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ADAPTIVE LEARNING OF SYMBOLIC
NUMERICAL CONSTRAINTS IN THE REAL-WORLD

SUMMARY

This thesis presents an adaptive learning system which can learn symbolic hypotheses
representing numerical constraints using the observations of a robot. The system is
based on a framework which deals with real-world conditions of noise and concept
drift.

Inductive Logic Programming (ILP) is used as the base learning method. ILP
is a machine learning approach that uses first-order logic (FOL) for knowledge
representation. FOL representation allows expressing relational features, which is
not possible with attribute-based machine learning methods. Another advantage of
using FOL is that it allows reasoning to derive facts from the given observations and
background knowledge. FOL is also used in planning and reasoning systems, which
makes the learned rules easily adaptable to these systems.

The core learning method extends a well-known ILP system with a constraint solver
and lazy evaluation. This extension deals with the limitation of ILP in learning
numerical constraints. The extended learning method imposes constraints on the
domains of the numerical variables in a hypothesis clause. If an appropriate constraint
exists, addition of it transforms a previously inconsistent hypothesis into a useful
one. Hence, the extended method combines the relational learning capability of
Inductive Logic Programming and the numerical reasoning capability of Constraint
Logic Programming.

Finding appropriate constraints on the domains of variables is achieved using a
constraint solver. During the ILP hypothesis generation, if a hypothesis contains a
numerical variable, then a constraint satisfaction problem (CSP) is solved to find the
largest interval in the domain of the variable, such that, when the values in this interval
are substituted with this variable in the hypothesis, the hypothesis does not entail any
of the negative examples but it entails at least one positive example. If such an interval
exists, constraining the domain of this variable makes the hypothesis consistent.

Since robot applications are targeted, learning symbolic numerical constraints should
be robust under real-world conditions. The proposed system integrates a noise removal
module to cope with uncertainties arising from the robot and its environment. Local
outlier factor (LOF) method is used for noise removal since it does not require a prior
cluster scheme and it takes densities into account. Noise removal is applied on the
inputs of the constraint solver since it does not handle the noise itself. Another addition
is a concept drift detector which makes the system adaptive to external and internal
changes. A concept drift may render the previously learned hypotheses obsolete.
Hence, the drift detection module continuously monitors the prediction success of the
learned model, and requests the update of the learned hypotheses if necessary.

xXxi



The system is evaluated with robot experiments in the real-world and computer
generated scenarios. The results of the experiments show that the enhancements
increase the robustness and the effectiveness of the learner. It is observed that
the presented system can learn from noisy data that is collected in the real-world
environment, and it can improve the prediction performance by detecting concept
drifts. The system is expected to be useful in lifelong learning scenarios and in
compromising between low-level and high-level robot learning.
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SEMBOLIK SAYISAL KISITLARIN
GERCEK DUNYADA UYARLANIR OGRENILMESI

OZET

Robotlar c¢alismalar1 esnasinda bircok kisitla karsilasir.  Gorevlerini basariyla
tamamlayabilmek icin robotlarin bu kisitlarin farkinda olmasi gerekir. Bu tezde
robotlarin etkin bir bicimde ortam kisitlarin1 6grenebilmesi i¢in bir iligkisel 6grenme
yontemi sunulmaktadir. Ayrica, yontemin gercek diinya kosullarinda uygulanabilmesi
icin gerekli bilesenleri iceren bir uyarlanir 6¢renme mimarisi 6nerilmektedir.

Robotlarin karsilastig1 kisitlar ¢evreden, calisma amaglarindan ya da robotun kendi
yapisindan kaynaklaniyor olabilir. Ortamin kisitlar1 nesnelerin uzamsal yerlesiminden,
gorevlerin gereksinimlerinden ya da robotun eylem yiiriitmesini etkileyen diger
dig faktorlerden kaynaklanabilir.  Robotun kisitlari robot donaniminin fiziksel
ozelliklerinden ya da robot yazilimlarinin limitlerinden o6tiirli olusabilir. Kisitlarin
ihlal edilmesi yiiriitiilen eylemlerin istenmeyen sekilde sonuglanmasina sebep olabilir.
Giivenli ve verimli bir robot sistemi kendi i¢sel kisitlarina ve ortam kisitlarina dikkat
etmelidir.

Kisit bilgisi tasarimci tarafindan robota yiiklenebilecegi gibi, robotun kendisi
tarafindan da Ogrenilebilir.  Kisitlarin robotun kendi gozlemlerinden 68renilmesi
sistemin esnekligini ve uyarlamirligint artirir. Genel amachi robotlar bir¢ok
farkli ortamda calisabilir, dolayisiyla miimkiin olan biitiin kisitlarin 6nceden tespit
edilmesi zordur. Ortamin ve gorevin kosullar1 zamanla degisiklik gosterebilir, bu
yilizden robotun kisit bilgisinin giincellenmesi gerekebilir. Robotun kisitlart kendi
gozlemlerinden 68renmesi bu sorunlara ¢oziim olusturabilir.

Bu tezde onerilen 6grenme sistemi ortam kisitlarinin sembolik seviyede 6grenilmesini
amaclar. Yontemin temelinde Tiimevarimli Mantik Programlama (TMP) vardir. TMP
bilginin ifadesi i¢in sembolik mantik kullanan bir makine 6grenmesi yontemidir.
Bilginin bu sekilde ifade edilmesi iligkisel Ozniteliklerin kullanilmasim1 miimkiin
kilmaktadir. Sembolik mantik kullanmanin bir diger yarar1 da verilen gozlemleri ve
artalan bilgisini kullanarak yeni bilgiler ¢ikarsama yetenegidir. Bu sayede, 6grenme
yontemine, alan uzmamn tarafindan tespit edilen kurallarin ve 6nceden elde edilmis
bilgilerin verilmesi miimkiin olur. Sembolik mantik, robotikte planlama ve ¢ikarsama
sistemlerinde de kullanildig: icin TMP ile 68renilen kurallarin kolayca bu sistemlere
aktarilmast miimkiindiir.

Ancak TMP’nin sayisal kisitlart 6grenmek konusunda eksiklikleri vardir.  Bu
ylizden 0grenme yontemi tembel degerlendirme ve kisit ¢cozme ile gelistirilmistir.
Sayisal kisitlarin iligkisel bilgi korunarak Ogrenilmesi bir kisit ¢dzme problemi
olarak modellenmektedir. Geligtirilen yoOntem, eger miimkiinse, tutarsiz bir
hipotezdeki sayisal degiskenlerin tanim kiimelerini kisitlayarak dogru hipotezler iiretir.
Gelistirilen yontem Tiimevarimli Mantik Programlama’nin iligskisel 6grenme kabiliyeti
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ile Kisit Mantik Programlama’nin (KMP) sayisal ¢ikarsama kabiliyetini bir araya
getirmektedir.

Sayisal kisitlar bir kisit ¢oziicli kullanilarak belirlenir. TMP’nin hipotez {iretimi
sirasinda, eger bir hipotez sayisal bir degiskene sahipse, bir kisit saglama problemi
(KSP) cozilir. Bu KSP coziilerek sayisal de8iskenin tanim kiimesi icerisindeki
bir aralik tespit edilir. Bu araliktaki degerler hipotezdeki sayisal degiskenin yerine
koyuldugunda hipotez olumsuz 6rneklerin higbirini gerektirmez ve olumlu 6rneklerin
en az birini gerektirir. Bulunan aralik miimkiin olan en genis aralik olmalidir. Eger
boyle bir aralik varsa, degiskenin tanim kiimesinin bu araliga kisitlanmasi hipotezi
tutarli hale getirir.

