

APPLICATION OF GILMORE-GOMORY ALGORITHM TO MULTI WIDTH

CUTTING STOCK PROBLEMS

TUĞÇE ÜSTÜNER

MAY 2015

APPLICATION OF GILMORE-GOMORY ALGORITHM TO MULTI WIDTH

CUTTING STOCK PROBLEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

 OF

 IZMIR UNIVERSITY OF ECONOMICS

BY

TUĞÇE ÜSTÜNER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

 MASTER OF SCIENCE

 IN

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MAY 2015

 iii

 ABSTRACT

APPLICATION OF GILMORE-GOMORY ALGORITHM TO MULTI WIDTH

CUTTING STOCK PROBLEMS

Üstüner, Tuğçe

M.Sc. in Intelligent Engineering Systems

 Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Arslan ÖRNEK

May 2015, 103 pages

Cutting Stock Problem is one of the most important problem for the paper

factories. Main objective of the factories, making best cutting plan combining

demands which have different widths and quantities. After the cutting process,

it is very important that choosing rolls which will go to cutting process

considering using number of rolls. For this reason, combining of demands

should be considered. The objective is choosing the right number of roll

which will go to cutting process while combining demands and minimizing the

trim loss which means that minimizing number of rolls. In the literature, there

are a lot of researches and models are applied and improved. In this thesis,

aim is minimizing using number of rolls also generating cutting pattern

considering different roll widths. A mathematical modeling is developed and it

is studied with using real data and using different roll widths from the paper

factory. Also, improving and applying Gomory Algorithm the results in terms

of performance measure are compared and discussed throughly.

 iv

Keywords: cutting stock problem; heuristic; roll; trim minimization.

 v

ÖZ

ÇOK ENLİ KESME PROBLEMLERİNE GILMORE-GOMORY

ALGORİTMASININ UYGULANMASI

Üstüner, Tuğçe

Akıllı Mühendislik Sistemleri Yüksek Lisans Programı

 Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. Arslan ÖRNEK

Mayıs 2015, 103 sayfa

Kesim problemi kağıt fabrikalarının en önemli problemlerinden biridir.

İşletmelerin temel amacı; farklı en ve adetlerde gelen siparişlerin kombinesi

yapılarak en uygun şekilde kesim planlarını yapmaktır. Kesim işleminden

sonra kalan fire göz önünde bulundurulduğunda kesim işlemine girecek olan

bobin sayısı seçimi çok önemlidir. Bu sebepten dolayı siparişlerin

kombinelerinin nasıl yapıldığı da dikkate alınmalıdır. Amaç oluşabilecek en

az fireyle yani kullanılabilecek en az bobin sayısıyla doğru siparişleri kombin

yaparak üretime girecek en doğru bobin sayısını seçmektir. Literatüre

bakıldığında bu alanda birçok uygulama ve model geliştirilmiştir. Bu tezde

kesilecek bobin sayısı minimizasyonu amaçlanarak farklı bobin enleri dikkate

alınarak kesme eşleri oluşturulmuştur.Problemin matematiksel modeli

oluşturulup kağıt fabrikasından alınan gerçek veri setleri ve farklı bobin enleri

ile çalıştırılmıştır. Ayrıca Gomory Algoritması geliştirilip uygulanarak sonuçlar

performans ölçütü üzerinden karşılaştırılımış ve ayrıntılı bir şekilde

tartışılmıştır.

 vi

Anahtar Kelimeler: kesme problemi; sezgisel; bobin; fire minimizasyonu.

 vii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisor Prof.

Dr. Arslan Örnek for his guidance, contribution, academic and continuing

support, and patience during my studies in the Izmir University of Economics

for my master thesis.

I would like to extend my thanks to them who have helped me during the

master program. Especially, my sisters İpek Süğüt and Hatice Doğramacı for

their support and contribution in my MSc years in the Izmir University of

Economics. Additionally, I would like to appreciate to them for their advice

and comments while enrolling in Intelligent Production Systems Master

Program.

A special thanks to my dear friends; Mehmet Serbes, Asena Kaya and my

boss Metin Siloni.

Lastly, my dear family Serpil Üstüner, Ali Üstüner and Tuğkan Üstüner have

provided all their support during these years. They are very important for me.

I would like to thank and express my gratitude to them for their endless love,

being with me and trusting me in all my life. I cannot achieve success without

them.

 viii

CONTENTS

ABSTRACT .. iii

ÖZ ... v

ACKNOWLEDGEMENTS ... vii

CONTENTS ... viii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

TERMS AND ABBREVIATIONS ... xii

1 INTRODUCTION .. 1

 1.1. SCOPE OF THE MASTER THESIS .. 2

2 LITERATURE REVIEW .. 4

3 CUTTING STOCK PROBLEM .. 13

4 RELATIONSHIP BETWEEN THE CSP AND GA......................................19

5 GILMORE GOMORY ALGORITHM .. 21

6 PROBLEM DEFINITION ... 24

7 DATA COLLECTION...28

8 MATHEMATICAL MODELLING..30

 8.1. MATHEMATICAL FORMULATION..30

9 APPLICATION OF GILMORE GOMORY ALGORITHM............................33

 9.1. GILMORE-GOMORY ALGORITHM...34

 9.2. IMPROVED GILMORE-GOMORY ALGORITHM FOR MULTIPLE

 STANDARD ROLLS...38

10 RESULTS..42

11 CONCLUSION...44

REFERENCES ... 45

APPENDICES ... 47

APPENDIX - A.. .. 47

 ix

APPENDIX - B. ... 51

APPENDIX - C. ... 73

APPENDIX - D. ... 83

 x

LIST OF TABLES

Table 1 Literature Surveys .. 11

Table 2 Characteristics features while classfying problem 16

Table 3 Example table of trim loss calculation for roll 1020 mm and 1730

mm...26

Table 4 Roll widths ...28

Table 5 Demands and their widths .. 28

Table 6 Diagonal matrix for 1020 mm...29

Table 7 Initial matrix for 1020 mm ..35

Table 8 Iteration matrix..37

Table 9 Algorithm result..37

Table 10 Initial matrix for 1020 mm and 1730 mm39

Table 11 Iteration matrix...41

Table 12 Algorithm result...41

Table 13 Solution table for mathematical model and Gilmore-Gomory

Algorithm...43

 xi

LIST OF FIGURES

Figure 1 One Dimensional Cutting Stock Example .. 14

 xii

TERMS AND ABBREVIATIONS

CSP : Cutting Stock Problem

CS : Cutting Stock

1-D : One Dimensional

2-D : Two Dimensional

PSO : Particle Swarm Optimization

LP : Linear Programming

IP : Integer Programming

DP : Dynamic Programming

MIP : Mixed Integer Programming

Non-LP : Non Linear Programming

ILP : Integer Linear Programming

SRI : Stock Remove Insert

SA : Simulated Annealing

EA : Evolutionary Algorithm

GA

PGA

KA

SHP

CG

GRASP

: Genetic Algorithm

: Pattern Generating Algorithm

: Knapsack Algorithm

: Sequential Heuristic Procedure

: Column Generation

: Greedy Randomized Adaptive

 Search Procedure

 1

CHAPTER 1

INTRODUCTION

 The Cutting Stock Problem which is called in the literature 'CSP' is

used in many different industries. Paper, glass, steel, wood and plastic

popular examples are in these areas for CSP.

 CSP is one of the classical problem example and first appliance in the

field of operations research methods. The problem is finding the best solution

way of cutting pattern items from using stock rolls such that trim loss and

used number of rolls are minimized and total demand is satisfied. The aim of

process is cutting large objects to convert them to smaller objects. The main

purpose of CSP is minimizing trim loss which is number of rolls while cutting

process in the thesis.

 CSP is an integer linear programming problem, and solving this

problem is not easy as known. In order to save profit annually in the factories,

trim loss should be minimized deciding true stock roll which will go to cutting

process. Because affects amount of the trim loss are very important for the

industry profits.

 Generally there are three different groups for solving methods. These

different groups are; Algorithmic methods, Innovative methods and

Metaheuristic methods.

 Algorithmic methods contribute an optimal solution, despite of

calculating complexity. But in big problems which have more and complex

data, run time consuming occurs. That is why the complete algorithmic

methods were infrequently used in the past.

 2

 In Innovative methods, generally answer is not optimum necessarily

however give the response quickly. The innovative methods can be one of

the ideal techniques, because their answers are close to the optimum

responses. These methods usually are applied for special problems.

Mentioned method is not applied as a general method because of depending

private conditions excessively.

 However various innovative solutions can be suggested in real world

applications so as to solve the CSP but applying them is not helpful in similar

problems due to the special characteristics of such problems .

 In metaheuristic methods, the solution process is generally advised for

lower levels, and contrary to traditional metaheuristic methods, they are not

limited to local optimum conditions. The information about the CSP will be

given in Cutting Stock Problem Chapter in detail.

1.1. Scope of the Master Thesis

In this study, we focus on minimizing the number of cutting rolls which means

that trim loss, determining the cutting patterns which should be satisfied the

demand.

 In the factory, paper is bought from the out of Turkey and it is known

that it is very expensive raw material in the world especially for the box and

sheets factories. This paper comes to business such as rolls. According to

demand these rolls should be cut. For this reason deciding cutting plan and

generating cutting patterns are so important for the production cost of the

factory. So, in order to decrease these cost, two mathematical models are

improved. In the first model, all the cutting patterns are generated. In the

second model, Gomory Model was rebuilded according to different roll widths

and solved in order to find optimal solution. Because loss means that extra

cost for the business. In order to decrease the extra cost and minimize the

production cost, combination of the cutting patterns should be occured and

processed effectively.

 3

 Our scope is minimizing amount of rolls in cutting process. A

mathematical model is develop and solved in Optimization Programming

Language, CPLEX. Decreasing the cutting rolls optimally, Gomory Algorithm

is improved and applied according to our problem using different roll widths

and defined it's steps in order to solve heuristically. The objective of the

problem is minimizing the number of cutting rolls while the cutting process,

satisfying demand, generating and assigning cutting pattern to the roll

considering different roll width. The main inputs are demands, widths of rolls.

 The remainder of this thesis is organized as follows. Chapter 2

intorduces a review of the literature on related previous work about cutting

stock, mathematical models and algorithms which were used to solve this

kind of problem. Chapter 3 introduces what is the cutting stock problem, the

main objectives, description of ideas, forms of CSP. In Chapter 4 CSP and

GA relationship is discussed. Problem definiton is explained in Chapter 6.

Mathematical model and it's solution are defined in Chapter 8.

 In Chapter 5, Gomory Algorithm which is a metaheuristic method is

developed for the CSP and lastly, conclusion is written in Chapter 11.

 4

CHAPTER 2

 LITERATURE REVIEW

 There are many various excercises and works in literature on different

aspects of Cutting Stock Problem. The relevant works were summarized in

this chapter.

 Cutting Stock Problem focuses on minimimum wastage or scrap

criterias with one or two dimensional stock according to customer demands.

Cutting stock and packing problems appear in many industrial settings where

larger pieces are cut into smaller pieces in order to produce demands that

are wanted by other industries or customers, like paper, steel and fiber

industries. A solution for the cutting problem consists in determining a group

of patterns and their repetitiveness which means that how many times a

cutting pattern will be cut in order to satisfy demand.

 The cutting stock problem is called 'CSP' which affects industry profit

has been studied seriously in production planning area but the results are not

often used at real production sites. They are usually found using hand

methods because real processing constraints have not been focused on.

Making small changes in cutting pattern can create considerable benefits in

different areas such as production cost which is the most important factor for

factories. CSP contains different objectives and constraints, which directly

depend on technological and organizational parameters of each company.

 Cutting Stock Problems are seperated categories in each. One of

them is 'One-Dimensional Cutting Stock Problem' and the second one is

'Two-Dimensional Cutting Stock Problem'.

 5

 In 1939 studies have been started in this area by Russian economist

'Kantorovich'. A lot of formulation, mathematical models and solution

procedures have been developed in this area. Thanks to Kantorovich, studies

led to the continuous relaxation.

 Gilmore and Gomory (1961), studied first and most important advance

solution technique in CSP area. CSP is a which sort of problem is showed by

them. According to Gilmore and Gomory CSP completes an order at

minimum cost for specified lengths in order to be cut from given stock lengths.

Pattern generation technique was improved using linear programming by

them so as to solve the one dimensional trim loss minimization problem.

When they converted it to integer programming problem, the large number of

variables contain generally infeasible solutions.This same difficulty continued

when only an approximate solution was being sought by linear programming.

In order to overcome this difficulty The Column Generation Method was

improved by Gilmore and Gomory.

 In this method, setting of simple patterns which are form of the initial

basisi solution is the first step, then the solution is improved by removing a

cutting pattern and generating a new pattern . The new cutting pattern is

generated using the auxiliary problem which is easy to solve; knapsack

problem normally is relate to the auxiliary problem, and there are different

methods for solving this kind of problem. The new column is generated.

Because this action is done in order to improve the solution.

 After Gilmore and Gomory proposed the column generation method,

many researchers used it for the Cutting Stock Problem.

 In order to solve the roll wastage problem, this algorithm was used by

Pierece(1964) in the paper industry. Because of occuring defaults in the

problem, Hahn (1968) improved a dynamic programming algorithm.

 Queiroz et al. (1971) presented other algorithms for the following three

dimensional guillotine cutting problems which are unbounded knapsack,

cutting stock and strip packing. They considered the case where the items

have fixed orientation and the case where orthogonal rotations around all

axes are allowed. For the unbounded 3D knapsack problem, they developed

the repetition formula proposed by for the rectangular knapsack problem and

presented a dynamic programming algorithm that uses reduced raster points.

 6

 Haessler and Sweeney (1991) focused on basic formulation topics

and solution procedures for solving one and two dimensional cutting stock

problems. They defined linear programming, sequential heuristic and hybrid

solution procedures.

 They also suggested an approach for solving large problems with

limits on the number of times an ordered size may appear in a pattern for

two-dimensional cutting stock problems with rectangular shapes.

