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ABSTRACT

APPLICATION OF GILMORE-GOMORY ALGORITHM TO MULTI WIDTH
CUTTING STOCK PROBLEMS

Ustliner, Tugce

M.Sc. in Intelligent Engineering Systems
Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Arslan ORNEK

May 2015, 103 pages

Cutting Stock Problem is one of the most important problem for the paper
factories. Main objective of the factories, making best cutting plan combining
demands which have different widths and quantities. After the cutting process,
it is very important that choosing rolls which will go to cutting process
considering using number of rolls. For this reason, combining of demands
should be considered. The objective is choosing the right number of roll
which will go to cutting process while combining demands and minimizing the
trim loss which means that minimizing number of rolls. In the literature, there
are a lot of researches and models are applied and improved. In this thesis,
aim is minimizing using number of rolls also generating cutting pattern
considering different roll widths. A mathematical modeling is developed and it
is studied with using real data and using different roll widths from the paper
factory. Also, improving and applying Gomory Algorithm the results in terms

of performance measure are compared and discussed throughly.



Keywords: cutting stock problem; heuristic; roll; trim minimization.



Oz

COK ENLI KESME PROBLEMLERINE GILMORE-GOMORY
ALGORITMASININ UYGULANMASI

Ustiiner, Tugge

Akill MUhendislik Sistemleri Yliksek Lisans Programi

Fen Bilimleri Enstitisi

Tez Danismani: Prof. Dr. Arslan ORNEK

Mayis 2015, 103 sayfa

Kesim problemi kagit fabrikalarinin en o6nemli problemlerinden biridir.
isletmelerin temel amaci; farkli en ve adetlerde gelen siparislerin kombinesi
yapilarak en uygun sekilde kesim planlarini yapmaktir. Kesim isleminden
sonra kalan fire géz énunde bulunduruldugunda kesim islemine girecek olan
bobin sayisi segimi ¢ok onemlidir. Bu sebepten dolayl sipariglerin
kombinelerinin nasil yapildigi da dikkate alinmalidir. Amac¢ olugabilecek en
az fireyle yani kullanilabilecek en az bobin sayisiyla dogru siparigleri kombin
yaparak Uretime girecek en dogru bobin sayisini se¢mektir. Literature
bakildiginda bu alanda birgok uygulama ve model geligtiriimistir. Bu tezde
kesilecek bobin sayisi minimizasyonu amaglanarak farkli bobin enleri dikkate
alinarak kesme esleri olusturulmustur.Problemin matematiksel modeli
olusturulup kagit fabrikasindan alinan gergek veri setleri ve farkli bobin enleri
ile galistirlmistir. Ayrica Gomory Algoritmasi gelistirilip uygulanarak sonuclar
performans olgutd Uzerinden karsilastinlimis ve ayrintili - bir sekilde

tartigiimigtir.



Anahtar Kelimeler: kesme problemi; sezgisel; bobin; fire minimizasyonu.
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CHAPTER 1

INTRODUCTION

The Cutting Stock Problem which is called in the literature 'CSP' is
used in many different industries. Paper, glass, steel, wood and plastic
popular examples are in these areas for CSP.

CSP is one of the classical problem example and first appliance in the
field of operations research methods. The problem is finding the best solution
way of cutting pattern items from using stock rolls such that trim loss and
used number of rolls are minimized and total demand is satisfied. The aim of
process is cutting large objects to convert them to smaller objects. The main
purpose of CSP is minimizing trim loss which is number of rolls while cutting
process in the thesis.

CSP is an integer linear programming problem, and solving this
problem is not easy as known. In order to save profit annually in the factories,
trim loss should be minimized deciding true stock roll which will go to cutting
process. Because affects amount of the trim loss are very important for the
industry profits.

Generally there are three different groups for solving methods. These
different groups are; Algorithmic methods, Innovative methods and
Metaheuristic methods.

Algorithmic methods contribute an optimal solution, despite of
calculating complexity. But in big problems which have more and complex
data, run time consuming occurs. That is why the complete algorithmic

methods were infrequently used in the past.



In Innovative methods, generally answer is not optimum necessarily
however give the response quickly. The innovative methods can be one of
the ideal technigues, because their answers are close to the optimum
responses. These methods usually are applied for special problems.
Mentioned method is not applied as a general method because of depending
private conditions excessively.

However various innovative solutions can be suggested in real world
applications so as to solve the CSP but applying them is not helpful in similar
problems due to the special characteristics of such problems .

In metaheuristic methods, the solution process is generally advised for
lower levels, and contrary to traditional metaheuristic methods, they are not
limited to local optimum conditions. The information about the CSP will be

given in Cutting Stock Problem Chapter in detail.

1.1. Scope of the Master Thesis

In this study, we focus on minimizing the number of cutting rolls which means
that trim loss, determining the cutting patterns which should be satisfied the
demand.

In the factory, paper is bought from the out of Turkey and it is known
that it is very expensive raw material in the world especially for the box and
sheets factories. This paper comes to business such as rolls. According to
demand these rolls should be cut. For this reason deciding cutting plan and
generating cutting patterns are so important for the production cost of the
factory. So, in order to decrease these cost, two mathematical models are
improved. In the first model, all the cutting patterns are generated. In the
second model, Gomory Model was rebuilded according to different roll widths
and solved in order to find optimal solution. Because loss means that extra
cost for the business. In order to decrease the extra cost and minimize the
production cost, combination of the cutting patterns should be occured and

processed effectively.



Our scope is minimizing amount of rolls in cutting process. A
mathematical model is develop and solved in Optimization Programming
Language, CPLEX. Decreasing the cutting rolls optimally, Gomory Algorithm
Is improved and applied according to our problem using different roll widths
and defined it's steps in order to solve heuristically. The objective of the
problem is minimizing the number of cutting rolls while the cutting process,
satisfying demand, generating and assigning cutting pattern to the roll
considering different roll width. The main inputs are demands, widths of rolls.

The remainder of this thesis is organized as follows. Chapter 2
intorduces a review of the literature on related previous work about cutting
stock, mathematical models and algorithms which were used to solve this
kind of problem. Chapter 3 introduces what is the cutting stock problem, the
main objectives, description of ideas, forms of CSP. In Chapter 4 CSP and
GA relationship is discussed. Problem definiton is explained in Chapter 6.
Mathematical model and it's solution are defined in Chapter 8.

In Chapter 5, Gomory Algorithm which is a metaheuristic method is

developed for the CSP and lastly, conclusion is written in Chapter 11.



CHAPTER 2

LITERATURE REVIEW

There are many various excercises and works in literature on different
aspects of Cutting Stock Problem. The relevant works were summarized in
this chapter.

Cutting Stock Problem focuses on minimimum wastage or scrap
criterias with one or two dimensional stock according to customer demands.
Cutting stock and packing problems appear in many industrial settings where
larger pieces are cut into smaller pieces in order to produce demands that
are wanted by other industries or customers, like paper, steel and fiber
industries. A solution for the cutting problem consists in determining a group
of patterns and their repetitiveness which means that how many times a
cutting pattern will be cut in order to satisfy demand.

The cutting stock problem is called 'CSP' which affects industry profit
has been studied seriously in production planning area but the results are not
often used at real production sites. They are usually found using hand
methods because real processing constraints have not been focused on.
Making small changes in cutting pattern can create considerable benefits in
different areas such as production cost which is the most important factor for
factories. CSP contains different objectives and constraints, which directly
depend on technological and organizational parameters of each company.

Cutting Stock Problems are seperated categories in each. One of
them is 'One-Dimensional Cutting Stock Problem' and the second one is

"Two-Dimensional Cutting Stock Problem’.
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In 1939 studies have been started in this area by Russian economist
‘Kantorovich'. A lot of formulation, mathematical models and solution
procedures have been developed in this area. Thanks to Kantorovich, studies
led to the continuous relaxation.

Gilmore and Gomory (1961), studied first and most important advance
solution technique in CSP area. CSP is a which sort of problem is showed by
them. According to Gilmore and Gomory CSP completes an order at
minimum cost for specified lengths in order to be cut from given stock lengths.
Pattern generation technique was improved using linear programming by
them so as to solve the one dimensional trim loss minimization problem.
When they converted it to integer programming problem, the large number of
variables contain generally infeasible solutions.This same difficulty continued
when only an approximate solution was being sought by linear programming.
In order to overcome this difficulty The Column Generation Method was
improved by Gilmore and Gomory.

In this method, setting of simple patterns which are form of the initial
basisi solution is the first step, then the solution is improved by removing a
cutting pattern and generating a new pattern . The new cutting pattern is
generated using the auxiliary problem which is easy to solve; knapsack
problem normally is relate to the auxiliary problem, and there are different
methods for solving this kind of problem. The new column is generated.
Because this action is done in order to improve the solution.

After Gilmore and Gomory proposed the column generation method,
many researchers used it for the Cutting Stock Problem.

In order to solve the roll wastage problem, this algorithm was used by
Pierece(1964) in the paper industry. Because of occuring defaults in the
problem, Hahn (1968) improved a dynamic programming algorithm.

Queiroz et al. (1971) presented other algorithms for the following three
dimensional guillotine cutting problems which are unbounded knapsack,
cutting stock and strip packing. They considered the case where the items
have fixed orientation and the case where orthogonal rotations around all
axes are allowed. For the unbounded 3D knapsack problem, they developed
the repetition formula proposed by for the rectangular knapsack problem and

presented a dynamic programming algorithm that uses reduced raster points.



6

Haessler and Sweeney (1991) focused on basic formulation topics
and solution procedures for solving one and two dimensional cutting stock
problems. They defined linear programming, sequential heuristic and hybrid
solution procedures.

They also suggested an approach for solving large problems with
limits on the number of times an ordered size may appear in a pattern for
two-dimensional cutting stock problems with rectangular shapes.

Lin (1994) presented a study which considering the minimizing trim
loss in a paper cutting process. In the study, operation begins with some
parent rolls of specific widths are to be cut to meet orders. These rolls have
specific widths. The objective of the study was to find out the way to achieve
the required cutting operation and occuring the smallest amount of trim loss
by exploiting linear programming.

This problem was solved by observing the 'pricing out' operation for the
paper cutting problem which was equivalent to a knapsack problem.

In recent years, researchers have improved applying evolutionary
approaches to these problems, including Genetic Algorithms and
Evolutionary Programming.

Liang et. al developed EP algorithm for CSP with and without
contiguity. The propose is realized using two new mutation operators.
Experimental studies have been achieve to examine the efectiveness of the
EP algorithm. They showed that EP can support a simple yet more efective
alternative to GA's in solving cutting stock problems with and without
contiguity. The solutions found by EP are significantly better than to those
found by GAs.

Carvalho (1999) reviewed several linear programming formulations for
one-dimensional cutting stock and bin packing problems. He analysed some
relations between the corresponding LP relaxations, and their relative
strengths, and refered how to derive branching schemes that can be used in
the exact solution of these problems, using branch-and-price technique.

Ozguiven and Caligkan (2002) who are Turkish academicians showed
a model which was written by Konrad in their study. In the problem, there
were a lot of customer demands in which materials had fixed width which will

cut according to different length.The aim was minimizing trim loss. Their



model is not enough in order to solve so, they proposed using a mixed
integer model which answering the different requirements.

Cutting Stock Problems are complexity problems. Because it has
large number of the cutting patterns that may be encountered. The large
number of cutting patterns returns the solution generally infeasible, when the
cutting stock problem was expressed as an IP problem. When using the
linear programming formulation of the cutting stock problem is available of
integer variables, then the effect of the number of cutting patterns will be
decreased. An auxiliary problem proceeds from the formulation where the
columns of the linear programming constraint matrix need to be determined.

Cerqueira and Yanasse (2006) reviewed some linear programming
models for the CSP.

Also, Novianingsih et al. considered 2-D CSP where single rectangular
stocks have to be cut into some smaller pieces so that the number of stocks
needed to meet demands is minimum. Also, they focused on studying to the
problem where the stocks have to be cut with guillotine cutting type. Problem
is formulated as an IP and the relaxation problem was solved by column
generation technique. New pattern generation was formulated based on
method of stripe. In obtaining the integer solution, they rounded down the
optimal solution of the relaxation problem and then they derived an extra MIP
for satisfying demands.

Demircan and Soyuer (2007) improved a method using real data
which is taken from factory in order to form stainless steel process. Factory
supplies materials which have different length and types.

In order to solve the problem, they suggested two steps solution. In
the first step, different cutting shapes were obtained for every piece and
alternative raw materials length using heuristic method. In the second step,
these cutting shapes which are taken heuristic method were applied to
integer-linear programming. Using this method, trim loss was minimized,
which raw material will be used and which length will be cut and how many
will be cut were determined. Also, all of the customer demands were satisfied.

Glass and Oostrum described a new hierarchical 2D-guillotine Cutting
Stock Problem. This method is contrast to general methods for CSP,

because aim was not wastage. The packing stages of cake manufacturing
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was the content. The company’s first objective was to minimize total
processing time at the subsequent in packing stage. This objective reduced
to one of minimizing the number of parts produced. They applied a closed
form optimization approach to these problems for certain cases.

In 2008 a new mathematical model was presented and applied by
Golfeto et al. which was GRASP metaheuristic to solve ordered cutting stock
problem. This heuristic appropriate to minimize the raw material used by
industries that deal with reduced raw material stocks in which just in time
method used for production process. In such cases, classic models for
solving the cutting stock problem were useless. Results obtained from
computational experiments for a set of random instances demonstrate that
the proposed method can be applied to large industries that process cuts on
their production lines and do not stock their products.

Cerqueira and Yanasse (2008) introduced us a heuristic method that
produces a solution for the one-dimensional cutting stock problem with a
reduced number of different patterns in the solution. Firstly, this method
proposed separating the items in two disjointed groups, according to their
demands. Patterns is generated with items of these groups and those with
limited trim loss are accepted. Then, problem was solved with items whose
demands were not satisfied and, when the solution obtained, they applied a
pattern reducing procedure of the literature.

Arbib et al. (2010) addressed a one-dimensional CSP. Theu focused
on not only minimizing trim loss, but also they needed that the set of cutting
patterns construct the solution can be sequenced so that the number of
stacks of parts obtained.

In order to solve problem, a new integer linear programming formulation was
improved and used. Constraints of the formulation raise quadratically with the
number of specific part types.

Sugi et al. (2010) worked with the 2-dimensional rectangular cutting
stock problem in which the shape of a cut piece is rectangular, they assumed
that a roll-shaped stock often used in actual processing and proposing a
solution taking processing called 3-stage guillotine cutting into account.

