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  ABSTRACT 

 

APPLICATION OF GILMORE-GOMORY ALGORITHM TO MULTI WIDTH 

CUTTING STOCK PROBLEMS 

 

 

Üstüner, Tuğçe 

 

M.Sc. in Intelligent Engineering Systems 

 Graduate School of Natural and Applied Sciences 

 

Supervisor: Prof. Dr. Arslan ÖRNEK 

 

May 2015, 103 pages 

 

Cutting Stock Problem is one of the most important problem for the paper 

factories. Main objective of the factories, making best cutting plan combining 

demands which have different widths and quantities. After the cutting process, 

it is very important that choosing  rolls which will go to cutting process 

considering using number of rolls. For this reason, combining of demands 

should be considered.  The objective is choosing the right number of roll 

which will go to cutting process while combining demands and minimizing the 

trim loss which means that minimizing number of rolls. In the literature, there 

are a lot of researches and models are applied and improved. In this thesis, 

aim is minimizing using number of rolls also generating cutting pattern 

considering different roll widths. A mathematical modeling is developed and it 

is studied with using real data and using different roll widths from the paper 

factory. Also, improving and applying Gomory Algorithm the results in terms 

of performance measure are compared  and discussed throughly. 
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ÖZ 

 

 

ÇOK ENLİ KESME PROBLEMLERİNE GILMORE-GOMORY 

ALGORİTMASININ UYGULANMASI 

 

Üstüner, Tuğçe 

 

Akıllı Mühendislik Sistemleri Yüksek Lisans Programı 

 Fen Bilimleri Enstitüsü 

 

Tez Danışmanı: Prof. Dr. Arslan ÖRNEK 

 

Mayıs 2015, 103 sayfa 

 

Kesim problemi kağıt fabrikalarının en önemli problemlerinden biridir. 

İşletmelerin temel amacı; farklı en ve adetlerde gelen siparişlerin kombinesi 

yapılarak en uygun şekilde kesim planlarını yapmaktır. Kesim işleminden 

sonra kalan fire göz önünde bulundurulduğunda  kesim işlemine girecek olan 

bobin sayısı seçimi çok önemlidir. Bu sebepten dolayı siparişlerin 

kombinelerinin nasıl yapıldığı da dikkate alınmalıdır. Amaç oluşabilecek en 

az fireyle yani kullanılabilecek en az bobin sayısıyla doğru siparişleri kombin 

yaparak üretime girecek en doğru bobin sayısını seçmektir. Literatüre 

bakıldığında bu alanda birçok uygulama ve model geliştirilmiştir. Bu tezde 

kesilecek bobin sayısı minimizasyonu amaçlanarak farklı bobin enleri dikkate 

alınarak kesme eşleri oluşturulmuştur.Problemin matematiksel modeli 

oluşturulup kağıt fabrikasından alınan gerçek veri setleri ve farklı bobin enleri 

ile çalıştırılmıştır. Ayrıca Gomory Algoritması geliştirilip uygulanarak sonuçlar 

performans ölçütü üzerinden karşılaştırılımış ve ayrıntılı bir şekilde 

tartışılmıştır. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 The Cutting Stock Problem which is called in the literature 'CSP' is 

used in many different industries. Paper, glass, steel, wood and plastic 

popular examples are in these areas for CSP.  

 CSP is one of the classical problem example and first appliance in the 

field of operations research methods. The problem is finding the best solution 

way of cutting pattern items from using stock rolls such that trim loss and 

used number of rolls are minimized and total demand is satisfied. The aim of 

process is cutting large objects to convert them to smaller objects. The main 

purpose of CSP is minimizing  trim loss which is number of rolls while cutting 

process in the thesis.  

  CSP is an integer linear programming problem, and solving this 

problem is not easy as known. In order to save profit annually in the factories, 

trim loss should be minimized deciding true stock roll which will go to cutting 

process. Because affects amount of the trim loss are very important for  the 

industry profits.   

 Generally there are three different groups for solving methods. These 

different groups are; Algorithmic methods, Innovative methods and  

Metaheuristic methods.  

 Algorithmic methods contribute an optimal solution, despite of 

calculating complexity. But in big problems which have more and complex 

data, run time consuming occurs. That is why the complete algorithmic 

methods were infrequently  used in the past.  
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 In Innovative methods, generally answer is not optimum necessarily 

however give the response quickly. The innovative methods can be one of 

the ideal techniques, because their answers are close to the optimum 

responses. These methods usually are applied for special problems. 

Mentioned method is not applied as a general method  because of depending  

private conditions excessively. 

 However various innovative solutions can be suggested in real world 

applications so as to solve the CSP  but applying them is not helpful in similar 

problems due to the special characteristics of such problems .  

 In metaheuristic methods, the solution process is generally advised for 

lower levels, and contrary to traditional metaheuristic methods, they are not 

limited to local optimum conditions. The information about the CSP will be 

given in Cutting Stock Problem Chapter in detail. 

 

 

1.1. Scope of the Master Thesis 

 

In this study, we focus on minimizing the number of cutting rolls which means 

that trim loss, determining the cutting patterns  which should be satisfied the 

demand. 

 In the factory, paper is bought from the out of Turkey and it is known 

that it is very expensive raw material in the world especially for the box and 

sheets factories. This paper comes to business such as rolls. According to 

demand these rolls should be cut. For this reason deciding cutting plan and 

generating cutting patterns are so important for the production cost of the 

factory.  So, in order to decrease these cost, two mathematical models are 

improved. In the first model, all the cutting patterns are generated. In the 

second model, Gomory Model was rebuilded according to different roll widths 

and solved in order to find optimal solution. Because loss  means that extra 

cost for the business. In order to decrease the extra cost and minimize the 

production cost, combination of the cutting patterns should be occured and 

processed effectively. 
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 Our scope is minimizing amount of rolls in cutting process. A 

mathematical model is develop and solved in Optimization Programming 

Language, CPLEX. Decreasing the cutting rolls optimally, Gomory Algorithm 

is improved and applied according to our problem using different roll widths 

and defined it's steps in order to solve heuristically. The objective of the 

problem is minimizing the number of cutting rolls while the cutting process, 

satisfying demand, generating and assigning cutting pattern to the roll 

considering different roll width. The main inputs are demands, widths of rolls. 

 The remainder of this thesis is organized as follows. Chapter 2 

intorduces a review of the literature on related previous work about cutting 

stock, mathematical models and algorithms which were used to solve this  

kind of problem. Chapter 3 introduces what is the cutting stock problem, the 

main objectives, description of ideas, forms of CSP. In Chapter 4 CSP and 

GA relationship is discussed. Problem definiton is explained in Chapter 6. 

Mathematical model and it's solution are defined in Chapter 8.  

 In Chapter 5, Gomory Algorithm which is a metaheuristic method is 

developed for the CSP and lastly, conclusion is written in Chapter 11. 
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CHAPTER 2 

 

 

 LITERATURE REVIEW 

 

 

 

 There are many various excercises and works in literature on different 

aspects of Cutting Stock Problem. The relevant works were summarized in 

this chapter. 

 Cutting Stock Problem focuses on minimimum wastage or scrap 

criterias with one or two dimensional stock according to customer demands. 

Cutting stock and packing problems appear in many industrial settings where 

larger pieces are cut into smaller pieces in order to produce demands that 

are wanted by other industries or customers, like paper, steel and fiber 

industries. A solution for the cutting problem consists in determining a group 

of patterns and their repetitiveness which means that how many times a 

cutting pattern will be cut in order to satisfy demand. 

   The cutting stock problem is called 'CSP' which affects industry profit 

has been studied seriously in production planning area but the results are not 

often used at real production sites. They are usually found using hand 

methods because real processing constraints have not been focused on. 

Making small changes in cutting pattern can create considerable benefits in 

different areas such as production cost which is the most important factor for  

factories. CSP contains different objectives and constraints, which directly 

depend on technological and organizational parameters of each company.  

  Cutting Stock Problems are seperated categories in each. One of 

them is  'One-Dimensional Cutting Stock Problem' and the second one is 

'Two-Dimensional Cutting Stock Problem'. 
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 In 1939 studies have been started in this area by Russian economist 

'Kantorovich'. A lot of formulation, mathematical models and  solution 

procedures have been developed in this area. Thanks to Kantorovich, studies 

led to the continuous relaxation. 

 Gilmore and Gomory (1961), studied first and most important advance 

solution technique in CSP area. CSP is a which sort of problem is showed by 

them. According to Gilmore and Gomory CSP completes an order at 

minimum cost for specified lengths in order to be cut from given stock lengths. 

Pattern generation technique was improved using linear programming by 

them so as to solve the one dimensional trim loss minimization problem. 

When they converted it to integer programming problem, the large number of 

variables contain generally infeasible solutions.This same difficulty continued 

when only an approximate solution was being sought by linear programming. 

In order to overcome this difficulty The Column Generation Method was 

improved by Gilmore and Gomory. 

  In this method, setting of simple patterns which are form of the initial 

basisi solution is the first step, then the solution is improved by removing a 

cutting pattern and generating a new pattern . The new cutting pattern is 

generated using the auxiliary problem which is easy to solve; knapsack 

problem normally is relate to the auxiliary problem, and there are different 

methods for solving this kind of problem. The new column is generated.  

Because this action is done in order to improve the solution.  

 After Gilmore and Gomory proposed the column generation method, 

many researchers used it for the Cutting Stock Problem.   

 In order to solve the roll wastage problem, this algorithm was used by 

Pierece(1964) in the paper industry. Because of occuring defaults in the 

problem, Hahn (1968) improved a dynamic programming algorithm.  

 Queiroz et al. (1971) presented other algorithms for the following three 

dimensional guillotine cutting problems which are unbounded knapsack, 

cutting stock and strip packing. They considered the case where the items 

have fixed orientation and the case where orthogonal rotations around all 

axes are allowed. For the unbounded 3D knapsack problem, they developed 

the repetition formula proposed by for the rectangular knapsack problem and 

presented a dynamic programming algorithm that uses reduced raster points.  
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  Haessler and Sweeney (1991) focused on basic formulation topics 

and solution procedures for solving one and two dimensional cutting stock 

problems. They defined linear programming, sequential heuristic and hybrid 

solution procedures. 

  They also suggested an approach for solving large problems with 

limits on the number of times an ordered size may appear in a pattern for 

two-dimensional cutting stock problems with rectangular shapes. 

 Lin (1994) presented a study which considering the minimizing trim 

loss in a paper cutting process. In the study, operation begins with some 

parent rolls of specific widths are to be cut to meet orders. These rolls have 

specific widths. The objective of the study was to find out the way to achieve 

the required cutting operation and occuring the smallest amount of trim loss 

by exploiting linear programming.  

This problem was solved by observing the 'pricing out' operation for the 

paper cutting problem which was equivalent to a knapsack problem.  

  In recent years, researchers have improved applying evolutionary 

approaches to these problems, including Genetic Algorithms and 

Evolutionary Programming. 

  Liang et. al developed EP algorithm for CSP with and without 

contiguity. The propose is realized using two new mutation operators. 

Experimental studies have been achieve to examine the efectiveness of the 

EP algorithm. They showed that EP can support a simple yet more efective 

alternative to GA's in solving cutting stock problems with and without 

contiguity. The solutions found by EP are significantly better than to those 

found by GAs. 

  Carvalho (1999) reviewed several linear programming formulations for  

one-dimensional cutting stock and bin packing problems. He analysed some 

relations between the corresponding LP relaxations, and their relative 

strengths, and refered how to derive branching schemes that can be used in 

the exact solution of these problems, using branch-and-price technique.  

 Özgüven and Çalışkan (2002) who are Turkish academicians showed 

a model which was written by Konrad in their study. In the problem, there 

were a lot of customer demands in which materials had fixed width which will 

cut according to different length.The aim was minimizing trim loss. Their 



 7 

 

model is not enough in order to solve so, they proposed using a mixed 

integer model which answering the different requirements.  

 Cutting Stock Problems are complexity problems. Because it has  

large number of the cutting patterns that may be encountered. The large 

number of cutting patterns returns the solution generally infeasible, when the 

cutting stock problem was expressed as an IP problem. When using the 

linear programming formulation of the cutting stock problem is available of 

integer variables, then the effect of the number of cutting patterns will be 

decreased. An auxiliary problem proceeds from the formulation where the 

columns of the linear programming constraint matrix need to be determined. 

 Cerqueira and Yanasse (2006) reviewed some linear programming 

models for the CSP.  

 Also, Novianingsih et al. considered 2-D CSP where single rectangular 

stocks have to be cut into some smaller pieces so that the number of stocks 

needed to meet demands is minimum. Also, they focused on studying to the 

problem where the stocks have to be cut with guillotine cutting type. Problem 

is formulated as an IP and the relaxation problem was solved by column 

generation technique. New pattern generation was formulated based on 

method of stripe. In obtaining the integer solution, they rounded down the 

optimal solution of the relaxation problem and then they derived an extra MIP 

for satisfying  demands.  

 Demircan and Soyuer (2007) improved a method using real data 

which is taken from factory in order to form stainless steel process. Factory 

supplies materials which have different length and types. 

  In order to solve the problem, they suggested two steps solution. In 

the first step, different cutting  shapes were obtained for every piece and 

alternative raw materials length using heuristic method. In the second step, 

these cutting shapes which are taken heuristic method were applied to 

integer-linear programming. Using this method, trim loss was minimized, 

which raw material will be used and which length will be cut and how many 

will be cut were determined. Also, all of the customer demands were satisfied. 

  Glass and Oostrum described a new hierarchical 2D-guillotine Cutting 

Stock Problem. This method is contrast to general methods for CSP, 

because aim was not wastage. The packing stages of cake manufacturing 
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was the content. The company’s first objective was to minimize total 

processing time at the subsequent in packing stage. This objective reduced 

to one of minimizing the number of parts produced. They applied a closed 

form optimization approach to these problems for certain cases. 

