
ALL COLORS SHORTEST PATH PROBLEM
ON TREES

AKÇAY, MEHMET BERKEHAN

JUNE 2015

ALL COLORS SHORTEST PATH PROBLEM
ON TREES

a thesis submitted to
the graduate school of

natural and applied sciences of
izmir university of economics

by
AKÇAY, MEHMET BERKEHAN

in partial fulfillment of the requirements
for the degree of
master of science

in the graduate school of natural and applied sciences

JUNE 2015

Acknowledgments

I want to thank everybody who helped, and supported me during this thesis.

v

ABSTRACT

ALL COLORS SHORTEST PATH PROBLEM ON TREES

Akçay, Mehmet Berkehan

M.Sc. in Intelligent Systems Engineering
Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Hüseyin Akcan
Co-Supervisor: Assoc. Prof. Dr. Cem Evrendilek

June 2015

Given an edge weighted tree T (V,E), rooted at a designated base vertex r ∈ V ,
and a color from a set of colors C = {1, ..., k} assigned to every vertex v ∈ V , All
Colors Shortest Path problem on trees (ACSP-t) seeks the shortest, possibly non-
simple, path starting from r in T such that at least one node from every distinct
color in C is visited. We show that ACSP-t is NP-Hard, and also prove that
it doesn’t have a constant factor approximation algorithm. We give an Integer
Linear Programming formulation of ACSP-t. Based on a Linear Programming
relaxation of this formulation, several heuristics are proposed. The thesis also
explores Genetic Algorithms, and Tabu Search to develop alternative heuristic
solutions for ACSP-t. The performance of all the proposed heuristics are finally
evaluated experimentally for a wide range of trees parametrically generated.

Keywords : Graph theory, integer linear programming, linear programming
relaxation, genetic algorithm, tabu search, NP-Hardness, inapproximability, con-
stant factor approximation

vi

ÖZ

AĞAÇ YAPILARINDA TÜM RENKLERİ İÇEREN EN KISA YOL
PROBLEMİ

Akçay, Mehmet Berkehan

Akıllı Mühendislik Sistemleri, Yüksek Lisans
Fen Bilimleri Enstitüsü

Tez Yöneticisi: Doç. Dr. Hüseyin Akcan
İkinci Tez Yöneticisi: Doç. Dr. Cem Evrendilek

Haziran 2015

Ağaç Yapılarında Tüm Renkleri İçeren En Kısa Yolu Bulma (TREKY-a) problemi,
r ∈ V düğümünde kökleşmiş bir T = (V,E) ağacı verilip, ağaçtaki her bir düğüme
C = {1, ..., k} kümesinden bir renk atandığında, r düğümünden başlayarak, her bir
farklı renkten en az bir düğüm içeren en kısa yolu bulma problemidir. Biz TREKY-
a probleminin NP-Zor olduğunu gösteriyoruz. Ayrıca, TREKY-a için sabit faktörlü
bir yakınsama algoritmasının olmadığını kanıtlıyoruz. TREKY-a problemi için tamsayı
lineer programlama formülü veriyoruz. Bu formülün lineer programlama gevşetmesini
temel alarak çeşitli sezgisel çözüm yöntemleri öneriliyor. Bu tez ayrıca TREKY-a için
Genetik ve Tabu Arama algoritmalarını temel alan alternatif sezgisel çözüm yöntemleri
de geliştirmektedir. Önerilen bütün sezgisel yöntemlerin performansı çeşitli parametrik
tipte ağaçlarla deneysel olarak değerlendirilmektedir.

Anahtar Kelimeler : Çizge teorisi, tamsayılı lineer programlama, lineer pro-
gramlama gevşetilmesi, genetik algoritma, tabu arama algoritması, NP-Zorluk,
yakınsanamazlık, sabit faktör yakınsama

vii

Contents

Acknowledgments v

Abstract vi

Öz vii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the Thesis . 2
1.3 Organization of the Thesis . 2

2 Background and Terminology 3

3 Related Work 5

4 Formal Problem Definition and Its Computational Complexity 8
4.1 Formal Definition . 8

4.1.1 Example . 8
4.2 NP-Hardness . 9
4.3 Inapproximability . 11

5 Integer Linear Programming Formulation of ACSP-t 13
5.1 ILP Model . 13
5.2 Linear Programming Relaxation 15

5.2.1 Heuristics based on the LP-relaxation 16

6 Metaheuristic Solutions 17
6.1 Genetic Algorithm . 17

6.1.1 Color Encoding Approach 18
6.1.2 Path Encoding Approach 23

6.2 Tabu Search . 25

7 Experimental Study 29
7.1 Datasets . 29
7.2 Parameter Tuning . 31

viii

7.2.1 Parameter Tuning for Genetic Algorithm 31
7.2.2 Parameter Tuning for Tabu Search Algorithm 35

7.3 Experimental Results . 37
7.3.1 Results for Random Trees 37
7.3.2 Results for Shallow Trees 41
7.3.3 Results for Deep Trees . 46
7.3.4 Discussion . 52

8 Conclusion 53
8.1 Summary . 53
8.2 Future Work . 53

9 Bibliography 54

ix

List of Figures

3.1 The optimal solution by l-GMST (above), the corresponding so-
lution for ACSP-t (middle), and the optimal solution by ACSP-t
(below) to the same problem instance. 6

4.1 A tree for an example instance of ACSP-t. 9
4.2 Reduction from Hitting Set. 10

5.1 The transformed instance with directed edges shown by arrows,
and additional nodes shown by dashed circles is given above. A
feasible solution path shown by dashed arrows is depicted below.
n is equal to 15, hence node id of additional node is equal to 16. 14

