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ABSTRACT

CAPACITATED DYNAMIC ECONOMIC LOT-SIZING PROBLEM WITH
PERISHABLE ITEMS

Isik, Gul

M.Sc. in Intelligent Engineering Systems
Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Zeynep Sargut

February 2014, 98 pages

Competition in manufacturing industry forces companies to produce products
with a better way while trying to minimize costs or maximize expected benefits in
production. Therefore, there are many available researches in this area to
decide the answers of some questions such as how much or when they should
produce to achieve their aims.

In this study, dynamic economic lot sizing models for perishable products are
considered when demand is deterministic and variable. Capacitated and
uncapacitated dynamic lot sizing models are investigated additionally. A
mathematical model is developed to minimize total costs which include
production, holding and backlogging costs. Stock deterioration rate in the model
depends on the age of products and also production costs, inventory holding
costs, and backlogging costs are assumed as general concave functions.
Moreover, holding costs and backlogging costs are age-dependent. The
structural properties of the optimal solutions are analyzed and these are used for
developing an algorithm which gives an approximate solution for this kind of
problems. The solutions of the algorithm are compared with the solutions of
GAMS solver. Then, the performance of the algorithm is discussed.

Keywords: Perishable Inventory, Capacitated Dynamic Lot Sizing Problem,
Dynamic Programming
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Oz

DAYANIKSIZ URUNLER ICIN KAPASITELI DINAMIK EKONOMIK SIPARIS
VERME MODELI

Isik, Gul

Akillh Mihendislik Sistemleri Yuksek Lisans Programi
Fen Bilimleri Enstitisu

Tez Danismani: Yard. Dog. Dr. Zeynep Sargut

Subat 2014, 98 sayfa

Uretim endustrisindeki rekabet, sirketleri maliyetleri azaltmaya yada beklenen
kazanimlari attirmaya calisirken daha iyi bir yolla Uretim yapmaya zorlar. Bu
nedenle, dusundlen hedefe ulagsmak, nezaman ve nekadar Uretim yapilmali
sorularinin cevabina karar vermek i¢in bu alanda bir cok mevcut ¢alismalar ve
arastirmalar bulunmaktadir.

Bu calismada, ¢abuk bozulan yani dayaniksiz drtnler igin talep bilindiginde fakat
talep degisken oldugunda dinamik ekonomik siparis verme modeli Uzerinde
durulmustur. Buna ek olarak, kapasiteli ve kapasitesiz Uretimlerde dinamik
ekonomik siparis verme modeli incelenmistir. Uretim yapmaktan, envanter
tutmaktan ve biriken siparislerden dolayi olusan maliyetleri azaltmak amaciyla
matematiksel bir model olusturulmustur. Bu modelde, stok bozulma orani
ardndn yasina bagl olup, tretim maliyetleri, envanter tutma maliyetleri ve biriken
sipariglerin maliyetleri konkav olarak kabul edilmistir. Ayrica, envanter tutma ve
biriken siparis maliyetleri de (riiniin yasina baghdir. ideal (optimum) ¢éziimlerin
yapisal oOzellikleri incelenmis, yeni gelistirilen ve yaklasik sonu¢ veren
algoritmada kullaniimistir. Algotimanin sonuglari, GAMS ¢d6zlcUsunin verdigi
sonuglar ile karsilastirilmistir. Bu sekilde algoritmanin performansi incelenmistir.

Anahtar kelimeler: Cabuk Bozulan Envanter, Kapsiteli Ekonomik Siparis Verme
Problemi, Dinamik Programlama.
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CHAPTER 1

INTRODUCTION

After the industrial revolution, manufacturing has become a complex process
in the competitive world. Graves (2002) states that volume of manufacturing,
variety and quality of products, and also manufacturing operations have

changed correspondingly.

According to Akartunali (2007) in the growing economy, cost reduction on
complex manufacturing operations has become very important and
production planning provides important effects in a positive way for
manufacturers and companies in this market. The growth has attracted
attention, thus many scientific researches, different models and solution

methods have been developed and applied for production planning.

While production planning plays an important role for reducing cost or
maximizing profit, inventory management also gains importance. Yano and
Lee (1995) claims that inventory management should be considered with
production planning, since it sets the inventory activities, operating policy and
procedures which are designed to maximize expected gain and customer
satisfaction with using the least inventory investment. Therefore, many
inventory models are generated and solution approaches are developed to
control and to improve inventory activities efficiently. Inventory models can be
categorized in many ways. In an inventory model, demands can be certain or

uncertain. If demand is certain per period, it means that demand is
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deterministic but it can be variable or constant. When demand is variable per
period, production or procurement quantities vary per period. Uncertain
demand models are called stochastic demand models. Other important
property is about capacity. According to Yano and Lee (1995) for some
models there exists production capacity while some models do not include
the capacity so in capacitated production the production amount is limited
because of some conditions such as working hours or the number of
workers. Moreover, in inventory models the aim which can be considered as
performance measure is generally minimization of total cost or maximization
of total profit. Some models consider a single product whereas others
consider multiple products and also planning horizon can be finite or infinite.
Furthermore, unsatisfied demand can be allowed by backlogging for some of
them however, for some companies backlogging is not allowed according to
their policies. Last important property is product types which are specified as
perishable or non-perishable products.

Manufacturing faciliies can face some problems while planning their
production. Unexpected situations like broken machines or capacity problems
such as number of workers or number of machines and also problems with
raw material suppliers can cause some delays in production. Furthermore,
this may lead to delay in satisfying demands on time so some companies
rare to ask customers for backlogging not to lose their customers completely
although it causes dissatisfaction of customers. Therefore, backlogging is an
important activity in production planning. Backordering and backlogging are
the terms that have same meaning in the literature according to Wu et al.
(2011).

Prastacos (1981) defines non-perishable products as products that do not
decay for long time. Furniture, electronic devices, clothes can be considered
as non-perishable products. However, perishable products are kinds of
products which have a limited shelf life or limited time for use or
consumption. The time period when the product keeps its quality well is
called as life time or shelf life for that product. If life time of a product expires,

that product cannot be used after its life time. Dairy products, some foods,
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and medical drugs can be examples for perishable products. Additionally,
while foods such as meat, milk or egg have a short life time, medical drugs or
other chemicals have longer life time for use but they can also be considered
as perishable products.

Age of a product is defined according to the length of period between its
production period and current period. Hsu and Lowe (2001) states that
inventory costs may not be related with the age of products which is called as
age-dependent while considering non-perishable products. Since the quality
and the quantity of the products do not change over time. However, this
cannot be considered for the perishable products. When inventory is
perishable, quantity and the quality of products change per period according
to perishability rate of products and they deteriorate based on periods or
ages. Thus, period-pair-dependent or age-dependent inventory cost should
be determined for perishable products.

Age-dependent inventory is related with the age of products according to Hsu
(2003). Deterioration rate is the percentage of the items perished at the end
of the given period. Deterioration rate also depends on the difference
between production period and period that the product is used. When the
length of time that the product kept in the inventory increases, the
deterioration rate increases. When it passes its shelf life, deterioration rate
becomes 1. Period-pair dependent inventory depends both production period
and age of the products. Deterioration rate may not be only related with the
age of goods. For example, some products like meat or milk can deteriorate
faster in summer then in winter. Therefore, the deterioration rate may depend

on both production period and the age of stock.

Backordering cost is related to the degree of the customer dissatisfaction and
the loss of goodwill. Backlogging a product for a long time causes customer
dissatisfaction and the length of time increases, the customer dissatisfaction
increases more. Therefore, backlogging cost which is penalty cost should not
be a linear fashion and it should also be period-pair dependent and it should

increase more than increment of delay time.
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In this thesis, a production facility that produces a single perishable product
with known demand which is dynamic over a finite planning horizon is
considered. However, demand is variable (dynamic) and cost functions also
change over time. They are not fixed for every interval so dynamic lot sizing
is scope of this project. For every interval the production is limited and it
cannot pass the production limit. This can be explained as the production
capacity and it restricts the production. In other words, it puts a capacity

constraint to the problem.

Our problem is to determine the amount of production at each period to meet
all demand at the end of the planning horizon so that the total cost of
production, inventory and backlogging is minimized. As the result of
production amounts the backlogging and inventory values are determined.
Backlogging can be needed because of the limited production capacity and
deterioration of products kept at inventory and also cost minimization
requires some backlogging. Moreover, in this study we assume that the
production cost, inventory cost and backlogging cost functions are general
non-decreasing concave functions. A dynamic programming based approach

is devised to solve this problem.

Chapter 2 focuses on dynamic economic lot sizing problem and the studies
of this problem in the literature. Moreover, versions of dynamic economic lot

sizing problem are mentioned.

In Chapter 3, a new mathematical model for the uncapacitated problem is
introduced when the products are perishable and also the backlogging and
inventory costs are general concave. A former formulation exists in Hsu
(2003). We updated it so that the model has a network flow representation.
Also, the related literature is explained and compared with our study. The
network of our problem is drawn and explained. Experimental results are
discussed. Moreover, some theorems and properties related with our study
are introduced. Finally, the dynamic programming algorithm which can be

applicable for our study is mentioned.
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The studies for capacitated production problem are in Chapter 4. The
mathematical model is updated by adding the capacities. The empirical
analysis is performed to understand the structure of the optimal solution. We
prove many properties of the optimal solution, one of which is that dynamic
programming algorithm to solve our problem and explain our dynamic
programming algorithm. We devise an algorithm that finds a good solution for
a sub-problem when the production decisions are known. Our algorithm finds
the optimal solution or near optimal solutions, therefore it is an approximation
algorithm. We run many tests for our algorithm and include many examples
to explain how it works. We also tested the performance of the algorithm. We
tried six types of demand patterns and explore its effect on performance of

the algorithm.

Finally, the study is concluded in Chapter 5. We discuss the experimental

results in this section.
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CHAPTER 2

DYNAMIC ECONOMIC LOT-SIZING PROBLEM

According to Sargut (2006), the objective of Dynamic Economic Lot Sizing
Problem (DLSP) is to minimize the total cost which includes ordering
(production) and inventory costs during a finite planning horizon. Firstly,
Wagner and Whitin (1958) has studied in DLSP and developed the one of the
simplest and earliest dynamic lot-sizing model in the literature. This model
includes the production costs which have fixed-cost structure and inventory
holding costs which are linear, and also production has been considered as
uncapacitated. Then, many following variations of DLSP have been
performed. First variations are about the convex and concave cost structures.
Other variations of DLSP are about the form of inventory held at the facility
that may be considered as combinations of holding and backlogging.
Moreover, the examples of models where the total cost is minimized can be
seen in the literature. Additionally, some models where the profit is
maximized have been developed. These models are considered as the
models with one location, but they can be modified in order to optimize the
decisions of a multi-level system. In multi-level system, costumer does not
directly get the products from manufacturer since there are some levels
(wholesaler, retailer, etc.) between them. In each level inventory is held.
Therefore, decisions of multi-level system are more complicated and the

transportation decisions should be included between the levels.
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Wagner and Whitin (1958) has developed their models without the production
capacity constraint while other many researchers have developed the
capacitated versions of DLSP. In this case, capacities can be stationary or
non-stationary (time-varying). In addition, Bitran and Yanasse (1982) states
that DLSP with non-stationary capacities is very complex and NP-hard.
Veinott (1963) has studied in general concave production and holding costs
in DLSP. Furthermore, Zangwill (1969) and Zangwill (1968) have generated a
network approach and showed the problem as a concave cost network flow
problem and also Zangwill (1969) has extended the work of Veinott (1963) by
adding backlogging in the model. This study has illustrated that optimal
solution is an extreme point solution with an arborescent structure (as tree)
which means that each node has only one positive incoming arc in the

network.

Generally, finding minimum cost is the main interest of companies and the
researchers. In the literature, there can be seen many instances and studies
which consider the flow of products from the manufacturer to consumers as
network flows. Zangwill (1968) performed an analysis for determining
minimum cost for certain types of concave cost networks. Since, considering
costs as a linear function is often unrealistic due to set-up costs or quantity
discounts so concave cost functions are more realistic. Some theorems that
characterize the extreme points for certain single product or multi-product
networks have been developed according to single source to single
destination, acyclic single source to multiple destinations and multiple

sources to single destination.

Concavity can be explained that every line which is drawn by joining any two
points selected on a function should be on or below the function. The formal
definition can be derived by a function f of a single variable.

f: X —> Ris concave if for any x, y € X, for all A € (0, 1),

FAY +(1=A)x) =M (y)+ (1 =\ fx)
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f: X — Ris strictly concave if for any x, y € X with x # y, for all A € (0, 1),

FAy +(1=A)x)>Af(y) + (1 -A) F(x).

A function f is concave if the line between any two points on the function

always lies on or below the function itself which is illustrated in Figure 1.

fly)
fuy+(1-0X)

AEY) -+ (1-2)F(x)

f(x) |-

X 2yt (12X Y

Figure 1 A Nondecreasing Concave Function

In this thesis, the cost structure is nondecreasing concave since when the
product quantity increase, production costs, holding costs, and also

backlogging costs increase accordingly.
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CHAPTER 3

DYNAMIC ECONOMIC LOT-SIZING PROBLEM
WITH PERISHABLE ITEMS

3.1. Related Literature

In literature, there are available many researches for perishable lot-sizing
model. Hsu (2000a) has studied about dynamic economic lot sizing model for
perishable products when deterioration depends on age of stock and the
inventory and production costs general concave. Dynamic programming
algorithm is developed for solving the problems in polynomial time. The
network of the problem has been illustrated in Hsu (2000a) while backlogging

is not allowed.