    In 2008 a new mathematical model was presented and applied by 

Golfeto et al. which was GRASP metaheuristic to solve  ordered cutting stock 

problem. This heuristic appropriate to minimize the raw material used by 

industries that deal with reduced raw material stocks in which just in time 

method used for production process. In such cases, classic models for 

solving the cutting stock problem were useless. Results obtained from 

computational experiments for a set of random instances demonstrate that 

the proposed method can be applied to large industries that process cuts on 

their production lines and do not stock their products. 

  Cerqueira and Yanasse (2008) introduced us a heuristic method that 

produces a solution for the one-dimensional cutting stock problem with a 

reduced number of different patterns in the solution. Firstly, this method 

proposed separating the items in two disjointed groups, according to their 

demands. Patterns is generated with items of these groups and those with 

limited trim loss are accepted. Then, problem was solved with items whose 

demands were not satisfied and, when the solution obtained, they applied a 

pattern reducing procedure of the literature. 

  Arbib et al. (2010) addressed a one-dimensional CSP. Theu focused 

on not only minimizing trim loss, but also they needed that the set of cutting 

patterns construct the solution can be sequenced so that the number of 

stacks of parts obtained.  

In order to solve problem, a new integer linear programming formulation was 

improved and used. Constraints of the formulation raise quadratically with the 

number of specific part types. 

  Sugi et al. (2010) worked with the 2-dimensional rectangular cutting 

stock problem in which the shape of a cut piece is rectangular, they assumed 

that a roll-shaped stock often used in actual processing and proposing a 

solution taking processing called 3-stage guillotine cutting into account. 

  Cathrine et al. (2011), prepared a study for the carpetenry sector. The 

carpentry sector like any other industry was faced with a cutting stock 
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problem to minimize incurred wastage. The aim of this problem was to 

establish a mathematical model which will solve the CSP using column 

generation approach. The interview method was used to collect data relating 

to the cutting stock problem.The column generation approach of iterative 

computational routines was used because it developed successively better 

solutions until an optimal solution is obtained. The results revealed that the 

method was an appropriate method in solving business problems, that was, 

how many boards should be cut to meet demand with minimum incurred 

waste. 

  Abuhassan and Nasereddin (2011) touched on the application. They 

aimed that decreasing the losses for the problem of cutting in one dimension.  

  Nozarian et al. (2013) focused on trim-loss amount. They applied 

simulated annealing algorithm in order to reduce trim-loss considering  

production cost amount. New theory is improved and applied in order to solve 

the trimm loss porblem. Furthermore, a solution based on Imperialist 

Competitive Algorithm were presented that reduced the wastage as well as 

concentrating them on the minimum number of stocks.  

 An algorithmic solution approach was presented by Suliman (2014) to 

overcome the difficulty in solving non-linear integer formulation of the 

problem.The algorithm was based on the traditional approach where the lot 

sizing was determined for each period, and then the best cutting patterns 

were generated.  

  Sürsal explained one dimesional and three dimensional cutting stock 

problems. Decision model was developed in order to solving these problems.  

  On the other hand, heuristic application continued in CSP area. For 

instance, the other work was written by Levine and Ducatelle. They 

presented a pure ACO approach, as well as an ACO approach augmented 

with a simple but very effective local search algorithm. It was shown that the 

pure ACO approach can outperform some existing solution methods, 

whereas the hybrid approach can compete with the best known solution 

methods. The local search algorithm was also run with random restarts and 

shown to perform significantly worse than when combined with ACO. 

 Macedo et al. presented a detailed search for software packages with 

using two-dimensional cutting stock method. 
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 Suliman wrote another study which was about simple pattern 

generating method. He was developed it for solving the auxiliary problem. It 

was based on an ad hoc solution method described in literature for the 

knapsack problem. A search tree was used to develop the pattern generation 

method.  

 Another heuristic approach was written by Shen and Yu. A heuristic 

strategy that was based on the results of analysis of the optimal cutting 

pattern of particles with successful search processes was described, which 

process a global optimization problem of the cutting-stock as a sequential 

optimization problem by multiple stages. During every sequential stage, the 

best cutting pattern for the current situation was researched and processed. 

This strategy was repeated until all the required stocks have been generated.  

  Another work is Branch and Price technique was written by Pal. 

Branch and price was established so as to solve for large data using integer 

programming problems. This method combined the standard branch-and-

bound framework of solving integer programming problems with Column 

Generation. In each node of the branch-and-bound tree, the bound was 

calculated by solving the LP relaxation. The LP relaxation was solved using 

Column Generation. They discussed their project on improving the 

performance of branch and price based algorithms for solving the industrial 

one-dimensional cutting stock problem.  

 The other study which I talked in my literature rewiev of this area lastly 

was written by Macedo and Alves. They described a model for the two-

dimensional Cutting Stock Problem using two stages in order to solve using 

the guillotine constraint. It was a linear programming arc-flow model, 

formulated as a minimum flow problem, which was an extension of a model 

proposed by Carvalho for the one dimensional case. They researched how 

this model behaved using with commercial software, explicitly considering all 

its variables and constraints. They also implied a new family of cutting planes, 

and considered some extensions of the original problem.   

 In the thesis, we developed new mathematical model and solved for 

the Cutting Stock Problem. The difference from the other studies we 

considered different roll widths. Also the problem was integrated to a 

heuristic  method  which named is 'Gomory Algorithm'. These different roll 
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widths were not considered before using Gomory Algorithm. The details of 

the problem will be explained in the other chapters. 
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* 

    

MINIMIZING 
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12 

KO-HSIN LIANG, XIN 
YAO,CHARLES 
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          *EA * 
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13 
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MINIMIZING 
COST 

15 
IZZEDDIN A.O. 

ABUHASSAN, HEBAH 
H.O. NASEREDDIN 

CSP:SOLUTION 
BEHAVIORS(2011) 

  *       
* SEQUENTIAL 

HEURISTIC 
APPROACH 

* 

    

REDUCING 
LOSSES TO THE 

PROBLEM OF 
CUTTING 

16 
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OPTIMISATION AND 

LOCAL SEARCH FOR BIN 
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TOTAL STOCKS 

18 
J.M. VALERIO DE 

CARVALHO 
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FATMA DEMIRCAN, 
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XIANJUN 

SHEN,YUANXIANG 
LI,JINCAI YANG,LI YU 
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CUTTING PATTERN 
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MINIMIZING 
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23 SOUMITRA PAL 
IMPROVING BRANCH AND 
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24 

RITA 
MACEDO,CLAUDIO 

ALVES,J.M. VALERIO 
DE CARVALHO 

ARC-FLOW MODEL FOR 
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25 

GONÇALO RENILDO 
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HORACIO HIDEKI 

YANASSE 
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26 VINCENT CONITZER 
CONSTRAINT AND 
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MINIMIZING THE 
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CHAPTER 3 

 

 

CUTTING STOCK PROBLEM 

 

 

  

Cutting stock problems were studied before in operations research 

area. In these studies, there are different constraints, decision variables, 

indices, sets, may be objectives. In many real world applications of business 

and industry generally, it is known that optimization problems have given set 

of small objects which are called items or pieces, into a given set of larger 

ones which named are stock sheets. Also in these kind of problems generally 

have same aim which is the reducing waste or minimizing production cost 

using less raw material with true generating patterns. These problems, with 

all their extensions and variants, are well known to be NP-hard. This means 

that all algorithms currently known for finding optimal solutions require a 

number of computational steps that may grow exponentially with the problem 

size rather than according to a polynomial function. 

  After the some years, other CSP approaches have developed in order 

to solve the problems. These approaches are  exact and heuristic methods. 

Heuristic methods have greater flexibility  considering specific constraints in 

problem and offer a good trade-off between the quality of a solution and its 

computational effort. Generally, heuristic techniques need to be used for 

large CSPs. Some of the heuristic algorithms which were applied to CSPs in 

the recently years with success. These heuristics examples are genetic 

algorithm, simulated annealing and column generation. In these methods, 

requiring to provide good, but these methods do not provide the optimal 

solutions. 
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  Linear or dynamic programming and branch-and-bound techniques 

are based from the exact algorithms. Because of being complexity and 

extensive nature of these problems, many different optimization formulations 

and solution approaches improved in the literature, according to their  needs 

such as dimension, application field, constraints and requirements. Therefore, 

many researchers surveys were categorized their studies on this subject in 

the literature chapter of my thesis.  

 The Cutting Stock Problem is an important class for the combinatorial 

optimization areas. The general goals of Cutting Stock Problems are to 

minimize the trim loss or the production cost. Most CSP solution methods are 

established for specific objective functions. Generally, each of them has  

second objective. The second objective for the first group Cutting Stock 

Problem is to minimize the number of used stocks. This type of CSP with two 

objectives has been solved or worked by using some heuristic techniques. 

The second objective for the second class of Cutting Stock Problem is to 

minimize the number of partially finished items. This is known as the cutting 

pattern sequencing problem which named CSP with contiguity in the 

literature. 

  

 

Figure 1 One Dimensional Cutting Stock Example 

             (Abuhassan and Nasereddin, 2011) 
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 CSP has many different forms, these are One Dimensional (1-D) CSP 

such as sheets of wood, second one is Two Dimensional (2-D) CSP like 

cutting cloth or paper to cut rectangular and these are more complex 

according to One dimensional CSP. 

 In one dimensional CSP, a part or some parts of the raw material 

might not be used again, for instance when a piece is cut. It happens due to 

applying various patterns freely. Before, cutting problem has attracted the 

attention of many researchers all over the world. Choosing a cutting pattern 

and its sequences is put forward by cutting problems. Sometimes cutting 

problems are too complex, and it is not easy to find an optimized response 

for them. In such case, even the smallest improvement in cutting pattern, 

may lead to a considerable minimizing in raw material, which are used over. 

Most standard problems that are related to one dimensional cutting problem 

are known as NP-complete problems. However it is possible in many cases 

to model them by mathematical programming and find a solution via accurate 

or approximate methods. 

  On the basis of H. Dyckoff’s typology, the one dimensional problem 

can be explained as 1/V/D/R whenever sufficient materials are available. "1" 

means for one dimensionality of the problem. "V" means that all required 

items should be produced by a selection of big consuming pieces; in other 

words, although some parts of stocks are only used, all orders will be 

produced. "D" means that there are several big consuming pieces in different 

sizes and "R" represents the number of items. 

 Practically, the cost of using a special cutting model and changing the 

cutting patterns are important ordinary factors as well as cutting wastage. 

The secondary aspects can be considered by an appropriate formulation and 

making the smallest improvement in cutting pattern. It leads to a big 

thriftiness in stocks, which are consumed quickly and repeatedly in huge 

mass. Ineffectiveness and excess of manual methods, which are applied by 

cutting contractors, reminds the necessity of cutting automation. Furthermore, 

the potential of suggested methods can be seperated and compared easily, 

due to the impossibility of comparing the different solutions together. There 

are several algorithms and methods in order to calculate the one dimensional 
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cutting wastages, considering various factors such as constraints, demands, 

materials.  

 The large variety of applications reported in the literature by Dyckhoff 

(1990) to develop a classification scheme for cutting stock and packing 

problems. 

 If we want to give an example for CSP, examples were studied in 

generally a factory which uses long rolls of paper of a fixed width 'W'. Paper 

can be cut as it comes out. For instance, producing two rolls of width 'W/2'. 

The rolls can be cut only vertical direction.  Certain orders for paper have 

been needed to fill. Each order 'i' has a width 'wi' and a length 'li'. If they have 

same width, multiple rolls of paper can be stitched together.  

 

Table 2 Classifying problems using four characteristics table as follows 

 

CHARACTERISTICS FEATURES WHILE CLASSIFYING PROBLEM 

CHARACTERISTICS 
FEATURES 

DIMENSIONALITY 
KIND OF 

ASSIGNMENT 

ASSORTMENT 
OF LARGE 
OBJECTS 

ASSORTMENT 
OF SMALL 

ITEMS 

1 
Number of 
dimensions 

All large objects and a 
selection of small 

items 

One large 
object 

Few items of 
different 

dimensions 

2 

  

A selection of large 
objects and all small 

items 

Many identical 
large objects 

Many items of 
many different 

dimensions 

3 

    

Different large 
objects 

Many items of 
relatively few 
dimensions 

4 

      

Many identical 
items 

 

 

 For instance, if there is a single order of length 'l' and width 'W/2', one 

roll of length 'l/2' and width W can be produced, cut it into two rolls of length' 

l/2' and width 'W/2', and can be stitched them together in order to obtain one 

roll of length 'l' and width 'W/2'. 

  In the other direction cannot be stitched. For instance, two rolls of 

width W/4 into a roll of width W/2 cannot be combined. if it did, then the paper 

would look ugly everywhere. The goal is satisfying all of the orders while 
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using the minimum amount of paper. The total paper which has width 'W' that 

can be produced to be as short as possible. Since they can be only cut 

vertically, as well the paper can be cut as it is coming out of the machine. 

At any point in time, the paper can be cut into a certain combination of widths. 

It is called such a combination a pattern. For instance, if 'W = 11', one pattern 

is to cut the paper into widths 5,5, and 1. May be there is not orders of width 

1 so that the produced roll of width 1 is simply waste.  In this case, it is simply 

say that the pattern is {5, 5} and it is implicit that the remaining 1 is wasted. 

So, a number will never occur in a pattern unless having an order of that 

width. Suppose that W = 11, and having three orders: 

- w1 = 5, l1 = 20; 

- w2 = 4, l2 = 10; 

- w3 = 2, l3 = 9; 

 optimal solution here is using the pattern {5, 5} for a length of '5', and the 

pattern {2, 4, 5} for a length of '10'.  

