB

π22 n− i− j + h

times

AcBc

Figure 2.2 Description for Trivariate Binomial Distribution

Unlike the bivariate binomial distribution, both total sample size n and the

number of occurrences of AB, i.e. ζ = h are fixed in the trivariate binomial

distribution.
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The probability generating function of the random vector (ξ, η, ζ) with proba-

bility mass function P (i, j, h) in (2.5) is obtained as follows: Let us define

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial AB appears,

0 otherwise.

It is obvious that ξ =
n∑
r=1

γr1, η =
n∑
r=1

γr2 and ζ =
n∑
r=1

γr3. Since the trials are

independent, the probability generating function of the random vector (ξ, η, ζ) is

given by

Φ(t, s, z) =

(
1∑

x1,x2,x3=0

tx1sx2zx3qx1,x2,x3

)n

where

qx1,x2,x3 = P{γr1 = x1, γ
r
2 = x2, γ

r
3 = x3}; x1, x2, x3 = 0, 1.

We have

q1,1,1 = P (AB(AB)) = π11, q1,0,0 = P (ABc(AB)c) = π12,

q1,1,0 = P (AB(AB)c) = 0, q0,1,0 = P (AcB(AB)c) = π21,

q1,0,1 = P (ABc(AB)) = 0, q0,0,1 = P (AB(AB)c) = 0,

q0,1,1 = P (AcB(AB)) = 0, q0,0,0 = P (AcBc(AB)c) = π22.

Then, the probability generating function of trivariate binomial distribution is

Φ(t, s, z) = (π11tsz + π12t+ π21s+ π22)
n . (2.6)

Similar to the bivariate binomial distribution, also a Poisson approximation for

trivariate binomial distribution can be given as follows:
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Theorem 2.2. [8]Consider the trivariate binomial distribution in fourfold sam-

pling scheme with joint probability mass function P (i, j, h) when the number of

trials is large n → ∞ such that π11, π12, π21 → 0 and nπ11 → λ11, nπ12 → λ12,

nπ21 → λ21 where π22 = 1 − π11 − π12 − π21. Then the limiting form of P (i, j, h)

is given as follows

lim
n→∞

P (i, j, h) ≡ lim
n→∞

P{ξ = i, η = j, ζ = h} ≡ p(i, j, h)

= e−(λ11+λ12+λ21)
(λ11)

h

h!

(λ12)
i−h

(i− h)!

(λ21)
j−h

(j − h)!
; (2.7)

i, j = 0, 1, 2, ...; h = 0, ...,min(i, j).

The distribution given in (2.7) is called a trivariate Poisson distribution.

We conclude this section with an extension of fourfold sampling scheme to a

general model such that the results of an experiment are AiBj, i, j = 1, 2, ...,m.

Then, the quadrivariate distribution in a general model is given. For sake of

simplicity, we consider the case when m = 3.

2.3.2 Quadrivariate Binomial Distribution in the General

Model

Bairamov and Gultekin [8] also consider the extension of a fourfold sampling

scheme to a general model as follows: Suppose that our population consists of

two independent sample and each individual of a sample is being classified as one

of the events A1, A2, ..., Am and simultaneously as one of B1, B2, ..., Bm with prob-

abilities P (AiBj) = πij where
∑

ij πij = 1; i, j = 1, 2, ...,m and m ≥ 3. In this

general scheme, the outcomes of the experiment are AiBj, i, j = 1, 2, ...,m.

Without loss of generality, we can consider the general model for m = 3.

Therefore in this sampling scheme, all possible results of the experiment are the
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pairs A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, A3B1, A3B2 and A1B3.

Assume that the experiment is repeated n times and trials are independent.

Let ξ, η, ζ and ϑ denote the number of occurrences of A1, B1, A1B2 and A2B1,

respectively. Then the quadrivariate binomial distribution in the general sampling

scheme (for m = 3) can be represented in the following theorem:

Theorem 2.3. [8] The joint probability mass function of the random vector

(ξ, η, ζ, ϑ) is given as

P (i, j, h, r) ≡ P{ξ = i, η = j, ζ = h, ϑ = r}

=

min(i−h,j−r)∑
k=max(0,i+j−n)

n!

k!h!r!(i− k − h)!(j − k − r)!(n− i− j + k)!

× πk11πh12πi−k−h13 πr21π
j−k−r
31 (π22+π23 + π32 + π33)

n−i−j+k, (2.8)

where i = h, ..., n− r; j = r, ..., n− h; h = 0, ..., n− r; r = 0, ..., n.

This model can be described schematically as follows:

A \B B1 B2 B3

A1

π11 k

times

A1B1

π12 h

times

A1B2

π13 i− k − h
times

A1B3

A2

π21 r

times

A2B1

π22

A2B2

π23

A2B3

A3

π31 j− k − r
times

A3B1

π32

A3B2

π33

A3B3

Figure 2.3 Description for Quadrivariate Binomial Distribution
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The probability generating function of the random vector (ξ, η, ζ, ϑ) with prob-

ability mass function P (i, j, h, r) in (2.8) is obtained as follows: Let us define

γr1 =

{
1 if in the rth trial A1 appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B1 appears,

0 otherwise.

γr3 =

{
1 if in the rth trial A1B2 appears,

0 otherwise.

γr4 =

{
1 if in the rth trial A2B1 appears,

0 otherwise.

It is obvious that ξ =
n∑
r=1

γr1, η =
n∑
r=1

γr2, ζ =
n∑
r=1

γr3 and ϑ =
n∑
r=1

γr4. Since the

trials are independent, the probability generating function of the random vector

(ξ, η, ζ, ϑ) is given by

Φ(t, s, z, w) =

(
1∑

x1,x2,x3,x4=0

tx1sx2zx3wx4qx1,x2,x3,x4

)n

where

qx1,x2,x3,x4 = P{γr1 = x1, γ
r
2 = x2, γ

r
3 = x3, γ

r
4 = x4}; x1, x2, x3, x4 = 0, 1.

We have



CHAPTER 2. 20

q1,1,1,1 = P (A1B1(A1B2)(A2B1)) = 0

q0,1,1,1 = P (Ac1B1(A1B2)(A2B1)) = 0

q1,1,1,0 = P (A1B1(A1B2)(A2B1)
c) = 0

q0,1,1,0 = P (Ac1B1(A1B2)(A2B1)
c) = 0

q1,1,0,1 = P (A1B1(A1B2)
c(A2B1)) = 0

q0,1,0,1 = P (Ac1B1(A1B2)
c(A2B1)) = π21

q1,1,0,0 = P (A1B1(A1B2)
c(A2B1)

c) = π11

q0,1,0,0 = P (Ac1B1(A1B2)
c(A2B1)

c) = π31

q1,0,1,1 = P (A1B
c
1(A1B2)(A2B1)) = 0

q0,0,1,1 = P (Ac1B
c
1(A1B2)(A2B1)) = 0

q1,0,1,0 = P (A1B
c
1(A1B2)(A2B1)

c) = π12

q0,0,1,0 = P (Ac1B
c
1(A1B2)(A2B1)

c) = 0

q1,0,0,1 = P (A1B
c
1(A1B2)

c(A2B1)) = 0

q0,0,0,1 = P (Ac1B
c
1(A1B2)

c(A2B1)) = 0

q1,0,0,0 = P (A1B
c
1(A1B2)

c(A2B1)
c) = π13

q0,0,0,0 = P (Ac1B
c
1(A1B2)

c(A2B1)
c) = π22+π23 + π32 + π33.

Then, the probability generating function of quadrivariate binomial distribu-

tion is

Φ(t, s, z, w)

= (π11ts+ π12tz + π21sw + π13t+ π31s+ π22+π23 + π32 + π33)
n . (2.9)

However, The limiting form of quadrivariate binomial distribution is repre-

sented as follows:

Theorem 2.4. [8] Consider the quadrivariate binomial distribution in general
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sampling scheme (for m = 3) with joint probability mass function P (i, j, h, r) when

the number of trials is large n→∞ such that π11, π12, π21,π13, π31 → 0 and nπ11 →
λ11, nπ12 → λ12, nπ21 → λ21, nπ1 → λ1, nπ2 → λ2 where π1 = π11 + π12 + π13 and

π2 = π11 + π21 + π31. Then the limiting form of P (i, j, h, r) is given as follows

lim
n→∞

P (i, j, h, r) ≡ lim
n→∞

P{ξ = i, η = j, ζ = h, ϑ = r} ≡ p(i, j, h, r)

= e−(λ1+λ2−λ11)
min(i−h,j−r)∑

k=0

(λ11)
k

k!

(λ12)
h

h!

(λ21)
r

r!

× (λ1 − λ11 − λ12)i−k−h

(i− k − h)!

(λ2 − λ11 − λ21)j−k−r

(j − k − r)!
, (2.10)

i = h, h+ 1, ...; j = r, r + 1, ...; h = 0, 1, 2, ...; r = 0, 1, 2, ...

The distribution in (2.10) is a version of the quadrivariate Poisson distribution.
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Bivariate Order Statistics

Suppose that X1, ..., Xn are independent and identically distributed random

variables from a population with distribution function FX(x). The correspond-

ing order statistics are obtained by arranging Xi’s in nondecreasing order and is

denoted by X1:n ≤ X2:n ≤ ... ≤ Xn:n. In literature a lot of attention has been

devoted to the study of order statistics. For a comprehensive study for theory and

applications of order statistics, we refer to [14], [2] and [4]. Although the order

statistics attracted the attention of several authors, many of results dealing with

order statistics have been derived for the univariate sample.

In this section, we consider a bivariate random sample (X1, Y1), ..., (Xn, Yn).

Let Xr:n and Ys:n be the corresponding rth and sth order statistics constructed on

the basis of the bivariate observations (Xi, Yi), i = 1, 2, ..., n. Then, we will show

that the joint distribution of bivariate order statistics (Xr:n, Ys:n) can be easily

obtained from the bivariate binomial distribution.

22
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3.1 Distribution of a Single Order Statistic

Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be independent and identically distributed ran-

dom variables with distribution functions FX(x) and FY (y), respectively. Let

X1:n ≤ X2:n ≤ ... ≤ Xn:n, Y1:n ≤ Y2:n ≤ ... ≤ Yn:n be the corresponding order

statistics of the sample X and Y, respectively. The distribution function of Xr:n

is obtained by binomial distribution as follows:

FXr:n(x) = P{Xr:n ≤ x}

= P{at least r of X1, X2, ..., Xn are less than or equal to x}

=
n∑
i=r

P{exactly i of X1, X2, ..., Xn are less than or equal to x}

=
n∑
i=r

(
n

i

)
FX(x)i[1− FX(x)]n−i. (3.1)

Furthermore, using the identity between a binomial distribution having success

probability p and Pearson’s (1934) incomplete beta function (or is called regular-

ized incomplete Beta function) such that

n∑
i=r

(
n

i

)
pi(1− p)n−i =

p∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−rdt (3.2)

one can write the distribution function of Xr:n as follows:
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FXr:n(x) ≡ P{Xr:n ≤ x}

=
n∑
i=r

(
n

i

)
FX(x)i[1− FX(x)]n−i

=

FX(x)∫
0

n!

(r − 1)!(n− r)!
tr−1(1− t)n−rdt

=
BFX(x)(r, n− r + 1)

B(r, n− r + 1)
= IFX(x)(r, n− r + 1), (3.3)

−∞ < x <∞.

where Ix(a, b) (0 < x < 1) is the Pearson’s incomplete Beta function which is

defined as incomplete Beta function Bx(a, b) over Beta function B(a, b) :

Bx(a, b) =

x∫
0

ta−1(1− t)b−1dt, 0 < x < 1,

B(a, b) =

1∫
0

ta−1(1− t)b−1dt =
(a− 1)!(b− 1)!

(a+ b− 1)!
; a,b are positive integers.

Similarly, the distribution function of Ys:n is given as

FYs:n(y) ≡ P{Ys:n ≤ y}

=
n∑
j=s

(
n

j

)
FY (y)j[1− FY (y)]n−j

=

FY (y)∫
0

n!

(s− 1)!(n− s)!
ts−1(1− t)n−sdt

=
BFY (y)(s, n− s+ 1)

B(s, n− s+ 1)
= IFY (y)(s, n− s+ 1), (3.4)

−∞ < y <∞.
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For further discussion, one can see [14] and [4], among others.