 Lin (1994) presented a study which considering the minimizing trim

loss in a paper cutting process. In the study, operation begins with some

parent rolls of specific widths are to be cut to meet orders. These rolls have

specific widths. The objective of the study was to find out the way to achieve

the required cutting operation and occuring the smallest amount of trim loss

by exploiting linear programming.

This problem was solved by observing the 'pricing out' operation for the

paper cutting problem which was equivalent to a knapsack problem.

 In recent years, researchers have improved applying evolutionary

approaches to these problems, including Genetic Algorithms and

Evolutionary Programming.

 Liang et. al developed EP algorithm for CSP with and without

contiguity. The propose is realized using two new mutation operators.

Experimental studies have been achieve to examine the efectiveness of the

EP algorithm. They showed that EP can support a simple yet more efective

alternative to GA's in solving cutting stock problems with and without

contiguity. The solutions found by EP are significantly better than to those

found by GAs.

 Carvalho (1999) reviewed several linear programming formulations for

one-dimensional cutting stock and bin packing problems. He analysed some

relations between the corresponding LP relaxations, and their relative

strengths, and refered how to derive branching schemes that can be used in

the exact solution of these problems, using branch-and-price technique.

 Özgüven and Çalışkan (2002) who are Turkish academicians showed

a model which was written by Konrad in their study. In the problem, there

were a lot of customer demands in which materials had fixed width which will

cut according to different length.The aim was minimizing trim loss. Their

 7

model is not enough in order to solve so, they proposed using a mixed

integer model which answering the different requirements.

 Cutting Stock Problems are complexity problems. Because it has

large number of the cutting patterns that may be encountered. The large

number of cutting patterns returns the solution generally infeasible, when the

cutting stock problem was expressed as an IP problem. When using the

linear programming formulation of the cutting stock problem is available of

integer variables, then the effect of the number of cutting patterns will be

decreased. An auxiliary problem proceeds from the formulation where the

columns of the linear programming constraint matrix need to be determined.

 Cerqueira and Yanasse (2006) reviewed some linear programming

models for the CSP.

 Also, Novianingsih et al. considered 2-D CSP where single rectangular

stocks have to be cut into some smaller pieces so that the number of stocks

needed to meet demands is minimum. Also, they focused on studying to the

problem where the stocks have to be cut with guillotine cutting type. Problem

is formulated as an IP and the relaxation problem was solved by column

generation technique. New pattern generation was formulated based on

method of stripe. In obtaining the integer solution, they rounded down the

optimal solution of the relaxation problem and then they derived an extra MIP

for satisfying demands.

 Demircan and Soyuer (2007) improved a method using real data

which is taken from factory in order to form stainless steel process. Factory

supplies materials which have different length and types.

 In order to solve the problem, they suggested two steps solution. In

the first step, different cutting shapes were obtained for every piece and

alternative raw materials length using heuristic method. In the second step,

these cutting shapes which are taken heuristic method were applied to

integer-linear programming. Using this method, trim loss was minimized,

which raw material will be used and which length will be cut and how many

will be cut were determined. Also, all of the customer demands were satisfied.

 Glass and Oostrum described a new hierarchical 2D-guillotine Cutting

Stock Problem. This method is contrast to general methods for CSP,

because aim was not wastage. The packing stages of cake manufacturing

 8

was the content. The company’s first objective was to minimize total

processing time at the subsequent in packing stage. This objective reduced

to one of minimizing the number of parts produced. They applied a closed

form optimization approach to these problems for certain cases.

 In 2008 a new mathematical model was presented and applied by

Golfeto et al. which was GRASP metaheuristic to solve ordered cutting stock

problem. This heuristic appropriate to minimize the raw material used by

industries that deal with reduced raw material stocks in which just in time

method used for production process. In such cases, classic models for

solving the cutting stock problem were useless. Results obtained from

computational experiments for a set of random instances demonstrate that

the proposed method can be applied to large industries that process cuts on

their production lines and do not stock their products.

 Cerqueira and Yanasse (2008) introduced us a heuristic method that

produces a solution for the one-dimensional cutting stock problem with a

reduced number of different patterns in the solution. Firstly, this method

proposed separating the items in two disjointed groups, according to their

demands. Patterns is generated with items of these groups and those with

limited trim loss are accepted. Then, problem was solved with items whose

demands were not satisfied and, when the solution obtained, they applied a

pattern reducing procedure of the literature.

 Arbib et al. (2010) addressed a one-dimensional CSP. Theu focused

on not only minimizing trim loss, but also they needed that the set of cutting

patterns construct the solution can be sequenced so that the number of

stacks of parts obtained.

In order to solve problem, a new integer linear programming formulation was

improved and used. Constraints of the formulation raise quadratically with the

number of specific part types.

 Sugi et al. (2010) worked with the 2-dimensional rectangular cutting

stock problem in which the shape of a cut piece is rectangular, they assumed

that a roll-shaped stock often used in actual processing and proposing a

solution taking processing called 3-stage guillotine cutting into account.

 Cathrine et al. (2011), prepared a study for the carpetenry sector. The

carpentry sector like any other industry was faced with a cutting stock

 9

problem to minimize incurred wastage. The aim of this problem was to

establish a mathematical model which will solve the CSP using column

generation approach. The interview method was used to collect data relating

to the cutting stock problem.The column generation approach of iterative

computational routines was used because it developed successively better

solutions until an optimal solution is obtained. The results revealed that the

method was an appropriate method in solving business problems, that was,

how many boards should be cut to meet demand with minimum incurred

waste.

 Abuhassan and Nasereddin (2011) touched on the application. They

aimed that decreasing the losses for the problem of cutting in one dimension.

 Nozarian et al. (2013) focused on trim-loss amount. They applied

simulated annealing algorithm in order to reduce trim-loss considering

production cost amount. New theory is improved and applied in order to solve

the trimm loss porblem. Furthermore, a solution based on Imperialist

Competitive Algorithm were presented that reduced the wastage as well as

concentrating them on the minimum number of stocks.

 An algorithmic solution approach was presented by Suliman (2014) to

overcome the difficulty in solving non-linear integer formulation of the

problem.The algorithm was based on the traditional approach where the lot

sizing was determined for each period, and then the best cutting patterns

were generated.

 Sürsal explained one dimesional and three dimensional cutting stock

problems. Decision model was developed in order to solving these problems.

 On the other hand, heuristic application continued in CSP area. For

instance, the other work was written by Levine and Ducatelle. They

presented a pure ACO approach, as well as an ACO approach augmented

with a simple but very effective local search algorithm. It was shown that the

pure ACO approach can outperform some existing solution methods,

whereas the hybrid approach can compete with the best known solution

methods. The local search algorithm was also run with random restarts and

shown to perform significantly worse than when combined with ACO.

 Macedo et al. presented a detailed search for software packages with

using two-dimensional cutting stock method.

 10

 Suliman wrote another study which was about simple pattern

generating method. He was developed it for solving the auxiliary problem. It

was based on an ad hoc solution method described in literature for the

knapsack problem. A search tree was used to develop the pattern generation

method.

 Another heuristic approach was written by Shen and Yu. A heuristic

strategy that was based on the results of analysis of the optimal cutting

pattern of particles with successful search processes was described, which

process a global optimization problem of the cutting-stock as a sequential

optimization problem by multiple stages. During every sequential stage, the

best cutting pattern for the current situation was researched and processed.

This strategy was repeated until all the required stocks have been generated.

 Another work is Branch and Price technique was written by Pal.

Branch and price was established so as to solve for large data using integer

programming problems. This method combined the standard branch-and-

bound framework of solving integer programming problems with Column

Generation. In each node of the branch-and-bound tree, the bound was

calculated by solving the LP relaxation. The LP relaxation was solved using

Column Generation. They discussed their project on improving the

performance of branch and price based algorithms for solving the industrial

one-dimensional cutting stock problem.

 The other study which I talked in my literature rewiev of this area lastly

was written by Macedo and Alves. They described a model for the two-

dimensional Cutting Stock Problem using two stages in order to solve using

the guillotine constraint. It was a linear programming arc-flow model,

formulated as a minimum flow problem, which was an extension of a model

proposed by Carvalho for the one dimensional case. They researched how

this model behaved using with commercial software, explicitly considering all

its variables and constraints. They also implied a new family of cutting planes,

and considered some extensions of the original problem.

 In the thesis, we developed new mathematical model and solved for

the Cutting Stock Problem. The difference from the other studies we

considered different roll widths. Also the problem was integrated to a

heuristic method which named is 'Gomory Algorithm'. These different roll

 11

widths were not considered before using Gomory Algorithm. The details of

the problem will be explained in the other chapters.

Table 1 Literature Surveys

APPLICATION PART D

LP CG
LONG
ROLLS
PAPER

ALUMINUM
ROLLING

GUILLOTINE HEURISTIC 1 2 3 AIM

1
ROBERT W.

HAESSLER AND PAUL
E. SWEENEY

CSP AND SOLUTION
PROCEDURES(1991)

* * SHP * *

2
CEMAL ÖZGÜVEN

AND FİLİZ ÇALIŞKAN

SİPARİŞE GÖRE ÜRETİM
YAPAN İŞLETMELERDE

KISITLI MALZEME ÇEŞİDİ
DURUMUNDA FİREYİ

MİNİMİZE EDEN PARÇA
KESİM PLANININ

BELİRLENMESİ(2012)

MIP

MINIMIZING
WASTE

3 S.M. A. SULIMAN

AN ALGORITHM FOR
SOLVING LOT SIZING AND

CSP WITHIN ALUMINUM
FABRICATION

INDUSTRY(2012)

Non-
LP

 *

MINIMIZING
TRIM-LOSS

4

SHIRIN
NOZARIAN,MAJID

VAFAEI
JAHAN,MEHRDAD

JALALI

AN IMPERIALIST
COMPETITIVE ALGORITHM

FOR 1-D CSP(2013)
 * SA *

MINIMIZING
TRIM-LOSS

5
K. NOVIANINGSIH,R.

HADIANTI, S.
UTTUNGGADEWA

COLUMN GENERATION
TECHNIQUE FOR SOLVING

2-D CSP:METHOD OF
STRIPE APPROACH (2007)

IP * * *

6 CLAUDIO ARBIB
CS WITH BOUNDED OPEN

STACKS:A NEW ILP
MODEL(2010)

IP *

MINIMIZING
TRIM-LOSS

7

MASAO
SUGI,YUSUKE

SHIOMI,TSUYOSHI
OKUBO,KAZUYOSHI

INOUE,JUN OTA

A SOLUTION FOR 2D
RECTANGULAR CSP WITH

3-STAGE GUILLOTINE-
CUTTING

CONSTRAINT(2010)

 * *

8
CELIA A.

GLASS,JEROEN M.
VAN OOSTRUM

BUN SPLITTING:A
PRACTICAL CSP(2008)

 * * *

FINDING
OPTIMAL
CUTTING

STRATEGY

9

KAZUNGA
CATHERINE,MUTAMB

ARA H.N. LILLIAN,
MAPURISA JABULANI

A CARPENTRY CSP(2011) IP *

* COLUMN
GENERATION,
BRANCH AND

BOUND
ALGORITHM

MINIMIZING
WASTE

10 GÖKAY SÜRSAL
THE CSP AND A

SOLUTION ALGORITHM BY
LP

* *KA * * *
MINIMIZING

WASTE

11

RODRIGO RABELLO
GOLFETO,ANTONIO

CARLOS
MORETTI,LUIZ

LEDUINO DE SALLES
NETO

A GRASP METAHEURISTIC
FOR THE ORDERED

CSP(2008)

* GRASP
ALGORITHM

*

MINIMIZING
RAW MATERIAL
AND MINIMIZING

TRIM LOSS

12

KO-HSIN LIANG, XIN
YAO,CHARLES

NEWTON,DAVID
HOFFMAN

A NEW EVOLUTIONARY
APPROACH TO CSP WITH

AND WITHOUT
CONTIGUITY(1998-1999)

 *EA *

MINIMIZING
TRIM LOSS AND
MINIMIZATION
NUMBER OF

STOCKS WITH
WASTAGE

13

THIAGO A. DE
QUEIROZ, FLAVIO K.

MIYAZAWA, YOSHIKO
WAKABAYASHI,

EDUARDO C. XAVIER

ALGORITHMS FOR 3D
GUILLOTINE CUTTING

PROBLEMS:UNBOUNDED
KNAPSACK ,CS AND STRIP

PACKING

DP * *

*

 12

14
P.C. GILMORE, R.E.

GOMORY
A LP APPROACH TO THE

CSP(1961)
IP

MINIMIZING
COST

15
IZZEDDIN A.O.

ABUHASSAN, HEBAH
H.O. NASEREDDIN

CSP:SOLUTION
BEHAVIORS(2011)

 *
* SEQUENTIAL

HEURISTIC
APPROACH

*

REDUCING
LOSSES TO THE

PROBLEM OF
CUTTING

16

GONÇALO RENILDO
LİMA CERQUEIRA,
HORACIO HIDEKI

YANASSE

A PATTERN REDUCTION
IN A 1-D CSP BY

GROUPING ITEMS
ACCORDING TO THEIR
DEMANDS (2008-2009)

* * *

MINIMIZING
AMOUNT OF

TIME,
IMPROVING

PERFORMANCE

17
JOHN LEVINE AND

FREDERICK
DUCATELLE

ANT COLONY
OPTIMISATION AND

LOCAL SEARCH FOR BIN
PACKING AND CSP

* *

MINIMIZING

NUMBER OF

TOTAL STOCKS

18
J.M. VALERIO DE

CARVALHO

LP MODELS FOR BIN
PACKING AND CSP(2000-

2001)
*

* BRANCH
AND PRICE
ALGORITHM

*

19
FATMA DEMIRCAN,

HALUK SOYUER
1-D CSP * * *

20

RITA MACEDO,ELSA
SILVA,CLAUDIO
ALVES,FILIPE

PEREIRA E ALVELOS,
J.M. VALERIO DE

CARVALHO, CLAUDIO
ARBIB, FABRIZIO

MARINELLI,
FERDINANDO

PEZELLA,LUIGI DE
GIOVANNI, LUCA

GAMBELLA

2D CUTTING STOCK
OPTMIZATION SOFTWARE

SURVEY
 *

21 SAAD M.A. SULIMAN
PATTERN GENERATING
PROCEDURE FOR THE

CSP(2001)
 * * PGA

MINIMIZING
TOTAL WASTE

22
XIANJUN

SHEN,YUANXIANG
LI,JINCAI YANG,LI YU

A HEURISTIC PARTICLE
SWARM OPTIMIZATION

FOR CSP BASED ON
CUTTING PATTERN

 PSO *

MINIMIZING
TOTAL TRIM

LOSS

23 SOUMITRA PAL
IMPROVING BRANCH AND
PRICE ALGORTIHMS FOR

SOLVING 1-D CSP
 * *

24

RITA
MACEDO,CLAUDIO

ALVES,J.M. VALERIO
DE CARVALHO

ARC-FLOW MODEL FOR
THE 2-D CSP * *

25

GONÇALO RENILDO
LİMA CERQUEIRA,
HORACIO HIDEKI

YANASSE

LP MODELS FOR THE1-D
CSP * *

26 VINCENT CONITZER
CONSTRAINT AND

COLUMN GENERATION
AND THE CS

* * * *

USING AMOUNT
OF PAPER

27
REINALDO

MORABITO AND
VOLDIR GARCIA

THE CSP IN A
HARDBOARD

INDUSTRY(1997)
DP,IP

*
LEXICOGRAP

HICAL
METHOD

MINIMIZING THE
WASTE

MATERIAL,
DETERMINING

BEST
PATTERNS

 13

CHAPTER 3

CUTTING STOCK PROBLEM

Cutting stock problems were studied before in operations research

area. In these studies, there are different constraints, decision variables,

indices, sets, may be objectives. In many real world applications of business

and industry generally, it is known that optimization problems have given set

of small objects which are called items or pieces, into a given set of larger

ones which named are stock sheets. Also in these kind of problems generally

have same aim which is the reducing waste or minimizing production cost

using less raw material with true generating patterns. These problems, with

all their extensions and variants, are well known to be NP-hard. This means

that all algorithms currently known for finding optimal solutions require a

number of computational steps that may grow exponentially with the problem

size rather than according to a polynomial function.