 A roll of width '5' of length '2 *5 + 10 = 20', a roll of width 4 of length 10, and 

a roll of width 2 of length 10. It satisfies all orders.  The objective of '15'. 

 It means that the total length of width 'W' paper that can be produced. More 

generally, all different patterns can be represented, indexed by 'j'.  

 

 In general, there are many such patterns; some of them are clearly 

dominated by other patterns such as {4, 5} is dominated by {2, 4, 5}. 

Although having dominated patterns, there are undominated patterns like 

 '{5, 5}, {5, 4, 2}, {5, 2, 2, 2}, {4, 4, 2}, {4, 2, 2, 2}, {2, 2, 2, 2, 2}'.  

So, writing all dominated and undominated list are unnecessary and time 

losing. Because of that situation the linear program was modeled  generating 

all the patterns 'j'. In these kind of problems, generally 'xj' is called the 

amount of pattern 'j' that can produce, and  'aij
'  is named the number of times 

that the width of order 'i' occurs in pattern 'j'. For instance, if pattern '1' is  

'{5, 5}', then 'a11' = '2'. 

 On the other hand, in  two-dimensional cutting stock problem where 

stock sheets have to be cut into a set of smaller pieces so that the demand is 

satisfied. Number of cutting patterns are needed to generate and determine 

so that the number of stock sheets should be used minimum. The problem is 
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a well known problem appears in many industries, such as at glass industries, 

aircraft industries, ship builder, steel industries, and leather industries. The 

problem also appears in land development, facilities layout, and electrical 

circuit layout. 

  In practically, there are two cutting types for Cutting Stock Problem. 

These are guillotine cutting type and non-guillotine cutting type. These cutting 

types are different in each. The guillotine cutting type is a cutting type where 

any cut must run from one edge of a stock sheet to the opposite edge in a 

straight line. Simultaneously, in non-guillotine cutting type, a cut does not 

have to run from end to end of the stock sheet. 

 Also the 2D-CSP can be further classified into several categories, 

depending on the problem's specific constraints. It can be regular, if the 

shapes of the items to be cut can be described by few parameters, or 

irregular, otherwise is irregular category. Cutting irregular shapes is also 

known as nesting.  Regular category cuts can be two different types which 

are rectangular or non-rectangular, according to whether the items are 

rectangles or have a different shape, respectively. Rectangular cutting is 

called oriente. If a sheet can only be cut from side to side, then guillotine-type 

cutting patterns; observe that problems allowing non-guillotine patterns are 

generally much harder to solve. A staged pattern is a guillotine pattern cut 

into pieces in a limited number of phases.  

 The direction of the first stage cuts may be either horizontal or vertical 

and the cuts of the same stage are in the same direction. The cut directions 

of any two adjacent stages must be perpendicular to each other. If the 

maximum number of stages is not allowed to exceed n, the problem is called 

n-staged.  The relationship between the CSP and one of the algorithm 

method which is named Gilmore-Gomory's Algorithm will be explained in 

Chapter 4. 
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CHAPTER 4 

 

 

RELATIONSHIP BETWEEN THE CSP AND  

GILMORE AND GOMORY'S ALGORITHM  

 

 

  

Cutting stock problems occurs when raw materials are such as paper, 

cardboard and textiles in manufacturing company by rolls of large widths. 

While production planning, in order to satisfy demand and minimize wastage 

these rolls have to be cut into subrolls of smaller widths. It is not always 

possible to cut the rolls without leftovers. These leftovers parts are called trim 

'loss', 'wastage' or 'scrap'.   

 In this section we will discuss what is the Gilmore-Gomory's Algorithm, 

features of the algorithm and relationship between the Gomory Algorithm and 

Cutting Stock Problem.  

 From past to now, it has been known that minimizing scrap is one of 

the most important problem in many industries. Because raw material is very 

improtant cost for the factories. This problem has been looked into from a 

different point of view in the past. Many problems were researched and tried 

to solve and find optimal in industrial engineering area from past to now. 

 Different optimization methods have been occured and this 

optimaziton methods were searched also applied largely to various problems. 

Linear programming and the other specific solution methods can be used 

effectively in small data problems. When the problem size are large and 

complex, heuristic methods studies had been started. As result of these 

studies, it has seen that exponential growth of the search space and time 

loosing was occured  in order to find optimal  solution. 
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 The solution procedure of Gilmore-Gomory Algorithm published in 

1963. Gilmore and Gomory studied for the CSP considering minimizing the 

wastage cost. In the Linear Programming Approach of method, the LP 

relaxation of the problem is considered and solved then a rounding 

procedure is used to take an integer solution. But some difficulties were 

occured. One of them is, occuring large number of cutting patterns in the LP 

relaxation approach. Because generating them can be hardly.  

 The Gilmore-Gomory cutting plane algorithm is occured in order to find 

the solution for the continuos relaxation of problem and the other aim was  

ensuring from its optimal solution using one or more inequalities. The solution 

disrupted these inequalities itself. These inequalities are added to the 

problem. Problem is still reoptimize. Then, the method is applied again to the 

new solution, process applied as long as the optimal solution becomes 

integer.  
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CHAPTER 5 

 

 

GILMORE-GOMORY'S ALGORITHM 

  

 

  

The cutting standard-sized pieces of stock material problems are 

named cutting stock problem. These pieces can be occured by paper rolls 

or sheet metal, leather. They are divided or cut pieces of specified sizes 

while minimizing material. After cutting process, leftover is named trim loss or 

wastage. This trim loss can be named number of used rolls wasted in the 

cutting process. In these kind of problems, what trim loss is should be 

determined and explained. It is one of the critical point of these kind of 

problems. Because trim loss and number of used materials cannot be same 

at every problems. 

 In mathematical area, an optimization problem is occured by  

applications. The cutting stock problem is an NP-complete problem. It can be  

return to the knapsack problem beacuse of computional complexity. The 

problem can be formulated as an integer linear programming problem.This 

formulation applies not only one-dimensional problems but also many 

variations can be done, it is possible. The objective of cutting stock problem 

can be minimizing trim loss or  maximizing the total value of the produced 

items using each order with different value. 

  Generally, if the number of demands increase ,the amount of possible 

cutting patterns increase exponentially as a function of m, in cutting stock 

problems. It cannot be practical to compute the all possible cutting patterns. 

In order to preventing wasting time while solving, an alternative approach is 

improved which is Column Generation method. The Column Generation 

https://en.wikipedia.org/wiki/Inventory
https://en.wikipedia.org/wiki/Sheet_metal
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Integer_linear_programming
https://en.wikipedia.org/wiki/Delayed_column-generation
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method sometimes can be much more effictive than the original advent, 

especially problem size increases.  

 In 1960s, the column generation approach was introduced and applied 

to the cutting stock problem by Gilmore and Gomory. Gilmore and Gomory 

proved and showed that this approach is guaranteed to converge to the 

optimal solution, without using and generating all possible cutting patterns. 

This method solves the cutting-stock problem by starting  using few patterns 

which are determined before. If it is needed, it generates additional cutting 

patterns and use them in order to find optimal solution . 

 The other special part is one-dimensional cutting stock problem for 

general cutting stock problem. Solving an auxiliary optimization problem such 

as one dimensional cutting stock  introduced us the new patterns which are 

named the knapsack problem.  

 In the Knapsack Problem,  dual variables are found and used from 

the linear program. This problem is one of the strong method to solve these 

kind of cutting stock problems. The other known methods are branch and 

bound algorithm and dynamic programming like knapsack problem.  

 Some fractions causes limitation for the Gilmore and Gomory method. 

Because handling integrality is a limitation for the problem. Sometimes 

rounding to the nearest integer can not be useful for the cutting stock 

problem, because sub-optimal solution can be occured. It means that under 

or over-production for some orders. But modern algorithms overcame this 

limitation for including very large instances of the problem. 

 Sometimes, occuring same trim loss can be possible in the cutting 

stock problem .  So, possibility of corruption can be occured. Also geneating 

new patterns increase the effect of this degeneracy without affecting the trim 

loss. Gilmore Gomory  Algorithms can be coded like CPLEX or another 

programming language.  The solution procedures of Gomory Algorithm are; 

Step 1. Firstly, find the Simplex Tableau.  

Step 2. Strong Gomory Cutting Planes associated with each row that has a 

fractional right hand side are found.  

Step 3. Add these cutting patterns to the Simplex tableau including primal 

feasibility.  

https://en.wikipedia.org/wiki/Column_generation
https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Linear_program
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Branch_and_bound
https://en.wikipedia.org/wiki/Dynamic_programming
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Step 4. In order to find a solution for the new LP, use the Dual Simplex 

Algorithm.  

Step 5. If the solution is  optimal, stop, otherwise return to Step 2.  
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CHAPTER 6 

 

 

 PROBLEM DEFINITION 

 

 

 

 The Cutting Stock Problem is the problem of filling an order at 

minimum cost for specified numbers of lengths of material to be cut from 

given stock lengths of given cost (Gilmore et al.1961). 

 The CSP is an integer programming problem. However,  since the 

integer programming problems are known to be non-deterministic 

polynomial-time hard, the Cutting Stock Problem is formulated as linear 

programming problem by relaxing the integer requirements. After the linear 

programming optimal has been found, a rounding-upprocedures used to get 

optimum in the integer programming. It arises from many applications in 

industry including paper, glass, shoe-leather cutting, furniture, machine-

building. 

 The most important and first aim of every business is to optimize cost 

which means that  to maximize profit or minimize the cost of operation while 

satisfying demands.  

 In my thesis, my problem occurs in a carton and corrugated factory in 

Torbali/Izmir. This study was made using the real data from a factory which 

works about the corrugated area. Raw material is paper which is bought from 

abroad such as England, France, Germany, Israel etc. and domestic. In the 

depot, there are rolls which have different widths. 

 The thesis focuses minimizing the number of cutting rolls using the 

pieces which were cut with different amount from the fixed width materials for 

the factory which produces many products according to demand.
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 In the factories, managers should provide the stock enough in order to 

utilizing the advantages of stock and escaping the disadvantages of stock. 

When the demand comes, the materials which are required are controlled in 

the depot.  

 Generally, in the stock there are rolls which have different widths and 

lengths. These rolls should be cut in order to satisfy demand. In this situation, 

the most important cost is the trim loss cost which occurs when the cutting 

process is made for one more than product. Trim loss means that using 

number of rolls in this thesis. 

Minimizing trim loss and minimizing  number of used rolls are not same. In 

order to show this difference trim loss tables were prepared. In these tables, 

there are demand width, cutting patterns, width of rolls, number of rolls and 

trim loss calculation. Demand width and rolls width were known. Cutting 

patterns were occured by hand. These patterns include all possible 

combinations. Number of rolls were calculated by using matthematical model.  

 In the trim loss calculation, there are three parts. These are used area 

per pattern, total area per pattern and loss per pattern. Total area was 

calculated by number of rolls multiplying with roll width. Used area per 

pattern was calculated by demand width multiplying with number of rolls and 

the number of subrolls corresponding desired width in that pattern and lastly 

loss per pattern was calculated by subtracting  used area per pattern from 

total area per pattern.  

 

aij 19 20 21 22 23 24 25 26 27 28 29 

500 0 0 0 2 3 0 0 0 1 0 0 

450 1 0 0 0 0 0 0 0 0 0 0 

645 0 0 0 0 0 0 0 0 0 0 0 

430 0 0 4 1 0 2 0 2 1 0 0 

370 0 0 0 0 0 0 0 0 0 0 0 

495 1 2 0 0 0 0 0 0 0 0 0 

850 0 0 0 0 0 1 2 0 0 1 0 

750 0 0 0 0 0 0 0 1 1 1 2 

725 0 0 0 0 0 0 0 0 0 0 0 

720 0 0 0 0 0 0 0 0 0 0 0 

WIDTH OF ROLL 1020 1020 1730 1730 1730 1730 1730 1730 1730 1730 1730 

 
           # OF ROLLS 0 0 8 0 0 0 27 0 0 0 32 
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TRIM LOSS CALCULATION            

           

           USED AREA PER PATTERN 0 0 13760 0 0 0 45900 0 0 0 48000 

TOTAL AREA PER 
PATTERN 0 0 13840 0 0 0 46710 0 0 0 55360 

LOSS PER PATTERN 0 0 80 0 0 0 810 0 0 0 7360 

 

Table 3. Example table of trim loss calculation for roll 1020 mm and 1730 mm  

 

  First Model 
Solution 

  TRIM LOSS 

25025 

     # of used rolls 

185 

  

                                                            

 After the cutting process, if the last piece will be used for the other 

production of product is used, if it is not it will go to scrap. In the study, the 

aim is making the cutting plan optimally and calculating number of rolls which 

will  satisfy demand. 

 In terms of the loosing material which is the standard width, the need 

is known to be substantially increased track parts in case of interruption of 

the loss occurring due to excess wastage. From this reason, it is very 

important that giving the information about the material from the stock. There 

is no problem if the all kind of rolls are in the depot. 

 But the factory which produces the products according the demand 

buy the rolls. These rolls are so expensive. So, the scrap cost should be less 

in order to decrease the production cost. The requiring rolls which has 

different  widths are in the factory that kind of products are too much. 

 It is known that the factory produces the products according to 

customer's demand. In the production, paper is combined with starch, caustic 

and borax. This combination is processed in corrugated machine which 

Second Model 
Solution 

  TRIM LOSS 

22575 

     # of used rolls 

200 
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length of the machine is 2 meters. Papers have different widths. These 

widths are; 1020 mm, 1120 mm, 1320 mm, 1430 mm, 1530 mm, 1630 mm, 

1730 mm, 1830 mm, 1930 mm and maximum 2000 mm.   