6.1 An example representation for GA-color. 18
6.2 An example tree with 15 nodes and 5 colors. Each node is identified

by node id/color. 18
6.3 Genetic Algorithm . 19
6.4 Crossover: Parent 1, and Parent 2 on the left side, and Child 1,

and 2 on the right side after crossover. 20
6.5 formPath function which does the necessary initializations and

call the function that construct the shortest path. 21
6.6 PathFurthestLast function to construct the shortest path for

given nodes by traversing the farthest away leaf last. 21
6.7 ConstructPath_Stub function to traverse the nodes not saved

for subsequent visit. 22
6.8 constructPath function to traverse subtree rooted at given node

in input. 22
6.9 calculateCost function to calculate the cost of the feasible so-

lution. 23
6.10 An example representation for GA-path. 23
6.11 GA-path: Parents (above) and children (below). 24
6.12 An example representation for Tabu Search. 25
6.13 Tabu Search Algorithm . 26

x

List of Tables

7.1 The complete list of parameters used in generating different types
of trees. 30

7.2 The parameters indirectly set for each bushiness type. 30
7.3 Weight types, and the values of the corresponding parameters

along with their description. 31
7.4 Average path cost for iteration size tuning in GA-color on random

trees with randomly distributed edge weights. The best results are
given in bold. 32

7.5 Average runtime for iteration size tuning in GA-color on random
trees with randomly distributed edge weights. 32

7.6 Average path cost for population size tuning in GA-color on ran-
dom trees with randomly distributed edge weights. The best re-
sults are given in bold. 33

7.7 Average path cost for crossover rate tuning in GA-color on random
trees with randomly distributed edge weights. The best results are
given in bold. 34

7.8 Average path cost for mutation rate tuning in GA-color on random
trees with randomly distributed edge weights. The best results are
given in bold. 35

7.9 Average path cost for iteration size tuning in Tabu on random trees
with randomly distributed edge weights. The best results are given
in bold. 36

7.10 Average path cost for tabu tenure tuning in Tabu on random trees
with randomly distributed edge weights. The best results are given
in bold. 36

7.11 Average path costs as factor of the optimal solution for random
trees with randomly distributed weights. 38

7.12 Best path costs as factor of the optimal solution for random trees
with randomly distributed weights. The optimal results are given
in bold . 38

7.13 Average runtimes for random trees with randomly distributed weights. 39
7.14 Average path costs as factor of the optimal solution for random

trees with all weights equal to one. 40
7.15 Best path costs for random trees with all weights equal to one.

The optimal results are given in bold 40
7.16 Average runtimes for random trees with all weights equal to one. . 41

xi

7.17 Average path costs as factor of the optimal solution for shallow
trees with randomly distributed weights. 42

7.18 Best path costs as factor of the optimal solution for shallow trees
with randomly distributed weights. The optimal results are given
in bold . 42

7.19 Average runtimes for shallow trees with randomly distributed weights. 42
7.20 Average path costs as factor of the optimal solution for shallow

trees with all weights equal to one. 43
7.21 Best path costs as factor of the optimal solution for shallow trees

with all weights equal to one. The optimal results are given in bold 43
7.22 Average runtimes for shallow trees with all weights equal to one. . 44
7.23 Average path costs as factor of the optimal solution for shallow

trees with decreasing weights. 44
7.24 Best path costs as factor of the optimal solution for shallow trees

with decreasing weights. 45
7.25 Average runtimes for shallow trees with decreasing weights. 45
7.26 Average path costs as factor of the optimal solution for shallow

trees with increasing weights. 46
7.27 Best path costs as factor of the optimal solution for shallow trees

with increasing weights. The optimal results are given in bold . . 46
7.28 Average runtimes for shallow trees with increasing weights. 46
7.29 Average path costs as factor of the optimal solution for deep trees

with randomly distributed weights. 47
7.30 Best path costs as factor of the optimal solution for deep trees with

randomly distributed weights. The optimal results are given in bold 47
7.31 Average runtimes for deep trees with randomly distributed weights. 48
7.32 Average path costs as factor of the optimal solution for deep trees

with all weights equal to one. 48
7.33 Best path costs as factor of the optimal solution for deep trees with

all weights equal to one. The optimal results are given in bold . . 49
7.34 Average runtimes for deep trees with all weights equal to one. . . 49
7.35 Average path costs as factor of the optimal solution for deep trees

with decreasing weights. 50
7.36 Best path costs as factor of the optimal solution for deep trees with

decreasing weights. 50
7.37 Average runtimes for deep trees with decreasing weights. 50
7.38 Average path costs as factor of the optimal solution for deep trees

with increasing weights. 51
7.39 Best path costs as factor of the optimal solution for deep trees with

increasing weights. The optimal results are given in bold 51
7.40 Average runtimes for deep trees with increasing weights. 51
7.41 Number of best results for heuristic algorithms 52

xii

Chapter 1

Introduction

1.1 Motivation

In mathematics, and computer science, Graph Theory is one of the most popular
research areas studying graphs. Graphs are mathematical structures used for
modeling pairwise relationships between objects. There are thousands of papers,
and research about graphs on a wide range of domains which affect our life, from
telecommunication to transportation, from logistics to social networks, and from
VLSI design to air traffic controlling.

In this thesis, a variant of All Colors Shortest Path (ACSP) problem first
introduced in [1], All Colors Shortest Path Problem on trees (ACSP-t) is intro-
duced, and explored with respect to its computational characteristics. Given an
edge weighted, rooted tree with each node assigned to an apriori known color from
a set of known colors, ACSP-t aims at finding the shortest, possibly non-simple,
path starting from the root visiting every color at least once.