 After the some years, other CSP approaches have developed in order

to solve the problems. These approaches are exact and heuristic methods.

Heuristic methods have greater flexibility considering specific constraints in

problem and offer a good trade-off between the quality of a solution and its

computational effort. Generally, heuristic techniques need to be used for

large CSPs. Some of the heuristic algorithms which were applied to CSPs in

the recently years with success. These heuristics examples are genetic

algorithm, simulated annealing and column generation. In these methods,

requiring to provide good, but these methods do not provide the optimal

solutions.

 14

 Linear or dynamic programming and branch-and-bound techniques

are based from the exact algorithms. Because of being complexity and

extensive nature of these problems, many different optimization formulations

and solution approaches improved in the literature, according to their needs

such as dimension, application field, constraints and requirements. Therefore,

many researchers surveys were categorized their studies on this subject in

the literature chapter of my thesis.

 The Cutting Stock Problem is an important class for the combinatorial

optimization areas. The general goals of Cutting Stock Problems are to

minimize the trim loss or the production cost. Most CSP solution methods are

established for specific objective functions. Generally, each of them has

second objective. The second objective for the first group Cutting Stock

Problem is to minimize the number of used stocks. This type of CSP with two

objectives has been solved or worked by using some heuristic techniques.

The second objective for the second class of Cutting Stock Problem is to

minimize the number of partially finished items. This is known as the cutting

pattern sequencing problem which named CSP with contiguity in the

literature.

Figure 1 One Dimensional Cutting Stock Example

 (Abuhassan and Nasereddin, 2011)

 15

 CSP has many different forms, these are One Dimensional (1-D) CSP

such as sheets of wood, second one is Two Dimensional (2-D) CSP like

cutting cloth or paper to cut rectangular and these are more complex

according to One dimensional CSP.

 In one dimensional CSP, a part or some parts of the raw material

might not be used again, for instance when a piece is cut. It happens due to

applying various patterns freely. Before, cutting problem has attracted the

attention of many researchers all over the world. Choosing a cutting pattern

and its sequences is put forward by cutting problems. Sometimes cutting

problems are too complex, and it is not easy to find an optimized response

for them. In such case, even the smallest improvement in cutting pattern,

may lead to a considerable minimizing in raw material, which are used over.

Most standard problems that are related to one dimensional cutting problem

are known as NP-complete problems. However it is possible in many cases

to model them by mathematical programming and find a solution via accurate

or approximate methods.

 On the basis of H. Dyckoff’s typology, the one dimensional problem

can be explained as 1/V/D/R whenever sufficient materials are available. "1"

means for one dimensionality of the problem. "V" means that all required

items should be produced by a selection of big consuming pieces; in other

words, although some parts of stocks are only used, all orders will be

produced. "D" means that there are several big consuming pieces in different

sizes and "R" represents the number of items.

 Practically, the cost of using a special cutting model and changing the

cutting patterns are important ordinary factors as well as cutting wastage.

The secondary aspects can be considered by an appropriate formulation and

making the smallest improvement in cutting pattern. It leads to a big

thriftiness in stocks, which are consumed quickly and repeatedly in huge

mass. Ineffectiveness and excess of manual methods, which are applied by

cutting contractors, reminds the necessity of cutting automation. Furthermore,

the potential of suggested methods can be seperated and compared easily,

due to the impossibility of comparing the different solutions together. There

are several algorithms and methods in order to calculate the one dimensional

 16

cutting wastages, considering various factors such as constraints, demands,

materials.

 The large variety of applications reported in the literature by Dyckhoff

(1990) to develop a classification scheme for cutting stock and packing

problems.

 If we want to give an example for CSP, examples were studied in

generally a factory which uses long rolls of paper of a fixed width 'W'. Paper

can be cut as it comes out. For instance, producing two rolls of width 'W/2'.

The rolls can be cut only vertical direction. Certain orders for paper have

been needed to fill. Each order 'i' has a width 'wi' and a length 'li'. If they have

same width, multiple rolls of paper can be stitched together.

Table 2 Classifying problems using four characteristics table as follows

CHARACTERISTICS FEATURES WHILE CLASSIFYING PROBLEM

CHARACTERISTICS
FEATURES

DIMENSIONALITY
KIND OF

ASSIGNMENT

ASSORTMENT
OF LARGE
OBJECTS

ASSORTMENT
OF SMALL

ITEMS

1
Number of
dimensions

All large objects and a
selection of small

items

One large
object

Few items of
different

dimensions

2

A selection of large
objects and all small

items

Many identical
large objects

Many items of
many different

dimensions

3

Different large
objects

Many items of
relatively few
dimensions

4

Many identical
items

 For instance, if there is a single order of length 'l' and width 'W/2', one

roll of length 'l/2' and width W can be produced, cut it into two rolls of length'

l/2' and width 'W/2', and can be stitched them together in order to obtain one

roll of length 'l' and width 'W/2'.

 In the other direction cannot be stitched. For instance, two rolls of

width W/4 into a roll of width W/2 cannot be combined. if it did, then the paper

would look ugly everywhere. The goal is satisfying all of the orders while

 17

using the minimum amount of paper. The total paper which has width 'W' that

can be produced to be as short as possible. Since they can be only cut

vertically, as well the paper can be cut as it is coming out of the machine.

At any point in time, the paper can be cut into a certain combination of widths.

It is called such a combination a pattern. For instance, if 'W = 11', one pattern

is to cut the paper into widths 5,5, and 1. May be there is not orders of width

1 so that the produced roll of width 1 is simply waste. In this case, it is simply

say that the pattern is {5, 5} and it is implicit that the remaining 1 is wasted.

So, a number will never occur in a pattern unless having an order of that

width. Suppose that W = 11, and having three orders:

- w1 = 5, l1 = 20;

- w2 = 4, l2 = 10;

- w3 = 2, l3 = 9;

 optimal solution here is using the pattern {5, 5} for a length of '5', and the

pattern {2, 4, 5} for a length of '10'.

 A roll of width '5' of length '2 *5 + 10 = 20', a roll of width 4 of length 10, and

a roll of width 2 of length 10. It satisfies all orders. The objective of '15'.

 It means that the total length of width 'W' paper that can be produced. More

generally, all different patterns can be represented, indexed by 'j'.

 In general, there are many such patterns; some of them are clearly

dominated by other patterns such as {4, 5} is dominated by {2, 4, 5}.

Although having dominated patterns, there are undominated patterns like

 '{5, 5}, {5, 4, 2}, {5, 2, 2, 2}, {4, 4, 2}, {4, 2, 2, 2}, {2, 2, 2, 2, 2}'.

So, writing all dominated and undominated list are unnecessary and time

losing. Because of that situation the linear program was modeled generating

all the patterns 'j'. In these kind of problems, generally 'xj' is called the

amount of pattern 'j' that can produce, and 'aij
' is named the number of times

that the width of order 'i' occurs in pattern 'j'. For instance, if pattern '1' is

'{5, 5}', then 'a11' = '2'.

 On the other hand, in two-dimensional cutting stock problem where

stock sheets have to be cut into a set of smaller pieces so that the demand is

satisfied. Number of cutting patterns are needed to generate and determine

so that the number of stock sheets should be used minimum. The problem is

 18

a well known problem appears in many industries, such as at glass industries,

aircraft industries, ship builder, steel industries, and leather industries. The

problem also appears in land development, facilities layout, and electrical

circuit layout.

 In practically, there are two cutting types for Cutting Stock Problem.

These are guillotine cutting type and non-guillotine cutting type. These cutting

types are different in each. The guillotine cutting type is a cutting type where

any cut must run from one edge of a stock sheet to the opposite edge in a

straight line. Simultaneously, in non-guillotine cutting type, a cut does not

have to run from end to end of the stock sheet.

 Also the 2D-CSP can be further classified into several categories,

depending on the problem's specific constraints. It can be regular, if the

shapes of the items to be cut can be described by few parameters, or

irregular, otherwise is irregular category. Cutting irregular shapes is also

known as nesting. Regular category cuts can be two different types which

are rectangular or non-rectangular, according to whether the items are

rectangles or have a different shape, respectively. Rectangular cutting is

called oriente. If a sheet can only be cut from side to side, then guillotine-type

cutting patterns; observe that problems allowing non-guillotine patterns are

generally much harder to solve. A staged pattern is a guillotine pattern cut

into pieces in a limited number of phases.

 The direction of the first stage cuts may be either horizontal or vertical

and the cuts of the same stage are in the same direction. The cut directions

of any two adjacent stages must be perpendicular to each other. If the

maximum number of stages is not allowed to exceed n, the problem is called

n-staged. The relationship between the CSP and one of the algorithm

method which is named Gilmore-Gomory's Algorithm will be explained in

Chapter 4.

 19

CHAPTER 4

RELATIONSHIP BETWEEN THE CSP AND

GILMORE AND GOMORY'S ALGORITHM

Cutting stock problems occurs when raw materials are such as paper,

cardboard and textiles in manufacturing company by rolls of large widths.

While production planning, in order to satisfy demand and minimize wastage

these rolls have to be cut into subrolls of smaller widths. It is not always

possible to cut the rolls without leftovers. These leftovers parts are called trim

'loss', 'wastage' or 'scrap'.

 In this section we will discuss what is the Gilmore-Gomory's Algorithm,

features of the algorithm and relationship between the Gomory Algorithm and

Cutting Stock Problem.

 From past to now, it has been known that minimizing scrap is one of

the most important problem in many industries. Because raw material is very

improtant cost for the factories. This problem has been looked into from a

different point of view in the past. Many problems were researched and tried

to solve and find optimal in industrial engineering area from past to now.

 Different optimization methods have been occured and this

optimaziton methods were searched also applied largely to various problems.

Linear programming and the other specific solution methods can be used

effectively in small data problems. When the problem size are large and

complex, heuristic methods studies had been started. As result of these

studies, it has seen that exponential growth of the search space and time

loosing was occured in order to find optimal solution.

 20

 The solution procedure of Gilmore-Gomory Algorithm published in

1963. Gilmore and Gomory studied for the CSP considering minimizing the

wastage cost. In the Linear Programming Approach of method, the LP

relaxation of the problem is considered and solved then a rounding

procedure is used to take an integer solution. But some difficulties were

occured. One of them is, occuring large number of cutting patterns in the LP

relaxation approach. Because generating them can be hardly.

 The Gilmore-Gomory cutting plane algorithm is occured in order to find

the solution for the continuos relaxation of problem and the other aim was

ensuring from its optimal solution using one or more inequalities. The solution

disrupted these inequalities itself. These inequalities are added to the

problem. Problem is still reoptimize. Then, the method is applied again to the

new solution, process applied as long as the optimal solution becomes

integer.

 21

CHAPTER 5

GILMORE-GOMORY'S ALGORITHM

The cutting standard-sized pieces of stock material problems are

named cutting stock problem. These pieces can be occured by paper rolls

or sheet metal, leather. They are divided or cut pieces of specified sizes

while minimizing material. After cutting process, leftover is named trim loss or

wastage. This trim loss can be named number of used rolls wasted in the

cutting process. In these kind of problems, what trim loss is should be

determined and explained. It is one of the critical point of these kind of

problems. Because trim loss and number of used materials cannot be same

at every problems.

 In mathematical area, an optimization problem is occured by

applications. The cutting stock problem is an NP-complete problem. It can be

return to the knapsack problem beacuse of computional complexity. The

problem can be formulated as an integer linear programming problem.This

formulation applies not only one-dimensional problems but also many

variations can be done, it is possible. The objective of cutting stock problem

can be minimizing trim loss or maximizing the total value of the produced

items using each order with different value.

 Generally, if the number of demands increase ,the amount of possible

cutting patterns increase exponentially as a function of m, in cutting stock

problems. It cannot be practical to compute the all possible cutting patterns.

In order to preventing wasting time while solving, an alternative approach is

improved which is Column Generation method. The Column Generation

https://en.wikipedia.org/wiki/Inventory
https://en.wikipedia.org/wiki/Sheet_metal
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Delayed_column-generation

 22

method sometimes can be much more effictive than the original advent,

especially problem size increases.