 Production is processed according to customer request so, there are a 

lot of different demand with different widths. While these demand were 

planning, they classified according to their amount and width. This means 

that, every demand cannot be combined with in each. While combining, their 

combination of width should be go to the cutting roll and the trim loss should 

be minimum. If the scrap is minimum, it is known that combination of demand 

is near the optimum. In order to understand the combination is optimum, 

mathematical model and algorithm were improved and their solution were 

compared. 

 A mathematical model which gives the suitable cutting plan is 

improved satisfying these demands. Also the object of this model, seeing the 

using number of rolls for every different widths and choosing the most 

suitable cutting  pattern which minimizes the number of used rolls. Created a 

mathematical model as well as encountered in details in order to see results 

from ignoring and larger data for heuristic algorithm was developed to solve. 
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CHAPTER 7 

 

 

DATA COLLECTION 

  

 

 

The data was collected from cartoon and corrugated factory which is in 

Torbalı/Izmir. The data collection include matrices for the different roll widths 

and demands. There are eleven different roll widths and ten different demand 

widths and amount.  

 

 

Table 4. Roll Widths                             Table 5. Demands and their widths 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

NO DEMANDS WIDTHS 

1 10 500 

2 20 450 

3 50 645 

4 60 430 

5 40 370 

6 45 495 

7 55 850 

8 65 750 

9 80 725 

10 45 720 

NO WIDTHS 
1 1020 
2 1120 
3 1220 
4 1320 
5 1430 
6 1530 
7 1630 
8 1730 
9 1830 

10 1930 
11 2000 
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There are initial matrices for every different roll. These matrices are 

10x10 and shows that how many rolls require in order to satisfy for every 

demand. X1 and X2 ... X10 show that number of subrolls corresponding 

desired width in that pattern. 

 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 2 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 

A1 = 645 0 0 1 0 0 0 0 0 0 0 

 
430 0 0 0 2 0 0 0 0 0 0 

 
370 0 0 0 0 2 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 

 

       Table 6. Diagonal matrix for 1020 mm 
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CHAPTER 8 

 

 

MATHEMATICAL MODELING 

 

 

 

 In mathematical modeling part, two models were analyzed. First model 

was used in order to compare Gilmore-Gomory Algorithm's solutions. In the 

model, all possible combinations of cutting patterns were created. That model 

can be used for standard roll and multi width rolls. The aim of this model is 

minimizing number of used rolls. In order to obtain optimal solution all 

combinations were entered by hand. 

 The second model is an extra model in order to describe that 

minimizing trim loss and minimizing number of used rolls are different. This 

model can be used for standard roll and multi width rolls too. Coefficient of 

objective function was used to explain using different roll width. The aim is 

minimizing trim loss at this time. 

 

 

8.1. MATHEMATICAL FORMULATION  

 

SETS&INDICES 

I Set of desired widths 

J Set of cutting patterns 

i Index of set desired widths, iƐI = {1,2,...,|I|} 

j Index of set cutting patterns, jƐ={1,2,...,|J|} 
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PARAMETRES 

aij  The number of width i in cutting pattern j 

bj   The demand for subrolls of width i 

 

DECISION VARIABLES 

xj  The number of rolls for which cutting pattern j is used 

 

Minimize       (1)

s.t.

          (2)

0 and integer       (3)

j

j J

ij j i

j J

j

x

a x b i I

x j J





  

  




 

 

The objective function (1) denotes the total number of standard rolls which 

satisfy the demand, and has to be minimized. 

Second constraint is written for the fact that the number of produced subrolls 

has to be greater than or equal to the number of demanded subrolls. 

Constraints (3) show the domain of variables. 

 

 The above formulation can be extended to one-dimensional problem 

with multiple standard widths ( , 1,2,...,| |)kw k K  with a fixed length L. For 

each standard width kw , let kn be the number of patterns, jkx be the number 

of the jth pattern to be cut, and jkc be the associated cost of cutting each jth 

pattern. Then the jth pattern can be represented ijka with ith component.  
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The IP model for multiple standard widths: 

Minimize      (4)

s.t.

           (5)

0 and integer   ,      (6)

jk jk

k K j J

ijk jk i

k K j J

jk

c x

a x b i I

x j J k K

 

 

  

    





 

 

The objective function (4) minimizes the total associated cost of cutting 

patterns. 

Constraints (5) ensure the same condition like in the model of one standard 

roll. Sixth constraints show the domain of variables. 
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CHAPTER 9 

 

 

APPLICATION OF GILMORE-GOMORY'S 

ALGORITHM  

 

 

  

The cardboard factory manufacturers  cuts cardboards. The cutting 

department buys the cardboard such as rolls with different widths. They have 

to be cut into subrolls with desired widths. The different lengths of rolls in this 

instance are 1020 mm, 1120 mm, 1220 mm, 1320 mm, 1430 mm, 1530 mm, 

1630 mm, 1730 mm, 1830 mm, 1930 mm and 2000 mm. The customer order 

subrolls of cardboard have various widths. It means that every demand has a 

different width. The question is how to cut the standard rolls such that the 

demand of all customers is satisfied, and the amount of wasted cardboard 

which is called the trim loss is as small as possible. Our aim is to generate 

the best cutting patterns for each order package with cutting minimum 

amount of rolls.   

 Finding all cutting patterns can be possible for a small order package. 

But  the number of cutting patterns can easily grow in some problem which 

includes large-scale orders. In this part, how to solve general model for a 

standard roll without using all cutting patterns will be showed, and hence 

without considering all decision variables x1,x2,...,xn.  

  The matrix A will only exist actually; it is never constructed clearly. 

Only a submatrix of A is generated for this solution approach. There are two 

phases in each iteration step in Gilmore-Gomory algorithm,. A LO-model is 

solved in the first phase, and the second phase occurs of a knapsack model 
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to be solved, which either creates optimality, or leads to a cutting pattern that 

is added to the submatrix of A.  

The formulation of the algorithm is as follows:  

 

 

9.1.Gilmore-Gomory Algorithm 

Input:Model, with an order package, including the amount of demanded 

subrolls with the corresponding widths. 

Output:An optimal solution of model. 

Step 0:Initialization. Choose an initial full row rank matrix A(1), of which the 

columns correspond to cutting patterns. For instance, take A(1)= Im, Go to 

Step I. 

Step I: This step is for Simplex algorithm. Let A(k), k1, be the current 

technology matrix (after k iterations of the Gilmore-Gomory algorithm), of 

which the columns correspond to cutting patterns; let J(k) be the index set of 

the columns of A(k). Solve the LO-model: 

( )

( )

( )

min   

s.t.

                ( )

0  for ( ),

j

j J k

k

j j k

j J k

j

x

A x b P

x j J k







 




 

with  Aj
(k) the j’th column of A(k). Let ( ) ( )

1 ,...,k k

my y be the values of an optimal 

dual solution, corresponding to the current optimal basis matrix of ( )kP . 

Go to Step 2. 

Step 2:Column generation.Solve the knapsack model: 

( )

1

1

1

max  

s.t.

1730              ( )

,..., 0.

m
k

i i

i

m

i i k

i

m

y u

w u K

u u












 

Let ( ) ( ) ( ) T

1[ ... ]k k k

mu u u be an optimal solution of  ( )kK , and let k be the optimal 

objective value of  ( )kK . G oto Step 3. 
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Step 3: Optimality test and stopping rule. If k >1, then let A(k+1)=[A(k)u(k)] and 

return to Step I. If k 1, then stop: the pair {u(k), k } is an optimal solution of 

model. 

 In the thesis, firstly we arranged matrices for the rolls according to 

demand widths. It means that there are 11 matrices for the demands. These 

matrices are diagonal matrices. In the matrix, there are 10 different desired 

widths. These are 500,450,645,430,370,495,850,750,725,720 mm and their 

frequencies is called  x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. For instance; there 

are two '500 mm' in the 1020 mm roll. There are two '450 mm' in the 1020 

mm roll. There is one '645 mm' in the 1020 mm roll.  

 

 

 

 

 

 

 

 

 

 

   

   Table 7. Initial Matrix for 1020 mm 

 

The details of the first iteration of the algorithm is as follows: 

Step 1. Solve the LO-model: 

Minimize x1+x2+x3+x4+x5+x6+x7+x8+x9+x10 

s.t. 

               2x110  

               2x220 

                x350 

                2x460 

                2x540                         

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 2 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 

A1 = 645 0 0 1 0 0 0 0 0 0 0 

 
430 0 0 0 2 0 0 0 0 0 0 

 
370 0 0 0 0 2 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 
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                2x645 

                x755 

                x865 

                x980 

                x1045  x1,….,x100. 

    An optimal solution is calculated using a computer package, CPLEX:  

x1=5,x2=10, x3=50, x4=30, x5=20, x6=22.5, x7=55, x8=65, x9=80, x10=45, with 

optimal objective value z=382.5.  

 The knapsack problem to be solved in next step uses as objective 

coefficients the optimal dual values of the current constraints: 

y1=y2=y4=y5=y6=0.5, y3=y7=y8=y9=y10=1. (These optimal dual values are 

reported in the output of the computer package.) 

 

Step 2. Solve the knapsack problem 

Maximize 0.5u1+0.5u2+0.1u3+0.5u4+0.5u5+0.5u6+u7+u8+u9+u10 

s.t 

500u1+450u2+645u3+430u4+370u5+495u6+850u7+750u8+725u9+720u101020 

u1,…,u100, and integer. 

The optimal solution (generated by a computer package) is:  

u1=u2=u4=u6=u7=u8=u9=u10=0, u3=u5=1. The optimal objective value satisfies  

1 1.5  . Since 1 >1, optimality has not yet been reached. 

Step 3. Construct matrix A(2) from A(1) by adding the column  

[0 0 1 0 1 0 0 0 0 0]T. 
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

 
500 2 0 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 0 

A2 = 645 0 0 1 0 0 0 0 0 0 0 1 

 
430 0 0 0 2 0 0 0 0 0 0 0 

 
370 0 0 0 0 2 0 0 0 0 0 1 

 
495 0 0 0 0 0 2 0 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 0 

 
720 0 0 0 0 0 0 0 0 0 1 0 

 

    Table 8. Iteration matrix 

 

In the next iteration, Step 1 and Step 2 are repeated for the matrix A(2). The  

algorithm stops at iteration k if the optimal objective value k of model  ( )kK  is  

1. With our calculations, the Gilmore-Gomory algorithm performed 3  

iterations. The resulting optimal solution is listed below: 

 

    Table 9. Algorithm Result 

 

 In previous explanations and details, as you can see, the algorithm 

was performed for a standard roll width, 1020 mm. Our main goal for this 

thesis is applying this algorithm to multiple standard roll widths. We made 

some modifications for the algorithm and the details are given below: 

 

# of Rolls 5 10 10 22,5 55 65 80 45 40 30

Order(mm)

500 2 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 1 0

430 0 0 0 0 0 0 0 0 0 2

370 0 0 0 0 0 0 0 0 1 0

495 0 0 0 2 0 0 0 0 0 0

850 0 0 0 0 1 0 0 0 0 0

750 0 0 0 0 0 1 0 0 0 0

725 0 0 0 0 0 0 1 0 0 0

720 0 0 0 0 0 0 0 1 0 0

200 4800

TOTAL 

TRIM LOSS 

(mm)

74725

1

TRIM LOSS 

CALCULATI

ON (mm)

100 1200 3750 675 9350 17550 23600 13500

0,5

0

0,5

1

1

1

Optimal Solution

Cutting Pattern Optimal Dual Value

0,5

0,5

1
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9.2. Improved Gilmore-Gomory Algorithm for Multiple Standard Rolls 

 

Input: Model, with an order package, including the amount of demanded 

subrolls with the corresponding widths. 

Output: An optimal solution of model. 

Step 0: Initialization. Choose an initial full row rank matrix A(1), of which the 

columns correspond to cutting patterns. For instance, take A(1)= Im, Go to 

Step I. 

Step I: Simplex algorithm step. Let A(k), k  1, be the current technology 

matrix (after k iterations of the Gilmore-Gomory algorithm), of which the 

columns correspond to cutting patterns; let J(k) be the index set of the 

columns of A(k). Solve the LO-model: 

( )

( )

( )

min   

s.t.

                ( )

0  for ( ),

j

j J k

k

j j k

j J k

j

x

A x b P

x j J k







 





 

 

with  Aj
(k) the j’th column of A(k). Let ( ) ( )

1 ,...,k k

my y be the values of an optimal 

dual solution, corresponding to the current optimal basis matrix of ( )kP . 

Go to Step 2. 

Step 2:Column generation. Solve the knapsack model: 

( )

1 1

1

max  

s.t.

                   ( )

0         

n m
k

i ji

j i

m

i ji j k

i

ji

y u

wu width j J K

u i I j J

 



  

    




 

The different point from the original algorithm is that in the optimal solution of 

 ( )kK ,we can have more than one u vector and we take into account all of 

these u vectors, and let k be the optimal objective value of  ( )kK . 

 Go to Step 3. 
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Step 3: Optimality test and stopping rule. In the solution of Step 2, if there 

is/are different u vector(s) from previous iterations, return to Step I. Ifthere is 

no different u vector for adding to A vector, then stop: Optimality has been 

reached. 

 The given example will help the reader to understand the improved 

algorithm. In the example, the instance consists of two different standard rolls, 

1020 mm and 1730 mm. Before starting to the improved algorithm, we first 

arranged the diagonal matrix for this instance which is listed below: 

 

 

  Table 10. Initial Matrix for 1020 mm and 1730 mm 

The details of the first iteration is as follows: 

Step 1. Solve the LO-model: 

Minimize 

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14+x15+x16+x17+x18+x19+x20 

s.t. 