3.2 Joint Distribution of Bivariate Order Statis-

tics

Let us assume that X1, X2, ..., Xn and Y1, Y2, ..., Yn be independent and identi-

cally distributed random variables with distribution functions FX(x) and FY (y),

respectively. Let (X1, Y1), ..., (Xn, Yn) be a bivariate sample with joint distribution

function F (x, y).

Additionally, X1:n ≤ X2:n ≤ ... ≤ Xn:n, Y1:n ≤ Y2:n ≤ ... ≤ Yn:n be the

corresponding marginal order statistics derived by arranging the random samples

in nondecreasing order of magnitude. Let Xr:n and Ys:n be the corresponding

rth and sth order statistics constructed on the basis of the bivariate observations

(Xi, Yi), i = 1, 2, ..., n. The marginal distribution function of Xr:n and Ys:n is given

by

FXr:n(x) = P{Xr:n ≤ x} =
n∑
i=r

(
n

i

)
FX(x)i[1− FX(x)]n−i,

FYs:n(y) = P{Ys:n ≤ y} =
n∑
j=s

(
n

j

)
FY (y)j[1− FY (y)]n−j.

The joint distribution function of Xr:n and Ys:n can be obtained easily from

the bivariate binomial distribution if one considers the fourfold model with A =
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{Xi ≤ x} and B = {Yi ≤ y}. Then, we obtain the following cell probabilities

P (AB) = P{Xi ≤ x, Yi ≤ y} = F (x, y)

P (ABc) = P{Xi ≤ x, Yi > y} = FX(x)− F (x, y)

P (AcB) = P{Xi > x, Yi ≤ y} = FY (y)− F (x, y)

P (AcBc) = P{Xi > x, Yi > y} = 1− FX(x)− FY (y) + F (x, y).

If ξ and η are the number of occurrences of events A and B in n independent

trials of the fourfold experiment, respectively, it is clear that

P{Xr:n ≤ x, Ys:n ≤ y} =
n∑
i=r

n∑
j=s

P{ξ = i, η = j}

=
n∑
i=r

n∑
j=s

b∑
k=a

n!

k!(i− k)!(j − k)!(n− i− j + k)!

× πk11πi−k12 πj−k21 πn−i−j+k22 , (3.5)

where

π11 = F (x, y)

π12 = FX(x)− F (x, y)

π21 = FY (y)− F (x, y)

π22 = 1− FX(x)− FY (y) + F (x, y)

and

a = max(0, i+ j − n), b = min(i, j).

(see, [13]).
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Main Results

4.1 Modifications of Bivariate Binomial Distri-

bution Under Fourfold Sampling Scheme

In this section, we consider novel modifications of bivariate binomial distribu-

tions and obtain new trivariate discrete distributions in fourfold sampling scheme.

These distributions are an important class of distributions that are used to derive

conditional distribution of bivariate order statistics constructed from a bivariate

random sample under the condition that a certain number of observations fall in

the given threshold set which will be discussed in the next section. The novel

trivariate discrete distributions are of interest for distribution theory. The proba-

bility generating functions of these distributions are also derived.

27



CHAPTER 4. 28

4.1.1 The Modified Bivariate Binomial Distribution

Remember that the fourfold sampling scheme (or fourfold experiment), i.e. sup-

pose that the outcome of the random experiment is one of the events A or Ac and

simultaneously one of B or Bc with probabilities P (AB) = π11, P (ABc) = π12,

P (AcB) = π21 and P (AcBc) = π22,
∑

ij πij = 1. In this scheme, the event A occurs

together with B or Bc, and the event B occurs together with A or Ac, therefore

the outcomes of the experiment are AB,ABc, AcB and AcBc.

If we repeat the fourfold experiment n times independently, then we will use

the expression ”in n independent fourfold trials” or ”in n independent trials of

fourfold experiment”.

In this section, we introduce novel trivariate distributions obtained from bi-

variate binomial distributions by introducing new events in fourfold model. In

this set up of fourfold experiment, for further modifications of bivariate binomial

distribution we consider the following four cases:

1. We assume that together with A,B,Ac, Bc the event C also can occur in the

experiment and C ⊂ AB.

2. We assume that C and D also can occur in the experiment and C ⊂ AB,

D ⊂ ABc.

3. We assume that C and E also can occur in the experiment and C ⊂ AB,

E ⊂ AcB.

4. We assume D,E and F can also occur in the experiment and D ⊂ ABc,

E ⊂ AcB and F ⊂ AcBc.

According to these four cases, we consider n independent trials of fourfold

experiment and define the random variables, ξ, η and ζ as follows:
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Definition 4.1.

(a) If C ⊂ AB then ξ, η and ζ are the number of occurrences of events A,B,C,

respectively.

(b) If C ⊂ AB and D ⊂ ABc, then ξ, η and ζ are the number of occurrences of

events A,B, C ∪D, respectively.

(c) If C ⊂ AB and E ⊂ AcB, then ξ, η and ζ are the number of occurrences of

events A,B, C ∪ E, respectively.

(d) If D ⊂ ABc,E ⊂ AcB and F ⊂ AcBc, then ξ, η and ζ are the number of

occurrences of events A,B, D ∪ E ∪ F, respectively.

(d1) If D ⊂ ABc,E ⊂ AcB and F ⊂ AcBc, then ξ, η and ζ are the number of

occurrences of events A,B, AB ∪D ∪ E ∪ F, respectively.

Note that, the events C,D,E and F are distinct for each cases (a), (b), (c), (d),

(d1) and ξ, η and ζ denote distinct random variables for each case, i.e. ξ, η and ζ

in (a) are distinctive than ξ, η and ζ in (b) etc. We use such a notation to avoid

introducing tremendous number of letters in notations. Therefore, each of cases

(a), (b), (c), (d) and (d1) must be considered separately. The joint distributions of

random variables ξ, η and ζ for each of the cases (a), (b), (c), (d), (d1) are given in

the following Theorems 4.2-4.7, respectively.

Theorem 4.2. In the fourfold sampling scheme, let C ⊂ AB and ξ, η, ζ be the

number of occurrences of the events A, B, C in n independent trials, respectively

(case (a) in Definition 4.1). Then, the joint probability mass function of ξ, η and



CHAPTER 4. 30

ζ is

P1(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
b∑

k=a

C1(n;h, k, i, j)P (C)h[P (AB)− P (C)]k−hP (ABc)i−k

× P (AcB)j−kP (AcBc)n−i−j+k, (4.1)

where

C1(n;h, k, i, j) =
n!

h!(k − h)!(i− k)!(j − k)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j); i, j = 0, 1, ..., n;

h = 0, ...,min(i, j).

Proof. If ξ = i, we consider all possible cases of the occurrence of the event A and

we indicate these cases as k = 0, 1, ..., then A occurs together with B k times and

together with Bc i − k times. ζ = h indicates that C occurs h times. Because

C ⊂ AB, h may be at most min(i, j) because ξ = i, η = j. Then, AB\C = AB∩Cc

occurs k − h times. η = j implies that if B appears together with Ac j − k times,

Bc appears together with Ac n− i− j + k times. Schematically, this situation can

be described as follows:

A \B B Bc

A
h

times

C

k

times

AB

i− k
times

ABc

Ac
j − k
times

AcB

n− i− j + k

times

AcBc

Figure 4.1 Description for P1(i, j, h)



CHAPTER 4. 31

Therefore, it is clear that if we repeat the experiment n times, then h outcomes

of the event C can be observed in

(
n

h

)
ways and k−h outcomes of the event AB\C

can be realized in

(
n− h
k − h

)
ways. Then, i − k outcomes of the event A can be

observed with Bc in

(
n− h− (k − h)

i− k

)
=

(
n− k
i− k

)
ways and Ac can be realized

together with B in

(
n− k − (i− k)

j − k

)
=

(
n− i
j − k

)
ways.

Thus in n independent trials, the number of possible cases in which A appears i

times, B appears j times and C appears h times is(
n

h

)(
n− h
k − h

)(
n− k
i− k

)(
n− i
j − k

)
=

n!

h!(k − h)!(i− k)!(j − k)!(n− i− j + k)!

with probability,

P (C)h[P (AB)− P (C)]k−hP (ABc)i−kP (AcB)j−kP (AcBc)n−i−j+k.

It is clear that max(0, i + j − n) ≤ k ≤ min(i, j) and i, j = 0, 1, ..., n; h =

0, ...,min(i, j).

Remark 4.3. If C = AB, then ξ, η, ζ are the number of occurrences of the events

A, B, AB in n independent trials, respectively. In this case, from (4.1) we have

P{ξ = i, η = j, ζ = h}

=
n!

h!(i− h)!(j − h)!(n− i− j + h)!
P (AB)hP (ABc)i−h

× P (AcB)j−hP (AcBc)n−i−j+h, (4.2)

i, j = 0, 1, ..., n; h = max(0, i+ j − n), ...,min(i, j),

and it is clear that the bivariate binomial distribution is the marginal probability

mass function (p.m.f.) of (4.2).
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Theorem 4.4. In fourfold model let C ⊂ AB and D ⊂ ABc and ξ, η and ζ

be the number of occurrences of the events A, B,C ∪ D in n independent trials,

respectively (case (b) in Definition 4.1). Then the joint probability mass function

of ξ, η and ζ is

P2(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
b∑

k=a

h∑
l=0

C2(n; k, l, h, i, j)P (C)l[P (AB)− P (C)]k−lP (D)h−l

× [P (ABc)− P (D)]i−k−h+lP (AcB)
j−k

P (AcBc)n−i−j+k (4.3)

where

C2(n; k, l, h, i, j) =
n!

l!(k − l)!(h− l)!(i− k − h+ l)!(j − k)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j); i, j = 0, 1, 2, ..., n;

h = 0, ..., i.

Proof. We know the implications of ξ = i and η = j from the proof of Theorem

4.2. Unlike in the previous theorem, ζ = h i.e., C ∪ D occurs h times. Because

C ⊂ AB and D ⊂ ABc, C ∪ D ⊂ AB ∪ ABc = A. Therefore, h can be at most

i because ξ = i. Then, indicating all possible cases of the occurrence of event C

by l = 0, 1, 2..., one observes that D occurs h − l times. Hence, AB\C occurs

k− l times and ABc\D occurs i− k− (h− l) times. Then, similar to the proof of

Theorem 4.2, all possible cases of the occurrence of the event {ξ = i, η = j, ζ = h}
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can be schematically described as follows:

A \B B Bc

A
l

times

C

k

times

AB

h− l
times

D

i− k
times

ABc

Ac
j − k
times

AcB

n− i− j + k

times

AcBc

Figure 4.2 Description for P2(i, j, h)

Then, in n independent repeated trials, l outcomes of the event C can be

observed in

(
n

l

)
ways and k − l outcomes of the event AB\C can be realized

in

(
n− l
k − l

)
ways. Therefore, h − l outcomes of the event D can be realized in(

n− l − (k − l)
h− l

)
=

(
n− k
h− l

)
ways and i−k−h+ l outcomes of the event ABc\D

can be realized in

(
n− k − (h− l)
i− k − h+ l

)
ways. Then, Ac can be realized together with

B in

(
n− k − h+ l − (i− k − h+ l)

j − k

)
=

(
n− i
j − k

)
ways.

Thus in n independent trials, the number of possible cases in which A appears

i times, B appears j times and C ∪D appears h times is(
n

l

)(
n− l
k − l

)(
n− k
h− l

)(
n− k − (h− l)
i− k − h+ l

)(
n− i
j − k

)
=

n!

l!(k − l)!(h− l)!(i− k − h+ l)!(j − k)!(n− i− j + k)!
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and each case has the same probability,

P (C)l[P (AB)− P (C)]k−lP (D)h−l[P (ABc)− P (D)]i−k−h+l

× P (AcB)j−kP (AcBc)n−i−j+k.

It is clear that max(0, i + j − n) ≤ k ≤ min(i, j) and i, j = 0, 1, ..., n; h =

0, 1, ..., i.

Theorem 4.5. Let C ⊂ AB and E ⊂ AcB in the fourfold sampling scheme.

Assume that ξ, η and ζ denote the number of occurrences of the events A, B,

C ∪E in n independent trials, respectively (case (c) in Definition 4.1). Then, the

joint probability mass function of ξ, η and ζ is

P3(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
b∑

k=a

h∑
l=0

C3(n; k, l, h, i, j)P (C)l[P (AB)− P (C)]k−lP (ABc)i−k

× P (E)h−l[P (AcB)− P (E)]j−k−h+lP (AcBc)n−i−j+k, (4.4)

where

C3(n; k, l, h, i, j) =
n!

l!(k − l)!(i− k)!(h− l)!(j − k − h+ l)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j); i, j = 0, 1, ..., n;

h = 0, 1, ..., j.