Yontemin gercek diinya ortaminda ¢alisan robotlarda kullanilmasi amaglandig icin
zorlu diinya kosullarina uygun hale getirilmesi gerekmektedir. Bu calismada ele
alman kosullar giiriiltiilii bilgi ve kavram kaymasidir.  Giirtiltiilii bilgi robotun
donanimsal zaafiyetlerinden ve diinya ortaminin stokastik olmasindan kaynaklanir.
Robot amaclanan davraniglar1 yanlis yiiriitebilir ya da robotun topladigir sensor
verileri kusurlu olabilir. Bir dier zorlu diinya kosulu olan kavram kaymasi, bir
kavrami agiklayan hipotezlerin zamanla degismesidir. Eski hipotezler gecersiz hale
geldiginde sistemin hata orani artar. Kavram kaymasinin sebebi, genellikle, kavramin
aslinda gozlemlenemeyen bir baglamla iligkili olmasidir. Go6zlemlenemeyen baglam
degistiginde, onunla iligkili olan kavramin da degismesine neden olur. Go6zlem
yoluyla bu degisim fark edilemedigi i¢in kavram kaymasinin tespiti i¢in 6zel yontemler
gelistirilmigtir. Hatalar hem giiriiltii hem de kavram kaymasi tarafindan olusabilecegi
icin tespit yonteminin bu ikisini ayirt edebiliyor olmasi gerekmektedir.

Ogrenme sistemini gercek diinya zorluklarina dayamkli hale getirmek igin bir uyarlanir
O0grenme mimarisi tasarlanmistir. Bu mimari sembolik sayisal kisit 6grenme yontemini
temel alacak sekilde gelistirilmistir. Giiriiltii zorlugunun agilabilmesi i¢in 6§renme
yontemine bir giiriiltii filtreleyici eklenmigtir.  Giiriiltiiniin filtrelenmesi icin veri
yogunluguna duyarl1 ve genel amaglh bir yontem sec¢ilmistir. Giiriiltii filtreleme,
kisit ¢oziiciiniin girdilerine uygulanir. Ongoriicii bilesen, 6§renme yonteminin ¢iktisi
olan hipotezleri, artalan bilgisini ve gozlemlenen diinya durumunu degerlendirerek
tahminlerde bulunur. Dogrulayict bilesen, yapilan tahminleri gerceklesen cikti ile
kargilastirarak hatalar1 takip eder. Kayma saptayici bilesen, dogrulayicidan gelen
bilgileri degerlendirerek kavram kaymasini tespit eder. Bu ¢alismada kullanilan tespit
yontemi, daha once 68renilmis olan hipotezlerin tahmin etme hatasindaki degismeleri
takip ederek calisir. Kavram kaymas: tespit edildiinde, gozlem ge¢misinden yeni
bir egitim kiimesi olusturarak 6greniciyi tetikler. Ogrenilen yeni hipotezler ongériicii
tarafindan gelecekteki ¢ikarsamalarda kullanilir.

Sunulan sistemin etkinlii, gercek diinya ortaminda yapilmis robot deneyleri ve
bilgisayar ortaminda olusturulmus deneyler ile de8erlendirilmistir.  Bilgisayar
ortaminda olusturulan deneylerde temel 6grenme sisteminin tek ve ¢ok boyutlu kisitlari
0grenebildigi dogrulanmistir. Gergek diinya deneylerinde bir robot kolunun nesneleri
yanyana koyabilecegi yakinlik kisit1 ve bir insansi robotun bir kasedeki malzemeleri
dokerken dikkat etmesi gereken aci ve yiikseklik kisitlart 6grenilmektedir. Deney
sonuglari, yapilan gelistirmelerin 68renicinin etkinligini ve giirbiizliigiinii artirdigini
gostermigtir. ~ Onerilen sistemin gercek diinya ortaminda elde edilen giiriiltiilii
veriden 6grenebildigi ve kavram kaymasini yakalayarak ongorii performansini artirdigi
dogrulanmistir.
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Bu tezde, sembolik hipotezler ve sayisal kisitlar1 bir arada 6grenebilen bir 6grenme
yontemi ve bu yontemin gercek diinya kosullarina uyum gosterebilmesi i¢in yapilan
giiriiltii filtreleme ve kavram kaymasina uyarlanirlik gelistirmeleri sunulmaktadir.
Gelecekte bir¢ok farkli gelistirme secenegi bulunan bu sistemin, 6miir boyu robot
0grenmesi senaryolarinda, robotlarin yiiksek seviye 6grenme ve diisiik seviye 6grenme
sistemleri arasinda ge¢is saglamasinda faydali olacag diisiiniilmektedir.

XXV






1. INTRODUCTION

Robots working in real-world environments need to deal with various constraints for
accomplishing their goals. Learning constraints in a relational learning setting is
useful because this type of learning is suitable for exploiting the spatial features of
environment. The learning system should be robust under real-world conditions such
as noise and concept drift. This may be achieved with additional modules working

together with the base learner.

Constraints may be inherent in the environment or the robot itself. Constraints of the
environment may arise from the spatial layout of objects, special requirements of tasks
or other external conditions that affect the action execution of the robot. For example,
assume a sample task of pouring small pieces from one container to another. In
Figure 1.1, parameters of the task are illustrated. A typical constraint of this task may
depend on the rotation angle or height of the held container. A constraint may involve
the relations of multiple variables, such as the depth or the diameter of the container on
the table. Constraints of the robot originate from the physical properties of the robot’s
body or the computational limits of its sofware. Violation of the constraints may result
in action failures that lead to undesired or inferior outcomes. A safe and efficient robot
system should be aware about the constraints of itself and its environment to handle

them effectively.

Awareness of constraints can be provided initially by the designer or obtained by the
robot from its own experiences. Learning of the constraints by the robot has certain
advantages in flexibility and adaptability. General purpose robots can operate in a
wide range of environments, hence determining all of the possible constraints is a
challenging task. Conditions of the environment and the tasks are subject to change,
thus the constraints of the robot system should be updated when necessary. An
effective method for lifelong learning of constraints has significant benefits in these

manners.



Figure 1.1 : Pouring action may have constraints on the rotation of the held container
(A) or the distance between the containers (B). The constraints may be
related to multiple variables such as the depth (C) or the diameter (D) of
the container on the table.

The learning system proposed in this thesis aims to learn constraints in unstructured
environments in the form of symbolic-level rules. Inductive Logic Programming (ILP)
is used as the base learning method because it can exploit relational knowledge which
can express complex world states of object manipulation tasks. An ILP method learns
the general rules that explain given examples of a target concept. In [1], an ILP
approach is used for learning the conditions which cause failures in action executions
by robots. However, ILP is specialized in learning logical relations among objects and

it has limitations in learning numerical constraints.

ILP can use a given numerical constraint as a background knowledge, and it can
include the constraint in a rule it creates. For example, constraints of short and long
distances are defined by Prolog clauses in Table 1.1. According to the definitions, a
numerical term X is considered short if its value is lesser than 5, otherwise it is long.
An ILP system provided with these background definitions can use them in a rule to
distinguish short distances from long ones. This approach requires a domain expert to

specify all relevant constraints before learning.

Table 1.1 : Example definitions for numerical constraints.

short (X) :— X < 5.
long (X) :— X >= 5,

Using prior definitions of constraints has some disadvantages. Possible constraints

that can be learned by the robot are limited by the supervisor’s intuititon. They are

2



prone to mistakes that can be made by the supervisor in determining the constraints.
Also, generality of the constraint definitions are limited. For example, the definition
of short distance in one context may not be valid in another. For a humanoid robot
manipulating objects on a table, 5 cm is a short distance. However, for a smart car, the
constraint of short distance is much larger. Therefore, two different definitions should
be made for these two domains. These disadvantages are surpassed when the learning

system can derive the numerical constraints from data.

Since the robots are subject to real world conditions, the learning system should be
able to handle the noise and adapt to the drifting concepts. Noise can occur due to
the uncertainty of the robot hardware or unpredicted external factors. Uncertainty of
the robot hardware is either originated by the sensor errors or the actuator insensitivity
of the robot. The stochasticity of the real-world environment also causes misleading
observations. Concept drift is the condition that acquired hypotheses may become
obsolete due to the changes in the environment or the robot itself. A concept drift may
occur if the software or hardware of the robot system is updated in a way to change
the constraints of the environment. For example, sensitivity of the robot may increase
with the new hardware. Sometimes a difference in the environment or the task may
change the concept. Coping with these conditions require extra efforts to remove the
noise and monitor the knowledge validity over time. Both of these efforts are tackled

in various ways in the literature of machine learning.