In the model of Hsu (2000a), planning horizon consists of n periods, demand
is known per period for a single perishable product. Products deteriorate
according to deterioration rate. There is no backlogging in the model.
Production and holding costs are assumed as nondecreasing and concave.

The aim of the model in Hsu (2000a) is minimizing the total costs.

Figure 2 shows the constructed network in Hsu (2000a). Node F is single
supply node. The arcs between node N and S represent the flow of demand.
Node S is the demand nodes per period. Also, the arcs between nodes N

represent the inventory which is carried per period.
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Figure 2 Network Flow of Hsu (2000a)

In the literature, the most related work our study is Hsu (2003). In Hsu
(2003), the economic lot sizing model for perishable products with age-
dependent inventory and backlogging costs have been considered. For this
age-dependent inventory and backordering costs problem a mathematical
model and a dynamic programming algorithm have been performed. Also the

algorithm has been used for some special cases of their problem.
Decision variables in Hsu (2003) are given below.

x, is the amount of production in period t.

c;(x;) is the production cost for producing x; units in period t.

y;: IS the amount of inventory which is produced in period i and held at

the beginning of period t.
H;.(y;;) is the carrying cost of y;, units in the inventory in period t.

a;: 1S the proportion of y;; which is lost in period t.
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Z: 1s the amount of unfilled period k demand at the end of period t.
P.:(Zy:) 1s that the penalty cost of leaving Z,,; unfilled in period t.

M;; is the amount of period i production used to satisfy the demand in
period t.

The mathematical model is given below.

n t t
Minimize ZIct(xt) + ZHit(yit) + ZPkt(Zkt)] (2.1)
t=1 i=1 k=1
Subject to:
Xe — 2iq Myt = Ve 1<t<n (2.2)
(1= @ie-1) Vieer = Mie = yie 1<i<t<n (2.3)
Zieor — My = Ziq 1<k<t<n (2.4)
Yo M = d, 1<t<n (2.5)

XoVinZi =0, 1<i<t<mn My, = 0, 1<k<n 1<t<n (2.6)

The objective minimizes the total cost of production, holding and
backlogging. Constraints (2.2) calculate the remaining amount of product at
the end of period t after satisfying the demand of period t. Constraints (2.3)
take into account the perishability of the products. The inventory from
previous period perishes according to loss rate and some of the remaining
part is used to satisfy the demand of next period. The remainder is calculated
accordingly. Constraints (2.4) calculate the remaining unfiled demand of
period k in period t after satisfying some part of demand in period t.
Constraints (2.5) state that total amount of items used to satisfy the demand
of period t should be equal to the total demand of period t. Final constraints

(2.6) enforce non-negativity on all decision variables.
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Tables 1 and 2 summarize the properties of the related literature and our
study respectively. The information about the type of product, problem types,
time complexity of the problem and the cost functions such as production,
holding and backlogging can be seen explicitly. In these studies, there are
some special cases and the properties of these have been given in Table 1.

All papers in the Table 1 consider the production cost functions as general
concave and nondecreasing. While Hsu (2000a) and Hsu (2003) include
perishable products, Hsu and Lowe (2001) consider non-perishable products.
In Hsu (2000a), there is no backlogging and the inventory holding cost
function is general concave and age-dependent. Hsu and Lowe (2001) and
Hsu (2003) allow backlogging. Hsu and Lowe (2001) consider backlogging
cost functions as period-pair-dependent and inventory holding costs are
covered as both period-pair-dependent and independent while Hsu (2003)
considers general concave age-dependent backlogging cost functions and
inventory holding costs are considered as general concave and age-

dependent.

In Table 2, all costs functions are general concave; moreover, the holding

and backlogging costs are considered as age-dependent.

Table 1 The Summary of the Related Literature

Hsu and Lowe
Hsu (2000a) (2001) Hsu (2003)
Production General concave
General concave General concave
cost . . and
: and nondecreasing | and nondecreasing .
function nondecreasing
. . it = O . . it = Q;
Perishability Fie = Gt No perishable items e = %t
where i <j where i <j
Backlogging : .
cost No backlogging Period-pair General concave
¢ : dependent age- dependent
unction
Inventory General concave Period-pair General concave
holding cost age- dependent dependent age-dependent
function 9 P /independent 9 b
Running
time of the o(n? on® o(n%
algorithm




Master Thesis |13

Table 2 The Property of our Problem

Our Problem

General concave and
nondecreasing

Production cost function

. . > (s
Perishability %ie = %
where i <j
Backlogging cost function General concave age-dependent
Inventory holding cost function General concave age-dependent

Chan et al. (2002) considers economic lot-sizing models (ELS) with modified
all-unit discount freight ordering cost function and linear holding cost function.
They showed that this problem is NP-hard and suggest an approximation
algorithm that assumes ZIP which implies that a positive inventory cannot be

carried to a production period and which may not hold in any optimal solution.

Chu et al. (2005) considers a more general problem by considering general
economies of scale cost functions and perishability. They assume age-
dependent deterioration rate and holding cost. Since the problem is NP-hard,
they propose an approximation scheme that solves the problem
approximately and it is guaranteed to provide a solution which is not more

than 1.52 times of the objective function value.

3.2. Mathematical Model

We assume production cost, backlogging and inventory holding costs are
nondecreasing concave and age-dependent. Products are perishable and
they deteriorate according to their perishability rate. A new mathematical
model generated is related to the model and the problem in Hsu (2003). We
eliminated one constraint and we defined new decision variables by using
different notation for demand flow. By the help of this, the number of
constraints is decreased and also the model can be defined as a network

flow model.
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We define our model as below.
Decision Variables
X, IS the production volume at the beginning of period t.

Z;; is the amount of demand in period t which is going to be satisfied from

production in period i. Wheni > t, it means backlog.

yi: IS the inventory left at the beginning of period t from the production in
period i.

Parameters and Functions
d. is the demand in period t.

a;; is the proportion of loss for y;, during period t or deterioration rate during
period t.

c; is the production cost function of production at period t.

B;; is the penalty cost function or backlogging cost function, the cost of

satisfying the demand of period t from production in period i, where i > t.

H;; is the cost function of holding inventory during period t of items produced

in period i.
Assumptions

1. The production, inventory and penalty cost functions are assumed to
be non-decreasing and concave with
¢, (0) =0, H;,(0) = 0,and B;,(0) = 0.

2. Inventory and penalty cost functions are considered as age-
dependent. In age dependent costs, the costs are related with the age
of products so time of periods that products are carried at the
inventory is important. This can be shown as H;,(x) = H,;(x).

3. We assume zero inventory at the beginning and the end of the
horizon.

4. We assume that there is no backlogged demand at the beginning

period and also no remaining backlogged item at the end of the
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horizon. In other words, all demand is satisfied at the end of the

horizon.

To summarize the differences between the model in Hsu (2003) and our

model are given below.
Model-wise difference:

e Zi in our model is used for both decision variables M;; and zy,. It is
enough and sufficient to express the meaning of both two decision
variables related with satisfied and unsatisfied demand.

e We eliminated the constraint related with unsatisfied demand which

Representation-wise difference:

e Our model has a network flow representation whereas the model in Hsu

(2003) does not have any.

Additionally, to identify the deterioration rate which is in parameters, an
example is shown below.

1
(1-a11)(1-a12)(1-a13)

unit to be used in period 3. Therefore, to meet demand, the production

units of product should be produced at period 1 for one

amount should be increased as much as the fraction of loss rate. This can be
shown with an example. Let’'s assume the deterioration rates are a,; = 0.05,
a,, = 0.2, and a;3 = 0.5. a4, is the proportion of loss of products kept at the
inventory at the end of period 1. a,, is the proportion of loss of products
which have been produced at the beginning of the period 1 and kept at the
inventory at the end of the period 2. a,; is same as a;; and a,,. It is the
proportion of loss products waiting at the inventory 3 periods. Since, in this
case products have been produced in period 1 and they have been kept at
the inventory until at the end of period 3. If we want to meet one unit of

demand of period 3 from the production of period 1, we have to produce
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2.632 units at the Dbeginning of the period 1. In other

1
(1-0.05)(1-0.2)(1-0.5)

words, = 2.632.

Our mathematical model of the problem is given below.

Minimize i[ct(xt) + iHit(Yit) + i Bit(Zit)] P)

i=t+1

Subject to:
Xe = Xiz1Zei = Vit 1<t<n (3.1)
(1= @ie1) Vieer = Zie = Vie 1<i<t<sn (3.2)

i=1Zit = d¢ 1<t<n (3.3)
Yie 2 0 1<i<t<n (3.4)
Zi = 0 1<it<n (3.5)
x¢ =0 1< t<n (3.6)

This problem can be formulated as a minimum cost flow problem with flow
loss. The incoming flow to a node is greater than or equal to the outgoing
flow. A 4-period problem is represented in Figure 3. The notation in Hsu
(2000a) is followed while drawing the network. However, we have extra

backward arcs that represent backlogging.

In Figure 3, node F represents the source for production. N;; nodes are
created for every paired periods (i,t) while 1 <i <t < n. Nodes represented
by S are demand nodes where the period number appears as a subscript.
The arcs show the flow of the products. The arc between (F, N;;) for every t
gives the production at period t. This can be considered as x,. For every pair
of i and t, there is an arc between (N, N;.,1) Which gives the inventory

holding at period t from production at period i and this is indicated as y;;. For
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every t, the arc between (N;, S;) are demand satisfaction arcs and does not
have an extra cost and also it is shown as Z;.. However, the arcs between
(Nge ,Si) for every t and k 1 < k <t are the backlogging arcs. This can be

illustrated as Z,, where i > t.

f N\ ,v.., ‘ ,".A- \ ,"}' \ ,'.., N\
( F —X—>{Not | —y1—>{ Niz2 |—Vy12—>{ Nu3 | —Vy13—>{ N1q )

o e — V-

9 Z1 Z13 Z14
—— > =Y ‘~,_._‘__> 4 — / g /
S \ N . ; p ' . ‘ IS \ /
[ S1 /‘\' < N2z | >“¥22—>{ N23 | —y23—>{ N2 )

g Z31 \X_4 PN J
ho P N Z;J

Figure 3 Network Flow Representation for DLSP Model

3.3. Solution Method

In Winston (1993), Dynamic Programming (DP) is defined as a method used
to solve complex decision problems. The method is found by Richard
Bellman in 1953. It is a recursive method. From sub-problems of a whole
problem the suboptimal solutions are found. Then, the sub-problems are
expanded and new suboptimal solutions are found for new expanded part
while using previous optimal solution. The expansion of the problem lasts
until problem turns into the original problem. Therefore, the stopping

condition is met when the problem is solved.

For solving our problem, the problem is divided into smaller parts or sub-

problems and combination of these parts is considered to obtain a solution
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method for this kind of problems. To decide on the small parts (components),
Zero Inventory Property and Interval Division Property have been explored.

Zero-Inventory Property (ZIP): A positive inventory cannot be carried into a
production period. This means that in a given period we can have at most
one of the following: inventory from previous periods or production. In other

words,
XeYie = 0 Vt, i<t

In Wagner and Whitin (1958) this property is used to obtain a dynamic
programming based solution and define the parts of the optimal solution.

Interval Division Property (IDP): Production in a period satisfies the
demand of some consecutive periods. Let ji, j, ..., jk be the production
periods in the ascending order and iy, iy, ..., ik be the end of the consecutive
demand periods in the ascending order, then production in period j, satisfies

the demand of the periods from ipy.1 tO in.

O

Figure 4 Interval Division Property (IDP)
An example is shown in Figure 4. There are 2 production periods and n

periods for demands. Production at period 1 satisfies the demand of periods

from 1 to i; in consecutive order and production at j satisfies the remaining
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demand from period i; + 1 to period i,. This divided periods and productions
into intervals and make them groups between each other.

Florian and Klein (1971) has developed an algorithm with general concave
inventory cost functions with or without backlogging and IDP can be seen in
these problems. Florian and Klein (1971) claims that optimal plans consist of
independent components. In these components, firstly the inventory level is
not zero for every period but the inventory level of last period is zero.
Secondly, if the production level is positive, it should be at capacity with the
exception that at most one period production level can be less than the
capacity that is shown as €. It can be calculated by the following equation.
Therefore, let us to refer that d; is demand of period i and K is the capacity.

Then, € can be found as:

E =

" od;

n
i=1

Sargut (2006) states that IDP can be useful when inventory and backlogging
costs are concave. Moreover, total minimum cost is calculated by adding

minimum cost for each component.