ACSP-t is a very generic problem with numerous applications. One typical
scenario is related to item collection. In this scenario, a robot located at a specific
base location is assumed to collect an instance of a list of items with one or more
instances of each item distributed randomly among a known set of locations. The
objective is to collect at least one instance of each item in the list by traveling
the minimum distance from the base location. Once the robot has them all, it
needs not move any further.

In another motivational scenario, we have a mobile agent which explores
an outdoor area where various terrain types exist. These terrain types might
be muddy terrains, roads, sand, meadows, forests with different types of trees,
swamps, lakes, etc. The map of the area is known, and the objective of the mobile
agent would be, starting from an initially known position, to explore the area,
and collect sensor readings from each of the available terrain types by following
the shortest path.

1

1.2 Contributions of the Thesis

Our main contributions in this thesis are:

1. We introduce a new, computationally unique variant of ACSP defined first
in [1], namely All Colors Shortest Path Problem on trees.

2. We show that ACSP-t is NP-Hard.

3. We prove that there is no constant factor approximation algorithm for
ACSP-t.

4. An ILP formulation of ACSP-t is provided.

5. Several heuristic solutions based on LP relaxation, Genetic Algorithm, and
Tabu Search for ACSP-t are developed.

6. We conduct an intense experimental study to perform a comparative anal-
ysis of the proposed heuristics.

1.3 Organization of the Thesis

The organization of the thesis is as follows: In Chapter 1, we make an intro-
duction to the thesis. In Chapter 2, we present the necessary terminology and
the background. In Chapter 3, we discuss the related work. In Chapter 4, we
introduce the problem formally, and prove its NP-Hardness, along with an in-
aproximability result. ILP formulation of the problem is presented in Chapter 5.
In Chapter 6, some metaheuristic solutions for ACSP-t are developed. In Chap-
ter 7, we present, and compare the results of the proposed heuristic solutions.
Finally, the thesis is concluded in Chapter 8.

2

Chapter 2

Background and Terminology

A graph G is defined as an ordered pair of sets as G = (V,E) where V is non-
empty, finite set of nodes or vertices, and E, called edge set, is a set of connections
between nodes i and j with i, j ∈ V . Nodes i and j ∈ V are said to be adjacent
if and only if e = (i, j) ∈ E. We also say, in this case, that e is incident on i and
j. The vertices of an edge are called end points or end vertices. The degree of a
vertex in an undirected graph is the number of edges incident on that vertex. If
a weight function w : E → R is defined on a graph G, then G is called an edge
weighted graph. The weight of an edge e = (i, j) ∈ E is represented by w(e) or
w(i, j). If the edges in E are ordered, then the graph is called a directed graph or
digraph. We also call an ordered pair (i, j) an arc. In a directed graph each arc
has a direction. An arc can be traversed only in the direction of the arc. The arc
(i, j) is an outgoing arc of i, and an incoming arc of j.

A walk is a sequence of vertices such that any two consecutive vertices i, j
have an edge (i, j). If the start, and the end nodes are the same in a walk, it is
called a closed walk. If all the edges are distinct, then it is called a trail. A closed
trail is called a cycle, circuit or a tour. A path from i to j is a sequence of vertices
v0, ..., vn where v0 = i, vn = j, and each pair of successive vertices is connected
by an edge. A path is simple if the vertices are distinct. A cycle is a circuit in
which all vertices are visited at most once except the first (also happens to be the
last). A graph is called a cyclic graph, if the graph contains cycles. In a complete
graph, there is an edge between every pair of nodes. A graph is connected if all
pairs of vertices i, j ∈ V are connected by a path.

A tree T is a connected graph without any cycles. A node on a tree can
be designated as its root, and all the edges can be thought of as directed away
from it. Such a depiction in level order forms a rooted tree. A node on a higher
level of a tree is called the parent of a child node one level below, and with an
edge in between. Nodes with the same parent are siblings. A node reachable by
repeatedly proceeding from the parent to a child is called a descendant, and a
node repeatedly proceeding from a child to the parent called an ancestor. If a
node has no children it is called a leaf. The height of a tree is the number of

3

edges on the longest path from the root to any leaf. The depth of a node is the
number of edges on the unique path to the root.

NP (Nondeterministic polynomial time) is one of the fundamental complexity
classes in computational complexity theory [2]. A problem is considered in class
NP, if it is solvable in polynomial time by a nondeterministic Turing machine.
A problem is NP-Hard if every problem in NP can be reduced to it in time
polynomial in the size of the problem instance. An NP-Hard problem which is
also in NP is called NP-Complete.

An approximation algorithm is an algorithm which produces feasible solutions
that are close to the optimal, and efficient. When the problem σ is a minimization
problem, and ε is a function, ε: Z+ → Q+ with ε ≥ 1, an approximation algo-
rithm A is said to be factor ε approximation algorithm for σ if, for each instance
I, A produces a feasible solution s for I such that A(I, s) ≤ ε(|I|) ∗OPT (I), and
the running time of A is bounded by a fixed polynomial in |I|. An algorithm is
a constant factor algorithm if ε is a constant. Complexity class APX (approx-
imable) is the set of optimization problems which allows for a polynomial time
approximation algorithm with an approximation ratio bounded by a constant.

A linear programming (LP) is the problem of minimizing or maximizing a
linear function subject to linear equality, and linear inequality constraints. Lin-
ear programming can be solved using either the simplex method [3], ellipsoid
method [4], or a much more efficient algorithm by Karmarkar [5]. Integer Linear
Programming is a special case of LP, in which all variables must take on integer
values. ILP is shown to be NP-Hard in [6].