Proof. This theorem can be proved in a manner similar to the proof of Theorem
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4.4 using the below schematic representation:

A \B B Bc

A
l

times

C

k

times

AB

i− k
times

ABc

Ac
h− l
times

E

j − k
times

AcB

n− i− j + k

times

AcBc

Figure 4.3 Description for P3(i, j, h)

We know the implications of ξ = i and η = j from the proof of Theorem

4.2. Unlike in the previous theorem, ζ = h i.e., C ∪ E occurs h times. Because

C ⊂ AB and E ⊂ AcB, C ∪ E ⊂ AB ∪ AcB = B. Therefore, h can be at most

j because η = j. Then, indicating all possible cases of the occurrence of event C

by l = 0, 1, 2..., one observes that E occurs h − l times. Hence, AB\C occurs

k− l times and AcB\E occurs j − k− (h− l) times. Then, similar to the proof of

Theorem 4.4, all possible cases of the occurrence of the event {ξ = i, η = j, ζ = h}
can be found easily.

Theorem 4.6. In the fourfold sampling scheme, let D ⊂ ABc, E ⊂ AcB , F ⊂
AcBc and ξ, η, ζ be the number of occurrences of the events A, B, D ∪ E ∪ F
in n independent trials, respectively (case (d) in Definition 4.1). Then, the joint
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probability mass function of ξ, η and ζ is

P4(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
b∑

k=a

i−k∑
p=0

j−k∑
q=0

C4(n; k, p, q, h, i, j)P (AB)k

× P (D)p[P (ABc)− P (D)]i−k−pP (E)q[P (AcB)− P (E)]j−k−q

× P (F )h−p−q[P (AcBc)− P (F )]n−i−j+k−h+p+q, (4.5)

where

C4(n; k, p, q, h, i, j)

=
n!

k!p!(i− k − p)!q!(j − k − q)!(h− p− q)!

× 1

(n− i− j + k − h+ p+ q)!
;

a = max(0, i+ j − n); b = min(i, j); i, j, h = 0, 1, ..., n.

Proof. The schematic representation for this theorem is as follows:

A \B B Bc

A

k

times

AB

p

times

D

i− k
times

ABc

Ac
q

times

E

j − k
times

AcB

h− p− q
times

F

n− i− j + k

times

AcBc

Figure 4.4 Description for P4(i, j, h)

For clarity of explanation, we denote by µ(M) the number of occurrence of any
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event M in n independent trials of the fourfold experiment. Because D ∪ E ∪ F
occurs h times, i.e., ζ = h and D ∩ E ∩ F = ∅, h = µ(D) + µ(E) + µ(F ), where

µ(D) = p, µ(E) = q, µ(F ) = h−p− q are the number of occurrences of the events

D, E and F , respectively. Then, the number of occurrences of AB is k, of ABc\D
is i− k − p, of AcB\E is j − k − q and of AcBc\F is n− i− j + k − (h− p− q).

The implications of ξ = i and η = j are also known from the proof of the first

Theorem.

Therefore, it is clear that if we repeat the experiment n times, then k outcomes

of the event AB can be observed in

(
n

k

)
ways, p outcomes of the event D can

be observed in

(
n− k
p

)
ways and i− k− p outcomes of the event ABc\D can be

realized in

(
n− k − p
i− k − p

)
ways. Then, q outcomes of the event E can be observed

in

(
n− k − p− (i− k − p)

q

)
=

(
n− i
q

)
ways and j−k−q outcomes of the event

AcB\E can be realized in

(
n− i− q
j − q − k

)
ways. Finally, h − p − q outcomes of the

event F can be realized in

(
n− i− q − (j − k − q)

h− p− q

)
=

(
n− i− j + k

h− p− q

)
ways.

Thus in n independent trials, the number of possible cases in which A appears

i times, B appears j times and D ∪ E ∪ F appears h times is(
n

k

)(
n− k
p

)(
n− k − p
i− k − p

)(
n− i
q

)(
n− i− q
j − k − q

)(
n− i− j + k

h− p− q

)
=

n!

k!p!(i− k − p)!q!(j − k − q)!(h− p− q)!

× 1

(n− i− j + k − h+ p+ q)!

and each case has equal probability,

P (AB)kP (D)p[P (ABc)− P (D)]i−k−pP (E)q

× [P (AcB)− P (E)]j−k−qP (F )h−p−q[P (AcBc)− P (F )]n−i−j+k−h+p+q.
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It is clear that a = max(0, i+ j − n); b = min(i, j); i, j, h = 0, 1, ..., n.

Theorem 4.7. In the fourfold sampling scheme, let D ⊂ ABc, E ⊂ AcB, F ⊂
AcBc and ξ, η, ζ be the number of occurrences of the events A, B, AB∪D∪E∪F
in n independent trials, respectively (case (d1) in Definition 4.1). Then, the joint

probability mass function of ξ, η and ζ is

P4.1(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=
b∑

k=a

i−k∑
p=0

j−k∑
q=0

C4.1(n; k, p, q, h, i, j)P (AB)k

× P (D)p[P (ABc)− P (D)]i−k−pP (E)q[P (AcB)− P (E)]j−k−q

× P (F )h−p−q−k[P (AcBc)− P (F )]n−i−j+2k−h+p+q, (4.6)

where

C4.1(n; k, p, q, h, i, j)

=
n!

k!p!(i− k − p)!q!(j − k − q)!(h− p− q − k)!

× 1

(n− i− j + 2k − h+ p+ q)!
;

a = max(0, i+ j − n); b = min(i, j); i, j, h = 0, 1, ..., n.

Proof. The proof of this theorem is similar to the proof of Theorem 4.6. The
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schematic representation for this theorem is as follows:

A \B B Bc

A

k

times

AB

p

times

D

i− k
times

ABc

Ac
q

times

E

j − k
times

AcB

h− p− q − k
times

F

n− i− j + k

times

AcBc

Figure 4.5 Description for P4.1(i, j, h)

4.1.2 Probability Generating Function of The Modified Bi-

variate Binomial Distribution

The probability generating function (p.g.f.) of the bivariate binomial distribution

is Φ(t, s) = (π11ts+π12t+π21s+π22)
n. Below, we provide the probability generating

functions of the trivariate distributions given in Theorem 4.2-4.7.

Lemma A1. Consider the fourfold sampling scheme given in case (a) in

Definition 4.1. Then, the joint probability generating function of the random vector

(ξ, η, ζ) with probability mass function (p.m.f.) P1(i, j, h) in (4.1) in Theorem 4.2

is

Φ1(t, s, z) = (α1tsz + α2ts+ α3t+ α4s+ α5)
n, (4.7)
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where

α1 = P (C), α2 = P (AB)−P (C), α3 = P (ABc), α4 = P (AcB) and α5 = P (AcBc).

Proof. To derive the joint probability generating functions, let us write

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial C appears,

0 otherwise.

r = 1, 2, ..., n.

It is clear that ξ =
n∑
r=1

γr1, η =
n∑
r=1

γr2 and ζ =
n∑
r=1

γr3. Because the trials are

independent, the p.g.f. of the random vector (ξ, η, ζ) is

Φ(t, s, z) =

(
1∑

x1,x2,x3=0

tx1sx2zx3qx1,x2,x3

)n

(4.8)

where

qx1,x2,x3 = P{γr1 = x1, γ
r
2 = x2, γ

r
3 = x3}; x1, x2, x3 = 0, 1.
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We have

q1,1,1 = P (ABC) = P (C)

q1,1,0 = P (ABCc) = P (AB)− P (C)

q1,0,1 = P (ABcC) = 0

q0,1,1 = P (AcBC) = 0

q0,0,1 = P (AcBcC) = 0

q0,1,0 = P (AcBCc) = P (AcB)

q1,0,0 = P (ABcCc) = P (ABc)

q0,0,0 = P (AcBcCc) = P (AcBc).

Then, substituting these values in (4.8) and simplifying, we obtain (4.7).

The proof of the following lemmas are similar.

Lemma A2. Consider the fourfold sampling scheme given in case (b) in

Definition 4.1. Then, the joint probability generating function of the random vector

(ξ, η, ζ) with p.m.f. P2(i, j, h) given in (4.3) in Theorem 4.4 is

Φ2(t, s, z) = (α1tsz + α2ts+ α3tz + α4t+ α5s+ α6)
n, (4.9)

where

α1 = P (C), α2 = P (AB)− P (C), α3 = P (D), α4 = P (ABc)− P (D),

α5 = P (AcB) and α6 = P (AcBc).
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Proof. To derive the joint probability generating functions, let us write

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial C ∪D appears,

0 otherwise.

r = 1, 2, ..., n.

We have

q1,1,1 = P (AB(C ∪D)) = P (C)

q1,1,0 = P (AB(C ∪D)c) = P (AB)− P (C)

q1,0,1 = P (ABc(C ∪D)) = P (D)

q0,1,1 = P (AcB(C ∪D)) = 0

q0,0,1 = P (AcBc(C ∪D)) = 0

q0,1,0 = P (AcB(C ∪D)c) = P (AcB)

q1,0,0 = P (ABc(C ∪D)c) = P (ABc)− P (D)

q0,0,0 = P (AcBc(C ∪D)c) = P (AcBc).

Then substituting these values in (4.8) and simplifying, we obtain (4.9).

Lemma A3. Consider the fourfold sampling scheme given in case (c) in

Definition 4.1. Then, the joint probability generating function of the random vector

(ξ, η, ζ) with p.m.f. P3(i, j, h) given in (4.4) in Theorem 4.5 is

Φ3(t, s, z) = (α1tsz + α2ts+ α3sz + α4t+ α5s+ α6)
n, (4.10)
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where

α1 = P (C), α2 = P (AB)− P (C), α3 = P (E), α4 = P (ABc),

α5 = P (AcB)− P (E) and α6 = P (AcBc).

Proof. To derive the joint probability generating functions, let us write

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial C ∪ E appears,

0 otherwise.

r = 1, 2, ..., n.

We have

q1,1,1 = P (AB(C ∪ E)) = P (C)

q1,1,0 = P (AB(C ∪ E)c) = P (AB)− P (C)

q1,0,1 = P (ABc(C ∪ E)) = 0

q0,1,1 = P (AcB(C ∪ E)) = P (E)

q0,0,1 = P (AcBc(C ∪ E)) = 0

q0,1,0 = P (AcB(C ∪ E)c) = P (AcB)− P (E)

q1,0,0 = P (ABc(C ∪ E)c) = P (ABc)

q0,0,0 = P (AcBc(C ∪ E)c) = P (AcBc).

Then substituting these values in (4.8) and simplifying, we obtain (4.10).

Lemma A4. Consider the fourfold sampling scheme given in case (d) in
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Definition 4.1. Then, the joint probability generating function of the random vector

(ξ, η, ζ) with p.m.f. P4(i, j, h) given in (4.5) in Theorem 4.6 is

Φ4(t, s, z) = (α1ts+ α2tz + α3sz + α4t+ α5s+ α6z + α7)
n, (4.11)

where

α1 = P (AB), α2 = P (D), α3 = P (E), α4 = P (ABc)− P (D),

α5 = P (AcB)− P (E), α6 = P (F ), α7 = P (AcBc)− P (F ).

Proof. To derive the joint probability generating functions, let us write

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial D ∪ E ∪ F appears,

0 otherwise.

r = 1, 2, ..., n.

We have

q1,1,1 = P (AB(D ∪ E ∪ F )) = 0

q1,1,0 = P (AB(D ∪ E ∪ F )c) = P (AB)

q1,0,1 = P (ABc(D ∪ E ∪ F )) = P (D)

q0,1,1 = P (AcB(D ∪ E ∪ F )) = P (E)

q0,0,1 = P (AcBc(D ∪ E ∪ F )) = P (F )

q0,1,0 = P (AcB(D ∪ E ∪ F )c) = P (AcB)− P (E)

q1,0,0 = P (ABc(D ∪ E ∪ F )c) = P (ABc)− P (D)

q0,0,0 = P (AcBc(D ∪ E ∪ F )c) = P (AcBc)− P (F ).
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Then substituting these values in (4.8) and simplifying, we obtain (4.11).