Table 3 and 4 are detailed versions of Table 1 and 2 respectively. Tables
include details in terms of Interval Division Property and Zero Inventory
Property. All papers in the Table 3 have some special cases where IDP
holds. Table 4 includes the general properties of our study. IDP and ZIP do
not hold for any optimal solution in our study. It can be seen in following
examples since the optimal solution shows that these properties may not

hold in some problems.
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Table 3 The Properties of the Models in Related Literature in more Detail

Hsu (2000a)

Hsu and Lowe
(2001)

Hsu (2003)

Production
cost function

General concave
and nondecreasing

General concave
and nondecreasing

General
concave and
nondecreasing

. - it = : . it =
Perishability it = %t No perishable items Fie = e
wherei <j wherei <j
. , : General
Backlogging . Period-pair
cost function No backlogging dependent concave age-
dependent
Inventory General concave Period-pair General
holding cost age- dependent dependent concave age-
function 9 P /independent dependent
IDP for
general case ves No No
ZIP for
general case No No No
Running time 4 3 4
of Algorithm O(m) O(m) o)
General
General concave concave, non-
Special ! o decreasing
General concave period pair
cases (IDP demand, age
and age dependent dependent
holds) . . dependent
inventory costs backlogging and .
. inventory and
inventory cost .
backlogging
cost
Running time
of special o(n? o) o(nd
instances

Table 4 The Property of our Problem with Detail

Our Problem

General concave and
nondecreasing

Production cost function

. - > s
Perishability Fir = Gt
where i <j
Structure of the backlogging cost function General concave age-
dependent
Structure of the inventory holding cost General concave age-
function dependent

IDP and ZIP for general case No
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3.4. EMPIRICAL ANALYSIS

This section includes some example problems and their solutions.

Example 3.1: Let us assume there are five periods such as January,
February, March, April, and May. All demand values are equal to 10. The
production costs are c¢;(x) = 10000x, c,(x) = 2000x, c5(x) = 100x, c,(x) =
3000x, cs(x) = 10x. The holding cost is linear H;;(y) = 100(t — i + 1)y. The
following equations show the penalty cost functions which are B;,,;(z) =
200z, B;;,;(z) = 400z, B;,3,;(z) = 600z. The deterioration rate matrix (a;) is

given below. N/A means not defined.

January February March April May

January N/A 0.3 0.8 1 1
February N/A N/A 0.4 02 1
March N/A N/A N/A 05 0.25
April N/A N/A N/A N/A  0.45
May N/A N/A N/A N/A  N/A

The unique optimal solution for the problem is that d,, d,, d;, d, are
satisfied from production at period 3, it can be seen that the demand of
periods 1 and 2 are met by backlogging from period 3; furthermore, the
products which is produced in period 3 and available in the inventory in
period 4 are used to meet the demand of period 4. Finally ds is satisfied in
period 5. Thus, it is seen that x; = 40, x: = 10. Using GAMS, it can be
solved within seconds. The solution shows that IDP and ZIP are provided.
Since, period 3 which is one of the production periods satisfies the demand
of period 1, 2, 3, and 4 in a consecutive way. Also, inventory does not carried
into production periods.
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Example 3.2: Consider one instance of a 100-period problem with age-
dependent inventory cost function and the demand values are generated
uniformly in the interval (50, 500). The holding costs increase linearly by age
that is H;(y) =100(t—i+ 1)y. The backlogging cost also increases
linearly by age. The following equation shows the penalty cost function that
is B;;(z) =200(t — i)z. The production cost constraints are set uniformly in

the interval (110, 1100). The deterioration rate matrix («;;) is given below.
diiv1 = 005, Aiiy2 = 02, i = 1 when (t - l) > 3.

The optimal solution for the example 3.2 shows that the demand of periods is
met consecutively by consecutive production periods. Therefore, it can be
said that IDP are provided but ZIP does not hold for this example. Since, for

some periods inventory is carried to production periods.

Hsu (2000a) showed that zero-inventory property may not hold for any
optimal solution for perishable items while interval division property can hold.
Additionally, the same examples in Hsu (2003) are valid to show that for
some problem instances both ZIP and IDP are not satisfied. We used same

examples to show that ZIP or IDP may not hold.

Example 1 in Hsu (2003) shows that IDP may not hold. Suppose there are
six periods where d, =d,=ds=dgs =10, d; =20, andd, =4. The
production costs are C;(x) = x, C,(x) = 4x, C3(x) = 6x, C,(x) = 8x, Cs(x) =
x, Co(x) = 4x.

Hi;(y) =y, a; =0.05for1 <i<5;

Hiiv1(y) =5y, a;;41 =02 for1 <i <4

Hiix(y) =+0,a;;4 =1forl1 <i<3andk > 2.
The backorder costs are By;(z) = 30forallk < tandz > 0.

In the optimal solution, d; and d, are met by production in period 1. Demand
in period 4 is satisfied by period 3. Moreover, demand in periods 3, 5, and 6
are met by production in period 5. 3, 5, and 6 are not consecutively indexed

demand periods. Additionally, ZIP holds in the optimal solution which can be
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seen in Figure 5. Since, the inventory is not carried to the production periods

which are period 1, 3 and 5.

1 20.

85 VARIAELE x.L

528, 3 4,211,

86 VARTAELE =.L

10.000 10.000

87 VARIAELE v¥.L

10.526
4,211

the production volume in pericd t©

o 40.52&

the amrunt of demand in period £t to be =satisfied from

production period 1

3 4 = &

4.000
20.000 10.000 10.000

the amount produced in period i and held at the beginn

ing of period ¢

5

10.52&

Figure 5 GAMS Solution for Example 1 of Hsu (2003)

In Example 2 in HSU (2003) ZIP does not hold but IDP in the optimal solution

holds. Consider the problem in Example 1 and suppose:

Bkk(Z) = 2Z, for 1 <k< 5,

Bk,k+1(z) = 10Z, for 1 <k< 4‘,

Byr+t(z) =+, for1 <k <3andt > 2.

In optimal solution, it is seen that production in period 1 satisfies demand in

first and second periods. Period 2 satisfies the third period. Furthermore,

demand of period 4, 5, and 6 are met by production in period 5. It can be

seen in Figure 6 that production periods are met demand in consecutive

order so IDP holds. However, there exists production in period 2 although

inventory is carried to period 2. Therefore, ZIP does not hold.
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———— 51 VARTAEBLE x.L the production volume in period t©

1 20.52a, 2 21.053, 5 24.52&

—_——— 82 VARTAELE =z.L the amount of demand in periocd t to be satisfied from
production periocd i

1 2 2 4 = &
1 10.000 10.000
2 20.000
= 4,000 10.000 10.000

—_——— 83 VARIAELE v.L the amount produced in period i and held at the beginn
ing of period t©

1 2 =
1 10.526
2 21.053
s 10.526

Figure 6 GAMS Solution for Example 2 of Hsu (2003)

3.5. The Structure of the Optimal Solution for Uncapacitated

Production Problem

In this section, the structural properties for uncapacitated problems are
mentioned. Some theorems help to find or analyse the solutions by checking
whether the conditions of the theorems hold. Therefore, Theorems 1 and 2 in
Hsu (2003) are explained below. We find the same solution with the solution
of the model in Hsu (2003) by solving with our model. It means that model in
Hsu (2003) and our model are alternative models and the theorems about the

structure are valid for both.

Theorem 1. There exists an optimal solution to (P) where for each t, there is

aunique isuchthatZ;, =d;,wherel1 <i <t.

Proof: Each period’s demand is satisfied by the production at only one
period. The objective is concave and the feasible region is a compact
polyhedral. According to Bazaraa and Shetty (1979), the optimal solution will
be an extreme point in the feasible region. For a network flow problem

extreme point solution corresponds correspond to an arborescent flow in the
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network (Zangwill, 1968). In other words, every node will have only one

incoming arc with positive flow except the source node. o

However, in capacitated production problem there may be instances where
Theorem 1 may not be valid. Since, for this kind of problems the production
of period i may not be enough to meet the period t demand because of the
limited production capacity. Thus, there may be more than one production

period to satisfy a specific period demand.

In the optimal solution for uncapacitated problems, it is observed that if the
holding cost and backlogging cost increase when the difference between
production period and period that product is used increases and if it is also
known that the demand of a period k is satisfied by a production in period i,
the production periods before period i such as period i-1 cannot satisfy
demand of period k or demand of further periods of period k. Since, if the
holding costs and backlogging costs are considered, satisfying demand of
any period after k using production in any period before i without using this

theorem increases total costs which is out of objective.

The conditions and details are explained below in Theorem 2 and Figure 7.

Theorem 2: There exists an optimal solution to (P) where if i< j are two

production periods and Zj, = d, for somek >j, then Z;, =0 for all t,

wherek <t <n.

Proof: Assume that in the optimal solution demand in period k is satisfied via
production in period j, where i <j < k.Let x"be the production quantity of
period i in the optimal solution and y; be the inventory left at the beginning of
period | from the production in period i. For any i<j we can say that

everything is kept the same except period k is satisfied from period i instead

of period j.
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Figure 7 The Intersecting Demand Satisfaction with Holding

Let us assume in the optimal solution period k is satisfied from production at
period j and p periods after period k (k < 1, < 1,... <1, = t) are satisfied by

production at period i. The proof is done by showing that if they are satisfied
from period j, we will have a better objective value.

That is:
t-1 t-1

G O6)+ D Hy (yi) +¢,(x)+ X H, (y;) >
I=i I=j

66 = 20 M)+ 2 Ha (3 = 2 An) +6, (6 + 3 Abdy)+ 3 Hy () + Y Ald,)

m=r, m=r, m=r, m=r,

The details of the proof without backlogging are given in Hsu (2000a). The
proof for the case with backlogging is given in Hsu (2000b). o
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3.6. Dynamic Programming Algorithm

Hsu (2003) presents that a dynamic programming algorithm which can be
applied when the conditions in Theorem 1 and Theorem 2 are valid.
Therefore, we can also adopt the same algorithm. Since the problem under

consideration is the same.

V (i) refers the optimal value of the problem when we consider periods from 1

toi. V(0) = 0, and V(n) is the optimal value of the whole planning horizon.

To find the optimal value of the whole planning horizon, the sub-parts of the
problem and their optimal values should be found. Therefore, P(r,i) which is
the optimal value of the problem for periods from r to i with at most one
production period should be found.

The backward recursion of DP can be written as below.
V(i) = min;,{V(r—1) + P(r,i)}.
The following calculations are needed to find out P(r,i).

i . is the amount of production that must be made at period i to satisfy one
unit demand of period t from the beginning of period k.

1 1

i — = i<k<t.
kt (1) (1= per1)e(1=aie-1)  TiZeA-ai)

F;(p,q,7) shows the amount produced at period i and kept at period p for

demand of periods from g tor.

d, is the demand at period k.

Fip,a1) { k=q Apk di if i<q
\p,q,7) = : i,q}— . L.
l Z:max{i,q} A;)kdk + Z‘ITE;{HI} ! dk lf q=1

TH;(q,r) is the holding cost for demands from g to r when produced at period

iwherei < q<r.

q-1 T
TH;(q,7) = Z Hy(F(Lq,1)+ ZHL-,(FL-(Z, l+1,7) Il=i.r
=i l=q
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TB;(q,r) is the backordering cost for demands from g to r when produced at

period i wherei > q >r.
TBi(q,r) = Xi=qBu(dy) .

P(r,i) = min, {P*(r, 1)} is the total cost of producing at period k for demands
of periods fromr to i. Therefore,

cx(Fe(k, 7, 1)) + TH(r, 1) k<r<i
P¥(r,i) = cx(Fe(k,7,0)) + THy(k, i) + TBy(r, k) r<k<i
cx(Fe(k,7,1)) + TBy(r,1) r<i<k

According to Hsu (2003) the computational complexity of recursion is
that 0(n?). Since, there are n nodes and n? arcs and also finding shortest
path on this network takes 0(n?) time (Ahuja et al, 1993). All
TB;(q,7) values can be computed in0(n*) time as well as TH;(q,r). To
obtain P(r,i) additional 0(n3) effort is required. The overall computational
complexity of the DP algorithm is found 0(n*) by the summation which is
0on®)+0n*) +0n® +0mn*) =0n*
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CHAPTER 4

CAPACITATED DYNAMIC ECONOMIC LOT-
SIZING PROBLEM WITH PERISHABLE ITEMS

Uncapacitated problems are computationally easier than the capacitated
problems. Systems have capacity because number of shifts, number of
workers and machines used in production, and also other many factors
restrict time and amount of production. Florian and Klein (1971) has
developed their study including capacity limit which is one of the main
difference from Wagner and Whitin (1958). The problem studied by Florian
and Klein (1971) is harder than the problem in Wagner and Whitin (1958)
since optimal solution in Wagner and Whitin (1958) satisfies Zero-Inventory
Ordering Policy but ZIP does not necessarily lead to an optimal solution for
the capacitated version. Moreover, product types such as perishable
products make problem harder. Hsu (2000a) has studied problems with
perishable products. Hsu (2000a) claims that these problems are much
harder since number of nodes in network representation increases and
inventory cost calculation is much more complex. This situation is valid both

capacitated and uncapacitated production.



Master Thesis |30

4.1. Mathematical Model

In the capacitated version of the model, a capacity constraint (4.6) has been
added which implies the production per period cannot exceed the production
limit per period. Backlogging is allowed. Inventory holding and backlogging
costs are both concave and age-dependent. Furthermore, perishability
depends on periods and production costs are concave and nondecreasing.
This study has stationary production capacities. In addition, Bitran and
Yanasse (1982) shows that non-stationary one is NP-hard even with easy

cost structures.

Decision Variables
x¢ IS the production volume at the beginning of period t.

Z;; is the amount of demand in period t which is going to be satisfied from

production in period i. If i > t, it means there exists backlogging.

v, 1S the inventory left at the beginning of period t from the production in

period i.

Parameters and Functions

d, is demand in period t.

a;; is the proportion of y;, lost during period t.
c; is the cost function of production at period t.

B;; is the penalty cost function for backlogging, the cost of satisfying the

demand of period t from production in period i, where i > t.