               2x1+3x1110  

               2x2+3x1220 

                x3+2x1350 

               2x4+4x1460 

              2x5+4x1540                         

              2x6+3x1645 

                x7+2x1755 

                x8+2x1865 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

500 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

430 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

495 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0

750 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

725 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0

720 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

1730 1730 17301730 1730 1730 1730 1730 17301020 1020 1020 1020 1020 1730
ROLL 

WIDTH
1020 1020 1020 1020 1020
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                x9+2x1980 

                x10+2x2045 

                x1,….,x200. 

An optimal solution is calculated using a computer package, CPLEX:  

x1=x2=x3=x4=x5=x6=x7=x8=x9=0, x10=45, x11=3.33,x12=6.66,x13=25,x16=x14=15, 

x15=10, x17=27.5, x18=32.5, x19=40,x20=22.5, withoptimal objective value 

z=197.5. The knapsack problem to be solved in next step uses as objective 

coefficients the optimal dual values of the current constraints: y1=y2=y6=0.33, 

y4=y5=0.25, y3=y7=y8=y9=y10=0.5. (These optimal dual values are reported in 

the output of the computer package.) 

Step 2. Solve the knapsack problem 

Maximize 

0.33(u11+u21)+0.33(u12+u22)+0.5(u13+u23)+0.25(u14+u24)+0.25(u15+u25)+0.33(u

16+u26)+0.5(u17+u27)+0.5(u18+u28)+0.5(u19+u29)+0.5(u110+u210) 

s.t 

500u11+450u12+645u13+430u14+370u15+495u16+850u17+750u18+725u19+720u

1101020 

500u21+450u22+645u23+430u24+370u25+495u26+850u27+750u28+725u29+720u

2101730 

u11,…,u2100, and integer. 

The optimal solution (generated by a computer package) is: 

u11=u12=u14=u16=u17=u18=u19=u110=0, u13=u15=1, 

u21=u22=u24=u25=u26=u27=u28=u29=u210=0, u23=1, The optimal objective value 

satisfies 1 2  . Since we have different u vectors to enter the matrix, 

optimality has not yet been reached. 

Step 3. Construct matrix A(2) from A(1) by adding the columns 

[0 0 1 0 1 0 0 0 0 0]T, [0 0 2 0 1 0 0 0 0 0]T. 
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    Table 11. Iteration Matrix 

 In the next iteration, Step 1 and Step 2 are repeated for the matrix A(2). 

The algorithm stops at iteration k if there is no different u vector from 

previous iterations. With our calculations, the Gilmore-Gomory algorithm 

performed 6 iterations. The resulting optimal solution is listed below: 

 

 

    Table 12. Algorithm Result 

 The verification of this algorithm is constructed by solving the problem 

with the original model which includes all cutting patterns. The results show 

that this algorithm also gives optimal solution.  

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

500 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

450 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

645 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 2

430 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

370 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 1

495 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

850 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

750 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0

725 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0

720 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0

1730 1730 1730 1020 17301730 1730 1730 1730 1730 17301020 1020 1020 1020 1020 1730
ROLL 

WIDTH
1020 1020 1020 1020 1020

# of Rolls 40 32,5 27,5 25 22,5 15 8,75 6,66 5 2,083

Order(mm)

500 0 0 0 0 0 0 0 0 2 0

450 0 0 0 0 0 0 0 3 0 0

645 0 0 0 2 0 0 0 0 0 0

430 0 0 0 0 0 4 0 0 0 0

370 0 0 0 1 0 0 0 1 0 4

495 0 0 0 0 2 0 0 0 0 0

850 0 0 2 0 0 0 0 0 0 0

750 0 2 0 0 0 0 0 0 0 0

725 2 0 0 0 0 0 0 0 0 0

720 0 0 0 0 1 0 2 0 1 0

66,6 50 521

TOTAL TRIM 

LOSS (mm)
25024,85

0,5

0,5

TRIM LOSS 

CALCULATION 

(mm)

11200 7475 825 1750 450 150 2538

0,375

0,25

0,25

0,25

0,5

0,5

Cutting Pattern

Optimal Solution

Optimal Dual Value

0,25

0,25
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 In addition, a lot of combinations of different standard roll widths (4-7-

8-10 and 11 different standard roll combinations) are analyzed with this 

algorithm. In the appendix part, the reader can see the results.  

 When the reader sees the results, he/she can be sure that this 

approach gives optimality without considering all cutting patterns. 
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CHAPTER 10 

  

 

 RESULTS 

 

 

 

 In the thesis, mathematical was improved. This model was designed 

according to eleven different rolls and all posible cutting pattern combinations 

were occured . Gilmore-Gomory's Algorithm firstly was applied for standard 

roll and then algorithm was improved and applied for eleven different roll 

widths. The aim is minimizing number of used rolls while cutting process in 

mathematical model and Gilmore-Gomory's Algorithm. So, results which 

were taken from mathematical model and Gilmore-Gomory's Algorithm were 

compared. It has seen that used cutting patterns and number of used rolls 

were same. In order to show these solutions comparing tables were prepared. 
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# of used 

rolls 
Roll widths 

Mathematical 
model solution 

Algorithm 
solution 

11 
1020-1120-1220-1320-
1430-1530-1630-1730-

1830-1930-2000 
149,667 149,667 

10 
1020-1120-1220-1430-
1530-1630-1730-1830-

1930-2000 
149,667 149,667 

8 
1020-1220-1430-1530-
1730-1830-1930-2000 

149,667 149,667 

7 
1020-1220-1430-1530-

1730-1830-2000 
149,667 149,667 

6 
1020-1220-1430-1530-

1730-2000 
149,667 149,667 

 5 
1020-1220-1430-1530-

1730 
185 185 

4 1020-1220-1530-1730 185 185 

3 1020-1220-1730 185 185 

1 1730 185 185 

1 1020 382,5 382,5 

Table 13. Solution table for Mathematical model and Gilmore-Gomory 

Algorithm 
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CHAPTER 11 

 

 

CONCLUSION 

  

 

 

In conclusion, cutting stock problem was defined  in detail. Surveys, 

mathematical models, and heuristic applications were explained in the 

literature surveys part. Mathematical model was developed and it was 

improved according to our problem generating all possible cutting patterns in 

order to find optimal solution and calculated trim loss which means that used 

number of rolls while cutting processing. Then, Gilmore-Gomory Algorithm 

was studied for only one roll width and this model was improved according to 

different roll widths which is the first application in the literature. Before, all of 

the studies in the literature were done for the one roll width. But in this thesis, 

some different roll widths were used and calculated how many rolls should be 

used while processing. Algorithm was studied with two,three, seven, eight, 

ten and eleven different roll widths. So, demands were satisfied and how 

many rolls which should be required for the production process were selected. 

These studies were codded in an optimization programming language, 

CPLEX. Solutions which were taken from mathematical model and improved 

Gilmore-Gomory Algorithm were compared and it has been seen that 

solutions were same.  
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APPENDIX A 

 

 

Initial Matrices for the different roll widths 

 

A.1. Initial matrix for roll 2000 mm 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 4 0 0 0 0 0 0 0 0 0 

 
450 0 4 0 0 0 0 0 0 0 0 

A1 = 645 0 0 3 0 0 0 0 0 0 0 

 
430 0 0 0 4 0 0 0 0 0 0 

 
370 0 0 0 0 5 0 0 0 0 0 

 
495 0 0 0 0 0 4 0 0 0 0 

 
850 0 0 0 0 0 0 2 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 2 0 

 
720 0 0 0 0 0 0 0 0 0 2 
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A.2. Initial matrix for roll 1930 mm 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 3 0 0 0 0 0 0 0 0 0 

 
450 0 4 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 4 0 0 0 0 0 0 

 
370 0 0 0 0 5 0 0 0 0 0 

 
495 0 0 0 0 0 3 0 0 0 0 

 
850 0 0 0 0 0 0 2 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 2 0 

 
720 0 0 0 0 0 0 0 0 0 2 

 

A.3. Initial matrix for roll 1830 mm 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 3 0 0 0 0 0 0 0 0 0 

 
450 0 4 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 4 0 0 0 0 0 0 

 
370 0 0 0 0 4 0 0 0 0 0 

 
495 0 0 0 0 0 3 0 0 0 0 

 
850 0 0 0 0 0 0 2 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 2 0 

 
720 0 0 0 0 0 0 0 0 0 2 

 

A.4. Initial matrix for roll 1730 mm 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 3 0 0 0 0 0 0 0 0 0 

 
450 0 3 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 4 0 0 0 0 0 0 

 
370 0 0 0 0 4 0 0 0 0 0 

 
495 0 0 0 0 0 3 0 0 0 0 

 
850 0 0 0 0 0 0 2 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 2 0 

 
720 0 0 0 0 0 0 0 0 0 2 
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A.5. Initial matrix for roll 1630 mm 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 3 0 0 0 0 0 0 0 0 0 

 
450 0 3 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 3 0 0 0 0 0 0 

 
370 0 0 0 0 4 0 0 0 0 0 

 
495 0 0 0 0 0 3 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 2 0 

 
720 0 0 0 0 0 0 0 0 0 2 

 

A.6. Initial matrix for roll 1530 mm 

 

 

 

 

 

 

 

A.7. Initial matrix for roll 1430 mm 

 

 

 

 

 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 3 0 0 0 0 0 0 0 0 0 

 
450 0 3 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 3 0 0 0 0 0 0 

 
370 0 0 0 0 4 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 2 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 2 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 2 0 0 0 0 0 0 0 0 0 

 
450 0 3 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 3 0 0 0 0 0 0 

 
370 0 0 0 0 3 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 
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A.8. Initial matrix for roll 1320 mm 

 

 

 

 

 

 

 

 

A.9. Initial matrix for roll 1220 mm 

 

 

 

 

 

A.10. Initial matrix for roll 1120 mm 

 

 

 

 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 2 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 

A1 = 645 0 0 2 0 0 0 0 0 0 0 

 
430 0 0 0 3 0 0 0 0 0 0 

 
370 0 0 0 0 3 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

 
500 2 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 

A1 = 645 0 0 1 0 0 0 0 0 0 0 

 
430 0 0 0 2 0 0 0 0 0 0 

 
370 0 0 0 0 3 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 

  
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

     500 2 0 0 0 0 0 0 0 0 0 

 
450 0 2 0 0 0 0 0 0 0 0 

A1 = 645 0 0 1 0 0 0 0 0 0 0 

 
430 0 0 0 2 0 0 0 0 0 0 

 
370 0 0 0 0 3 0 0 0 0 0 

 
495 0 0 0 0 0 2 0 0 0 0 

 
850 0 0 0 0 0 0 1 0 0 0 

 
750 0 0 0 0 0 0 0 1 0 0 

 
725 0 0 0 0 0 0 0 0 1 0 

 
720 0 0 0 0 0 0 0 0 0 1 
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APPENDIX B 

 

 

Gilmore-Gomory Algorithm Iterations using 

different roll widths 

 

B.1.1020mm-1120mm-1220mm-1430mm-1530mm-

1630mm-1730mm-1830mm-1930mm-2000mm 

 

1. Iteration 

        
optimal value=)180,917 

dec. 
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dec. 
V8 

dual v.1 0,25 0 1 0 0 0 0 1 0 

dual v.2 0,25 0 0 0 0 0 1 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 0 

dual v.4 0,25 0 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 0 0 1 0 0 1 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 0 

dual v.8 0,5 0 0 1 0 0 0 0 0 

dual v.9 0,5 0 0 0 0 0 0 0 0 

dual v.10 0,5 0 1 0 2 2 2 2 1 

alpha=9,51   
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2. Iteration 
      

optimal value=)175,29 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dual v.1 0,25 0 0 0 0 1 0 

dual v.2 0,25 0 0 0 1 0 0 

dual v.3 0,33 0 0 0 0 0 0 

dual v.4 0,25 1 0 0 0 0 0 

dual v.5 0,2 0 0 1 0 0 1 

dual v.6 0,25 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 

dual v.8 0,5 0 0 0 0 0 0 

dual v.9 0,5 1 2 2 2 2 1 

dual v.10 0,375 0 0 0 0 0 0 

alpha=9,516 
        

 

3. Iteration 
     

optimal value=)166,91 
dec. 
 V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dual v.1 0,2 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 

dual v.3 0,33 0 0 1 0 0 

dual v.4 0,25 1 0 1 1 0 

dual v.5 0,2 0 0 0 0 1 

dual v.6 0,25 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 

dual v.8 0,5 1 2 1 2 1 

dual v.9 0,4 0 0 0 0 0 

dual v.10 0,4 0 0 0 0 0 

alpha=9,39 
       

4. Iteration 
       

optimal value=)158,79 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dec. 
V8 

dual v.1 0,2 0 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 0 

dual v.3 0,33 0 0 0 0 1 0 0 0 

dual v.4 0,25 0 3 1 0 1 1 0 0 

dual v.5 0,2 1 0 1 0 0 0 3 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,5 1 0 0 2 1 1 0 1 

dual v.8 0,375 0 0 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 0 0 0 0 1 

dual v.10 0,4 0 0 1 0 0 1 0 0 

alpha=8,56 
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5. Iteration 
     

optimal value=)156,5 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dual v.1 0,2 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 

dual v.3 0,33 0 1 1 0 0 

dual v.4 0,166 0 0 0 0 0 

dual v.5 0,2 0 0 1 1 0 

dual v.6 0,25 1 0 0 0 0 

dual v.7 0,5 1 1 1 1 1 

dual v.8 0,416 0 0 0 1 1 

dual v.9 0,4 0 0 0 0 0 

dual v.10 0,4 0 0 0 0 0 

alpha=8,497 
       

 