Cathrine et al. (2011), prepared a study for the carpetenry sector. The

carpentry sector like any other industry was faced with a cutting stock
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problem to minimize incurred wastage. The aim of this problem was to
establish a mathematical model which will solve the CSP using column
generation approach. The interview method was used to collect data relating
to the cutting stock problem.The column generation approach of iterative
computational routines was used because it developed successively better
solutions until an optimal solution is obtained. The results revealed that the
method was an appropriate method in solving business problems, that was,
how many boards should be cut to meet demand with minimum incurred
waste.

Abuhassan and Nasereddin (2011) touched on the application. They
aimed that decreasing the losses for the problem of cutting in one dimension.

Nozarian et al. (2013) focused on trim-loss amount. They applied
simulated annealing algorithm in order to reduce trim-loss considering
production cost amount. New theory is improved and applied in order to solve
the trimm loss porblem. Furthermore, a solution based on Imperialist
Competitive Algorithm were presented that reduced the wastage as well as
concentrating them on the minimum number of stocks.

An algorithmic solution approach was presented by Suliman (2014) to
overcome the difficulty in solving non-linear integer formulation of the
problem.The algorithm was based on the traditional approach where the lot
sizing was determined for each period, and then the best cutting patterns
were generated.

Sursal explained one dimesional and three dimensional cutting stock
problems. Decision model was developed in order to solving these problems.

On the other hand, heuristic application continued in CSP area. For
instance, the other work was written by Levine and Ducatelle. They
presented a pure ACO approach, as well as an ACO approach augmented
with a simple but very effective local search algorithm. It was shown that the
pure ACO approach can outperform some existing solution methods,
whereas the hybrid approach can compete with the best known solution
methods. The local search algorithm was also run with random restarts and
shown to perform significantly worse than when combined with ACO.

Macedo et al. presented a detailed search for software packages with

using two-dimensional cutting stock method.
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Suliman wrote another study which was about simple pattern
generating method. He was developed it for solving the auxiliary problem. It
was based on an ad hoc solution method described in literature for the
knapsack problem. A search tree was used to develop the pattern generation
method.

Another heuristic approach was written by Shen and Yu. A heuristic
strategy that was based on the results of analysis of the optimal cutting
pattern of particles with successful search processes was described, which
process a global optimization problem of the cutting-stock as a sequential
optimization problem by multiple stages. During every sequential stage, the
best cutting pattern for the current situation was researched and processed.
This strategy was repeated until all the required stocks have been generated.

Another work is Branch and Price technique was written by Pal.
Branch and price was established so as to solve for large data using integer
programming problems. This method combined the standard branch-and-
bound framework of solving integer programming problems with Column
Generation. In each node of the branch-and-bound tree, the bound was
calculated by solving the LP relaxation. The LP relaxation was solved using
Column Generation. They discussed their project on improving the
performance of branch and price based algorithms for solving the industrial
one-dimensional cutting stock problem.

The other study which | talked in my literature rewiev of this area lastly
was written by Macedo and Alves. They described a model for the two-
dimensional Cutting Stock Problem using two stages in order to solve using
the guillotine constraint. It was a linear programming arc-flow model,
formulated as a minimum flow problem, which was an extension of a model
proposed by Carvalho for the one dimensional case. They researched how
this model behaved using with commercial software, explicitly considering all
its variables and constraints. They also implied a new family of cutting planes,
and considered some extensions of the original problem.

In the thesis, we developed new mathematical model and solved for
the Cutting Stock Problem. The difference from the other studies we
considered different roll widths. Also the problem was integrated to a

heuristic method which named is '‘Gomory Algorithm'. These different roll



widths were not considered before using Gomory Algorithm. The details of

the problem will be explained in the other chapters.
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CHAPTER 3

CUTTING STOCK PROBLEM

Cutting stock problems were studied before in operations research
area. In these studies, there are different constraints, decision variables,
indices, sets, may be objectives. In many real world applications of business
and industry generally, it is known that optimization problems have given set
of small objects which are called items or pieces, into a given set of larger
ones which named are stock sheets. Also in these kind of problems generally
have same aim which is the reducing waste or minimizing production cost
using less raw material with true generating patterns. These problems, with
all their extensions and variants, are well known to be NP-hard. This means
that all algorithms currently known for finding optimal solutions require a
number of computational steps that may grow exponentially with the problem
size rather than according to a polynomial function.

After the some years, other CSP approaches have developed in order
to solve the problems. These approaches are exact and heuristic methods.
Heuristic methods have greater flexibility considering specific constraints in
problem and offer a good trade-off between the quality of a solution and its
computational effort. Generally, heuristic techniques need to be used for
large CSPs. Some of the heuristic algorithms which were applied to CSPs in
the recently years with success. These heuristics examples are genetic
algorithm, simulated annealing and column generation. In these methods,
requiring to provide good, but these methods do not provide the optimal

solutions.
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Linear or dynamic programming and branch-and-bound techniques
are based from the exact algorithms. Because of being complexity and
extensive nature of these problems, many different optimization formulations
and solution approaches improved in the literature, according to their needs
such as dimension, application field, constraints and requirements. Therefore,
many researchers surveys were categorized their studies on this subject in
the literature chapter of my thesis.

The Cutting Stock Problem is an important class for the combinatorial
optimization areas. The general goals of Cutting Stock Problems are to
minimize the trim loss or the production cost. Most CSP solution methods are
established for specific objective functions. Generally, each of them has
second objective. The second objective for the first group Cutting Stock
Problem is to minimize the number of used stocks. This type of CSP with two
objectives has been solved or worked by using some heuristic techniques.
The second objective for the second class of Cutting Stock Problem is to
minimize the number of partially finished items. This is known as the cutting
pattern sequencing problem which named CSP with contiguity in the

literature.

Orders
Roll

i cuttin atterns
’f"’” \ 9 P

—
demands e 1

o:-_/---

trim loss overproduction

Figure 1 One Dimensional Cutting Stock Example
(Abuhassan and Nasereddin, 2011)
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CSP has many different forms, these are One Dimensional (1-D) CSP
such as sheets of wood, second one is Two Dimensional (2-D) CSP like
cutting cloth or paper to cut rectangular and these are more complex
according to One dimensional CSP.

In one dimensional CSP, a part or some parts of the raw material
might not be used again, for instance when a piece is cut. It happens due to
applying various patterns freely. Before, cutting problem has attracted the
attention of many researchers all over the world. Choosing a cutting pattern
and its sequences is put forward by cutting problems. Sometimes cutting
problems are too complex, and it is not easy to find an optimized response
for them. In such case, even the smallest improvement in cutting pattern,
may lead to a considerable minimizing in raw material, which are used over.
Most standard problems that are related to one dimensional cutting problem
are known as NP-complete problems. However it is possible in many cases
to model them by mathematical programming and find a solution via accurate
or approximate methods.

On the basis of H. Dyckoff’s typology, the one dimensional problem
can be explained as 1/V/D/R whenever sufficient materials are available. "1"
means for one dimensionality of the problem. "V" means that all required
items should be produced by a selection of big consuming pieces; in other
words, although some parts of stocks are only used, all orders will be
produced. "D" means that there are several big consuming pieces in different
sizes and "R" represents the number of items.

Practically, the cost of using a special cutting model and changing the
cutting patterns are important ordinary factors as well as cutting wastage.
The secondary aspects can be considered by an appropriate formulation and
making the smallest improvement in cutting pattern. It leads to a big
thriftiness in stocks, which are consumed quickly and repeatedly in huge
mass. Ineffectiveness and excess of manual methods, which are applied by
cutting contractors, reminds the necessity of cutting automation. Furthermore,
the potential of suggested methods can be seperated and compared easily,
due to the impossibility of comparing the different solutions together. There

are several algorithms and methods in order to calculate the one dimensional
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cutting wastages, considering various factors such as constraints, demands,
materials.

The large variety of applications reported in the literature by Dyckhoff
(1990) to develop a classification scheme for cutting stock and packing
problems.

If we want to give an example for CSP, examples were studied in
generally a factory which uses long rolls of paper of a fixed width 'W'. Paper
can be cut as it comes out. For instance, producing two rolls of width "W/2'.
The rolls can be cut only vertical direction. Certain orders for paper have
been needed to fill. Each order 'I' has a width 'wi* and a length 'Ii". If they have

same width, multiple rolls of paper can be stitched together.

Table 2 Classifying problems using four characteristics table as follows

CHARACTERISTICS FEATURES WHILE CLASSIFYING PROBLEM

ASSORTMENT | ASSORTMENT
CHAES\CTTUE:ESTICS DIMENSIONALITY Asgllgﬁl\?lENT OF LARGE OF SMALL
OBJECTS ITEMS
Number of All Iarge_objects and a One large FeV\_/ items of
1 di . selection of small obiect different
imensions items | dimensions

A selection of large

objects and all small

items

Many identical
large objects

Many items of
many different
dimensions

Different large
objects

Many items of
relatively few
dimensions

Many identical
items

For instance, if there is a single order of length 'I' and width 'W/2', one

roll of length 'l/2" and width W can be produced, cut it into two rolls of length’

I/2" and width 'W/2', and can be stitched them together in order to obtain one
roll of length 'I' and width "W/2".
In the other direction cannot be stitched. For instance, two rolls of

width W/4 into a roll of width W/2 cannot be combined. if it did, then the paper

would look ugly everywhere. The goal is satisfying all of the orders while
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using the minimum amount of paper. The total paper which has width 'W' that
can be produced to be as short as possible. Since they can be only cut
vertically, as well the paper can be cut as it is coming out of the machine.

At any point in time, the paper can be cut into a certain combination of widths.
It is called such a combination a pattern. For instance, if 'W = 11", one pattern
is to cut the paper into widths 5,5, and 1. May be there is not orders of width
1 so that the produced roll of width 1 is simply waste. In this case, it is simply
say that the pattern is {5, 5} and it is implicit that the remaining 1 is wasted.
So, a number will never occur in a pattern unless having an order of that

width. Suppose that W = 11, and having three orders:

-wl=5,11=20;
-w2=4,12=10;
-w3=2,13=09;

optimal solution here is using the pattern {5, 5} for a length of '5', and the
pattern {2, 4, 5} for a length of '10'.

A roll of width '5' of length '2 *5 + 10 = 20', a roll of width 4 of length 10, and
a roll of width 2 of length 10. It satisfies all orders. The objective of '15'".

It means that the total length of width 'W' paper that can be produced. More

generally, all different patterns can be represented, indexed by 'j'.

In general, there are many such patterns; some of them are clearly
dominated by other patterns such as {4, 5} is dominated by {2, 4, 5}.
Although having dominated patterns, there are undominated patterns like
{5, 5}, {5,4,2},{5,2,2,2},{4,4,2},{4,2,2,2},{2, 2,2, 2, 2}.
So, writing all dominated and undominated list are unnecessary and time
losing. Because of that situation the linear program was modeled generating
all the patterns j'. In these kind of problems, generally 'xj' is called the
amount of pattern 'j' that can produce, and ‘'aj is named the number of times
that the width of order 'i' occurs in pattern 'j'. For instance, if pattern '1' is
{5, 5}, then 'a11' = '2".

On the other hand, in two-dimensional cutting stock problem where
stock sheets have to be cut into a set of smaller pieces so that the demand is
satisfied. Number of cutting patterns are needed to generate and determine

so that the number of stock sheets should be used minimum. The problem is
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a well known problem appears in many industries, such as at glass industries,
aircraft industries, ship builder, steel industries, and leather industries. The
problem also appears in land development, facilities layout, and electrical
circuit layout.

In practically, there are two cutting types for Cutting Stock Problem.
These are guillotine cutting type and non-guillotine cutting type. These cutting
types are different in each. The guillotine cutting type is a cutting type where
any cut must run from one edge of a stock sheet to the opposite edge in a
straight line. Simultaneously, in non-guillotine cutting type, a cut does not
have to run from end to end of the stock sheet.

Also the 2D-CSP can be further classified into several categories,
depending on the problem's specific constraints. It can be regular, if the
shapes of the items to be cut can be described by few parameters, or
irregular, otherwise is irregular category. Cutting irregular shapes is also
known as nesting. Regular category cuts can be two different types which
are rectangular or non-rectangular, according to whether the items are
rectangles or have a different shape, respectively. Rectangular cutting is
called oriente. If a sheet can only be cut from side to side, then guillotine-type
cutting patterns; observe that problems allowing non-guillotine patterns are
generally much harder to solve. A staged pattern is a guillotine pattern cut
into pieces in a limited number of phases.

The direction of the first stage cuts may be either horizontal or vertical
and the cuts of the same stage are in the same direction. The cut directions
of any two adjacent stages must be perpendicular to each other. If the
maximum number of stages is not allowed to exceed n, the problem is called
n-staged. The relationship between the CSP and one of the algorithm
method which is named Gilmore-Gomory's Algorithm will be explained in
Chapter 4.
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CHAPTER 4

RELATIONSHIP BETWEEN THE CSP AND
GILMORE AND GOMORY'S ALGORITHM

Cutting stock problems occurs when raw materials are such as paper,
cardboard and textiles in manufacturing company by rolls of large widths.
While production planning, in order to satisfy demand and minimize wastage
these rolls have to be cut into subrolls of smaller widths. It is not always
possible to cut the rolls without leftovers. These leftovers parts are called trim
'loss’, 'wastage' or 'scrap'.

In this section we will discuss what is the Gilmore-Gomory's Algorithm,
features of the algorithm and relationship between the Gomory Algorithm and
Cutting Stock Problem.

From past to now, it has been known that minimizing scrap is one of
the most important problem in many industries. Because raw material is very
improtant cost for the factories. This problem has been looked into from a
different point of view in the past. Many problems were researched and tried
to solve and find optimal in industrial engineering area from past to now.

Different optimization methods have been occured and this
optimaziton methods were searched also applied largely to various problems.
Linear programming and the other specific solution methods can be used
effectively in small data problems. When the problem size are large and
complex, heuristic methods studies had been started. As result of these
studies, it has seen that exponential growth of the search space and time

loosing was occured in order to find optimal solution.



20

The solution procedure of Gilmore-Gomory Algorithm published in
1963. Gilmore and Gomory studied for the CSP considering minimizing the
wastage cost. In the Linear Programming Approach of method, the LP
relaxation of the problem is considered and solved then a rounding
procedure is used to take an integer solution. But some difficulties were
occured. One of them is, occuring large number of cutting patterns in the LP
relaxation approach. Because generating them can be hardly.

The Gilmore-Gomory cutting plane algorithm is occured in order to find
the solution for the continuos relaxation of problem and the other aim was
ensuring from its optimal solution using one or more inequalities. The solution
disrupted these inequalities itself. These inequalities are added to the
problem. Problem is still reoptimize. Then, the method is applied again to the
new solution, process applied as long as the optimal solution becomes
integer.