The robot can use the learned constraints to update its action model or predict the
potential failures in order to avoid execution of unsafe actions. Planning and reasoning
is done in symbolic level, hence constraints learned in the symbolic level can be easily

integrated with these systems.

1.1 Purpose of Thesis

In this thesis, a method is proposed to learn symbolic hypotheses with numerical
constraints from the actual observations of the robot. This method improves the
flexibility of existing ILP approaches by supporting the derivation of numerical
constraints from observations. Derivation of numerical constraints is integrated in a

well-known ILP system [2]. The resulting system can bring relational features together



with numerical constraints in a learned model. Relational learning allows acquiring

general knowledge in an unstructured environment.

Experience-based learning of constraints of a robot and its environment has more
flexibility and adaptability comparing to providing the robot with constraints.
Flexibility is gained by the ability to extract constraints from the observations of
the robot. Therefore, the robot can learn the appropriate constraints in the present
environment. Adaptability is improved, since the constraint learning can be revoked
if necessary, compared to manually coding of the constraints by human experts.

Moreover, updating the constraints can be automated using a meta-learning system.

The proposed method is suitable for real-world conditions. The method can generalize
rules from noisy and incomplete observations without over-fitting. It is suitable
for lifelong learning scenarios as it allows knowledge transfer and usage of prior
knowledge. The learning system is integrated with a mechanism to verify and update

the learned hypotheses when they lose correctness due to concept drift.

1.2 Literature Review

Robots should make good decisions to execute their tasks effectively and safely.
Satisfying the given constraints is a vital part of making good decisions [3]. The set
of constraints change according to contexts and tasks. Learning the constraints of the
robot and the execution environment is important since the set of constraints directly

affect the decisions of the robot.

Robot systems which learn from data overcome the dependency on domain experts.
Attribute-based learning methods are used to learn numerical constraints of robot task
execution. Reinforcement learning methods are used for learning from experience [4],
while supervised learning methods are used for learning from demonstration [5].
However, attribute-based representations are insufficient in expressing the various
relations among objects. Learning from relational features using an attribute-based
learning algorithm requires a mapping from relations to attributes by human intuition

which makes the solution more problem-specific.

ILP overcomes these limitations by deriving hypotheses using relational features [6,7].

It does so using a first-order logic representation with integrated logic reasoning that



allows the usage of background knowledge. ILP is applied in many domains which has
relational features such as predicting chemical mutagenity [8], recognizing symbols
by their spatial features [9]. In robotics, some applications of ILP are learning the
failure contexts in robot task execution [1] and learning relational affordances in object

manipulation tasks [10].

However, ILP does not handle the numerical features so well as the attribute-based
learning methods. Early ILP algorithms introduced definition of numerical relations
in background knowledge [11]. Progol [12] and Aleph [2] involve the constant values
that appear in examples and background knowledge in searched hypotheses, which
sometimes lead to useful hypotheses. This method is referred as the guessing method
in the rest of the thesis. Finally, the lazy evaluation approach is used to integrate
attribute-based learning algotihms into ILP induction [13]. Lazy evaluation is proven
to be useful in regression of variables in a first-order logic clause, however it has
a limitation in classification scenarios as discussed in this thesis. This limitation is

eliminated using a constraint solver.

The constraint solver, however, is not robust under noise. Hence a noise filtering
module is necessary to satisfy real-world conditions. Noise detection is a well-studied
field [14]. Local Outlier Factor (LOF) method [15] is suitable for the proposed learning
system since it can detect noise in data with various densities and it does not require a

clustering scheme to be specified beforehand.

The problem of concept drift is studied under machine learning. Concept drift handling
approaches depend on the applications [16] and the learning system [17]. Some
approaches rely on detecting when the drift occurs [18-20], others train multiple
learners and use an ensemble model [21]. The proposed learning system integrates
a method which observes the error rate and detects knowledge drifts [18]. There exists
a concept drift application in robotics domain [22]. Differently from the proposed
system, it follows the ensemble approach. Multiple models are trained and the
appropriate subset of the models are activated for different contexts. The learning
system in [22] benefits from the fact that in their problem, a model can be trained
using a single image, using stereo labeling. It adds a new model to ensemble for each

observation. But this approach is not suitable for the proposed system.



1.3 Hypothesis

In this thesis, an ILP learning algorithm is used to exploit relational features for
deriving hypotheses. Using a relational knowledge representation enables expressing
complex object manipulation observations properly. Since features are not mapped to

a problem-specific attribute set, more general conclusions are derived.

Limitation of ILP in learning numerical constraints is resolved by extending the ILP
search with a constraint induction procedure [23]. Numerical constraints are derived
using a constraint solver as described in [24]. Integration of constraint induction into

the ILP algorithm is done with a slight modification of lazy evaluation [13].

The constraint solver cannot handle noisy inputs, hence its inputs should be filtered
from noise. A density-based noise removal method [15] is included into the learning

system in order to answer the needs of real-world environments.

The learning system is equiped with a module to adapt dynamic conditions of the
real-world environment. A drift detector module continuously monitors the validity of
hypotheses and analyses the error rate statistically [18]. When the acquired knowledge

become obsolete, the learning system is triggered to update its hypotheses.

The proposed learning system overcomes the limitations of previous high-level
learning systems by learning symbolic numerical constraints from the experience of
a robot. The system is equipped with noise removal and drift detection mechanisms to

deal with real-world conditions.

1.4 Organization

The next chapter presents the background information on the topics of Inductive
Logic Programming, constraint induction, noise removal and concept drift. Then in
Chapter 3, details of the proposed method are explained. In Chapter 4, constraint
induction, noise reduction and drift detection methods are evaluated with hypothetical
and real-world robot experiments. In the final chapter, outcomes of this thesis are

summarized and the directions for future works are given.



2. BACKGROUND

This section introduces the background concepts that are used in the lifelong learning
system. The base learning approach, Inductive Logic Programming (ILP) is described
with its problem definition and motivation. The details of the adopted ILP method are
presented. Earlier methods on learning numerical constraints in ILP are detailed in the
next section. Then, discussion of noise removal which is used for filtering the input of
the constraint solver is given. Basis of the concept drift detection method is presented

in the last section.

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) is a class of machine learning algorithms which
use first-order logic as their knowledge representation language. ILP algorithms
benefit from the expressive power and reasoning capabilities of first-order logic.
Knowledge represented in first-order logic allows the exploitation of relational features
of data. This makes ILP a suitable approach for problems involving spatial or
structured features [6]. Examples of relational features in the blocks-world domain

are shown in Figure 2.1.

Relations of on, in and distance are very likely to be observed in a tabletop block
manipulations scenario. This makes it a suitable representation language for robot

applications.

b3
bl I b5 b6
2
b2 b4
on (bl,b2) in (b3, b4) distance (b5,b6,2)

Figure 2.1 : Sample relational features in the blocks-world domain.



ILP methods derive hypotheses which predict positive examples of a given concept
given a background knowledge. Derived hypotheses are consistent with the provided
negative examples. Derivation of hypotheses is done by searching the space of
possible hypotheses. Starting from an initial hypothesis, new candidate hypotheses
are explored using a refinement operator. ILP approaches can be classified as fop-down
and bottom-up according to their search direction. Top-down approaches start from the
most general clause and use refinement to create more specific clauses while bottom-up

approaches start with the most specific clause and generalize it.

The ILP learner used in the proposed system is Aleph [2]. Aleph is an experimental
ILP system which includes many concepts developed in ILP literature. Its default
learning method is based on mode-directed inverse entailment [12]. This method uses
a top-down approach that bounds the search space from bottom using a language bias

defined with mode declarations. Mode declarations are explained in Section 2.1.3.