H;; is the cost of holding inventory during period t of items produced in period

K is the fixed production capacity for each period.
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Assumptions

1. The production, inventory and penalty cost functions are assumed to

be non-decreasing and concave where
c: (0) =0, H;(0) =0, and B;(0) =0.

2. Inventory and penalty cost functions are considered as age-
dependent.

3. We assume zero inventories at the beginning and the end of the
horizon.

4. Moreover, we assume that there is no backlogged demand at the
beginning period and also no remaining backlogged item at the end of
the horizon. In other words, all demand is satisfied at the end of the
horizon.

5. Let us define af(x, B) = f(x + B) — f(x).

Foranyx,y,B=0
ABit(X, B) 2 AB]lf (y1 B)’ for 1 <t <j <i€n

AH (X, B) 2 AHj; (Y, B), for1<i<jstsn

This assumption states that there is a nondecreasing marginal
holding/backordering cost with respect to the age of
inventory/backorder, namely (t-i) or (i-t). This assumption shows that
when the carried or backlogged products are increased by g, the
backlogging and holding costs will increase through number of
periods. If periods are increased for a specific amount of products
while backlogging or holding, the costs for backlogging and holding is
increased for that specific amount. Since, holding inventory longer

increases the costs and this is same as for backlogging.

6. Assumption on the deterioration rate a;, > «@;, where i<j.
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Minimize i[ct(xt) + iHit()’it)'F i Bit(Zit)] (P1)

i=t+1

Subject to:

Xe — ioq Zei = Vit 1<t<n (4.1)

(1 - ai,t—1) Vit-1 — Zit = Vit l1<i<t<sn (4.2)
Ly Zi =d; 1<t<n (4.3)

Yie 2 0 1<ist<n (4.4)

Zi =0 1<it<n (4.5)

0<x<K 1< t<n (4.6)

4.2.  Structural Properties of the Optimal Solution

According to Theorem 1, the demand of a period is satisfied from production
at one period. However, this theorem does not hold in capacitated production
case. Since the capacity restricts the amount of production and insufficient
amount may affect the meeting demand so that production at many periods

can be used to satisfy the demand for a period.

Theorem 3: In the optimal solution of problem (P) for each period t, there is

at most one i with Z;; >0 and 0 < x; <K.

Proof: When demand of a period is satisfied by more than one period we
obtain cycles with positive flow. Since we have concave costs, we can find a
better solution, where there is no cycle. We will explain this in a reduced
network where the inventory arcs are eliminated but they are still there
between an x value and z values. The first level arcs are the positive
production arcs and the second level arcs are the positive z values. In the
reduced network below demand of period t is satisfied by the periods i, j, and
K.
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Figure 8 A Reduced Network

If two of the production periods have positive x values less than the capacity,
we can improve the solution by equating one of them to capacity/zero and
decreasing/increasing the other one by some amount. At one ¢ value,
where at least one of the values of x;, z;, xj, z;; hits zero is the best solution

because of the concave cost structure. o

Any optimal solution is composed of at least one component. Based on
Theorem 3, we name a component by its range of production periods and the
demand periods. Its property is that some consecutive demand periods are
satisfied via some production periods and it may not be connected.
Production periods start with the next period of the previous component’s last
production period and ends with its last positive production period. In
between we can have zero production periods. Demand periods are the
consecutive periods where their demand is satisfied. Two examples of the
component (1, 4, 1, 5) are given in Figures 9 and 10. The first one is not
connected, whereas the second one is connected. A component may be

degenerate as can be seen in the first reduced network in Figure 9.
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Figure 9 A Disconnected Component

Figure 10 A Connected Component

Suppose that a component is composed of the production periods from s to

m and the demand periods from p to r.

We define component as a set of consecutive production periods and a set of
consecutive demand periods. Let component (s, m, p, r) represents the
production periods from s to m where s < m and the demand periods from p

torwherep<r.

The demand of periods which are p to r is fully satisfied by the production

periods in the component. It means that there is no incoming
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inventory/backlog into the component as well as outgoing inventory/backlog
from the component. Moreover, the total production up to a production period
t1, where s<t; <m is less than or more than the amount needed to satisfy the
demand up to a period t, where p < t, < r. The next component starts with
production period m+1 and ends with the last positive production period.

Theorem 4: In a given component (s, m, p, r) there will be at least 8 periods
with production at full capacity and one period with production quantity

0 <e< K and at other periods production amount is equal to zero, where
9 = Z}Zzp dk
K

We consider number of full production periods equal to
0 = lz’“—é’dkj and 6 + 1. Because of perishability, integer part of division is

not enough to satisfy the demand.

Proof: In a connected part of that component we obtain many cycles with
more than one positive flow. If two of the production periods in the connected
component have positive x values less than the capacity, we can improve the
solution by making one of them equal to capacity/zero and
decreasing/increasing the other one by some amount because of the

concave cost structure.

Figure 11 The Reduced Network for the Proof of Theorem 4
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Suppose that the values of x; and x; are between 0 and K. At least one of

the values of x;,zy,x;j,z; hits zero is the best solution because of the

concave cost structure. o

Theorem 5: In an optimal solution we do not have intersecting z arcs such

as

a. (t, ) and (k, p2) wheret <p, <n, <k.

b. (t, ri) and (k, p2) wheret <k <p, <.

c. (t,ry) and (k, p2) where p, < r; <t < k with the extra assumption
ABiy1t(x, ) — ABi(y,B) > ABjiy:(2z,B) — ABj(u, B)

where i >j>t and k, x, y, z, u, > 0.

d. (t, 1) and (k, p2) where p, <t <r; < k with the extra assumption
AB;(x, B) > AB;;(y,B) + AB;(z,B)

wherei>j>t and x,y,z B =0.

e. (t, ry) and (k, p2) where t < p, < k < r; with the extra assumption
AH; (x,B) > AH;; (v, B) + AHj (2, B)

wherei<j<tandx, y,z, =0

Proof: We will prove it by contradiction. For part a, consider the following
situation in the optimal solution. Suppose  that z;. = z,,.

Now consider this updated solution.
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Figure 12 First Reduced Network for the Proof of Theorem 5

Ztr1 - ka2 ka2

\

Figure 13 Second Reduced Network for the Proof of Theorem 5

While total production at periods t and k are kept below the capacity and

constant as possible

e The backlogging cost change of sending z,, units from k to r; instead
of k to p2 is negative.
e The holding cost change of decreasing the amount from t to ry by z,,

and increasing the amount from t to p, by the same amount is

negative.

e Moreover the production amount will decrease at period t.
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Therefore, we can eliminate this situation one by one until we do not have

any.

For part b, Figures 14 and 15 are below.

SN O10

Figure 14 First Reduced Network for the Part b of Theorem 5

a= y—Ak

k T1

b

X = yAllgpz /Allgrl

c=Yy
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We send just y units from t to p..
The change in the cost can be summarized as below.

k
Ak

1. Carry extra yAk”2 units for ages 1, 2, ..., ri-k+1

krq
2. Carry y A, /Af, unitsless forages 1, 2, .., ry-t+1

3. Carry y units less for ages 1, 2, ..., po-k+1
4. Carry extray units from 1, 2, ..., po-t+1

The joint effect of 1 and 2 is negative since it corresponds to carrying less
than y units for age r;-k+2 to rq-t+1.

The joint effect of 3 and 4 is also negative since we carry y units less for age
p2-t+2 to po-k+1. Moreover production at period t will decrease. Total effect
will be negative. There we will not have this kind of intersection in an optimal

solution.

For part c we have the following figure which is Figure 16.

Figure 16 Reduced Network for the Part ¢ of Theorem 5
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For part d we have Figure 17, we can prove similarly and the production at

() ()

Figure 17 Reduced Network for the Part d of Theorem 5

period t will decrease.

For part e we have Figure 18, we can prove similarly and the production at

offifc
@

Figure 18 Reduced Network for the Part e of Theorem 5

period t will decrease.
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There is no assumption that prevents the following case. (t=r1)

Ex:

Figure 19 A Possible Network in Optimal Solution

Theorems 3 and 4 and also part a, b and ¢ of Theorem 5 are valid with the
beginning assumption which is

Foranyx,y, =0

AB; (X, B) 2 ABj: (y, B), for1<t<j<isn

AH; (X, B) 2 AHj. (y, B), for1<i<jsts<n

However, Theorems 3 and 4 and also all parts of Theorem 5 are valid when

the extra assumptions in the Theorem 5 are applied.

From now on we consider a component by consecutive set of production
periods and consecutive set of demand periods, where the next component
has later demand and production periods then the previous component. A

component can be disconnected in that case we say that it is degenerate.
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4.3. EMPIRICAL ANAYSIS

Four data sets have been generated with different capacities to analyse the
problem. Number of periods, the amount of demand per periods and
production costs are the same but the production capacity, holding costs and
the penalty costs are different in the examples. Thus, there are 6 periods
where d, =15, d, =10, d3 =20,d, =5, ds =30, and d¢ =1. The costs
of production are C;(x) =x, C,(x) = 4x, C3(x) = 6x, C,(x) = 8x, Cs(x) = x,
Ce(x) = 4x.

Data Set 1:

K=20

Biy1,i(y) =5¥; Biy2:(¥) = 7y; Biysi(y) = 10y,

H;(y) =y, a; =0.05for1 <i<6; H;;1(y) =5y, ;;4,1 =02 for1 <i <5,

Hi,i+k(y) = 400, Xii+k = l1for1<i<3andk > 2.
-— 89 VARTAEFELE =x.L the production volume in period t©
1 20.000, 2 20.000, 2 &.2&82, 5 20.000, & 1&.250

-— 90 VARIAELE =z.L the amount of demand in period © to be satisfied from
production period i

1 2 3 4 5 &
1 15.000 4.750
2 19.000
3 1.000 5.000
5 20.000
& 5.250 10.000 1.000
———— 51 VARIABLE y¥.L the amount produced in period i and held at the beginn
ing of period t
1 2 3
1 5.000
2 20.000
3 5.263

Figure 20 Optimal Solution of Data Set 1 in GAMS
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The problem is solved using GAMS. The optimal solution is reported in
Figure 20. According to this solution, IDP and ZIP do not hold for the optimal

solution.

Demand periods are not satisfied by production periods in a consecutive

order. Since B,y ;(y) where k > 4 is assumed to be 0. However, it should be
as  Bjy4;(y) > By (y) wherel <k <3. The solution consists of 2

components. Demand periods 1, 2, 5, and 6 belong to a component and
other demand periods 3 and 4 are belong to other component.

Data Set 2:

K=2000

Biy1,i(y) = 5Y,Bi12i(¥) = 7y, Biy3:(y) = 10y, Bi14,(y) = 14y, B;y5,(y) = 20y,
H;(y) =y, a; =005for1 <i<6; H;;1(y) =5y, a;;4,1 =02 for1 <i <5,

Hiix () = 40,4, =1for1<i<3and k > 2.

———— 91 VARIABLE x.L the production wvolume in period t

1 25.524&, 2 21.053, 5 36.053

———— 92 VARIABLE z.L the amount of demand in pericd £t to be satisfied from
production period i

1 2 2 4 = [
1 15.000 10.000
2 20.000
] 5.000 30.000 1.000

———— 93 VARIABLE yv.L the amount produced in period i and held at the beginn
ing of period t©

1 2 =
1 10.52&
2 21.053
] 1.053

Figure 21 Optimal Solution of Data Set 2 in GAMS
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In the optimal solution, IDP holds where the penalty costs are increasing by
age. That means demand periods are consecutive order whereas, ZIP does
not hold in the problem.

Data Set 3:

K=20

Bi+1,i(y) =5y, Bi12i(y) = 7y, Bi13;(y) = 10y, Bi14;(y) = 14y, Bi,5,(y) = 20y,
H;(y) =y, a; =005for1 <i<6; H;;1(y) =5y, a;;41 =02 for1 <i <5,

Hi,i+k(y) = +o00o, Aii+k = l1fori1<i<3andk = 2.

In this example, it can be said that ZIP does not hold. Because, if Figure 22 is
observed, the inventory form periods 1 and 2 is carried to production periods

2 and 3. According to ZIP the inventory cannot be carried to production

periods.
—_—— 92 VARTARLE =.L the production volume in period t©
1 20.000, 2 20.000, 3 11.2:51, 5 20.000, & 11.000
———— 93 VARIABLE =z.L the amount of demand in period ©t to be satisfied from
production period i
1 2 3 4 5 &
1 15.000 4,750
2 5.250 14.012
3 5.588 5.000
5 20.000
& 10.000 1.000
—_—— 894 VARIABLE y.L the amount produced in period i and held at the beginn
ing of period t
1 2 3
1 5.000
2 14.750
3 5.283

Figure 22 Optimal Solution of Data Set 3 in GAMS
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Data Set 4:
K=20,
Bis1,i(¥) = 5Y, Bi12,i(¥) = 7Y, Biy3i(y) = 10y, Bi14;(y) = 14y, Bi15,(y) = 20y,
H;(y) =5y, a;; =0.05for1 <i<6; Hj;;1;(y) =y, a;;41 =02 for1 <i <5,

Hijpx(y) = 40,4, =1for1 <i<3and k = 2.

For this example, ZIP does not hold. Since, inventory from periods 1 and 2 is
carried to production periods 2 and 3.