4

Chapter 3

Related Work

When the underlying graph in ACSP is restricted to be a tree in ACSP-t, the
computational nature changes dramatically. As an example, a special case of
ACSP-t arises when each node has a different color. In this case the objective
becomes finding a possibly non-simple path traversing the entire tree with the
shortest distance, which can be solved in polynomial time. However, ACSP, in
this special case, turns into the Hamiltonian Path problem well-known to be
NP-Complete [2].

Although there are several similar problems examined in the literature, ACSP-
t is computationally unique. Generalized Minimum Spanning Tree (GMST) in-
troduced by Myung, Lee, and Tcha in [7] is probably the closest problem. Given
an undirected graph G = (V,E) with its vertex set partitioned into m clusters
GMST is defined to be the problem of finding the Minimum Spanning Tree that
visits exactly one node from every cluster. This problem has been shown to be
NP-Hard in [7]. Some inaproximability results for it are presented by Pop in
[8]. In [9], [10], and [11], Integer Linear Programming formulations of GMST are
also proposed. Feremans et al. study the polytope associated with the GMST
problem in [9]. GMST problem restricted to trees has been studied by Pop, and
has been shown to be NP-Hard in [12]. Another variant by Dror et al. in [13],
called l-GMST, relaxes GMST, and allows more than one node from every cluster
to be visited. They also present different heuristic solutions including a genetic
algorithm. Although l-GMST appears to be computationally similar to ACSP-t,
they differ in various ways.

In Figure 3.1, solutions of l-GMST, and ACSP-t for a given problem instance
are presented. Each node, in this figure, is labeled with i/c where i corresponds
to the node, and c to the color. The tree is rooted at r with color 0. All edge
weights are assumed to be equal to one. When the given instance is viewed as an
instance of l-GMST, the optimal solution is the sub-tree enclosed in a rectangle
with a cost of 4 as shown in the figure. The best that could be obtained from it
as also a solution to ACSP-t has a cost of 7. Yet the optimal solution by ACSP-t
as shown to the bottom of Figure 3.1, has cost 6. So the shape of the solution

5

Figure 3.1: The optimal solution by l-GMST (above), the corresponding solution
for ACSP-t (middle), and the optimal solution by ACSP-t (below) to the same
problem instance.

6

has an impact which will be revisited later again.

Another problem similar to ACSP-t is the Generalized Steiner Tree Problem
(GSTP) introduced by Reich, and Widmayer in [14]. GSTP is defined on a com-
plete, edge weighted, undirected graph G with a subset of nodes S partitioned
into m clusters to find the minimum cost tree in G that contains at least one node
from each cluster. This NP-Hard problem is shown to be a direct generalization
of the set cover problem in [15], [16], and [17]. Ihler et al. show that the prob-
lem is NP-Hard even on trees in [18]. Garg et al. introduce a polylogarithmic
approximation algorithm for this problem in [19]. In [20], GSTP is proved to be
not approximable to within Ω(log2−εn) unless NP admits a quasipolynomialtime
Las Vegas algorithm.

Generalized Traveling Salesman Problem (GTSP) formulated by Labordere
in [21] is another problem that has similar features to ACSP-t problem. Given
a graph with the vertex set partitioned into m disjoint clusters, GTSP is, then,
finding the shortest Hamiltonian tour containing exactly one or at least one node
from each cluster. Laporte and Nobert [22] prove that "exactly one" version
corresponds to "at least one" node version when the distance matrix is Euclidean.
They also develop the first ILP formulation for GTSP. A dynamic programming
formulation is proposed as a solution procedure in [23]. In [24], an ILP formulation
to this problem is presented when the distance matrix is asymmetrical. Lien, Ma,
and Wah show that a given instance of GTSP can be transformed into standard
Traveling Salesman Problem [25] efficiently with the same number of nodes in
[26].

7

Chapter 4

Formal Problem Definition and Its
Computational Complexity

In this chapter, we give a formal definition of ACSP-t problem, prove its NP-
Hardness, and make some observations leading to an inapproximability result for
ACSP-t.

4.1 Formal Definition

Given a tree T (V,E) rooted at r ∈ V , a function w : E → R+ associating positive
weights to the edges, and another function color : V → C mapping vertices in
V = {1, ..., n} to colors in C = {1, ..., k}, ACSP-t is then to find the shortest,
possibly non-simple, path starting from the root r ∈ V such that every distinct
color is visited at least once.

4.1.1 Example

A tree for an example instance of ACSP-t is given in Figure 4.1. The tree is
rooted at the root r which has color 0. Each node, in this figure, is labeled with
i/c where i corresponds to the node, and c to the color. The instance has 15 nodes,
and 5 colors including the color of the root. A feasible solution is r, 3, r, 2, r, 4, r, 1
with a total cost of 26, in which all nodes visited are on the first level of the
tree. Another solution is r, 1, 5, 11, 14 with a total cost 20, in which all colors are
visited on a single branch of the tree. Optimal solution, on the other hand, is
r, 2, 7, 12, 7, 13 with a total cost of 10.

8

Figure 4.1: A tree for an example instance of ACSP-t.

4.2 NP-Hardness

We prove that ACSP-t is NP-Hard by a polynomial time reduction from the
Hitting Set Problem (HSP) [2]. HSP is known to be NP-Hard [2], and also a
variant of the well-known Set Cover (SC) problem [27].

HSP : Given X = {x1, x2, ..., xn} as a base set, k ∈ N+, and a collection of m
sets S1, S2, ..., Sm with Si ⊆ X, the objective of HSP is to find Y ⊂ X such that
|Y | ≤ k, and ∀i Si

⋂
Y 6= ∅ hold.