 In 1960s, the column generation approach was introduced and applied

to the cutting stock problem by Gilmore and Gomory. Gilmore and Gomory

proved and showed that this approach is guaranteed to converge to the

optimal solution, without using and generating all possible cutting patterns.

This method solves the cutting-stock problem by starting using few patterns

which are determined before. If it is needed, it generates additional cutting

patterns and use them in order to find optimal solution .

 The other special part is one-dimensional cutting stock problem for

general cutting stock problem. Solving an auxiliary optimization problem such

as one dimensional cutting stock introduced us the new patterns which are

named the knapsack problem.

 In the Knapsack Problem, dual variables are found and used from

the linear program. This problem is one of the strong method to solve these

kind of cutting stock problems. The other known methods are branch and

bound algorithm and dynamic programming like knapsack problem.

 Some fractions causes limitation for the Gilmore and Gomory method.

Because handling integrality is a limitation for the problem. Sometimes

rounding to the nearest integer can not be useful for the cutting stock

problem, because sub-optimal solution can be occured. It means that under

or over-production for some orders. But modern algorithms overcame this

limitation for including very large instances of the problem.

 Sometimes, occuring same trim loss can be possible in the cutting

stock problem . So, possibility of corruption can be occured. Also geneating

new patterns increase the effect of this degeneracy without affecting the trim

loss. Gilmore Gomory Algorithms can be coded like CPLEX or another

programming language. The solution procedures of Gomory Algorithm are;

Step 1. Firstly, find the Simplex Tableau.

Step 2. Strong Gomory Cutting Planes associated with each row that has a

fractional right hand side are found.

Step 3. Add these cutting patterns to the Simplex tableau including primal

feasibility.

https://en.wikipedia.org/wiki/Column_generation
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Linear_program
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Dynamic_programming

 23

Step 4. In order to find a solution for the new LP, use the Dual Simplex

Algorithm.

Step 5. If the solution is optimal, stop, otherwise return to Step 2.

 24

CHAPTER 6

 PROBLEM DEFINITION

 The Cutting Stock Problem is the problem of filling an order at

minimum cost for specified numbers of lengths of material to be cut from

given stock lengths of given cost (Gilmore et al.1961).

 The CSP is an integer programming problem. However, since the

integer programming problems are known to be non-deterministic

polynomial-time hard, the Cutting Stock Problem is formulated as linear

programming problem by relaxing the integer requirements. After the linear

programming optimal has been found, a rounding-upprocedures used to get

optimum in the integer programming. It arises from many applications in

industry including paper, glass, shoe-leather cutting, furniture, machine-

building.

 The most important and first aim of every business is to optimize cost

which means that to maximize profit or minimize the cost of operation while

satisfying demands.

 In my thesis, my problem occurs in a carton and corrugated factory in

Torbali/Izmir. This study was made using the real data from a factory which

works about the corrugated area. Raw material is paper which is bought from

abroad such as England, France, Germany, Israel etc. and domestic. In the

depot, there are rolls which have different widths.

 The thesis focuses minimizing the number of cutting rolls using the

pieces which were cut with different amount from the fixed width materials for

the factory which produces many products according to demand.

 25

 In the factories, managers should provide the stock enough in order to

utilizing the advantages of stock and escaping the disadvantages of stock.

When the demand comes, the materials which are required are controlled in

the depot.

 Generally, in the stock there are rolls which have different widths and

lengths. These rolls should be cut in order to satisfy demand. In this situation,

the most important cost is the trim loss cost which occurs when the cutting

process is made for one more than product. Trim loss means that using

number of rolls in this thesis.

Minimizing trim loss and minimizing number of used rolls are not same. In

order to show this difference trim loss tables were prepared. In these tables,

there are demand width, cutting patterns, width of rolls, number of rolls and

trim loss calculation. Demand width and rolls width were known. Cutting

patterns were occured by hand. These patterns include all possible

combinations. Number of rolls were calculated by using matthematical model.

 In the trim loss calculation, there are three parts. These are used area

per pattern, total area per pattern and loss per pattern. Total area was

calculated by number of rolls multiplying with roll width. Used area per

pattern was calculated by demand width multiplying with number of rolls and

the number of subrolls corresponding desired width in that pattern and lastly

loss per pattern was calculated by subtracting used area per pattern from

total area per pattern.

aij 19 20 21 22 23 24 25 26 27 28 29

500 0 0 0 2 3 0 0 0 1 0 0

450 1 0 0 0 0 0 0 0 0 0 0

645 0 0 0 0 0 0 0 0 0 0 0

430 0 0 4 1 0 2 0 2 1 0 0

370 0 0 0 0 0 0 0 0 0 0 0

495 1 2 0 0 0 0 0 0 0 0 0

850 0 0 0 0 0 1 2 0 0 1 0

750 0 0 0 0 0 0 0 1 1 1 2

725 0 0 0 0 0 0 0 0 0 0 0

720 0 0 0 0 0 0 0 0 0 0 0

WIDTH OF ROLL 1020 1020 1730 1730 1730 1730 1730 1730 1730 1730 1730

 # OF ROLLS 0 0 8 0 0 0 27 0 0 0 32

 26

TRIM LOSS CALCULATION

 USED AREA PER PATTERN 0 0 13760 0 0 0 45900 0 0 0 48000

TOTAL AREA PER
PATTERN 0 0 13840 0 0 0 46710 0 0 0 55360

LOSS PER PATTERN 0 0 80 0 0 0 810 0 0 0 7360

Table 3. Example table of trim loss calculation for roll 1020 mm and 1730 mm

 First Model
Solution

 TRIM LOSS

25025

 # of used rolls

185

 After the cutting process, if the last piece will be used for the other

production of product is used, if it is not it will go to scrap. In the study, the

aim is making the cutting plan optimally and calculating number of rolls which

will satisfy demand.

 In terms of the loosing material which is the standard width, the need

is known to be substantially increased track parts in case of interruption of

the loss occurring due to excess wastage. From this reason, it is very

important that giving the information about the material from the stock. There

is no problem if the all kind of rolls are in the depot.

 But the factory which produces the products according the demand

buy the rolls. These rolls are so expensive. So, the scrap cost should be less

in order to decrease the production cost. The requiring rolls which has

different widths are in the factory that kind of products are too much.

 It is known that the factory produces the products according to

customer's demand. In the production, paper is combined with starch, caustic

and borax. This combination is processed in corrugated machine which

Second Model
Solution

 TRIM LOSS

22575

 # of used rolls

200

 27

length of the machine is 2 meters. Papers have different widths. These

widths are; 1020 mm, 1120 mm, 1320 mm, 1430 mm, 1530 mm, 1630 mm,

1730 mm, 1830 mm, 1930 mm and maximum 2000 mm.

 Production is processed according to customer request so, there are a

lot of different demand with different widths. While these demand were

planning, they classified according to their amount and width. This means

that, every demand cannot be combined with in each. While combining, their

combination of width should be go to the cutting roll and the trim loss should

be minimum. If the scrap is minimum, it is known that combination of demand

is near the optimum. In order to understand the combination is optimum,

mathematical model and algorithm were improved and their solution were

compared.

 A mathematical model which gives the suitable cutting plan is

improved satisfying these demands. Also the object of this model, seeing the

using number of rolls for every different widths and choosing the most

suitable cutting pattern which minimizes the number of used rolls. Created a

mathematical model as well as encountered in details in order to see results

from ignoring and larger data for heuristic algorithm was developed to solve.

 28

CHAPTER 7

DATA COLLECTION

The data was collected from cartoon and corrugated factory which is in

Torbalı/Izmir. The data collection include matrices for the different roll widths

and demands. There are eleven different roll widths and ten different demand

widths and amount.

Table 4. Roll Widths Table 5. Demands and their widths

NO DEMANDS WIDTHS

1 10 500

2 20 450

3 50 645

4 60 430

5 40 370

6 45 495

7 55 850

8 65 750

9 80 725

10 45 720

NO WIDTHS
1 1020
2 1120
3 1220
4 1320
5 1430
6 1530
7 1630
8 1730
9 1830

10 1930
11 2000

 29

There are initial matrices for every different roll. These matrices are

10x10 and shows that how many rolls require in order to satisfy for every

demand. X1 and X2 ... X10 show that number of subrolls corresponding

desired width in that pattern.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

A1 = 645 0 0 1 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

 Table 6. Diagonal matrix for 1020 mm

 30

CHAPTER 8

MATHEMATICAL MODELING

 In mathematical modeling part, two models were analyzed. First model

was used in order to compare Gilmore-Gomory Algorithm's solutions. In the

model, all possible combinations of cutting patterns were created. That model

can be used for standard roll and multi width rolls. The aim of this model is

minimizing number of used rolls. In order to obtain optimal solution all

combinations were entered by hand.

 The second model is an extra model in order to describe that

minimizing trim loss and minimizing number of used rolls are different. This

model can be used for standard roll and multi width rolls too. Coefficient of

objective function was used to explain using different roll width. The aim is

minimizing trim loss at this time.

8.1. MATHEMATICAL FORMULATION

SETS&INDICES

I Set of desired widths

J Set of cutting patterns

i Index of set desired widths, iƐI = {1,2,...,|I|}

j Index of set cutting patterns, jƐ={1,2,...,|J|}

 31

PARAMETRES

aij The number of width i in cutting pattern j

bj The demand for subrolls of width i

DECISION VARIABLES

xj The number of rolls for which cutting pattern j is used

Minimize (1)

s.t.

 (2)

0 and integer (3)

j

j J

ij j i

j J

j

x

a x b i I

x j J





  

  





The objective function (1) denotes the total number of standard rolls which

satisfy the demand, and has to be minimized.

Second constraint is written for the fact that the number of produced subrolls

has to be greater than or equal to the number of demanded subrolls.

Constraints (3) show the domain of variables.

 The above formulation can be extended to one-dimensional problem

with multiple standard widths (, 1,2,...,| |)kw k K with a fixed length L. For

each standard width kw , let kn be the number of patterns, jkx be the number

of the jth pattern to be cut, and jkc be the associated cost of cutting each jth

pattern. Then the jth pattern can be represented ijka with ith component.

 32

The IP model for multiple standard widths:

Minimize (4)

s.t.

 (5)

0 and integer , (6)

jk jk

k K j J

ijk jk i

k K j J

jk

c x

a x b i I

x j J k K

 

 

  

    





The objective function (4) minimizes the total associated cost of cutting

patterns.

Constraints (5) ensure the same condition like in the model of one standard

roll. Sixth constraints show the domain of variables.

 33

CHAPTER 9

APPLICATION OF GILMORE-GOMORY'S

ALGORITHM

The cardboard factory manufacturers cuts cardboards. The cutting

department buys the cardboard such as rolls with different widths. They have

to be cut into subrolls with desired widths. The different lengths of rolls in this

instance are 1020 mm, 1120 mm, 1220 mm, 1320 mm, 1430 mm, 1530 mm,

1630 mm, 1730 mm, 1830 mm, 1930 mm and 2000 mm. The customer order

subrolls of cardboard have various widths. It means that every demand has a

different width. The question is how to cut the standard rolls such that the

demand of all customers is satisfied, and the amount of wasted cardboard

which is called the trim loss is as small as possible. Our aim is to generate

the best cutting patterns for each order package with cutting minimum

amount of rolls.

 Finding all cutting patterns can be possible for a small order package.

But the number of cutting patterns can easily grow in some problem which

includes large-scale orders. In this part, how to solve general model for a

standard roll without using all cutting patterns will be showed, and hence

without considering all decision variables x1,x2,...,xn.

 The matrix A will only exist actually; it is never constructed clearly.

Only a submatrix of A is generated for this solution approach. There are two

phases in each iteration step in Gilmore-Gomory algorithm,. A LO-model is

solved in the first phase, and the second phase occurs of a knapsack model

 34

to be solved, which either creates optimality, or leads to a cutting pattern that

is added to the submatrix of A.

The formulation of the algorithm is as follows:

9.1.Gilmore-Gomory Algorithm

Input:Model, with an order package, including the amount of demanded

subrolls with the corresponding widths.

Output:An optimal solution of model.

Step 0:Initialization. Choose an initial full row rank matrix A(1), of which the

columns correspond to cutting patterns. For instance, take A(1)= Im, Go to

Step I.

Step I: This step is for Simplex algorithm. Let A(k), k1, be the current

technology matrix (after k iterations of the Gilmore-Gomory algorithm), of

which the columns correspond to cutting patterns; let J(k) be the index set of

the columns of A(k). Solve the LO-model:

()

()

()

min

s.t.

 ()

0 for (),

j

j J k

k

j j k

j J k

j

x

A x b P

x j J k







 





with Aj
(k) the j’th column of A(k). Let () ()

1 ,...,k k

my y be the values of an optimal

dual solution, corresponding to the current optimal basis matrix of ()kP .

Go to Step 2.

Step 2:Column generation.Solve the knapsack model:

()

1

1

1

max

s.t.

1730 ()

,..., 0.

m
k

i i

i

m

i i k

i

m

y u

w u K

u u













Let () () () T

1[...]k k k

mu u u be an optimal solution of ()kK , and let k be the optimal

objective value of ()kK . G oto Step 3.

 35

Step 3: Optimality test and stopping rule. If k >1, then let A(k+1)=[A(k)u(k)] and

return to Step I. If k 1, then stop: the pair {u(k), k } is an optimal solution of

model.

 In the thesis, firstly we arranged matrices for the rolls according to

demand widths. It means that there are 11 matrices for the demands. These

matrices are diagonal matrices. In the matrix, there are 10 different desired

widths. These are 500,450,645,430,370,495,850,750,725,720 mm and their

frequencies is called x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. For instance; there

are two '500 mm' in the 1020 mm roll. There are two '450 mm' in the 1020

mm roll. There is one '645 mm' in the 1020 mm roll.

 Table 7. Initial Matrix for 1020 mm

The details of the first iteration of the algorithm is as follows:

Step 1. Solve the LO-model:

Minimize x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

s.t.

 2x110

 2x220

 x350

 2x460

 2x540

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

A1 = 645 0 0 1 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

 36

 2x645

 x755

 x865

 x980

 x1045 x1,….,x100.

