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ABSTRACT 

 

 

AN INTEGRATED ASSIGNMENT-ROUTING PROBLEM WITH TIME WINDOWS 

 

 

(Özdemirel) Akıcı, Aybike 

 

 

M.Sc. in Intelligent Engineering Systems 

Graduate School of Natural and Applied Sciences 

 

 

Advisor: Assoc. Prof. Dr. Deniz Türsel Eliiyi 

 

 

May 2014, 62 pages 

 

In this thesis, we consider a real-life public service problem at a donation center in Izmir, Turkey. 

The center is responsible for picking up incoming donated items from donors, assigning these 

items to incoming requests of the needy residents/clients in the district, and distributing the items. 

The unmatched items are stored at the single depot. A single vehicle is used for daily pickup and 

delivery, and the incoming requests have associated time windows for pickup or delivery. We 

propose novel utility-based assignment/routing integer programming models for this problem that 

assumes hard and soft time windows for service start times of the donors and clients. The details 

of the experiment design used for evaluating the performance of the developed model with soft 

time windows are presented, and computational results are discussed. With this thesis, we intend 

to contribute to the routing literature by introducing a novel integrated model, as well as 

providing optimal solutions to a practical and important humanitarian problem.  

 

 

Keywords: Assignment and Routing Problem, Pickup and Delivery, Time Windows, Mixed 

Integer Programming. 
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ÖZ 

 

 

ZAMAN ARALIĞI KISITLI BİR ATAMA-ROTALAMA PROBLEMİ 

 

 

(Özdemirel) Akıcı, Aybike 

 

 

Akıllı Mühendislik Sistemleri Yüksek Lisans Programı 

Fen Bilimleri Enstitüsü 

 

 

Tez Danışmanı: Doç. Dr. Deniz Türsel Eliiyi 

 

 

Mayıs 2014, 62 sayfa 

 

Bu tez çalışmasında İzmir Türkiye’de bulunan bir bağış merkezindeki bir gerçek hayat kamu 

hizmeti problemi ele alınmıştır. Merkez bağışlanan ürünlerin bağış sahiplerinden toplanılması, bu 

ürünlerin gelen istekler doğrultusunda ihtiyaç sahibi vatandaşlara atanması ve dağıtımından 

sorumludur. Atanamayan ürünler tek bir depoda geçici olarak bekletilmektedir. Günlük dağıtım 

ve toplama için tek araç kullanılmakta, gelen bağışçı ve ihtiyaç sahiplerinin ziyaret edilme 

saatlerine dair zaman aralıkları bulunmaktadır. Bu çalışmada problem için yeni ve özgün, fayda 

bazlı atama ve rotalamayı bir arada yapan tamsayılı programlama modelleri önerilmektedir. 

Modellerde bağışçı ve ihtiyaç sahiplerinin hizmet aldıkları zaman aralıkları bağlayıcı ve bağlayıcı 

olmayan kısıtlar olarak ele alınmıştır. Bağlayıcı olmayan kısıtlara sahip modelin performansının 

sayısal olarak değerlendirilmesi için geliştirilen deney tasarımı ve sonuçları ayrıntılarıyla 

sunulmuş ve tartışılmıştır. Bu tez çalışmasıyla hem rotalama literatürüne yeni ve özgün 

modellerle katkıda bulunmak, hem de pratik öneme sahip insani bir probleme optimal çözümler 

getirmek amaçlanmıştır.  

 

Anahtar Kelimeler: Atama ve Rotalama Problemi, Dağıtım ve Toplama, Zaman Aralıkları, 

Karışık Tamsayılı Programlama. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Transport and logistics decisions are important components of the cost of doing business, 

and are one of the main determinants of efficiency in today’s competitive environment. The 

companies should take several tactical and operational logistics decisions in order to optimize 

their supply chain processes. These decisions are also essential for the efficiency of the public 

sector, which in turn affects public welfare.  

In under-developed or developing countries, there is a considerable amount of needy 

population. Basic needs of this population require immediate attention of the 

governmental/municipal authorities. One of the ways of meeting the incoming requirements is via 

donated goods and funds collected from many donor residents. The municipal authorities, and 

specifically donation centers, are usually responsible for the timely collection and distribution of 

donated items to the needy in a fair manner. The operations at such a donation center constitute a 

logistics problem involving two interrelated decisions. The first is to determine a proper and fair 

matching of donated items and indigent residents, and the second is to efficiently collect and 

distribute these items in a timely manner. A fair matching is required for effectively meeting the 

needs, whereas efficient and timely distribution optimizes the utilization of public resources. 

In this thesis, we take such a real life problem into consideration. The donation center in 

question is in Izmir, Turkey.  People donate their used/discarded items, such as furniture, textile, 

white goods etc., to the center. During a day, the items that are declared by the donors via phone 

calls are collected by a single vehicle. Donations should be matched to the incoming requests by 

the indigent residents. The collected items are either directly distributed to their assigned 
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recipients during the day, or transported back to the depot and stored until need occurs. There are 

time windows in which each donor/receiver prefers to be served. Based on their needs and 

economic status, the donation center aims to distribute the items to needy residents in the fairest 

and most-gratifying manner, while keeping transportation costs at minimum. Currently, the 

decision makers at the center carry out these tasks manually, which leads to 

unsatisfactory/mismatched assignment reports and inefficient utilization of the vehicle, as well as 

high transportation costs. 

We propose a multi-criteria assignment/routing integer programming model for the 

problem at hand. Numerous criteria affecting assignment decisions are merged under a utility 

definition. The objective of the developed model is to maximize the total utility of the 

assignments minus the total penalty resulting from time window preferences of the donors and 

residents, and the tour time. While the utility-maximizing assignment problem is somewhat 

straightforward to solve on its own, the integrated assignment/routing problem defined in this 

study is rather complex.  

To the best of our knowledge, ours is the first study to consider an integrated 

assignment/routing problem. In this respect, as well as applying operations research techniques to 

a real-life problem to obtain optimal solutions, we intend to contribute to the routing literature by 

proposing this novel problem. We believe that the proposed problem can find its applications in 

many different problem environments including assignment and routing. The problem can also be 

extended for usage in diverse contexts involving public service or disaster relief situations.    

In the next chapter, we discuss the literature regarding our problem. In Chapter 3 we 

define the problem and present the proposed mathematical model. We explain the details of our 

experiment design in Chapter 4.1 while presenting our computational experiment results in 

Chapter 4.2. We conclude with future research directions in Chapter 5. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

The routing component of our problem includes pickups and deliveries with a single 

vehicle and a single depot. The Pickup and Delivery Problem (PDP) formulates constructing a set 

of routes in order to satisfy transportation requests by a fleet of vehicles (Savelsberg and Sol, 

1995). Every transportation request has an origin where the load is to be picked up, and a 

destination it is to be delivered. All vehicles depart from and return to the depot. In general, PDP 

is analyzed in terms of its different problem characteristics; dynamic vs. static, and single vs. 

multi-vehicle. In the dynamic case, the requests are gradually obtained through the day, whereas 

all requests are known in advance in the static case. According to the number of vehicles in the 

fleet, the problem has been named as single or multi-vehicle PDP. 

Parragh et al. (2008a, 2008b) conduct a two-part comprehensive survey on pickup and 

delivery problems and distinguish two basic categories for the classification of the problems. The 

first class deals with the transportation of the goods from the depot to linehaul customers and 

from backhaul customers to the depot, whereas the second class refers to the problems where 

goods are transported between multiple pickup and delivery locations. Figure 1 shows the 

classification of the pickup and delivery problems presented by Parragh et al (2008a, 2008b). In 

the second class, there are two subclasses that refer to the situations where pickup and delivery 

points are unpaired or paired. In the unpaired case where each unit picked up can fulfill the 

demand of any delivery point, the problem is denoted as Vehicle Routing Problem with Pickup 

and Delivery (PDVRP). Other subclass comprises the PDP problems resulting in paired pickup 

and delivery locations. Based on the characteristic of our problem environment, the daily problem 

at the donation center is a single vehicle static problem with time windows, as all donations and 

requests are known at the start of the working day, and the pickup and delivery activities take 
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place between customer pairs as well as the depot. In addition, any incoming request/demand 

during the day is recorded to be planned for the upcoming days. Hence, our problem has 

similarities with the problems in the second subclass of the second class, as defined by Parragh et 

al. (2008a, 2008b). In this chapter, we focus on the related literature on this second class and its 

subdivisions, namely the PDP and the Dial-a-Ride Problem (DARP). 

 

 

Figure 1 Classification of Pickup and Delivery Problems 

 

In literature, various approaches are developed to solve PDP variations including time 

windows. Some of these are exact methods which guarantee the optimal solution, while the 

majority is on approximations providing feasible solutions in acceptable times (Savelsberg and 

Sol, 1995). As an example for studies on exact methods, Kalantari et al. (1985) present branch 

and bound algorithm for the single vehicle PDPTW, considering both infinite and finite vehicle 

capacity. Besides, two new formulations for the problem and the closely related DARP are 

proposed by Ropke et al. (2006) in which there are a limit on the elapsed time between pickup 

and delivery of a request. Valid inequalities are used to strengthen the formulations which are 

used within branch-and-cut algorithm. Ropke and Cordeau (2007) introduce a new branch-and-

cut-and price algorithm for solving PDPTW in which lower bounds are computed by solving 

through column generation linear programming relaxation of a set partitioning formulation. There 

are two different problems as considered sub problems in column generation algorithm and valid 
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inequalities are added to strengthen the relaxations. It is reported that the proposed algorithm 

outperforms the recent branch-and-cut algorithms. In another study, Dumitrescu et al. (2008) 

model Travelling Salesmen Problem with Pickup and delivery (TSPPD) as an integer linear 

program and analyze its polyhedral structure. The dimension of TSPPD is determined and several 

valid inequalities are proposed. Furthermore, separation procedure and branch-and-cut are 

developed and computational results are presented. 

 

Several studies report heuristic and metaheuristic approaches on the single vehicle 

PDPTW. Van der Bruggen et al. (1993) develop a variable-depth based local search algorithm for 

the problem. It consists of two phases in which a feasible route is constructed in the first phase, 

and the route is iteratively improved in the second phase. It is reported that the method provides 

near-optimal solutions in a reasonable computation time. Nanry and Barnes (2000) present a 

reactive tabu search approach using three different neighborhood moves highlighting the 

dominance of precedence or coupling constraints. A hierarchical search is used to alternate 

between neighborhoods dynamically. Landrieu et al. (2001) present a tabu search and a 

probabilistic tabu search for the problem, while Kammatri et al. (2004) provide a hybrid approach 

that uses an evolutionary algorithm with special genetic operators, tabu search and Pareto 

dominance method. The algorithm produces satisfying and feasible solutions minimizing the 

compromise between total travelled distance, total waiting time, and total tardiness. Hosny and 

Mumford (2010) also study the single vehicle PDPTW, and compare three different approaches; 

a genetic algorithm, a simulated annealing approach and a hill climbing algorithm. In all cases, 

they adopt a solution representation and present an intelligent neighborhood move that is guided 

by the time window. Huang and Ting (2010) develop an ant colony optimization (ACO) method 

for the problem. The constraint of the time window and the vehicle capacity is considered in the 

transition probability of the ants. In order to deal with infeasible routes, they propose a repair 

operator and it is reported as a result that the solution quality of the ACO method outperforms 

tabu search and genetic algorithm for the studied problem. 

For the multi-vehicle PDPTW, Li and Lim (2001) propose a hybrid metaheuristic, in 

which a tabu-embedded simulated annealing restarts a search procedure from the best current 

solution after several non-improving search iterations. The authors report that their algorithm is 
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the first approach to solve large instances of the multiple-vehicle PDPTW with various 

distribution properties. Minic et al. (2004) focus on the dynamic multi-vehicle PDPTW, and 

describes a double-rolling-horizon-based solution method for the problem. They consider the 

short and long term effects of assigning a new request to a vehicle into consideration. Pankratz 

(2005) describes a Grouping Genetic Algorithm that has a feature of group-oriented genetic 

encoding, in which each gene represents a group of requests instead of a single request. In this 

study, all problem variants are transformed into a pickup and delivery model, and solved using 

the adaptive large neighborhood search (LNS). In another study that uses LNS, Bent and Van 

Hentenryck (2006) present a two-stage hybrid algorithm for solving the multi-vehicle PDPTW. In 

the first stage, they use a simple simulated annealing procedure to decrease the number of routes 

while they propose LNS in order to decrease the travel cost. Lu and Dessouky (2006) present a 

new insertion-based construction heuristic for the same problem. They consider the cost of 

reducing the time windows slack due to the insertion and present a non-standard measure, the 

Crossing Length Percentage, for evaluating the visual attractiveness of the proposed solution. 

They compare their procedure with previous parallel and sequential insertion heuristics, and 

report that the proposed method performs better regarding both standard and non-standard 

measures. A unified heuristic that is capable of solving five variants of the VRP (the vehicle 

routing problem with time windows, the capacitated vehicle routing problem, the multi-depot 

vehicle routing problem, the site-dependent vehicle routing problem, and the open-vehicle 

vehicle routing problem) is presented by Pisinger and Ropke (2007). 