2.1.1 Problem

An ILP learning problem has the goal of deriving a set of hypotheses #that explains a
concept given a set of positive and negative examples E = ET UE ™~ and a background
knowledge B. Background knowledge and examples are commonly encoded as logic
programs. Background knowledge B includes the world facts and the domain
knowledge while set of examples E includes the grounded instances of the target

concept. ILP learning problem is formally expressed as follows:

BAHEE. 2.1

This expression indicates that the set of hypotheses # and background knowledge B
together explain the set of examples E. After learning # it can be used together with

B to predict the observations.

In a robotic domain, the world facts are the world states before the execution
of corresponding actions. Domain knowledge is the set of common-sense rules.

Examples are observations of the robot in specific states.



2.1.2 Inverse entailment

Inverse entailment [12] is the basis of the ILP system adopted in our method. This
approach bounds the hypothesis space from below by building the most specific clause
that entails a given positive example. This clause is named as bottom clause L. It is
built according to the language limitations defined by mode declarations as explained
in the next subsection. Any hypothesis that covers the current positive example must

subsume the bottom clause _L, hence each candidate hypothesis is a subset of it.

ILP learning has two procedures; saturation and reduction. These procedures
are applied to each positive example that remains uncovered. Saturation is the
phase that builds the bottom clause L and reduction is the phase that searches the
subsets of the bottom clause L. In the reduction phase, candidate hypotheses are
continuously explored and evaluated according to a performance criterion. This
criterion is commonly correlated with the covered positive and negative examples and
the complexity of the clause. The covered positive examples increase the chance of this
hypothesis to be chosen while the covered negative examples and the clause complexity
introduce a penalty. The hypothesis with the best performance is chosen as a result of
the reduction procedure. Other positive examples that are covered by this hypothesis
are removed from the search queue. Saturation and reduction are repeated for every

positive example which is not yet covered.

2.1.3 Mode declarations

Mode declarations impose limits on the structure of literals which can be used in a
candidate hypothesis. The mode of a literal determines the types, roles and recalls of
its arguments. An argument can have the input role that requires a variable with the
same type already exists in the body of the hypothesis clause, or it can have the output
role allowing a new variable to be introduced to the clause, or it can be a constant
that can take a single value in accordance to the background knowledge and examples.
Recall limits the possible number of outputs of a literal given a set of inputs. For
example, assume a language to express a table-top block world scenario (Section 3.1).
The language contains predicates to describe the spatial features and the colors of

the objects. In Aleph, modes of such language are declared as shown in Table 2.1.
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Table 2.1 : Mode declarations for the literals in blocks-world scenario.

(x, on_table(-object)).

(1, in_hand(-object)).

mode (1, position (+object, —-integer)).
(1, distance(tinteger, +integer, -integer)).
(1, paint (+object, #color)).

The leftmost number indicates the recall of the literal. Types of the arguments are
written in the parantheses after the literal together with a symbol indicating their roles.
Role symbols are ‘+’ for input, ‘-’ for output and ‘#’ for constant arguments. Table
2.1 indicates that the recall of on_table predicate is indefinite (x) and recall of all
others are 1. That is because there can be an indefinite number of objects on the
ground. However, there can be only one object in the hand of the robot, or an object
can have only one color. Since the arguments of on_table and in_hand literals
assume the output role, addition of these literals to the candidate hypothesis introduces
a new variable with object type to the clause. However, position and paint

literals can only be associated with an ob ject variable that is already in the clause.

2.2 Constraint Induction

The proposed method for learning numerical constraints with ILP requires some
extensions to the basic ILP learner [23]. The proposed constraint induction extension
uses two existing approaches as its basis. Firstly, the lazy evaluation procedure [13]
for integrating attribute-based algorithms in ILP generalization scheme is used. Lazy
evaluation allows branching to an attribute-based learning procedure when necessary.
Secondly, a definition of generalization among numerical constraints is adopted from

[24]. Details of these adoptions are presented in this section.

2.2.1 Lazy evaluation

Lazy evaluation method is used for learning numerical concepts with ILP [13]. This
approach allows using attribute-based machine learning methods as lazy evaluated
predicates in the background knowledge. Integration of lazy evaluated predicates into
ILP search requires a special procedure since there are basic differences between ILP

and attribute-based learning algorithms.
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In Aleph ILP learner, each positive example is generalized one by one. Candidate
hypotheses are derived using the bottom clause L which is specific for the chosen
positive example. After a hypothesis is added to the theory, all positive examples that
are entailed by it are removed, and the learner chooses a remaining positive example
to generalize. On the other hand, attribute-based learning algorithms consider all
positive and negative examples together. They create models which minimize the
overall prediction error. Lazy evaluation procedure creates a bridge between these

two approaches.

Predicates associated with attribute-based learning methods are marked as lazy
evaluated in the background knowledge ‘B. Outputs of lazy predicates are left uncertain

in the saturation phase. They are evaluated lazily during the reduction phase.

Main ILP search loop is not changed by lazy evaluation. Space of candidate hypotheses
are explored from general to specific by considering a subset of the bottom clause
1, gradually increasing the number of literals in the clause. Whenever the candidate
hypothesis clause has a lazy evaluated predicate in its body, a special procedure for
lazy evaluation is initiated. Evaluation is done with the current input arguments of
the lazy predicate that are derived from the prior part of the clause. This requires
the argument collecting step to collect all input values following from the positive
examples and the negative examples. This is achieved by unifying the head of
the candidate hypothesis with every positive and negative example. Following the
unification and the background knowledge, variables in the body of the clause are
grounded. Each possible value of the input argument of the lazy predicate is added to
the set of positive or negative values with respect to the label of the example. Then,
the evaluation is done according to the definition of the attribute-based algorithm with
provided set of input values. Result of the attribute-based algorithm is assigned as a

constant to the output of the lazy evaluated predicate.

Performance of a candidate hypothesis is calculated as usual in reduction step, using
the result of the lazy evaluation as the output value of the lazy evaluated predicate.
However, evaluation of a lazy predicate is specific for the candidate hypothesis, since
the input arguments will vary according to the body of the clause. For that reason the

lazy evaluation is repeated for every clause.
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2.2.2 Maximally discriminant domain constraints

Constraint Logic Programming (CLP) provides better numerical reasoning capabilities
than basic Logic Programming (LP). [24] uses CLP as its representation language. A
constraint solver is used for modifying the domains of variables in order to cover the
positive examples and exclude the negative examples. A generality relation among the

CLP clauses is defined in this work.

A CLP clause is different from LP clauses by that it contains constraint terms as
function symbols. An example of a CLP clause is given in Table 2.2. This clause
defines that object B is carriable if its weight is constrained below 1500. Here,
CLP allows the addition of the constraint W < 1500. A generality definition to
determine which constraints are more general another is obtained by a modification

of 6-subsumption.

Table 2.2 : A CLP clause defining a carrying limit.

’ carriable (B) :— weight (B, W), W < 1500. ‘

A maximally discriminant domain constraint is defined as the domain constraint
which is consistent with the negative examples and 0-subsumes all other domain
constraints. Consistency is the requirement that the domain constraint covers none
of the negative example values. An example of a maximally discriminant domain is
shown in Figure 2.2. In the figure, the maximally discriminant domain is shown for
a variable which takes the values {2,5} for negative examples. In other words, the
hypothesis does not satisfy the ILP requirements if the variable is assigned with these

values. Hence the maximal domain, excluding these values is (—oo, 1]V [3,4] V [6,00).

negative examples
p) %
< O @
o 1 2 3 4 5 6 17 8 9
(-0, 1] [3, 4] [6, )
D e H@— |
5

0 1 2 3 4 6 7 8 9

\]

\

Figure 2.2 : Maximally discriminant domain for a simple set of negative example
values N = {2,5}.
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2.3 Noise Removal

Noise is defined by the examples that stand diverse from the general pattern of the
data [14]. In robot task execution, the noise can occur because of the imperfections
of the perceptors or actuators. For example, the scene modeling module of the robot
may misinterprete the locations of the objects, or the motors of the robot may not be

sensitive enough to produce the exact goal.