 An optimal solution is calculated using a computer package, CPLEX:

x1=5,x2=10, x3=50, x4=30, x5=20, x6=22.5, x7=55, x8=65, x9=80, x10=45, with

optimal objective value z=382.5.

 The knapsack problem to be solved in next step uses as objective

coefficients the optimal dual values of the current constraints:

y1=y2=y4=y5=y6=0.5, y3=y7=y8=y9=y10=1. (These optimal dual values are

reported in the output of the computer package.)

Step 2. Solve the knapsack problem

Maximize 0.5u1+0.5u2+0.1u3+0.5u4+0.5u5+0.5u6+u7+u8+u9+u10

s.t

500u1+450u2+645u3+430u4+370u5+495u6+850u7+750u8+725u9+720u101020

u1,…,u100, and integer.

The optimal solution (generated by a computer package) is:

u1=u2=u4=u6=u7=u8=u9=u10=0, u3=u5=1. The optimal objective value satisfies

1 1.5  . Since 1 >1, optimality has not yet been reached.

Step 3. Construct matrix A(2) from A(1) by adding the column

[0 0 1 0 1 0 0 0 0 0]T.

 37

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

500 2 0 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0 0

A2 = 645 0 0 1 0 0 0 0 0 0 0 1

430 0 0 0 2 0 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0 1

495 0 0 0 0 0 2 0 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0 0

750 0 0 0 0 0 0 0 1 0 0 0

725 0 0 0 0 0 0 0 0 1 0 0

720 0 0 0 0 0 0 0 0 0 1 0

 Table 8. Iteration matrix

In the next iteration, Step 1 and Step 2 are repeated for the matrix A(2). The

algorithm stops at iteration k if the optimal objective value k of model ()kK is

1. With our calculations, the Gilmore-Gomory algorithm performed 3

iterations. The resulting optimal solution is listed below:

 Table 9. Algorithm Result

 In previous explanations and details, as you can see, the algorithm

was performed for a standard roll width, 1020 mm. Our main goal for this

thesis is applying this algorithm to multiple standard roll widths. We made

some modifications for the algorithm and the details are given below:

of Rolls 5 10 10 22,5 55 65 80 45 40 30

Order(mm)

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 1 0

430 0 0 0 0 0 0 0 0 0 2

370 0 0 0 0 0 0 0 0 1 0

495 0 0 0 2 0 0 0 0 0 0

850 0 0 0 0 1 0 0 0 0 0

750 0 0 0 0 0 1 0 0 0 0

725 0 0 0 0 0 0 1 0 0 0

720 0 0 0 0 0 0 0 1 0 0

200 4800

TOTAL

TRIM LOSS

(mm)

74725

1

TRIM LOSS

CALCULATI

ON (mm)

100 1200 3750 675 9350 17550 23600 13500

0,5

0

0,5

1

1

1

Optimal Solution

Cutting Pattern Optimal Dual Value

0,5

0,5

1

 38

9.2. Improved Gilmore-Gomory Algorithm for Multiple Standard Rolls

Input: Model, with an order package, including the amount of demanded

subrolls with the corresponding widths.

Output: An optimal solution of model.

Step 0: Initialization. Choose an initial full row rank matrix A(1), of which the

columns correspond to cutting patterns. For instance, take A(1)= Im, Go to

Step I.

Step I: Simplex algorithm step. Let A(k), k 1, be the current technology

matrix (after k iterations of the Gilmore-Gomory algorithm), of which the

columns correspond to cutting patterns; let J(k) be the index set of the

columns of A(k). Solve the LO-model:

()

()

()

min

s.t.

 ()

0 for (),

j

j J k

k

j j k

j J k

j

x

A x b P

x j J k







 





with Aj
(k) the j’th column of A(k). Let () ()

1 ,...,k k

my y be the values of an optimal

dual solution, corresponding to the current optimal basis matrix of ()kP .

Go to Step 2.

Step 2:Column generation. Solve the knapsack model:

()

1 1

1

max

s.t.

 ()

0

n m
k

i ji

j i

m

i ji j k

i

ji

y u

wu width j J K

u i I j J

 



  

    





The different point from the original algorithm is that in the optimal solution of

 ()kK ,we can have more than one u vector and we take into account all of

these u vectors, and let k be the optimal objective value of ()kK .

 Go to Step 3.

 39

Step 3: Optimality test and stopping rule. In the solution of Step 2, if there

is/are different u vector(s) from previous iterations, return to Step I. Ifthere is

no different u vector for adding to A vector, then stop: Optimality has been

reached.

 The given example will help the reader to understand the improved

algorithm. In the example, the instance consists of two different standard rolls,

1020 mm and 1730 mm. Before starting to the improved algorithm, we first

arranged the diagonal matrix for this instance which is listed below:

 Table 10. Initial Matrix for 1020 mm and 1730 mm

The details of the first iteration is as follows:

Step 1. Solve the LO-model:

Minimize

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20

s.t.

 2x1+3x1110

 2x2+3x1220

 x3+2x1350

 2x4+4x1460

 2x5+4x1540

 2x6+3x1645

 x7+2x1755

 x8+2x1865

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

500 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

1730 1730 17301730 1730 1730 1730 1730 17301020 1020 1020 1020 1020 1730
ROLL

WIDTH
1020 1020 1020 1020 1020

 40

 x9+2x1980

 x10+2x2045

 x1,….,x200.

An optimal solution is calculated using a computer package, CPLEX:

x1=x2=x3=x4=x5=x6=x7=x8=x9=0, x10=45, x11=3.33,x12=6.66,x13=25,x16=x14=15,

x15=10, x17=27.5, x18=32.5, x19=40,x20=22.5, withoptimal objective value

z=197.5. The knapsack problem to be solved in next step uses as objective

coefficients the optimal dual values of the current constraints: y1=y2=y6=0.33,

y4=y5=0.25, y3=y7=y8=y9=y10=0.5. (These optimal dual values are reported in

the output of the computer package.)

Step 2. Solve the knapsack problem

Maximize

0.33(u11+u21)+0.33(u12+u22)+0.5(u13+u23)+0.25(u14+u24)+0.25(u15+u25)+0.33(u

16+u26)+0.5(u17+u27)+0.5(u18+u28)+0.5(u19+u29)+0.5(u110+u210)

s.t

500u11+450u12+645u13+430u14+370u15+495u16+850u17+750u18+725u19+720u

1101020

500u21+450u22+645u23+430u24+370u25+495u26+850u27+750u28+725u29+720u

2101730

u11,…,u2100, and integer.

The optimal solution (generated by a computer package) is:

u11=u12=u14=u16=u17=u18=u19=u110=0, u13=u15=1,

u21=u22=u24=u25=u26=u27=u28=u29=u210=0, u23=1, The optimal objective value

satisfies 1 2  . Since we have different u vectors to enter the matrix,

optimality has not yet been reached.

Step 3. Construct matrix A(2) from A(1) by adding the columns

[0 0 1 0 1 0 0 0 0 0]T, [0 0 2 0 1 0 0 0 0 0]T.

 41

 Table 11. Iteration Matrix

 In the next iteration, Step 1 and Step 2 are repeated for the matrix A(2).

The algorithm stops at iteration k if there is no different u vector from

previous iterations. With our calculations, the Gilmore-Gomory algorithm

performed 6 iterations. The resulting optimal solution is listed below:

 Table 12. Algorithm Result

 The verification of this algorithm is constructed by solving the problem

with the original model which includes all cutting patterns. The results show

that this algorithm also gives optimal solution.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

500 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2

430 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 1

495 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

750 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0

725 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0

720 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

1730 1730 1730 1020 17301730 1730 1730 1730 1730 17301020 1020 1020 1020 1020 1730
ROLL

WIDTH
1020 1020 1020 1020 1020

of Rolls 40 32,5 27,5 25 22,5 15 8,75 6,66 5 2,083

Order(mm)

500 0 0 0 0 0 0 0 0 2 0

450 0 0 0 0 0 0 0 3 0 0

645 0 0 0 2 0 0 0 0 0 0

430 0 0 0 0 0 4 0 0 0 0

370 0 0 0 1 0 0 0 1 0 4

495 0 0 0 0 2 0 0 0 0 0

850 0 0 2 0 0 0 0 0 0 0

750 0 2 0 0 0 0 0 0 0 0

725 2 0 0 0 0 0 0 0 0 0

720 0 0 0 0 1 0 2 0 1 0

66,6 50 521

TOTAL TRIM

LOSS (mm)
25024,85

0,5

0,5

TRIM LOSS

CALCULATION

(mm)

11200 7475 825 1750 450 150 2538

0,375

0,25

0,25

0,25

0,5

0,5

Cutting Pattern

Optimal Solution

Optimal Dual Value

0,25

0,25

 42

 In addition, a lot of combinations of different standard roll widths (4-7-

8-10 and 11 different standard roll combinations) are analyzed with this

algorithm. In the appendix part, the reader can see the results.

 When the reader sees the results, he/she can be sure that this

approach gives optimality without considering all cutting patterns.

 42

CHAPTER 10

 RESULTS

 In the thesis, mathematical was improved. This model was designed

according to eleven different rolls and all posible cutting pattern combinations

were occured . Gilmore-Gomory's Algorithm firstly was applied for standard

roll and then algorithm was improved and applied for eleven different roll

widths. The aim is minimizing number of used rolls while cutting process in

mathematical model and Gilmore-Gomory's Algorithm. So, results which

were taken from mathematical model and Gilmore-Gomory's Algorithm were

compared. It has seen that used cutting patterns and number of used rolls

were same. In order to show these solutions comparing tables were prepared.

 43

of used

rolls
Roll widths

Mathematical
model solution

Algorithm
solution

11
1020-1120-1220-1320-
1430-1530-1630-1730-

1830-1930-2000
149,667 149,667

10
1020-1120-1220-1430-
1530-1630-1730-1830-

1930-2000
149,667 149,667

8
1020-1220-1430-1530-
1730-1830-1930-2000

149,667 149,667

7
1020-1220-1430-1530-

1730-1830-2000
149,667 149,667

6
1020-1220-1430-1530-

1730-2000
149,667 149,667

 5
1020-1220-1430-1530-

1730
185 185

4 1020-1220-1530-1730 185 185

3 1020-1220-1730 185 185

1 1730 185 185

1 1020 382,5 382,5

Table 13. Solution table for Mathematical model and Gilmore-Gomory

Algorithm

 44

CHAPTER 11

CONCLUSION

In conclusion, cutting stock problem was defined in detail. Surveys,

mathematical models, and heuristic applications were explained in the

literature surveys part. Mathematical model was developed and it was

improved according to our problem generating all possible cutting patterns in

order to find optimal solution and calculated trim loss which means that used

number of rolls while cutting processing. Then, Gilmore-Gomory Algorithm

was studied for only one roll width and this model was improved according to

different roll widths which is the first application in the literature. Before, all of

the studies in the literature were done for the one roll width. But in this thesis,

some different roll widths were used and calculated how many rolls should be

used while processing. Algorithm was studied with two,three, seven, eight,

ten and eleven different roll widths. So, demands were satisfied and how

many rolls which should be required for the production process were selected.

These studies were codded in an optimization programming language,

CPLEX. Solutions which were taken from mathematical model and improved

Gilmore-Gomory Algorithm were compared and it has been seen that

solutions were same.

 45

 REFERENCES

[1] ACHHALZ H. and A. KONRAD (1998), "Operations Research Schont den

Wald" R-News, Juli 1998.

[2] KLAUS K.P. and M. STEVEN (1993), Produktionsplanung, Physical

Verlag.

[3] KUPSCH P.U. (1979), Lager in Kern, Handwörterbuch der

Produktionswirtschaft, Stuttgart.

[4] MÜLLER M. (1973), Operations-Research , 3. Auflage, Verlag Vahlen.

[5] WALTER D. and K. KLEİBOHM (1988), Operations Research, Carl

Hanser Verlag München Wien.

[6] K. Claire and E. Remila, ''A near-optimal solution to a two-dimensional

cutting stock problem", Math. Oper. Res. 25 no. 4 (2000), 645-656.

[7] V. Chvatal, Linear programming, W.H. Freeman and Company, New York,

1983.

[8] P. C. Gilmore and R. E. Gomory, \A linear programming approach to the

cutting-stock problem, part i", Journal of Operation Research 9 (1961).

 46

[9] P. C. Gilmore and R. E. Gomory, \A linear programming approach to the

cutting-stock problem, part ii", Journal of Operation Research 9 (1961).

[10] M. Hifi, \Dynamic programming and hill-climbing techniques for

constrained two-dimensional cutting stock problems", Journal of

Combinatorial Optimization 8 (2004).

[11] F. Vanderbeck, \Computational Study of a Column Generation Algorithm

for Bin Packing and Cutting Stock Problems", Journal of Mathematical

Programming 86 no.33 (1999).