A given instance of HSP can be transformed into a corresponding instance of
ACSP-t as follows:

The color set C is initialized to have n+m+1 colors as C = {c0, c1, ..., cn+m}.

• We first create a node r as the root such that color(r)= c0.

• For each xi ∈ X, two new nodes xi, and x′i are created, both assigned to
the same color as color(xi) = color(x′i) = ci.

• Lastly, for each Si ∈ {S1, ..., Sm} in the given instance of HSP, we create
|Si| nodes. For each element xj ∈ Si, a node Si,j is created. All the nodes Si,j for
a given i, are assigned to the same color cn+i. The replication of nodes ensures
that a tree structure will be maintained in the subsequent construction.

9

Once the nodes with the corresponding colors are created, the tree in the
corresponding instance of ACSP-t is constructed as shown in Figure 4.2.

• Each node xi is connected to the root r with an edge of cost (weight,
distance) one while node x′i is connected to r with an edge cost zero.

• For each node Si,j, an edge from Si,j to xi as its parent is created with
weight 0.

All colors must be visited at least once. The color 0 is visited by a visit to
the root r. For colors c1 through cn either xi or x′i can be visited. As there are
no edges from nodes x′i to any Sj,i however, some xi nodes must also be visited
to cover the colors cn+1 through cn+m.

Figure 4.2: Reduction from Hitting Set.

This transformation is obviously polynomial in the size of the given instance
of HSP. A total of 1 + 2n + mn nodes including the root are created in the
worst case, assuming each Si covers all the elements in the base set X. The total
number of edges created, on the other hand, is 2n + mn in the worst case. So
the entire transformation takes O(mn) time which is directly proportional to the
size of S = {S1, S2, ..., Sm} in the given instance of HSP.

Lemma 4.2.1 A given instance of HSP has a solution with size less than or
equal to k if and only if ACSP-t has a solution of path length less than or equal
to 2k − 1.

Proof (If part): If there is a solution P in the corresponding instance of ACSP-
t, obtained through the transformation described, with path length less than or
equal to 2k − 1, then by choosing Y = {xi|xi ∈ P} we obtain a hitting set with

10

size less than or equal to k.

(Only if part): If a hitting set Y with |Y | ≤ k exists in the given instance
of HSP , a DFS (Depth First Search) traversal of the subtree constrained to the
nodes xi ∈ Y , and their descendants only, has a cost less than or equal to 2k− 1.
�

Theorem 4.2.2 ACSP-t is NP-hard.

Proof The transformation is polynomial. This coupled with Lemma 4.2.1 read-
ily proves the theorem. �

4.3 Inapproximability

It is shown in [18] that l-GMST, referred to as CLASS TREE problem there, does
not admit a constant factor polynomial time approximation algorithm, even when
the underlying graph is restricted to be a tree. Equipped with this knowledge,
we can make the following similar observation for ACSP-t, in the same way it has
been previously formulated for ACSP in [1].

Observation 1 For a given valid instance I of l-GMST on trees (l-GMST-t),

OPTl-GMST-t(I) ≤ min
J∈V
{OPTACSP-t(Ij)} < 2 ∗OPTl-GMST-t(I)

where Ij is the corresponding instance of ACSP-t obtained by designating j ∈ V
as the root.

Proof We prove the two inequalities separately for the given expression. Let
us assume, by contradiction that OPTl-GMST-t(I) > min

j∈V
{OPTACSP-t(Ij)}. In this

case, l-GMST-t can simply adopt the solution that gives the minimum over all
such instances for ACSP-t. All it takes is to cast the non-simple path to a tree
by disregarding any duplicate edges, and hence a contradiction.

Let us assume the latter inequality does not, once more, hold, and

min
j∈V
{OPTACSP-t(Ij)} ≥ 2 ∗OPTl-GMST-t(I).

But we know that the optimal solution of l-GMST-t is a tree spanning all colors,
and a DFS traversal of all nodes in it gives a non-simple path with length strictly
less than twice the cost of this tree. This, obviously is a solution for one of the
instances Ij to ACSP-t, contradicting the assumption.

This observation lets us prove the following theorem easily for ACSP-t in the
same way it was established for ACSP in [1]:

Theorem 4.3.1 There is no constant factor polynomial time approximation
(apx) for ACSP-t unless P = NP .

11

Proof Let us assume, contrary to the theorem, that there is such an algorithm
apxACSP-t satisfying apxACSP-t(I) ≤ c ∗ OPTACSP-t(I) for all valid instances I,
and a constant c > 1. Now, given an instance I of l-GMST-t, let us feed Ij
obtained by designating j as the root in the corresponding ACSP-t instance into
apxACSP−t for each j ∈ V . We know, by Observation 1, that OPTl-GMST-t(I) ≤
min
J∈V
{OPTACSP-t(Ij)} < 2 ∗OPTl-GMST-t(I).

As ∀j ∈ V apxACSP-t(Ij) ≤ c ∗OPTACSP-t(Ij) holds by the assumption made,

min
j∈V
{apxACSP-t(Ij)} ≤ c ∗min

j∈V
{OPTACSP-t(Ij)} < 2 ∗ c ∗OPTl-GMST-t(I)

is readily obtained. This, by definition, indicates the existence of a 2c apx for
l-GMST-t, and hence a contradiction as it certainly takes polynomial time to run
apxACSP−t O(n) times.

12

Chapter 5

Integer Linear Programming
Formulation of ACSP-t

In this chapter, an ILP formulation is developed for ACSP-t. We then, relax it
to LP, and propose several heuristic solutions based on this LP relaxation.