There are various noise detection methods for different needs [14]. We are interested
in unsupervised approaches, since the data sent to the constraint solver are without
labels. Also, generality of the approach is important to work in unstructured
environments. Distance-based [25], density-based [15] and cluster-based methods [26]
are appropriate, since they do not presume a given model. Clustering-based noise
removal is effective only when the cluster number is given correctly [27]. However,
in our setting, the cluster count is not certain and it should not be limited for the
generality of the method. Distance-based methods do not take the clusters or densities
into account, therefore they have limitations in distinguishing noise within clustered
data. We use the density-based LOF method [15] as it is independent from the number

of the clusters and it works better with data having clusters of different densities.

2.4 Concept Drift

Concept drift is the problem that the rules explaining a concept changes over the time.
The change occurs often due to a hidden context [17] which is not observed, therefore
not expressed in the language. The drift may occur as incrementally or suddenly as
shown in Figure 2.3. Concept drift may be confused with noise as both result in a
deviation from the learned hypotheses. Hence, the learning system should be able to

differentiate between noise and concept drift [17].

The proposed system uses a forgetting-based method [18] which continuously
monitors the prediction error rate and detects drift in case a large deviation occurs. It
does not maintain a window as other forgetting-based methods [19,20]. Instead it cuts
the observations from a past point when a concept drift is detected. This approach

is more suitable to the proposed learning system since it follows a batch learning
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Figure 2.3 : Concept drift of a variable X. (a) An incemental drift (b) A sudden drift.

tradition, instead of an incremental one. An incremental learner updates its theory
with every example, instead of learning from a set of examples altogether. Hence, it
requires a special base learning method for this purpose. Since the presented learning
method does not estimate the probability distribution of the data [19], the prediction

accuracy is used as the indicator of the drift.
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3. LEARNING SYMBOLIC NUMERICAL CONSTRAINTS

The method proposed for learning of symbolic numerical constraints uses the Aleph
ILP system [2] as the base learner. Aleph is an open-source ILP implementation which
bears many different strategies as its components. The adopted strategy in the proposed
system is the inverse entailment [12] which bounds the search space from bottom
using mode declarations. Aleph is extended with a constraint induction system that
uses a constraint solver to find the maximally discriminant domains of variables. The
constraint solver is integrated into Aleph using a slightly modified lazy evaluation
[13] method. Aleph implementation is available as a YAP-Prolog program, hence
the YAP-Prolog implementation of the CLP(FD) library [28] is used for constraint
solving. Since, the expected application domain of this learning method is robotic, it
should be suitable for real-world conditions such as noisy observations and concept
drift. An adaptive learning framework is presented in Figure 3.1, for improving the
applicability of the learning method under these conditions. This framework is built
around the base learning method, which consists of the ILP method and the constraint
solver. Noise filtering is applied on the data sent from ILP to the constraint solver.

The LOF method [15] is used for this purpose. The LOF method is implemented

| Base learner l A_I_ —
raining |,

Set Drift Detector

ILP

A

Validator

S

Background

' N A

Removal | Knowledge

Predictor

' A
Constraint || ,| Hypothesis
Solver I Set

==

I
I
I
I
I
| Noise
I
I
I
I
I

Observations

Figure 3.1 : The architecture of the adaptive learning system.
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as a program that is run from the extended Aleph learner before constraint solving.
Concept drift handling is achieved by dividing the responsibilities among multiple
modules: drift detector, predictor and validator. Drift detector module implements
the forgetting-based method from [18]. Predictor is a Prolog script that reasons about
the current state using the learned hypotheses # and the given background knowledge
B. Validator is a program that evaluates the output of predictor as soon as the label
is available. For example, before the robot takes any action, it predicts a certain
outcome. After executing the action, the robot can observe the outcome of its action,
and compare it to the predicted outcome. The output of validator is used by drift
detector in order to estimate the error rate. Drift detector selects the training set among

the past observations and calls the learning method.

In the following section, a running example is defined for better demostration of the
methodology. Then, the proposed method for symbolic learning of the constraints is
presented in detail. Section 3.3 explains the application of noise removal in order to
generalize data obtained from real-world environments. Section 3.4 details the drift

detector and the knowledge verification architecture for adaptive learning.

3.1 Blocks-world Scenario

A simple blocks-world scenario is designed for the demonstration of the learning
system. Assume a humanoid robot, which has the task of putting blocks on a table.
There are already few objects present on the table. These objects are represented by b;

symbols(i = 1,2,...). Space is discrete and one dimensional for simplicity.

In this scenario, the robot holds object bl in its hand. There are two objects,
b2 and b3, on the ground. Object b2 is positioned at location 1 and object b3
is positioned at 8. The state of the world is illustrated in Figure 3.2. Symbols
of the background knowledge and their explanations are given in Table 3.1. The
corresponding background knowledge B and examples E for this problem instance are
shown in Table 3.2. Here, the background knowledge has the necessary distance

definition and facts describing the current world state.

The robot aims to learn the distance constraint which causes a failure. Putting action of

the robot has two arguments; the name of the block and an integer denoting the target
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location. The target concept is denoted as put_on_fail (b1, 2),i.e., putting the

object b1 on location 2 fails.

bl
b3
1 6
|- ¥ |
:b2 LJ + + + + + + LJ +
0 1 2 3 4 5 [ 7 8 9
bl
b2 5 5 b3
\ \/ \
LJ + + + + + + LJ

o 1 2 3 4 5 6 7 8 9

Figure 3.2 : Examples of a failure and success cases of put action. Putting on
location 2 fails above, putting on location 6 is successful below.

Table 3.1 : Symbols used in the blocks-world scenario and their explanations.

Symbol Definition
put_on_fail (bl, 2) Putting the block b1

on position 2 fails
on_table (b2) b2 is on table
in_hand (b2) b2 is at the hand of robot
position (b2,1) b2 is positioned at 1
distance (A, B, C) C =|A-B|

Assume that a failure of put action occurs when the distance of the carried object to
any object which is already on table is less than 2 units. Possible cases of a failure
are illustrated in Figure 3.2. In the first case, the failure occurs because the distance of
object b1 to object b2 is 1. In the second case, distances of object b1 to other objects
are 5 and 2 which are both not lesser than 2. Thus, the object is put successfully.
Failure of the action is a positive example while the success is a negative example in

this scenario.

3.2 Constraint Induction with Lazy Evaluation

The proposed method brings an ILP learner and a constraint solver together to learn

relational rules explaining the target concepts which require numerical constraints.

17



Table 3.2 : Background knowledge, positive and negative examples of the
blocks-world scenario.

Positive example E*
put_on_fail (bl, 2)
Negative example £~
put_on_fail (bl, 6)
Background knowledge B
in_hand (bl) .
on_table (b2) .
on_table (b3) .
position(b2,1).
position (b3, 8).
distance (A,B,C) :— C = |A-B].

The method combines the relational learning advantages of an ILP learner and the

numerical inference ability of a constraint solver.

Integration of the constraint induction procedure does not alter the main loop of the ILP
algorithm as explained in Section 2.2.1. Integration is achieved by a slightly modified
lazy evaluation [13] approach. The difference of the lazy evaluation application in the
porposed learning method comparing to the original one is in the argument collecting
step. Lazy evaluation collects the input arguments following from all positive and
negative examples. However, in the proposed method, only the argument values from
the current positive example are collected. Negative input arguments following from
all of the negative examples are collected as the original approach. That means, in
our method, a constraint satisfies the consistency requirement by excluding all of the
negative examples. However, a constraint does not need to be complete itself alone.
It 1s expected to satisfy only the current positive example which is resembling the

relational learning approach of ILP.