 47

APPENDIX A

Initial Matrices for the different roll widths

A.1. Initial matrix for roll 2000 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 4 0 0 0 0 0 0 0 0 0

450 0 4 0 0 0 0 0 0 0 0

A1 = 645 0 0 3 0 0 0 0 0 0 0

430 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 5 0 0 0 0 0

495 0 0 0 0 0 4 0 0 0 0

850 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 2

 48

A.2. Initial matrix for roll 1930 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 3 0 0 0 0 0 0 0 0 0

450 0 4 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 5 0 0 0 0 0

495 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 2

A.3. Initial matrix for roll 1830 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 3 0 0 0 0 0 0 0 0 0

450 0 4 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 2

A.4. Initial matrix for roll 1730 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 3 0 0 0 0 0 0 0 0 0

450 0 3 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 2

 49

A.5. Initial matrix for roll 1630 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 3 0 0 0 0 0 0 0 0 0

450 0 3 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 3 0 0 0 0 0 0

370 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 2

A.6. Initial matrix for roll 1530 mm

A.7. Initial matrix for roll 1430 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 3 0 0 0 0 0 0 0 0 0

450 0 3 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 3 0 0 0 0 0 0

370 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 2

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 2 0 0 0 0 0 0 0 0 0

450 0 3 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 3 0 0 0 0 0 0

370 0 0 0 0 3 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

 50

A.8. Initial matrix for roll 1320 mm

A.9. Initial matrix for roll 1220 mm

A.10. Initial matrix for roll 1120 mm

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

A1 = 645 0 0 2 0 0 0 0 0 0 0

430 0 0 0 3 0 0 0 0 0 0

370 0 0 0 0 3 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

A1 = 645 0 0 1 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0

370 0 0 0 0 3 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

 500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

A1 = 645 0 0 1 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0

370 0 0 0 0 3 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 1 0 0

725 0 0 0 0 0 0 0 0 1 0

720 0 0 0 0 0 0 0 0 0 1

 51

APPENDIX B

Gilmore-Gomory Algorithm Iterations using

different roll widths

B.1.1020mm-1120mm-1220mm-1430mm-1530mm-

1630mm-1730mm-1830mm-1930mm-2000mm

1. Iteration

optimal value=)180,917

dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dec.
V8

dual v.1 0,25 0 1 0 0 0 0 1 0

dual v.2 0,25 0 0 0 0 0 1 0 0

dual v.3 0,33 1 0 1 0 0 0 0 0

dual v.4 0,25 0 0 0 0 0 0 0 0

dual v.5 0,2 1 0 0 0 1 0 0 1

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0 0

dual v.8 0,5 0 0 1 0 0 0 0 0

dual v.9 0,5 0 0 0 0 0 0 0 0

dual v.10 0,5 0 1 0 2 2 2 2 1

alpha=9,51

 52

2. Iteration

optimal value=)175,29
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dual v.1 0,25 0 0 0 0 1 0

dual v.2 0,25 0 0 0 1 0 0

dual v.3 0,33 0 0 0 0 0 0

dual v.4 0,25 1 0 0 0 0 0

dual v.5 0,2 0 0 1 0 0 1

dual v.6 0,25 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0

dual v.8 0,5 0 0 0 0 0 0

dual v.9 0,5 1 2 2 2 2 1

dual v.10 0,375 0 0 0 0 0 0

alpha=9,516

3. Iteration

optimal value=)166,91
dec.
 V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dual v.1 0,2 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0

dual v.3 0,33 0 0 1 0 0

dual v.4 0,25 1 0 1 1 0

dual v.5 0,2 0 0 0 0 1

dual v.6 0,25 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0

dual v.8 0,5 1 2 1 2 1

dual v.9 0,4 0 0 0 0 0

dual v.10 0,4 0 0 0 0 0

alpha=9,39

4. Iteration

optimal value=)158,79
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dec.
V8

dual v.1 0,2 0 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0 0

dual v.3 0,33 0 0 0 0 1 0 0 0

dual v.4 0,25 0 3 1 0 1 1 0 0

dual v.5 0,2 1 0 1 0 0 0 3 0

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,5 1 0 0 2 1 1 0 1

dual v.8 0,375 0 0 0 0 0 0 0 0

dual v.9 0,4 0 0 0 0 0 0 0 1

dual v.10 0,4 0 0 1 0 0 1 0 0

alpha=8,56

 53

5. Iteration

optimal value=)156,5
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dual v.1 0,2 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0

dual v.3 0,33 0 1 1 0 0

dual v.4 0,166 0 0 0 0 0

dual v.5 0,2 0 0 1 1 0

dual v.6 0,25 1 0 0 0 0

dual v.7 0,5 1 1 1 1 1

dual v.8 0,416 0 0 0 1 1

dual v.9 0,4 0 0 0 0 0

dual v.10 0,4 0 0 0 0 0

alpha=8,497

6. Iteration

optimal value=)155,625
dec.
 V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dual v.1 0,833 0 0 0 0 0 0

dual v.2 0,833 0 0 0 0 0 0

dual v.3 0,33 0 0 1 0 0 0

dual v.4 0,166 0 0 0 1 0 0

dual v.5 0,833 0 1 0 0 0 0

dual v.6 0,25 0 0 0 0 1 0

dual v.7 0,5 1 0 0 0 0 1

dual v.8 0,416 0 0 0 0 0 0

dual v.9 0,458 0 0 0 0 0 0

dual v.10 0,458 0 1 1 2 2 1

alpha=8,662

7. Iteration

optimal value=)153,236
dec.
 V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 0 0 0 0 0 0 0

dual v.4 0,244 0 1 1 4 1 2 2

dual v.5 0,2 0 0 1 0 0 1 0

dual v.6 0,25 1 2 0 0 0 0 0

dual v.7 0,422 0 0 0 0 0 0 0

dual v.8 0,377 0 0 0 0 0 0 0

dual v.9 0,4 1 0 1 0 2 1 1

dual v.10 0,375 0 0 0 0 0 0 0

alpha=8,367

 54

8. Iteration

optimal value=)152,292
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dual v.1 0,22 0 0 0 0 0

dual v.2 0,22 0 0 0 0 1

dual v.3 0,33 0 0 1 0 1

dual v.4 0,22 0 0 1 1 0

dual v.5 0,166 0 0 0 0 0

dual v.6 0,25 2 2 0 0 0

dual v.7 0,444 0 0 0 1 0

dual v.8 0,388 0 0 0 0 0

dual v.9 0,388 0 1 1 0 0

dual v.10 0,375 0 0 0 1 0

alpha=7,895

9. Iteration

optimal value=)151,354
dec.
V1

dec.
V2

dec.
V3

dual v.1 0,208 0 0 0

dual v.2 0,208 0 0 0

dual v.3 0,333 1 0 0

dual v.4 0,208 0 0 0

dual v.5 0,1875 0 0 1

dual v.6 0,25 0 1 1

dual v.7 0,416 0 0 0

dual v.8 0,395 0 0 0

dual v.9 0,395 1 2 1

dual v.10 0,375 0 0 0

alpha=8,007

 55

10. Iteration

optimal value=)151,131
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dec.
V8

dual v.1 0,25 0 0 0 0 0 0 0 0

dual v.2 0,25 1 3 1 3 4 1 3 2

dual v.3 0,33 0 0 1 0 0 0 1 0

dual v.4 0,214 0 0 1 0 0 0 0 0

dual v.5 0,196 2 0 0 1 0 4 0 0

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,41 0 0 0 0 0 0 0 0

dual v.8 0,392 0 0 0 0 0 0 0 0

dual v.9 0,375 0 0 0 0 0 0 0 1

dual v.10 0,375 0 0 0 0 0 0 0 0

alpha=8,244

11. Iteration

optimal value=)150,532
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dual v.1 0,25 0 0 1 1

dual v.2 0,222 0 0 0 0

dual v.3 0,333 0 0 0 0

dual v.4 0,212 0 0 0 0

dual v.5 0,194 2 3 0 1

dual v.6 0,25 2 0 0 0

dual v.7 0,412 0 0 0 0

dual v.8 0,393 0 0 2 1

dual v.9 0,375 0 0 0 0

dual v.10 0,375 0 1 0 0

alpha=7,967

12. Iteration

optimal value=)150,162
dec.
V1

dec.
V2

dual v.1 0,212 0 0

dual v.2 0,222 0 0

dual v.3 0,333 0 0

dual v.4 0,212 0 0

dual v.5 0,194 0 1

dual v.6 0,25 1 1

dual v.7 0,412 0 0

dual v.8 0,393 2 1

dual v.9 0,375 0 0

dual v.10 0,375 0 0

alpha=7,967

 56

13. Iteration

optimal value=)149,792
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dual v.1 0,222 0 0 0 0

dual v.2 0,222 1 0 0 2

dual v.3 0,333 0 1 2 0

dual v.4 0,208 0 0 1 0

dual v.5 0,194 0 2 0 1

dual v.6 0,222 0 0 0 0

dual v.7 0,416 0 0 0 0

dual v.8 0,388 0 0 0 0

dual v.9 0,388 1 0 0 1

dual v.10 0,374 0 0 0 0

alpha=7,967

14. Iteration

optimal value=)149,667

alpha=7,932

B.2.1020mm-1220mm-1430mm-1530mm-1730mm-

1830mm-1930mm-2000mm

1. Iteration

optimal value=)180,917
dec.
V1

dec.
V2

dec.
 V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dec.
V8

dual v.1 0,25 0 1 0 0 0 0 0 1

dual v.2 0,25 0 0 0 0 0 0 1 0

dual v.3 0,333 1 0 1 0 0 0 0 0

dual v.4 0,25 0 0 0 0 0 0 0 0

dual v.5 0,2 1 0 0 0 0 1 0 0

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0 0

dual v.8 0,5 0 0 0 0 0 0 0 0

dual v.9 0,5 0 0 0 0 0 0 0 0

dual v.10 0,5 0 1 1 2 2 2 2 2

alpha=7,81

 57

2. Iteration

optimal value=)175,29
dec.
 V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dual v.1 0,25 0 0 0 0 0 1

dual v.2 0,25 0 0 0 0 1 0

dual v.3 0,33 0 1 0 0 0 0

dual v.4 0,25 1 0 0 0 0 0

dual v.5 0,2 0 0 0 1 0 0

dual v.6 0,25 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0

dual v.8 0,5 0 0 0 0 0 0

dual v.9 0,5 1 1 2 2 2 2

dual v.10 0,375 0 0 0 0 0 0

alpha=7,81

3. Iteration

optimal value=)166,91
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dual v.1 0,2 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0

dual v.3 0,33 0 1 0 1 0

dual v.4 0,25 1 0 0 1 1

dual v.5 0,2 0 0 0 0 0

dual v.6 0,25 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0

dual v.8 0,5 1 1 2 1 2

dual v.9 0,4 0 0 0 0 0

dual v.10 0,4 0 0 0 0 0

alpha=7,69

4. Iteration

optimal value=)158,79
dec.
V1

dec.
 V2

dec.
 V3

dec.
V4

dec.
V5

dec.
 V6

dual v.1 0,2 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0

dual v.3 0,33 0 0 0 0 1 0

dual v.4 0,25 0 3 1 0 1 1

dual v.5 0,2 1 0 1 0 0 0

dual v.6 0,25 0 0 0 0 0 0

dual v.7 0,5 1 0 0 2 1 1

dual v.8 0,375 0 0 0 0 0 0

dual v.9 0,4 0 0 0 0 0 0

dual v.10 0,4 0 0 1 0 0 1

alpha=7,06

 58

5. Iteration

optimal value=)154,66
dec.
V1

dec.
 V2

dual v.1 0,2 0 0

dual v.2 0,2 0 0

dual v.3 0,33 0 0

dual v.4 0,09 0 0

dual v.5 0,2 1 0

dual v.6 0,25 0 1

dual v.7 0,5 0 0

dual v.8 0,45 2 2

dual v.9 0,4 0 0

dual v.10 0,4 0 0

alpha=7,16

6. Iteration

optimal value=)151,208
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dual v.1 0,2 0 0 0 0

dual v.2 0,2 0 0 0 0

dual v.3 0,33 0 0 0 0

dual v.4 0,25 1 4 1 2

dual v.5 0,2 1 0 0 1

dual v.6 0,25 0 0 0 0

dual v.7 0,416 0 0 0 0

dual v.8 0,375 0 0 0 0

dual v.9 0,4 1 0 2 1

dual v.10 0,333 0 0 0 0

alpha=6,93

7. Iteration

optimal value=)150,95
dec.
 V1

dec.
 V2

dual v.1 0,2 0 0

dual v.2 0,2 0 0

dual v.3 0,33 0 0

dual v.4 0,2 0 0

dual v.5 0,2 0 1

dual v.6 0,25 0 0

dual v.7 0,466 0 1

dual v.8 0,375 0 0

dual v.9 0,4 2 1

dual v.10 0,33 0 0

alpha=6,724

 59

8. Iteration

optimal value=)150,29
dec.
V1 dec. V2

dec.
V3

dec.
V4

dual v.1 0,2 0 0 0 0

dual v.2 0,2 0 0 0 0

dual v.3 0,33 0 0 0 0

dual v.4 0,2 0 0 0 0

dual v.5 0,2 0 0 0 0

dual v.6 0,25 1 2 1 1

dual v.7 0,4 0 0 0 0

dual v.8 0,375 0 0 0 0

dual v.9 0,4 0 0 0 0

dual v.10 0,4 1 1 2 2

alpha=6,66

9. Iteration

optimal value=)150,25
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dual v.1 0,233 0 0 0 0 0 0

dual v.2 0,333 0 0 0 0 1 0

dual v.3 0,333 0 0 0 0 0 0

dual v.4 0,2083 0 0 0 0 0 0

dual v.5 0,2 0 4 2 3 4 4

dual v.6 0,25 1 0 2 0 0 1

dual v.7 0,416 0 0 0 0 0 0

dual v.8 0,375 0 0 0 0 0 0

dual v.9 0,383 1 0 0 0 0 0

dual v.10 0,375 0 0 0 1 0 0

alpha=6,57

10. Iteration

optimal value=)150
dec.
V1

dec.
V2

dual v.1 0,2083 0 0

dual v.2 0,2083 0 0

dual v.3 0,333 0 0

dual v.4 0,2083 0 0

dual v.5 0,1875 0 0

dual v.6 0,25 2 1

dual v.7 0,416 0 0

dual v.8 0,375 0 0

dual v.9 0,395 1 2

dual v.10 0,375 0 0

alpha=6,593

 60

11. Iteration

optimal value=)149,94
dec.
V1

dec.
 V2

dec.
 V3

dec.
 V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,25 0 0 0 0 0 0 0

dual v.2 0,25 1 3 1 3 4 2 3

dual v.3 0,333 0 0 1 0 0 1 1

dual v.4 0,21875 0 0 1 0 0 0 0

dual v.5 0,1875 0 0 0 1 0 1 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,4375 0 0 0 0 0 0 0