5.1 ILP Model

We use 0-1 Integer Programming for ACSP-t, where variables are restricted to
be either 0 or 1. A given instance of ACSP-t is represented by an edge weighted
tree T (V,E) rooted at r ∈ V such that color is a function mapping each vertex
∈ V = {1, 2, ..., n} to a color from C = {1, 2, ..., k}, and the weight of an edge
(i, j) ∈ E is denoted by wi,j. In order to give a compact ILP formulation, we
treat each edge (i, j) ∈ E as two directed edges through a transformation. The
binary variable xi,j ∈ {0, 1} is then, easily defined to be set to 1 if and only if the
directed edge (i, j) is visited in the solution. For each undirected edge (i, j) ∈ E,
both of the directed edges (i, j) and (j, i) after the transformation are assumed
to have the same weight wi,j. We also introduce two more nodes as the source,
and the sink. While the source is denoted by 0, the sink is numbered as n + 1.
These two nodes are assigned to a brand new color 0. We add a directed edge
(0, r) from the source to the original root of weight zero, as well as edges (i, n+1)
for all i ∈ V each with a weight of zero. Sink node n + 1 must be the last node
visited in any feasible solution. When all colors are visited, edge to n + 1 is
taken, and the path terminates. Now the transformed instance has C ′ = C ∪{0},
V ′ = V ∪ {0, n + 1}, E ′ = {(0, r)} ∪ {(i, n + 1)|i ∈ V } ∪ {(i, j), (j, i)|(i, j) ∈ E},
and the weight and color functions, using the same notation as before, have been
augmented by color(0) = color(n + 1) = 0, w0,r = 0, wi,n+1 = 0 ∀i ∈ V , and
finally wi,j = wj,i ∀(i, j) ∈ E.

The ILP formulation follows:

13

Figure 5.1: The transformed instance with directed edges shown by arrows, and
additional nodes shown by dashed circles is given above. A feasible solution path
shown by dashed arrows is depicted below. n is equal to 15, hence node id of
additional node is equal to 16.

14

minimize
∑

(i,j):(i,j)∈E′

xi,jwi,j (5.1.1)

subject to

∑
j:(j,i)∈E′

xj,i −
∑

j:(i,j)∈E′

xi,j = 0, ∀i ∈ V (5.1.2)

∑
(i,j):(i,j)∈E′∧color(j)=c

xi,j ≥ 1, ∀c ∈ C (5.1.3)

xparent(parent(i)),parent(i) ≥ xparent(i),i, ∀i ∈ V − {r} (5.1.4)

xi,j ∈ {0, 1}, ∀(i, j) ∈ E ′ (5.1.5)

Our objective function in 5.1.1 computes the length of feasible path in an
effort to minimize it. The result is the total cost of the selected edges. In order
to restrict the shape of the solution to a possibly non-simple path, constraint 5.1.2
is used to ensure that the number of edges that enter a node is equal to the ones
that exit. In order to overcome the difficulty of dealing with exceptional nodes
such as the root r, and the last node on a feasible path, the source, and the
sink have been introduced. Constraint 5.1.3 ensures that all colors are visited at
least once. Constraint 5.1.4 is used to enforce the connectivity of the nodes. It
is actually a kind of sub-tour elimination constraint. A node cannot be visited
before its parent is visited. With constraint 5.1.4, if there is no edge that enters
a node from its parent as part of the solution, there can’t be an edge that exits
from that node. It should be noted that, for all i ∈ V the parent(i) is already
defined. Constraint 5.1.5 dictates that all the decision variables are either 0 or 1
in any feasible solution.

5.2 Linear Programming Relaxation

Although we can get optimal solutions via the given ILP formulation for small
sized instances of ACSP-t in a reasonable amount of time, it cannot solve large
instances of ACSP-t in polynomial time as ILP is NP-Hard. For that reason, the
ILP formulation in Section 5.1 is relaxed to a Linear Programming formulation
by replacing the last constraint with a weaker constraint that ensures that each
variable is in the [0,1] interval. This LP model is presented next.

15

minimize
∑

(i,j):(i,j)∈E′

xi,jwi,j (5.2.1)

subject to

∑
j:(j,i)∈E′

xj,i −
∑

j:(i,j)∈E′

xi,j = 0, ∀i ∈ V (5.2.2)

∑
(i,j):(i,j)∈E′∧color(j)=c

xi,j ≥ 1, ∀c ∈ C (5.2.3)

xparent(parent(i)),parent(i) ≥ xparent(i),i, ∀i ∈ V − {r} (5.2.4)

0 ≤ xi,j ≤ 1, ∀(i, j) ∈ E ′ (5.2.5)

5.2.1 Heuristics based on the LP-relaxation

Linear Programming is able to give us a solution in polynomial time in the size
of the instances. But in a feasible solution, fractional values for xi,j as opposed to
integer values are returned by the LP-relaxation. In order to round the fractional
values returned by LP to either 0 or 1, we propose 2 different strategies used at the
core of the corresponding heuristics. It should be noted that the inapproximability
result previously reported in this thesis lowers our expectations for promising
results via these types of approaches.

Our first heuristic, called LP-oneshot, modifies the solution obtained by LP
in such a way that highest 20% of xi,j variables are rounded to 1 while the others
are set to 0 in a single iteration. After this process, a possible disconnectivity
among the nodes is fixed via a post processing algorithm. First, we connect
each disconnected edge to the root. Then, we find all unvisited colors. For each
unvisited color we search for the closest node within the set of already visited
nodes. Finally, we connect the node with the minimum distance to an unvisited
color. This process is repeated until all colors are visited.