Every variable that is constrainable are specified in the background knowledge B.
A special term for each of these variables are added to the bottom clause L in the
saturation phase (See Section 2.1.2). The special term for constrainable variables has
the form discr (V, D). This term has a general definition of ‘discr (V,D) :— V
in D.’ meaning that this expression is true when the value of variable V is in the

domain D. In the blocks-world scenario, the second arguments of put_on_fail
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and pos literals and the third argument of the distance literal are marked as
constrainable. In the blocks-world scenario, bottom clause | is derived as shown

in Table 3.3. Terms written in bold face style are added by the proposed extension.

Table 3.3 : Blocks-world scenario’s bottom clause L.

Bottom clause L :

put_on_fail (A,B) :— on_table(C), in_hand(d),

discr(E,0),

distance (B,B,D),
distance (D, B, B)
distance (E,B,F),

position (C,E),

discr (B, 0),
discr (F,0).

, distance(E,E,D),
discr (D, 0),

distance(D,D,D),
distance(E,D,E),

After the bottom clause L is built, ILP searches the hypothesis space in the reduction
phase (See Section 2.1.2). Lazy evaluation procedure is called whenever a candidate
clause includes one of these discr terms. Lazy evaluation of constraint induction
procedure returns the maximally discriminant domain constraints that entail the current
positive example and exclude all of the negative examples. Finally, these constraints
are substituted to the body of the candidate hypothesis and the ILP search continues as

usual.

Learning symbolic numerical constraints is achieved by modifying the saturation and
reduction phases of Aleph. Extension on saturation procedure is shown in Algorithm 1.
This extension adds discr terms to the bottom clause L. Extension on reduction
procedure is shown in Algorithm 2. Reduction is extended to lazy evaluate the
derivation of the maximally discriminant domain constraints when necessary. The
values of the constrainable terms are collected in lines 11-12. Then the set of collected
values are sent to the constraint solver to induce the maximally discriminant domain

in line 13. The maximally discriminant domain is used to form constraints and it is

substituted into the candidate clause.
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Algorithm 1 Algorithm extension in the saturation phase.

Require: 3, ¢,
1: Create | using B, ¢,
2: Get constrainables Cs from B
3: for all constrainable c; € Cs do

4:  Find variable terms V. in L which matches c;
5:  for all variable v; € V. do

6: if v; is not already added then

7: Add discr(v;, 0) to L

8: end if

9: end for
10: end for

11: Remove redundant terms from L

Algorithm 2 Algorithm extension in the reduction phase.

Require: B,¢e,, E~
1: Initialize node n, = head(e))
2: while termination criteria is not met do
3:  Expand node n; to successor nodes Succ

4:  for all node n; € Succ do
5: for all term t; € n; do
6: if functor(t;) isnot discr then
7: Continue
8: end if
9: Unify #; with discr(var;, D;)
10: Let D, = (—o0,00)
11: Find values NegVals of var; following from E~
12: Find values PosVals of var; following from e,
13: D. = induce_domain(NegVals, PosVals)
14: if D, is not empty then
15: Create term t,, = discr (var;, D;)
16: Replace term ¢; with 7, in node n;
17: end if
18: end for
19:  end for

20:  Calculate scores of every node in Succ
21:  Choose next node to be n;
22: end while

The function induce_domain(NegVals, PosVals) derives the maximally discriminant
domain for the given negative and positive values. For each positive value v;“ €
PosVals, a constraint satisfaction problem is defined as shown in Table 3.4. This is a
maximization problem that finds the largest interval which includes the positive value

vl.+ and does not include any of the negative values v, € NegVals. The interval is
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expressed as [X/oyer; Xupper]. The complete discriminant domain is the disjunction of

the intervals found for each positive value.

Table 3.4 : Constraint satisfaction problem for finding the interval [x;oyer, Xupper] that

discriminates a positive value vf from all negative values Vi

maximize  area(Xiower, Xupper)

subject to  Xjoyer < V?_ N Xupper = v

; Include the positive value

= A\ Xiower < VJT A Xupper = v]_) Exclude all of the negative values

Vi

For the candidate hypothesis ‘put_on_close(A,B) :— on_table(C),
position(C,E), distance(E,B,F), discr (F,0)’ constraint induction
process in the reduction phase runs as follows. Since there is a discr (F, 0)
term in the candidate hypothesis, the domain of F is subject to constraint induction.
Negative input arguments of the variable F are collected as {2, 5}, since the target
location of the negative example is 5 and 2 units far to blocks b2 and b3. The
positive values of F are collected as {1, 6}. Then the constraint solver is called to
find the maximal domain which excludes {2, 5} and includes {1, 6}. The resulting
domain is dom, = (—eo, 1] VV [6,00). The final hypothesis is obtained by substituting

discr (F,0) withdiscr (F, (—o, 1]V [6,)).

3.2.1 Multi-dimensional constraints

There are situations when a concept depends on the conjunction of constraints on
multiple variables. For example, some areas of the terrain may be impassable for a
rover robot. In such case, a hypothesis that imposes constraints on the location should

be constrained in 2 dimensions.

The proposed method can be generalized to induce multi-dimensional constraints.
This is achieved by taking the positive and negative values as tuples in the argument
collecting step. Every collected tuple combines the values of multiple constrainable
variables which follow when the head of the hypothesis clause is unified with
examples. Then for each positive tuple, a constraint satisfaction problem is solved

to find the largest area, or volume, that includes the positive tuple and excludes all of
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the negative tuples. The final discriminant domain is the disjunction of intervals for all

positive tuples.

A rectangular area (or volume) is represented as two tuples Xjgyer and X, pper. These

two tuples express the bounds or the corner points of the area (or volume) as illustrated

i

in Figure 3.3. Let xj, . and X,

indicate the bound values coming from the

i;p variable. Then, the area can be calculated as []( Hence, it is

1
straightforward to generalize the constraint satisfaction problem defined in Table 3.4

Xupper
Xypper
E
Xjower Xupper Xower

Xjower

i i
xupper xlower) .

to induce multi-dimensional constraints.

(a) (b) (c)

Figure 3.3 : Bounds of an interval (a), an area (b), a volume (c).

3.3 Noise Removal

We use the Local Outlier Factor (LOF) method [15] to remove the noisy inputs among
the data given to the constraint solver. An input sample is considered as noisy if its
local density is lower than the densities of its neighbors. The LOF method produces
an outlier factor value for each sample that indicates how noisy the sample is. This

allows a tuning mechanism on the degree of noise removal.

For each sample m,, the set of k-nearest neighbors m)...m, are found. Given the
Euclidian distance between m, and m; as dist(mc, mf), the density indicator value d,y,, is
assigned as d,,, = 1/ max;(dist(m.,m})). That is the inverse of the maximum distance
from m, to any m!. Using the densities, the LOF value of m, is calculated as in Equation
(3.1). The sample m, is marked as a noise if LOF;(m,) is greater than a given threshold

parameter ¢. The output of noise removal depends on parameters k and ¢.

Zm’. dm’-
LOF(m) = " 3.1)
me
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Noise removal module is activated before the constraint solver call during the ILP
learning (Figure 3.1). Input of the constraint solver is passed to this module and filtered

from noisy data points.

One weakness of this noise removal approach is that the success of filtering depends on
the chosen k and r parameters. To obtain a general method, different strategies can be
employed. The optimal value of k is dependent on the densities of the clusters in data
which is unknown a priori. Also too small and too large values of k are problematic.
The authors of [15] recommended running the algorithm for multiple values of &
and assuming the maximum outlier factor for each data point. However, since the
noise reduction step is repeated for every constrainable hypothesis, this approach is
expensive. For this reason, another strategy is used within the proposed learning
system. A k value that is proportional to the number of total samples N, is chosen as
k= N/8. The possible k values are also bounded from below and above (k € [15,100]),
preventing extreme values. This strategy was effective in the experiments. A constant

value is used for ¢ as 1.25.

3.4 Drift Detection

The system for learning symbolic numerical constraints is augmented with a
meta-learning architecture to gain the ability of hypothesis verification (Figure 3.1).
The learning system works together with helper modules in order to detect a concept
drift and re-learn hypotheses that are compatible with the latest observations. A
drift detection method that monitors the error rates of the existing hypothesis set is
implemented [18]. Drift detector listens to the validator which reports the success of
predictor in guessing the labels of observations. If a drift is detected, then the drift

detector triggers the base learner with the new training data.