Lemma A4.1. Consider the fourfold sampling scheme given in case (d1 ) in

Definition 4.1. Then, the joint probability generating function of the random vector

(ξ, η, ζ) with p.m.f. P4.1(i, j, h) given in (4.6) in Theorem 4.7 is

Φ4.1(t, s, z) = (α1tsz + α2tz + α3sz + α4t+ α5s+ α6z + α7)
n, (4.12)

where

α1 = P (AB), α2 = P (D), α3 = P (E), α4 = P (ABc)− P (D),

α5 = P (AcB)− P (E), α6 = P (F ), α7 = P (AcBc)− P (F ).

Proof. To derive the joint probability generating functions, let us write

γr1 =

{
1 if in the rth trial A appears,

0 otherwise.

γr2 =

{
1 if in the rth trial B appears,

0 otherwise.

γr3 =

{
1 if in the rth trial AB ∪D ∪ E ∪ F appears,

0 otherwise.

r = 1, 2, ..., n.
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We have

q1,1,1 = P (AB(AB ∪D ∪ E ∪ F )) = P (AB)

q1,1,0 = P (AB(AB ∪D ∪ E ∪ F )c) = 0

q1,0,1 = P (ABc(AB ∪D ∪ E ∪ F )) = P (D)

q0,1,1 = P (AcB(AB ∪D ∪ E ∪ F )) = P (E)

q0,0,1 = P (AcBc(AB ∪D ∪ E ∪ F )) = P (F )

q0,1,0 = P (AcB(AB ∪D ∪ E ∪ F )c) = P (AcB)− P (E)

q1,0,0 = P (ABc(AB ∪D ∪ E ∪ F )c) = P (ABc)− P (D)

q0,0,0 = P (AcBc(AB ∪D ∪ E ∪ F )c) = P (AcBc)− P (F ).

Then substituting these values in (4.8) and simplifying, we obtain (4.12).

4.2 Conditional Distribution of Bivariate Order

Statistics

In this section, we consider the joint distribution of bivariate order statistics

(Xr:n, Ys:n) under the condition that h of the random observations (X1, Y1), ....,

(Xn, Yn) are truncated, i.e., they fall in the set Buv = {(t, s) ∈ R2 : t ≤ u, s ≤ v},
(u, v) ∈ R2, assuming P{(X, Y ) ∈ Buv} > 0. This conditional distribution is de-

rived using novel modifications of the bivariate binomial distribution introduced

in the previous chapter.

4.2.1 Conditional Bivariate Order Statistics

Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be i.i.d. random variables with distribution

function FX(x) and FY (y), respectively. Consider (X1, Y1), ..., (Xn, Yn) be a bi-

variate sample with joint distribution function F (x, y). Now, we are interested in
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the conditional joint distribution of bivariate order statistics under the condition

that h of the bivariate observations (Xi, Yi), i = 1, 2, ..., n are truncated and belong

to the set

Buv = {(t, s) ∈ R2 : t ≤ u, s ≤ v}, (u, v) ∈ R2. (4.13)

Lemma 4.8. Let (X, Y ) be a bivariate random vector with joint distribution

function F (x, y) and (X1, Y1), ..., (Xn, Yn) be independent copies of (X, Y ). If

(Xr:n, Ys:n), r, s = 1, 2, ..., n is the vector of bivariate order statistics and B is

any Borel set on R2, then

Fr,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y |

h of (X1, Y1), ..., (Xn, Yn) belong to B}

=
1(

n
h

)
P{(X, Y ) ∈ B}hP{(X, Y ) ∈ Bc}n−h

×
n∑
i=r

n∑
j=s

P{exactly i of X’s ≤ x, exactly j of Y ’s ≤ y,

exactly h of (Xi, Yi)’s ∈ B}, (4.14)

where Bc = R2\B is the complement of B.

Proof. From the conditional probability formula, one has

P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), ..., (Xn, Yn) belong to B}

=
P{Xr:n ≤ x, Ys:n ≤ y, h of (X1, Y1), ..., (Xn, Yn) belong to B}

P{h of (X1, Y1), ..., (Xn, Yn) belong to B}
. (4.15)

Because the random vectors (Xi, Yi), i = 1, 2, ..., n are assumed to be independent

and identically distributed, then from the binomial distribution, one has

P{h of (X1, Y1), ..., (Xn, Yn) belong to B}

=

(
n

h

)
P{(X, Y ) ∈ B}hP{(X, Y ) ∈ Bc}n−h. (4.16)

Now, (4.16) and (4.15) imply (4.14). Thus, the lemma is proved.
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For deriving the conditional distribution function of bivariate order statistics

Fr,s:n(x, y | u, v), we consider the following four possible cases:

Case a : u ≤ x, v ≤ y

Case b : u ≤ x, v > y

Case c : u > x, v ≤ y

Case d : u > x, v > y

Definition of Case a If u ≤ x, v ≤ y, then we denote A = {Xi ≤ x},
B = {Yi ≤ y} and C = {Xi ≤ u, Yi ≤ v}. Let ξ be the number of observations

(Xi, Yi), i = 1, 2, ..., n, for which Xi ≤ x, η be the number of observations for which

Yi ≤ y and ζ be the number of observations for which Xi ≤ u and Yi ≤ v. It is

clear that C ⊂ AB and ξ, η, ζ are the number of observations in n independent

trials of the fourfold experiment of the events A, B and C, respectively, as in case

(a) of Definition 4.1. We have

P (C) = P{X ≤ u, Y ≤ v} = F (u, v) (4.17)

P (AB)− P (C) = P{X ≤ x, Y ≤ y} − P{X ≤ u, Y ≤ v}

= F (x, y)− F (u, v) (4.18)

P (ABc)=P{X ≤ x, Y > y} =FX(x)− F (x, y) (4.19)

P (AcB)=P{X > x, Y ≤ y} = F Y (y)− F (x, y) (4.20)

P (AcBc)=P{X > x, Y > y} = F̄ (x, y). (4.21)
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Theorem 1a If u ≤ x, v ≤ y, then

F (1)
r,s:n(x, y | u, v)

≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

×
n∑
i=r

n∑
j=s

b∑
k=a

C1(n;h, k, i, j)F (u, v)h[F (x, y)− F (u, v)]k−h

× [FX(x)− F (x, y)]i−k[FY (y)− F (x, y)]j−kF̄ (x, y)
n−i−j+k

, (4.22)

h = 0, 1, ...,min(r, s) and

F (1)
r,s:n(x, y | u, v) = 0 if min(r, s) < h ≤ n,

where

C1(n;h, k, i, j) =
n!

h!(k − h)!(i− k)!(j − k)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j).

Proof. Because P{(X, Y ) ∈ Buv} = F (u, v) and P{(X, Y ) ∈ Bc
uv} = 1− F (u, v),

from Lemma 4.8 , we have

F (1)
r,s:n(x, y | u, v)

≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

n∑
i=r

n∑
j=s

P{ξ = i, η = j, ζ = h}.

Now, (4.22) easily follows from Theorem 4.2, from the Definition of Case a and

the equalities (4.17)-(4.21). For i = r, j = s, and h = min(r, s), the probability

P{ξ = i, η = j, ζ = h}
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does not vanish. For i = r+1, j = s, r < s, and h = s+1, this probability vanishes

because C ⊂ AB and the number of occurrences of C cannot exceed the number of

occurrences of AB ({ξ = i, η = j} implies that the number of occurrences of AB is

min(i, j)). Therefore, for the values of (i, j) = (r, s), (r+ 1, s), (r, s+ 1), ..., (n, n),

the value of h will vary from 0 to min(r, s).

Definition of Case b If u ≤ x, v > y, then we denote A = {Xi ≤ x},
B = {Yi ≤ y}, C = {Xi ≤ u, Yi ≤ y} and D = {Xi ≤ u, y < Yi ≤ v}. Let ξ be the

number of observations (Xi, Yi), i = 1, 2, ..., n, for which Xi ≤ x, η be the number

of observations for which Yi ≤ y and ζ be the number of observations for which

Xi ≤ u and Yi ≤ v. It is clear that C ⊂ AB, D ⊂ ABc and ξ, η, ζ are the number

of observations in n independent trials of the fourfold experiment of the events A,

B and C ∪D, respectively, as in case (b) of Definition 4.1. We have

P (C) = P{X ≤ u, Y ≤ y} = F (u, y) (4.23)

P (AB)− P (C) = P{X ≤ x, Y ≤ y} − P{X ≤ u, Y ≤ y}

= F (x, y)− F (u, y) (4.24)

P (D) = P{X ≤ u, y < Y ≤ v} = F (u, v)− F (u, y) (4.25)

P (ABc)− P (D)=P{X ≤ x, Y > y}−P{X ≤ u, y < Y ≤ v}

=FX(x)− F (x, y)− F (u, v) + F (u, y) (4.26)

P (AcB)=P{X > x, Y ≤ y} = F Y (y)− F (x, y) (4.27)

P (AcBc)=P{X > x, Y > y} = F̄ (x, y). (4.28)
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Theorem 2a If u ≤ x, v > y, then

F (2)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | hof (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

n∑
i=r

n∑
j=s

b∑
k=a

h∑
l=0

C2(n; k, l, h, i, j)F (u, y)l

× [F (x, y)− F (u, y)]k−l

× [F (u, v)− F (u, y)]h−l[FX(x)− F (x, y)− F (u, v) + F (u, y)]i−k−h+l

× [FY (y)− F (x, y)]j−kF̄ (x, y)n−i−j+k, (4.29)

h = 0, 1, ..., r and

F (2)
r,s:n(x, y | u, v) = 0 if r < h ≤ n,

where

C2(n; k, l, h, i, j) =
n!

l!(k − l)!(h− l)!(i− k − h+ l)!(j − k)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j).

Proof. Similar to the proof of Theorem 1a, the proof of this theorem easily

follows from Lemma 4.8, Theorem 4.4, Definition 4.1 (b), Definition of Case b,

and equalities (4.23)-(4.28).

Definition of Case c. If u > x, v ≤ y, then we denote A = {Xi ≤ x},
B = {Yi ≤ y}, C = {Xi ≤ x, Yi ≤ v} and E = {x < Xi ≤ u, Yi ≤ v}. Let ξ be the

number of observations (Xi, Yi), i = 1, 2, ..., n, for which Xi ≤ x, η be the number

of observations for which Yi ≤ y and ζ be the number of observations for which

Xi ≤ u and Yi ≤ v. It is clear that C ⊂ AB, E ⊂ AcB and ξ, η, ζ are the number

of observations in n independent trials of the fourfold experiment of the events A,
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B and C ∪ E, respectively, as in case (c) of Definition 4.1. We have

P (C) = P{X ≤ x, Y ≤ v} = F (x, v) (4.30)

P (AB)− P (C) = P{X ≤ x, Y ≤ y} − P{X ≤ x, Y ≤ v}

= F (x, y)− F (x, v) (4.31)

P (ABc) = P{X ≤ x, Y > y} =FX(x)− F (x, y) (4.32)

P (E) = P{x < X ≤ u, Y ≤ v} = F (u, v)− F (x, v) (4.33)

P (AcB)− P (E)=P{X > x, Y ≤ y}−P{x < X ≤ u, Y ≤ v}

=FY (y)− F (x, y)− F (u, v) + F (x, v) (4.34)

P (AcBc)=P{X > x, Y > y} = F̄ (x, y). (4.35)

Theorem 3a If u > x, v ≤ y, then

F (3)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | hof (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

n∑
i=r

n∑
j=s

b∑
k=a

h∑
l=0

C3(n; k, l, h, i, j)F (x, v)l

× [F (x, y)− F (x, v)]k−l[FX(x)− F (x, y)]i−k

× [F (u, v)− F (x, v)]h−l[FY (y)− F (x, y)

−F (u, v) + F (x, v)]j−k−h+lF̄ (x, y)
n−i−j+k

, (4.36)

h = 0, 1, ..., s and

F (3)
r,s:n(x, y | u, v) = 0 if s < h ≤ n,
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where

C3(n; k, l, h, i, j) =
n!

l!(k − l)!(i− k)!(h− l)!(j − k − h+ l)!(n− i− j + k)!
;

a = max(0, i+ j − n); b = min(i, j).

Proof. Similar to the proof of Theorem 2a, the proof of this theorem easily follows

from Lemma 4.8, Theorem 4.5, Definition 4.1 (c), Definition of Case c, and the

equalities (4.30)-(4.35).