21

CHAPTER 5

GILMORE-GOMORY'S ALGORITHM

The cutting standard-sized pieces of stock material problems are
named cutting stock problem. These pieces can be occured by paper rolls
or sheet metal, leather. They are divided or cut pieces of specified sizes
while minimizing material. After cutting process, leftover is named trim loss or
wastage. This trim loss can be named number of used rolls wasted in the
cutting process. In these kind of problems, what trim loss is should be
determined and explained. It is one of the critical point of these kind of
problems. Because trim loss and number of used materials cannot be same
at every problems.

In  mathematical area, an optimization problemis occured by
applications. The cutting stock problem is an NP-complete problem. It can be
return to the knapsack problem beacuse of computional complexity. The
problem can be formulated as an integer linear programming problem.This
formulation applies not only one-dimensional problems but also many
variations can be done, it is possible. The objective of cutting stock problem
can be minimizing trim loss or maximizing the total value of the produced
items using each order with different value.

Generally, if the number of demands increase ,the amount of possible
cutting patterns increase exponentially as a function of m, in cutting stock
problems. It cannot be practical to compute the all possible cutting patterns.
In order to preventing wasting time while solving, an alternative approach is

improved which is Column Generation method. The Column Generation
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method sometimes can be much more effictive than the original advent,
especially problem size increases.

In 1960s, the column generation approach was introduced and applied
to the cutting stock problem by Gilmore and Gomory. Gilmore and Gomory
proved and showed that this approach is guaranteed to converge to the
optimal solution, without using and generating all possible cutting patterns.
This method solves the cutting-stock problem by starting using few patterns
which are determined before. If it is needed, it generates additional cutting
patterns and use them in order to find optimal solution .

The other special part is one-dimensional cutting stock problem for
general cutting stock problem. Solving an auxiliary optimization problem such
as one dimensional cutting stock introduced us the new patterns which are
named the knapsack problem.

In the Knapsack Problem, dual variables are found and used from
the linear program. This problem is one of the strong method to solve these
kind of cutting stock problems. The other known methods are branch and
bound algorithm and dynamic programming like knapsack problem.

Some fractions causes limitation for the Gilmore and Gomory method.
Because handling integrality is a limitation for the problem. Sometimes
rounding to the nearest integer can not be useful for the cutting stock
problem, because sub-optimal solution can be occured. It means that under
or over-production for some orders. But modern algorithms overcame this
limitation for including very large instances of the problem.

Sometimes, occuring same trim loss can be possible in the cutting
stock problem . So, possibility of corruption can be occured. Also geneating
new patterns increase the effect of this degeneracy without affecting the trim
loss. Gilmore Gomory Algorithms can be coded like CPLEX or another
programming language. The solution procedures of Gomory Algorithm are;
Step 1. Firstly, find the Simplex Tableau.

Step 2. Strong Gomory Cutting Planes associated with each row that has a
fractional right hand side are found.

Step 3. Add these cutting patterns to the Simplex tableau including primal
feasibility.


https://en.wikipedia.org/wiki/Column_generation
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Linear_program
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Dynamic_programming

Step 4. In order to find a solution for the new LP, use the Dual Simplex
Algorithm.

Step 5. If the solution is optimal, stop, otherwise return to Step 2.

23
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CHAPTER 6

PROBLEM DEFINITION

The Cutting Stock Problem is the problem of filling an order at
minimum cost for specified numbers of lengths of material to be cut from
given stock lengths of given cost (Gilmore et al.1961).

The CSP is an integer programming problem. However, since the
integer programming problems are known to be non-deterministic
polynomial-time hard, the Cutting Stock Problem is formulated as linear
programming problem by relaxing the integer requirements. After the linear
programming optimal has been found, a rounding-upprocedures used to get
optimum in the integer programming. It arises from many applications in
industry including paper, glass, shoe-leather cutting, furniture, machine-
building.

The most important and first aim of every business is to optimize cost
which means that to maximize profit or minimize the cost of operation while
satisfying demands.

In my thesis, my problem occurs in a carton and corrugated factory in
Torbali/lzmir. This study was made using the real data from a factory which
works about the corrugated area. Raw material is paper which is bought from
abroad such as England, France, Germany, Israel etc. and domestic. In the
depot, there are rolls which have different widths.

The thesis focuses minimizing the number of cutting rolls using the
pieces which were cut with different amount from the fixed width materials for

the factory which produces many products according to demand.
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In the factories, managers should provide the stock enough in order to
utilizing the advantages of stock and escaping the disadvantages of stock.
When the demand comes, the materials which are required are controlled in
the depot.

Generally, in the stock there are rolls which have different widths and
lengths. These rolls should be cut in order to satisfy demand. In this situation,
the most important cost is the trim loss cost which occurs when the cutting
process is made for one more than product. Trim loss means that using
number of rolls in this thesis.

Minimizing trim loss and minimizing number of used rolls are not same. In
order to show this difference trim loss tables were prepared. In these tables,
there are demand width, cutting patterns, width of rolls, number of rolls and
trim loss calculation. Demand width and rolls width were known. Cutting
patterns were occured by hand. These patterns include all possible
combinations. Number of rolls were calculated by using matthematical model.

In the trim loss calculation, there are three parts. These are used area
per pattern, total area per pattern and loss per pattern. Total area was
calculated by number of rolls multiplying with roll width. Used area per
pattern was calculated by demand width multiplying with number of rolls and
the number of subrolls corresponding desired width in that pattern and lastly
loss per pattern was calculated by subtracting used area per pattern from
total area per pattern.

aij 19 [ 20] 21 [ 22 [ 2324 25 [ 26 |27 [ 28] 29
500 olo|l o] 2]3]o]ofo]1]o0o]o
450 1 o[ o ]oJoJo]o|o]lo|o]o
645 0o lJo] o]o]lo]o]of[o]o]lo]o
430 o lo| a | 1]o]l2]o0of[2]1]0]o0
370 0o Jo] of]o]o]o] o [o]o]lo]o
495 1 | 2] o ]o]Jo]o]o|o]lo|o]o
850 0o lJo|l ofolol1] 2 o]lol1]o
750 olol o lololo|lol1]1]1]2
725 oo o]oflo]o]o|[o]o]o]o
720 ool o]olo]o]of[o]o]lo]o
WIDTH OF ROLL 1020|1020 1730 [1730[1730]1730] 1730 [1730]1730[1730] 1730
# OF ROLLS o Jo 8 Jo Jo Jo J27 Jo Jo Jo |3
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USED AREA PER PATTERN |0 0 13760 45900 |0 0 48000
TOTAL AREA PER
PATTERN 0 0 13840 46710|0 0 55360
LOSS PER PATTERN 0 0 80 810 |0 0 7360

Table 3. Example table of trim loss calculation for roll 1020 mm and 1730 mm

First MOde| Second Model
Solution Solution
TRIM LOSS TRIM LOSS
25025 22575

# of used rolls

185

# of used rolls

200

After the cutting process, if the last piece will be used for the other
production of product is used, if it is not it will go to scrap. In the study, the
aim is making the cutting plan optimally and calculating number of rolls which
will satisfy demand.

In terms of the loosing material which is the standard width, the need
is known to be substantially increased track parts in case of interruption of
the loss occurring due to excess wastage. From this reason, it is very
important that giving the information about the material from the stock. There
is no problem if the all kind of rolls are in the depot.

But the factory which produces the products according the demand
buy the rolls. These rolls are so expensive. So, the scrap cost should be less
in order to decrease the production cost. The requiring rolls which has
different widths are in the factory that kind of products are too much.

It is known that the factory produces the products according to
customer's demand. In the production, paper is combined with starch, caustic

and borax. This combination is processed in corrugated machine which
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length of the machine is 2 meters. Papers have different widths. These
widths are; 1020 mm, 1120 mm, 1320 mm, 1430 mm, 1530 mm, 1630 mm,
1730 mm, 1830 mm, 1930 mm and maximum 2000 mm.

Production is processed according to customer request so, there are a
lot of different demand with different widths. While these demand were
planning, they classified according to their amount and width. This means
that, every demand cannot be combined with in each. While combining, their
combination of width should be go to the cutting roll and the trim loss should
be minimum. If the scrap is minimum, it is known that combination of demand
IS near the optimum. In order to understand the combination is optimum,
mathematical model and algorithm were improved and their solution were
compared.

A mathematical model which gives the suitable cutting plan is
improved satisfying these demands. Also the object of this model, seeing the
using number of rolls for every different widths and choosing the most
suitable cutting pattern which minimizes the number of used rolls. Created a
mathematical model as well as encountered in details in order to see results

from ignoring and larger data for heuristic algorithm was developed to solve.
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DATA COLLECTION
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The data was collected from cartoon and corrugated factory which is in

Torbali/lzmir. The data collection include matrices for the different roll widths

and demands. There are eleven different roll widths and ten different demand

widths and amount.

Table 4. Roll Widths

NO

P
RPRBoo~vourwnr

WIDTHS
1020
1120
1220
1320
1430
1530
1630
1730
1830
1930
2000

Table 5. Demands and their widths

NO

O©oOoO~NOO O WNPR

=
o

DEMANDS WIDTHS

10
20
50
60
40
45
55
65
80
45

500
450
645
430
370
495
850
750
725
720
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There are initial matrices for every different roll. These matrices are
10x10 and shows that how many rolls require in order to satisfy for every
demand. X1 and X2z ... Xio show that number of subrolls corresponding

desired width in that pattern.

X
<
N
<
w
X
S
x
[&]
X
(o]
X
2
X
[e+]
x
©
X
&

500
450
AL = 645
430
370
495
850
750
725
720

o |O

O|O|O|O|N | O|O|O |O |O

oO|0O|0O |k |O|O|O |0 |O|0O

oO|O|Rr|O/O|O|O|O |O |O

OoO|Rr|OOO|O|O|O |O |O

O|O|O|OlO|O|O|O |O (N
O|O|0O|O0O|O0O|O|O|O |N|O
O|O|0O|O0O|O0 |0 |O|— |O|O
OO0 |0 |O|NMN|O |O|O
OoO|OoO|O|O0O|O|vV OO |O |O
= O|0O|0O|O0 |0 |0 |Oo

Table 6. Diagonal matrix for 2020 mm



30

CHAPTER 8

MATHEMATICAL MODELING

In mathematical modeling part, two models were analyzed. First model
was used in order to compare Gilmore-Gomory Algorithm's solutions. In the
model, all possible combinations of cutting patterns were created. That model
can be used for standard roll and multi width rolls. The aim of this model is
minimizing number of used rolls. In order to obtain optimal solution all
combinations were entered by hand.

The second model is an extra model in order to describe that
minimizing trim loss and minimizing number of used rolls are different. This
model can be used for standard roll and multi width rolls too. Coefficient of
objective function was used to explain using different roll width. The aim is

minimizing trim loss at this time.

8.1. MATHEMATICAL FORMULATION

SETS&INDICES

| Set of desired widths

J Set of cutting patterns

i Index of set desired widths, i€l = {1,2,...,|I[}
j Index of set cutting patterns, j€={1,2,...,|J|}



PARAMETRES
aij The number of width i in cutting pattern j

bj The demand for subrolls of width i

DECISION VARIABLES

Xj The number of rolls for which cutting pattern j is used

Minimize > x, (1)
jed

S.t.

;aﬁszbi viel (2)

je

X; 20 and integer vjed (3)

The objective function (1) denotes the total number of standard rolls which

satisfy the demand, and has to be minimized.
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Second constraint is written for the fact that the number of produced subrolls

has to be greater than or equal to the number of demanded subrolls.

Constraints (3) show the domain of variables.

The above formulation can be extended to one-dimensional problem

with multiple standard widths (w,,k =1,2,...,| K|) with a fixed length L. For

each standard width w,, let n, be the number of patterns, x;, be the number

of the jth pattern to be cut, and c, be the associated cost of cutting each jth

pattern. Then the jth pattern can be represented a;, with ith component.



The IP model for multiple standard widths:

Minimize > > ¢, X, (4)

keK jed
S.t.

> > ayxzh Viel (5)

keK jed

X; 20 and integer VjeJ,VkeK (6)

The objective function (4) minimizes the total associated cost of cutting

patterns.
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Constraints (5) ensure the same condition like in the model of one standard

roll. Sixth constraints show the domain of variables.
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CHAPTER 9

APPLICATION OF GILMORE-GOMORY'S
ALGORITHM

The cardboard factory manufacturers cuts cardboards. The cutting
department buys the cardboard such as rolls with different widths. They have
to be cut into subrolls with desired widths. The different lengths of rolls in this
instance are 1020 mm, 1120 mm, 1220 mm, 1320 mm, 1430 mm, 1530 mm,
1630 mm, 1730 mm, 1830 mm, 1930 mm and 2000 mm. The customer order
subrolls of cardboard have various widths. It means that every demand has a
different width. The question is how to cut the standard rolls such that the
demand of all customers is satisfied, and the amount of wasted cardboard
which is called the trim loss is as small as possible. Our aim is to generate
the best cutting patterns for each order package with cutting minimum
amount of rolls.

Finding all cutting patterns can be possible for a small order package.
But the number of cutting patterns can easily grow in some problem which
includes large-scale orders. In this part, how to solve general model for a
standard roll without using all cutting patterns will be showed, and hence
without considering all decision variables x1,x2,...,Xn.

The matrix A will only exist actually; it is never constructed clearly.
Only a submatrix of A is generated for this solution approach. There are two
phases in each iteration step in Gilmore-Gomory algorithm,. A LO-model is

solved in the first phase, and the second phase occurs of a knapsack model
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to be solved, which either creates optimality, or leads to a cutting pattern that
is added to the submatrix of A.

The formulation of the algorithm is as follows:

9.1.Gilmore-Gomory Algorithm

Input:Model, with an order package, including the amount of demanded
subrolls with the corresponding widths.

Output:An optimal solution of model.

Step O:Initialization. Choose an initial full row rank matrix AW, of which the
columns correspond to cutting patterns. For instance, take A= In, Go to
Step I.

Step I: This step is for Simplex algorithm. Let A®, k>1, be the current
technology matrix (after k iterations of the Gilmore-Gomory algorithm), of
which the columns correspond to cutting patterns; let J(k) be the index set of
the columns of AKX, Solve the LO-model:

min Z X;

ied (k)
s.t.
> APX, =b R)
ied (k)

X; 20 for je J(k),
with A® the j'th column of A, Let y{, ...,y be the values of an optimal

dual solution, corresponding to the current optimal basis matrix of (R,).