Predictor module depends on the background knowledge provided by the domain
expert and the hypothesis set on predicting the class of an observation. It uses the
logic reasoning provided by Prolog. Validator records the prediction and assesses the
success when the corresponding class becomes available, i.e., the robot observes the
outcome of its action. Validator informs the drift detector about the observations and

the correctness of predictions. Drift detector selects a trail of observations and sends
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it to the base learner when a drift is identified. Base learner uses the training set and

background knowledge to produce a new hypothesis set.

Beginning and ending of the new training data is determined statistically by the drift
detector. Drift detecting method models the event of an incorrect prediction as a
Bernoulli trial [18]. Consequently, the error rate is a binomial random variable.
Expected value p; and the standard deviation &; of the error rate is then estimated
with respect to the i’ prediction-observation matching. The method keeps track of the
minimum observed error rate as Ppin = min;(P;), Omin = mini(6;). Pmin and G, are
used as a reference point. Whenever, the current error rate measure p; + 6; exceeds
Pmin + 2.6min the drift detection method sets a warning point. If the rise in the error
rate measure reaches to a value that exceeds pi, + 3.6in, then, the method confirms
the drift. The new training set is built with all of the observations from the warning
point until the drift point [18]. Examples of warning points and a drift point are shown

in Figure 3.4.
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Figure 3.4 : The error rate over time in an experiment with a concept drift. wi and w;

are the warning points set by the drift detector. d; is the point where the
drift detector decides to update the hypothesis set.
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There is a possibility that the warning point is set falsely because of noise. Drift
detector can reset a warning point if the error rate falls below. This mechanism is

shown to differentiate the noise from concept drift effectively.

Figure 3.4 shows an example of the error rate change during a concept drift. The drift
is observed when the distance criteria is changed during the course of blocks-world
object placement scenario (See Section 3.1). The warning point w; is set before the
concept drift due to noise. It was reset at w, when a real concept drift starts. Then, the
hypotheses are updated at point d;. Only the examples between w, and d; are included

in the new training set.

An issue observed during the development is that when a drift is detected, the size
of the training set may be insufficient to learn effectively. To alleviate this issue, a
minimum window size parameter is added to the method. If the number of examples
in the new training set is lesser than the minimum window size, the systems delays
updating the hypotheses until necessary number of examples are collected. This
approach yiels better results in the experiments, hence it is adopted as the default

approach.
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4. EVALUATION

Multiple experiments are done to evaluate different aspects of the proposed learning
system. The core aspect of the system is learning numerical constraints in a relational
setting. At first, the learning results are evaluated with generated data and shown
that it can induce constraints of both single and multi-dimensions while the existing
methods cannot. The real-world experiments are conducted with a robot arm and
a humanoid robot on the table-top environment. The real-world experiments point
to the necessity of a noise filtering step. It is observed that the addition of noise
removal module increases the generality of the learned hypotheses. Finally, both the
generated and the real-world experiments are done to simulate concept drift. The drift
detection enhancement is analysed in comparison to a baseline method which updates

the hypotheses in a fixed period.

The next section presents the experiments done with the generated data to test the core

learning aspect. The real-world experiments follows in Section 4.2.

4.1 Core Learning Experiments

The evaluation of the core learning method is done by two experiments. In the first
one, the blocks-world object placement scenario is implemented (See Section 3.1).
In the second experiment, a scenario with a mobile robot collecting objects in a
2-dimensional area is assumed. This experiment requires the learning system to be

able to derive multi-dimensional constraints.

In addition to the proposed method, two other learning methods are applied on the data.
The first one is referred as the guessing method. The guessing method depends on the
ability of Aleph on introducing constants to the hypotheses. The second one is the
original lazy evaluation method together with a attribute-based linear discriminator
algorithm. The learning setting is the same for all three approaches. The used
background knowledge is also the same except some differences in each method.

The guessing method has the definitions of comparison operators (<, >, =), the
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lazy evaluation method has the definition of an attribute-based linear discriminator

algorithm and the proposed method has the specification of constrainable terms.

4.1.1 Object placement scenario

Data generation

A dataset with 96 examples is generated for the object placement scenario. Differently
from Section 3.1, a color attribute is added for every object. A color condition is added
to the target concept defined in the blocks-world scenario. The target concept is the
failure of put action. If the target location is too close to any block on the table and the
carried object is red, then a failure occurs. The purpose of the color condition is to test

the compatibility of our extension with the classical induction of ILP.

Results

Basic lazy evaluation cannot derive the required rules because it tries to find
a discriminator which is complete for all input arguments collected from
positive examples. To better express its limitation, assume the examples
presented in Section 3.1. In the hypothesis ‘put_on_close (A, B)
:— on_table(C), position(C,E), distance(E,B,F),

linear_discriminator (F,G)’, F variable is the input of linear discriminator
procedure. Argument collection yields {2,5} as the positive values and {1,7} as the
negative values. There exists no linear discriminator for discriminating these two sets
of values. The problem occurs, because the method tries to find a complete hypothesis

which covers for every positive value. But some of the values are not relevant.

The guessing method can find a hypothesis which states that the failure occurs if the

distance of the put object to any other object is equal to either 1 unit or 12 units.

The proposed learning method finds the desired hypotheses successfuly as shown in

Table 4.1. This confirms that the method works as expected in ideallistic conditions.
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4.1.2 Mobile robot scenario

Data generation

In the mobile robot scenario, the target concept is the failure of collecting an object on
the ground. The robot is assumed to be unable to pick objects in a rectangular area, if
the object color is red. 8 positive and 32 negative examples are generated as shown in
Figure 4.1. Object positions are discretized in space. Since there may be more than one
observations made in the same location, in some locations more than one markers are
shown. For example, picking up a green object was successful in position (7,3) while
picking up a red object was failed in the same place. As seen in the figure, picking up
action fails in the area defined as 5 < x; < 8, y; < 4, where (x;,y;) is the position of i,

object. The robot can pick the green and blue objects even when they are in this area.
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Figure 4.1 : Object picking observations in mobile robot scenario. ‘+” markers
indicate failures, ‘e’ markers indicate successes. Markers colors
indicate the object colors.

Results

In this scenario both the lazy evaluation and guessing method cannot learn the
concept. Limitation of the lazy evaluation with a linear discrimination method is
explained in the previous scenario. The guessing method cannot succeed since deriving
multi-dimensional constraints requires a special effort to consider the domains of both

variables together.
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The proposed learning method can learn the concept as shown in Table 4.1. This
validates that the method can learn multi-dimensional hypotheses with idealistic data

collection.

Table 4.1 : Hypotheses found in the core learning experiments.

Object placement experiment

distance(D,B,E) and E < 1 and
color (A, red) .

put_on_fail(A,B) if: on_table(C) and position(C,D) and

Mobile robot experiment

pickup_fail(A) if: positionX (A,B) and
positionY (A,C) and
5 < B 8 and ¢ € 4 and
color (A, red) .

4.2 Real-world Experiments

The real-world experiments are done on two different scenarios; object placement and
pouring pieces. The first scenario is the blocks-world object placement experiment
(Figure 4.2). The target concept of the experiment is the same as the other object
placement experiments which appeared in this thesis. This experiment includes
the uncertainty of the real-world environment and the robot hardware. The second
scenario, pouring pieces, aims to test both the multi-dimensional constraint induction
and the drift detection aspects of the proposed system. This scenario involves a robot
that is responsible to pour the tiny pieces from a jar into a container (Figure 4.3). If the
robot cannot pour enough pieces or it spills many pieces to the table, then the pouring

action is assumed to be failed.

In both experiments, the robot learns hypotheses which explain the causes of action

failures in a supervised setting.