6. Iteration 
      

optimal value=)155,625 
dec. 
 V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dual v.1 0,833 0 0 0 0 0 0 

dual v.2 0,833 0 0 0 0 0 0 

dual v.3 0,33 0 0 1 0 0 0 

dual v.4 0,166 0 0 0 1 0 0 

dual v.5 0,833 0 1 0 0 0 0 

dual v.6 0,25 0 0 0 0 1 0 

dual v.7 0,5 1 0 0 0 0 1 

dual v.8 0,416 0 0 0 0 0 0 

dual v.9 0,458 0 0 0 0 0 0 

dual v.10 0,458 0 1 1 2 2 1 

alpha=8,662 
        

7. Iteration 
       

optimal value=)153,236 
dec. 
 V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 0 0 0 0 0 0 0 

dual v.4 0,244 0 1 1 4 1 2 2 

dual v.5 0,2 0 0 1 0 0 1 0 

dual v.6 0,25 1 2 0 0 0 0 0 

dual v.7 0,422 0 0 0 0 0 0 0 

dual v.8 0,377 0 0 0 0 0 0 0 

dual v.9 0,4 1 0 1 0 2 1 1 

dual v.10 0,375 0 0 0 0 0 0 0 

alpha=8,367 
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8. Iteration 
     

optimal value=)152,292 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dual v.1 0,22 0 0 0 0 0 

dual v.2 0,22 0 0 0 0 1 

dual v.3 0,33 0 0 1 0 1 

dual v.4 0,22 0 0 1 1 0 

dual v.5 0,166 0 0 0 0 0 

dual v.6 0,25 2 2 0 0 0 

dual v.7 0,444 0 0 0 1 0 

dual v.8 0,388 0 0 0 0 0 

dual v.9 0,388 0 1 1 0 0 

dual v.10 0,375 0 0 0 1 0 

alpha=7,895 
       

 

 

9. Iteration 
   

optimal value=)151,354 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dual v.1 0,208 0 0 0 

dual v.2 0,208 0 0 0 

dual v.3 0,333 1 0 0 

dual v.4 0,208 0 0 0 

dual v.5 0,1875 0 0 1 

dual v.6 0,25 0 1 1 

dual v.7 0,416 0 0 0 

dual v.8 0,395 0 0 0 

dual v.9 0,395 1 2 1 

dual v.10 0,375 0 0 0 

alpha=8,007 
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10. Iteration 
       

optimal value=)151,131 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dec. 
V8 

dual v.1 0,25 0 0 0 0 0 0 0 0 

dual v.2 0,25 1 3 1 3 4 1 3 2 

dual v.3 0,33 0 0 1 0 0 0 1 0 

dual v.4 0,214 0 0 1 0 0 0 0 0 

dual v.5 0,196 2 0 0 1 0 4 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,41 0 0 0 0 0 0 0 0 

dual v.8 0,392 0 0 0 0 0 0 0 0 

dual v.9 0,375 0 0 0 0 0 0 0 1 

dual v.10 0,375 0 0 0 0 0 0 0 0 

alpha=8,244 
          

11. Iteration 
    

optimal value=)150,532 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dual v.1 0,25 0 0 1 1 

dual v.2 0,222 0 0 0 0 

dual v.3 0,333 0 0 0 0 

dual v.4 0,212 0 0 0 0 

dual v.5 0,194 2 3 0 1 

dual v.6 0,25 2 0 0 0 

dual v.7 0,412 0 0 0 0 

dual v.8 0,393 0 0 2 1 

dual v.9 0,375 0 0 0 0 

dual v.10 0,375 0 1 0 0 

alpha=7,967 
      

 

12. Iteration 
  

optimal value=)150,162 
dec.  
V1 

dec. 
V2 

dual v.1 0,212 0 0 

dual v.2 0,222 0 0 

dual v.3 0,333 0 0 

dual v.4 0,212 0 0 

dual v.5 0,194 0 1 

dual v.6 0,25 1 1 

dual v.7 0,412 0 0 

dual v.8 0,393 2 1 

dual v.9 0,375 0 0 

dual v.10 0,375 0 0 

alpha=7,967 
   



 56 

 

 

13. Iteration 
   

optimal value=)149,792 
dec.  
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dual v.1 0,222 0 0 0 0 

dual v.2 0,222 1 0 0 2 

dual v.3 0,333 0 1 2 0 

dual v.4 0,208 0 0 1 0 

dual v.5 0,194 0 2 0 1 

dual v.6 0,222 0 0 0 0 

dual v.7 0,416 0 0 0 0 

dual v.8 0,388 0 0 0 0 

dual v.9 0,388 1 0 0 1 

dual v.10 0,374 0 0 0 0 

alpha=7,967 
      

14. Iteration 

optimal value=)149,667 

alpha=7,932 

 

 

 

B.2.1020mm-1220mm-1430mm-1530mm-1730mm-

1830mm-1930mm-2000mm 

 

1. Iteration 
      

optimal value=)180,917 
dec.  
V1 

dec.  
V2 

dec. 
 V3 

dec.  
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dec. 
V8 

dual v.1 0,25 0 1 0 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 0 0 1 0 

dual v.3 0,333 1 0 1 0 0 0 0 0 

dual v.4 0,25 0 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 0 0 0 1 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 0 

dual v.8 0,5 0 0 0 0 0 0 0 0 

dual v.9 0,5 0 0 0 0 0 0 0 0 

dual v.10 0,5 0 1 1 2 2 2 2 2 

alpha=7,81 
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2. Iteration 
    

optimal value=)175,29 
dec. 
 V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
V5 

dec. 
V6 

dual v.1 0,25 0 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 1 0 

dual v.3 0,33 0 1 0 0 0 0 

dual v.4 0,25 1 0 0 0 0 0 

dual v.5 0,2 0 0 0 1 0 0 

dual v.6 0,25 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 

dual v.8 0,5 0 0 0 0 0 0 

dual v.9 0,5 1 1 2 2 2 2 

dual v.10 0,375 0 0 0 0 0 0 

alpha=7,81 
        

3. Iteration 
    

optimal value=)166,91 
dec.  
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
V5 

dual v.1 0,2 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 

dual v.3 0,33 0 1 0 1 0 

dual v.4 0,25 1 0 0 1 1 

dual v.5 0,2 0 0 0 0 0 

dual v.6 0,25 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 

dual v.8 0,5 1 1 2 1 2 

dual v.9 0,4 0 0 0 0 0 

dual v.10 0,4 0 0 0 0 0 

alpha=7,69 
       

 

4. Iteration 
     

optimal value=)158,79 
dec.  
V1 

dec. 
 V2 

dec. 
 V3 

dec.  
V4 

dec. 
V5 

dec. 
 V6 

dual v.1 0,2 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 

dual v.3 0,33 0 0 0 0 1 0 

dual v.4 0,25 0 3 1 0 1 1 

dual v.5 0,2 1 0 1 0 0 0 

dual v.6 0,25 0 0 0 0 0 0 

dual v.7 0,5 1 0 0 2 1 1 

dual v.8 0,375 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 0 0 0 

dual v.10 0,4 0 0 1 0 0 1 

alpha=7,06 
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5. Iteration 
  

optimal value=)154,66 
dec.  
V1 

dec. 
 V2 

dual v.1 0,2 0 0 

dual v.2 0,2 0 0 

dual v.3 0,33 0 0 

dual v.4 0,09 0 0 

dual v.5 0,2 1 0 

dual v.6 0,25 0 1 

dual v.7 0,5 0 0 

dual v.8 0,45 2 2 

dual v.9 0,4 0 0 

dual v.10 0,4 0 0 

alpha=7,16 
    

6. Iteration 
   

optimal value=)151,208 
dec.  
V1 

dec.  
V2 

dec.  
V3 

dec. 
 V4 

dual v.1 0,2 0 0 0 0 

dual v.2 0,2 0 0 0 0 

dual v.3 0,33 0 0 0 0 

dual v.4 0,25 1 4 1 2 

dual v.5 0,2 1 0 0 1 

dual v.6 0,25 0 0 0 0 

dual v.7 0,416 0 0 0 0 

dual v.8 0,375 0 0 0 0 

dual v.9 0,4 1 0 2 1 

dual v.10 0,333 0 0 0 0 

alpha=6,93 
      

 

7. Iteration 
  

optimal value=)150,95 
dec. 
 V1 

dec. 
 V2 

dual v.1 0,2 0 0 

dual v.2 0,2 0 0 

dual v.3 0,33 0 0 

dual v.4 0,2 0 0 

dual v.5 0,2 0 1 

dual v.6 0,25 0 0 

dual v.7 0,466 0 1 

dual v.8 0,375 0 0 

dual v.9 0,4 2 1 

dual v.10 0,33 0 0 

alpha=6,724 
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8. Iteration 
   

optimal value=)150,29 
dec. 
V1 dec. V2 

dec. 
V3 

dec. 
V4 

dual v.1 0,2 0 0 0 0 

dual v.2 0,2 0 0 0 0 

dual v.3 0,33 0 0 0 0 

dual v.4 0,2 0 0 0 0 

dual v.5 0,2 0 0 0 0 

dual v.6 0,25 1 2 1 1 

dual v.7 0,4 0 0 0 0 

dual v.8 0,375 0 0 0 0 

dual v.9 0,4 0 0 0 0 

dual v.10 0,4 1 1 2 2 

alpha=6,66 
      

9. Iteration 
    

optimal value=)150,25 
dec.  
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
V5 

dec. 
V6 

dual v.1 0,233 0 0 0 0 0 0 

dual v.2 0,333 0 0 0 0 1 0 

dual v.3 0,333 0 0 0 0 0 0 

dual v.4 0,2083 0 0 0 0 0 0 

dual v.5 0,2 0 4 2 3 4 4 

dual v.6 0,25 1 0 2 0 0 1 

dual v.7 0,416 0 0 0 0 0 0 

dual v.8 0,375 0 0 0 0 0 0 

dual v.9 0,383 1 0 0 0 0 0 

dual v.10 0,375 0 0 0 1 0 0 

alpha=6,57 
        

 

10. Iteration 
  

optimal value=)150 
dec. 
V1 

dec.  
V2 

dual v.1 0,2083 0 0 

dual v.2 0,2083 0 0 

dual v.3 0,333 0 0 

dual v.4 0,2083 0 0 

dual v.5 0,1875 0 0 

dual v.6 0,25 2 1 

dual v.7 0,416 0 0 

dual v.8 0,375 0 0 

dual v.9 0,395 1 2 

dual v.10 0,375 0 0 

alpha=6,593 
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11. Iteration 
      

optimal value=)149,94 
dec.  
V1 

dec. 
 V2 

dec. 
 V3 

dec. 
 V4 

dec. 
V5 

dec.  
V6 

dec. 
V7 

dual v.1 0,25 0 0 0 0 0 0 0 

dual v.2 0,25 1 3 1 3 4 2 3 

dual v.3 0,333 0 0 1 0 0 1 1 

dual v.4 0,21875 0 0 1 0 0 0 0 

dual v.5 0,1875 0 0 0 1 0 1 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,4375 0 0 0 0 0 0 0 

dual v.8 0,375 1 0 0 0 0 0 0 

dual v.9 0,375 0 0 0 0 0 0 0 

dual v.10 0,34375 0 0 0 0 0 0 0 

alpha=6,736 
         

12. Iteration 
   

optimal value=)149,79 
dec. 
V1 

dec.  
V2 

dec. 
V3 

dual v.1 0,22 0 0 0 

dual v.2 0,22 1 0 2 

dual v.3 0,33 0 2 0 

dual v.4 0,2083 0 1 0 

dual v.5 0,194 0 0 1 

dual v.6 0,222 0 0 0 

dual v.7 0,416 0 0 0 

dual v.8 0,38 0 0 0 

dual v.9 0,38 1 0 1 

dual v.10 0,374 0 0 0 

alpha=8,59 
     

12. Iteration 

optimal value=)149,667 

alpha=6,532 
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B.3.1020mm-1220mm-1430mm-1530mm-1730mm-

1830mm-2000mm 

 

1. Iteration 
     

optimal value=)180,917 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec. 
 V4 

dec.  
V5 

dec.  
V6 

dec.  
V7 

dual v.1 0,25 0 1 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,25 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 0 0 0 1 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 

dual v.8 0,5 0 0 1 0 0 0 0 

dual v.9 0,5 0 0 0 0 0 0 0 

dual v.10 0,5 0 1 0 2 2 2 2 

alpha=6,56 
         

2. Iteration 
     

optimal value=)175,91 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec.  
V6 

dec. 
 V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,25 0 1 0 0 0 0 1 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,25 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 0 0 0 1 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 

dual v.8 0,5 0 1 0 0 0 0 0 

dual v.9 0,5 0 0 1 2 2 2 2 

dual v.10 0,4 0 0 0 0 0 0 0 

alpha=6,56 
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3. Iteration 
     

optimal value=)166,91 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec.  
V6 

dec.  
V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 1 0 

dual v.4 0,25 0 1 0 0 0 1 1 

dual v.5 0,2 1 0 0 0 0 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 

dual v.8 0,5 0 1 1 2 2 1 2 

dual v.9 0,4 0 0 0 0 0 0 0 

dual v.10 0,4 0 0 0 0 0 0 0 

alpha=6,44 
        4. Iteration 

     

optimal value=)158,79 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec. 
 V4 

dec.  
V5 

dec.  
V6 

dec. 
 V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 0 0 0 0 0 

dual v.4 0,25 0 0 3 1 0 0 1 

dual v.5 0,2 1 1 0 1 0 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,5 0 1 0 0 2 2 1 

dual v.8 0,375 0 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 0 0 0 0 

dual v.10 0,4 0 0 0 1 0 0 1 

alpha=5,98 
         

5. Iteration 
     

optimal value=)154,72 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec.  
V5 

dec. 
 V6 

dec.  
V7 

dual v.1 0,25 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,125 0 0 0 0 0 0 0 

dual v.5 0,2 1 1 0 0 0 0 1 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,5 0 1 0 0 0 2 1 

dual v.8 0,4375 0 0 1 2 2 0 1 

dual v.9 0,4 0 0 0 0 0 0 0 

dual v.10 0,375 0 0 0 0 0 0 0 

alpha=6,01 
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6. Iteration 
     

optimal value=)152,20 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec. 
 V6 

dec. 
 V7 

dual v.1 0,25 0 0 0 0 0 0 1 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,216 0 0 0 1 0 0 0 

dual v.5 0,2 1 0 2 1 0 1 0 

dual v.6 0,25 0 1 0 0 2 0 0 

dual v.7 0,408 0 0 0 0 0 0 0 

dual v.8 0,391 0 0 0 0 0 0 0 

dual v.9 0,4 0 1 0 1 1 2 2 

dual v.10 0,375 0 0 0 0 0 0 0 

alpha=5,676 
         

 