Recently, Lai et al. (2010) develop a two-stage hybrid metaheuristic for the multi-vehicle 

PDPTW, where the first stage is comprised of decreasing the number of used vehicles by 

simulated annealing and tabu search is used to decrease the total travel cost in the second stage. 

Hosny and Mumford (2011) compare several construction algorithms that are used to generate 

initial feasible solutions for the problem. The algorithms differ in whether generated algorithms 

are sequential or parallel, and the criteria for selecting requests and the routes that they will be 

inserted; inserting a request into a route is either based on a first acceptance criterion or a best 

acceptance criterion. Barbeglia et al (2010) present a recent and comprehensive survey on the 

dynamic PDP and solution strategies. Wang and Chen (2013) formulate a flexible PDPTW into 

mixed binary integer programming and develop a co-evolutionary algorithm with a variant of the 
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cheapest insertion method for expediting the solution procedure. Zou et al. (2013) study the 

multi-objective PDPTW with three objectives; minimizing the total number of vehicles utilized, 

the total travel distances, and the total waiting times. They build a mixed integer programming 

model and a novel hybrid particle swarm optimization algorithm that adds particles’ neighbor 

information to diversify the particle swarm and use the variable neighborhood search (VNS) to 

enhance the convergence speed. Table 1 summarizes the studies on PDPTW reviewed in this 

chapter with respect to problem characteristics and the proposed solution methodologies. 

DARP is a special case of the PDP and an extension from the typical Travelling Salesman 

Problem (TSP) where the objective is to minimize the total degree of customer dissatisfaction 

defined by the service waiting time of a customer (Psaraftis 1980). Mainly, the DARP aims at 

designing vehicle routes and schedules for n users with pickup and drop-off activities. The same 

user may have two requests during the same day; an outbound request (from home to destination) 

and an inbound request (for return). The fleet consists of identical vehicles based on a single 

depot and the aim is to accommodate as many as requests possible. Applications of the problem 

can be seen in door-to-door transportation services for elderly and disabled people (Cordeau and 

Laporte 2003a). 

Sexton and Bodin (1985a) develop a model that focuses on solving the scheduling 

component of the single vehicle static DARP. Each of the given a set of n customers has a desired 

point of delivery and pickup, and also a service time. They solve the developed mathematical 

modeling formulation that has the objective of minimizing total customer inconvenience through 

Bender’s decomposition. The authors test their heuristic algorithm on real data, and report high 

quality solutions in a reasonable computation times. In a later study, the same authors develop 

another algorithm for finding an initial solution of the route sequence for the same problem 

(Sexton and Bodin 1985b). They also present an improvement heuristic for the route sequence. 

Former scheduling and current routing algorithms are integrated, and satisfactory results from a 

number of computational experiments on actual data are presented in the study. Ozdemirel et al. 

(2012) deals with a similar problem and develops an integrated assignment-routing model with 

hard time windows and vehicle capacity constraint, as will be further explained in the third 

chapter. 
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Table 1 Summary of the reviewed studies on PDPTW 

 

# of vehicles demand structure solution method 

 

 

single multi static dynamic exact approx. 

 Kalantari et al. (1985)       branch and bound 

Ropke et al. (2006)       branch and cut 

Ropke and Cordeau (2007)       branch-and-cut-and-price 

Dumitrescu (2008)      

integer programming, 

branch and cut 

Van der Bruggen et al. 

(1993)       variable depth search 

Nanry and Barnes (2000)       reactive tabu search 

Landrieu et al. (2001)       tabu search 

Kammatri et al. (2004)      

hybrid evolutionary 

approach 

Hosny and Mumford 

(2010)      

genetic algorithm, simulated 

annealing, hill climbing 

Huang and Ting (2010)       ant colony optimization 

Li and Lim (2001)      

tabu-embedded simulated 

annealing 

Minic et al. (2004)      

a double-horizon based 

heuristic 

Pankratz (2005)      

a grouping genetic 

algorithm 

Lu and Dessouky (2006)      

an insertion-based 

construction heuristic 

Bent and Van Hentenryck 

(2006)      

simulated annealing, large 

neighborhood search 

Pisinger and Ropke (2007)       a unified heuristic 

Lai et al. (2010)  



   

simulated annealing,  tabu 

search 

Barbeglia et al. (2010)       various solution strategies 

Hosny and Mumford 

(2011)      

initial feasible solution 

construction algorithm 

Zou et al. (2013) 



    

hybrid particle swarm 

optimization 

Wang and Chen (2013) 



     a co-evolutionary algorithm 
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There are numerous studies in literature that focus on approximate methods for solving 

the DARP. Hame (2011) proposes an adaptive insertion algorithm that can produce optimal 

solutions for a time-constrained the single vehicle dynamic DARP. One of the heuristics for the 

multi-vehicle static DARP is proposed by Jaw et al. (1986). The heuristic includes time 

constraints, defined as the amount of time by which the pickup or delivery of a customer can 

deviate from the desired pickup or delivery time, and the time that a customer can spend riding in 

a vehicle. The algorithm consists of a sequential insertion procedure that enables assigning 

customers to the vehicles, and determining the time schedule of all pickup and delivery activities 

for every vehicle. The objective function holds the balance between the costs of providing service 

regarding customers’ desired service times and short riding times. Madsen et al. (1995) describe a 

system for the solution of a static dial-a-ride routing and scheduling problem with time windows. 

The problem is characterized by multiple capacities and multiple objectives. Multiple capacity 

definitions refer to the fact that a vehicle may be equipped with different types of seats; e.g. 

normal seats, children seats or wheel chair places, whereas the objectives relate to a number of 

concerns such as short driving time, high vehicle utilization or low costs. A heuristic, called 

REBUS, is proposed in which new customer requests are dynamically inserted in vehicle routes. 

The algorithm is applied in a dynamic environment targeting for online scheduling. Ioachim et al. 

(1995) presents an approximate method to mini-clustering, which involves solving a static multi-

vehicle DARP with time windows. They use several ways to enhance an existing optimal 

algorithm. In addition, they develop a heuristic that reduces the size of the solution network that 

causes only small losses in solution quality. In order to compare the result of optimization-based 

and local heuristic mini clustering, a parallel insertion approach to mini clustering is proposed. 

In a more recent study, Cordeau and Laporte (2003b) propose a tabu search heuristic for 

the multi-vehicle static DARP with time windows, in which the users may specify the time 

windows on their desired departure or arrival times. The objective is to design a set of least-cost 

vehicle routes capable of fulfilling all user requests subject to vehicle capacity, route duration and 

the maximum ride time of any user. Diana and Dessouky (2004) present a parallel insertion 

heuristic for large-scale DARP with time windows. A new route initialization procedure is 

implemented that takes into account the spatial and temporal aspects of the problem, and also a 

regret insertion heuristic is performed to serve the remaining requests. The results show that this 
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approach is effective regarding trading-off solution quality and the computational times. Table 2 

summarizes the discussed papers on DARP in terms of their problem characteristics and solution 

approaches. 

 

Table 2 Summary of the reviewed studies on DARP 

 

# of vehicles demand structure solution method 

 

 

single multi static dynamic exact approx. 

 Psaraftis (1980) 

 

 



dynamic programming 

Sexton and Bodin (1985a) 











binary integer 

programming 

Sexton and Bodin (1985b) 





 



a problem-specific 

heuristic 

Ozdemirel et al. (2012)      

mixed integer 

programming 

Hame (2011) 



    

an adaptive insertion 

algorithm 

Jaw et al. (1986) 



    

a sequential insertion 

heuristic 

Madsen et al. (1995) 



    

an insertion-based 

heuristic 

Iochim et al. (1995) 



    

a mini clustering 

algorithm 

Cordeau and Laporte (2003b)       tabu search 

Diana and Dessouky (2004)       a regret insertion heuristic 

 

 

The routing component of our problem resembles the single vehicle static dial-a-ride 

problem more than other types of routing problems. Both the dial-a-ride problem and our 

problem consider pickup and delivery activities during the same routing schedule. However, 

there are several and crucial differences between the two problems, as will be more obvious in 

Chapter 3. For example, in the dial-a-ride problem, a client is picked up from his home and 

transported to a destination. After a while, he is picked up from that point and delivered to his 

home again. In contrast, an item is picked up from a donor’s home and delivered to either the 

assigned recipient’s home or the depot in our problem; there is no return flow for any item. From 
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the humanitarian or public welfare perspective, both the dial-a-ride problem and our problem 

have customer-based objectives. The former minimizes total customer inconvenience defined by 

excess ride time and delivery time deviations (Sexton and Bodin, 1985b), whereas the latter 

considers the routing of utility maximizing assignments. 
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CHAPTER 3 

 

PROBLEM DEFINITION 

 

 

 

The main objective of the assignment/routing problem presented in this study is to 

maximize the total utility of the assignments. Two different models are considered for solving 

this problem, which differentiate from one another with regards to their objective functions. The 

first model, which was published previously in Ozdemirel et al. (2012) seeks for maximizing the 

total utility of daily assignments under a set of hard time window constraints. The second model 

developed in this thesis aims to maximize the total utility minus the aggregate penalty resulting 

from time window violations. Namely, the time window constraints are defined as soft 

constraints in the new model. 

Before presenting the developed models, the procedure for computing the utility values 

for all feasible assignments is explained in detail in the following section. 

3.1. Procedure for Computing Utilities 

 

In order to compute the utility of an item-client assignment, several criteria are taken into 

consideration, including the travel time between the donor and the client, the income level and 

the age of the client, the number of household at the client’s residence, the client’s previous usage 

of the donation service, and the age/status of the donated item. These criteria, as listed in Table 3, 

are determined as a result of interviews with decision makers at the donation center in Balçova, 

İzmir. Obviously, the number of criteria, their levels and respective scores should be adjusted for 

other applications of the problem. 
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Table 3 Criteria and scores used in utility computations 

Criteria / Score si1 = 10 si2 = 40 si3 = 100 

Travel time btw. 11-15 min. btw. 5-10 min. < 5 min. 

Income >1000 TL btw. 500-1000 TL < 500 TL 

Age of client btw. 20-50 btw. 50-70 > 70 

# of household 2 btw. 3-5 > 5 

# of service received > 7 btw. 4-6 < 4 

Item age > 10 btw. 5-10 < 5 

 

 

Among the criteria, the income level, age of the recipient/client and previous use of 

service are indicators for the indigent’s social and economic status. The number of household and 

the age of the client are stated to be mutually exclusive by the decision makers; that is, only one 

is considered for the same recipient. Specifically, if the recipient lives alone, then the age 

criterion is taken into consideration, whereas if he doesn’t, the number of household determines 

the priority of the client. The last criterion, namely the item age, is considered for a fair 

assignment in accordance with other criteria. Three levels are determined for the value ranges of 

each criterion. 

Table 3 illustrates the levels and their scores for each criterion assumed in this thesis. At 

the beginning of the working day, all donor/client requests to be served are already determined; 

hence the scores are set for each possible assignment. The utility value corresponding to each 

possible assignment is calculated through a similar procedure as defined in Ozdemirel et al. 

(2012), although with updated levels and scores for the criteria. The procedure is presented with 

an example here for the sake of completeness. 

Priorities among the criteria are determined through interviews with the decision makers 

of the donation center. For this purpose, a series of judgment-based pairwise comparisons among 

the criteria are made by the decision makers as in the Analytical Hierarchy Process (AHP), which 

is a method for determining the relative importance of various factors (Saaty, 1980). After this 

analysis, consistency check was completed and a relative importance matrix was formed. As a 

result, the relative importance values are determined as shown in Table 4, which establish the 

basis for utility computation of all possible assignments. 
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Table 4 Relative importance matrix for the criteria 

Criterion Travel Time Income Age/ # hh # service Item age 

Travel time 1 1/7 1/5 1/9 3 

Income 7 1 7 3 9 

Age / # of household 5 1/7 1 1/5 5 

# of service received 9 1/3 5 1 7 

Item age 1/3 1/9 1/5 1/7 1 

 

 

After the normalization procedure, the normalized weights of the criteria were set as wk, 

k=1,…,6, where w3 and w4 are the mutually exclusive, as stated above. The determined weights 

for criteria are listed Table 5. 

 
Table 5 Normalized weights of the criteria determined by pairwise comparison 

Criteria Weight 

Travel time 0.06 

Income 0.49 

Age / # of household 0.13 

# of service received 0.29 

Item age 0.03 

Total 1.00 

 

 

Based on these weights, the utility value of each possible assignment is computed by 

multiplying the weight of each criterion with the score of the assignment in terms of that criterion, 

and taking the summation of these multiplications. The value that is obtained finally can be 

inserted into the objective function directly. 

As a numerical example for utility computation, consider the feasible item/client 

assignment (i,j) with the following criteria levels: Let the time between nodes i and j be 7 minutes. 