—_—— 892 VARIAELE x.L the production volume in pericd t

1 20.000, 2 20.000, 2 1.%588, 5 20.000, & 20.000

———— 93 VARIAELE =z.L the am-unt of demand in period £t to be satisfied from
production period i

1 2 3 4 5 &
1 15.000 4.750
2 5.250 14.012
3 1.588
2 20.000
& 4.000 2.000 10.000 1.000
—_—— 894 VARIAELE y.L the amount produced in period i and held at the beginn
ing of period t
1 2
1 5.000
2 14.750

Figure 23 Optimal Solution of Data Set 4 in GAMS

The optimal solution may change upon changing backlogging costs. Since,
when the backlogging costs are changed, some different optimal solutions
are obtained. Especially, IDP and Theorem 1 do not hold in Data Set 1. Since

the production periods does not divided the periods in a consecutive order to



Master Thesis |46

meet the demand and also in some periods such as period 2, 3 and 5 the
demand is not satisfied by only one periods production.

Additionally, Theorem 1 does not hold in Data Set 3 but Interval Division
Property (IDP) is provided in both Data Set 2 and Data Set 3. In the example
named Data Set 4, IDP does not hold since the holding costs are not formed

as H;(y) < H;;+1(y) and also ZIP is not provided.

4.4. The Feasibility Test

When we compare total demand and total production capacity of the problem
for whole planning horizon, we can basically understand problem feasibility if
the product is non-perishable. The problem with non-perishable product and
allowing backlogging is feasible when }*; d; < nK. However, if the product is
perishable for the problem, feasibility checking is not easy because the
amount of inventory decreases when time passes. Thus a basic table
calculation can be helpful for checking feasibility. Thus, let us to show an

example to check the feasibility.

Example 4.4.1: Assume that demands for six periods are 15, 10, 20, 5, 30,
and 1 respectively. The loss rate of product for waiting a period in inventory is
0.05, the loss rate for two periods is 0.20 and the loss rate for three and more

periods is 1. Backlogging is allowed and production capacity is 20 units.
Hii(y) = 5y, a;; = 0.05for1 <i<6;
Hi,i+1(y) =Y, Qi1 = 02 for1<i< 5,

Hyjsx () = +o,a;;, =1for1 <i<3and k > 2.
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Table 5 Test of Feasibility Example 4.4.1

to
P1 P2 P3 P4 P5 P6
Max.
amount
from of
15 10 20 5 30 1 production
P1 15 4.75 20
P2 5.25 14 20
P3 6 5 6,64 20
P4 20 20
P5 3,36 1 4,42
P6 )

The table shows the amount satisfied either from production or inventory for
each period. That refers Z values in the model for the problem. We assume
production at each period at full capacity until unneeded. In the table, full

capacity production until period 5 provides a feasible solution for the problem.

Here we use a first-in-first-out (FIFO) policy. We observe that amount
produced in a period is used starting from the first needed period until it runs
out. Since in this problem there is no objective function to find an optimal
solution so optimality checking and the constraints (holding cost for holding
inventory) which restricts the problem to achieve the optimality is not scope
of this example. Therefore, if there are products in the inventory, firstly they

are used to meet demand.

At first period 20 units are produced and 15 units of them are used for first
period demand. The remaining 5 units are carried to second period but 5% of
carried product are spoiled so 4.75 units are used for demand of period 2.
Period 2 production meets the demand of period 2 and 3. The production of
period 3 satisfies remaining part of demand of period 3, the total demand of
period 4 and the part of demand of period 5. Therefore, some of remaining
part of the production of period 3 is carried two periods and according to loss

rate some products are perished. In period 5, there is no need to full capacity
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production. Since the production in period 4 satisfies the some part of
demand of period 5 so 4.42 units are enough for demand of period 5 and 6.
Moreover, it is already assumed that at the beginning period there is no
inventory from previous periods and there is no inventory left at the end of
periods.

4.5. Dynamic Programming Formulation

V(m,r) is the minimum cost of satisfying the demand of periods 1,...,r by the
production at periods 1,...,m. We write the following backward recursion.

V(im,r) = minisssm{V(s —1,p — 1) + P(s,m,p,7)}.

1<p=<r

P(s,m,p,r) is the minimum cost of satisfying the demand of periods p,...,r by
the production at periods s,...,m. In other words, it is the cost of the

component (s, m, p, ).
We are looking for V(n,n) as the optimal solution value of P.

This algorithm runs in O(n*) time if we know the cost of each component.
Because this dynamic programming formulation corresponds to a shortest
path problem on a network with O(n%) nodes and O(n?) arcs. The shortest

path can be solved in the order of arcs time.

4.6. Calculating the Cost of a Component

4.6.1. Number of Z Arcs in a Component

N = number of positive production periods in the component + the number of

demand periods in the component —1

To be connected we need to have N positive z values or z arcs in the

reduced network. For a disconnected component we may have less N arcs.

N=0p,+1+r—p+1-1=0, +r—p+1



Master Thesis |49

The minus 1 part is needed not to create a cycle in the part without the
production arcs. 0, is the number of full production periods needed to satisfy

demand periods fromp to r.

For the component (s,m,p,r) we have (mgs:-l) (m—s+1-86,) possible

combinations of full production and zero production assignments. This value

takes its maximum value s = 1 and 6,,, = [?]

Let us to consider a component (1, 6, 1, 6) and assume that the component
has 3 full production period and 2 zero production periods. The remaining
period produces between zero and the capacity. Therefore, we can say that
the number of possible combinations of assignments is (£)(3). (3) gives the
number of combinations for full capacity periods and this is multiplied by 3
because of the remaining period which is € can be one of the other three
periods. In that case, the number of combinations gets its maximum value.
Since, if 6 and s increase, the number of combination decreases. However,
we ignore a component which has more than 2 empty periods where there is
not production. If the number of combinations increases, the running time of
algorithm also increases and if there are more than 2 empty periods in a
component, in this case without these periods the production satisfies the
demand so problem can be considered as uncapacitated. Therefore, number

of total possible combinations in this study can be at most (n23)3. This

equals at most O(n®).

For a given combination, we have to find the best objective value of a
combination. Thereafter, we need to the best one among all combinations to
find the optimal solution of a component. Let P;(s,m,p,r) be the minimum

cost of the i combination then we can write the following equation.
P(s,m,p,r) = min;P;(s,m,p,r)

Now we will show how we calculate a good solution of a given combination in
n(® + p—r+ 1) time, which is 0(n?). After our empirical analysis and
Theorem 5, we propose an algorithm that finds a near optimal solution for a

given component and combination.
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4.6.2. Finding a Good Solution for component (s, m, p, r) for a

Particular Combination

In this thesis, an algorithm is generated to solve the combinations of a
component. Also, this thesis mainly focuses to solve these combinations or
sub-problems. After solving possible combinations with our algorithm, the
best results within solutions are selected for final solution.

We have converted the full capacity periods and zero production periods
information into best z values for the component. The remaining period will
be the ¢ period. In other words, identifying the full capacity and zero
production periods helps identifying the best z values for the component and
the only period that is not identified as a full or zero production period is the €

period.

We use a method similar to finding an initial solution to transportation
problem such as the Northwest-Corner method. (For the Northwest-Corner
Method see Winston, 1993).

Our algorithm finds a good solution for each combination of a component. By
proving Theorem 5, it is wise to stay close to diagonal as much as possible

and avoid intersections.
Initial Part:

First of all, we start from first demand and production period and then the
production period is checked if it is € or not. If production amount is not &, we
compare following unsatisfied demand and following unused production.
After comparison, the smaller value is inserted to the table. Then, the
inserted value is subtracted from both unsatisfied demand and unused
production and we check if there is a positive remaining value in row or
columns from comparison. If there is a positive remaining value in unused
production, we calculate the loss and we use this value for further
comparisons. Until period of &, the algorithm tends to satisfy its current
period demand first and then it satisfies demands for previous periods if

exists any unsatisfied demand of these periods. When there are two or more
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periods for backlogging, the algorithm satisfies firstly the earlier period with
unsatisfied demand which is at the beginning. In problem with concave cost
function, this movement generally behaves from left to right of the table.
Then, if any unused production remains, it is carried to next period.

When production amount is ¢ , it starts from last period to previous periods. If
€ isin last period or there are no remaining periods, then calculate € value by
checking backorders and holding periods according to how many periods are
satisfied by €. If € is not in last period, we insert smaller value of unsatisfied
demand and unused production in the intersection of row and column. When
the production period satisfies its own unsatisfied demand, the algorithm
moves to previous production period for comparison. If the production period
cannot satisfy its own demand, the algorithm checks whether there exists any
unused production below. If such production exists, the algorithm uses that
unused production first to satisfy demand via backlogging. If backlogging is
not possible, it moves to previous production period and that production
period firstly satisfy this further unsatisfied demand and then it satisfies its
own demand. Therefore, algorithm satisfies demand of periods from right to
left of rows up to its own period respectively in this case. It performs in this

way until the skipped period where production amount is ¢ reached.

When the skipped period is reached, the algorithm starts to check whether
any remaining unused production exists or not. If exits, algorithm puts the
remaining products from nearest unsatisfied demand period to furthest
periods. At the end, € value is calculated by checking backorders and holding

periods according to how many periods are satisfied by «.
Second Part:

According to these steps, algorithm creates an initial solution and it looks for
improvements. The improvement is provided by checking the values in the
diagonal cells of the table. If there exists backlogged products and also there
are not any carried products for period of &, the algorithm starts to process as
described again. However, in this case the value of € is known. Therefore,
when the period of ¢ is reached, the algorithm satisfies the demand of period

of € from its known production and then it continues to insert remaining
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unused productions to the nearest periods. This provides that unused
productions are used for satisfying their own periods primarily and this
sometimes helps to reduce costs because of cost structure. Finally, the
results of the initial solution and second part solution are checked. The better
one is used for the final solution.

Assume that P is the current production period and D is the current demand
period. We know which period produces & and which periods produce at full
capacity.

Steps of the Algorithm:
Initial Part:

Step 1: Start from the first period of the component (s, m, p, r) that is P=s,
D=p.

Step 2: If the production amount of P is equal to ¢, go to Step 10.

Step 3: If the production amount of P is not equal to €. Compare unsatisfied

demand for D and unused production amount of P.
Step 4: Insert the smaller value to the cell (P, D) in the table.

Step 5: Update unsatisfied demand for D and unused production amount of P

by subtracting the inserted value.

Step 6: If unsatisfied demand for D is 0 and unused production for P is 0 then

there is no solution so go to the next period.

Step 7: If unused production for P is 0, move to next production and satisfy
firstly its own period demand. Then, satisfy unused demand of previous

periods from left to right if exist.

Step 8: If unused production for P is greater than 0, unused production for P

is multiplied by loss rate to update P.

Step 9: Go to Step 2.
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Step 10: If the production amount is ¢, start from last period to previous

periods. P=m, D-=r.

Step 11: Compare unsatisfied demand for D and unused production amount
of P.

Step 12: Insert the smaller values to the cell (P, D) in the table if there is no
further unsatisfied demand.

Step 13: Update demand and production periods by subtracting the inserted

value from unsatisfied demand for D and unused production amount of P.

Step 14: If unsatisfied demand for D is 0, then move to previous production

period to satisfy its own demand.

Step 15: If unsatisfied demand for D is greater than 0, check if there is
remaining unused production below. If exists, use them to satisfy demand via
backlogging. If does not exists, move to previous production period and
satisfy first demand of this period and then continue until its own period

demand is satisfied.

Step 16: If period of ¢ is reached, insert all remaining unused production to

the nearest period for unsatisfied demand.
Step 17: Calculate value of ¢.
Step18:¢ = a+ b+ e where

a is the total production amount to meet unsatisfied demands which

equal to a when D=P.

b is the total production amount to meet unsatisfied backlogged

demands which equal to b when D < P.

e is the total production amount to meet unsatisfied demands which

equal to e(1 — ;) (1 — @;;41) - (1 — @;;4) When D >P and n > 0.

Step 18.1: Calculate the total cost. This is the summation of

production, inventory and backlogging costs.
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Step 18.2: Calculate production cost. Production amounts are
multiplied by production costs for each period. Let c;(x;) refers the

production cost for producing x; unit at period i.

m

Z ci(x)

i=S

Step 18.3: Calculate inventory costs. Let H;.(y;;) refers the holding
cost for holding y;; in the inventory. y; is also kept in the right
columns of the table. Moreover, it can be found in above of the
diagonal line of the table by adding the loss. The equations for

obtaining y values from z and x are also available in section 4.7 below.

m
Z H;;(y;:) wherei<t
i=k

Step 18.4: Calculate backlogging costs. Let B, (Z;) refers the
backlogging costs for backlogged product. Z;; is found in below of

diagonal line of the table.

m
Z B (Z;) wherei>t
i=k

Second Part:

If period of ¢ satisfies demand of previous periods without satisfying its own

period demand totally, algorithm performs the second stage.

Step 1: Start the algorithm with the value of ¢ computed in the initial part of

the algorithm
Step 2: Use the production for demand of period of «.

Step 3: Use the remaining unused production for unsatisfied demand periods

according to nearest to furthest.
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Example A:

We consider the problem when K =20,

Bi11i(y) = 5Y,Bi12:(y) = 7y, Bi13:(y) = 10y, Bi14,(y) = 14y, Biy5,(y) = 20y,
Hy(y) =y, a;; =0.05for1 <i <6; H;;,1(y) =5y, ;41 =02 for1 <i <S5,
Hiio(y) = +o0,a;;,, =1for1 <i<3andk > 2.