Go to Step 2.
Step 2:Column generation.Solve the knapsack model:
max Zm: y®u,
S.t. -
zmlwiui <1730 (K,)
] u.>0.

110+ Y

Let u® =[u®... ul]" be an optimal solution of (K,), and let ¢, be the optimal

objective value of (K,).G oto Step 3.
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Step 3: Optimality test and stopping rule. If ¢, >1, then let A&*D=[A®u®] and
return to Step I. If ¢, <1, then stop: the pair {u®, ¢, } is an optimal solution of

model.

In the thesis, firstly we arranged matrices for the rolls according to
demand widths. It means that there are 11 matrices for the demands. These
matrices are diagonal matrices. In the matrix, there are 10 different desired
widths. These are 500,450,645,430,370,495,850,750,725,720 mm and their
frequencies is called xi, X2, X3, Xa, Xs, Xs, X7, X8, X9, X10. FoOr instance; there
are two '500 mm' in the 1020 mm roll. There are two '450 mm' in the 1020
mm roll. There is one '645 mm' in the 1020 mm roll.

X1 X2 Xg X4 Xs Xe Xz Xs Xg Xio
500 2|0|0|0O|O0O|JO|O|O]|O]|O
450 0|2 0(0|0|JO|O|0O]|O]|O
A= 645/ 0| 0| 1|]0|0|0|0|0]|0]|O0
430/ 0|0|0|2|0|0O|0O]jO0O]|O0O]|O
370/ 0| 0|0|0|2]|0|0|0]|O0O]|O
495/ 0| 0| 0|0|0|2|0]0]|0O]|O
gso| 0|0 O0O|O0O|O0O|JO|1|]0]|0]|O
750 0|00l 0]O0O|O0O|JO|1]0]|O
7250 |0|0|0]O0O|O0O|JO|O]1]O
7200 0|0|0|O0O]O0O|O|0O0O]|0]1

Table 7. Initial Matrix for 21020 mm

The details of the first iteration of the algorithm is as follows:
Step 1. Solve the LO-model:
Minimize X1+X2+X3+Xa+X5+Xe+X7+Xg+X9+X10
S.t.
2x1>10
2X2>20
x3>50
2x4>60

2x5>40



36

2X6>45
X72>55
X8>65
X9>80
X10>45 Xi,....X10>0.
An optimal solution is calculated using a computer package, CPLEX:

X1=5,%2=10, x3=50, x4=30, X5=20, X6=22.5, Xx7=55, X8=65, X9=80, X10=45, with
optimal objective value z=382.5.

The knapsack problem to be solved in next step uses as objective
coefficients the optimal dual values of the current constraints:
y1=y2=ya=ys=y6=0.5, y3=y7=ys=yo=y10=1. (These optimal dual values are
reported in the output of the computer package.)

Step 2. Solve the knapsack problem

Maximize 0.5u1+0.5u2+0.1us+0.5u4+0.5us+0.5us+u7+us+ug+uU10

S.t

500u1+450u2+645u3+430us+370us+495uUs+850uU7+750ug+725U9+720U10 < 1020
ui,..,.u10>0, and integer.

The optimal solution (generated by a computer package) is:
U1=U2=U4=Us=U7=Us=U9=U10=0, us=us=1. The optimal objective value satisfies
o, =1.5.Since ¢, >1, optimality has not yet been reached.

Step 3. Construct matrix A®@ from A® by adding the column

[0010100000]"



X1 X2 X3 X4 Xs Xe X7 Xg Xo Xio Xu1
500 2|0|0|O0O|]O0O|O|O|O]jO]O]|O
450 0|2 0]0|j0O0O|JO|O]jO|O|O0]O
Az = 645/ 0 | 0|1 /0|0 ]|]0O|O0O|JO0OJ0O]0O]1
430 0|0 0}|2|0|0O|0OjO|J0O|O0O0]O
370/ 0|0|0|0|2|0|0|0O]|0|O0]|1
4950 0| 0]0|0O|2|0]0O|0O|O0]O
gso| 0O |O0O|O|O0O|]O0O|O|2|0O0O]|0O]O]|O
750/ 0 |O0|jO|O0O|O0O|O|O|1]0O]|O]|O
7250 |0|0|0O0O]O0O|O|O|O]1]O0O]|O
720/ 0|0|jO0O|O0O]O0O|]O|O|O]|O]1]|O

Table 8. Iteration matrix
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In the next iteration, Step 1 and Step 2 are repeated for the matrix A®@. The

algorithm stops at iteration k if the optimal objective value ¢, of model (K,) is

<1. With our calculations, the Gilmore-Gomory algorithm performed 3

iterations. The resulting optimal solution is listed below:

Table 9. Algorithm Result

Optimal Solution
# of Rolls 5 10 10 22,5 55 65 80 45 40 30
Order(mm) Cutting Pattern Optimal Dual Value
500 2 0 0 0 0 0 0 0 0 0 0,5
450 0 2 0 0 0 0 0 0 0 0 0,5
645 0 0 1 0 0 0 0 0 1 0 1
430 0 0 0 0 0 0 0 0 0 2 0,5
370 0 0 0 0 0 0 0 0 1 0 0
495 0 0 0 2 0 0 0 0 0 0 0,5
850 0 0 0 0 1 0 0 0 0 0 1
750 0 0 0 0 0 1 0 0 0 0 1
725 0 0 0 0 0 0 1 0 0 0 1
720 0 0 0 0 0 0 0 1 0 0 1
TRIM LOSS
CALCULATI 100 1200 3750 675 9350 17550 23600 13500 200 4800
ON (mm)
TOTAL
TRIM LOSS 74725
(mm)

In previous explanations and details, as you can see, the algorithm

was performed for a standard roll width, 1020 mm. Our main goal for this

thesis is applying this algorithm to multiple standard roll widths. We made

some modifications for the algorithm and the details are given below:




9.2. Improved Gilmore-Gomory Algorithm for Multiple Standard Rolls

Input: Model, with an order package, including the amount of demanded
subrolls with the corresponding widths.

Output: An optimal solution of model.

Step 0: Initialization. Choose an initial full row rank matrix A®, of which the
columns correspond to cutting patterns. For instance, take A= In, Go to
Step I.

Step I: Simplex algorithm step. Let A, k> 1, be the current technology
matrix (after k iterations of the Gilmore-Gomory algorithm), of which the
columns correspond to cutting patterns; let J(k) be the index set of the
columns of AK), Solve the LO-model:

min E X;
jed (k)
S.t.

Z A§k>xj =b (P)

jed (k)

X; 20 forje J(k),

with Aj® the j'th column of A®. Let y™, ...,y be the values of an optimal

dual solution, corresponding to the current optimal basis matrix of (R,).
Go to Step 2.

Step 2:Column generation. Solve the knapsack model:

n m
)
max > > y¥u;,

=1 i1

S.t.

> wu, <width, Vjel (K,)
i=1

u.>0 Viel Vjel

=
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The different point from the original algorithm is that in the optimal solution of

(K,),we can have more than one u vector and we take into account all of

these u vectors, and let ¢, be the optimal objective value of (K,).

Go to Step 3.
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Step 3: Optimality test and stopping rule. In the solution of Step 2, if there
is/are different u vector(s) from previous iterations, return to Step I. Ifthere is
no different u vector for adding to A vector, then stop: Optimality has been
reached.

The given example will help the reader to understand the improved
algorithm. In the example, the instance consists of two different standard rolls,
1020 mm and 1730 mm. Before starting to the improved algorithm, we first

arranged the diagonal matrix for this instance which is listed below:

a
500
450
645
430
370
495
850
750
725
720

ROLL
WIDTH

=
o
[=Y
[y
[y
N
[y
w
=
H
[y
(%]
[y
[}
[=Y
~N
[y
0
[y
(%=
N
o

O |O |O |O |O|O |0 |0 | |N|IFR
o|lo|lo|lo|o|o|o|o v |O|N
ol|lo|lo|lo|lo|o|o |+ |O|O |w
o |lo|lo|lo|lo|o v |O|Oo|O|s
ol|lo|lo|lo|lo|dv |O|lo|o|o |w
ol|lo|lo|lo|v][OoO|lo|lo|lo|o |
O |O |O | |O|O |0 |0 |0 |0 |N
O |O |- |O|O |O |0 |0 |0 |0 |
O|r |O|lo|lOoO|lO|OoO|o|o |Oo |@®
» |lo|lo|lo|o|o|o |o |o |o
O |O|©O|O|O |0 |0 |0 |0 |w
o|lo|lo|o|]o|o|o|o |w|O
o|lo|lo|lo|]o|o|o|~vd |O |O
o|lo|lo|lo|lo|o|sd |O|O |O
o |o|o|o|]o |+ |O|O |O |O
o|lo|lo|lo|w|o|o|o |o |o
O |O|©O|N |O|O |0 |0 |0 |O
O |O|N |O|O |O |0 |0 |0 |O
o|Nv |O|lo|lo|lo|o|o |o |o
N |o|lolo|lo|lo|lo |o |o |o

1020/1020(1020|1020|1020(1020|10201020(1020/1020(1730(1730|1730(1730(1730|1730(1730(1730|1730(1730

Table 10. Initial Matrix for 1020 mm and 1730 mm

The details of the first iteration is as follows:

Step 1. Solve the LO-model:

Minimize
X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14+X15+X16+X17+X18+X19+X20

S.t.

2X1+3X11>10
2X2+3X12>20

X3+2x13>50
2Xa+4x14>60
2X5+4x15> 40
2Xe+3X16>45

X7+2X17255

Xg+2X18>65
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Xo+2X19>80

X10+2X20>45

An optimal solution is calculated using a computer package, CPLEX:

X1=X2=X3=X4=X5=X6=X7=X8=X9=0, X10=45, X11=3.33,X12=6.66,X13=25,X16=X14=15,
x15=10, x17=27.5, x18=32.5, x19=40,X20=22.5, withoptimal objective value
z=197.5. The knapsack problem to be solved in next step uses as objective
coefficients the optimal dual values of the current constraints: yi1=y>=y=0.33,
ya=y5=0.25, ys=y7=ys=Yyo=y10=0.5. (These optimal dual values are reported in
the output of the computer package.)

Step 2. Solve the knapsack problem

Maximize
0.33(u11+u21)+0.33(U12+U22)+0.5(U13+U23)+0.25(U14+U24)+0.25(u15+u25)+0.33(u
16+U26)+0.5(U17+U27)+0.5(u1s+U28)+0.5(U19+U29)+0.5(U110+U210)

s.t

500u11+450u12+645u13+430U14+370U15+495uU16+850uU17+750u18+725U19+720U
110<1020

500u21+450u22+645u23+430u24+370uU25+495u26+850u27+750u28+725U29+ 720U
210<1730

uit,..,U210>0, and integer.

The optimal solution (generated by a computer package) is:
U11:U12:Ul4:U16:U17:U18:U19:U110:0, Ul3:U15:1,
U21=U22=U24=U25=U26=U27=U28=U29=U210=0, U23=1, The optimal objective value

satisfies o, =2. Since we have different u vectors to enter the matrix,

optimality has not yet been reached.
Step 3. Construct matrix A@ from A® by adding the columns

[0010100000]",[0020100000]".
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[y
o

[y
[y

[y
N

[y
w

[y
'y

[y
w

[y
()]

=Y
~N

[y
-]

[y
©o

N
o

21

22

500

450

645

430

370

495

850

750

725

O |lo|lo|o|o|o|o |o|Oo|N |k

720

O |lo|lo|o|o|o|o|o N |O N

O || || |Oo|O |+ |O|O W

o|lo|lo|o|o|o|NvN |O|O|O &

o|lo|lo|o|o|v|O|Oo | |O W

o ||| |NMN|JO|JO|O|O|O |

O |O |O |+ |O|O|O |O|O |0 |IN

O |o|r |O|O|O|O|O|O |O |®

O |+ |O|O|O|O|O|O|O|O v

= |lO|lOoO|o|o|o|o|o|o |o

oO|lo|lo|lo|o|o|o|o|o |w

O |O || |o|Oo|o|o|w]|O

o|lo|lo|lo|o|o|o|Nv |Oo |O

o|lo|lo|o|o|o |+ |O|O|OC

oO|lo|lo|o|o|d|O|O|O |O

o |lo|lo|lo|w]|o|o|o|o |o

o|o|o|Nv|O|O|O|O |O |O

o |OoO|NM |O|O|JO |O|O|O |O

o|NvV|Jo|lo|lo|o|o|o |o |o

N |Jo|]o|lo|lo|o|o|o |o |o
ojo|o|o|Oo|r|O|L]|O|OC

olojojlojo|lm,r|lOINIO|O

ROLL
WIDTH

1020

1020

1020

1020

1020

1020

1020

1020

1020

1020

1730

1730

1730

1730

1730

1730

1730

1730

1730

17301020

1730

Table 11. Iteration Matrix

In the next iteration, Step 1 and Step 2 are repeated for the matrix A@,

The algorithm stops at iteration k if there is no different u vector from

previous iterations. With our calculations, the Gilmore-Gomory algorithm

performed 6 iterations. The resulting optimal solution is listed below:

Table 12. Algorithm Result

Optimal Solution
# of Rolls 40 325 275 25 225 15 875 666 5 2,083
Order(mm) Cutting Pattern Optimal Dual Value
500 0 0 0 0 0 0 0 0 2 0 0,25
450 0 0 0 0 0 0 0 3 0 0 0,25
645 0 0 0 2 0 0 0 0 0 0 0,375
430 0 0 0 0 0 4 0 0 0 0 0,25
370 0 0 0 1 0 0 0 1 0 4 0,25
495 0 0 0 0 2 0 0 0 0 0 0,25
850 0 0 2 0 0 0 0 0 0 0 0,5
750 0 2 0 0 0 0 0 0 0 0 0,5
725 2 0 0 0 0 0 0 0 0 0 0,5
720 0 0 0 0 1 0 2 0 1 0 0,5
TRIM LOSS
CALCULATION | 112007475 825 | 1750 | 450 | 150 | 2538 | 66,6 | 50 | 521
(mm)
TOTAL TRIM
25024,85
LOSS (mm)

The verification of this algorithm is constructed by solving the problem

with the original model which includes all cutting patterns. The results show

that this algorithm also gives optimal solution.
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In addition, a lot of combinations of different standard roll widths (4-7-
8-10 and 11 different standard roll combinations) are analyzed with this

algorithm. In the appendix part, the reader can see the results.