The income level of the senior resident at node j, who lives alone, is less than 500 TL, and the 

age of the resident is 75. This resident has used the donation service before 4 times. And the item 

donated by node i has an age of 11 years. This assignment has the following respective scores 

from each criterion according to Table 3: Travel time: 40, Income: 100, Age of client: 100, # of 

service: 40, Item Age: 10. Multiplying each criterion’s score with its respective weight in Table 3 

yields the utility of assignment (i,j) as the following convex combination: 
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uij = 0.06(40) + 0.49(100) + 0.13(100) + 0.29(40) + 0.03(10) 

uij = 76.3 

A utility value in the range (10, 100) is obtained for any feasible assignment using the 

above procedure. In the next section, we present our first mathematical model, which uses 

maximizing the sum of computed utility values as its objective function. 

3.2. Model 1: The Integrated Assignment/Routing Model with Hard Time Window 

Constraints 

 

In an earlier publication, we present (Ozdemirel et al., 2012) a mathematical model for 

simultaneous decisions of the matching of the donated items and clients, and the routing of a 

single capacitated vehicle in the presence of pickups and deliveries and time windows. As it was 

stated before, this model assumes hard time window constraints. 

The planning period is assumed as a working day. It is assumed that all requests that are 

taken at the start of the day are the input of the model. The parameters of the model are as follows: 

n :  the number of nodes (including the depot as the last node) 

d :  number of donor nodes, where d < n 

i, j,h :  the indices for all nodes, i, j = 1, …, n 

vi :  volume at node i, i = 1, …, n 

uij :  the utility of assigning node i to node j

 tij :  travel time of the vehicle between node i and node j 

ai :  start of time window for node i, i = 1, …, n-1 

bi :  end of time window for node i, i = 1, …, n-1 

C :  total volume capacity of the vehicle
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The following denote the decision variables: 

xij :  takes the value of 1 if node (item) i is assigned to node j, and 0 otherwise 

yij :  takes the value of 1 if the vehicle visits node i immediately before node j, and 0 

otherwise 

si :  the start time of service at node i 

ci :  load (in volume) of the vehicle after visiting node i ( ,ic C i  ) 

 

Node indices from 1 to d represent the donor nodes where indices from d+1 to n-1 stand 

for the resident nodes. The last index n symbolizes the depot. 

Each request of an indigent resident (client) and each donated item are taken as separate 

records, since each matching may receive different scores from the criteria according to the status 

of the requested item. The model therefore keeps separate node indices for each request and each 

donation, although they may belong to the same address. Dummy nodes are created, as required 

by this representation. Items at the depot at the start of the day are also treated as separate donor 

nodes. The proposed network-based mixed integer programming model is given below. 

Maximize 
1 1

d n

ij ij

i j d

u x
  

  

subject to:
 

 

1
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 

                      (1) 
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1 1,  ,  1

d

ij

i

x j d n

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1, 1,
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1
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n
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i

y




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i i i ia s b               (8) 

 1 0    1,..., , 1,..., 1j i i ijs s b x i d j d n                    (9) 

      1 0 1,..., , 1,..., 1,j i ij i ij ij i n js s t b t i jy n                          (10) 

  1 0  1,..., , 1,..., 1,j ij ji jc c v C v y i n j n i j                     (11) 

   ic C i                (12) 

, 0n ns c                (13) 

 , 0,1 , , 0 ,ij ij i ix y s c i j              (14) 

 

The objective function maximizes the total utility of the daily assignments. Constraint set 

(1) ensures that each item must be assigned to either a client or the depot. Constraint set (2) 

allows that a client may not receive an item although he has posted a request for the particular 

working day. Constraint set (3) ensures that a client cannot be visited before its related donor is 

visited. 

Constraint sets (4) to (7) set the start and end of the tour as the depot. Also, they handle 

that each node is visited exactly once except the depot. Constraint set (8) establishes time 

windows while constraint sets (9) and (10) define the service start time for each node. Constraint 

set (11) and (12) together handle the capacity constraint of the vehicle. Constraint sets (13) states 
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that the vehicle is initially empty and it starts its tour at the depot. Finally, constraint set (14) 

imposes sign restrictions on the decision variables. 

While maximizing total utility, the above model tries to handle the time window 

restrictions of the donors and clients using hard time window constraints. After initial 

experimentation it was observed that this aspect of the model is rather unrealistic, and may cause 

infeasibility based on the structure of the data. Based on the model, any client node that cannot be 

visited during its time window is left out of the solution and is not included in the tour as the 

model allows no assignments for some clients. On the other hand, this situation is not possible for 

the donor nodes; an infeasible solution is obtained if a donor node cannot be visited due to its 

time restrictions. This aspect illustrates the fact that the feasibility of the above model is highly 

dependent on data. 

In addition, this model includes an artificially large node set, as it assumes that all 

requests that are taken for the particular working day become the input of the model. Note that 

the second constraint allows no assignments for some clients. This means that while the requests 

of all clients are collected and their time window requirements are taken through telephone calls, 

some of them will not be visited during that day. The time requests for these citizens should be 

taken again for the next day, although a visit is, again, not guaranteed. Consequently, while this 

aspect artificially increases the number of decision variables and constraints of the model, it is 

not reasonable in a practical sense. 

For these reasons, we develop a second model that will overcome the shortages of the 

previous one. We explain our second model in the next section. 

3.3. Model 2: The Integrated Assignment/Routing Model with Soft Time Window 

Constraints 

 

As the first one, our second model utilizes a network structure, representing each donation and 

each client by a separate node. While the previous model assumes hard constraints, the second 

model employs a soft time window constraint structure for a more realistic representation of the 

problem environment. For this purpose, while allowing violations of time window preferences for 
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donor and client nodes, the model penalizes the violations, both earliness and tardiness, in its 

objective function. 

As another difference from the earlier model, the second model assumes that, at the start 

of the working day, all n nodes that can be visited during the day are already determined on a 

first-come-first-serve basis through the incoming calls. This assumption is in line with the current 

practice at the donation center. Hence, the list of donors and clients that will be visited is known, 

though the assignments are not. This allows us to use equality in the second set of constraints. 

The parameters of the second model are defined as follows: 

n + 1: the total number of nodes 

d :  number of donor nodes, where d < n 

i, j,h :  indices for all nodes, i, j = 1, …, n 

vi :  volume at node i, i = 1, …, n 

uij :  the utility of assigning node i to node j

 tij :  travel time (in minutes) of the vehicle between node i and node j 

dij : travel time (in minutes) of the vehicle between node i and node j (excluding 

service time) 

ai :  start of time window for node i, i = 1, …, n (in minutes) 

bi :  end of time window for node i, i = 1, …, n (in minutes) 

C :  total volume capacity of the vehicle 

T :  total length of the working day (in minutes)

 pi :  penalty of visiting node i out of its time window, i = 1, …, n. 

I(i): incompatibility set for the item at donor node i, i = 1, …, d. This is a list of the 

client nodes that cannot be assigned to node i, since they require different types of 

items. 

 

The following denote the decision variables: 
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xij :  takes the value of 1 if node (item) i is assigned to node j, and 0 otherwise 

yij :  takes the value of 1 if the vehicle visits node i immediately before node j, and 0 

otherwise 

si :  the start time of service at node i (in minutes) 

ci :  load (in volume) of the vehicle after visiting node i ( ,ic C i  ) 

ei :   amount of time that node i is served early (earliness value in minutes) 

li :   amount of time that node i is served late (tardiness value in minutes) 

 

Node indices from 1 to d represent the donor nodes where indices from d+1 to n stand for 

the client nodes. Node 0 and node n + 1 represent the artificial nodes for source and sink. The 

mixed integer programming model is given below: 
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 , 0,1 , , , , 0 ,ij ij i i i ix y s c e l i j              (31) 

 

The objective function maximizes the total utility of the daily assignments while 

minimizing the total penalty resulting from violations of the time windows and the tour time. The 

tour time is identified as the service start time of the sink node. Constraint set (15) ensures that 

each donation must be assigned to a client. In the data set, several nodes may represent the depot 

as a client. Constraint set (16) ensures that all recorded/promised clients will receive an item 

during the working day. Constraint set (17) ensures that all clients receive items of their required 

types. Although the utility values for mismatched item type/donor assignments are set to zero, the 

model can make such assignments in order to decrease tour time or total time penalties. For this 

reason, constraint set (17) is necessary to completely avoid mismatching assignments. 

Constraint (18) links the source node to a donor node at the start of the tour, where several 

nodes may represent the donated items at the depot. Constraint (19) ensures that the source node 
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cannot precede a client node; an empty vehicle cannot visit a client at the start of the working day. 

Similarly, constraint (20) does not allow a donor node to be visited at the end of the day by 

prohibiting all links to the sink node. Constraint (21) ensures that the sink node follows a client 

node (depot included). Constraint sets (22) and (23) control conservation of flow in the tour for 

the remaining nodes. 

Constraint set (24) bound the load on vehicle after visiting each node by the vehicle 

capacity. The vehicle is empty at the start and end of the tour, as indicated by constraints (25). 

The earliness and lateness values at each node are calculated through constraint sets (26) and (27), 

respectively. 

After experimentation with the previous model, it has been observed that constraint set (3) 

is redundant for linking the binary variables. The connection is ensured through constraint sets 

(28) and (29) in the second model. These constraint sets guarantee that an assigned pair of nodes 

should be visited in proper order during the tour, while simultaneously determining the service 

start time of each node. In the constraints, the length of the working day T is taken as a large 

number. Constraint set (30) ensures that the vehicle capacity is not exceeded after the visit of any 

node during the tour. Finally, constraint set (31) imposes sign restrictions. The problem on hand 

is clearly NP-hard, as it involves PDPTW, which is NP-hard. 
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CHAPTER 4 

 

COMPUTATIONAL RESULTS 

 

 

In this chapter, we analyze the results of our computational experimentation. We first 

explain the details of our experiment design for evaluating the performance of our model 

presented in Section 3.3. Then in Section 4.2, we present our computational experiment results. 

4.1. Experiment Design 

 

Client and donor addresses are generated uniformly over a 75 by 75 grid, by 

independently generating x and y coordinates. The depot’s position is assumed to be fixed at the 

coordinates (25, 25). Travel times are computed using the rectilinear distance metric; the longest 

travel time between any two nodes on the grid is assumed to be 15 minutes (computed as 

(75+75)/10). All travel times are calculated accordingly. 

As a client node’s position is generated, its three attribute levels are also generated 

randomly. For each client, an income level is generated as 1, 2, or 3. Another attribute is used to 

determine the age level of the client (if the client lives alone) as one of three levels, or the level of 

the number of household. A third attribute is generated similarly for identifying previous service 

use. 

As it was stated before, each request of a client and each donated item are generated as 

separate nodes, as each matching may receive different scores from the criteria according to the 

status of the requested item. We therefore assume that a single item is demanded by each client, 
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although several requests may correspond to the same address. It is also allowed that a donor can 

request an item at the same time, or a receiver can donate an item to the center.  

Demanded and donated items are generated as one of four types: Appliances and 

electronics (washing machine, TV set, etc.), furniture (carpet, sofa, etc.), clothing, and house 

textile (pillow, blanket, curtain, etc.). The service times at each node are computed based on the 

item type. While delivering or picking up house textile or clothing is assumed to take a time of 5 

minutes, furniture requires a service time of 10 minutes, and appliances or electronics require 7.5 

minutes. These service times are defined for both donor nodes and client nodes, hence should be 

added twice for a pickup-delivery pair. The total time (tij) between any two nodes is then found as 

the sum of the travel time and the service time. 

With each donated item, its age attribute is generated as well, belonging to one of three 

levels. The generated attribute list and levels are provided in Table 6, along with weights coming 

from AHP, as it was explained in the problem definition chapter. 

Table 6 Generated attributes and their levels 

Attribute/Level Level 1 Level 2 Level 3 
Weight 

Travel time btw. 10-15 min. btw. 5-10 min. < 5 min. 0.06 

Income >1000 TL btw. 500-1000 TL < 500 TL 0.49 

Age of resident btw. 20-50 btw. 50-70 > 70 0.13 

# of household 2 btw. 3-5 > 5 0.13 

# of service received > 7 btw. 4-6 < 4 0.29 

Item age > 10 btw. 5-10 < 5 0.03 

 

 

Small and large problem instance sizes are determined in (Client, Donor) pairs as follows: 

(3,5), (4,6), (4,7), (5,7), (6,7), (7,7), (5,10), (5,15), (10,15), (10,20), (15,20), (15,25), where the 

first six represent small problems and the rest represent larger ones. Hence, 12 different levels are 

set for the network size (including the depot). The number of items of each type from the donors 

and the items and at the depot are generated so that they can cover all requests of the working day; 

hence feasibility of the problem instance is maintained. 

As it can be seen from the (Client, Donor) pair levels, the number of clients to be served 

during a working day is less than the number of donors. This is in line with the current practice of 
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the donation center. After the data is generated in this manner, an appropriate number of dummy 

depot nodes are created to balance the model; i.e. to assign the remaining donated items. For 

instance, for the (5,10) setting, 5 clients receive 5 of the donated items, of which some may be at 

the depot. For assigning the 5 remaining items, 5 dummy depot nodes are created. In addition, 

two artificial nodes are created to represent source and sink nodes. Hence, the total number of 

nodes in the mathematical model becomes 2d+2, where d is the number of donors. 