dual v.8 0,375 1 0 0 0 0 0 0

dual v.9 0,375 0 0 0 0 0 0 0

dual v.10 0,34375 0 0 0 0 0 0 0

alpha=6,736

12. Iteration

optimal value=)149,79
dec.
V1

dec.
V2

dec.
V3

dual v.1 0,22 0 0 0

dual v.2 0,22 1 0 2

dual v.3 0,33 0 2 0

dual v.4 0,2083 0 1 0

dual v.5 0,194 0 0 1

dual v.6 0,222 0 0 0

dual v.7 0,416 0 0 0

dual v.8 0,38 0 0 0

dual v.9 0,38 1 0 1

dual v.10 0,374 0 0 0

alpha=8,59

12. Iteration

optimal value=)149,667

alpha=6,532

 61

B.3.1020mm-1220mm-1430mm-1530mm-1730mm-

1830mm-2000mm

1. Iteration

optimal value=)180,917
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,25 0 1 0 0 0 0 1

dual v.2 0,25 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,25 0 0 0 0 0 0 0

dual v.5 0,2 1 0 0 0 0 1 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0

dual v.8 0,5 0 0 1 0 0 0 0

dual v.9 0,5 0 0 0 0 0 0 0

dual v.10 0,5 0 1 0 2 2 2 2

alpha=6,56

2. Iteration

optimal value=)175,91
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
V6

dec.
 V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,25 0 1 0 0 0 0 1

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,25 0 0 0 0 0 0 0

dual v.5 0,2 1 0 0 0 0 1 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0

dual v.8 0,5 0 1 0 0 0 0 0

dual v.9 0,5 0 0 1 2 2 2 2

dual v.10 0,4 0 0 0 0 0 0 0

alpha=6,56

 62

3. Iteration

optimal value=)166,91
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
V6

dec.
V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 1 0

dual v.4 0,25 0 1 0 0 0 1 1

dual v.5 0,2 1 0 0 0 0 0 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0

dual v.8 0,5 0 1 1 2 2 1 2

dual v.9 0,4 0 0 0 0 0 0 0

dual v.10 0,4 0 0 0 0 0 0 0

alpha=6,44
 4. Iteration

optimal value=)158,79
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dec.
V5

dec.
V6

dec.
 V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 0 0 0 0 0

dual v.4 0,25 0 0 3 1 0 0 1

dual v.5 0,2 1 1 0 1 0 0 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,5 0 1 0 0 2 2 1

dual v.8 0,375 0 0 0 0 0 0 0

dual v.9 0,4 0 0 0 0 0 0 0

dual v.10 0,4 0 0 0 1 0 0 1

alpha=5,98

5. Iteration

optimal value=)154,72
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
 V6

dec.
V7

dual v.1 0,25 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,125 0 0 0 0 0 0 0

dual v.5 0,2 1 1 0 0 0 0 1

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,5 0 1 0 0 0 2 1

dual v.8 0,4375 0 0 1 2 2 0 1

dual v.9 0,4 0 0 0 0 0 0 0

dual v.10 0,375 0 0 0 0 0 0 0

alpha=6,01

 63

6. Iteration

optimal value=)152,20
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
 V6

dec.
 V7

dual v.1 0,25 0 0 0 0 0 0 1

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,216 0 0 0 1 0 0 0

dual v.5 0,2 1 0 2 1 0 1 0

dual v.6 0,25 0 1 0 0 2 0 0

dual v.7 0,408 0 0 0 0 0 0 0

dual v.8 0,391 0 0 0 0 0 0 0

dual v.9 0,4 0 1 0 1 1 2 2

dual v.10 0,375 0 0 0 0 0 0 0

alpha=5,676

7. Iteration

optimal value=)151,91
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
 V6

dec.
 V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,2 0 0 0 0 0 0 0

dual v.5 0,2 1 0 2 0 0 1 0

dual v.6 0,25 0 1 0 0 0 0 1

dual v.7 0,4 0 0 0 0 0 0 0

dual v.8 0,4 0 0 0 0 0 0 0

dual v.9 0,4 0 0 0 2 0 0 0

dual v.10 0,4 0 1 0 0 1 2 2

alpha=5,66

8. Iteration

optimal value=)151,70
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
 V6

dec.
V7

dual v.1 0,2 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,216 0 0 0 1 0 0 0

dual v.5 0,2 1 0 2 1 0 1 0

dual v.6 0,25 0 1 0 0 2 0 1

dual v.7 0,408 0 0 0 0 0 0 0

dual v.8 0,391 0 0 0 0 0 0 0

dual v.9 0,4 0 1 0 1 1 2 2

dual v.10 0,375 0 0 0 0 0 0 0

alpha=7,895

 64

9. Iteration

optimal value=)151,208
dec.
V1

dec.
V2

dec.
 V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,25 0 0 0 0 0 0 0

dual v.2 0,25 0 1 3 0 3 4 3

dual v.3 0,33 1 0 0 0 0 0 1

dual v.4 0,216 0 0 0 0 0 0 0

dual v.5 0,2 1 2 0 4 1 0 0

dual v.6 0,25 0 0 0 0 0 0 0

dual v.7 0,408 0 0 0 0 0 0 0

dual v.8 0,391 0 0 0 0 0 0 0

dual v.9 0,375 0 0 0 0 0 0 0

dual v.10 0,375 0 0 0 0 0 0 0

alpha=5,76

10. Iteration

optimal value=)150,652
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
 V6

dec.
V7

dual v.1 0,25 0 1 0 0 0 0 1

dual v.2 0,25 0 0 0 0 0 0 0

dual v.3 0,33 1 0 1 0 0 0 0

dual v.4 0,21 0 0 0 0 0 0 0

dual v.5 0,2 1 0 2 4 2 3 4

dual v.6 0,25 0 0 0 0 2 0 0

dual v.7 0,408 0 0 0 0 0 0 0

dual v.8 0,391 0 0 0 0 0 0 0

dual v.9 0,375 0 0 0 0 0 0 0

dual v.10 0,375 0 1 0 0 0 1 0

11. Iteration

optimal value=)149,76
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,22 0 0 0 0 0 0 0

dual v.2 0,222 0 0 0 0 0 0 0

dual v.3 0,333 1 0 0 0 0 0 0

dual v.4 0,24 0 1 3 1 4 0 2

dual v.5 0,194 1 0 0 1 0 0 3

dual v.6 0,22 0 2 0 0 0 1 0

dual v.7 0,425 0 0 0 0 0 0 0

dual v.8 0,379 0 0 0 0 0 0 0

dual v.9 0,388 0 0 0 1 0 2 0

dual v.10 0,333 0 0 0 0 0 0 0

alpha=5,69

 65

12. Iteration

optimal value=)149,66
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
V5

dec.
V6

dec.
V7

dual v.1 0,2 0 1 0 0 0 0 1

dual v.2 0,2 0 0 0 0 0 0 0

dual v.3 0,333 1 0 1 0 2 0 0

dual v.4 0,2 0 0 0 0 1 0 0

dual v.5 0,2 1 0 2 0 0 1 0

dual v.6 0,2 0 0 0 0 0 0 0

dual v.7 0,39 0 0 0 0 0 0 0

dual v.8 0,4 0 0 0 0 0 0 0

dual v.9 0,4 0 0 0 0 0 0 0

dual v.10 0,4 0 1 0 2 0 2 2

alpha=5,52

13. Iteration

optimal value=)149,667

B.4.1020mm-1220mm-1530mm-1730mm

1. Iteration

optimal value=)197,5
dec.
V1

dec.
V2

dec.
 V3

dec.
V4

dual v.1 0,33 0 1 0 0

dual v.2 0,33 0 0 0 0

dual v.3 0,5 1 1 1 2

dual v.4 0,25 0 0 1 0

dual v.5 0,25 1 0 0 1

dual v.6 0,33 0 0 1 0

dual v.7 0,5 0 0 0 0

dual v.8 0,5 0 0 0 0

dual v.9 0,5 0 0 0 0

dual v.10 0,5 0 0 0 0

alpha=3,91

 66

2. Iteration

optimal value=)191,25
dec.
V1

dec.
V2

dec.
 V3

dec.
V4

dual v.1 0,33 0 1 0 0

dual v.2 0,33 2 0 0 3

dual v.3 0,375 0 0 0 0

dual v.4 0,25 0 0 0 0

dual v.5 0,25 0 0 0 1

dual v.6 0,33 0 0 0 0

dual v.7 0,5 0 0 0 0

dual v.8 0,5 0 0 0 0

dual v.9 0,5 0 0 0 0

dual v.10 0,5 0 1 2 0

alpha=3,73

3. Iteration

optimal value=)189,58
dec.
V1

dec.
V2

dec.
 V3

dec.
V4

dual v.1 0,33 1 1 0 0

dual v.2 0,25 0 0 0 0

dual v.3 0,375 0 0 0 0

dual v.4 0,25 0 0 0 0

dual v.5 0,25 0 0 0 0

dual v.6 0,33 1 0 0 2

dual v.7 0,5 0 0 0 0

dual v.8 0,5 0 0 0 0

dual v.9 0,5 0 0 0 0

dual v.10 0,5 0 1 2 1

alpha=3,65

4. Iteration

optimal value=)185,83
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dual v.1 0,33 2 1 0 2

dual v.2 0,25 0 0 0 0

dual v.3 0,375 0 0 0 0

dual v.4 0,25 0 0 0 0

dual v.5 0,25 0 0 0 0

dual v.6 0,25 0 0 0 0

dual v.7 0,5 0 0 0 0

dual v.8 0,5 0 0 0 0

dual v.9 0,5 0 0 0 0

dual v.10 0,5 0 1 2 1

alpha=3,65

 67

5. Iteration

optimal value=)185
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dual v.1 0,25 0 1 0 0

dual v.2 0,25 0 0 0 0

dual v.3 0,375 1 0 0 0

dual v.4 0,25 0 0 0 0

dual v.5 0,25 1 0 0 0

dual v.6 0,25 0 0 0 0

dual v.7 0,5 0 0 0 0

dual v.8 0,5 0 0 0 0

dual v.9 0,5 0 0 0 0

dual v.10 0,5 0 1 2 2

alpha=3,375

6. Iteration

optimal value=)185

 68

B.5.1020mm-1120mm-1220mm-1320mm-1430mm-

1530mm-1630mm-1730mm-1830mm-1930mm-

2000mm

1. Iteration

optimal value=)180,917
dec.
V1

dec.
 V2

dec.
V3

dec.
 V4

dec.
V5

dec.
V6

dec.
V7

dec.
V8

dual v.1 0,25 0 0 1 0 0 0 0 1

dual v.2 0,25 0 0 0 0 0 0 1 0

dual v.3 0,33 1 0 0 1 0 0 0 0

dual v.4 0,25 0 0 0 0 0 0 0 0

dual v.5 0,2 1 1 0 0 0 1 0 0

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0 0 0

dual v.8 0,5 0 1 0 0 0 0 0 0

dual v.9 0,5 0 0 0 0 0 0 0 0

dual v.10 0,5 0 0 1 1 2 2 2 2

alpha=10,26

2. Iteration

optimal value=)175,29
dec.
V1

dec.
V2

dec.
 V3

dec.
 V4

dec.
V5

dec.
V6

dual v.1 0,25 0 0 0 0 0 1

dual v.2 0,25 0 0 0 0 1 0

dual v.3 0,33 0 0 1 0 0 0

dual v.4 0,25 0 1 0 0 0 0

dual v.5 0,2 1 0 0 1 0 0

dual v.6 0,25 0 0 0 0 0 0

dual v.7 0,5 0 0 0 0 0 0

dual v.8 0,5 0 0 0 0 0 0

dual v.9 0,5 1 1 1 2 2 2

dual v.10 0,375 0 0 0 0 0 0

alpha=10,26

 69

3. Iteration

optimal value=)166,91
dec.
V1

dec.
V2

dec.
V3

dec.
 V4

dual v.1 0,2 0 0 0 0

dual v.2 0,2 0 0 0 0

dual v.3 0,33 1 0 1 0

dual v.4 0,25 0 0 1 1

dual v.5 0,2 0 0 0 0

dual v.6 0,25 0 0 0 0

dual v.7 0,5 0 0 0 0

dual v.8 0,5 1 2 1 2

dual v.9 0,4 0 0 0 0

dual v.10 0,4 0 0 0 0

alpha=10,14
 4. Iteration

optimal value=)158,79
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
 V6

dec.
V7

dec.
 V8

dual v.1 0,2 0 0 0 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0 0 0 0

dual v.3 0,33 0 0 0 0 0 0 1 0

dual v.4 0,25 0 0 3 1 0 0 1 1

dual v.5 0,2 3 1 0 1 0 0 0 0

dual v.6 0,25 0 0 0 0 0 0 0 0

dual v.7 0,5 0 1 0 0 1 2 1 1

dual v.8 0,375 0 0 0 0 0 0 0 0

dual v.9 0,4 0 0 0 0 1 0 0 0

dual v.10 0,4 0 0 0 1 0 0 0 1

alpha=9,31

5. Iteration

optimal value=)154,66
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dual v.1 0,2 0 0 0 0

dual v.2 0,2 1 0 0 0

dual v.3 0,33 0 0 0 0

dual v.4 0,099 0 0 0 0

dual v.5 0,2 0 0 1 0

dual v.6 0,25 0 0 0 1

dual v.7 0,5 1 1 0 0

dual v.8 0,45 0 1 2 2

dual v.9 0,4 0 0 0 0

dual v.10 0,4 0 0 0 0

alpha=9,46

 70

6. Iteration

optimal value=)154,66
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dual v.1 0,2 0 0 0 0 0

dual v.2 0,2 0 0 0 0 0

dual v.3 0,33 0 0 0 0 0

dual v.4 0,25 1 2 4 1 2

dual v.5 0,2 1 0 0 0 1

dual v.6 0,25 0 0 0 0 0

dual v.7 0,416 0 0 0 0 0

dual v.8 0,375 0 0 0 0 0

dual v.9 0,4 1 1 0 2 1

dual v.10 0,333 0 0 0 0 0

alpha=9,18

7. Iteration

optimal value=)150,95
dec.
V1

dec.
V2

dual v.1 0,2 0 0

dual v.2 0,2 0 0

dual v.3 0,33 0 0

dual v.4 0,2 0 0

dual v.5 0,2 0 1

dual v.6 0,25 0 0

dual v.7 0,466 0 1

dual v.8 0,375 0 0

dual v.9 0,4 2 1

dual v.10 0,333 0 0

alpha=8,862

8. Iteration

optimal value=)150,29
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dual v.1 0,2 0 0 0 0