In the second heuristic which we name LP-iterative, the rounding of variables
are done in a decreasing order of their values iteratively: We find the highest xi,j
variable, and round it to 1 by adding xi,j = 1 to the current LP formulation for
a subsequent call to LP. This process is repeated until all xi,j values are either 0
or 1. LP is called n times in worst case, and runtime is O(n).RT (LP). If there
are edges with equal xi,j values, we break the ties in favor of those minimizing
distance/#ofcolors where distance is the total distance to get to this edge, and
#colors is the number of visited colors on this path.

16

Chapter 6

Metaheuristic Solutions

In this chapter we present several metaheuristic approaches for solving ACSP-
t problem. In Section 6.1 we suggest a Genetic Algorithm based solution for
ACSP-t while, in Section 6.2, we present a Tabu Search Algorithm.

6.1 Genetic Algorithm

Genetic Algorithm (GA) is a metaheuristic, first introduced by Holland [28], based
on evolutionary aspects of natural selection, and genetics in order to solve com-
binatorial optimization problems. GA uses natural selection, recombination, and
mutation to solve problems. GA mimics natural evolutionary process by focus-
ing on survival of the fittest among individuals in a population over generations.
Therefore, in a search space, only the finest solution may survive, and evolve to-
wards better solutions. GA has five main phases: initialization, fitness, selection,
crossover, and mutation. In the initialization step we create a population using
randomly generated initial solutions. In GA, a solution is referred to as a chro-
mosome, and represents an encoding to the original problem. Each chromosome
is composed of genes, which are individual pieces of the encoding. In the fitness
phase, a fitness function is used to evaluate the quality of the proposed solution.
In the selection phase, chromosomes are chosen among the population to perform
crossover, by which the fittest individuals transfer their genes to the next genera-
tions. The selection phase ensures that the fittest individuals in a population will
produce more offspring than those that perform poorly. Roulette Wheel Selection
algorithm [28] is a popular selection algorithm which uses fitness values fi of each
chromosome to associate a probability of selection. Probability of selection for
a solution is, then, pi = fi∑N

i=1 fi
, where N is number of the chromosomes. Even

though, having a higher fitness value ensures a higher chance to be selected for
crossover, to avoid local optimals, GA also gives chance to individuals with lower
fitness values. Crossover phase is initiated after candidates are selected. In the
crossover phase, selected chromosomes exchange genes with each other similar
to genetic crossover in nature. There are several ways to perform crossover such

17

as single point crossover, two points crossover, cut and splice crossover, uniform
crossover. In this phase, two new chromosomes are created from the parent chro-
mosomes. After the crossover, GA enters the mutation phase, in which individual
genes are changed randomly based on a mutation rate. Mutation is a necessary
operator to maintain the diversity among the generations in GA.

We developed two variants of GA to solve ACSP-t. In the first one we use
color encoding which is presented in Section 6.1.1. The algorithm presented in
Section 6.1.2 uses path encoding. Details of the algorithms are given below.

6.1.1 Color Encoding Approach

In this version, called GA-color, we use strings of size m, where m is equal to the
number of colors, to represent a feasible solution for a given ACSP-t instance.
The root r is not added to the chromosome, since it, and its color are always
included in the solution. An example representation is shown in Figure 6.1 for
the tree given in Figure 6.2. The tree is rooted at node 0. Each node, in this
figure, is labeled with i/c where i corresponds to the node, and c to the color.
The algorithmic outline of a typical GA is given in Figure 6.3.

Figure 6.1: An example representation for GA-color.

Figure 6.2: An example tree with 15 nodes and 5 colors. Each node is identified
by node id/color.

18

input: ACSP-t instance identified with T (V,E) rooted at r.
output: Best solution in population
1: function GeneticAlgorithm(T)
2: Population ← {};
3: for i = 0 to populationSize do
4: chromosome ← createPopulation(T);
5: calculateCost(T,chromosome);
6: add chromosome to Population;
7: end for
8: for i = 0 to iterationsize do
9: selectedParents ← rouletteWheelSelection(Population);

10: children ← Crossover(selectedParents);
11: for each child c in children do
12: r ← random(0,1) ;
13: if r < mutationRate then
14: mutation(c) ;
15: end if
16: calculateCost(T,c);
17: end for
18: remove the worst 2 chromosome from Population;
19: add children to Population;
20: end for
21: bestSolution ← best solution in Population;
22: formPath(T,bestSolution);
23: end function

Figure 6.3: Genetic Algorithm

In the initialization step, first, we create an empty population in line 2. In
line 4, we create a chromosome by choosing a random node from each color.
In line 5, we calculate the cost of the chromosome, using Algorithm calcu-
lateCost presented in Figure 6.9 which we explain in detail at the end of this
section, and add the chromosome to the population in line 6. This process is
repeated until the population size saturates in lines 3 - 7.

Line 8 through 20, GA iterates. Iteration size has a huge impact on quality
of the solution, and fine tuned in the experiments. First, we select two parent
chromosomes using Roulette Wheel Selection algorithm in line 9. Then, we per-
form crossover in line 10. We use uniform crossover in GA-color. In this phase,
we change genes of the parent chromosomes with each other. For each node be-
longing to a color, with a crossover probability we swap nodes between parent
chromosomes. This crossover process is done in linear time. With crossover pro-
cess we get two new chromosomes which have features from both of the parent
chromosomes. An example crossover is shown in Figure 6.4.