A working day is assumed to be 12 hours, therefore the time windows for all nodes are 

assumed to be in the interval [0,12]. However, in practice, the vehicle is allowed to finish its 

workday only after all pickups and deliveries of the day are completed. The time windows of the 

client nodes generated at 3 levels: 3-hour time windows, 6-hour time windows, and a time 

window having a random length in the set {3, 6, 9, 12}. The 3-hour time windows are uniformly 

distributed in one of the four quarters of the working day; i.e., [0,3), [3,6), [6,9), [9,12). Similarly, 

6-hour time windows are uniformly distributed in one of these intervals: [0,6), [3,9), [6,12). The 

random-length time windows are generated such that the interval contains one or more 

consecutive quarters of the working day. 

The time windows of the donor nodes are assumed to be stricter, and are set at 2 levels, 

having a length of 2 or 3 hours. Furthermore, we assume that the starting time of the time 

window can take any value within the day. Therefore, we generate a starting time (ai) uniformly 

within the day; within the interval [0,10) for 2-hour time windows, and within [0,9) for 3-hour 

time windows. 

The capacity of the single vehicle is assumed to be 100 units in volume, and the volumes 

of the item types are assumed to be fixed as provided in Table 7. We a assume unit penalty for 

time violations. 

Table 7 Item size parameter 

Item type Volume (units) 

Appliances and electronics 15 

Furniture 30 

Clothing 8 

House textile 10 
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Based on the above parameter definitions, a full factorial experiment design is established 

by 12x3x2 = 72 parameter combinations. 10 problem instances are generated from each 

combination, totaling up to 720 instances. An example for the generated input files is provided in 

Appendix 1, and its legend in Appendix 2. 

4.2. Computational Results 

 

In order to test the limits of the model in Section 3.3, the generated instances are solved 

with CPLEX 10 solver in GAMS 23.9.4, using an Intel i7, 2.3 GHz PC with 8 GB RAM. In this 

section, we present the results of these experiment runs. An output file example and its legend are 

provided in Appendices 3 and 4, respectively. 

4.2.1. Results with identical objective function coefficients 

 

We first test our model with identical objective function coefficients for the three 

components in the objective function of the model. Recall that the objective function was 

expressed by the following: 

Maximize  
1 1 1

1

d n n

ij i i i nij

i j d i

u x p e l s
   

     

In fact, with this function, we try to achieve three objectives simultaneously; 

maximization of total utility, minimization of total time penalty, and minimization of total tour 

time. In its current form, the objective function coefficients for these three separate and 

conflicting objectives are identical, that is, one. No scaling is considered for any component. We 

evaluate the performance of our model by running it for all generated problem instances. The 

GAMS code for the model is provided in Appendix 5. We impose a 1200-second time limit on 

the solution time of all instances for the practicality reasons, as computation times were very long 

in the pilot runs. We first present and discuss the performance of our model on small problem 

instances. Tables 8 and 9 present the results of computational runs for these instances. In both 

tables, “Clients”, “Donors”, “Cwin” and “Dwin” columns specify the setting of the problem 
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instance in terms of number of clients, number of donors and experiment levels for client and 

donor time windows.  

 

Table 8 Results regarding problem size and computation time for small instances 

Clients Donors Cwin Dwin #Columns #Rows #Nonzeroes #Nodes Time (s.) 

3 5 

1 
1 206 315 1111 10 67.4 

2 206 315 1108 10 35.0 

2 
1 206 315 1108 10 73.3 

2 206 315 1109 10 115.8 

3 
1 206 315 1110 10 43.7 

2 206 315 1109 10 104.4 

4 6 

1 
1 282 430 1559 12 639.5 

2 282 430 1560 12 1100.0 

2 
1 282 430 1561 12 1149.0 

2 282 430 1561 12 1175.7 

3 
1 282 430 1560 12 1151.2 

2 282 430 1560 12 1180.6 

4 7 

1 
1 370 563 2084 14 1200.0 

2 370 563 2084 14 1200.0 

2 
1 370 563 2084 14 1200.0 

2 370 563 2083 14 1200.0 

3 
1 370 563 2084 14 1200.0 

2 370 563 2083 14 1200.0 

5 7 

1 
1 370 563 2084 14 1200.0 

2 370 563 2088 14 1200.0 

2 
1 370 563 2086 14 1200.0 

2 370 563 2087 14 1200.0 

3 
1 370 563 2087 14 1200.0 

2 370 563 2089 14 1200.0 

6 7 

1 
1 370 563 2093 14 1200.0 

2 370 563 2093 14 1200.0 

2 
1 370 563 2091 14 1200.0 

2 370 563 2088 14 1200.0 

3 
1 370 563 2091 14 1200.0 

2 370 563 2090 14 1200.0 

7 7 

1 
1 370 563 2094 14 1200.0 

2 370 563 2095 14 1200.0 

2 
1 370 563 2093 14 1200.0 

2 370 563 2094 14 1200.0 

3 
1 370 563 2093 14 1200.0 

2 370 563 2096 14 1200.0 

       
Avg. 989.9 
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Table 9 Solution results for small instances 

Clients Donors Cwin Dwin #Opt ObjVal TourTime TUtil TPenalty UB RelGap 

3 5 

1 
1 10 -480.2 466.8 148.0 161.4 -480.2 0.0% 

2 10 -375.7 396.6 142.1 121.2 -375.7 0.0% 

2 
1 10 -315.8 386.8 185.6 114.5 -315.8 0.0% 

2 10 -319.0 400.0 155.5 74.5 -319.0 0.0% 

3 
1 10 -451.6 455.0 146.4 143.0 -451.6 0.0% 

2 10 -346.9 398.9 155.1 103.1 -346.9 0.0% 

4 6 

1 
1 8 -393.4 530.9 203.0 65.5 -374.2 6.0% 

2 2 -370.6 494.4 198.7 74.9 -228.3 36.8% 

2 
1 1 -352.8 473.5 214.2 93.5 -114.6 75.6% 

2 1 -301.9 443.1 190.8 49.5 -49.3 95.1% 

3 
1 3 -300.4 443.0 212.6 70.0 -62.4 89.2% 

2 1 -288.6 438.8 187.2 37.0 -63.8 130.0% 

4 7 

1 
1 0 -393.6 547.3 217.3 63.6 138.2 143.6% 

2 0 -362.1 543.4 213.0 31.7 158.3 145.6% 

2 
1 0 -386.4 530.4 222.2 78.2 162.1 154.5% 

2 0 -287.7 454.6 218.3 51.4 171.0 194.9% 

3 
1 0 -342.8 532.2 203.0 13.6 199.5 166.6% 

2 0 -285.9 460.5 218.2 43.6 200.7 178.6% 

5 7 

1 
1 0 -342.5 508.3 255.5 89.7 78.5 126.2% 

2 0 -323.0 497.5 256.9 82.4 129.3 161.4% 

2 
1 0 -327.0 491.9 238.5 73.6 201.5 178.6% 

2 0 -213.8 431.0 265.6 48.4 252.1 237.7% 

3 
1 0 -331.4 519.6 256.1 67.9 191.7 172.0% 

2 0 -275.6 449.5 258.3 84.4 222.7 337.0% 

6 7 

1 
1 0 -347.7 576.4 283.0 54.3 21.4 148.2% 

2 0 -348.6 560.3 307.5 95.8 85.3 134.5% 

2 
1 0 -240.7 472.8 316.0 83.9 227.0 259.4% 

2 0 -161.3 439.8 342.8 64.3 267.1 186.7% 

3 
1 0 -316.6 490.6 309.3 135.3 159.9 227.2% 

2 0 -214.6 482.0 323.1 55.7 268.7 241.2% 

7 7 

1 
1 0 -289.1 553.2 400.3 136.2 -20.8 112.6% 

2 0 -228.8 546.1 366.8 49.5 88.9 139.9% 

2 
1 0 -197.0 458.4 407.9 146.5 263.6 718.7% 

2 0 -137.2 446.2 352.5 43.5 274.3 269.6% 

3 
1 0 -235.0 542.3 363.3 56.0 309.6 295.6% 

2 0 -96.1 447.5 397.7 46.3 374.4 463.9% 

   
Total 76 Avg. 480.8 253.7 77.9 

 

161.9% 
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In Table 8, “#Columns”, “#Rows”, “#Nonzeroes” and “#Nodes” are taken from the 

GAMS output of each model. These parameters, namely the number of columns and rows in each 

model, as well as the number of nonzero variables and the total number of nodes of the problem, 

give an idea about the growth of problem size as the experimental settings change. Each row in 

the tables belongs to a different problem setting. “Time” column lists solution times, averaged 

over 10 instances having the same problem setting.    

From Table 8, we can observe that the size of the problem is determined by the number of 

donors, as the total number of nodes in the model is computed as exactly two times the number of 

donors. Recall that if there is a difference between the number of donors and clients, as is almost 

always the case, dummy clients are created to be able to make a one-to-one matching. The 

number of columns and rows in the model are also determined by this parameter as a result. 

Observing solution times, we can see that the problem instances cannot be solved within the 

given time limit of 1200 seconds when there are 14 nodes in the problem network, which 

corresponds to problem instances having 7 donors (excluding the source and sink). Analyzing the 

times for (4,6) setting with 12 nodes one can safely argue that, this size is probably the upper 

limit for obtaining exact solutions to the developed model under 20 minutes. 

In Table 9, “#Opt” column presents the number of instances (out of 10) for which an 

optimal solution could be obtained within the given time limit, whereas “ObjVal” lists the 

obtained average objective function value of the 10 instances. Note that, if the instance is solved 

to optimality, this value is the optimal solution. On the other hand, if the model could not be 

solved within the time limit, the provided value is a lower bound. The “TourTime”, “TUtil” and 

“TPenalty” columns present the tour times, total utility values and total time penalty values 

averaged over 10 instances, representing different components of our objective function. Under 

the “UB” columns, the averages of the best upper bound values obtained by GAMS are listed. If 

all problem instances are solved to optimality, this value is equal to the objective function value, 

and the relative gap, provided by the “RelGap” column is zero. Otherwise, the gap is a positive 

percentage, computed as 100*(UB-ObjVal) / ObjVal. 

Although the problem can be solved optimally with up to 10 nodes, the relative gap 

values seem to grow rapidly after this problem size, looking at the results in Table 9. This is a 
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strong indication of the combinatorial nature of our problem. More nodes lead to a much larger 

solution space, and the routing component of the model, which is NP-hard on its own, becomes 

the determinant of long solution times as well as much larger values of relative gap. Only 76 of 

the 360 instances were solved to optimality, and the average relative gap was around 162% over 

all instances. 

While 8 of the 10 instances were solved to optimality with the (4,6,1,1) setting, only 2 

optimal solutions could be obtained with the (4,6,1,2) setting. Also, the average relative gaps of 

the instances having 2-hour donor time windows seem to be less than the gaps of the ones with 3-

hour time windows. This is an expected result, as longer time windows broaden the solution 

space and make the problem more difficult. This effect can also be observed subtly in Table 8 in 

terms of solution times. The same argument can be made for client window settings. From Table 

8 and 9, one can observe that the instances having 3-hour client time windows (setting 1) can be 

solved at shorter times on average than the one having 6-hour windows (setting 2). 

In practice, the daily instance sizes at the donation center are in accordance with our small 

instance sizes most of the time. However, we also analyze larger problem instances to test the 

limits of our model. We present the results of the runs for these larger instances in Tables 10 and 

11. 

From Table 10, we can observe that none of the large problem instances could be solved 

to optimality within the given time limit. This is an expected result for instances with 20 or more 

nodes, regarding the performance with smaller instances. Note from Table 8 that instances with 

14 nodes could not be solved in less than 20 minutes. For 20 instances in (15,20) setting, and 40 

instances in (15,25) setting, GAMS could not even obtain a single feasible solution within the 

time limit. The corresponding rows are marked with “NA” in the tables. 

The combinatorial nature of the problem reveals itself in the high relative gap values in 

Table 11, with and overall average of 257.5%. As the number of nodes increase, the routing 

component of the problem determines solution times, and results in larger relative gap values. 
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Table 10 Results regarding problem size and computation time for large instances 

Clients Donors Cwin Dwin #Columns #Rows #Nonzeroes #Nodes Time (s.) 