Definition of Case d If u > x, v > y, then we denote A = {Xi ≤ x},
B = {Yi ≤ y}, D = {Xi ≤ x, y < Yi ≤ v}, E = {x < Xi ≤ u, Yi ≤ y} and

F = {x < Xi ≤ u, y < Yi ≤ v}. Let ξ be the number of observations (Xi, Yi),

i = 1, 2, ..., n, for which Xi ≤ x, η be the number of observations for which Yi ≤ y

and ζ be the number of observations for which Xi ≤ u and Yi ≤ v. It is clear that

D ⊂ ABc, E ⊂ AcB, F ⊂ AcBc and ξ, η, ζ are the number of observations in n

independent trials of the fourfold experiment of the events A, B and AB∪D∪E∪F,
respectively as in case (d1) of Definition 4.1. We have

P (AB) = P{X ≤ x, Y ≤ y} = F (x, y) (4.37)

P (D) = P{X ≤ x, y < Y ≤ v}

= F (x, v)− F (x, y) (4.38)

P (ABc)− P (D) = P{X ≤ x, Y > y} − P{X ≤ x, y < Y ≤ v}

= FX(x)− F (x, v) (4.39)

P (E) = P{x < X ≤ u, Y ≤ y} = F (u, y)− F (x, y) (4.40)

P (AcB)− P (E) = P{X > x, Y ≤ y} − P{x < X ≤ u, Y ≤ y}

= FY (y)− F (u, y) (4.41)
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P (F )=P{x < X ≤ u, y < Y ≤ v}

= F (u, v)− F (x, v)− F (u, y) + F (x, y) (4.42)

P (AcBc)− P (F )

=P{X > x, Y > y})− P{x < X ≤ u, y < Y ≤ v}

=1− FX(x)− FY (y)− F (u, v) + F (x, v) + F (u, y). (4.43)

Theorem 4.1a If u > x, v > y, then

F (4.1)
r,s:n (x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | hof (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

n∑
i=r

n∑
j=s

b∑
k=a

i−k∑
p=0

j−k∑
q=0

C4.1(n; k, p, q, h, i, j)F (x, y)k

× [F (x, v)− F (x, y)]p[FX(x)− F (x, v)]i−k−p

× [F (u, y)− F (x, y)]q[FY (y)− F (u, y)]j−k−q

× [F (u, v)− F (x, v)− F (u, y) + F (x, y)]h−p−q−k

× [1− FX(x)− FY (y)− F (u, v) + F (x, v) + F (u, y)]n−i−j+2k−h+p+q, (4.44)

h = 0, ..., n,

where

C4.1(n; k, p, q, h, i, j)

=
n!

k!p!(i− k − p)!q!(j − k − q)!(h− p− q − k)!

× 1

(n− i− j + 2k − h+ p+ q)!
;

a = max(0, i+ j − n); b = min(i, j).
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Proof. Using Lemma 4.8, Definition 4.1 (d1), and Definition of Case d, one has

F (4.1)
r,s:n (x, y | u, v)

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

n∑
i=r

n∑
j=s

P{ξ = i, η = j, ζ = h}.

Using Theorem 4.7 and equalities (4.37)-(4.43), we complete the proof.

Finally, using the results of Theorems 1a-4.1a, the conditional distribution of

bivariate order statistics is presented in the following theorem:

Theorem 5 Let (X, Y ) be a bivariate random vector with joint distribu-

tion function F (x, y) and (X1, Y1), ..., (Xn, Yn) be independent copies of (X, Y ).

If (Xr:n, Ys:n), r, s = 1, 2, ..., n, is the vector of bivariate order statistics and

Buv = {(t, s) ∈ R2 : t ≤ u, s ≤ v}, (u, v) ∈ R2, then

Fr,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=


F

(1)
r,s:n(x, y | u, v) if u ≤ x, v ≤ y,

F
(2)
r,s:n(x, y | u, v) if u ≤ x, v > y,

F
(3)
r,s:n(x, y | u, v) if u > x, v ≤ y,

F
(4.1)
r,s:n (x, y | u, v) if u > x, v > y,

h = 0, 1, ...,min(r, s).

Remark 4.9. One can verify the accuracy of the results presented in Theorems

1a-4.1a. Here, we present a different method for deriving the conditional distri-

bution of bivariate order statistics using the properties of extreme order statistics
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(Xn:n, Yn:n) as follows: Consider

Fn,n:n(x, y | u, v)

= P{Xn:n ≤ x, Yn:n ≤ y | h of (X1, Y1), ...,

(Xn, Yn) belong to Buv}

=
1(

n
h

)
F (u, v)h[1− F (u, v)]n−h

×P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), ..., (Xn, Yn) belong to Buv}. (4.45)

Because Xn:n ≤ x, implies that all X ′s are less than or equal to x, we can write

P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=
n∑

j1,j2,...,jn

P{Xn:n ≤ x, Yn:n ≤ y, (Xj1 , Yj1) ∈ Buv, ..., (Xjh , Yjh) ∈ Buv,

(Xjh+1
, Yjh+1

) ∈ Bc
uv, ..., (Xjn , Yjn) ∈ Bc

uv}

=
n∑

j1,j2,...,jn

P{Xn:n ≤ x, Yn:n ≤ y, (X1, Y1) ∈ Buv, ..., (Xh, Yh) ∈ Buv

(Xh+1, Yh+1) ∈ Bc
uv, ..., (Xn, Yn) ∈ Bc

uv}

=

(
n

h

)
P{Xn:n ≤ x, Yn:n ≤ y, (X1, Y1) ∈ Buv, ..., (Xh, Yh) ∈ Buv,
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(Xh+1, Yh+1) ∈ Bc
uv, ..., (Xn, Yn) ∈ Bc

uv}

=

(
n

h

)
P{X1 ≤ x, ..., Xn ≤ x, Y1 ≤ y, ..., Yn ≤ y,

(X1, Y1) ∈ Buv, ..., (Xh, Yh) ∈ Buv, (Xh+1, Yh+1) ∈ Bc
uv, ..., (Xn, Yn) ∈ Bc

uv}

=

(
n

h

)
P{X ≤ x, Y ≤ y, (X, Y ) ∈ Buv}hP{X ≤ x, Y ≤ y, (X, Y ) ∈ Bc

uv}n−h

=

(
n

h

)
P{X ≤ x, Y ≤ y,X ≤ u, Y ≤ v}h

×P{X ≤ x, Y ≤ y, (X ≤ u, Y > v ∪X > u, Y ≤ v ∪X > u, Y > v)}n−h

=

(
n

h

)
[P{X ≤ min(x, u), Y ≤ min(y, v)}]h

×[P{X ≤ min(x, u), v < Y ≤ y}+ P{u < X ≤ x, Y ≤ min(y, v)}

+P{u < X ≤ x, v < Y ≤ y}]n−h. (4.46)

Therefore,

Fn,n:n(x, y |u, v )

=
1

F (u, v)h[1− F (u, v)]n−h
[F (min(x, u),min(y, v)]h

× [F (min(x, u), y)− F (min(x, u), v) + F (x,min(y, v))− F (u,min(y, v))

+ F (u, v)− F (u, y)− F (x, v) + F (x, y)]n−h. (4.47)
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If u ≤ x, v ≤ y, then we obtain

P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=

(
n

h

)
[P{X ≤ u, Y ≤ v}]h

×[P{X ≤ u, v < Y ≤ y}+ P{u < X ≤ x, Y ≤ v}

+P{u < X ≤ x, v < Y ≤ y}]n−h

=

(
n

h

)
F (u, v)h

× [F (u, y)− F (u, v) + F (x, v)− F (u, v)

+ F (u, v)− F (u, y)− F (x, v) + F (x, y)]n−h

=

(
n

h

)
F (u, v)h[F (x, y)− F (u, v)]n−h. (4.48)

Thus taking into account (4.48) in (4.45), we obtain

F (1)
n,n:n(x, y |u, v )

=
[F (x, y)− F (u, v)]n−h

[1− F (u, v)]n−h
. (4.49)

Now, let r = s = n in Theorem 1a. Then, it can be easily verified that Fn,n:n(x, y |
u, v) in Theorem 1a equals to (4.49).

Similarly, we obtain the joint distribution of conditional extreme order statistics

(Xn:n, Yn:n) for the other cases:

If u ≤ x, v > y

F (2)
n,n:n(x, y |u, v )

=
F (u, y)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h
. (4.50)
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If u > x, v ≤ y

F (3)
n,n:n(x, y |u, v )

=
F (x, v)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h
. (4.51)

If u > x, v > y

F (4.1)
n,n:n(x, y |u, v )

=
F (x, y)h[3F (x, y)− 2F (x, v)− 2F (u, y) + F (u, v)]n−h

F (u, v)h[1− F (u, v)]n−h
. (4.52)

Therefore, we can represent the joint distribution of conditional extreme order

statistics (Xn:n, Yn:n) using the results obtained in Remark 4.9 as follows:

Theorem 4.10. Let (X, Y ) be a bivariate random vector with joint distribu-

tion function F (x, y) and (X1, Y1), ..., (Xn, Yn) be independent copies of (X, Y ). If

(Xn:n, Yn:n) is the vector of bivariate maximum order statistics and Buv = {(t, s) ∈
R2 : t ≤ u, s ≤ v}, (u, v) ∈ R2, then

Fn,n:n(x, y |u, v ) ≡ P{Xn:n ≤ x, Yn:n ≤ y | h of (X1, Y1), ..., (Xn, Yn) belong to Buv}

=


F

(1)
n,n:n(x, y | u, v) if u ≤ x, v ≤ y,

F
(2)
n,n:n(x, y | u, v) if u ≤ x, v > y,

F
(3)
n,n:n(x, y | u, v) if u > x, v ≤ y,

F
(4.1)
n,n:n(x, y | u, v) if u > x, v > y,

h = 0, 1, ..., n.
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4.2.1.1 Marginal Distributions of Conditional Extreme Order Statis-

tics (Xn:n, Yn:n)

In this section we are interested in the marginal distribution functions of bivariate

extreme order statistics (Xn:n, Yn:n) under the condition that h of the bivariate

observations (Xi, Yi), i = 1, 2, ..., n are truncated, i.e. fall in the set Buv.

Let us denote the marginal distribution function of (Xn:n) under condition that

h of (X1, Y1), ..., (Xn, Yn) belong to Buv by FXn:n(x |u, v ) and denote the marginal

distribution function of (Yn:n) under condition that h of (X1, Y1), ..., (Xn, Yn) be-

long to Buv by FYn:n(y |u, v ).

Then, by taking the limit of conditional joint distribution Fn,n:n(x, y |u, v )

as y → ∞, one can easily find the marginal distribution function FXn:n(x |u, v )

Similarly, by taking the limit of Fn,n:n(x, y |u, v ) as x → ∞, one can obtain the

FYn:n(y |u, v ):

lim
y→∞

Fn,n:n(x, y |u, v )

≡ lim
y→∞

P{Xn:n ≤ x, Yn:n ≤ y |h of (X1, Y1), ..., (Xn, Yn) belong to Buv }

≡ FXn:n(x |u, v ) (4.53)

and

lim
x→∞

Fn,n:n(x, y |u, v )

≡ lim
x→∞

P{Xn:n ≤ x, Yn:n ≤ y |h of (X1, Y1), ..., (Xn, Yn) belong to Buv }

≡ FYn:n(y |u, v ). (4.54)

Remember that we consider the four possible cases to obtain the conditional

distribution function of bivariate extreme order statistics Fn,n:n(x, y | u, v) :
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Case a : u ≤ x, v ≤ y

Case b : u ≤ x, v > y

Case c : u > x, v ≤ y

Case d : u > x, v > y

Let us consider the Case a) and Case c) as y →∞. Because v ≤ y , we obtain

v < ∞ if y → ∞. Similarly, let us consider the Case b) and Case d) as y → ∞.
Because v > y , we obtain v =∞ if y →∞.

Therefore, for deriving the FXn:n(x |u, v ) ≡ limy→∞ Fn,n:n(x, y |u, v ) we have

four possible cases:

i) u ≤ x, v <∞

ii) u ≤ x, v =∞

iii) u > x, v <∞

iv) u > x, v =∞

Here, we obtain the marginal distribution of (Xn:n) under condition that h of

(X1, Y1), ..., (Xn, Yn) belong to Buv as follows:

If u ≤ x, v ≤ y
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F
(1)
Xn:n

(x |u, v ) ≡ lim
y→∞

F (1)
n,n:n(x, y |u, v )

= lim
y→∞

(
[F (x, y)− F (u, v)]n−h

[1− F (u, v)]n−h

)
=

[F (x)− F (u, v)]n−h

[1− F (u, v)]n−h
, (4.55)

u ≤ x, v <∞.