When the reader sees the results, he/she can be sure that this
approach gives optimality without considering all cutting patterns.
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CHAPTER 10

RESULTS

In the thesis, mathematical was improved. This model was designed
according to eleven different rolls and all posible cutting pattern combinations
were occured . Gilmore-Gomory's Algorithm firstly was applied for standard
roll and then algorithm was improved and applied for eleven different roll
widths. The aim is minimizing number of used rolls while cutting process in
mathematical model and Gilmore-Gomory's Algorithm. So, results which
were taken from mathematical model and Gilmore-Gomory's Algorithm were
compared. It has seen that used cutting patterns and number of used rolls
were same. In order to show these solutions comparing tables were prepared.



# of used : Mathematical | Algorithm
rolls Roll widths model solution | solution
1020-1120-1220-1320-
11 1430-1530-1630-1730- 149,667 149,667
1830-1930-2000
1020-1120-1220-1430-
10 1530-1630-1730-1830- 149,667 149,667
1930-2000
1020-1220-1430-1530-
8 1730-1830-1930-2000 149,667 149,667
1020-1220-1430-1530-
7 1730-1830-2000 149,667 149,667
1020-1220-1430-1530-
6 1730-2000 149,667 149,667
1020-1220-1430-1530-
5 1730 185 185
4 1020-1220-1530-1730 185 185
3 1020-1220-1730 185 185
1 1730 185 185
1 1020 382,5 382,5

Table 13. Solution table for Mathematical model and Gilmore-Gomory

Algorithm

43
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CHAPTER 11

CONCLUSION

In conclusion, cutting stock problem was defined in detail. Surveys,
mathematical models, and heuristic applications were explained in the
literature surveys part. Mathematical model was developed and it was
improved according to our problem generating all possible cutting patterns in
order to find optimal solution and calculated trim loss which means that used
number of rolls while cutting processing. Then, Gilmore-Gomory Algorithm
was studied for only one roll width and this model was improved according to
different roll widths which is the first application in the literature. Before, all of
the studies in the literature were done for the one roll width. But in this thesis,
some different roll widths were used and calculated how many rolls should be
used while processing. Algorithm was studied with two,three, seven, eight,
ten and eleven different roll widths. So, demands were satisfied and how
many rolls which should be required for the production process were selected.
These studies were codded in an optimization programming language,
CPLEX. Solutions which were taken from mathematical model and improved
Gilmore-Gomory Algorithm were compared and it has been seen that

solutions were same.
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Initial Matrices for the different roll widths

APPENDIX A

A.1. Initial matrix for roll 2000 mm

A1

500
450
645
430
370
495
850
750
725
720

X1 Xa Xs Xa Xs Xe X7 Xg X9 Xio
4,0|0|0|]0jO0O|JO|O]O]O
o(4/;0|0|0|0jO0OjJO|O0]O
o(oj3|o0j0(0j0jJ0O|O0O0]O
ojojo|j4,0(0j]0jJ0O|O0]O
o(ojojo|5(0j0j0|0]O
o(ojo|jo0oj0(4j]0|J0O|O0]O
ojojojojo0f0j2j)j0|0]O0
o(ojojoj0l0j0}|2|0]0
ojojojojo0f0jo0j0O0|2]0
o(ojojojo0|l0j0jO|0]|2

47
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A.2. Initial matrix for roll 1930 mm

X1 X2 Xz Xa Xs Xe X7 Xs X9 Xio
500| 3

0
2

0

0|00

2

0|j0|0|O

2

0j0|j0|0|O

3

5

0/0|0|0]0]|0O]|O

2

0/]0/0]0]0|]0|]0]|]0]|O0

450{0|4]|]0|]0|0O|0O|0]0]0O]|O

645/ 0 | 0

A1 =

430{0|0|0|4|0|0|0]0|0O0]|O

370 0|00 |0

495/ 00| 0|00

850 0| 0|0|0|0|O

750/ 0] 0|0|0|0|0|O0

7250 0|0|0|J0O|O0O|O0O|0]2

720/ 0] 0|0|0|O0O|O0O|O0O|0]|O

A.3. Initial matrix for roll 1830 mm

X1 Xo Xz Xa Xs X X7 Xg Xo Xio

500 3

0
4
0
0
0
0
0
0
0
0

450| O

645| O

A1 =

430| O

370| O

495| 0

850| O

750| O

725| 0

720| 0

A.4. Initial matrix for roll 1730 mm

X1 X2 Xz Xa Xs Xe X7 Xs Xg Xio

500| 3

0
3
0
0
0
0
0
0
0
0

450| O

645| 0

A =

430| O

370| O

495| 0

850| O

750| O

725| 0

720| 0
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A.5. Initial matrix for roll 1630 mm

X1 X2 Xz X4 Xs Xe X7 Xs Xo Xio

500 3

0
3
0
0
0
0
0
0
0
0

450| 0

645| 0

A1:

430| O

370 O

495| 0

850| O

750| 0

725| 0

720| 0

A.6. Initial matrix for roll 1530 mm

X1 X2 X3 Xa X5 Xe X7 Xsg Xg Xio

500| 3

0

0
3
0
0
0
0
0
0
0
0

450| O

645| 0

AL =

430 O

370| O

495| 0

850| O

750| O

725| 0

720| O

A.7. Initial matrix for roll 1430 mm

X1 X2 Xz X4 Xs Xe X7 Xsg Xg Xio

500| 2

0
3
0
0
0
0
0
0
0
0

450| O

645| O

A =

430| O

370 O

495| 0

850| O

750| O

725| 0

720| 0
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A.8. Initial matrix for roll 1320 mm

X1 X2 Xz Xa Xs Xe X7 Xg Xo Xio
500{2(0|0|0|0O|O|0O]|O]|O]|O

0
1

450{0(2|0|0]0|0]|0]|0|0] O

645/0(0]2|0(0|0]|0]|0|0]| O

A1:

430{0(0|0|3]0(0]|0]|0|0] O

370{0(0|0|0(3|0|0|0|0]|O

495/0/0|0|0|0|2|0|0|0]| O

850/ 0(0|0|0j0|0|1]0|0]|O

750{0(0]0|0(0|0|0]|21|0]| O

725/0(0]0|0(0|0]|0|0 |1

720{0(0|0|0|0|0|0|0]O

A.9. Initial matrix for roll 1220 mm

X2 Xz X4 Xs X6 X7 Xg Xo Xio

X1
5002(0(0|0|0O|0O|O|O|O]O

1

450{0(2|0|{0|0|0|0|0|0O]| O
645/0|/0|1|0(0|0|0|0|0]| O

430{0(0|0|2|0|0|0|0|0]| O

A1

370/ 0/0|0|0(3|]0|0(0|0]| O

495{0(0|0|0|0|2|0|0|0]| O

850/ 0|/0|0|0(0|0|1({0|0]| O

750/ 0/0|0|0(0|0|0|1|0]| O

725/0/0|0|0(0|0|0O|0|1]|O0

720/ 0|0|0|0|0|0|0|0]|O

A.10. Initial matrix for roll 1120 mm

X2 Xz X4 X5 Xe X7 Xs Xo Xio

X1
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APPENDIX B

Gilmore-Gomory  Algorithm  Iterations using

different roll widths

B.1.1020mm-1120mm-1220mm-1430mm-1530mm-
1630mMm-1730mm-1830mm-1930mm-2000mm

1. Iteration

dec. | dec. | dec. | dec. | dec. | dec. | dec. | dec.

optimal value=)180,917 V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,25 0 1 0 0 0 0 1 0
dual v.2 0,25 0 0 0 0 0 1 0 0
dual v.3 0,33 1 0 1 0 0 0 0 0
dual v.4 0,25 0 0 0 0 0 0 0 0
dual v.5 0,2 1 0 0 0 1 0 0 1
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0 0
dual v.8 0,5 0 0 1 0 0 0 0 0
dual v.9 0,5 0 0 0 0 0 0 0 0
dual v.10 0,5 0 1 0 2 2 2 2 1

alpha=9,51
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2. lteration
dec. dec. | dec. | dec. | dec. | dec.
optimal value=)175,29 V1 V2 V3 V4 V5 V6
dual v.1 0,25 0 0 0 0 1 0
dual v.2 0,25 0 0 0 1 0 0
dual v.3 0,33 0 0 0 0 0 0
dual v.4 0,25 1 0 0 0 0 0
dual v.5 0,2 0 0 1 0 0 1
dual v.6 0,25 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0
dual v.8 0,5 0 0 0 0 0 0
dual v.9 0,5 1 2 2 2 2 1
dual v.10 0,375 0 0 0 0 0 0
alpha=9,516
3. lteration
dec. dec. | dec. | dec. | dec.
optimal value=)166,91 V1 V2 V3 V4 V5
dual v.1 0,2 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0
dual v.3 0,33 0 0 1 0 0
dual v.4 0,25 1 0 1 1 0
dual v.5 0,2 0 0 0 0 1
dual v.6 0,25 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0
dual v.8 0,5 1 2 1 2 1
dual v.9 0,4 0 0 0 0 0
dual v.10 0,4 0 0 0 0 0
alpha=9,39
4. Iteration
dec. dec. | dec. | dec. | dec. | dec. | dec. | dec.
optimal value=)158,79 V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,2 0 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0 0
dual v.3 0,33 0 0 0 0 1 0 0 0
dual v.4 0,25 0 3 1 0 1 1 0 0
dual v.5 0,2 1 0 1 0 0 0 3 0
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,5 1 0 0 2 1 1 0 1
dual v.8 0,375 0 0 0 0 0 0 0 0
dual v.9 0,4 0 0 0 0 0 0 0 1
dual v.10 0,4 0 0 1 0 0 1 0 0
alpha=8,56




5. lteration
dec. dec. | dec. | dec. | dec.
optimal value=)156,5 V1 V2 V3 V4 V5
dual v.1 0,2 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0
dual v.3 0,33 0 1 1 0 0
dual v.4 0,166 0 0 0 0 0
dual v.5 0,2 0 0 1 1 0
dual v.6 0,25 1 0 0 0 0
dual v.7 0,5 1 1 1 1 1
dual v.8 0,416 0 0 0 1 1
dual v.9 0,4 0 0 0 0 0
dual v.10 0,4 0 0 0 0 0
alpha=8,497
6. Iteration
dec. dec. | dec. | dec. | dec. | dec.
optimal value=)155,625 V1 V2 V3 V4 V5 V6
dual v.1 0,833 0 0 0 0 0 0
dual v.2 0,833 0 0 0 0 0 0
dual v.3 0,33 0 0 1 0 0 0
dual v.4 0,166 0 0 0 1 0 0
dual v.5 0,833 0 1 0 0 0 0
dual v.6 0,25 0 0 0 0 1 0
dual v.7 0,5 1 0 0 0 0 1
dual v.8 0,416 0 0 0 0 0 0
dual v.9 0,458 0 0 0 0 0 0
dual v.10 0,458 0 1 1 2 2 1
alpha=8,662
7. lteration
dec. dec. | dec. | dec. | dec. | dec. | dec.
optimal value=)153,236 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 0 0 0 0 0 0 0
dual v.4 0,244 0 1 1 4 1 2 2
dual v.5 0,2 0 0 1 0 0 1 0
dual v.6 0,25 1 2 0 0 0 0 0
dual v.7 0,422 0 0 0 0 0 0 0
dual v.8 0,377 0 0 0 0 0 0 0
dual v.9 0,4 1 0 1 0 2 1 1
dual v.10 0,375 0 0 0 0 0 0 0
alpha=8,367
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8. lteration
dec. dec. | dec. | dec. | dec.
optimal value=)152,292 V1 V2 V3 V4 V5
dual v.1 0,22 0 0 0 0 0
dual v.2 0,22 0 0 0 0 1
dual v.3 0,33 0 0 1 0 1
dual v.4 0,22 0 0 1 1 0
dual v.5 0,166 0 0 0 0 0
dual v.6 0,25 2 2 0 0 0
dual v.7 0,444 0 0 0 1 0
dual v.8 0,388 0 0 0 0 0
dual v.9 0,388 0 1 1 0 0
dual v.10 0,375 0 0 0 1 0
alpha=7,895
9. lteration
dec. dec. | dec.
optimal value=)151,354 V1 V2 V3
dual v.1 0,208 0 0 0
dual v.2 0,208 0 0 0
dual v.3 0,333 1 0 0
dual v.4 0,208 0 0 0
dual v.5 0,1875 0 0 1
dual v.6 0,25 0 1 1
dual v.7 0,416 0 0 0
dual v.8 0,395 0 0 0
dual v.9 0,395 1 2 1
dual v.10 0,375 0 0 0
alpha=8,007
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10. Iteration
dec. dec. | dec. | dec. | dec. | dec. | dec. | dec.
optimal value=)151,131 V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,25 0 0 0 0 0 0 0 0
dual v.2 0,25 1 3 1 3 4 1 3 2
dual v.3 0,33 0 0 1 0 0 0 1 0
dual v.4 0,214 0 0 1 0 0 0 0 0
dual v.5 0,196 2 0 0 1 0 4 0 0
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,41 0 0 0 0 0 0 0 0
dual v.8 0,392 0 0 0 0 0 0 0 0
dual v.9 0,375 0 0 0 0 0 0 0 1
dual v.10 0,375 0 0 0 0 0 0 0 0
alpha=8,244
11. lteration
dec. dec. | dec. | dec.
optimal value=)150,532 V1 V2 V3 V4
dual v.1 0,25 0 0 1 1
dual v.2 0,222 0 0 0 0
dual v.3 0,333 0 0 0 0
dual v.4 0,212 0 0 0 0
dual v.5 0,194 2 3 0 1
dual v.6 0,25 2 0 0 0
dual v.7 0,412 0 0 0 0
dual v.8 0,393 0 0 2 1
dual v.9 0,375 0 0 0 0
dual v.10 0,375 0 1 0 0
alpha=7,967
12. lteration
dec. dec.
optimal value=)150,162 V1 V2
dual v.1 0,212 0 0
dual v.2 0,222 0 0
dual v.3 0,333 0 0
dual v.4 0,212 0 0
dual v.5 0,194 0 1
dual v.6 0,25 1 1
dual v.7 0,412 0 0
dual v.8 0,393 2 1
dual v.9 0,375 0 0
dual v.10 0,375 0 0
alpha=7,967




13. lteration
dec. dec. | dec. | dec.
optimal value=)149,792 V1 V2 V3 V4
dual v.1 0,222 0 0 0 0
dual v.2 0,222 1 0 0 2
dual v.3 0,333 0 1 2 0
dual v.4 0,208 0 0 1 0
dual v.5 0,194 0 2 0 1
dual v.6 0,222 0 0 0 0
dual v.7 0,416 0 0 0 0
dual v.8 0,388 0 0 0 0
dual v.9 0,388 1 0 0 1
dual v.10 0,374 0 0 0 0
alpha=7,967
14. Iteration
optimal value=)149,667
alpha=7,932