5 10 

1 
1 706 1070 4114 20 1200.0 

2 706 1070 4113 20 1200.0 

2 
1 706 1070 4111 20 1200.0 

2 706 1070 4113 20 1200.0 

3 
1 706 1070 4113 20 1200.0 

2 706 1070 4114 20 1200.0 

5 15 

1 
1 1506 2275 9008 30 1200.0 

2 1506 2275 9008 30 1200.0 

2 
1 1506 2275 9008 30 1200.0 

2 1506 2275 9010 30 1200.0 

3 
1 1506 2275 9009 30 1200.0 

2 1506 2275 9008 30 1200.0 

10 15 

1 
1 1506 2275 9034 30 1200.0 

2 1506 2275 9038 30 1200.0 

2 
1 1506 2275 9039 30 1200.0 

2 1506 2275 9036 30 1200.0 

3 
1 1506 2275 9035 30 1200.0 

2 1506 2275 9040 30 1200.0 

10 20 

1 
1 2606 3930 15834 40 1200.0 

2 2606 3930 15836 40 1200.0 

2 
1 2606 3930 15839 40 1200.0 

2 2606 3930 15837 40 1200.0 

3 
1 2606 3930 15835 40 1200.0 

2 2606 3930 15833 40 1200.0 

15 20 

1 
1 2606 3930 15868 40 1200.0 

2 NA NA NA NA 1200.0 

2 
1 NA NA NA NA 1200.0 

2 2606 3930 15876 40 1200.0 

3 
1 2606 3930 15881 40 1200.0 

2 2606 3930 15864 40 1200.0 

15 25 

1 
1 NA NA NA NA 1200.0 

2 NA NA NA NA 1200.0 

2 
1 NA NA NA NA 1200.0 

2 4006 6035 24575 50 1200.0 

3 
1 4006 6035 24567 50 1200.0 

2 NA NA NA NA 1200.0 

       
Avg. 1200.0 
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Table 11 Solution results for large instances 

Clients Donors Cwin Dwin #Opt ObjVal TourTime TUtil TPenalty UB RelGap 

5 10 

1 
1 0 -386.6 561.3 252.2 77.5 198.1 161.5% 

2 0 -347.7 573.3 252.4 26.7 229.2 171.1% 

2 
1 0 -294.7 531.9 269.5 32.2 270.0 212.4% 

2 0 -285.1 510.7 246.8 21.2 247.5 200.5% 

3 
1 0 -325.8 568.0 253.4 11.2 253.6 181.6% 

2 0 -275.7 526.0 270.4 20.0 270.8 206.5% 

5 15 

1 
1 0 -962.2 608.8 285.9 639.3 286.8 142.5% 

2 0 -564.0 593.2 258.5 229.3 243.0 155.7% 

2 
1 0 -646.3 612.4 261.9 295.8 265.6 150.5% 

2 0 -514.9 562.8 246.4 198.6 249.7 161.4% 

3 
1 0 -668.9 620.7 241.0 289.2 225.3 147.3% 

2 0 -479.8 577.2 266.6 169.2 268.6 161.1% 

10 15 

1 
1 0 -883.8 632.6 522.1 773.3 476.3 193.2% 

2 0 -237.6 589.3 529.8 178.1 518.7 697.2% 

2 
1 0 -354.3 617.0 551.1 288.3 554.3 652.8% 

2 0 -353.5 623.2 556.7 287.0 559.9 577.6% 

3 
1 0 -307.0 618.1 476.4 166.2 474.7 559.2% 

2 0 -364.5 629.6 472.2 207.0 454.4 287.2% 

10 20 

1 
1 0 -1413.6 636.3 534.9 1312.3 509.2 157.9% 

2 0 -1224.1 641.7 493.9 1076.3 422.3 134.1% 

2 
1 0 -1027.1 678.2 520.3 872.3 526.1 198.9% 

2 0 -618.9 610.7 517.8 526.0 525.3 196.9% 

3 
1 0 -712.3 674.4 544.3 582.2 539.9 185.3% 

2 0 -1418.9 649.7 523.1 1292.3 527.0 155.0% 

15 20 

1 
1 0 -2992.2 708.5 772.4 3056.0 775.5 168.7% 

2 0 NA NA NA NA NA NA 

2 
1 0 NA NA NA NA NA NA 

2 0 -639.7 692.3 758.6 706.0 765.8 357.6% 

3 
1 0 -971.6 666.5 768.5 1073.5 773.0 436.0% 

2 0 -652.8 653.0 876.2 876.0 882.2 468.3% 

15 25 

1 
1 0 NA NA NA NA NA NA 

2 0 NA NA NA NA NA NA 

2 
1 0 NA NA NA NA NA NA 

2 0 -3401.1 767.0 792.9 3427.0 805.5 123.7% 

3 
1 0 -3793.8 707.0 841.2 3928.0 856.5 122.6% 

2 0 NA NA NA NA NA NA 

   
Total 0 Avg. 621.4 471.9 754.6 

 

257.5% 
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4.2.2. Results with non-identical objective function coefficients 

 

In this section, we present the results of performance evaluation of the model in the 

presence of non-identical objective function coefficients for the three components. In particular, 

we test our model for scenarios where one of the objective function components is significantly 

more important than others. For this purpose, we test the following objective functions for the 

model: 

Z(U): Maximize  
1 1 1

1100
d n n

ij ij i i i

i j d i

nl su x p e
 



 

     

Z(P): Maximize  
1

1

1 1

100
d n n

ij ij

i j d i

i i i np eu x l s
  





     

Z(T): Maximize  
1

1

1 1

100
d n n

ij ij

i j d i

i i i np e lx su 

   

     

While the first objective Z(U) favors utility maximization much more than the other two 

objective function components, the second and the third objectives do the same for penalty and 

tour time minimization, respectively. For illustrative purposes, and without loss of generality, we 

present the results of this experimentation only for the smallest problem instances, namely, the 

problem instances “c03d05cw1dw1PR01.txt” through “c03d05cw1dw1PR10.txt”, having 3 

clients and 5 donors with time window settings level 1. The larger problem instances take too 

much solution time and behave identically with the smaller instances. 

First, we present the summary of the results in Table 12, then we analyze performance in 

terms of each measure in detail. The results are compared in terms of solution times, as well as 

the values for the separate objectives of the model. The “time” columns list the solution times (in 

seconds) for each of the ten problem instances under each of the three objective functions, while 

“Tourtime” columns show the total time of the tour (in minutes) provided by each solution, 

“TUtil” list the value of the total utility component of the objective and “TPenalty” provide the 

total penalty for each solution. 
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Table 12 Summary of the results with non-identical objective function coefficients 

 

Utility Coefficient = 100 Penalty Coefficient = 100 Tour Time Coefficient = 100 

Problem Instance Time TourTime TUtil TPenalty Time TourTime TUtil TPenalty Time TourTime TUtil TPenalty 

c03d05cw1dw1PR01 12.4 415 128.7 75 6.0 490 128.7 0 1200.0 137 128.7 1492 

c03d05cw1dw1PR02 8.0 554 176.7 58 1.0 612 176.7 0 1102.9 119 176.7 1787 

c03d05cw1dw1PR03 14.8 547 150.3 135 6.0 547 150.3 135 1200.0 120 144 2107 

c03d05cw1dw1PR04 161.4 488 155.7 275 13.0 493 152.1 146 1200.0 143 152.1 1437 

c03d05cw1dw1PR05 27.3 386 139.8 162 0.8 548 139.8 0 1200.0 134 139.8 1034 

c03d05cw1dw1PR06 21.7 582 160.5 263 3.7 582 160.5 263 649.9 125 160.5 2699 

c03d05cw1dw1PR07 13.4 390 159.3 158 3.1 548 159.3 0 496.8 111 159.3 1234 

c03d05cw1dw1PR08 78.5 538 171.6 295 5.7 552 168 278 1200.0 126 166.2 1929 

c03d05cw1dw1PR09 31.7 411 139.5 136 0.6 547 139.5 0 1200.0 134 137.7 1279 

c03d05cw1dw1PR10 21.1 435 106.5 110 1.1 545 106.5 0 1200.0 145 98.4 1446 

average 39.0 475 148.9 166.7 4.1 546 148.1 82.2 1065.0 129 146.3 1644.4 

minimum 8.0 386 106.5 58.0 0.6 490 106.5 0.0 496.8 111 98.4 1034.0 

maximum 161.4 582 176.7 295.0 13.0 612 176.7 278.0 1200.0 145 176.7 2699.0 

 

Let us first examine the results in terms of solution times. The following graph in Figure 2 

illustrates the results visually. Time(U), Time(P) and Time(T) represent the solution times for 

models with objectives Z(U), Z(P), and Z(T), respectively. 

From the graph in Figure 2, it can be clearly seen that the more emphasis is given on the 

routing part of the objective (that is, minimization of the tour time), the more time it takes to find 

the optimal solution. One can easily observe that seven of the problem instances could not be 

solved in the 1200-second time limit with objective Z(T), while the smallest solution times are 

clearly obtained with objective Z(P), as it can also be observed from Table 12. This is mainly 

because of the fact that the computational difficulty of our integrated routing-assignment problem 

stems from the routing part. As the importance of this part grows, the difficulty grows 

dramatically. The average solution time is 1065 seconds for objective Z(P). Objective Z(U) looks 

for a feasible tour with moderate penalty values while giving emphasis on maximizing utility, 

therefore it can find an optimal solution in much shorter time than objective Z(T), in 39 seconds 

on the average. When objective Z(P) is favored, it very quickly reaches optimal solutions 

minimizing penalty by complying with the given time windows for the nodes, making feasible 

assignments with a feasible tour. The average solution time is 4.1 seconds for this objective, 

much shorter than others. 
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Figure 2 Comparison of solution times with different objective function coefficients 

 

Next, the results are analyzed based on tour time performances. The following graph in 

Figure 3 illustrates the results visually. Tour Time(U), Tour Time(P) and Tour Time(T) represent 

the tour times in the solutions for models with objectives Z(U), Z(P), and Z(T), respectively. 

Expectedly, as more emphasis is given to tour time minimization with objective Z(T), the 

best results are achieved with it (129 minutes on average) at the cost of the significant increase in 

computation times. This average value is clearly much lower than the one with objective Z(U)   

(475), or Z(P) 546. Based on the results, it seems that objective Z(U) does better than Z(P) in 

terms of this measure. This is because of the fact that, while giving a certain emphasis on utility 

maximization, objective Z(U) gives identical importance to tour time and time penalty. On the 

other hand, objective Z(P) favors penalty much more than tour time. Hence, the tour times 

obtained by objective Z(P) are worse than those by Z(U). 

PR01 PR02 PR03 PR04 PR05 PR06 PR07 PR08 PR09 PR10

Time(U) 12,4 8,0 14,8 161,4 27,3 21,7 13,4 78,5 31,7 21,1

Time(P) 6,0 1,0 6,0 13,0 0,8 3,7 3,1 5,7 0,6 1,1

Time(T) 1200,0 1102,9 1200,0 1200,0 1200,0 649,9 496,8 1200,0 1200,0 1200,0
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Figure 3 Comparison of tour times with different objective function coefficients 

 

We now investigate total utility values. The following graph in Figure 4 illustrates the 

results visually. Utility(U), Utility(P) and Utility(T) represent the utility values in the solutions 

for models with objectives Z(U), Z(P), and Z(T), respectively. 

Sensibly, as more emphasis is given to maximizing utility with, the best results are 

achieved with objective Z(U) (148.9 on average). The values with objective Z(P) and Z(T) are  

148.1 and 146.3, respectively. The utility values do not differ significantly between models, as 

there are few options of alternative assignments in this small problem setting. As the problem 

size grows, the difference between the total utility values between different objectives is expected 

to increase. Objective Z(U) seems to be a sensible objective when time violations are not crucial  

for the decision makers, since it turns out optimal solutions in small computation times, gives the 

highest utility, and does better than Z(P) in terms of tour time. 

PR01 PR02 PR03 PR04 PR05 PR06 PR07 PR08 PR09 PR10

Tour Time(U) 415 554 547 488 386 582 390 538 411 435

Tour Time(P) 490 612 547 493 548 582 548 552 547 545

Tour Time(T) 137 119 120 143 134 125 111 126 134 145
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Figure 4 Comparison of utility values with different objective function coefficients 

 

Finally, we examine the performances of the objectives in terms of total time penalty. The 

following graph in Figure 5 illustrates the results visually. Penalty(U), Penalty (P) and Penalty (T) 

represent the penalty values in the solutions. As expected, objective Z(P) performs best in terms 

of total penalty, with an average penalty value of 82.2 over all instances. Objective Z(U) follows 

with an average value of 166.7. Objective Z(T) performs much worse than the other two, with an 

average of 1644.4. Recall that with this objective, the computation times are also much worse, 

and optimal solutions cannot be achieved within the time limit for many of the instances. The 

reason why Z(U)  works better for penalty minimization than Z(T) is very similar to why it works 

better for tour time minimization than Z(P). While focusing on utility maximization, objective 

Z(U) values tour time and time penalty identically. On the other hand, objective Z(T) favors tour 

time minimization much more than penalty. Hence, the tour times obtained by objective Z(T) are 

much worse than those by Z(U). 