If u ≤ x, v > y

F
(2)
Xn:n

(x |u, v ) ≡ lim
y→∞

F (2)
n,n:n(x, y |u, v )

= lim
y→∞

(
F (u, y)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=

[F (x)− F (u)]n−h

[1− F (u)]n−h
, (4.56)

u ≤ x, v =∞.

If u > x, v ≤ y

F
(3)
Xn:n

(x |u, v ) ≡ lim
y→∞

F (3)
n,n:n(x, y |u, v )

= lim
y→∞

(
F (x, v)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=
F (x, v)h[2F (x)− F (u)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h
, (4.57)

u > x, v <∞.
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If u > x, v > y

F
(4.1)
Xn:n

(x |u, v ) ≡ lim
y→∞

F (4.1)
n,n:n(x, y |u, v )

= lim
y→∞

(
F (x, y)h[3F (x, y)− 2F (x, v)− 2F (u, y) + F (u, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=
F (x)h[F (x)− F (u)]n−h

F (u)h[1− F (u)]n−h
, (4.58)

u > x, v =∞.

Now, we represent the marginal distribution of (Xn:n) under condition that h

of (X1, Y1), ..., (Xn, Yn) belong to Buv in the following theorem:

Theorem 4.11. Let (X, Y ) be a bivariate random vector with joint distribu-

tion function F (x, y) and (X1, Y1), ..., (Xn, Yn) be independent copies of (X, Y ).

If (Xn:n, Yn:n) is the vector of bivariate maximum order statistics with joint distri-

bution function Fn,n:n(x, y |u, v ) given in Theorem 4.10 and Buv = {(t, s) ∈ R2 :

t ≤ u, s ≤ v}, (u, v) ∈ R2, then

FXn:n(x |u, v ) ≡ lim
y→∞

Fn,n:n(x, y |u, v )

=


F

(1)
Xn:n

(x |u, v ) if u ≤ x, v <∞,
F

(2)
Xn:n

(x |u, v ) if u ≤ x, v =∞,
F

(3)
Xn:n

(x |u, v ) if u > x, v <∞,
F

(4.1)
Xn:n

(x |u, v ) if u > x, v =∞,

h = 0, 1, ..., n.
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Analogously, let us consider the Case a) and Case b) as x → ∞. Because

u ≤ x, we obtain u <∞ if x→∞. Also, let us consider the Case c) and Case d)

as x→∞. Because u > x, we obtain u =∞ if x→∞.

Therefore, for deriving the FYn:n(y |u, v ) ≡ limx→∞ Fn,n:n(x, y |u, v ) we have

four possible cases:

i) u <∞, v ≤ y

ii) u <∞, v > y

iii) u =∞, v ≤ y

iv) u =∞, v ≤ y

Now, we obtain the marginal distribution of (Yn:n) under condition that h of

(X1, Y1), ..., (Xn, Yn) belong to Buv as follows:

If u ≤ x, v ≤ y

F
(1)
Yn:n

(y |u, v ) ≡ lim
x→∞

F (1)
n,n:n(x, y |u, v )

= lim
x→∞

(
[F (x, y)− F (u, v)]n−h

[1− F (u, v)]n−h

)
=

[F (y)− F (u, v)]n−h

[1− F (u, v)]n−h
, (4.59)

u <∞, v ≤ y.

If u ≤ x, v > y
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F
(2)
Yn:n

(y |u, v ) ≡ lim
x→∞

F (2)
n,n:n(x, y |u, v )

= lim
x→∞

(
F (u, y)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=
F (u, y)h[2F (y)− F (u, y)− F (v)]n−h

F (u, v)h[1− F (u)]n−h
, (4.60)

u <∞, v > y.

If u > x, v ≤ y

F
(3)
Yn:n

(y |u, v ) ≡ lim
x→∞

F (3)
n,n:n(x, y |u, v )

= lim
x→∞

(
F (x, v)h[2F (x, y)− F (u, y)− F (x, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=

[F (y)− F (v)]n−h

[1− F (v)]n−h
, (4.61)

u =∞, v ≤ y.

If u > x, v > y

F
(4.1)
Yn:n

(y |u, v ) ≡ lim
x→∞

F (4.1)
n,n:n(x, y |u, v )

= lim
x→∞

(
F (x, y)h[3F (x, y)− 2F (x, v)− 2F (u, y) + F (u, v)]n−h

F (u, v)h[1− F (u, v)]n−h

)
=
F (y)h[F (y)− F (v)]n−h

F (v)h[1− F (v)]n−h
, (4.62)

u =∞, v ≤ y.
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Now, we represent the marginal distribution of (Xn:n) under condition that h

of (X1, Y1), ..., (Xn, Yn) belong to Buv in the following theorem:

Theorem 4.12. Let (X, Y ) be a bivariate random vector with joint distribu-

tion function F (x, y) and (X1, Y1), ..., (Xn, Yn) be independent copies of (X, Y ).

If (Xn:n, Yn:n) is the vector of bivariate maximum order statistics with joint distri-

bution function Fn,n:n(x, y |u, v ) given in Theorem 4.10 and Buv = {(t, s) ∈ R2 :

t ≤ u, s ≤ v}, (u, v) ∈ R2, then

FYn:n(y |u, v ) ≡ lim
x→∞

Fn,n:n(x, y |u, v )

=


F

(1)
Yn:n

(y |u, v ) if u <∞, v ≤ y,

F
(2)
Yn:n

(y |u, v ) if u <∞, v > y,

F
(3)
Yn:n

(y |u, v ) if u =∞, v ≤ y,

F
(4.1)
Yn:n

(y |u, v ) if u =∞, v ≤ y,

h = 0, 1, ..., n.

4.2.2 Some Dependence Results of Conditional Extreme

Order Statistics (Xn:n, Yn:n)

In this section, we present some results concerning dependence between conditional

bivariate extreme order statistics. In particular, Pearson’s correlation coefficient

of conditional bivariate order statistics (Xn:n, Yn:n) has been calculated. In the

case of the underlying distribution is Farlie-Gumbel-Morgenstern (FGM), the cor-

responding dependence analysis involving association parameter α is given.

Let F (x, y) = FX(x)FY (y){1+α(1−FX(x))(1−FY (y))} be the Farlie-Gumbel-

Morgenstern distribution with uniform marginal distributions FX(x) = x, FY (y) =

y, 0 ≤ x, y ≤ 1.
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Therefore using the equalities 4.55-4.58, one can easily obtain the marginal

distribution function FXn:n(x |u, v ) as follows:

If u ≤ x, v <∞

F
(1)
Xn:n

(x |u, v ) =
[x− uv{1 + α(1− u)(1− v)}]n−h

[1− uv{1 + α(1− u)(1− v)}]n−h
.

If u ≤ x, v =∞

F
(2)
Xn:n

(x |u, v ) =
[x− u]n−h

[1− u]n−h
.

If u > x, v <∞

F
(3)
Xn:n

(x |u, v )

=
[xv{1 + α(1− x)(1− v)}]h[2x− u− xv{1 + α(1− x)(1− v)}]n−h

[uv{1 + α(1− u)(1− v)}]h[1− uv{1 + α(1− u)(1− v)}]n−h
.

If u > x, v =∞

F
(4.1)
Xn:n

(x |u, v ) =
xh[x− u]n−h

uh[1− u]n−h
.

By similar consideration, the marginal distribution function FYn:n(y |u, v ) can

be easily derived using the equalities 4.59-4.62 as follows:

If u <∞, v ≤ y

F
(1)
Yn:n

(y |u, v ) =
[y − uv{1 + α(1− u)(1− v)}]n−h

[1− uv{1 + α(1− u)(1− v)}]n−h
.
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If u <∞, v > y

F
(2)
Yn:n

(y |u, v )

=
[uy{1 + α(1− u)(1− y)}]h[2y − v − uy{1 + α(1− u)(1− y)}]n−h

[uv{1 + α(1− u)(1− v)}]h[1− uv{1 + α(1− u)(1− v)}]n−h
.

If u =∞, v ≤ y

F
(3)
Yn:n

(y |u, v ) =
[y − v]n−h

[1− v]n−h
.

If u =∞, v ≤ y

F
(4.1)
Yn:n

(y |u, v ) =
yh[y − v]n−h

vh[1− v]n−h
.

However, the probability density functions are defined as ∂FXn:n(x |u, v )/∂x,

∂FYn:n(y |u, v )/∂y and denoted by fXn:n(x |u, v ), fYn:n(y |u, v ), respectively. For

simplicity, let us denote the conditional random variables as follows:

X∗n:n ≡ (Xn:n |h of (X1, Y1), ..., (Xn, Yn) belong to Buv )

Y ∗n:n ≡ (Yn:n |h of (X1, Y1), ..., (Xn, Yn) belong to Buv )

Therefore, the expected value and variance of X∗n:n and Y ∗n:n can be easily cal-

culated through probability density functions. For calculating covariance between

X∗ and Y ∗, we can use Hoeffding’s formula which represents covariance in terms

of distribution functions:

Cov(X, Y ) =

∞∫
−∞

∞∫
−∞

[F (x, y)− FX(x)FY (y)]dxdy. (4.63)
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Therefore, the covariance between X∗ and Y ∗ is given by

Cov(X∗n:n, Y
∗
n:n)

=

∫ ∫
D

[Fn,n:n(x, y |u, v )− FXn:n(x |u, v )FYn:n(y |u, v )] dxdy

=

1∫
u

1∫
v

[
F (1)
n,n:n(x, y |u, v )− F (1)

Xn:n
(x |u, v )F

(1)
Yn:n

(y |u, v )
]
dxdy+

1∫
u

v∫
0

[
F (2)
n,n:n(x, y |u, v )− F (2)

Xn:n
(x |u, v )F

(2)
Yn:n

(y |u, v )
]
dxdy+

u∫
0

1∫
v

[
F (3)
n,n:n(x, y |u, v )− F (3)

Xn:n
(x |u, v )F

(3)
Yn:n

(y |u, v )
]
dxdy+

u∫
0

v∫
0

[
F (4.1)
n,n:n(x, y |u, v )− F (4.1)

Xn:n
(x |u, v )F

(4.1)
Yn:n

(y |u, v )
]
dxdy

where D is the domain of the integral,

D = {x, y |u ≤ x, v ≤ y ∪ u ≤ x, v > y ∪ u > x, v ≤ y ∪ u > x, v > y;

x, y, u, v ∈ [0, 1]}.
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In the following table, we represent some numerical results of (Xn:n, Yn:n) re-

lated to expected value, variance, covariance and Pearson’s correlation coefficient.

Table 4.1 Some Dependence Results of (Xn:n, Yn:n)

α = 1 α = 0.5 α = −1

E(X∗n:n) 1.706063 1.700992 1.685666

E(Y ∗n:n) 1.741799 1.734802 1.718757

V ar(X∗n:n) 4.394958 4.370221 4.296420

V ar(Y ∗n:n) 4.603365 4.570730 4.493932

Cov(X∗n:n, Y
∗
n:n) 0.001145 0.000136 −0.003059

ρ(X∗n:n, Y
∗
n:n) 0.000255 0.000030 −0.000696

It can be observed from the Table 4.1 that for this class of bivariate distributions

Pearson’s correlation coefficient increases if dependence parameter α increases.

4.3 Numerical Results and Graphics Related to

Conditional Bivariate Order Statistics

Let F (x, y) = FX(x)FY (y){1 + α(1 − FX(x))(1 − FY (y))} be the Farlie-Gumbel-

Morgenstern (FGM) distribution and FX(x) = x, FY (y) = y, 0 ≤ x, y ≤ 1. This

class of distributions has a simple analytical form and is suitable for calculations.

Below, we provide some numerical results and graphs of the conditional distribu-

tion of bivariate order statistics given in Theorems 1a-4.1a and Theorem 5 in the

case of the underlying distribution is FGM. All numerical results presented here

are obtained by using a powerful mathematical software Wolfram Mathematica 7.
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4.3.1 Numerical Results for Conditional rth and sth Order

Statistics

It can be observed from the following Table 4.2 that for fixed values of

x, y, n, r, s, h, u, v (case u ≤ x, v ≤ y) the function F
(1)
r,s:n(x, y |u, v ) decreases with

respect to dependence parameter α, namely F
(1)
r,s:n(x, y |u, v ) is a decreasing func-

tion. Other cases can be analyzed similarly. This is supported by the graph of

function F
(1)
r,s:n(x, y |u, v ) with respect to association parameter α, given in Figure

4.6.
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i) Theorem 1a. u ≤ x, v ≤ y :

Table 4.2 Some numerical results of F (1)
r,s:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 3, s = 2, h = 2.