7. Iteration 
     

optimal value=)151,91 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec.  
V5 

dec. 
 V6 

dec. 
 V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,2 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 2 0 0 1 0 

dual v.6 0,25 0 1 0 0 0 0 1 

dual v.7 0,4 0 0 0 0 0 0 0 

dual v.8 0,4 0 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 2 0 0 0 

dual v.10 0,4 0 1 0 0 1 2 2 

alpha=5,66 
         

8. Iteration 
     

optimal value=)151,70 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec. 
 V6 

dec.  
V7 

dual v.1 0,2 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,216 0 0 0 1 0 0 0 

dual v.5 0,2 1 0 2 1 0 1 0 

dual v.6 0,25 0 1 0 0 2 0 1 

dual v.7 0,408 0 0 0 0 0 0 0 

dual v.8 0,391 0 0 0 0 0 0 0 

dual v.9 0,4 0 1 0 1 1 2 2 

dual v.10 0,375 0 0 0 0 0 0 0 

alpha=7,895 
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9. Iteration 
     

optimal value=)151,208 
dec. 
V1 

dec. 
V2 

dec. 
 V3 

dec.  
V4 

dec.  
V5 

dec.  
V6 

dec.  
V7 

dual v.1 0,25 0 0 0 0 0 0 0 

dual v.2 0,25 0 1 3 0 3 4 3 

dual v.3 0,33 1 0 0 0 0 0 1 

dual v.4 0,216 0 0 0 0 0 0 0 

dual v.5 0,2 1 2 0 4 1 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 

dual v.7 0,408 0 0 0 0 0 0 0 

dual v.8 0,391 0 0 0 0 0 0 0 

dual v.9 0,375 0 0 0 0 0 0 0 

dual v.10 0,375 0 0 0 0 0 0 0 

alpha=5,76 
         

 

10. Iteration 
     

optimal value=)150,652 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dec.  
V5 

dec. 
 V6 

dec.  
V7 

dual v.1 0,25 0 1 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 0 0 0 

dual v.3 0,33 1 0 1 0 0 0 0 

dual v.4 0,21 0 0 0 0 0 0 0 

dual v.5 0,2 1 0 2 4 2 3 4 

dual v.6 0,25 0 0 0 0 2 0 0 

dual v.7 0,408 0 0 0 0 0 0 0 

dual v.8 0,391 0 0 0 0 0 0 0 

dual v.9 0,375 0 0 0 0 0 0 0 

dual v.10 0,375 0 1 0 0 0 1 0 

 

11. Iteration 
     

optimal value=)149,76 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec. 
 V4 

dec.  
V5 

dec.  
V6 

dec.  
V7 

dual v.1 0,22 0 0 0 0 0 0 0 

dual v.2 0,222 0 0 0 0 0 0 0 

dual v.3 0,333 1 0 0 0 0 0 0 

dual v.4 0,24 0 1 3 1 4 0 2 

dual v.5 0,194 1 0 0 1 0 0 3 

dual v.6 0,22 0 2 0 0 0 1 0 

dual v.7 0,425 0 0 0 0 0 0 0 

dual v.8 0,379 0 0 0 0 0 0 0 

dual v.9 0,388 0 0 0 1 0 2 0 

dual v.10 0,333 0 0 0 0 0 0 0 

alpha=5,69 
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12. Iteration 
     

optimal value=)149,66 
dec. 
V1 

dec. 
V2 

dec. 
V3 

dec. 
V4 

dec. 
V5 

dec. 
V6 

dec. 
V7 

dual v.1 0,2 0 1 0 0 0 0 1 

dual v.2 0,2 0 0 0 0 0 0 0 

dual v.3 0,333 1 0 1 0 2 0 0 

dual v.4 0,2 0 0 0 0 1 0 0 

dual v.5 0,2 1 0 2 0 0 1 0 

dual v.6 0,2 0 0 0 0 0 0 0 

dual v.7 0,39 0 0 0 0 0 0 0 

dual v.8 0,4 0 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 0 0 0 0 

dual v.10 0,4 0 1 0 2 0 2 2 

alpha=5,52 
      

13. Iteration 

optimal value=)149,667 

 

 

B.4.1020mm-1220mm-1530mm-1730mm 

 

1. Iteration 
   

optimal value=)197,5 
dec. 
V1 

dec. 
V2 

dec. 
 V3 

dec.  
V4 

dual v.1 0,33 0 1 0 0 

dual v.2 0,33 0 0 0 0 

dual v.3 0,5 1 1 1 2 

dual v.4 0,25 0 0 1 0 

dual v.5 0,25 1 0 0 1 

dual v.6 0,33 0 0 1 0 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 0 0 0 0 

dual v.9 0,5 0 0 0 0 

dual v.10 0,5 0 0 0 0 

alpha=3,91 
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2. Iteration 
   

optimal value=)191,25 
dec. 
V1 

dec. 
V2 

dec. 
 V3 

dec.  
V4 

dual v.1 0,33 0 1 0 0 

dual v.2 0,33 2 0 0 3 

dual v.3 0,375 0 0 0 0 

dual v.4 0,25 0 0 0 0 

dual v.5 0,25 0 0 0 1 

dual v.6 0,33 0 0 0 0 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 0 0 0 0 

dual v.9 0,5 0 0 0 0 

dual v.10 0,5 0 1 2 0 

alpha=3,73 
    

3. Iteration 
   

optimal value=)189,58 
dec. 
V1 

dec. 
V2 

dec. 
 V3 

dec.  
V4 

dual v.1 0,33 1 1 0 0 

dual v.2 0,25 0 0 0 0 

dual v.3 0,375 0 0 0 0 

dual v.4 0,25 0 0 0 0 

dual v.5 0,25 0 0 0 0 

dual v.6 0,33 1 0 0 2 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 0 0 0 0 

dual v.9 0,5 0 0 0 0 

dual v.10 0,5 0 1 2 1 

alpha=3,65 
    

 

4. Iteration 
   

optimal value=)185,83 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec. 
 V4 

dual v.1 0,33 2 1 0 2 

dual v.2 0,25 0 0 0 0 

dual v.3 0,375 0 0 0 0 

dual v.4 0,25 0 0 0 0 

dual v.5 0,25 0 0 0 0 

dual v.6 0,25 0 0 0 0 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 0 0 0 0 

dual v.9 0,5 0 0 0 0 

dual v.10 0,5 0 1 2 1 

alpha=3,65 
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5. Iteration 
   

optimal value=)185 
dec. 
V1 

dec. 
V2 

dec.  
V3 

dec.  
V4 

dual v.1 0,25 0 1 0 0 

dual v.2 0,25 0 0 0 0 

dual v.3 0,375 1 0 0 0 

dual v.4 0,25 0 0 0 0 

dual v.5 0,25 1 0 0 0 

dual v.6 0,25 0 0 0 0 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 0 0 0 0 

dual v.9 0,5 0 0 0 0 

dual v.10 0,5 0 1 2 2 

alpha=3,375 
    

6. Iteration 

optimal value=)185 
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B.5.1020mm-1120mm-1220mm-1320mm-1430mm-

1530mm-1630mm-1730mm-1830mm-1930mm-

2000mm 

 

1. Iteration 
       

optimal value=)180,917 
dec. 
V1 

dec. 
 V2 

dec.  
V3 

dec. 
 V4 

dec.  
V5 

dec.  
V6 

dec. 
V7 

dec.  
V8 

dual v.1 0,25 0 0 1 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 0 0 1 0 

dual v.3 0,33 1 0 0 1 0 0 0 0 

dual v.4 0,25 0 0 0 0 0 0 0 0 

dual v.5 0,2 1 1 0 0 0 1 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 0 0 

dual v.8 0,5 0 1 0 0 0 0 0 0 

dual v.9 0,5 0 0 0 0 0 0 0 0 

dual v.10 0,5 0 0 1 1 2 2 2 2 

alpha=10,26 
          

2. Iteration 
     

optimal value=)175,29 
dec. 
V1 

dec.  
V2 

dec. 
 V3 

dec. 
 V4 

dec.  
V5 

dec.  
V6 

dual v.1 0,25 0 0 0 0 0 1 

dual v.2 0,25 0 0 0 0 1 0 

dual v.3 0,33 0 0 1 0 0 0 

dual v.4 0,25 0 1 0 0 0 0 

dual v.5 0,2 1 0 0 1 0 0 

dual v.6 0,25 0 0 0 0 0 0 

dual v.7 0,5 0 0 0 0 0 0 

dual v.8 0,5 0 0 0 0 0 0 

dual v.9 0,5 1 1 1 2 2 2 

dual v.10 0,375 0 0 0 0 0 0 

alpha=10,26 
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3. Iteration 
    

optimal value=)166,91 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec. 
 V4 

dual v.1 0,2 0 0 0 0 

dual v.2 0,2 0 0 0 0 

dual v.3 0,33 1 0 1 0 

dual v.4 0,25 0 0 1 1 

dual v.5 0,2 0 0 0 0 

dual v.6 0,25 0 0 0 0 

dual v.7 0,5 0 0 0 0 

dual v.8 0,5 1 2 1 2 

dual v.9 0,4 0 0 0 0 

dual v.10 0,4 0 0 0 0 

alpha=10,14 
     4. Iteration 

       

optimal value=)158,79 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec. 
 V6 

dec.  
V7 

dec. 
 V8 

dual v.1 0,2 0 0 0 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 0 0 0 

dual v.3 0,33 0 0 0 0 0 0 1 0 

dual v.4 0,25 0 0 3 1 0 0 1 1 

dual v.5 0,2 3 1 0 1 0 0 0 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 

dual v.7 0,5 0 1 0 0 1 2 1 1 

dual v.8 0,375 0 0 0 0 0 0 0 0 

dual v.9 0,4 0 0 0 0 1 0 0 0 

dual v.10 0,4 0 0 0 1 0 0 0 1 

alpha=9,31 
          

5. Iteration 
    

optimal value=)154,66 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dual v.1 0,2 0 0 0 0 

dual v.2 0,2 1 0 0 0 

dual v.3 0,33 0 0 0 0 

dual v.4 0,099 0 0 0 0 

dual v.5 0,2 0 0 1 0 

dual v.6 0,25 0 0 0 1 

dual v.7 0,5 1 1 0 0 

dual v.8 0,45 0 1 2 2 

dual v.9 0,4 0 0 0 0 

dual v.10 0,4 0 0 0 0 

alpha=9,46 
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6. Iteration 
     

optimal value=)154,66 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dual v.1 0,2 0 0 0 0 0 

dual v.2 0,2 0 0 0 0 0 

dual v.3 0,33 0 0 0 0 0 

dual v.4 0,25 1 2 4 1 2 

dual v.5 0,2 1 0 0 0 1 

dual v.6 0,25 0 0 0 0 0 

dual v.7 0,416 0 0 0 0 0 

dual v.8 0,375 0 0 0 0 0 

dual v.9 0,4 1 1 0 2 1 

dual v.10 0,333 0 0 0 0 0 

alpha=9,18 
       

 

7. Iteration 
  

optimal value=)150,95 
dec. 
V1 

dec.  
V2 

dual v.1 0,2 0 0 

dual v.2 0,2 0 0 

dual v.3 0,33 0 0 

dual v.4 0,2 0 0 

dual v.5 0,2 0 1 

dual v.6 0,25 0 0 

dual v.7 0,466 0 1 

dual v.8 0,375 0 0 

dual v.9 0,4 2 1 

dual v.10 0,333 0 0 

alpha=8,862 
    

8. Iteration 
   

optimal value=)150,29 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dual v.1 0,2 0 0 0 0 

dual v.2 0,2 0 0 0 0 

dual v.3 0,33 0 2 0 0 

dual v.4 0,2 0 0 0 0 

dual v.5 0,2 0 0 1 0 

dual v.6 0,25 1 0 1 1 

dual v.7 0,4 0 0 0 0 

dual v.8 0,375 0 0 0 0 

dual v.9 0,4 0 0 1 0 

dual v.10 0,4 1 0 0 2 

alpha=8,862 
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9. Iteration 
      

optimal value=)150,25 
dec. 
V1 

dec.  
V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec. 
 V6 

dec.  
V7 

dec.  
V8 

dual v.1 0,233 0 0 0 0 0 0 0 0 

dual v.2 0,233 0 1 0 0 0 0 1 0 

dual v.3 0,333 0 0 0 0 0 0 0 0 

dual v.4 0,2083 0 0 0 0 0 0 0 0 

dual v.5 0,2 0 1 4 3 2 3 4 4 

dual v.6 0,25 1 1 0 1 2 0 0 1 

dual v.7 0,416 0 0 0 0 0 0 0 0 

dual v.8 0,375 0 0 0 0 0 0 0 0 

dual v.9 0,383 1 0 0 0 0 0 0 0 

dual v.10 0,375 0 0 0 0 0 1 0 0 

alpha=8,879 
          

 