PR01 PR02 PR03 PR04 PR05 PR06 PR07 PR08 PR09 PR10

Utility(U) 128,7 176,7 150,3 155,7 139,8 160,5 159,3 171,6 139,5 106,5

Utility(P) 128,7 176,7 150,3 152,1 139,8 160,5 159,3 168,0 139,5 106,5

Utility(T) 128,7 176,7 144,0 152,1 139,8 160,5 159,3 166,2 137,7 98,4
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Figure 5 Comparison of total time penalty with different objective function coefficients 

 

Based on the analysis of the results in this section, it can be said that objectives Z(U) and 

Z(P) perform much better than Z(T) in terms of solution time. The overall performance of these 

objectives is also better than Z(T) in terms of the other measures analyzed above. Both of these 

objectives work very well on small problems, hence the decision makers can alter the objective 

function coefficients on a daily basis to best satisfy their priorities. Objective Z(U) can be used 

when making the best assignments is crucially important or there are lots of assignment 

alternatives to choose from. In such cases, it seems that it will perform better than Z(P) in terms 

of utility and tour time at a cost of extra computation time. On the other hand, when very quick 

solutions are needed, when the assignment alternatives are few, or when it is critical to meet the 

time window requirements of donors and clients, objective Z(P) can be very useful. Although this 

objective allows longer tour times, it can satisfy the daily needs of the donation center in very 

short computation times. Z(P) also works very well in terms of utility maximization when there 

are few assignment alternatives for each donated item. 
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4.2.3. Results with objective Z(P) for small instances 

 

Based on the results of the previous section, additional runs were made with objective 

Z(P), as this objective yields quick optima. The results are presented in Tables 13 and 14. 

Looking at the numerical results and comparing them with the ones in Tables 8 and 9, we 

can observe the following: 

 The number of instances (out of 360) for which an optimal solution was obtained 

within the time limit has increased from 76 to 269 with this objective. 

 The solution times with objective Z(P) are much less compared to the original 

objective. The overall average for solution time is around 413 seconds with Z(P), 

whereas it was  990 seconds with the identical-coefficient objective function. Note 

that the difference in solution times would be even more if a longer time limit was 

imposed, as most of the instances with the original objective were forcefully 

terminated at time 1200. 

 As a result of the above findings, the relative gap with objective Z(P)  has dropped 

to 42.8% (averaged over all instances) from 161.9%. 

 The average tour time obtained with the original objective function over all 

instances was 480.8 minutes, whereas with objective Z(P) it expectedly increased, 

and the average was obtained as 530.7 minutes. The reason for this increase was 

explained in the previous section in detail. 

 The performance of the model with objective Z(P) seems excellent in terms of the 

obtained average total utility value. Compared to the original objective function 

with an average total utility of 253.2, objective Z(P) yielded 253.7; only a very 

slight increase and therefore quite satisfactory. 

 The total time penalty averaged over all instances was around 78 minutes with the 

original objective, while it decreased to 30 minutes with objective Z(P), which is 

less than half of what it was before. 
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Table 13 Results with Z(P) regarding problem size and computation time for small instances 

Clients Donors Cwin Dwin #Columns #Rows #Nonzeroes #Nodes Time (s.) 

3 5 

1 
1 206 315 1111 10 2.8 

2 206 315 1108 10 1.3 

2 
1 206 315 1108 10 13.2 

2 206 315 1109 10 27.9 

3 
1 206 315 1110 10 4.2 

2 206 315 1109 10 10.1 

4 6 

1 
1 282 430 1559 12 7.0 

2 282 430 1560 12 60.9 

2 
1 282 430 1560 12 89.3 

2 282 430 1561 12 361.3 

3 
1 282 430 1560 12 384.8 

2 282 430 1560 12 259.7 

4 7 

1 
1 370 563 2084 14 289.9 

2 370 563 2084 14 440.2 

2 
1 370 563 2084 14 888.8 

2 370 563 2083 14 808.2 

3 
1 370 563 2084 14 1045.5 

2 370 563 2083 14 1184.7 

5 7 

1 
1 370 563 2084 14 253.9 

2 370 563 2088 14 336.2 

2 
1 370 563 2086 14 368.2 

2 370 563 2088 14 854.9 

3 
1 370 563 2087 14 998.5 

2 370 563 2089 14 877.7 

6 7 

1 
1 370 563 2093 14 189.5 

2 370 563 2093 14 389.6 

2 
1 370 563 2091 14 397.7 

2 370 563 2088 14 920.7 

3 
1 370 563 2092 14 338.1 

2 370 563 2090 14 636.5 

7 7 

1 
1 370 563 2094 14 21.5 

2 370 563 2095 14 65.5 

2 
1 370 563 2092 14 588.7 

2 370 563 2095 14 613.0 

3 
1 370 563 2093 14 569.6 

2 370 563 2096 14 568.4 

       
Avg. 413.0 
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Table 14 Solution results with Z(P) for small instances 

Clients Donors Cwin Dwin #Opt ObjVal TourTime TUtil TPenalty UB RelGap 

3 5 

1 
1 10 -8618.3 546.4 148.1 82.2 -8618.3 0.0% 

2 10 -623.2 515.3 142.1 2.5 -623.2 0.0% 

2 
1 10 -1078.1 493.6 185.6 7.7 -1078.1 0.0% 

2 10 -319.0 474.5 155.5 0.0 -319.0 0.0% 

3 
1 10 -4342.6 558.6 146.0 39.3 -4342.6 0.0% 

2 10 -1129.0 494.1 155.1 7.9 -1129.0 0.0% 

4 6 

1 
1 10 -3115.9 568.9 203.0 27.5 -3115.9 0.0% 

2 10 -3192.1 540.8 198.7 28.5 -3192.1 0.0% 

2 
1 10 -2539.1 562.5 223.4 22.0 -2539.1 0.0% 

2 8 -301.5 492.2 190.8 0.0 -270.8 16.9% 

3 
1 8 -2270.0 492.6 212.6 19.9 -2106.4 1.2% 

2 9 -288.6 475.8 187.2 0.0 -262.4 69.6% 

4 7 

1 
1 9 -4046.7 574.0 217.3 36.9 -4033.9 4.4% 

2 9 -1193.7 566.7 213.0 8.4 -1188.7 1.4% 

2 
1 3 -4693.8 564.6 220.8 43.5 -4095.6 74.0% 

2 4 -2228.1 486.4 218.3 19.6 -1899.1 64.6% 

3 
1 3 -342.6 548.4 205.8 0.0 -41.0 94.2% 

2 3 -1223.3 488.0 224.7 9.6 -825.7 93.7% 

5 7 

1 
1 9 -6440.9 536.4 255.5 61.6 -6398.7 12.3% 

2 8 -4056.9 543.7 266.8 37.8 -3515.3 4.3% 

2 
1 8 -515.8 563.6 237.8 1.9 -240.9 37.5% 

2 4 -415.3 485.9 260.6 1.9 -203.2 126.8% 

3 
1 2 -4847.7 543.1 255.4 45.6 -4346.3 115.1% 

2 5 -1286.5 545.7 249.2 9.9 -642.6 74.1% 

6 7 

1 
1 9 -5715.1 569.8 284.7 54.3 -5465.1 0.9% 

2 7 -6371.7 568.7 307.1 61.1 -5698.6 12.2% 

2 
1 9 -2013.0 563.2 320.3 17.7 -1697.0 3.6% 

2 3 -4804.6 457.0 342.5 95.6 -4316.8 207.9% 

3 
1 8 -11615.2 552.2 307.0 113.7 -11530.1 41.0% 

2 7 -660.5 533.3 322.8 4.5 -370.7 58.7% 

7 7 

1 
1 10 -8175.7 576.0 400.3 80.0 -8175.7 0.0% 

2 10 -4236.3 552.7 366.4 40.5 -4236.3 0.0% 

2 
1 6 -7826.7 511.5 404.8 77.2 -7408.3 143.9% 

2 5 -960.7 495.9 325.2 7.9 -221.9 90.4% 

3 
1 6 -2173.3 576.2 362.9 19.6 -1763.0 127.0% 

2 7 -531.5 488.1 396.6 4.4 -449.6 64.3% 

   
Total 269 Avg. 530.7 253.2 30.3 

 

42.8% 
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Based on these results, objective Z(P) can be safely recommended for daily usage at the 

donation center, as it provides very good assignments and minimizes schedule violations in terms 

of client and donor time window requests. It is also very satisfactory in terms of solution time. A 

shorter time limit can also be imposed for obtaining even quicker solutions. 

The tour time objective can be considered to have the lowest priority as the problem on 

hand includes a public service, and the humanitarian nature of the problem dictates utility 

prioritization in this respect. However, sticking to the schedule without violating the time window 

requirements is also crucial from an operational point of view, as violations may result in 

disruptions in collection, or collected but non-delivered items. Therefore, this objective may best 

suit the necessities of the problem’s environment. 

4.2.4. Results with objective Z(U) for small instances 

 

Although the model with objective Z(U) provides solution in longer times than with Z(P), 

it seems to be the most appropriate from a humanitarian perspective For this reason, the model 

was executed with this objective over all 360 small instances. The results are presented in Tables 

15 and 16. 

Comparing the results with the ones in Tables 8, 9, 13 and 14, we can observe the 

following: 

 The number of instances (out of 360) for which an optimal solution was obtained 

within the time limit has increased from 101 with this objective, which is between 

the values of 76 for the original objective and 269 for Z(P). 

 The solution times are much longer than those with objective Z(P), and similar to 

the ones with the original objective. 

 Although optimal solutions are obtained only for a third of the instances, the 

relative gaps found in 1200 seconds are extremely low compared to the previous 

objectives. Recall that the relative gap (averaged over all instances) with objective 

Z(P) was 42.8%, and 161.9% with the original objective. With objective Z(U), this 

gap dropped to 1.1%, which provides a significant result. This small average gap 
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partially results from the fact that the objective function values and the upper 

bounds are large positive numbers as a result of the large coefficient of utility in 

the objective function. The gap values drop significantly due to this scaling. 

 As the relative gap values are very small, we can conjecture that many of the 

incumbent solutions found in twenty minutes may also be optimal. This conjecture 

can be verified by increasing the time limit. 

 The average tour time was 480.8 minutes with the original objective function and 

530.7 minutes with objective Z(P). As it was explained in Section 4.2.2, objective 

Z(U) performs much better than Z(P) in this respect, yielding an overall average of 

482.1 minutes, which is very close to the original value. 

 The performance of the model with objective Z(U) is expectedly the best among 

all objectives in terms of average total utility, providing an overall average of 

255.3. Recall that the original objective function yielded an average total utility of 

253.2, while objective Z(P) yielded 253.7. We can once again conclude that Z(P) 

is also satisfactory in this regard. 

 The total time penalty averaged over all instances was around 93.7 minutes under 

objective Z(U). It was 78 minutes with the original objective, while it decreased to 

30 minutes with objective Z(P). Hence, we can conclude that the higher 

performance of objective Z(U) in total utility comes with a cost of higher 

deviations from the time window requirements compared to the other objectives. 

Based on these results, objective Z(U) can also be recommended for daily usage at the 

donation center, as the relative gap values are so small. The model seems to work very well with 

this objective in terms of utility and tour time values. With even a shorter solution time limit such 

as 10 or even 5 minutes, the model can provide excellent near-optimal results. 

Hence, based on the results from this and the previous section, the decision makers at the 

donation center can benefit from both objectives, and change them according to their needs and 

strategies. Other coefficient combinations can also be tried for balancing the three components of 

the objective.  
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Table 15 Results with Z(U) regarding problem size and computation time for small instances 

Clients Donors Cwin Dwin #Columns #Rows #Nonzeroes #Nodes Time (s.) 

3 5 

1 
1 206 315 1111 10 26.7 

2 206 315 1108 10 15.0 

2 
1 206 315 1108 10 43.6 

2 206 315 1109 10 55.4 

3 
1 206 315 1110 10 28.6 

2 206 315 1109 10 56.8 

4 6 

1 
1 282 430 1559 12 247.2 

2 282 430 1560 12 822.0 

2 
1 282 430 1561 12 865.5 

2 282 430 1561 12 994.5 

3 
1 282 430 1560 12 796.8 

2 282 430 1560 12 1018.1 

4 7 

1 
1 370 563 2084 14 1200.0 

2 370 563 2084 14 1200.0 

2 
1 370 563 2084 14 1200.0 

2 370 563 2083 14 1200.0 

3 
1 370 563 2084 14 1200.0 

2 370 563 2083 14 1200.0 

5 7 

1 
1 370 563 2084 14 1188.7 

2 370 563 2088 14 1200.0 

2 
1 370 563 2086 14 1200.0 

2 370 563 2087 14 1200.0 

3 
1 370 563 2087 14 1200.0 

2 370 563 2089 14 1200.0 

6 7 

1 
1 370 563 2093 14 1200.0 

2 370 563 2093 14 1200.0 

2 
1 370 563 2091 14 1200.0 

2 370 563 2088 14 1200.0 

3 
1 370 563 2091 14 1200.0 

2 370 563 2090 14 1200.0 

7 7 

1 
1 370 563 2094 14 1104.9 

2 370 563 2095 14 1153.6 

2 
1 370 563 2092 14 1200.0 

2 370 563 2094 14 1200.0 

3 
1 370 563 2093 14 1200.0 

2 370 563 2096 14 1200.0 

       
Avg. 933.8 
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Table 16 Solution results with Z(U) for small instances 