α = 1 α = 0.5 α = −1

x y F
(1)
r,s:n F

(1)
r,s:n F

(1)
r,s:n

0.3 0.7 0.531549 0.637989 0.825002

0.3 0.8 0.531549 0.637989 0.825002

0.3 0.9 0.531549 0.637989 0.825002

n = 10 0.5 0.7 0.968258 0.975471 0.988142

r = 3 0.5 0.8 0.968258 0.975471 0.988142

s = 2 0.5 0.9 0.968258 0.975471 0.988142

h = 2 0.7 0.7 0.999467 0.999588 0.999801

0.7 0.8 0.999467 0.999588 0.999801

0.7 0.9 0.999467 0.999588 0.999801

0.9 0.7 0.999999 0.999999 0.999999

0.9 0.8 0.999999 0.999999 0.999999

0.9 0.9 0.999999 0.999999 0.999999
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ii) Theorem 2a. u ≤ x, v > y :

Table 4.3 Some numerical results of F (2)
r,s:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 3, s = 2, h = 3.

α = 1 α = 0.5 α = −1

x y F
(2)
r,s:n F

(2)
r,s:n F

(2)
r,s:n

0.4 0.2 0.691544 0.692651 0.626379

0.4 0.3 0.905233 0.904104 0.867047

0.4 0.4 0.981521 0.980683 0.969238

n = 10 0.4 0.5 0.998422 0.998264 0.99682

r = 3 0.6 0.2 0.691544 0.692651 0.626379

s = 2 0.6 0.3 0.905233 0.904104 0.867047

h = 3 0.6 0.4 0.981521 0.980683 0.969238

0.6 0.5 0.998422 0.998264 0.99682

0.8 0.2 0.691544 0.692651 0.626379

0.8 0.3 0.905233 0.904104 0.867047

0.8 0.4 0.981521 0.980683 0.969238

0.8 0.5 0.998422 0.998264 0.99682
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iii) Theorem 3a. u > x, v ≤ y :

Table 4.4 Some numerical results of F (3)
r,s:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 3, s = 2, h = 2.

α = 1 α = 0.5 α = −1

x y F
(2)
r,s:n F

(2)
r,s:n F

(2)
r,s:n

0.4 0.2 0.691544 0.692651 0.626379

0.4 0.3 0.905233 0.904104 0.867047

0.4 0.4 0.981521 0.980683 0.969238

n = 10 0.4 0.5 0.998422 0.998264 0.99682

r = 3 0.6 0.2 0.691544 0.692651 0.626379

s = 2 0.6 0.3 0.905233 0.904104 0.867047

h = 3 0.6 0.4 0.981521 0.980683 0.969238

0.6 0.5 0.998422 0.998264 0.99682

0.8 0.2 0.691544 0.692651 0.626379

0.8 0.3 0.905233 0.904104 0.867047

0.8 0.4 0.981521 0.980683 0.969238

0.8 0.5 0.998422 0.998264 0.99682
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iv) Theorem 4.1a. u > x, v > y :

Table 4.5 Some numerical results of F (4.1)
r,s:n (x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 3, s = 2, h = 5.

α = 1 α = 0.5 α = −1

x y F
(4.1)
r,s:n F

(4.1)
r,s:n F

(4.1)
r,s:n

0.1 0.2 0.231141 0.229566 0.154363

0.1 0.3 0.272180 0.276014 0.229362

0.1 0.4 0.280915 0.287194 0.261350

n = 10 0.1 0.5 0.281849 0.288585 0.268146

r = 3 0.15 0.2 0.489626 0.481675 0.348019

s = 2 0.15 0.3 0.577337 0.578870 0.504351

h = 5 0.15 0.4 0.596121 0.602165 0.567672

0.15 0.5 0.598141 0.605041 0.580471

0.2 0.2 0.699618 0.684485 0.521360

0.2 0.3 0.825730 0.82221 0.741853

0.2 0.4 0.852847 0.855081 0.827730

0.2 0.5 0.855771 0.859112 0.844456
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4.3.2 Graphs of Fr,s:n(x, y |u, v ) as a Function of Dependence

Parameter α

Figure 4.6 Graph of F (1)
r,s:n(x, y |u, v ) as a function of α in Theorem 1a;

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2, x = 0.3, y = 0.9.

Figure 4.7 Graph of F (2)
r,s:n(x, y |u, v ) as a function of α in Theorem 2a;

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 3, x = 0.4, y = 0.3.
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Figure 4.8 Graph of F (3)
r,s:n(x, y |u, v ) as a function of α in Theorem 3a;

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2, x = 0.3, y = 0.9.

Figure 4.9 Graph of F (4.1)
r,s:n (x, y |u, v )as a function of α in Theorem 4.1a;

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 3, x = 0.4, y = 0.3.
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4.3.3 Graphical Illustrations for Fr,s:n(x, y |u, v )

i) Theorem 1a. u ≤ x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.10 Graph of F (1)
r,s:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2.
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ii) Theorem 2a. u ≤ x, v > y :

α=1 α=0.5

α=−1

Figure 4.11 Graph of F (2)
r,s:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 3.
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iii) Theorem 3a. u > x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.12 Graph ofF (3)
r,s:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2.
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iv) Theorem 4.1a. u > x, v > y :

α=1 α=0.5

α=−1

Figure 4.13 Graph of F (4.1)
r,s:n (x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 5.
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4.3.4 Piecewise Graphs of Fr,s:n(x, y |u, v )

v) Theorem 5.

α=1

Figure 4.14 Graph of Fr,s:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2.
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4.3.5 Numerical Results for Conditional 1th and 1th Order

Statistics

i) Theorem 1a. u ≤ x, v ≤ y :

Table 4.6 Some numerical results of F
(1)
1,1:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 1, h = 1.

α = 1 α = 0.5 α = −1

x y F
(1)
1,1:n F

(1)
1,1:n F

(1)
1,1:n

0.3 0.7 0.999999 0.999999 0.999999

0.3 0.8 0.999999 0.999999 0.999999

0.3 0.9 0.999999 0.999999 0.999999

n = 10 0.5 0.7 0.999999 0.999999 0.999999

r = 1 0.5 0.8 0.999999 0.999999 0.999999

s = 1 0.5 0.9 0.999999 0.999999 0.999999

h = 1 0.7 0.7 0.999999 0.999999 0.999999

0.7 0.8 0.999999 0.999999 0.999999

0.7 0.9 0.999999 0.999999 0.999999

0.9 0.7 0.999999 0.999999 0.999999

0.9 0.8 0.999999 0.999999 0.999999

0.9 0.9 0.999999 0.999999 0.999999
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ii) Theorem 2a. u ≤ x, v > y :

Table 4.7 Some numerical results of F
(2)
1,1:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 1, h = 1.

α = 1 α = 0.5 α = −1

x y F
(2)
1,1:n F

(2)
1,1:n F

(2)
1,1:n

0.4 0.2 0.844397 0.862576 0.892458

0.4 0.3 0.952994 0.959967 0.971108

0.4 0.4 0.989264 0.99098 0.993696

n = 10 0.4 0.5 0.99851 0.998727 0.999071

r = 1 0.6 0.2 0.844397 0.862576 0.892458

s = 1 0.6 0.3 0.952994 0.959967 0.971108

h = 1 0.6 0.4 0.989264 0.99098 0.993696

0.6 0.5 0.99851 0.998727 0.999071

0.8 0.2 0.844397 0.862576 0.892458

0.8 0.3 0.952994 0.959967 0.971108

0.8 0.4 0.989264 0.99098 0.993696

0.8 0.5 0.99851 0.998727 0.999071
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iii) Theorem 3a. u > x, v ≤ y :

Table 4.8 Some numerical results of F
(3)
1,1:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 1, h = 1.

α = 1 α = 0.5 α = −1

x y F
(3)
1,1:n F

(3)
1,1:n F

(3)
1,1:n

0.1 0.7 0.480560 0.532353 0.636512

0.1 0.75 0.480560 0.532353 0.636512

0.1 0.8 0.480560 0.532353 0.636512

n = 10 0.1 0.85 0.480560 0.532353 0.636512

r = 1 0.15 0.7 0.664358 0.710839 0.798576

s = 1 0.15 0.75 0.664358 0.710839 0.798576

h = 1 0.15 0.8 0.664358 0.710839 0.798576

0.15 0.85 0.664358 0.710839 0.798576

0.2 0.7 0.810484 0.842851 0.900659

0.2 0.75 0.810484 0.842851 0.900659

0.2 0.8 0.810484 0.842851 0.900659

0.2 0.85 0.810484 0.842851 0.900659
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iv) Theorem 4.1a. u > x, v > y :

Table 4.9 Some numerical results of F
(4.1)
1,1:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 1, h = 5.

α = 1 α = 0.5 α = −1

x y F
(4.1)
1,1:n F

(4.1)
1,1:n F

(4.1)
1,1:n

0.1 0.2 0.869051 0.862873 0.784964

0.1 0.3 0.897066 0.89554 0.862091

0.1 0.4 0.900266 0.899761 0.878633

n = 10 0.1 0.5 0.900445 0.900035 0.880408

r = 1 0.15 0.2 0.945465 0.939053 0.869758

s = 1 0.15 0.3 0.976066 0.974625 0.953394

h = 5 0.15 0.4 0.97957 0.979221 0.971155

0.15 0.5 0.979767 0.979520 0.973044

0.2 0.2 0.962762 0.956460 0.891586

0.2 0.3 0.993964 0.992697 0.976679

0.2 0.4 0.99754 0.997379 0.994693

0.2 0.5 0.99774 0.997684 0.996603
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4.3.6 Graphs of F1,1:n(x, y |u, v ) as a Function of Dependence

Parameter α

Figure 4.15 Graph of F
(1)
1,1:n(x, y |u, v ) as a function of α in Theorem 1a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1, x = 0.3, y = 0.9.

Figure 4.16 Graph of F
(2)
1,1:n(x, y |u, v ) as a function of α in Theorem 2a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1, x = 0.4, y = 0.3.
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Figure 4.17 Graph of F
(3)
1,1:n(x, y |u, v ) as a function of α in Theorem 3a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1, x = 0.15, y = 0.75.

Figure 4.18 Graph of F
(4.1)
1,1:n(x, y |u, v ) as a function of α in Theorem 4.1a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1, x = 0.15, y = 0.2.
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4.3.7 Graphical Illustrations for F1,1:n(x, y |u, v )

i) Theorem 1a. u ≤ x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.19 Graph of F
(1)
1,1:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1.
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ii) Theorem 2a. u ≤ x, v > y :

α=1 α=0.5

α=−1

Figure 4.20 Graph of F
(2)
1,1:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1.
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iii) Theorem 3a. u > x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.21 Graph of F
(3)
1,1:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1.
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iv) Theorem 4.1a. u > x, v > y :

α=1 α=0.5

α=−1

Figure 4.22 Graph of F
(4.1)
1,1:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1.
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4.3.8 Piecewise Graphs of F1,1:n(x, y |u, v )

v) Theorem 5.

α=1

Figure 4.23 Graph ofF1,1:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1.
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4.3.9 Numerical Results for Conditional 1th and nth Order

Statistics

i) Theorem 1a. u ≤ x, v ≤ y :

Table 4.10 Some numerical results of F
(1)
1,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 10, h = 1.

α = 1 α = 0.5 α = −1

x y F
(1)
1,n:n F

(1)
1,n:n F

(1)
1,n:n

0.3 0.7 0.011726 0.014046 0.022292

0.3 0.8 0.066641 0.073624 0.095397

0.3 0.9 0.285728 0.298138 0.333408

n = 10 0.5 0.7 0.011726 0.014046 0.022292

r = 1 0.5 0.8 0.066641 0.073624 0.095397

s = 10 0.5 0.9 0.285728 0.298138 0.333408

h = 1 0.7 0.7 0.011726 0.014046 0.022292

0.7 0.8 0.066641 0.073624 0.095397

0.7 0.9 0.285728 0.298138 0.333408

0.9 0.7 0.011726 0.014046 0.022292

0.9 0.8 0.066641 0.073624 0.095397

0.9 0.9 0.285728 0.298138 0.333408
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ii) Theorem 2a. u ≤ x, v > y :

Table 4.11 Some numerical results of F
(2)
1,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 10, h = 1.