Demand values are 15, 10, 20, 5, 1, and 30. Production costs per period are
10, 40, 60, 80, 10, and 40 per units respectively. Total demand is 81 units;
therefore we need at least 4 full capacity production periods. We consider
some combinations and apply our method. Then, we solve with GAMS by
giving the conditions. The bold periods are the full production periods and the

circled one is the € period.

The cost per unit per period according to parameters above is given in Table
6. In the table each cell gives the corresponding z value. Besides this, if we
draw a diagonal line to the table, the values in lower triangle give the
numbers of backordered products. Moreover, the cells of diagonal line of the

table have the minimum unit cost of Z per row.

Table 6 The Unit Cost of Z for index pairs

Period 1 | Period 2 | Period 3 | Period4 | Period5 | Period 6
Period 1 | 10 11,6 20,7 - - -
Period 2 | 45 40 43,15 60,21 - -
Period 3 | 67 65 60 64,21 86,51 -
Period 4 | 90 87 85 80 85,26 112,82
Period 5 | 24 20 17 15 10 11,6
Period 6 | 60 54 50 47 45 40
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e Combination 1 of Example A

Table 7 Solution Table of Combination 1 of Example A:

To
Unused
P1 | P2 P3 |P4 |P5 |P6 Production | ¥;i+1 Viit+2
Amount
From
P1 15 (4,75 20 5 0 0
P2 5,25 | 14 201475 |0 0
P3 0 - -
P4 6 5 1 6,04 | 20 15 9~ | 7,55 0
@ 3,96 | £e=4,16 4,16 0
P6 20 |.20 0 0
i 30
e |15 |55 &0 (571 QO -

Based on table, the flow of z values can be observed by checking which

periods satisfy which periods demand.

®(T

OOOO O

Figure 24 The Network Flow of Combination 1-A Based on Algorithm

In Figure 24, period 1 satisfies both demand of period 1 and period 2. Period

2 satisfies both demand of period 2 and 3. In period 4, demand of periods 3,
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4, 5, and 6 are satisfied. Demand of period 6 is satisfied by production
periods 5 and 6.

—-—— 107 VARIABLE =x.L the production volume in period t©

1 20.000, 2 20.000, 4 20.000, 5 4.158, & 20.000

-—— 108 VARIAELE =.L the amount of demand in period ©t to be satisfied from
production period i

1 2 3 4 & &
1 15.000 4.750
2 5.250 14.012
3 5.988 5.000 1.000 &.049
5 3.4951
& 20.000
-—— 108 VARIAELE y.L the amount produced in period i and held at the beginn

ing of period t©

1 2 4 5
1 5.000
2 14.750
k3 9.012 7.562
5 4.158

Figure 25 GAMS Result of Combination 1-A

O

© 0900

OO0 60®

Figure 26 The Network Flow of Combination 1-A according to GAMS

Optimal solution identified by GAMS software gives the optimal objective
function value which is the minimizing the costs gives 3542. Moreover, based
on optimal solution, the flow of z values are shown in Figure 26. The flow of z

values are same for both optimal solution identified by GAMS software and
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the algorithm. Decimal values are round up in the table of algorithm.

Therefore, there may be slight differences between values.

e Combination 2 of Example A:

Table 8 Solution Table of Combination 2 of Example A

To
Unused
P1 | P2 P3 P4 | P5 | P6 | Production Vii Vii+1
Amount
From
P1 15 | 4,75 205" 5 0
P2 525 |14 20 1475 14,75 | 0
@ 5,21 e=521 |- i
P4 0,79 | 5 1 10 ’25279 gﬁ 14,21 | 12,5
P5 0 0 0
P6 20 | 20 0 0
prad PP o e - N B

\

©OO6 6©

Figure 27 The Network Flow of Combination 2-A based on Algorithm

According to network flow in combination 2 of example A, demand of period 1
is satisfied by production period 1. Demand of period 2 is satisfied by the
production periods 1 and 2. Periods 2, 3, and 4 satisfy the demand of period
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3. Moreover, production period 4 satisfies also demand of period 4, 5 and 6.
Some demand of period 6 is satisfied by period 6.

- 107 VARTARLE =x.L the production volume in period ©

1 20.000, 2 20.000, 2 5.1%88, 4 20.000, & 20.000

- 108 VARTARLE =.L the amount of demand in periocod t to be satisfied from
production period i

1 2 3 4 5 &
1 15.000 4,750
2 5.250 14.012
3 5.188
4 0.788 &5.000 1.000 10.000
& 20.000
- 108 VARTARLE y.L the amount produced in period i and held at the beginn

ing of period t

1 2 4 5
1 5.000
2 14.750
4 14,211 12,500

Figure 28 GAMS Result of Combination 2 - A

QOO0 ©06

Figure 29 The Network Flow of Combination 2-A according to GAMS

When Table 8 and Figure 28 are compared and also Figures 27 and 29 are
observed, the algorithm solution performs as optimal solution identified by

GAMS software. Both optimal solution and algorithm find the same objective
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value. The difference in decimal values is slight since decimal values are
round up to provide simple calculation in the algorithm.

e Combination 3 of Example A:

Table 9 Solution Table of Combination 3 of Example A

To
Unused
P1 | P2 P3 |P4 |P5|P6 | Production | y;; Vii+1
Amount
From
P1 15 | 4,75 205 5 0
P2 525 | 14 20 1475 | 14,75 |0
P3 0 - -
@ 25 £=2,5 0 0
P5 35(5 |1 |10 ﬁ%’%’% 105 |0
P6 20 | 20 0 0
- 20
oot | o5 205 [e~ |5 b 38 |- |-

0000 00

O00ad0 6

Figure 30 Initial Network Flow of Combination 3-A based on Algorithm
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In this example, the period of ¢ satisfies the demand by backlogging without
using the production for its own period. Therefore, by knowing the value of ¢
the second part of the algorithm performs.

Table 10 The Improved Solution Table of Combination 3 of Example A

To

Unused
P1 | P2 P3 |P4 |P5|P6 | Production | y;; Vii+1

Amount

From

P1 15 | 4,75 205 5 0

P2 525 | 14 20 14,75 | 14,75 | 0

P3 0 - -

@ 2,5 £=25 0 0

P5 6 |25(1 |10 [227°%° 105 |o

P6 20 |20 0 0

e P rom v P P s R B

OO0 00606

Figure 31 The Network Flow of Combination 3-A according to algorithm

@@@@pT
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—_—— 107 VARIAELE x.L the production volume in period €

1 20.000, 2 20.000, 4 2.514, 5 20.000, & 20.000

- 108 VARTAFLE =z.L the amount of demand im period ¢ to be sacti=sfied from
production period i

1 2 3 4 ) &
1 15.000 4.750
2 5.250 14.012
4 2.514
5 5.8988 2.486 1.000 10.000
& 20.000
—_—— 108 VARTAELE y.L the amount produced in period i and held at the beginn

ing of period ©

1 2 5
1 5.000
2 14,750
5 10.526

Figure 32 GAMS Result of Combination 3-A

The objective function value identified by GAMS software is 2285
approximately and our algorithm finds it different initially. If the optimal
solution found by GAMS software and our improved table are checked, it is
seen that the second part of the algorithm finds the optimal solution. Only
decimal values change it slightly because of rounding up. Moreover, it can
be said that Theorem 2 does not hold in both optimal solution and our

algorithm.

o0

/

000G 06 6

Figure 33 The Network Flow of Combination 3-A according to GAMS

|
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e Combination 4 of Example A:

Table 11 Solution Table of Combination 4 of Example A

To
Unused
P1 | P2 | P3 P4 | P5 | P6 | Production Vii Yiit1
Amount
From

7N\

@ 1,5 e=1,5 0 0
P2 10 |10 2010 0 0
P3 0 - -
P4 3,5 115 |5 201535 |0 0
P5 8,5 1 10 | 20958,5 | 10,5 0
P6 20 | 20 0 0

Unsatisfied | 1o | 15 | 29 5 |1 |30 |- i i
demand

©O00 @@r

@@@@@@

Figure 34 The Network Flow of Combination 4-A based on algorithm

The result of the algorithm shows that production periods 1, 2 and 4 are used
to satisfy the demand of period 1 and also productions in period 2, 4, 5 and 6
satisfy their demand of period. Moreover, some of production in period 4 and
5 are used for period 3. Additionally, period 5 satisfies the demand of period
6.
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—_—— 108 VARIABLE x.L the production volume in period t©

1 1.52¢, 2 20.000, 4 20.000, S 20.000, & 20.000

——— 110 VARIABLE z.L the amount of demand in period £ to be satisfied from
production period 1

1 2 3 4 5 &
1 1.526
2 10.000 10.000
4 3.474 11.526 5.000
5 8.474 1.000 10.000
& 20.000
—_—— 111 VARIABLE y.L the amount produced in period i and held at the beginn
ing of pericd t©
5
5 10.526

Figure 35 GAMS Result of Combination 4-A

When optimal solution and algorithm are compared, it is seen that both have

same solution.

© 000 @@r

@@@@@@

Figure 36 The Network Flow of Combination 4-A according to GAMS
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Example B

We consider the parameters for this problem as:

K=20;

Bi+1,i(y) = 5Y, Bi12,:(y) = 7y, Bi13;(y) = 10y, Bi14,;(y) = 14y, Bi15,(y) = 20y,
Hy(y) =y, a; =0.05for1 <i<6; Hy;1(y) =5y, @;;4; =02 for1 <i <5,
Hyjox () =+, =1for1<i<3and k >2

¢, =10, ¢, =40, c3 =60, ¢4 =80 c¢5 =10, ¢g = 40.

Demands are different and 30, 5, 18, 10, 1, and 10 respectively. Thus, there
are 3 full capacity production periods because of division of demand and
capacity.

e Combination 1 of Example B:

Table 12 Solution Table of Combination 1 of Example B

To Unused
P1 | P2 | P3 P4 | P5 | P6 | Production | y;; YVii+1
Amount
From
P1 20 20 0 0
P2 10 |5 4,75 2015 5 |5 0
P3 0 0 0
7\
@ 13,25 | 1,5 £=14,75 0 0
P5 85 |1 10 gfg 95 105 | O
P 6 0 0 0
Unsatisfied 30 |5 18 10 |1 10 |- ) 3
demand




Master Thesis |66

© © 0 ©

Figure 37 The Initial Network Flow of Combination 1-B based on Algorithm

In the table, period of £ which is period 4 satisfies the demand of period 3 by
backlogging so the second part of algorithm performs to search a better

solution.

Table 13 The Improved Solution Table of Combination 1 of Example B

To Unused
P1 | P2 | P3 P4 | P5 | P6 | Production | y;; Vii+1
Amount
From
P1 20 20 0 |0
P2 10 |5 |4,75 20 15 8 |5 0
P3 0 o 0
N
@ 475 10 e=14,75 0 0
ps 8,5 1 |10 |23 “*°|105 |0
P6 0 0 0
Unsatisfied 30 |5 18 10 |1 10 |- ; .
demand
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I

550 0o

Figure 38 The Network Flow of Combination 1- B based on Algorithm

Second part of the algorithm helps to reach the optimal solution when

network flows and solutions are compared. In this case, period 4 is firstly

satisfies its own period demand and then it sends unused production to

period 3 for backlogging.

107 VARIABLE x.L

1 20.000, 2 20.000,

[ N

108 VARIAELE =z.L

1 2
20,000
10.000 5.000

105 VARIAEBELE ¥.L

5.000

10.52&

the production wolume in period t

4 14.77&, 5 20.000

the amount of demand inm period £ to be =atisfied from
production period 1

3 4 L) &
4.750
4.T16 10.000
8.474 1.000 10.000

the amount produced in period 1 and held at the beginn
ing of period t

Figure 39 GAMS Result of Combination 1-B
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550 0o

Figure 40 The Network Flow of Combination 1- B according to GAMS

Network flows of optimal solution and algorithm are same. The demand of
period 1 is satisfied by production of periods 1 and 2. Period 2 also satisfies
the demand of periods 2 and 3. Some part of demand in period 3 is satisfied
by production of period 4 and 5. Moreover, period 4 is also used for period 4.
Remaining part of production in period 5 is used for demand of periods 5 and
6.

e Combination 2 of Example B:

Table 14 Solution Table of Combination 2 of Example B

To
Unused
P1L (P2 |P3 (P4 |P5 |P6 | Production Yii Yii+1
Amount
From
P1 20 20 0 0
@ 10 |45 e=145 |0 0
P3 0 - -
P4 0,5 |95 |10 1201005 |0 0
P5 8,5 1 |10 [ 209585 | 105 0
P6 0 - -
onsatistied | 35 |5 |18 |10 |1 |10 |- . .
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©®OO600 ® 06

Figure 41 The Initial Network Flow of Combination 2-B based on Algorithm

As it can be seen in table the production of period of ¢ satisfies the previous
period demand although demand of its own period is not satisfied totally.
Therefore, the second part of the algorithm checks for the better solution if

exists.

Table 15 The Improved Solution Table of Combination 2 of Example B

To
Unused
P1 (P2 |P3 | P4 |P5 | P6 | Production Yii Vii+1
Amount
From
P1 20 20 0 0
@ 95 |5 e=145 0 0
P3 0 - -
P4 0,5 9,5 | 10 1201005 |0 0
P5 8,5 1 10 /20/9/5«8/5 10,5 0
P6 0 - -
unsatisted | 35 |5 |18 |10 |1 |10 |- : :
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Figure 42 The Network Flow of Combination 2-B based on Algorithm

In combination 2 of example B, the demand of period 1 is satisfied by the
production in periods 1, 2, and 4. Production of periods 2, 4 and 5 also satisfy
their own demands. Moreover, period 3 is satisfied by some part of
production in periods 4 and 5. Finally period 6 is satisfied by the production
period 5.