B.2.1020mm-1220mm-1430mm-1530mm-1730mm-
1830mMm-1930mm-2000mm

1. lteration

dec. dec. dec. dec. dec. | dec. | dec. | dec

optimal value=)180,917 | V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,25 0 1 0 0 0 0 0 1
dual v.2 0,25 0 0 0 0 0 0 1 0
dual v.3 0,333 1 0 1 0 0 0 0 0
dual v.4 0,25 0 0 0 0 0 0 0 0
dual v.5 0,2 1 0 0 0 0 1 0 0
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0 0
dual v.8 0,5 0 0 0 0 0 0 0 0
dual v.9 0,5 0 0 0 0 0 0 0 0
dual v.10 0,5 0 1 1 2 2 2 2 2

alpha=7,81




2. lteration
dec. dec. dec. | dec. | dec. | dec.
optimal value=)175,29 V1 V2 V3 V4 V5 V6
dual v.1 0,25 0 0 0 0 0 1
dual v.2 0,25 0 0 0 0 1 0
dual v.3 0,33 0 1 0 0 0 0
dual v.4 0,25 1 0 0 0 0 0
dual v.5 0,2 0 0 0 1 0 0
dual v.6 0,25 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0
dual v.8 0,5 0 0 0 0 0 0
dual v.9 0,5 1 1 2 2 2 2
dual v.10 0,375 0 0 0 0 0 0
alpha=7,81
3. lteration
dec. dec. dec. dec. | dec.
optimal value=)166,91 V1 V2 V3 V4 V5
dual v.1 0,2 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0
dual v.3 0,33 0 1 0 1 0
dual v.4 0,25 1 0 0 1 1
dual v.5 0,2 0 0 0 0 0
dual v.6 0,25 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0
dual v.8 0,5 1 1 2 1 2
dual v.9 04 0 0 0 0 0
dual v.10 0,4 0 0 0 0 0
alpha=7,69
4. lteration
dec. dec. dec. dec. | dec. | dec.
optimal value=)158,79 Vi1 V2 V3 V4 V5 V6
dual v.1 0,2 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0
dual v.3 0,33 0 0 0 0 1 0
dual v.4 0,25 0 3 1 0 1 1
dual v.5 0,2 1 0 1 0 0 0
dual v.6 0,25 0 0 0 0 0 0
dual v.7 0,5 1 0 0 2 1 1
dual v.8 0,375 0 0 0 0 0 0
dual v.9 0,4 0 0 0 0 0 0
dual v.10 0,4 0 0 1 0 0 1
alpha=7,06
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5. lteration
dec. dec.
optimal value=)154,66 V1 V2
dual v.1 0,2 0 0
dual v.2 0,2 0 0
dual v.3 0,33 0 0
dual v.4 0,09 0 0
dual v.5 0,2 1 0
dual v.6 0,25 0 1
dual v.7 0,5 0 0
dual v.8 0,45 2 2
dual v.9 04 0 0
dual v.10 0,4 0 0
alpha=7,16
6. Iteration
dec. dec. dec. dec.
optimal value=)151,208 V1 V2 V3 V4
dual v.1 0,2 0 0 0 0
dual v.2 0,2 0 0 0 0
dual v.3 0,33 0 0 0 0
dual v.4 0,25 1 4 1 2
dual v.5 0,2 1 0 0 1
dual v.6 0,25 0 0 0 0
dual v.7 0,416 0 0 0 0
dual v.8 0,375 0 0 0 0
dual v.9 0,4 1 0 2 1
dual v.10 0,333 0 0 0 0
alpha=6,93
7. lteration
dec. dec.
optimal value=)150,95 V1 V2
dual v.1 0,2 0 0
dual v.2 0,2 0 0
dual v.3 0,33 0 0
dual v.4 0,2 0 0
dual v.5 0,2 0 1
dual v.6 0,25 0 0
dual v.7 0,466 0 1
dual v.8 0,375 0 0
dual v.9 0,4 2 1
dual v.10 0,33 0 0
alpha=6,724
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8. lteration
dec. dec. dec.
optimal value=)150,29 V1 |dec.V2| V3 V4
dual v.1 0,2 0 0 0 0
dual v.2 0,2 0 0 0 0
dual v.3 0,33 0 0 0 0
dual v.4 0,2 0 0 0 0
dual v.5 0,2 0 0 0 0
dual v.6 0,25 1 2 1 1
dual v.7 0,4 0 0 0 0
dual v.8 0,375 0 0 0 0
dual v.9 0,4 0 0 0 0
dual v.10 0,4 1 1 2 2
alpha=6,66
9. lteration
dec. dec. dec. dec. dec dec
optimal value=)150,25 V1 V2 V3 V4 V5 V6
dual v.1 0,233 0 0 0 0 0 0
dual v.2 0,333 0 0 0 0 1 0
dual v.3 0,333 0 0 0 0 0 0
dual v.4 0,2083 0 0 0 0 0 0
dual v.5 0,2 0 4 2 3 4 4
dual v.6 0,25 1 0 2 0 0 1
dual v.7 0,416 0 0 0 0 0 0
dual v.8 0,375 0 0 0 0 0 0
dual v.9 0,383 1 0 0 0 0 0
dual v.10 0,375 0 0 0 1 0 0
alpha=6,57
10. Iteration
dec. dec.
optimal value=)150 V1 V2
dual v.1 0,2083 0 0
dual v.2 0,2083 0 0
dual v.3 0,333 0 0
dual v.4 0,2083 0 0
dual v.5 0,1875 0 0
dual v.6 0,25 2 1
dual v.7 0,416 0 0
dual v.8 0,375 0 0
dual v.9 0,395 1 2
dual v.10 0,375 0 0
alpha=6,593
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11. Iteration
dec. dec. dec. | dec. | dec. | dec. | dec.

optimal value=)149,94 Vi V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 0 0 0 0 0 0
dual v.2 0,25 1 3 1 3 4 2 3
dual v.3 0,333 0 0 1 0 0 1 1
dual v.4 0,21875 0 0 1 0 0 0 0
dual v.5 0,1875 0 0 0 1 0 1 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,4375 0 0 0 0 0 0 0
dual v.8 0,375 1 0 0 0 0 0 0
dual v.9 0,375 0 0 0 0 0 0 0
dual v.10 0,34375 0 0 0 0 0 0 0
alpha=6,736

12. Iteration

dec. dec. dec.

optimal value=)149,79 V1 V2 V3
dual v.1 0,22 0 0 0
dual v.2 0,22 1 0 2
dual v.3 0,33 0 2 0
dual v.4 0,2083 0 1 0
dual v.5 0,194 0 0 1
dual v.6 0,222 0 0 0
dual v.7 0,416 0 0 0
dual v.8 0,38 0 0 0
dual v.9 0,38 1 0 1
dual v.10 0,374 0 0 0
alpha=8,59

12. lteration

optimal value=)149,667

alpha=6,532
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B.3.1020mm-1220mm-1430mm-1530mm-1730mm-
1830mm-2000mm

1. Iteration

dec. dec. dec. dec. dec. dec. dec

optimal value=)180,917 | V1 V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 1 0 0 0 0 1
dual v.2 0,25 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,25 0 0 0 0 0 0 0
dual v.5 0,2 1 0 0 0 0 1 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0
dual v.8 0,5 0 0 1 0 0 0 0
dual v.9 0,5 0 0 0 0 0 0 0
dual v.10 0,5 0 1 0 2 2 2 2

alpha=6,56
2. Iteration

dec. dec. dec. dec. dec. dec. dec.

optimal value=)175,91 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,25 0 1 0 0 0 0 1
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,25 0 0 0 0 0 0 0
dual v.5 0,2 1 0 0 0 0 1 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0
dual v.8 0,5 0 1 0 0 0 0 0
dual v.9 0,5 0 0 1 2 2 2 2
dual v.10 0,4 0 0 0 0 0 0 0

alpha=6,56




3. Iteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)166,91 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 1 0
dual v.4 0,25 0 1 0 0 0 1 1
dual v.5 0,2 1 0 0 0 0 0 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0
dual v.8 0,5 0 1 1 2 2 1 2
dual v.9 0,4 0 0 0 0 0 0 0
dual v.10 0,4 0 0 0 0 0 0 0
alpha=6,44
4, Iteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)158,79 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 0 0 0 0 0
dual v.4 0,25 0 0 3 1 0 0 1
dual v.5 0,2 1 1 0 1 0 0 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,5 0 1 0 0 2 2 1
dual v.8 0,375 0 0 0 0 0 0 0
dual v.9 0,4 0 0 0 0 0 0 0
dual v.10 0,4 0 0 0 1 0 0 1
alpha=5,98
5. lteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)154,72 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,125 0 0 0 0 0 0 0
dual v.5 0,2 1 1 0 0 0 0 1
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,5 0 1 0 0 0 2 1
dual v.8 0,4375 0 0 1 2 2 0 1
dual v.9 0,4 0 0 0 0 0 0 0
dual v.10 0,375 0 0 0 0 0 0 0

alpha=6,01
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6. Iteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)152,20 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 0 0 0 0 0 1
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,216 0 0 0 1 0 0 0
dual v.5 0,2 1 0 2 1 0 1 0
dual v.6 0,25 0 1 0 0 2 0 0
dual v.7 0,408 0 0 0 0 0 0 0
dual v.8 0,391 0 0 0 0 0 0 0
dual v.9 0,4 0 1 0 1 1 2 2
dual v.10 0,375 0 0 0 0 0 0 0
alpha=5,676
7. lteration
dec. dec. dec. dec. dec. dec. dec.
optimal value=)151,91 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,2 0 0 0 0 0 0 0
dual v.5 0,2 1 0 2 0 0 1 0
dual v.6 0,25 0 1 0 0 0 0 1
dual v.7 0,4 0 0 0 0 0 0 0
dual v.8 0,4 0 0 0 0 0 0 0
dual v.9 0,4 0 0 0 2 0 0 0
dual v.10 0,4 0 1 0 0 1 2 2
alpha=5,66
8. lteration
dec. dec. dec. dec. dec. dec. dec.
optimal value=)151,70 Vi1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,216 0 0 0 1 0 0 0
dual v.5 0,2 1 0 2 1 0 1 0
dual v.6 0,25 0 1 0 0 2 0 1
dual v.7 0,408 0 0 0 0 0 0 0
dual v.8 0,391 0 0 0 0 0 0 0
dual v.9 0,4 0 1 0 1 1 2 2
dual v.10 0,375 0 0 0 0 0 0 0
alpha=7,895
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9. lteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)151,208 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 0 0 0 0 0 0
dual v.2 0,25 0 1 3 0 3 4 3
dual v.3 0,33 1 0 0 0 0 0 1
dual v.4 0,216 0 0 0 0 0 0 0
dual v.5 0,2 1 2 0 4 1 0 0
dual v.6 0,25 0 0 0 0 0 0 0
dual v.7 0,408 0 0 0 0 0 0 0
dual v.8 0,391 0 0 0 0 0 0 0
dual v.9 0,375 0 0 0 0 0 0 0
dual v.10 0,375 0 0 0 0 0 0 0
alpha=5,76
10. Iteration
dec. | dec. dec. dec. dec. dec. dec.
optimal value=)150,652 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,25 0 1 0 0 0 0 1
dual v.2 0,25 0 0 0 0 0 0 0
dual v.3 0,33 1 0 1 0 0 0 0
dual v.4 0,21 0 0 0 0 0 0 0
dual v.5 0,2 1 0 2 4 2 3 4
dual v.6 0,25 0 0 0 0 2 0 0
dual v.7 0,408 0 0 0 0 0 0 0
dual v.8 0,391 0 0 0 0 0 0 0
dual v.9 0,375 0 0 0 0 0 0 0
dual v.10 0,375 0 1 0 0 0 1 0
11. Iteration
dec. | dec. | dec. | dec. dec. dec. dec.
optimal value=)149,76 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,22 0 0 0 0 0 0 0
dual v.2 0,222 0 0 0 0 0 0 0
dual v.3 0,333 1 0 0 0 0 0 0
dual v.4 0,24 0 1 3 1 4 0 2
dual v.5 0,194 1 0 0 1 0 0 3
dual v.6 0,22 0 2 0 0 0 1 0
dual v.7 0,425 0 0 0 0 0 0 0
dual v.8 0,379 0 0 0 0 0 0 0
dual v.9 0,388 0 0 0 1 0 2 0
dual v.10 0,333 0 0 0 0 0 0 0

alpha=5,69

64



12. Iteration
dec. | dec. | dec. dec. dec. dec. dec.
optimal value=)149,66 V1 V2 V3 V4 V5 V6 V7
dual v.1 0,2 0 1 0 0 0 0 1
dual v.2 0,2 0 0 0 0 0 0 0
dual v.3 0,333 1 0 1 0 2 0 0
dual v.4 0,2 0 0 0 0 1 0 0
dual v.5 0,2 1 0 2 0 0 1 0
dual v.6 0,2 0 0 0 0 0 0 0
dual v.7 0,39 0 0 0 0 0 0 0
dual v.8 0,4 0 0 0 0 0 0 0
dual v.9 0,4 0 0 0 0 0 0 0
dual v.10 0,4 0 1 0 2 0 2 2
alpha=5,52
13. lteration
optimal value=)149,667

B.4.1020mm-1220mm-1530mm-1730mm

1. lteration
dec. | dec. dec. dec.
optimal value=)197,5 Vi V2 V3 V4
dual v.1 0,33 0 1 0 0
dual v.2 0,33 0 0 0 0
dual v.3 0,5 1 1 1 2
dual v.4 0,25 0 0 1 0
dual v.5 0,25 1 0 0 1
dual v.6 0,33 0 0 1 0
dual v.7 0,5 0 0 0 0
dual v.8 0,5 0 0 0 0
dual v.9 0,5 0 0 0 0
dual v.10 0,5 0 0 0 0
alpha=3,91