α = 1 α = 0.5 α = −1

x y F
(2)
1,n:n F

(2)
1,n:n F

(2)
1,n:n

0.4 0.2 7.5× 10−9 1.9× 10−8 1.1× 10−7

0.4 0.3 5.8× 10−7 1.3× 10−6 5.5× 10−6

0.4 0.4 0.000012 0.000025 0.000089

n = 10 0.4 0.5 0.000169 0.000265 0.000727

r = 1 0.6 0.2 7.5× 10−9 1.9× 10−8 1.1× 10−7

s = 10 0.6 0.3 5.8× 10−7 1.3× 10−6 5.5× 10−6

h = 1 0.6 0.4 0.000012 0.000025 0.000089

0.6 0.5 0.000169 0.000265 0.000727

0.8 0.2 7.5× 10−9 1.9× 10−8 1.1× 10−7

0.8 0.3 5.8× 10−7 1.3× 10−6 5.5× 10−6

0.8 0.4 0.000012 0.000025 0.000089

0.8 0.5 0.000169 0.000265 0.000727
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iii) Theorem 3a. u > x, v ≤ y :

Table 4.12 Some numerical results of F
(3)
1,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 10, h = 6.

α = 1 α = 0.5 α = −1

x y F
(3)
1,n:n F

(3)
1,n:n F

(3)
1,n:n

0.1 0.7 0.129180 0.139156 0.163967

0.1 0.75 0.193866 0.204892 0.230570

0.1 0.8 0.280186 0.291513 0.315722

n = 10 0.1 0.85 0.392469 0.40302 0.422609

r = 1 0.15 0.7 0.137154 0.148409 0.180361

s = 10 0.15 0.75 0.205635 0.218211 0.252738

h = 6 0.15 0.8 0.297017 0.310136 0.344992

0.15 0.85 0.415906 0.428424 0.460475

0.2 0.7 0.138515 0.150062 0.184036

0.2 0.75 0.207623 0.220557 0.257598

0.2 0.8 0.299838 0.313380 0.351279

0.2 0.85 0.419815 0.432812 0.468452
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iv) Theorem 4.1a. u > x, v > y :

Table 4.13 Some numerical results of F
(4.1)
1,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 1, s = 10, h = 8.

α = 1 α = 0.5 α = −1

x y F
(4.1)
1,n:n F

(4.1)
1,n:n F

(4.1)
1,n:n

0.1 0.2 0.000014 8.9× 10−6 1.1× 10−7

0.1 0.3 0.000596 0.000428 0.000019

0.1 0.4 0.007747 0.006253 0.000911

n = 10 0.1 0.5 0.051674 0.047535 0.020394

r = 1 0.15 0.2 0.000014 9.2× 10−6 1.1× 10−7

s = 10 0.15 0.3 0.000611 0.000441 0.000021

h = 8 0.15 0.4 0.007949 0.006441 0.000985

0.15 0.5 0.053077 0.049001 0.02174

0.2 0.2 0.000014 9.2× 10−6 1.2× 10−7

0.2 0.3 0.000612 0.000442 0.000021

0.2 0.4 0.007967 0.006459 0.000996

0.2 0.5 0.053204 0.049144 0.021932
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4.3.10 Graphs of F1,n:n(x, y |u, v ) as a Function of Depen-

dence Parameter α

Figure 4.24 Graph of F
(1)
1,n:n(x, y |u, v ) as a function of α in Theorem 1a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 1, x = 0.3, y = 0.9.

Figure 4.25 Graph of F
(2)
1,n:n(x, y |u, v ) as a function of α in Theorem 2a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 1, x = 0.4, y = 0.3.
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Figure 4.26 Graph of F
(3)
1,n:n(x, y |u, v ) as a function of α in Theorem 3a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 6, x = 0.15, y = 0.75.

Figure 4.27 Graph of F
(4.1)
1,n:n(x, y |u, v ) as a function of α in Theorem 4.1a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 8, x = 0.15, y = 0.2.
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4.3.11 Graphical Illustrations for F1,n:n(x, y |u, v )

i) Theorem 1a. u ≤ x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.28 Graph of F
(1)
1,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 1.
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ii) Theorem 2a. u ≤ x, v > y :

α=0.5

α=−1

Figure 4.29 Graph of F
(2)
1,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 1.
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iii) Theorem 3a. u > x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.30 Graph of F
(3)
1,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 6.
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iv) Theorem 4a. u > x, v > y :

α=1 α=0.5

α=−1

Figure 4.31 Graph of F
(4.1)
1,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 8.
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4.3.12 Piecewise Graphs of F1,n:n(x, y |u, v )

v) Theorem 5.

α=1 α=0.5

Figure 4.32 Graph of F1,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 1, s = 10, h = 1.
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4.3.13 Numerical Results for Conditional nth and nth Order

Statistics

i) Theorem 1a. u ≤ x, v ≤ y :

Table 4.14 Some numerical results of F (1)
n,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 10, s = 10, h = 6.

α = 1 α = 0.5 α = −1

x y F
(1)
n,n:n F

(1)
n,n:n F

(1)
n,n:n

0.3 0.7 8.9× 10−7 1.3× 10−6 3.1× 10−6

0.3 0.8 9.9× 10−6 0.000018 0.000061

0.3 0.9 0.000033 0.000076 0.000379

n = 10 0.5 0.7 0.002501 0.002145 0.001385

r = 10 0.5 0.8 0.005502 0.005335 0.004909

s = 10 0.5 0.9 0.009793 0.010771 0.013722

h = 6 0.7 0.7 0.024251 0.022216 0.017439

0.7 0.8 0.049605 0.047783 0.043193

0.7 0.9 0.087442 0.089110 0.093651

0.9 0.7 0.087442 0.089110 0.093651

0.9 0.8 0.183934 0.186059 0.191785

0.9 0.9 0.340065 0.344358 0.355942
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ii) Theorem 2a. u ≤ x, v > y :

Table 4.15 Some numerical results of F (2)
n,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 10, s = 10, h = 6.

α = 1 α = 0.5 α = −1

x y F
(2)
n,n:n F

(2)
n,n:n F

(2)
n,n:n

0.4 0.2 4.8× 10−9 1.7× 10−9 6.6× 10−12

0.4 0.3 1.9× 10−7 8.1× 10−8 1.1× 10−9

0.4 0.4 2.3× 10−7 1.1× 10−6 4.8× 10−8

n = 10 0.4 0.5 0.000014 8.4× 10−6 1.1× 10−6

r = 10 0.6 0.2 2.3× 10−7 1.1× 10−7 1.1× 10−9

s = 10 0.6 0.3 9.5× 10−6 5.1× 10−6 1.7× 10−7

h = 6 0.6 0.4 0.000122 0.000073 6.8× 10−6

0.6 0.5 0.000809 0.000562 0.000131

0.8 0.2 9.2× 10−7 5.8× 10−7 1.7× 10−8

0.8 0.3 0.000042 0.000029 2.3× 10−6

0.8 0.4 0.000583 0.000442 0.000084

0.8 0.5 0.004181 0.003552 0.001499
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iii) Theorem 3a. u > x, v ≤ y :

Table 4.16 Some numerical results of F (3)
n,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 10, s = 10, h = 6.

α = 1 α = 0.5 α = −1

x y F
(3)
n,n:n F

(3)
n,n:n F

(3)
n,n:n

0.1 0.7 1.6× 10−11 2.4× 10−11 3.1× 10−11

0.1 0.75 6.3× 10−11 1.1× 10−10 1.8× 10−10

0.1 0.8 1.5× 10−10 3.0× 10−10 6.4× 10−10

n = 10 0.1 0.85 2.7× 10−10 6.7× 10−10 1.8× 10−9

r = 10 0.15 0.7 9.1× 10−10 1.3× 10−9 2.0× 10−9

s = 10 0.15 0.75 3.6× 10−9 6.1× 10−9 1.2× 10−8

h = 6 0.15 0.8 9.0× 10−9 1.7× 10−8 4.2× 10−8

0.15 0.85 1.7× 10−8 3.9× 10−8 1.2× 10−7

0.2 0.7 1.6× 10−8 2.3× 10−8 4.1× 10−8

0.2 0.75 6.5× 10−8 1.1× 10−7 2.4× 10−7

0.2 0.8 1.6× 10−7 3.1× 10−7 8.4× 10−7

0.2 0.85 3.1× 10−7 6.9× 10−7 2.3× 10−6
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iv) Theorem 4.1a. u > x, v > y :

Table 4.17 Some numerical results of F (4.1)
n,n:n(x, y |u, v )

for u = 0.3, v = 0.6, n = 10, r = 10, s = 10, h = 6.

α = 1 α = 0.5 α = −1

x y F
(4.1)
n,n:n F

(4.1)
n,n:n F

(4.1)
n,n:n

0.1 0.2 0.000 0.000 0.000

0.1 0.3 0.000 0.000 0.000

0.1 0.4 0.000 0.000 0.000

n = 10 0.1 0.5 0.000 0.000 0.000

r = 10 0.15 0.2 0.000 0.000 0.000

s = 10 0.15 0.3 0.000 0.000 0.000

h = 6 0.15 0.4 0.000 0.000 0.000

0.15 0.5 0.000 0.000 0.000

0.2 0.2 0.000 0.000 0.000

0.2 0.3 0.000 0.000 0.000

0.2 0.4 0.000 0.000 0.000

0.2 0.5 0.000 0.000 0.000
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4.3.14 Graphs of Fn,n:n(x, y |u, v ) as a Function of Depen-

dence Parameter α

Figure 4.33 Graph of F (1)
n,n:n(x, y |u, v ) as a function of α in Theorem 1a;

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6, x = 0.3, y = 0.9.

Figure 4.34 Graph of F (2)
n,n:n(x, y |u, v ) as a function of α in Theorem 2a;

n = 10, u = 0.3, v = 0.6, r = 1, s = 1, h = 1, x = 0.4, y = 0.3.
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Figure 4.35 Graph of F (3)
n,n:n(x, y |u, v ) as a function of α in Theorem 3a;

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6, x = 0.15, y = 0.75.

Figure 4.36 Graph of F (4.1)
n,n:n(x, y |u, v ) as a function of α in Theorem 4.1a;

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6, x = 0.15, y = 0.2.
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4.3.15 Graphical Illustrations for Fn,n:n(x, y |u, v )

i) Theorem 1a. u ≤ x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.37 Graph of F (1)
n,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6.
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ii) Theorem 2a. u ≤ x, v > y :

α=1 α=0.5

α=−1

Figure 4.38 Graph of F (2)
n,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6.
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iii) Theorem 3a. u > x, v ≤ y :

α=1 α=0.5

α=−1

Figure 4.39 Graph of F (3)
n,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6.
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iv) Theorem 4a. u > x, v > y :

α=1

α=−1

Figure 4.40 Graph of F (4.1)
n,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6.
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4.3.16 Piecewise Graphs of Fn,n:n(x, y |u, v )

v) Theorem 5.

α=1 α=0.5

α=−1

Figure 4.41 Graph of Fn,n:n(x, y |u, v );

n = 10, u = 0.3, v = 0.6, r = 10, s = 10, h = 6.
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Conclusions

In this thesis, we introduce new modifications of bivariate binomial distribu-

tion. These modifications are trivariate discrete distributions that are important

probability models and can be used in distribution theory of conditional bivariate

order statistics. Conditional bivariate order statistics are constructed from the

bivariate random sample under condition that a certain number of observations

fall in the given threshold set. The new distributions obtained in this work present

theoretical interest in probability theory, statistics and can be used in many fields

of applications of probability and statistics. The probability generating functions

of these distributions are also derived. Furthermore, the marginal distributions

of bivariate conditional order statistics for some special cases are obtained. The

dependence structure of conditional bivariate order statistics is studied by using

Pearson’s correlation coefficient as a measure of linear dependence. Some nu-

merical results concerning the distribution function of conditional bivariate order

statistics calculated by using Wolfram Mathematica is also presented. Graphical

representations for distribution functions of conditional bivariate order statistics

is also provided. The results presented in this study can also be applied widely

for reliability analysis of complex systems and studying the dependence among

financial markets in crises and other extreme situations.
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