dual v.2 0,2 0 0 0 0

dual v.3 0,33 0 2 0 0

dual v.4 0,2 0 0 0 0

dual v.5 0,2 0 0 1 0

dual v.6 0,25 1 0 1 1

dual v.7 0,4 0 0 0 0

dual v.8 0,375 0 0 0 0

dual v.9 0,4 0 0 1 0

dual v.10 0,4 1 0 0 2

alpha=8,862

 71

9. Iteration

optimal value=)150,25
dec.
V1

dec.
V2

dec.
V3

dec.
V4

dec.
 V5

dec.
 V6

dec.
V7

dec.
V8

dual v.1 0,233 0 0 0 0 0 0 0 0

dual v.2 0,233 0 1 0 0 0 0 1 0

dual v.3 0,333 0 0 0 0 0 0 0 0

dual v.4 0,2083 0 0 0 0 0 0 0 0

dual v.5 0,2 0 1 4 3 2 3 4 4

dual v.6 0,25 1 1 0 1 2 0 0 1

dual v.7 0,416 0 0 0 0 0 0 0 0

dual v.8 0,375 0 0 0 0 0 0 0 0

dual v.9 0,383 1 0 0 0 0 0 0 0

dual v.10 0,375 0 0 0 0 0 1 0 0

alpha=8,879

10. Iteration

optimal value=)150
dec.
V1

dec.
V2

dual v.1 0,208 0 0

dual v.2 0,208 0 0

dual v.3 0,333 0 0

dual v.4 20,8 0 0

dual v.5 0,1875 0 0

dual v.6 0,25 2 1

dual v.7 0,416 0 0

dual v.8 0,375 0 0

dual v.9 0,39583 1 2

dual v.10 0,375 0 0

alpha=8,88

11. Iteration

optimal value=)149,94
dec.
V1

dec.
 V2

dec.
V3

dec.
V4

dec.
 V5

dec.
 V6

dec.
V7

dec.
V8

dec.
V9

dual v.1 0,25 0 0 0 0 0 0 0 0 0

dual v.2 0,25 1 1 3 1 2 3 4 2 3

dual v.3 0,333 1 0 0 1 0 0 0 1 1

dual v.4 0,21875 0 0 0 1 0 0 0 0 0

dual v.5 0,1875 0 2 0 0 0 1 0 1 0

dual v.6 0,25 0 0 0 0 0 0 0 0 0

dual v.7 0,4375 0 0 0 0 0 0 0 0 0

dual v.8 0,375 0 0 0 0 0 0 0 0 0

dual v.9 0,375 0 0 0 0 1 0 0 0 0

dual v.10 0,34375 0 0 0 0 0 0 0 0 0

alpha=8,8

 72

12. Iteration

optimal value=)149,79
dec.
V1

dec.
V2

dec.
 V3

dual v.1 0,2 0 0 0

dual v.2 0,2 1 0 2

dual v.3 0,333 0 2 0

dual v.4 0,2 0 1 0

dual v.5 0,2 0 0 1

dual v.6 0,2 0 0 0

dual v.7 0,4 0 0 0

dual v.8 0,4 0 0 0

dual v.9 0,4 1 0 1

dual v.10 0,4 0 0 0

alpha=8,59

12. Iteration

optimal value=)149,667

alpha=8,59

 73

APPENDIX C

Parts of trim loss calculation table

C.1. Image parts of trim loss calculation table for

width 1020 mm and 1730 mm

aij 21 25 29 43 59 61 62 63 64 67

500 0 0 0 0 0 1 2 0 0 0

450 0 0 0 0 3 0 0 0 0 0

645 0 0 0 0 0 0 0 0 0 0

430 4 0 0 0 0 1 0 0 0 0

370 0 0 0 4 1 0 0 0 0 2

495 0 0 0 0 0 0 0 0 0 0

850 0 2 0 0 0 0 0 1 0 0

750 0 0 2 0 0 0 0 0 1 0

725 0 0 0 0 0 1 1 1 1 1

720 0 0 0 0 0 0 0 0 0 0

WIDTH OF ROLL 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730

 # OF ROLLS 8 27 32 8 6 3 3 1 1 1

TRIM LOSS CALCULATION

 USED AREA PER PATTERN 13760 45900 48000 11840 10320 4965 5175 1575 1475 1465

TOTAL AREA PER
PATTERN 13840 46710 55360 13840 10380 5190 5190 1730 1730 1730

LOSS PER PATTERN 80 810 7360 2000 60 225 15 155 255 265

 74

C.2. Image parts of trim loss calculation table for

width 1020 mm,1220 mm ,1730 mm

aij 54 61 75 76 97 105 109

500 0 0 1 0 0 0 0

450 0 0 0 0 0 0 0

645 0 0 0 0 0 0 0

430 4 0 0 0 0 0 0

370 0 0 3 4 0 0 0

495 0 0 0 0 0 0 0

850 0 1 0 0 0 0 1

750 0 1 0 0 1 0 0

725 0 0 0 0 1 2 0

720 0 0 0 0 0 0 1

WIDTH OF ROLL 1730 1730 1730 1730 1730 1730 1730

 # OF ROLLS 3 33 10 2 12 34 22

 TRIM LOSS
CALCULATION

 USED AREA PER
PATTERN 5160 52800 16100 2960 17700 49300 34540

TOTAL AREA PER
PATTERN 5190 57090 17300 3460 20760 58820 38060

LOSS PER PATTERN 30 4290 1200 500 3060 9520 3520

 75

C.3. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1530 mm and 1730 mm

aij 62 99 140 154 168 171 174 176

500 0 0 0 1 0 0 2 0

450 0 0 0 0 2 3 0 0

645 0 0 0 0 0 0 0 0

430 0 0 0 0 0 0 0 0

370 0 0 0 3 0 1 0 0

495 0 0 0 0 0 0 0 0

850 0 0 1 0 0 0 0 0

750 2 0 1 0 1 0 0 1

725 0 0 0 0 0 0 1 1

720 0 2 0 0 0 0 0 0

WIDTH OF ROLL 1530 1530 1730 1730 1730 1730 1730 1730

 # OF ROLLS 4 1 55 8 1 6 1 1

 TRIM LOSS
CALCULATION

 USED AREA PER

PATTERN 6000 1440 88000 12880 1650 10320 1725 1475

TOTAL AREA PER
PATTERN 6120 1530 95150 13840 1730 10380 1730 1730

LOSS PER PATTERN 120 90 7150 960 80 60 5 255

 76

C.4. Image parts of trim loss calculation table for

width 1020 mm,1220 mm, 1430 mm, 1530 mm and

1730 mm

aij 119 133 154 157 162 175 190 194

500 0 0 0 0 0 0 0 0

450 0 0 0 0 0 0 0 0

645 0 0 0 0 0 0 0 0

430 0 0 0 0 0 0 4 0

370 0 4 0 2 0 0 0 0

495 0 0 0 0 0 0 0 0

850 0 0 0 0 0 0 0 2

750 2 0 1 0 0 0 0 0

725 0 0 1 1 2 1 0 0

720 0 0 0 0 0 1 0 0

WIDTH OF ROLL 1530 1530 1530 1530 1530 1530 1730 1730

 # OF ROLLS 32 8 1 1 23 1 8 27

 TRIM LOSS
CALCULATION

 USED AREA PER
PATTERN 48000 11840 1475 1465 33350 1445 13760 45900

TOTAL AREA PER
PATTERN 48960 12240 1530 1530 35190 1530 13840 46710

LOSS PER
PATTERN 960 400 55 65 1840 85 80 810

 77

C.5. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730

mm and 2000 mm

aij 271 343 378 434 439 440 441 450 486 488 490

500 0 0 0 0 1 0 0 0 1 0 0

450 0 0 0 0 0 0 2 0 0 0 0

645 2 0 3 0 0 0 0 0 0 0 0

430 0 0 0 1 0 1 0 0 0 0 2

370 1 0 0 0 0 0 1 1 4 3 3

495 0 1 0 0 0 0 0 0 0 0 0

850 0 0 0 1 0 0 0 1 0 0 0

750 0 0 0 0 0 0 0 0 0 1 0

725 0 2 0 0 2 2 1 1 0 0 0

720 0 0 0 1 0 0 0 0 0 0 0

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

 # OF ROLLS 1 13 16 45 8 9 10 10 2 1 3

 TRIM LOSS
CALCULATION

 USED AREA PER

PATTERN 1660 25285 30960 90000 15600 16920 19950 19450 3960 1860 5910

TOTAL AREA PER
PATTERN 1730 26000 32000 90000 16000 18000 20000 20000 4000 2000 6000

LOSS PER PATTERN 70 715 1040 0 400 1080 50 550 40 140 90

 78

C.6. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730

mm , 1830 mm and 2000 mm

aij 270 488 520 576 581 582 583 592

500 0 0 0 0 1 0 0 0

450 0 0 0 0 0 0 2 0

645 2 0 3 0 0 0 0 0

430 1 0 0 1 0 1 0 0

370 0 0 0 0 0 0 1 1

495 0 1 0 0 0 0 0 0

850 0 0 0 1 0 0 0 1

750 0 1 0 0 0 0 0 0

725 0 1 0 0 2 2 1 1

720 0 0 0 1 0 0 0 0

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000

 # OF ROLLS 1 45 16 45 6 2 10 9

 TRIM LOSS
CALCULATION

 USED AREA PER
PATTERN 1720 88650 30960 90000 11700 3760 19950 17505

TOTAL AREA PER
PATTERN 1730 90000 32000 90000 12000 4000 20000 18000

LOSS PER PATTERN 10 1350 1040 0 300 240 50 495

 79

C.7. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730

mm , 1830 mm, 1930 mm and 2000 mm

aij 270 664 690 699 755 760 761 762

500 0 0 0 0 0 1 0 0

450 0 0 0 0 0 0 0 2

645 2 0 0 3 0 0 0 0

430 1 0 0 0 1 0 1 0

370 0 0 0 0 0 0 0 1

495 0 1 1 0 0 0 0 0

850 0 0 0 0 1 0 0 0

750 0 0 2 0 0 0 0 0

725 0 2 0 0 0 2 2 1

720 0 0 0 0 1 0 0 0

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000

 # OF ROLLS 1 13 32 16 45 7 10 10

 TRIM LOSS
CALCULATION

 USED AREA PER

PATTERN 1720 25285 63840 30960 90000 13650 18800 19950

TOTAL AREA PER
PATTERN 1730 26000 64000 32000 90000 14000 20000 20000

LOSS PER PATTERN 10 715 160 1040 0 350 1200 50

 80

C.8. Image parts of trim loss calculation table for

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1630

mm, 1730 mm , 1830 mm, 1930 mm and 2000 mm

aij 438 688 753 779 788 844 849 850 851

500 0 0 0 0 0 0 1 0 0

450 0 0 0 0 0 0 0 0 2

645 2 0 0 0 3 0 0 0 0

430 0 0 0 0 0 1 0 1 0

370 1 3 0 0 0 0 0 0 1

495 0 0 1 1 0 0 0 0 0

850 0 0 0 0 0 1 0 0 0

750 0 1 0 2 0 0 0 0 0

725 0 0 2 0 0 0 2 2 1

720 0 0 0 0 0 1 0 0 0

WIDTH OF ROLL 1830 1930 2000 2000 2000 2000 2000 2000 2000

 # OF ROLLS 1 1 13 32 16 45 10 8 10

 TRIM LOSS
CALCULATION

 USED AREA PER

PATTERN 1660 1860 25285 63840 30960 90000 19500 15040 19950

TOTAL AREA PER
PATTERN 1830 1930 26000 64000 32000 90000 20000 16000 20000

LOSS PER PATTERN 170 70 715 160 1040 0 500 960 50

 81

C.9. Image parts of trim loss calculation table for

width 1020 mm,1120 mm,1220 mm,1430 mm,1530

mm,1630 mm, 1730 mm,1830 mm,1930 mm and

2000 mm

aij 426 725 775 801 810 866 871 873

500 0 0 0 0 0 0 1 0

450 0 0 0 0 0 0 0 2

645 2 0 0 0 3 0 0 0

430 0 1 0 0 0 1 0 0

370 0 0 0 0 0 0 0 1

495 1 0 1 1 0 0 0 0

850 0 0 0 0 0 1 0 0

750 0 2 0 2 0 0 0 0

725 0 0 2 0 0 0 2 1

720 0 0 0 0 0 1 0 0

WIDTH OF
ROLL 1830 1930 2000 2000 2000 2000 2000 2000

 # OF ROLLS 1 11 23 21 16 45 7 10

 TRIM LOSS
CALCULATION

 USED AREA
PER PATTERN 1785 21230 44735 41895 30960 90000 13650 19950

TOTAL AREA
PER PATTERN 1830 21230 46000 42000 32000 90000 14000 20000

LOSS PER
PATTERN 45 0 1265 105 1040 0 350 50

 82

C.10.Image parts of trim loss calculation table for

width1020,1120,1220,1320,1430,1530,1630,1730,

1830,1930 and 2000mm

aij 705 816 842 851 907 912 914

500 0 0 0 0 0 1 0

450 1 0 0 0 0 0 2

645 0 0 0 3 0 0 0

430 0 0 0 0 1 0 0

370 0 0 0 0 0 0 1

495 0 1 1 0 0 0 0

850 0 0 0 0 1 0 0

750 0 0 2 0 0 0 0

725 2 2 0 0 0 2 1

720 0 0 0 0 1 0 0

WIDTH OF
ROLL 1930 2000 2000 2000 2000 2000 2000

 # OF ROLLS 11 12,5 32,5 16,6667 45 9,25 4,5

TRIM LOSS
CALCULATION

 USED AREA
PER PATTERN 20900 24313 64838 32250 90000 18038 8978

TOTAL AREA
PER PATTERN 21230 25000 65000 33333,3 90000 18500 9000

LOSS PER
PATTERN 330 687,5 162,5 1083,33 0 462,5 22,5

 83

APPENDIX D

D.1.Some images of CPLEX for the eleven different

widths

Code

 84

Code

Code

 85

Code

Code

 86