10. Iteration 
  

optimal value=)150 
dec. 
V1 

dec.  
V2 

dual v.1 0,208 0 0 

dual v.2 0,208 0 0 

dual v.3 0,333 0 0 

dual v.4 20,8 0 0 

dual v.5 0,1875 0 0 

dual v.6 0,25 2 1 

dual v.7 0,416 0 0 

dual v.8 0,375 0 0 

dual v.9 0,39583 1 2 

dual v.10 0,375 0 0 

alpha=8,88 
    

11. Iteration 
       

optimal value=)149,94 
dec. 
V1 

dec. 
 V2 

dec.  
V3 

dec.  
V4 

dec. 
 V5 

dec. 
 V6 

dec.  
V7 

dec.  
V8 

dec.  
V9 

dual v.1 0,25 0 0 0 0 0 0 0 0 0 

dual v.2 0,25 1 1 3 1 2 3 4 2 3 

dual v.3 0,333 1 0 0 1 0 0 0 1 1 

dual v.4 0,21875 0 0 0 1 0 0 0 0 0 

dual v.5 0,1875 0 2 0 0 0 1 0 1 0 

dual v.6 0,25 0 0 0 0 0 0 0 0 0 

dual v.7 0,4375 0 0 0 0 0 0 0 0 0 

dual v.8 0,375 0 0 0 0 0 0 0 0 0 

dual v.9 0,375 0 0 0 0 1 0 0 0 0 

dual v.10 0,34375 0 0 0 0 0 0 0 0 0 

alpha=8,8 
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12. Iteration 
   

optimal value=)149,79 
dec. 
V1 

dec.  
V2 

dec. 
 V3 

dual v.1 0,2 0 0 0 

dual v.2 0,2 1 0 2 

dual v.3 0,333 0 2 0 

dual v.4 0,2 0 1 0 

dual v.5 0,2 0 0 1 

dual v.6 0,2 0 0 0 

dual v.7 0,4 0 0 0 

dual v.8 0,4 0 0 0 

dual v.9 0,4 1 0 1 

dual v.10 0,4 0 0 0 

alpha=8,59 
     

12. Iteration 

optimal value=)149,667 

alpha=8,59 
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APPENDIX C 

 

 

Parts of trim loss calculation table 

 

C.1. Image parts of trim loss calculation table for 

width 1020 mm and 1730 mm 

 

aij 21 25 29 43 59 61 62 63 64 67 

500 0 0 0 0 0 1 2 0 0 0 

450 0 0 0 0 3 0 0 0 0 0 

645 0 0 0 0 0 0 0 0 0 0 

430 4 0 0 0 0 1 0 0 0 0 

370 0 0 0 4 1 0 0 0 0 2 

495 0 0 0 0 0 0 0 0 0 0 

850 0 2 0 0 0 0 0 1 0 0 

750 0 0 2 0 0 0 0 0 1 0 

725 0 0 0 0 0 1 1 1 1 1 

720 0 0 0 0 0 0 0 0 0 0 

WIDTH OF ROLL 1730 1730 1730 1730 1730 1730 1730 1730 1730 1730 

 
          # OF ROLLS 8 27 32 8 6 3 3 1 1 1 

 
          

TRIM LOSS CALCULATION           

          

          USED AREA PER PATTERN 13760 45900 48000 11840 10320 4965 5175 1575 1475 1465 

TOTAL AREA PER 
PATTERN 13840 46710 55360 13840 10380 5190 5190 1730 1730 1730 

LOSS PER PATTERN 80 810 7360 2000 60 225 15 155 255 265 
 

 



 74 

 

C.2. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm ,1730 mm 

 

aij 54 61 75 76 97 105 109 

500 0 0 1 0 0 0 0 

450 0 0 0 0 0 0 0 

645 0 0 0 0 0 0 0 

430 4 0 0 0 0 0 0 

370 0 0 3 4 0 0 0 

495 0 0 0 0 0 0 0 

850 0 1 0 0 0 0 1 

750 0 1 0 0 1 0 0 

725 0 0 0 0 1 2 0 

720 0 0 0 0 0 0 1 

WIDTH OF ROLL 1730 1730 1730 1730 1730 1730 1730 

                # OF ROLLS 3 33 10 2 12 34 22 

        TRIM LOSS 
CALCULATION 

       
       

       USED AREA PER 
PATTERN 5160 52800 16100 2960 17700 49300 34540 

TOTAL AREA PER 
PATTERN 5190 57090 17300 3460 20760 58820 38060 

LOSS PER PATTERN 30 4290 1200 500 3060 9520 3520 
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C.3. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm,1530 mm and 1730 mm 

 

aij 62 99 140 154 168 171 174 176 

500 0 0 0 1 0 0 2 0 

450 0 0 0 0 2 3 0 0 

645 0 0 0 0 0 0 0 0 

430 0 0 0 0 0 0 0 0 

370 0 0 0 3 0 1 0 0 

495 0 0 0 0 0 0 0 0 

850 0 0 1 0 0 0 0 0 

750 2 0 1 0 1 0 0 1 

725 0 0 0 0 0 0 1 1 

720 0 2 0 0 0 0 0 0 

WIDTH OF ROLL 1530 1530 1730 1730 1730 1730 1730 1730 

                  # OF ROLLS 4 1 55 8 1 6 1 1 

         TRIM LOSS 
CALCULATION         

        
        USED AREA PER 

PATTERN 6000 1440 88000 12880 1650 10320 1725 1475 

TOTAL AREA PER 
PATTERN 6120 1530 95150 13840 1730 10380 1730 1730 

LOSS PER PATTERN 120 90 7150 960 80 60 5 255 
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C.4. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm, 1430 mm, 1530 mm and 

1730 mm 

 

aij 119 133 154 157 162 175 190 194 

500 0 0 0 0 0 0 0 0 

450 0 0 0 0 0 0 0 0 

645 0 0 0 0 0 0 0 0 

430 0 0 0 0 0 0 4 0 

370 0 4 0 2 0 0 0 0 

495 0 0 0 0 0 0 0 0 

850 0 0 0 0 0 0 0 2 

750 2 0 1 0 0 0 0 0 

725 0 0 1 1 2 1 0 0 

720 0 0 0 0 0 1 0 0 

WIDTH OF ROLL 1530 1530 1530 1530 1530 1530 1730 1730 

                  # OF ROLLS 32 8 1 1 23 1 8 27 

         TRIM LOSS 
CALCULATION 

        
        

        USED AREA PER 
PATTERN 48000 11840 1475 1465 33350 1445 13760 45900 

TOTAL AREA PER 
PATTERN 48960 12240 1530 1530 35190 1530 13840 46710 

LOSS PER  
PATTERN 960 400 55 65 1840 85 80 810 
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C.5. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730 

mm and 2000 mm 

 

aij 271 343 378 434 439 440 441 450 486 488 490 

500 0 0 0 0 1 0 0 0 1 0 0 

450 0 0 0 0 0 0 2 0 0 0 0 

645 2 0 3 0 0 0 0 0 0 0 0 

430 0 0 0 1 0 1 0 0 0 0 2 

370 1 0 0 0 0 0 1 1 4 3 3 

495 0 1 0 0 0 0 0 0 0 0 0 

850 0 0 0 1 0 0 0 1 0 0 0 

750 0 0 0 0 0 0 0 0 0 1 0 

725 0 2 0 0 2 2 1 1 0 0 0 

720 0 0 0 1 0 0 0 0 0 0 0 

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 

                        # OF ROLLS 1 13 16 45 8 9 10 10 2 1 3 

            TRIM LOSS 
CALCULATION 

           
           
           USED AREA PER 

PATTERN 1660 25285 30960 90000 15600 16920 19950 19450 3960 1860 5910 

TOTAL AREA PER 
PATTERN 1730 26000 32000 90000 16000 18000 20000 20000 4000 2000 6000 

LOSS PER PATTERN 70 715 1040 0 400 1080 50 550 40 140 90 
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C.6. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730 

mm , 1830 mm and 2000 mm 

 

aij 270 488 520 576 581 582 583 592 

500 0 0 0 0 1 0 0 0 

450 0 0 0 0 0 0 2 0 

645 2 0 3 0 0 0 0 0 

430 1 0 0 1 0 1 0 0 

370 0 0 0 0 0 0 1 1 

495 0 1 0 0 0 0 0 0 

850 0 0 0 1 0 0 0 1 

750 0 1 0 0 0 0 0 0 

725 0 1 0 0 2 2 1 1 

720 0 0 0 1 0 0 0 0 

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000 

                  # OF ROLLS 1 45 16 45 6 2 10 9 

         TRIM LOSS 
CALCULATION 

                

        USED AREA PER 
PATTERN 1720 88650 30960 90000 11700 3760 19950 17505 

TOTAL AREA PER 
PATTERN 1730 90000 32000 90000 12000 4000 20000 18000 

LOSS PER PATTERN 10 1350 1040 0 300 240 50 495 
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C.7. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1730 

mm , 1830 mm, 1930 mm and  2000 mm 

 

aij 270 664 690 699 755 760 761 762 

500 0 0 0 0 0 1 0 0 

450 0 0 0 0 0 0 0 2 

645 2 0 0 3 0 0 0 0 

430 1 0 0 0 1 0 1 0 

370 0 0 0 0 0 0 0 1 

495 0 1 1 0 0 0 0 0 

850 0 0 0 0 1 0 0 0 

750 0 0 2 0 0 0 0 0 

725 0 2 0 0 0 2 2 1 

720 0 0 0 0 1 0 0 0 

WIDTH OF ROLL 1730 2000 2000 2000 2000 2000 2000 2000 

                  # OF ROLLS 1 13 32 16 45 7 10 10 

         TRIM LOSS 
CALCULATION         

        
        USED AREA PER 

PATTERN 1720 25285 63840 30960 90000 13650 18800 19950 

TOTAL AREA PER 
PATTERN 1730 26000 64000 32000 90000 14000 20000 20000 

LOSS PER PATTERN 10 715 160 1040 0 350 1200 50 
 

 

 

 

 

 

 

 

 

 

 



 80 

 

C.8. Image parts of trim loss calculation table for 

width 1020 mm,1220 mm,1430 mm, 1530 mm, 1630 

mm, 1730 mm , 1830 mm, 1930 mm and  2000 mm 

 

aij 438 688 753 779 788 844 849 850 851 

500 0 0 0 0 0 0 1 0 0 

450 0 0 0 0 0 0 0 0 2 

645 2 0 0 0 3 0 0 0 0 

430 0 0 0 0 0 1 0 1 0 

370 1 3 0 0 0 0 0 0 1 

495 0 0 1 1 0 0 0 0 0 

850 0 0 0 0 0 1 0 0 0 

750 0 1 0 2 0 0 0 0 0 

725 0 0 2 0 0 0 2 2 1 

720 0 0 0 0 0 1 0 0 0 

WIDTH OF ROLL 1830 1930 2000 2000 2000 2000 2000 2000 2000 

                    # OF ROLLS 1 1 13 32 16 45 10 8 10 

          TRIM LOSS 
CALCULATION          

         
         USED AREA PER 

PATTERN 1660 1860 25285 63840 30960 90000 19500 15040 19950 

TOTAL AREA PER 
PATTERN 1830 1930 26000 64000 32000 90000 20000 16000 20000 

LOSS PER PATTERN 170 70 715 160 1040 0 500 960 50 
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C.9. Image parts of trim loss calculation table for 

width 1020 mm,1120 mm,1220 mm,1430 mm,1530 

mm,1630 mm, 1730 mm,1830 mm,1930 mm and 

2000 mm 

 

aij 426 725 775 801 810 866 871 873 

500 0 0 0 0 0 0 1 0 

450 0 0 0 0 0 0 0 2 

645 2 0 0 0 3 0 0 0 

430 0 1 0 0 0 1 0 0 

370 0 0 0 0 0 0 0 1 

495 1 0 1 1 0 0 0 0 

850 0 0 0 0 0 1 0 0 

750 0 2 0 2 0 0 0 0 

725 0 0 2 0 0 0 2 1 

720 0 0 0 0 0 1 0 0 

WIDTH OF 
ROLL 1830 1930 2000 2000 2000 2000 2000 2000 

                  # OF ROLLS 1 11 23 21 16 45 7 10 

         TRIM LOSS 
CALCULATION 

                

        USED AREA 
PER PATTERN 1785 21230 44735 41895 30960 90000 13650 19950 

TOTAL AREA 
PER PATTERN 1830 21230 46000 42000 32000 90000 14000 20000 

LOSS PER 
PATTERN 45 0 1265 105 1040 0 350 50 
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C.10.Image parts of trim loss calculation table for 

width1020,1120,1220,1320,1430,1530,1630,1730, 

1830,1930 and 2000mm 

 

aij 705 816 842 851 907 912 914 

500 0 0 0 0 0 1 0 

450 1 0 0 0 0 0 2 

645 0 0 0 3 0 0 0 

430 0 0 0 0 1 0 0 

370 0 0 0 0 0 0 1 

495 0 1 1 0 0 0 0 

850 0 0 0 0 1 0 0 

750 0 0 2 0 0 0 0 

725 2 2 0 0 0 2 1 

720 0 0 0 0 1 0 0 

WIDTH OF 
ROLL 1930 2000 2000 2000 2000 2000 2000 

        # OF ROLLS 11 12,5 32,5 16,6667 45 9,25 4,5 

TRIM LOSS 
CALCULATION 

       USED AREA 
PER PATTERN 20900 24313 64838 32250 90000 18038 8978 

TOTAL AREA 
PER PATTERN 21230 25000 65000 33333,3 90000 18500 9000 

LOSS PER 
PATTERN 330 687,5 162,5 1083,33 0 462,5 22,5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83 

 

APPENDIX D 

 

 

D.1.Some images of CPLEX for the eleven different 

widths 

 

Code 
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