4.2.1 Object placement scenario

Data collection

A scenario similar to the blocks-world domain (Section 3.1) is experimented with a
real robot system. A 7-DOF Cython Veta robot arm is used for actuation and an ASUS

Xtion Pro RGB-D camera is used for sensing. In this scenario, the robot has the task
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Figure 4.2 : Real-world experiment environment with the robot arm and two blocks.

of putting a block near to another one with a given distance. The robot interpretes the
scene with an existing scene interpretation system [29]. Cases of success and failure
are labeled by the scene interpretation module of the robot. Every block is a cube with
5.8 cm size in each dimension. The experiment is repeated with various distances
and object colors and a total of 48 observations are collected. Every observation
has the world state facts and the labels that are extracted by the scene interpreter.
The observations involve noise from the sensors and actuators of the robot, and the

stochastic environment.

Results

The core constraint induction method has finds the distance constraint as 5./ ¢m. The
found hypothesis is given in Table 4.2. This constraint is erroneous since the size
of a cube is 5.8 cm, and therefore the distance constraint should be larger than that.
However, this hypothesis is supported by the noisy data collected from the real-world.

This result shows that a noise removal procedure is necessary to prevent over-fitting.

Table 4.2 : Hypothesis learned for putting objects near each other in the real-world.

put_on_fail(A,B) if: on_table(C) and
position(C,D) and
distance (D,B,E) and E < 51.
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Figure 4.3 : Pouring experiment is done with a humanoid robot.

Figure 4.4 shows the distribution of distances and their labels. Intersections of
distances among positive and negative examples indicate the high-level noise. Some
of the noisy examples are removed using the LOF approach. The result of the noise
filtering is also shown in Figure 4.4. The learning system enhanced with the noise

removal module learns the distance constraint as 5.5 cm.

4.2.2 Pouring pieces scenario

Data collection

In this experiment, pouring action is done by a Baxter humanoid robot. A small jar
is used to hold 111 pieces of chicken peas. The robot holds the jar and pours it into
a container on the table as shown in Figure 4.5. There are two types of containers
used in the experiment, a rectangular package of cottage cheese (14 x 12 x 4cm) and a
cylindrical sauce bowl (7 x 7 x 3.5cm). Pouring action is repeated from various heights
with different angles between 0° to 180°. A total of 505 examples are collected. Unlike
the previous real-world experiment, labeling is done by a human supervisor. Hence, the
source of the noise is not perception, but actuation and stochasticity of the environment.
The pouring action is assumed successful if a sufficient number of chicken peas are

landed into the container while not many are spilled around. 318 of the examples are
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Figure 4.4 : Scatter graphs of distances in the real-world experiment with the robot
arm. Y axis indicates the label of examples. (a) Original data. (b) After
LOF noise filtering.

positive, indicating that the pouring action is failed. The remaining 187 examples are

negative.

The bowl type is changed from cheese package to sauce bowl during the data collection
to create a concept drift. Height and angle constraints are expected to be different since
it is harder to pour into the sauce bowl. Preceding 299 of the examples are collected

with the cheese package and 206 of them are collected with the sauce bowl.

y

Figure 4.5 : The robot tries to pour enough pieces without spilling out.
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Results

The pouring experiment is used in two evaluations. Firstly, a 6-fold cross validation
is applied on the subset of examples that are collected only with the cheese package.
Results show that the learned hypotheses generalize sufficiently, as the testing accuracy
has the expected value of 0.85 with standard deviation of 0.03. Generalization is
achieved with a disjunction of hypotheses, some of which contain multi-dimensional
constraints as shown in Table 4.3. This hypothesis set indicates that a pouring action
fails if the height is higher than 26 cm, or the difference between the pouring angle and
the height is less than or equal to 90, or the diference is lesser than or equal to 99 and
the height is lesser than or equal to 12. This result is obtained with no parameter tuning
or problem specific treatments. It indicates that the learning method is appropriate for
noisy data collected in the real-world environment. The learned hypotheses show that

the system can create complex relations between multiple variables when necessary.

Table 4.3 : Some of the hypotheses learned by pouring pieces into the cheese
package.

pour_fail (A) if: height (A,B) and angle(A,C) and
distance(C,B,D) and D < 84.
pour_fail (A) if: height (A,B) and B > 32.
pour_fail (A) if: height (A,B) and angle(A,C) and
distance (C,B,D) and
D < 93 and B < 18.

The second experiment evaluates system on the concept drift problem. In this
evaluation, 161 examples collected with the cheese package are used to train the initial
model, and the rest of the data are used for testing. First 120 examples of the testing
data are still with the cheese package. However, after these examples, the container
type is assumed to be changed. The rest of the data consist of 206 examples collected
with only the sauce bowl. Two methods are compared in this experiment. One is the
proposed learning system and the other is the base learning system with noise removal,
but without the drift detection module. The minimum window size of the drift detector
is given as 80. The aim of this comparison is to observe the effects of the drift detection

enhancement.
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The testing data are given as a stream to both learning systems. The learning systems
make predictions for each observation, and the total error rates are recorded. This
process is repeated 8 times by shuffling the examples in the testing set folding the
examples of the same container types together. In every test, the system with drift
detection identified a drift and updated its hypothesis set at least once. Accuracy of the
learning with drift detection is 0.81 £0.017 while without this enhancement it is 0.76 &
0.03. The error rate plot graphs of some of the repetitions are given in Figure 4.6. The
error rates are estimated only with the predictions done on the test data. The dotted
lines represent the warning points and the dashed lines represent the drift points similar
to igure 3.4. In all repetitions, new hypothesis sets improved the overall prediction
accuracy of the system. As itis seen on Figure 4.6, the error rate keeps decreasing after
the drift detection. As the number of examples after the drift increases, the difference

between the error rates become larger. This means that a learning system without a
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Figure 4.6 : Error rates of the drifting experiment on the pouring action.
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drift detection improvement would have worse error rates as time passes until the drift
is detected. The adaptive learning system clearly has an advantage against the basic
system. The hypotheses learned before and after the drift, for the experiment whose

error rates depicted in Figure 4.6.c are given in Table 4.4.

Table 4.4 : Hypotheses learned before and after drift

Initial hypotheses
pour_fail (A) if:

angle (A,B) and B =< 108

pour_fail (A) if:
height (A,B) and B >= 32

Hypotheses after drift
pour_fail (A) if:

height (A,B) and B >= 20

pour_fail (A) if:
angle (A,B) and B >= 131

pour_fail (A) if:

angle (A,B) and B =< 106
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S. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a learning system which can learn symbolic-level numeric constraints
under real-world conditions is presented. The method combines an existing ILP system
with a constraint solver to achieve constraint induction. This method is suggested for
robots to learn numeric constraints of predicates in lifelong learning scenarios using
their own observations. Modeling the physical limitations of a robot, its tasks and
its environment as relational rules with numerical constraints can increase the task
execution performance.Noise removal and concept drift detection modules enhance
the robustness of the system. In this aspect, the presented system is among the very

few robot systems that take concept drifts into account.

The results of the experiments show that the proposed method can induce the concepts
which cannot be induced by the alternative ILP methods. It is shown that with the
applied extensions, the learning system can generate more robust hypotheses on the
numerical constraints from the observations of the robot. Robot experiments show that
the system is applicable in real-world environments. Therefore, this method alleviates
the need for the domain experts to extract the numerical constraints of the environment
and the robot. This gives robots flexibility in life-long learning scenarios as they may
re-learn the constraints themselves. Also the system makes it possible to solve the

scenarios where domain experts have limited knowledge about the environment.

The current system is not be able to learn from small observation windows which
contain insufficient number of examples to be generalized by ILP. In such cases, more

examples can be collected with active learning methods.

Recurring concept drift is a change in the concept to a previous state. Keeping the old
hypotheses can be more efficient than learning again, in case of recurring concepts.

The system can benefit from such a feature.

Integration of probabilistic reasoning with constraint induction may further increase

the robustness of the system in real-world conditions. Furthermore, the system can
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be enhanced with incremental learning capabilities for better adaptation to changing
environment conditions. Predicate invention capability may be useful in long term

scenarios.
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