—_——— 107 VARTIABLE x.L the production volume in period t

1 20.000, 2 14.528, 4 20.000, & 20.000

- 108 VARTAELE =z.L the amount of demand in period ©t to be satisfied from
production period i

1 2 3 4 5 &
1 20,000
2 9.526 5.000
4 0.474 9.52&6 10.000
5 8.474 1.000 10.000
——— 108 VARTARLE y.L the amount produced in period i and held at the beginn
ing of period t
5
5 10.52&

Figure 43 GAMS Result of Combination 2-B

If the Figure 43 and Table 15 are compared, it is seen that the production

amount for period ¢ and the solutions are the same.
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Figure 44 The Network Flow of Combination 2-B according to GAMS

e Combination 3 of Example B:

Table 16 Solution Table of Combination 3 of Example B

To
Unused
P1 | P2 |P3 |P4 |[P5 | P6 | Production| uy;; Vii+1
Amount
From
P1 20 20 0 0
@ 10 |4 =14 0 0
P3 0 - -
P4 0 0 0
P5 1 18 1 20191 |0 0
P6 10 10 |20 40 0 0
onsatistied | 39 15 |18 |10 |1 |10 |- . .
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Figure 45 The Initial Network Flow of Combination 3-B based on Algorithm

Initially in the algorithm production in period 2 is used for demand of periods
1 and 2. However, period 2 performs backlogging without satisfying the
demand of own period totally. Therefore, second part of the algorithm

searches for better solution if exists.

Table 17 The Improved Solution Table of Combination 3 of Example B

To
Unused
P1 |P2 |P3 |P4 |[P5 | P6 | Production| uy;; Vii+1
Amount
From
P1 20 20 0 0
@ 9 5 =14 0 0
P3 0 - -
P4 0 - -
P5 1 18 1 20191 |0 0
P6 10 10 |20 40 0 0
onsatistied | 39 15 |18 |10 |1 |10 |- . .
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Figure 46 The Network Flow of Combination 3-B based on Algorithm

Keeping values in the diagonal line of the table sometimes helps to minimize
total costs for this type of cost structure. The algorithm already tends to
provide this aim in its progress. In this case, second part of the algorithm
forces the period especially partial production period to satisfy its own period
firstly. If the diagonal line is checked, it is seen that the algorithm put values
in diagonal line of the table as much as possible. In addition, when the
solutions are observed for this sample problem, the algorithm finds the

optimal solution.

——— 107 VARIABLE x.IL the production wolume in period t

1 20.000, 2 14.000, 5 20.000, & 20.000

——— 108 VARIABLE z.L the amrunt of demand in period £t to be =zatisfied from
production period i

1 2 3 4 5 [
1 20.000
2 9.000 5.000
) 1.000 18.000 1.000
a 10.000 10.000

——— 105 VARIABLE y.L the amount produced in period i and held at the beginn
ing of period ©

{ ALL 0.000 )

Figure 47 GAMS Result of Combination 3-B
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Figure 48 The Network Flow of Combination 3-B according to GAMS

When the final result of algorithm and optimal solution identified by GAMS
software are investigated, it is observed that algorithm can find the optimal
solution with the second part of it. Based on network flows, periods 1, 2, 5
and 6 are used for satisfying demands of their periods. Moreover, period 2
and 5 perform backlogging to satisfy the demand of period 1. Period 3 is
satisfied by period 5 and period 4 is satisfied by period 6 with backlogging.

e Combination 4 of Example B:

Table 18 Solution Table of Combination 4 of Example B

To
Unused
P1 | P2 |[P3 |P4 |P5 |P6 | Production | y;; Viji+1
Amount
From
@ 145 e=14,5 0 0
P2 0 0 0
P3 2 18 20 2 - ;
P4 |10 10 2010 10 0
P5 35 |5 1 |10 2295 95851105 |0
P6 0 0 0
Unsatisfied 30 5 18 10 |1 10 ) . B
demand
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Figure 49 The Network Flow of Combination 4-B based on Algorithm

-
P
-

In this case, algorithm finds the optimal solution at first. Some part of demand
in period 1 is satisfied by period 1 and remaining part is satisfied by periods
3, 4 and 5 by backlogging. Production periods 3, 4, and 5 are also used for
satisfying their own demands. Moreover, period 5 satisfies the demand of
period 2 by backlogging and it satisfies the demand of period 6 by holding

inventory.

- 107 VARTIAELE x.L the production volume in period t
1 14.528, 3 20.000, 4 20.000, 5 20.000
—_——— 108 VARTAELE =z.L the amount of demand in period ©t to be satisfied from
production period 1
1 2 3 4 5 &
14.52&
2.000 18.000

10.000 10.000
3.474 5.000 1.000 10.000

[ I U

———— 10% VARTAFLE y.L the amount produced in period i and held at the beginn
ing of period t©

= 10.526

Figure 50 GAMS Result of Combination 4-B

Optimal objective function value is 3368 and it is same with algorithm

objective. It can be seen and calculated from Table 18 and Figure 50.
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Figure 51 The Network Flow of Combination 4-B according to GAMS

4.7. Obtaining Y Values for Given X and Z

Additionally, constraints (1) and (2) in model (P) can be combined and y can
be written in terms of x and z. If we know the values of the decision variables

x and z, y values can be calculated.

)H(l —ay) — (z Zik+1 1_[ (1- alm)> Zy ifi< t\

< m=k+2
Yit =

Zi ifi=t
\ k=1 J

Proof:

The inventory left at the beginning of period t is found the equation below.

ThUS, ytt can be Calculated by ytt = (xt - Ztt - Zt,t—l - Zt,t—z T Ztl)'

Then, the inventory left at the beginning of next period from the production at

period i is found by the equation below.
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Yit == (1_ai't_1) Yi,t—l_Zit Where 1 S1<tSTl

Thus, when the values are written into the equation, y; .., can be calculated

by Vet+1 = (xt —Zit —ZLep-1— L T Zt1)(1 — ) — it

Moreover, the inventory left at the beginning of forward period from the
production at period i is found by the equation which is below.

Yit+2 = ((xt —Zy—Zep-1— L2 Ztl) (1 - at,t) - Zt,t+1) (1 - at,t+1) —Ztt42
If we continue in the same fashion, we will obtain the desired result.

As a result, the condensed form is obtain from the combination of constraints
4.1 and 4.2 in our model.o

Example derivation for obtaining y values: The inventory left at the

beginning of period 5 from the production in period 3 is processed by stages.

First of all, the production is done for period 3. Then the demand for period 1,
period 2, and period 3 are satisfied if there is backlogging. After this, the
inventory left from period 3 is transformed to period 4 with some loss
because keeping the product for one period makes some of them
deteriorates. When period 4 is reached, the demand is met from the third
period production which is inventory at hand. Then, the remaining products
after meeting the demand are kept for period 5 with some loss. However, in
this case the loss rate is different and high. Since keeping the products in
inventory two periods causes a larger amount perished products than
keeping them one period would. At last, the inventory left at the beginning of

period 5 from the production in period 3 is found in this way.
Firstly, we calculate the inventory left at the beginning of period 3.
V33 = (X3 —Z31 — Z35 — Z33)

Then, the inventory left at the beginning of period 3 is carried to period 4.

However, some part of it is perished during period 3. Thus, the left at the
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beginning of period 4 is found after some of them are used for demand of

period 4.
Vaa = (X3 —Z31 — Z35 — Z33) (1 — a33) — Z34

Finally, the inventory left at the beginning of period 4 is carried to period 5.
Again, some of inventory is perished according to deterioration rate. After
satisfying demand of period 5, the inventory left at the beginning of period 5

is found.

Vs = (O3 — Zgy — Z35 — Z33)(1 — a33) — Z34) (1 — @34) — Zs35

A more condensed form of this equation is shown as:
3 5 5-2 5
Y35 = (xs - Z Z3k> 1_[(1 —ag) — <z Z3 k41 1_[ 1- a3m)> — Z3s
k=1 k=3 k=3 m=k+2

The example can be extended for the inventory left at the beginning of period

6 from the production in period 3 as below.

3 6 6—2 6
= (=Y [ - e (3, 2w [] =) 22
k=1 k=3 k=3

m=k+2

Therefore, it can be seen that this provides the main equation which

combines constraints 4.1 and 4.2 above.
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Example C:

For example, demands according to periods are considered as follows
d, =30,d, =5, d3 =18,d, =10, d;s = 1,d¢, = 10. The production costs are
c¢; =10, ¢, =40, ¢35 =60, c, = 80, c5 = 10, ¢, = 40. While the capacity limit
per period which is K = 20, and the backlogging and holding costs with

deterioration rate are as below:
Bi11:(y) =59, Bi42:(y) = 7y, Bi+3,;(y) = 10y, Bi44,;(y) = 14y, B;45,(y) = 20y ;
Hii(y) =Y, aj = 0.05for 1 <i< 6, Hi,i+1(y) = 5y, ai_i_,_l =0.2 for1 <i< 5,

Hi,i+k(y) = +o0o, Aii+k = l1fori1<i<3andk = 2.

Optimal objective function value of the problem which is the minimizing total

costs equals to 1976 approximately.

——— 93 VARIAELE =.1. the production volume in period ©

1 20.000, 2 20.000, 5 20.000, 6 14.250

—_—— 494 VARTABIE z.L. the amount of demand in period t to be satisfied from
production period i

1 2 2 4 5 &
1 20.000
2 10.000 S.000 4.750
= 13.250 5.750 1.000
& 4,250 10.000
—— 85 VARIABLE y.L the amount produced in period i and held at the beginn
ing of period ©
2
2 5.000

Figure 52 GAMS Result of Example C
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Figure 53 The Network Flow of Example C according to GAMS

Here conditions of Theorem 2 does not hold in the optimal solution identified
by GAMS software since period 5 is satisfied from period 5 at the same time
period 4 is satisfied by period 6. There is an intersection of z arcs, which was

not observed in uncapacitated case.

Based on Theorem 4 we can say that the optimal solution is composed of a
number of connected components. We can identify these parts by (n, m, p, ),
where the production periods are n, ...,m and the demand periods are p,...r.
This means demand of the periods from p,...r are satisfied from the
production in periods n, ...,m. This part is connected meaning that some
production periods satisfy multiple periods and some periods are satisfied by
multiple production periods and when the flow of demand is drawn, it is seen

that there is not any period which can be separated from other periods.

Therefore, Theorem 2 may not hold in the capacitated case. Meaning that if

i<j are two production periods and Z;, > 0, for some k > j, then there can

be Z;, > 0 forall t, where k<t<n.

Example D:

Through this example, it is shown that the number of production periods and
demand periods do not have to be equal in an optimal solution. The number
of production periods may be more than the number of demand periods in a

component for some cases.
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Assume that demands are 17, 10 and 5 units for period 1, 2 and 3
respectively. Production capacity is 20 units per period. By Theorem 4, there
should be at least 2 full capacity production periods and remaining units
should be produced at another suitable period which produces partial
production between zero and the capacity.

The production costs per unit are determined as below.
1= 10, Cy = 4‘0, C3 = 60, Cy = 80.

Moreover, the backlogging costs per unit are considered as follows.
Bit1,i=5Bi42i =7, Biy3; =10.

The holding costs per period are H;y1; =1, Hiy; = 5.
a; =005for1<i<6; a;;,;,=02fr1<i<s;

a4 =1forl<i<3andk>2

e Combination 1 of Example D:

Table 19 Solution Table of Combination 1 of Example D

To
Unused
P1 | P2 P4 | Production Vii Vii+1
Amount
From
P1 17 2,28 2003 2,85 3 2,85
P2 19 20 19 20 0
P3 3,72 |10 | e=14,22 0 0
P4 0 0 0
. 25 |10
o7 o (222 |- -
372
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——— 105 VARIABLE x.L the production volume in period t

1 20.000, 2 20.000, 3 14.246

——— 106 VARIABLE z.L the amount of demand im period £t to be satisfied from
production period 1

1 3 4
1 17.000 2.280
2 15.000
3 2.720 10.000

——— 107 VARIABLE y¥.L the amount produced in period i and held at the beginn
ing of period ©

1 2 2
1 3.000 2.850

20.000
3 10.52&

]

Figure 54 GAMS Result of Combination 1-D

Optimal solution identified by GAMS software and solution of algorithm are

consistent. The objective value is 1902.

Example E:

In this example, demand values are 15, 10, 20, 5, 1, and 30. Moreover, the
production costs are assumed that C,(x) =x, C,(x) =4x, C5(x) =
6x, C,(x) = 8x, Cs(x) =x, Cs(x) = 4x. Also, K= 20 units per period.

Backordering costs and holding costs are period-pair dependent and also the

cost matrices and deterioration rates are given below.