2. Iteration
dec. | dec. dec. dec.
optimal value=)191,25 V1 V2 V3 V4
dual v.1 0,33 0 1 0 0
dual v.2 0,33 2 0 0 3
dual v.3 0,375 0 0 0 0
dual v.4 0,25 0 0 0 0
dual v.5 0,25 0 0 0 1
dual v.6 0,33 0 0 0 0
dual v.7 0,5 0 0 0 0
dual v.8 0,5 0 0 0 0
dual v.9 0,5 0 0 0 0
dual v.10 0,5 0 1 2 0
alpha=3,73
3. lteration
dec. | dec. dec. dec.
optimal value=)189,58 Vi V2 V3 V4
dual v.1 0,33 1 1 0 0
dual v.2 0,25 0 0 0 0
dual v.3 0,375 0 0 0 0
dual v.4 0,25 0 0 0 0
dual v.5 0,25 0 0 0 0
dual v.6 0,33 1 0 0 2
dual v.7 0,5 0 0 0 0
dual v.8 0,5 0 0 0 0
dual v.9 0,5 0 0 0 0
dual v.10 0,5 0 1 2 1
alpha=3,65
4. lteration
dec. | dec. dec. dec.
optimal value=)185,83 Vi V2 V3 V4
dual v.1 0,33 2 1 0 2
dual v.2 0,25 0 0 0 0
dual v.3 0,375 0 0 0 0
dual v.4 0,25 0 0 0 0
dual v.5 0,25 0 0 0 0
dual v.6 0,25 0 0 0 0
dual v.7 0,5 0 0 0 0
dual v.8 0,5 0 0 0 0
dual v.9 0,5 0 0 0 0
dual v.10 0,5 0 1 2 1

alpha=3,65
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5. lteration
dec. | dec. dec. dec.
optimal value=)185 V1 V2 V3 V4
dual v.1 0,25 0 1 0 0
dual v.2 0,25 0 0 0 0
dual v.3 0,375 1 0 0 0
dual v.4 0,25 0 0 0 0
dual v.5 0,25 1 0 0 0
dual v.6 0,25 0 0 0 0
dual v.7 0,5 0 0 0 0
dual v.8 0,5 0 0 0 0
dual v.9 0,5 0 0 0 0
dual v.10 0,5 0 1 2 2
alpha=3,375
6. Iteration

optimal value=)185
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B.5.1020mm-1120mm-1220mm-1320mm-1430mm-
1530mMm-1630mm-1730mm-1830mm-1930mm-

2000mm
1. Iteration
dec. dec. dec. dec. dec. dec. dec. dec
optimal value=)180,917 V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,25 0 0 1 0 0 0 0 1
dual v.2 0,25 0 0 0 0 0 0 1 0
dual v.3 0,33 1 0 0 1 0 0 0 0
dual v.4 0,25 0 0 0 0 0 0 0 0
dual v.5 0,2 1 1 0 0 0 1 0 0
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0 0 0
dual v.8 0,5 0 1 0 0 0 0 0 0
dual v.9 0,5 0 0 0 0 0 0 0 0
dual v.10 0,5 0 0 1 1 2 2 2 2
alpha=10,26
2. Iteration
dec. dec. dec. dec. dec. dec.
optimal value=)175,29 V1 V2 V3 V4 V5 V6
dual v.1 0,25 0 0 0 0 0 1
dual v.2 0,25 0 0 0 0 1 0
dual v.3 0,33 0 0 1 0 0 0
dual v.4 0,25 0 1 0 0 0 0
dual v.5 0,2 1 0 0 1 0 0
dual v.6 0,25 0 0 0 0 0 0
dual v.7 0,5 0 0 0 0 0 0
dual v.8 0,5 0 0 0 0 0 0
dual v.9 0,5 1 1 1 2 2 2
dual v.10 0,375 0 0 0 0 0 0

alpha=10,26
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3. Iteration
dec. dec. dec. dec.
optimal value=)166,91 V1 V2 V3 V4
dual v.1 0,2 0 0 0 0
dual v.2 0,2 0 0 0 0
dual v.3 0,33 1 0 1 0
dual v.4 0,25 0 0 1 1
dual v.5 0,2 0 0 0 0
dual v.6 0,25 0 0 0 0
dual v.7 0,5 0 0 0 0
dual v.8 0,5 1 2 1 2
dual v.9 0,4 0 0 0 0
dual v.10 0,4 0 0 0 0
alpha=10,14
4, Iteration
dec. dec. dec. dec. dec. dec. dec. dec.
optimal value=)158,79 V1 V2 V3 V4 V5 V6 V7 V8
dual v.1 0,2 0 0 0 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0 0 0 0
dual v.3 0,33 0 0 0 0 0 0 1 0
dual v.4 0,25 0 0 3 1 0 0 1 1
dual v.5 0,2 3 1 0 1 0 0 0 0
dual v.6 0,25 0 0 0 0 0 0 0 0
dual v.7 0,5 0 1 0 0 1 2 1 1
dual v.8 0,375 0 0 0 0 0 0 0 0
dual v.9 0,4 0 0 0 0 1 0 0 0
dual v.10 0,4 0 0 0 1 0 0 0 1
alpha=9,31
5. lteration
dec. dec. dec. dec.
optimal value=)154,66 Vi V2 V3 V4
dual v.1 0,2 0 0 0 0
dual v.2 0,2 1 0 0 0
dual v.3 0,33 0 0 0 0
dual v.4 0,099 0 0 0 0
dual v.5 0,2 0 0 1 0
dual v.6 0,25 0 0 0 1
dual v.7 0,5 1 1 0 0
dual v.8 0,45 0 1 2 2
dual v.9 0,4 0 0 0 0
dual v.10 0,4 0 0 0 0
alpha=9,46




6. Iteration
dec. dec. dec. dec. dec.
optimal value=)154,66 V1 V2 V3 V4 V5
dual v.1 0,2 0 0 0 0 0
dual v.2 0,2 0 0 0 0 0
dual v.3 0,33 0 0 0 0 0
dual v.4 0,25 1 2 4 1 2
dual v.5 0,2 1 0 0 0 1
dual v.6 0,25 0 0 0 0 0
dual v.7 0,416 0 0 0 0 0
dual v.8 0,375 0 0 0 0 0
dual v.9 0,4 1 1 0 2 1
dual v.10 0,333 0 0 0 0 0
alpha=9,18
7. Iteration
dec. dec.
optimal value=)150,95 Vi V2
dual v.1 0,2 0 0
dual v.2 0,2 0 0
dual v.3 0,33 0 0
dualv.4 0,2 0 0
dual v.5 0,2 0 1
dual v.6 0,25 0 0
dual v.7 0,466 0 1
dual v.8 0,375 0 0
dual v.9 0,4 2 1
dual v.10 0,333 0 0
alpha=8,862
8. lteration
dec. dec. dec. dec.
optimal value=)150,29 V1 V2 V3 V4
dual v.1 0,2 0 0 0 0
dual v.2 0,2 0 0 0 0
dual v.3 0,33 0 2 0 0
dual v.4 0,2 0 0 0 0
dual v.5 0,2 0 0 1 0
dual v.6 0,25 1 0 1 1
dual v.7 0,4 0 0 0 0
dual v.8 0,375 0 0 0 0
dual v.9 0,4 0 0 1 0
dual v.10 0,4 1 0 0 2
alpha=8,862
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9. Iteration
dec. dec. dec. dec. dec. dec. dec. dec.
optimal value=)150,25 Vi V2 V3 V4 V5 V6 V7 V8
dual v.1 0,233 0 0 0 0 0 0 0 0
dual v.2 0,233 0 1 0 0 0 0 1 0
dual v.3 0,333 0 0 0 0 0 0 0 0
dual v.4 0,2083 0 0 0 0 0 0 0 0
dual v.5 0,2 0 1 4 3 2 3 4 4
dual v.6 0,25 1 1 0 1 2 0 0 1
dual v.7 0,416 0 0 0 0 0 0 0 0
dual v.8 0,375 0 0 0 0 0 0 0 0
dual v.9 0,383 1 0 0 0 0 0 0 0
dual v.10 0,375 0 0 0 0 0 1 0 0
alpha=8,879
10. Iteration
dec. dec.
optimal value=)150 V1 V2
dual v.1 0,208 0 0
dual v.2 0,208 0 0
dual v.3 0,333 0 0
dual v.4 20,8 0 0
dual v.5 0,1875 0 0
dual v.6 0,25 2 1
dual v.7 0,416 0 0
dual v.8 0,375 0 0
dual v.9 0,39583 1 2
dual v.10 0,375 0 0
alpha=8,88
11. Iteration
dec. dec. dec. dec. dec. dec. dec. dec. dec.
optimal value=)149,94 V1 V2 V3 V4 V5 V6 V7 V8 V9
dual v.1 0,25 0 0 0 0 0 0 0 0 0
dual v.2 0,25 1 1 3 1 2 3 4 2 3
dual v.3 0,333 1 0 0 1 0 0 0 1 1
dual v.4 0,21875 0 0 0 1 0 0 0 0 0
dual v.5 0,1875 0 2 0 0 0 1 0 1 0
dual v.6 0,25 0 0 0 0 0 0 0 0 0
dual v.7 0,4375 0 0 0 0 0 0 0 0 0
dual v.8 0,375 0 0 0 0 0 0 0 0 0
dual v.9 0,375 0 0 0 0 1 0 0 0 0
dual v.10 0,34375 0 0 0 0 0 0 0 0 0
alpha=8,8




12. Iteration
dec. dec. dec.
optimal value=)149,79 Vi V2 V3
dual v.1 0,2 0 0 0
dual v.2 0,2 1 0 2
dual v.3 0,333 0 2 0
dual v.4 0,2 0 1 0
dual v.5 0,2 0 0 1
dual v.6 0,2 0 0 0
dual v.7 0,4 0 0 0
dual v.8 0,4 0 0 0
dual v.9 0,4 1 0 1
dual v.10 0,4 0 0 0
alpha=8,59
12. Iteration

optimal value=)149,667

alpha=8,59
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APPENDIX C

Parts of trim loss calculation table

73

C.1. Image parts of trim loss calculation table for
width 1020 mm and 1730 mm

aij

N
=

N
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=
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OoO|lOoO|0O|jO|O(Rr|O|O|W]|O
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WIDTH OF ROLL

1730

1730

1730

1730

1730

1730

1730

1730

1730

1730

# OF ROLLS

TRIM LOSS CALCULATION

USED AREA PER PATTERN

13760

45900

48000

11840

10320

4965

5175

1575

1475

1465

TOTAL AREA PER
PATTERN

13840

46710

55360

13840

10380

5190

5190

1730

1730

1730

LOSS PER PATTERN

80

810

7360

2000

60

225

15

155

255

265
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C.2. Image parts of trim loss calculation table for
width 1020 mm,1220 mm ,1730 mm

aij 54 |61 75 76 |97 105 109
500 0 0 1 0 0 0 0
450 0 0 0 0 0 0 0
645 0 0 0 0 0 0 0
430 4 0 0 0 0 0 0
370 0 0 3 4 0 0 0
495 0 0 0 0 0 0 0
850 0 1 0 0 0 0 1
750 0 1 0 0 1 0 0
725 0 0 0 0 1 2 0
720 0 0 0 0 0 0 1

WIDTH OF ROLL 1730|1730 (1730 |1730(1730 |1730 |1730

#OFROLLS |3 [33 |10 |2 |12 [34 [22 |
TRIM LOSS
CALCULATION
USED AREA PER
PATTERN 5160 | 52800 | 16100 | 2960 | 17700 | 49300 | 34540
TOTAL AREA PER
PATTERN 5190 | 57090 | 17300 | 3460 | 20760 | 58820 | 38060
LOSS PER PATTERN |30 [4290 |1200 [500 [3060 |9520 |3520
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C.3. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1530 mm and 1730 mm

aij
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1730
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4

1
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8

1

6

|1

|1

TRIM LOSS
CALCULATION

USED AREA PER
PATTERN

6000

1440

88000

12880

1650

10320

1725

1475

TOTAL AREA PER
PATTERN

6120

1530

95150

13840

1730

10380

1730

1730

LOSS PER PATTERN

120

90

7150

960

80

60

255
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C.4. Image parts of trim loss calculation table for
width 1020 mm,1220 mm, 1430 mm, 1530 mm and

1730 mm

aij
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154

157
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175
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500

450

645

430
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495

850

750

725

720

O |O|NV|[O|O|O|O|O|O|O
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O|Rr|Rr|OO|O|O|O|O|O
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WIDTH OF ROLL

1530

1530

1530

1530

1530

1530

1730

1730

# OF ROLLS

TRIM LOSS
CALCULATION

USED AREA PER
PATTERN

48000

11840

1475

1465

33350

1445

13760

45900

TOTAL AREA PER
PATTERN

48960

12240

1530

1530

35190

1530

13840

46710

LOSS PER
PATTERN

960

400

55

65

1840

85

80

810
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C.5. Image parts of trim loss calculation table for
width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730

mm and 2000 mm

aij 271 (343 |378 434 |439 |440 |441 450 |486 |488 |490

500

450

645

430

370

495

850

750

725

o|lo|o|o|lo|r|o|n|o|o
o|Nv|o|o|lr|o|lojo|o|o
o|lo|o|o|o|o|o|jw|o|o
—|lo|o|r|o|lo|r|o|o|o
o|v|o|o|lo|lo|lo|jo|o|-
o|v|o|o|lo|lolr|o|o|o
o|lr|o|o|lo|r|olo|n|o
o|lr|o|r|o|lr|ojo|o|o
o|lo|o|o|o|r|o|o|o]|+
o|lo|r|o|lo|lw|lo|o|o|o
o|lo|o|o|lo|lw|nv|o|o|o

720

WIDTH OF ROLL 1730|2000 |2000 |2000 |2000 |2000 |2000 |2000 |2000 |2000 2000

# OF ROLLS 1 13 Jie [45 [8 ]9 Jio J0 [2 [1 [3 |
TRIM LOSS
CALCULATION
USED AREA PER
PATTERN 1660 | 25285 | 30960 | 90000 | 15600 | 16920 | 19950 | 19450 | 3960 | 1860 | 5910
TOTAL AREA PER
PATTERN 1730 | 26000 | 32000 | 90000 | 16000 | 18000 | 20000 | 20000 | 4000 | 2000 | 6000
LOSS PERPATTERN |70 [715 [1040 |0 400 [1080 [50 |550 [40 [140 [90
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C.6. Image parts of trim loss calculation table for
width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730
mm , 1830 mm and 2000 mm

aij 270 [488 520 [576 [581 [582 [583 [592

500

450

645

430

370

495

850

750

725

720

WIDTH OF ROLL |1730[2000 2000 [2000 [2000 |2000]2000 |2000

#OFROLLS |1 [45 16 |45 |6 |2 [0 |9 |
TRIM LOSS
CALCULATION

USED AREA PER

PATTERN 1720 | 88650 | 30960 | 90000 | 11700 | 3760 | 19950 | 17505

TOTAL AREA PER

PATTERN 1730 | 90000 | 32000 | 90000 | 12000 | 4000 | 20000 | 18000
LOSS PER PATTERN |10 [1350 [1040 |0 300 [240 |50  [495

o|lo|lo|o|lo|o|r|n|o|o
o|lr|r|o|r|o|lo|o|lo]|o
o|lo|lo|o|o|o|o|w|lo|o
~|lo|o|r|o|lo|r|o|o|o
o|v|o|lolo|olo|o|o]|-
o|v|o|lolo|olr|olo|o
o|lr|o|o|lo|r|olo|Nv|o
o|lr|o|r|o|lr|o|jo|o|o
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C.7. Image parts of trim loss calculation table for
width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730

mm , 1830 mm, 1930 mm and 2000 mm

aij
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755

760
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450

645
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370

495

850

750

725

720
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O|lO|N|ORr|O|O|O|O|O
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WIDTH OF ROLL