Clients Donors Cwin Dwin #Opt ObjVal TourTime TUtil TPenalty UB RelGap 

3 5 

1 
1 10 14244.7 474.6 148.9 166.7 14244.7 0.0% 

2 10 13730.7 401.2 142.5 118.1 13730.7 0.0% 

2 
1 10 18169.6 381.5 186.8 129.9 18169.6 0.0% 

2 10 15179.8 399.6 156.6 83.6 15179.8 0.0% 

3 
1 10 14039.0 460.3 146.4 137.7 14039.0 0.0% 

2 10 15042.4 414.6 155.6 104.0 15042.4 0.0% 

4 6 

1 
1 10 19702.6 531.3 203.0 65.1 19702.6 0.0% 

2 6 19351.4 487.6 199.4 100.0 19392.9 0.3% 

2 
1 5 20851.0 478.6 214.2 88.4 20917.6 0.4% 

2 4 18675.0 440.1 191.7 58.9 18754.1 0.4% 

3 
1 8 20792.0 460.8 213.1 54.2 20820.7 0.1% 

2 5 18340.8 436.5 188.2 42.7 18386.1 0.3% 

4 7 

1 
1 0 21342.5 541.5 220.0 113.0 21847.9 2.5% 

2 0 20822.4 553.7 214.1 35.9 21260.2 2.1% 

2 
1 0 21644.8 511.2 222.7 111.0 22177.4 2.5% 

2 0 21351.6 455.9 218.6 51.5 21803.4 2.2% 

3 
1 0 20108.8 523.6 206.7 32.6 20588.4 2.5% 

2 0 21496.5 464.1 220.3 69.4 21958.1 2.2% 

5 7 

1 
1 1 25158.3 496.2 258.4 180.5 25532.2 1.6% 

2 0 26131.6 516.6 267.6 110.8 26517.7 1.5% 

2 
1 0 23390.1 487.9 239.9 109.0 23833.0 2.0% 

2 0 26223.1 443.7 267.1 47.2 26649.8 1.7% 

3 
1 0 25022.5 511.3 256.1 76.2 25519.1 2.0% 

2 0 25295.1 463.4 258.3 70.5 25752.5 1.9% 

6 7 

1 
1 0 27962.1 566.1 286.6 127.8 28279.5 1.2% 

2 0 30210.7 561.5 308.5 76.8 30431.2 0.7% 

2 
1 0 31225.4 471.1 318.2 127.5 31657.2 1.4% 

2 0 33926.5 442.3 344.4 74.2 34287.1 1.1% 

3 
1 0 30427.5 493.5 310.8 162.0 30874.5 1.5% 

2 0 31857.0 492.8 324.1 62.2 32279.0 1.4% 

7 7 

1 
1 1 39481.5 554.9 401.7 134.6 39677.3 0.5% 

2 1 36147.6 544.4 367.9 95.0 36381.5 0.7% 

2 
1 0 40140.0 453.9 407.7 177.1 40555.1 1.1% 

2 0 34858.8 451.7 353.6 48.5 35224.8 1.1% 

3 
1 0 36589.8 544.0 371.9 58.2 37085.1 1.4% 

2 0 39323.8 444.2 398.4 73.0 39762.9 1.1% 

   
Total 101 Avg. 482.1 255.3 93.7 

 

1.1% 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this thesis, we have considered a real-life assignment and routing problem at a donation 

center. A mixed integer pickup and delivery model with soft time windows and vehicle capacity 

restriction was proposed for solving the associated assignment/routing problem. 

Parameter combinations were created to reflect the problem environment regarding clients 

and items’ attributes and the levels, the size of the problem network (number of donors and 

clients), and service time preferences of donors and clients. An experiment design was made 

including 72 parameter combinations. Ten problem instances were generated from each 

combination, summing up to 720 instances. In order to test the limits of the proposed model, the 

generated instances were solved using GAMS and the results were presented in detail for small 

and large instances of the problem. Different versions of the model were tested based on the 

weights of the three components in the objective function value, which are total utility, total 

penalty, and total tour time. In the first version, identical objective function coefficients were 

assumed for all components. The second and third versions involved penalty prioritization and 

utility prioritization. A 1200-second solution time limit was imposed and the corresponding 

performance of the model was analyzed. 

With the identical-weight objective function, the model yielded optimal solutions for all 

instances with up to 6 donors within the given time limit, whereas none of the large problem 

instances could be solved optimally within this time. Next, on a small set of problem instances, 

different objective functions were tried. It was observed that giving emphasis to tour time 
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resulted in much longer solution times, while best results in solution time was obtained with the 

penalty-prioritizing objective. 

Based on this result, additional runs were made with the penalty-prioritizing objective for 

all of the 360 small instances. From the results, it can be deducted safely that this objective can 

be recommended for practical use at the donation center, as it performs very well in terms of 

good assignments, and it minimizes client and donor time schedule violations for operational 

concerns. When the experiment was repeated for the utility-prioritizing objective, although the 

number of optimal solutions was less and the solution times were much longer, the overall 

relative gap values decreased drastically, down to approximately 1%. Consequently, this 

objective can also be useful when the focus is on highest-utility matching and tour time. 

As the problem studied in this thesis is NP-hard, although the developed model can find 

optimal solutions for the defined assignment/routing problem, the solution times are clearly 

unacceptable for large problem instances. For such problems, different procedures may be needed 

for obtaining satisfactory solutions. As a future work, we propose a decomposition of the 

problem in the following manner. The assignment component of the problem can be solved easily 

utilizing any commercial optimization software or by the Hungarian algorithm in O(n
3
) time. 

Considering this feature, the problem can be decomposed into its two natural parts while 

developing the first three of our heuristics; namely, the assignment and the routing components. 

While the assignment part can be solved optimally using the model explained below, different 

heuristic approaches can be developed for the routing component of the problem. 

The model for the assignment part can be formulated as a basic assignment model with a 

utility maximization objective. After donor/client pairings are obtained from this model, 

heuristics can be executed for obtaining the daily route of the single vehicle. The parameters and 

the decision variable of the assignment model can be defined as follows: 

i :  indices for the donated items that will be collected in working day: 

j :  indices for the clients that will be served in the working day: 

uij :  the utility of assigning item i to client j defined for i and j = 1, …, n,
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xij:    1 if item at node i is assigned to node j, 0 otherwise. 

 

Similar to our model in Chapter 3, each request of a client can be assumed as a separate 

record, as it may receive different scores from the criteria according to the status of the item 

requested. The utility values are not defined for item-depot assignments, and are therefore not 

included in the objective function. The corresponding assignment model becomes: 

Maximize 
1 1

n n

ij ij

i j

u x
 

  

subject to:
 

1

1 1,...,

n

ij

j

x i n


   

1

1 1,  , 

n

ij

i

x j n


    

 0,1 ,ijx i j   

 

The utility maximizing objective function considers all daily assignments. The first 

constraint set ensures that each item must be assigned to either a client node or the depot, 

whereas the second assures that all clients that are scheduled for the particular working day will 

be assigned an item. Once this model is solved, donated item/recipient pairings are formed. After 

this stage, one of the following simple heuristic approaches can be executed to find a route for 

distributing the items to their respective recipients. 

Nearest-neighbor-based heuristic (NNH): 

In this procedure, the typical nearest neighbor idea for the TSP is modified through considering 

capacity restriction and the assigned node pairs, while penalizing time window violations. With 

this approach, the vehicle starts its tour from the depot, and visits the nearest feasible node. 

Feasibility is defined by remaining capacity of the vehicle for donor nodes. If a client node is the 

nearest node in sequence, the vehicle can only visit that node if it has already visited its assigned 
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donor. The penalties are updated as the tour is formed, and the algorithm stops once all nodes are 

visited. 

The heuristic is very simple to apply as it visits the nearest neighbor of the current node 

without considering time window preferences. However, it may tend to have long return times for 

the vehicle. 

Nearest-time-interval-based heuristic (NTH): 

This procedure applies the nearest neighbor logic to the time windows of the donors and clients. 

Therefore, it prioritizes time windows while considering capacity restriction. Putting all unvisited 

nodes in a list in ascending order of their time window start times, the vehicle starts its tour from 

the depot and visits nodes in this order, again considering feasibility. The structure of NTH is 

very similar to NNH, and is also simply applicable. It visits the nodes in the order of their time 

preferences without explicitly considering travel times; hence the principal motive is to minimize 

the penalty segment of the objective function. 

Other simple heuristics based on insertion or savings can also be adapted for the routing 

component of the problem. Another future work direction can be converting the earliness, 

tardiness and tour time computed in each model to utility values, thereby subtracting these from 

the total utility of assignments to form a single utility maximization objective. 

Our problem can be extended/adapted to be used in diverse contexts involving public 

service or disaster relief situations. The model developed in this study is intended as a basis for 

such extensions involving assignment and routing decisions simultaneously. Humanitarian 

problems require urgent attention by the authorities most of the time, and should be solved 

effectively and efficiently. Therefore, coming up with efficient decomposition or meta-heuristic 

approaches to this problem or its extensions can be worth studying to solve larger instances. 

Another future work may involve considering a multi-objective decision making 

perspective. This will require obtaining pareto-optimal solutions to this multi-faceted problem. 

The static problem defined in this study can also be converted into a dynamic one by including 

the requests coming during the day into the model. This case will require an online solution 

approach. 
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APPENDICES 

 

APPENDIX 1 – An input file example. 

 

INPUT FILE NAME: c03d05cw1dw1PR01.txt 

3 5 100 12 

75 75 25 25 4 3 

1 40 32 3 6 2 1 2 0 2 

2 32 62 6 9 3 1 1 0 3 

3 26 3 6 9 2 2 2 0 3 

1 36 66 2 4 2 30 2 20 

2 36 75 4 6 3 8 3 10 

3 25 25 0 12 2 30 3 20 

4 33 19 5 7 2 30 1 20 

5 53 11 8 10 4 10 1 10 

Depot-Donor distribution for client requests: 50-50 

4 item types used: 

A-Appliances 

F-Furniture 

C-Clothing 

T-House textile 
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APPENDIX 2– Legend for input files. 

 

File Name: “c05d10cw1dw1s1PR01.txt”  means 5 clients, 10 donors, client time window level 1, donor time window level 1, item type size level 

1, instance no 1. 

client time window levels: 1 (3 hrs.), 2 (6 hrs.), 3 (3,6,9 or 12 hrs.) 

Donor time window levels: 1 (2 hrs.), 2 (3 hrs.) 

4 item types used: 

A-Appliances 

F-Furniture 

C-Clothing 

T-House textile 

Item sizes: fixed size: 15 x 30 x 8 x 10 

Depot-Donor distribution for client requests: 50% (Probability that each of the 5 donors generated for the 5 clients is depot) 

#Clients #Donors Vehicle capacity Planning horizon (hrs.) 

5  10  100   12 

Gridwidth GridHeight DepotX-Coord DepotY-Coord #itemTypes ClientAttributeScale 

75  75  25  25  4  3 

Client CoorX CoorY TStart Tend Type IncLevel HHLevel AgeLevel ServiceLevel 

1 40 32 3   6   2 1   2  0  2 

2 32 62 6   9   3 1   1  0  3 

3 26 3 6   9   2 2   2  0  3 

4 1 53 6   9   2 2   2  0  3 

5 53 28 3   6   3 1   3  0  3 

Donor X Y TStart TEnd Type Size AgeLevel ServiceTime (min.) 

1 36 66 2 4 2 30 2  20 

2 36 75 4 6 3 8 3  10 

3 25 25 0 12 2 30 3  20 

4 25 25 0 12 2 30 3  20 

5 16 33 4 6 3 8 2  10 

6 33 19 5 7 2 30 1  20 

7 53 11 8 10 4 10 1  10 

8 12 25 10 12 2 30 2  20 

9 13 2 8 10 4 10 1  10 

10 22 36 8 10 4 10 3  10 
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APPENDIX 3 – An output file example. 

 

File Name: c05d10cw1dw1s1PR01.gout1 

 

1 1 

-361.30 532.5250 1795796 

181 314 1087 

10 5 108 

411 

1 8 61.00 

2 7 40.60 

3 6 27.10 

4 10 0.00 

5 9 0.00 

0 3 0 0 0 0 0 30 

1 4 120 25 300 30 60 30 

2 7 342 12 360 8 68 -8 

3 1 0 26 120 30 30 30 

4 6 300 22 322 30 90 -30 

5 10 401 10 411 10 40 -10 

6 2 322 20 342 -30 60 8 

7 8 360 22 382 -8 60 -30 

8 5 382 19 401 -30 30 10 

9 11 411 0 411 -30 0 0 

10 9 411 0 411 -10 30 -30 
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APPENDIX 4 – Legend for output files. 