The solution is included and it shows that Theorem 2 may not be hold in the

solution for problems with period-pair dependent cost structure.
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1 2 3 4 5 6
1 [0.05 0.20 1 1 1 37
2 INJ/A 010 025 1 1 1
3 INJA N/A 015 050 1 1
% N/A N/A N/A 030 040 1
5 INJA N/A N/A N/A 020 0.20
6 INJA N/A N/A N/A N/A 0.10
1 2 3 4 5 6
11 25 125 N/A N/A N/A N/A1
2|N/JA S0 125 N/A N/A N/A
i 3|NJ/A N/A 30 40 N/A N/A
4|N/JA N/A N/A 15 200 N/A
S|NJA N/A N/A N/A 26 100
6 LN/JA N/A N/A N/A N/A 40
1 2 3 4 5 6
17 N/A N/A N/A N/A  N/A N/A
2 |{/100y N/A  N/A  N/A  N/A N/A
3 |4/200y 196y N/A  N/A  N/A  N/A
B () = 4 |4/400y /250y /120y N/A N/A N/A
5 [/625y /300y /200y /169y N/A N/A
6 Ly/700y /400y /350y /256y /196y N/Al

The feasible solution identified by GAMS solver shows that a demand period
is satisfied by multiple production periods but Theorem 4 does not hold in the
feasible solution. Since, there are two components and for each component
there is not a unique partial production period which is between zero and the
capacity. However, it should be considered that the result identified by GAMS

solver below is not an optimal solution.
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Em— 118 VARIABLE x.IL. the production volumes in period t©
1 20.000, 2 5.250, 3 13.500, 4 5.000, 5 20.000, & 20.000

——— 115 VARIAFLE z.L the amount of demand in period © to be satisfied from
production period i

1 2 3 4 ) [
1 15.000 4.750
2 5.250
3 13.500
4 5.000
5 &.500 1.000 10.000
& 20.000
Em— 120 VARIABLE y.L the amount produced in period i and held at the beginn

ing of period t

1 5
1 5.000
5 12.500

Figure 55 Feasible Solution for Example E in GAMS
Example F

Through this basic example, how dynamic programming algorithm will
behave or solve a problem is mentioned. Consider a 3-period problem.

Ci(x) =x, Co(x) =4x, C3(x) =6x, Ci(x) =8x, Cs(x) =x, Co(x) =4x,
K=15,

Bi+1,i(y) =5y, Bi12i(y) = 7y,Bi13(y) = 10y, Bi14,;(y) = 14y, Bi15,(y) = 20y,
H;(y)=y, a;=005 forl1<i<é6;

Hii+1(y) =5y, a;;41 =02 for1<i<5,

Hiit () =40, a4, =1 forl<i<3andk >2.

Demands are 10, 12 and 15 units per period respectively. Therefore, we are
looking for minimum total cost which is V(3,3).
Dynamic Programming divides a problem into components with the equation

below.
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V(im,r) = minisssm{V(s —1,p — 1) + P(s,m,p,7)}.

1<p=sr

Moreover, the possible combinations of each component are solved by the
algorithm which does not guaranteed to find the optimal solution. Then, best

combinations which give the minimum cost are selected for final solution.

To find V(3,3) we have three alternative ways since some of them are
infeasible which are shown as bold type. Before to figure out the value of
V(3,3), V(2,2) should be explored firstly. In equations below, to find the value
of V(2,2), V(1,1) should be explored at first since we know the value of V(0,0)
which is zero and the components value can be find by the algorithm step by

step.

V(2,2) + P(3,3,3,3)
/ vV(1,2) + P(2,3,3, 3)\
= V(3,3)=min| V(2,1) +P(3,3,2,3) |
V(1,1) + P(2,3,2,3) /

V(0,0) + P(1,3,1,3)

V(1,1) + P(2,2,2,2))

] V(2,2): min (V(OIO) + P(1,2,1:2)

= V(1,1)=(V(0,0)+P(1,1,1,1))

The value of components identified by our algorithm:

P(1,1,1,1) is 100.

P(2,2,2,2) is 600.

P(3,3,3,3) is 900.

Component (2,3,2,3) has two combinations since one period produces at
capacity, other period produces partial. So, P(2,3,2,3) is the minimum value
of combinations which are 1332 and 1380.

Component (1,3,1,3) has three combinations since any two periods produce
at capacity and one of them produces partial. So, P(1,3,1,3) is the minimum
value of combinations 1221, 1585, and 1345.
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Finally, the component (1,2,1,2) has two combinations and P(1,2,1,2) is the
minimum value of 445 and 685.
To select best components, we should solve the equations below.

V(1,1)= (V(0,0)+P(1,1,1,1)) = 0+100= 100

1,1) + P(2,2,2,2 _
V(2,2)= min (V( 1)+ P(2,2,2, )):{100+600 700

V(0,0) + P(1,2,1,2)) L 0 + 445 = 445

V(3,3)=min| V(1,1) + P(2,3,2,3) |={ 100 + 1332 = 1432

V(2,2) + P(3,3,3,3) { 445 + 900 = 1345
V(0,0) + P(1,3,1,3) 0+ 1221 =1221

In the end, 1221 is selected by dynamic programming since the component
(1,3,1,3) gives the minimum results. The algorithm which gives minumum
result is below and it gives the optimal solution whwn it is compared with the
result of GAMS solver. The only difference is occured because of rounding

decimal values up.

Table 20 The Basic Table of the Algorithm for Example F

P1 P2 P3 Production
amount
P1 10 475 15
P2 7,25 7,36 15
P3 7,64 e=17,64
Demand | 10 12 15
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4.8. Experimental Results and Algorithm Performance

Theoretically, computational complexity of the algorithm is O(n®) time, since
there are O(n?) components, each component has O(n®) possible
combinations and the cost calculation for component and combination pair
takes O(n?) time. This running time is a very high upper bound. O(n°) is
calculated considering components with at most two empty periods. We
ignore other combinations which have more than 2 empty periods.

However, the algorithm generally terminates in fewer steps than the worst
case we provided. Since, some components are infeasible so we do not
consider all of them and also for cost calculation the algorithm generally does
not have to check all cells one by one in the table while assigning values.

Based on experimentation, the algorithm can be considered as well but it
cannot always find the optimal solution. Therefore, we can say the algorithm
serves an approximation solution for these complex problems. 6 data sets
are generated to analyse the algorithm performances. The results are
available in Tables 21, 22, 23, 24, 25 and 26. For all data sets, data are
common except demands and at most 6-period problem is considered. Data
sets differ by the demand values. The deterioration rate depends on age.
Holding and backlogging costs are also nondecreasing concave and age-
dependent. Capacity is constant per period. Moreover, production costs are
assumed general concave. Thus, the parameters for all data sets are

considered as below.

e Demand for data set 1 is in increasing order where demands are

10, 15, 17, 20, 25, and 27 units per period respectively.

e Demand of data set 2 is in decreasing order and demands are 21,

17, 15, 12, 10, and 8 units per period respectively.

e Demands are 16 units and 17 units per period for data set 3 and 4

respectively.
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Demand of data set 5 is 13, 14, 15, 16, 19, and 25 units per period
respectively. Demands are in increasing order for data set 1 but
these values are assigned to analyse the performance of the
algorithm when there exists a period where there is not any
production. Since according to these values, for some
combinations there exists a period where there is no production.

Demand of data set 6 is 15, 10, 20, 5, 1, and 30 units per period.
Demand values fluctuate in this data set so they are not in

increasing or decreasing order.

The average gap 1 (GAP1) in the following tables is the average of

percentag

following

e of gap based on total costs. The average gap 2 (GAP2) in the
tables is the average of percentage of gap based on holding,

backlogging and production in period of € costs.

Result; of algorithm —Optimal result;

GAP1;= (

GAP2=

)100

Optimal result;

((Resulti of algorithm—production costs ;) —( Optimal result;—production costs ;)

)100

(Optimal result;—production costs ;)

The production costs in equation GAP2 include the costs of production

periods where there exists full production. Production in period & is not

included in the equation GAP2. Since the production cost for this period may

change and affect the total cost because of possibility of varying from

solution to solution.
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The following parameters are common for all data sets.

K=20

Bit1,i(y) = 5¥,Bi42,(¥) = 7y, Bi13;(y) = 10y, Bi14;(y) = 14y, Biy5;(y) = 20y,
Hy(y) =y, a;; =0.05for1 <i<6; Hy;41(y) =5y, aj;4; =02 for1<i <5,
Hiiok(¥) = +90, a4 = 1for 1 < i< 3and k > 2

¢ =10, ¢; =40, c3 =60, ¢4, =80c¢5 =10, ¢cg =40

Table 21 Result of Data Set 1 — increasing demand

Average | Average

How many
. . GAP1 GAP2
Component Number of times optimal
. o o (%) (%)
size Combinations solution is
. . If not If not
identified . .
optimal optimal
2X2 2 2 - -
3x3 3 3 - -
4x4 4 4 - -
5x5 5 5 - -
6X6 6 6 - -




Table 22 Result of Data Set 2 — decreasing demand
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Average | Average
How many
_ _ GAP1 GAP2
Component Number of times optimal
. _ o (%) (%)
size Combinations solution is
_ . If not If not
identified _ _
optimal optimal
2X2 2 2 - -
3x3 - -
4x4 4 4 - -
5x5 20 20 - -
6Xx6 30 26 0,175 2,36
Table 23 Result of Data Set 3 — constant demand 1
Average Average
How many
. . GAP1 GAP2
Component Number of times optimal
. _ o (%) (%)
size Combinations solution is
. . If not If not
identified . .
optimal optimal
2X2 2 2 - -
3x3 3 3 - -
4x4 4 4 - -
5x5 5 5 - -
6X6 30 24 0,135 1,107




Table 24 Result of Data Set 4 — constant demand 2
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Average Average
How many
_ _ GAP1 GAP2
Component | Number of | times optimal
. — o (%) (%)
size Combinations | solution is
_ . If not If not
identified _ _
optimal optimal
2X2 2 2 - -
3x3 3 3 - -
4x4 4 4 - -
5x5 5 5 - -
6Xx6 6 5 0,19 5,03
Table 25 Result of Data Set 5 —increasing demand 2
Average Average
How many
. . GAP1 GAP2
Component Number of times optimal
. o o (%) (%)
size Combinations solution is
. . If not If not
identified . .
optimal optimal
2X2 2 2 - -
3x3 3 3 - -
4x4 12 12 - -
5x5 20 20 - -
6X6 6 6 - -
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Table 26 Result of Data Set 6 — fluctuate demand

Average Average
How many
_ _ GAP1 GAP2
Component Number of times optimal
. _ o (%) (%)
size Combinations solution is
_ - If not If not
identified _ _
optimal optimal
2X2 2 2 - -
3x3 3 3 - -
4x4 4 4 - -
5x5 5 5 - -
6Xx6 6 5 0.19 7.2

In tables 21, 22, 23, 24, 25, and 26 component numbers and sizes, number
of cases where algorithm finds optimal solution, and the average gap based
on total costs between solution of algorithm and optimal solution if exists and
also average gap between algorithm and optimal solution while considering

holding, backordering and production for period of & costs are shown.

According to results, the algorithm performance can be considered as
promising. The average gap is shown based on percentage. According to
total demand, if there exists a period where there is no production, it can be
said that the algorithm sometimes gives the approximation solution.
However, when the demand is increasing order and there does not exist a
period where production is not available, it can be said that the algorithm is
promising. Since the average gap has been occurred generally if there exists
a period where there is no production. The average gaps based on total cost
in the tables are less than 1%. However, if it is considered that full capacity
production periods are constant, they don’t change for both algorithm and
optimal solution. Therefore, if the holding, backlogging and the production for
period of & costs are compared for both algorithm and optimal solution

results, the gap increases. Moreover, it can be said that according to results
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we could not find a demand pattern to get optimal solution all the time with

our algorithm.

Additionally, it is observed that the algorithm performs well when the holding
costs are expensive as much as backordering costs. In some cases, the
costs may be considered in this way. Since the type of warehouses for
perishable products especially for foods should be cold one and the cost of
this type of warehouses may be expensive so holding inventory costs may be
expensive as much as paying penalty for backlogging.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, dynamic lot sizing models are analysed. Products are
considered as single and perishable. Furthermore, all costs are determined
as nondecreasing concave. Backordering costs are included and assumed
as age-dependent. Moreover, inventory holding costs are also age-

dependent and deterioration rate differs based on age.

Besides general case, the problems that are uncapacitated and capacitated
versions of general case are investigated. A mathematical model is
developed to minimize total costs for both capacitated and uncapacitated

versions.

Additionally, it is observed that some structural properties that can be
exploited for developing a solution approach for uncapacitated problems are
not valid for capacitated problems. We define a different sub-problem and
identify the structural properties of the optimal solution and the sub-problems.
We show that DP is a valid approach to solve the sub-problems. We devise
an algorithm that finds good solutions to sub-problems, some of which are
optimal. Objective values for the sub-problems found by the algorithm and
GAMS are analysed. The algorithm finds optimal solution in most cases.
Therefore, the algorithm can be promising for complex problems. However,

there are some cases the algorithm cannot reach the optimal solution.
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Therefore, it is appeared that this dynamic programming algorithm gives the
approximate solution for the problems with these sub-problems.

In experimental results, we considered data sets with different demand
patterns to investigate the behaviour of our algorithm for finding optimal
solution all the time but according to results of data sets we could not find
such a relationship between the demand pattern and the performance of the

algorithm.

Finally, this study can be continued for future work by improving the algorithm
to obtain an optimal solution for every time. As an improvement, after
algorithm solves a problem and finds an initial solution, the position of some z
values in the table can be changed by checking the cost table. This means
that some additional steps may be included in the algorithm and these steps
may help to find a cycle in the table of initial solution. Shifting some values as
a cycle in the table by considering cost table may reduce the initial total costs
and may help to find the optimal solution in the end.
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