1730

2000

2000

2000

2000

2000

2000

2000

# OF ROLLS

1

[13

32

16

| 45

|7

[ 10

|10

TRIM LOSS
CALCULATION

USED AREA PER
PATTERN

1720

25285

63840

30960

90000

13650

18800

19950

TOTAL AREA PER
PATTERN

1730

26000

64000

32000

90000

14000

20000

20000

LOSS PER PATTERN

10

715

160

1040

350

1200

50
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C.8. Image parts of trim loss calculation table for
width 1020 mm,1220 mm,1430 mm, 1530 mm, 1630
mm, 1730 mm , 1830 mm, 1930 mm and 2000 mm

aij 438 |688 (753 |779 |788 |844 849 |850 851
500 0 0 0 0 0 0 1 0 0
450 0 0 0 0 0 0 0 0 2
645 2 0 0 0 3 0 0 0 0
430 0 0 0 0 0 1 0 1 0
370 1 3 0 0 0 0 0 0 1
495 0 0 1 1 0 0 0 0 0
850 0 0 0 0 0 1 0 0 0
750 0 1 0 2 0 0 0 0 0
725 0 0 2 0 0 0 2 2 1
720 0 0 0 0 0 1 0 0 0
WIDTH OF ROLL | 1830| 1930|2000 |2000 |2000 |2000 |2000 |2000 |2000

#OFROLLS [1 [1 [13 [32 16 |45 [10 |8 10 |
TRIM LOSS
CALCULATION
USED AREA PER
PATTERN 1660 | 1860 | 25285 | 63840 | 30960 | 90000 | 19500 | 15040 | 19950
TOTAL AREA PER
PATTERN 1830 | 1930 | 26000 | 64000 | 32000 | 90000 | 20000 | 16000 | 20000
LOSS PER PATTERN [170 |70 [715 [160 [1040 |0 500 [960 |50
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C.9. Image parts of trim loss calculation table for
width 1020 mm,1120 mm,1220 mm,1430 mm,1530
mm,1630 mm, 1730 mm,1830 mm,1930 mm and

2000 mm
aij 426 |725 [775 801 [810 [866 [871 [873
500 o |o 0 0 0 0 1 0
450 o |o 0 0 0 0 0 2
645 2 |o 0 0 3 0 0 0
430 o |1 0 0 0 1 0 0
370 o o 0 0 0 0 0 1
495 1 o 1 1 0 0 0 0
850 o o 0 0 0 1 0 0
750 o |2 0 2 0 0 0 0
725 o o 2 0 0 0 2 1
720 o o 0 0 0 1 0 0
WIDTH OF
ROLL 1830|1930 |2000 |2000 |2000 [2000 |2000 |2000
#OFROLLS |1 |11 [23 21 |16 [45 |7 |10 |
TRIM LOSS
CALCULATION
USED AREA
PER PATTERN | 1785 | 21230 | 44735 | 41895 | 30960 | 90000 | 13650 | 19950
TOTAL AREA
PER PATTERN | 1830 | 21230 | 46000 | 42000 | 32000 | 90000 | 14000 | 20000
LOSS PER
PATTERN |45 |0 1265 |105 |1040 |0 350 |50
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C.10.Image parts of trim loss calculation table for
width1020,1120,1220,1320,1430,1530,1630,1730,
1830,1930 and 2000mm

aij 705 816 |842 851 907
500
450
645
430
370
495
850
750
725
720
WIDTH OF
ROLL 1930 |2000 |2000 |2000 2000 |2000 |2000
# OF ROLLS |11 12,5 (32,5 |16,6667 |45 9,25 |4,5
TRIM LOSS
CALCULATION
USED AREA
PER PATTERN | 20900 | 24313 | 64838 | 32250 |90000 | 18038 | 8978
TOTAL AREA
PER PATTERN | 21230 | 25000 | 65000 | 33333,3 | 90000 | 18500 | 9000
LOSS PER
PATTERN 330 |687,5|162,5 |1083,33|0 462,5 | 22,5

s
N
e
IS8

o|v|o|lo|o|o|olo|r|o
o|v|olo|k|o|ololo|o
olo|nv|o|r|o|olo|lo|o
o|lo|lo|o|o|o|o|w|lo|o
~lo|lo|lr|o|lo|r|o|lo|o
o|v|o|lo|lo|lo|jo|lo|o|r]|w
olr|lo|lo|o|r|o|lo|n|o|w
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APPENDIX D

D.1.Some images of CPLEX for the eleven different
widths

Code

range pattern=1..110;

dvar float+ x[pattern]:

minimize sum(i in pattern)x[i]:

subject tof
ctl:2wx[1]42*x[11]+2*x[21]+2*x[31]+2*x[41]+3*x[S1]+3*x[61]+3*x[T1]+3*x[81]+3*x[91]+4*x[101]>=10;
CT2:2wx[2]42*x[12]+2*x[22]+2*x[32]+3*x[42]+3*X[S2]+3*R[62]+3*x[T2]+4*x[82]+4*x[92]+4*x[102]>=20;
Cr3ix[3]4+x[13]+x[23]+2*xX[33]+2*X[43]+2*X[53]+2*x[63]+2*RX[T3]+2*X[83]+2*xX[93]+3*x[103]>=50;
Crd:2*x[4]+2*x[14]+2*x[24]+3*K[34] +3*x[44]+3*H[54]+3*H[E4]+4*x[T4] +4*x[84]+4*x[04]+4*x[104]>=60;
CCE:2*x[S]+3*x[15]+3*x[25]+3*K[35]43*H[45]+4*x[55]+4*H[E5]+4*x[T5]+4*x [85]45*x[05]+5*x[105] >=40;
CLE:2*R[B]+2*x[16]+2*x[26]+2*K[36] +2*X[46]+3*X[56]+3*x[E6]+3*x[TE]+3*x[S6]+3*xX[96]+4*x[106] >=45;
ceTix[T]4+x[17]+=x[27]+x[37]4+x[4T7]4+x[5T7]+x[6T]+2*x[TT]+2*=x[8T7]+2*x[9T7]+2*x[107] >=55;
ct8:x[B]4x[18]+x[28]+x[38]+x[48]+2*x[58]+2*R[68]+2*R[TR]+2*x[88]+2*x[98]+2*x[108] »=65;
ctOix[9]+x[19]+x[29]+x[39]+x[49] +x[59]+2*r[6T]+2*xX[T]+2*x[89]+2*x[99]+2*x[109]>=80;
ctl0:ix[10]14x[20]+x[30]4+x[40]+x[50]+2*x[60])+2*x[TO]+2*x[B0]+2*x[90]+2*x[100]+2*x[110] >=45;

}

execute post{
var dualityl=0;
- duality2=0:
- duality3:
r duality4:
- duality5;
- dualityé;
r duality7;
-~ dualitys;
~ dualityd;




Code

var dualicyl0;

dualityl=ctl.dual;

duality2=ct2.dual;

duality3=ct3.dual;

dualicy4=ct4d.dual;

dualityS=ctt.dual;

dualitye=cte.dual;

dualicty7=ctT.dual;

dualityf8=cti.dual;

dualitcy9=ct9.dual;

dualityl0=ctl0.dual;

Wwriteln("The dual wariable for the constraint izg: ",dualityl):
is: ",duality2):
iz: ", duality3);
iz: ",duality4);
iz: ",duality5):
iz: ",dualitye):;
is: ",dualityT):
iz: ",dualitcy8);
iz: ",duality9);

0 is: ",dualityl0);

writeln ("The dual wariable for the constraint
writeln ("The dual wariable for the constraint
writeln ("The dual wariable for the constraint
Wwriteln("The dual wariable for the constraint
writeln ("The dual wvariable for the constraint

=1 on LN L R

writeln ("The dual wariable for the constraint
Wwriteln ("The dual wariakle for the constraint
writeln ("The dual wariable for the constraint

oW m

Wwriteln("The dual wariable for the constraint
}

Code

|
IE_L Sorunlar | & Komut dosyasi gunlaga 22 . E= {;ﬁzﬁmleq == (;Eligkileq = Geugetmeleq g

» Komut dosyas ganldgd (kemut dosyas) kedunu yarGtmek igin buraya birakin)
S solution (optimal) with objective 180.2916666666667
The dual wvariable for the constraint 1 is: 0.23

The dual wvariable for the constraint 2 i=s: 0.25
The dual wariable for the constraint 3 i=s: 0.3333333333333333
The dual wariable for the constraint 4 i=s: 0.25
The dual wariable for the constraint 5 is: 0.2
The dual wariable for the constraint & is: 0.25
The dual wvariable for the constraint 7 is: 0.5
The dual wvariable for the constraint 8 is: 0.5
The dual wvariable for the constraint 28 is: 0.5
The dual wvariable for the constraint 10 i=s: 0.5




Code

range wars=1l..10:
range width=1..11;
float cof[vars]=[0.25,0.25,0.33,0.25,0.2,0.25,0.5,0.5,0.5,0.51;
dvar int+ u[width,wvars]:

maximize sum(i in wars,j in width)cof[il*uli,i]:

sukbject

tol

500%u[l,1]4+450%u[1,2]+645%u[1, 3]+430%u[1,4]+370%u[1,5]+495%u[1,6]+850%u[1, T]+750%u[1,8]+725%u[1, 3]+
S500%u[2,1]+450%u[2,2]+645%u[2, 3] +430%u[2,4]+370%u[2,5]+495%u[2, 6] +850%u[2, T]+750%u[2,8]+725%u[2, 9]+
500%u[3,1]+450%u[3,2]+645%u[3, 3] +430%u[3,4]+370%u[3,5]+495%u[3, 6] +850*u[3, T]4+750%u[3,8]+725%*u[3, 3]+
500%u[4,1]+450%u[4,2]+645%u[4, 3]+430%u[4,4]+370%u[4,5]+495%u[4, 6] +850%u[4, T]+750%u[4,8]+725%u[4, 9]+
S500%u[5,1]+450%u[5,2]+645%u[5, 3] +430%u[5,4]+370%u[5,5]+495%u[5, 6] +850%u[5, T]+750%u[5,8]+725%u[5, 9]+
500*%u[6,1]+450%u[6,2]+645%u[6, 3] +430%u[6,4]+370%u[6,5]+495%u[6, 6] +850*u[6, T]+T50%u[6,8]+725*u[6, 3]+
S500%u[7,1]+450%u[7,2]+645%u[7, 3] +430%u[T,4]+370%u[7,5]+495%u[7, 6] +850%u[7, T]+750%u[7,8]+725%u[7, 9]+
S00%u[8,1]+450%u[8,2]+645%u[8, 3] +430%u[8,4]+370%u[8,5]+495%u[8, 6] +850*u[8, T]+750%u[8,8]+725%u[s, 2]+
500%u[9,1]+450%u[9,2]+645%u[9, 3] +430%u[2,4]+370%u[9,5]+495%u[2, 6] +850%u[9, T]+750%u[2,8]+725%u[9, 9]+
500%u[10,1]+450%u[10,2]+645%u[10,3]+430%u[10,4]+370%u[10,5]+495%u[10, 6]+850%u[10, T]+750*u[10,8]+725
500%u[11,1]+450%u[11,2]+645%u[11,3]+430%*u[11,4]+370%u[11,5]+495%u[11, 6]+850%u[11, T]+750%u[1l,8]+725

¥

1,3]+430%u[1,4]+370%u[l, 5]+495%u[l, 6]+850%u[l, 7]+750%u[l, 8]+725%u[1,9]+720%u[1,10]<=1020;
1,3]1+430%u[2,4]+370%u[2,5]+495*u[2, 6]+650*u[2, 7]1+750*%u[2,8]+725*%u[2,9]+720%u[2,10]<=1120;
3,3]+430%u[3,4]+370%u[3,5]+495%u[3, 6]+850%u[3, 7]+750%u[3,8]+725%u[3,9]+720%u[3,10]<=1220;
3,3]+430%u[4,4]+370%u[4,5]+495%u[4, 6] +850%u[4, T]+750%u[4,8]+725%u[4, 9] +720%u[4,10]<=1320;
5,3]+430%u[5,4]+370%u[5, 5]+425%u[5, 6]+850%u[5, 7]+750%u[5, 81+725%u[5, 91+720%u[5, 10]<=1430;
5,3]+430%u[6,4]+370%u[6, 5]+495%u[6, 6] +850%u[6, T]+750%u[6, 8]+725%u[6, 9] +720%u[6, 10]<=1530;
7,3]1+430%u[7,4]+370%u[7,5]+435*u[7, 6]+850*u[7, 7]1+750*u[7,8]+725%u[7,9]+720%u[7,10]<=1630;

3,3)+430%u[8,4]+370%u[8, 5] +495%u[8, 6] +850%u[8, 7]+750%u[

a
8,8

1+725%u[8,9]+720%u[8,10]<=1730;

3,3]+430%u[9,4]+370%u[9,5]+495%u[9, 6] +850%u[9, T]+750%u[9,8]+725%u[9, 9]+720%u[9, 10]<=1830;
1[10,3]4430%u[10, 4]4+370%u[10,5]+495%u[10, 6] +850%u[10, T]1+T750%u[10,8]+725%u[10,3]+720%u[10, 10]<=1330;
1[11,3]+430%u[11, 4]+370%u[11,5]+495%u[11, 6] +850%u[11, T]+750%u[11,8]+725%u[11,9]+720%u[11, 10]<=2000;

Code

'/ solution

{optimal) with objectiwve 10.26

'/ fQuality Incumbent solution:

'/ MILP
f MILP
Y MILP
'/ MILP
'/ MILP
f MILP

1= [[0O

objective
solution norm |x| (Total, Max)
{Ax=b) (Total, Max)
(Total, Max)

% integrality error (Total, Max)

(Total, Max)

=zolution error
X bound error

zlack bound error

01010000 D0]

[00DD0DO010010 0]
[LOODOOODODOD 1]
(000100010 0]
[0D1000000 1]
[DDDO0O0O0D0O0OD0 2]

[ e s T

.0260000000e+001
.50000e+001
.00000e+000
.00000e+000
.00000e+000
.00000e+000

.00000e+000
.00000e+000
.00000e+000
.00000e+000
.00000e+000
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