 

File Name: c05d10cw1dw1s1PR01.gout1 

 

1 (model status-optimal) 1 (solver status-optimal) --> Look at GAMS user guide for detailed explanations (MODELSTATUS: 1 

OPTIMAL, 4 INFEASIBLE, 8 INTEGER SOLUTION, 14 NO SOLUTION RETURNED – SOLVERSTATUS: 1 NORMAL COMPLETION, 2 

ITERATION INTERRUPT, 3 RESOURCE INTERRUPT) 

-361.30 (obj value) 532.5250 (time in seconds) 1795796 (# of nodes)  -362 Estimated Upper bound 0.00 Relative Gap (Upper Bound 
- obj value / obj value) 

181 (# of columns) 314 (# of rows) 1087 (# of nonzero entries) 

10 (2*donors) 5 (donors) 108 (total of donated item volumes including depot) 

411 (tour time) 

Rows for donors client assignments: 

1 8 61.00 (donor 1 assigned to client 8 with utility 61) 

2 7 40.60 

3 6 27.10 

4 10 0.00 

5 9 0.00 

 

Rows for route, including source node: 

0 3 0 0 0 0 0 30 (source --> donor 3, 0 start time, 0 service time, 0 start time at 

donor 3, 0 item volume at source, 0 load at source, 30 item volume at donor node 3 - donor node 3 is depot, look from input file) 

1 4 120 25 300 30 60 30 (donor 1 --> donor 4, 120 start time, 25 service+travel time, 300 

start time at donor 4, 30 item volume at donor 1, 60 load at donor 1, 30 item volume at donor node 4) 

2 7 342 12 360 8 68 -8 

3 1 0 26 120 30 30 30 

4 6 300 22 322 30 90 -30 

5 10 401 10 411 10 40 -10 

6 2 322 20 342 -30 60 8 

7 8 360 22 382 -8 60 -30 

8 5 382 19 401 -30 30 10 

9 11 411 0 411 -30 0 0 

10 9 411 0 411 -10 30 -30 
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APPENDIX 5 – GAMS code for the model. 

 

$title INTEGRATED ROUTING ASSIGNMENT MODEL WITH SOFT TIME CONSTRAINTS - 1-MIP 

SETS 

k set for the node / 0*11 / 

i(k)    / 1*10 /; 

 

alias(i,j,h); 

alias(k,p,q); 

 

SCALARS 

vCap Vehicle capacity / 100 / 

HorizonLength Total length of the time horizon (big M) / 1440 / 

d Number of donors / 5 / 

c Number of clients / 3 / 

n Number of nodes (2d) / 10 /; 

 

Parameter dist(i,j) travel times between nodes 

/1.1 = 0, 1.2 = 1, 1.3 = 6, 1.4 = 5, 1.5 = 8, 1.6 = 4, 1.7 = 1, 1.8 = 8, 1.9 = 6, 1.10 = 6 

2.1 = 1, 2.2 = 0, 2.3 = 7, 2.4 = 6, 2.5 = 9, 2.6 = 5, 2.7 = 2, 2.8 = 9, 2.9 = 7, 2.10 = 7 

3.1 = 6, 3.2 = 7, 3.3 = 0, 3.4 = 2, 3.5 = 5, 3.6 = 3, 3.7 = 5, 3.8 = 3, 3.9 = 0, 3.10 = 0 

4.1 = 5, 4.2 = 6, 4.3 = 2, 4.4 = 0, 4.5 = 3, 4.6 = 2, 4.7 = 5, 4.8 = 3, 4.9 = 2, 4.10 = 2 

5.1 = 8, 5.2 = 9, 5.3 = 5, 5.4 = 3, 5.5 = 0, 5.6 = 4, 5.7 = 8, 5.8 = 4, 5.9 = 5, 5.10 = 5 

6.1 = 4, 6.2 = 5, 6.3 = 3, 6.4 = 2, 6.5 = 4, 6.6 = 0, 6.7 = 4, 6.8 = 5, 6.9 = 3, 6.10 = 3 

7.1 = 1, 7.2 = 2, 7.3 = 5, 7.4 = 5, 7.5 = 8, 7.6 = 4, 7.7 = 0, 7.8 = 7, 7.9 = 5, 7.10 = 5 

8.1 = 8, 8.2 = 9, 8.3 = 3, 8.4 = 3, 8.5 = 4, 8.6 = 5, 8.7 = 7, 8.8 = 0, 8.9 = 3, 8.10 = 3 

9.1 = 6, 9.2 = 7, 9.3 = 0, 9.4 = 2, 9.5 = 5, 9.6 = 3, 9.7 = 5, 9.8 = 3, 9.9 = 0, 9.10 = 0 

10.1 = 6, 10.2 = 7, 10.3 = 0, 10.4 = 2, 10.5 = 5, 10.6 = 3, 10.7 = 5, 10.8 = 3, 10.9 = 0, 10.10 = 0 

/; 

Parameter t(p,q) process times including item service times 

/0.1 = 6, 0.2 = 7, 0.3 = 0, 0.4 = 2, 0.5 = 5, 0.6 = 3, 0.7 = 5, 0.8 = 3, 0.9 = 0, 0.10 = 0, 0.11 = 0 



 
 
 

59 
 

1.1 = 0, 1.2 = 16, 1.3 = 26, 1.4 = 25, 1.5 = 23, 1.6 = 24, 1.7 = 16, 1.8 = 28, 1.9 = 16, 1.10 = 16, 1.11 = 6 

2.1 = 16, 2.2 = 0, 2.3 = 22, 2.4 = 21, 2.5 = 19, 2.6 = 20, 2.7 = 12, 2.8 = 24, 2.9 = 12, 2.10 = 12, 2.11 = 7 

3.1 = 26, 3.2 = 22, 3.3 = 0, 3.4 = 22, 3.5 = 20, 3.6 = 23, 3.7 = 20, 3.8 = 23, 3.9 = 10, 3.10 = 10, 3.11 = 0 

4.1 = 25, 4.2 = 21, 4.3 = 22, 4.4 = 0, 4.5 = 18, 4.6 = 22, 4.7 = 20, 4.8 = 23, 4.9 = 12, 4.10 = 12, 4.11 = 2 

5.1 = 23, 5.2 = 19, 5.3 = 20, 5.4 = 18, 5.5 = 0, 5.6 = 19, 5.7 = 18, 5.8 = 19, 5.9 = 10, 5.10 = 10, 5.11 = 5 

6.1 = 24, 6.2 = 20, 6.3 = 23, 6.4 = 22, 6.5 = 19, 6.6 = 0, 6.7 = 19, 6.8 = 25, 6.9 = 13, 6.10 = 13, 6.11 = 3 

7.1 = 16, 7.2 = 12, 7.3 = 20, 7.4 = 20, 7.5 = 18, 7.6 = 19, 7.7 = 0, 7.8 = 22, 7.9 = 10, 7.10 = 10, 7.11 = 5 

8.1 = 28, 8.2 = 24, 8.3 = 23, 8.4 = 23, 8.5 = 19, 8.6 = 25, 8.7 = 22, 8.8 = 0, 8.9 = 13, 8.10 = 13, 8.11 = 3 

9.1 = 16, 9.2 = 12, 9.3 = 10, 9.4 = 12, 9.5 = 10, 9.6 = 13, 9.7 = 10, 9.8 = 13, 9.9 = 0, 9.10 = 0, 9.11 = 0 

10.1 = 16, 10.2 = 12, 10.3 = 10, 10.4 = 12, 10.5 = 10, 10.6 = 13, 10.7 = 10, 10.8 = 13, 10.9 = 0, 10.10 = 0, 10.11 = 0 

/; 

 

Parameter utility(i,j) utility matrix entries 

/1.6 = 25.30, 1.8 = 61.00 

2.7 = 40.60 

3.6 = 27.10, 3.8 = 59.20 

4.6 = 24.40, 4.8 = 56.50 

/; 

 

Parameter v(p) volume of node p 

/0 0, 1 30, 2 8, 3 30, 4 30, 5 10, 6 -30, 7 -8, 8 -30, 9 -30, 10 -10, 11 0 

/; 

 

Parameter a(i) lower time specification of node i 

/1 120, 2 240, 3 0, 4 300, 5 480, 6 180, 7 360, 8 360, 9 0, 10 0 

/; 

 

Parameter b(i) upper time specification of node i 

/1 240, 2 360, 3 1440, 4 420, 5 600, 6 360, 7 540, 8 540, 9 1440, 10 1440 

/; 
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Parameter penalty(i) penalty for node i 

/1 1.0, 2 1.0, 3 0.0, 4 1.0, 5 1.0, 6 1.0, 7 1.0, 8 1.0, 9 0.0, 10 0.0 

/; 

 

VARIABLES 

obj objective function value 

 

BINARY VARIABLES 

x(i,j) 1 if item i is assigned to need j 

y(p,q) 1 if node q follows node p in the tour : p-->q 

 

 

POSITIVE VARIABLE 

s(p) starting time of service at node p 

l(p) load of vehicle after visiting node p 

EP(i) amount of time that node i is served early 

LP(i) amount of time that node i is served late 

; 

 

EQUATIONS 

OBJECTIVE maximize total utility - time penalties - tour time 

c1_assign(i) each item must be assigned to either a client or the depot 

c2_assign(j) a client must be assigned to a donor (including depot items) 

c1_2_exclude_assign incompatible items excluded 

c3_source_donor 

c4_source_client 

c5_donor_sink 

c6_client_sink 

c7_flow(i) 

c8_flow(j) 

c9_vCap(i)  handle the capacity constraint of the vehicle 
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c10_loadSourceSink(p) vehicle begins and ends the tour empty 

c11_earliness(i) calculate earliness of each node 

c12_lateness(i) calculate lateness of each node 

c13_RouteByAssign(i,j) the service start time for each node due to assignment variables 

c14_TimeByRouting(p,q) the service start time for each node due to routing variables 

c15_LoadByRouting(p,q) load at each node due to routing variables 

; 

 

OBJECTIVE.. obj=e=sum((i,j)$(ord(i) <= d and ord(j) >= d+1),utility(i,j)*x(i,j)) - sum(i, penalty(i)*(EP(i)+LP(i)))- sum(p$(ord(p)>n+1), s(p)); 

c1_assign(i)$(ord(i) <= d).. sum(j$(((ord(j) > d)and(ord(j) <= d+c)and(utility(i,j)>0))or(ord(j)>d+c)), x(i,j)) =e= 1; 

c1_2_exclude_assign.. sum((i,j)$((ord(i) <= d) and (ord(j) <= d+c) and (utility(i,j)=0)), x(i,j)) =e= 0; 

c2_assign(j)$(ord(j) >= d+1).. sum(i$(ord(i) <= d), x(i,j)) =e= 1; 

c3_source_donor..  sum(p$(ord(p) <= d+1 and ord(p) >= 2), y("0",p)) =e= 1; 

c4_source_client..  sum(p$(ord(p) >= d+2), y("0",p)) =e= 0; 

c5_donor_sink..  sum((p,k)$(ord(p) <= d+1 and ord(p) >= 2 and ord(k)>n+1), y(p,k)) =e= 0; 

c6_client_sink..  sum((p,k)$(ord(p) >= d+2 and ord(p) <= n+1 and ord(k)>n+1), y(p,k)) =e= 1; 

c7_flow(i).. sum(k$(ord(i)+1<>ord(k) and ord(k)>1),y(i,k)) =e= 1; 

c8_flow(j).. sum(k$(ord(k)-1<>ord(j) and ord(k)<=n+1),y(k,j)) =e= 1; 

c9_vCap(i).. l(i) =l= vCap; 

c10_loadSourceSink(p)$(ord(p)=1 or ord(p)>n+1).. l(p) =e= 0; 

c11_earliness(i).. EP(i) =g= a(i) - s(i); 

c12_lateness(i).. LP(i) =g= s(i) - b(i); 

c13_RouteByAssign(i,j)$(ord(i) <= d and ord(j) >= d+1).. s(j) =g= s(i) + smin(h, dist(i,h)) - HorizonLength*(1-x(i,j)); 

c14_TimeByRouting(p,q)$(ord(p)<>ord(q) and ord(p) <= n+1  and ord(q) >= 2).. s(q) =g= s(p) + t(p,q)- HorizonLength*(1-y(p,q)); 

c15_LoadByRouting(p,q)$(ord(p)<>ord(q) and ord(p) <= n+1  and ord(q) >= 2).. l(q) =g= l(p) + v(q)- 2*vCap*(1-y(p,q)); 

 

MODEL IntegratedAssignment /ALL/; 

option optcr = 0, optca = 0, iterlim = 99999999; 

option reslim = 1200; 

SOLVE IntegratedAssignment USING MIP MAXIMIZING obj; 

execerror=0; 



 
 
 

62 
 

file textOutput /c03d05cw1dw1PR01.gout1/; 

textOutput.pc=6; 

put textOutput, IntegratedAssignment.modelstat:0:0, IntegratedAssignment.solvestat:0:0 /; 

put IntegratedAssignment.objVal:0:2, IntegratedAssignment.resUsd:0:4, IntegratedAssignment.nodUsd:0:0, IntegratedAssignment.objEst:0:2 /; 

put IntegratedAssignment.numVar:0:0, IntegratedAssignment.numEqu:0:0, IntegratedAssignment.numNZ:0:0 /; 

put card(i):0:0, d:0:0, sum(i$(ord(i)<=d), v(i)):0:0 /; 

loop(p $ (ord(p) > n+1), put s.l(p):0:0 /); 

loop(i $ (ord(i)<=d), loop(j $ x.l(i,j), put ord(i):0:0, ord(j):4:0, utility(i,j):0:2 /;) 

); 

loop(p $ (ord(p)<=n+1), loop(q $ y.l(p,q), put (ord(p)-1):0:0, (ord(q)-1):4:0, 

s.l(p):0:0, t(p,q):0:0, s.l(q):0:0, v(p):0:0, l.l(p):0:0, v(q):0:0 /;) 

); 

 

 