Mutation phase ensures diversification among the population. In the mutation
phase, first, we select a random number between 0 and 1 for each node in line 12.
If this number is lower than mutation rate, we select 10% of the colors, and for

19

Figure 6.4: Crossover: Parent 1, and Parent 2 on the left side, and Child 1, and
2 on the right side after crossover.

each selected color, we change it with another random node belonging to the same
color in line 14.

After mutation, we calculate the cost of the child chromosome in line 16.
When crossover and mutation are completed, the two worst chromosomes in the
population are replaced by chromosomes generated in crossover phase in line 18,
and 19.

GA-color is iterated for a fixed number of times dictated by the parameter
iteration size. When the iterations are completed, the best solution found is
represented a chromosome. The construction of the shortest, possibly non-simple,
path corresponding to this chromosome is obtained by a simple traversal of the
sub-tree spanning the entire chromosome such that the nodes on the path leading
to the farthest away leaf to be visited.

We use Algorithm formPath given in Figure 6.5 which, after initialization,
calls the function that actually does the construction. The algorithm uses a global
variable pathCost which is a precomputed n×2 matrix that contains the pairwise
shortest distances of the nodes in T .

20

global: pathCost is a precomputed global n×2 matrix which contains the pairwise
shortest path costs of the nodes in T .

input: ACSP-t instance identified with T (V,E) rooted at r, node set S denotes the
set of nodes that must be visited in T.

output: shortest, possibly non-simple, path path passing through all the nodes in S.
1: function formPath(T, S)
2: stack ← empty stack;
3: path ← ∅;
4: mustPass[i] ← false, ∀i ∈ V ;
5: mustPass[r] ← true;
6: for each node v in S do
7: while !mustPass[v] do
8: mustPass[v] ← true ;
9: v ← parent[v];

10: end while
11: end for
12: furthestfromRoot ← max

v∈S
pathCost[r][v];

13: while furthestfromRoot 6= r do
14: push(furthestfromRoot, stack);
15: furthestfromRoot = parent [furthestfromRoot];
16: end while
17: path ← path || r; /∗ || is append operator.∗/
18: path ← path || PathFurthestLast(T, path, mustPass, stack)
19: end function

Figure 6.5: formPath function which does the necessary initializations and call
the function that construct the shortest path.

input: ACSP-t instance identified with T (V,E) rooted at r, partially constructed
path path, the set of nodes that must be visited mustPass, a stack keeping nodes
on the path leading to the farthest away leaf in mustPass.

output: shortest, possibly non-simple, path path passing through all the nodes in S.
1: function PathFurthestLast(T, path, mustPass, stack)
2: if stack is empty then
3: return path;
4: end if
5: n ← pop(stack);
6: path ← path || ConstructPath_Stub(T, n, mustPass);
7: path ← path || n;
8: return PathFurthestLast(T, path, mustPass, stack)
9: end function

Figure 6.6: PathFurthestLast function to construct the shortest path for
given nodes by traversing the farthest away leaf last.

21

input: ACSP-t instance identified with T (V,E) rooted at r, partially constructed
path path, a node v on the path leading to farthest away node whose siblings are
traversed, the set of nodes that must be visited mustPass.

output: Path that traverses the nodes not saved for subsequent visit.
1: function ConstructPath_Stub(T, v, mustPass)
2: constPath ← ∅
3: for each child c in parent[v].children - v do
4: constPath ← constPath || constructPath(T, c, mustPass, constPath)
5: constPath ← constPath || parent[c];
6: end for
7: end function

Figure 6.7: ConstructPath_Stub function to traverse the nodes not saved
for subsequent visit.

input: ACSP-t instance identified with T (V,E) rooted at r, a root node v for traver-
sal, the set of nodes that must be visited mustPass, a partially constructed path
constPath

output: a path traversing the subtree rooted at v which is given as input.
1: function constructPath(T, v, mustPass, constPath)
2: if mustPass[v] then
3: constPath ← constPath || v;
4: end if
5: for each child c of v do
6: if mustPass[c] then
7: constPath ← constructPath(T, v, mustPass, constPath);
8: constPath ← constPath || v;
9: end if

10: end for
11: return constPath;
12: end function

Figure 6.8: constructPath function to traverse subtree rooted at given node
in input.

The cost of a chromosome is calculated by using Algorithm calculateCost.
It takes ACSP-t tree T (V,E), and a chromosome S as input, and returns the cost
of the chromosome. First, in line 2 of this algorithm, all nodes are set as unvisited,
and in line 3, the root is set as visited. Then, for each node in chromosome,
starting from that node we sum the edge weights until we encounter a visited
ancestor in line 7, and set nodes visited in line 8. In line 12, we find the farthest
node to the root, and its path cost in line 13. Finally, we multiply sum of all
calculated edge weights by 2, and subtract the total weight of the path from the
maximum distance node to the root in line 14.

22

input: ACSP-t instance identified with T (V,E) rooted at r, a chromosome S.
output: Total Cost of S
1: function calculateCost(T, S)
2: visited [i] = 0; ∀i ∈ V /∗ boolean array for visited nodes∗/
3: visited [r] = 1;
4: edgeCost = 0; /∗total weight of selected edges∗/
5: for each node n ∈ S do
6: while visited [n] 6= 1 do
7: edgeCost+ = weight [parent[n],n];
8: visited [n] = 1;
9: n ← parent [n];

10: end while
11: end for
12: furthestfromRoot ← max

v∈S
pathCost[r][v];

13: pathCostofFurthest = pathCost[r][furthestfromRoot];
14: return (2 * edgeCost − pathCostofFurthest);
15: end function

Figure 6.9: calculateCost function to calculate the cost of the feasible solu-
tion.

6.1.2 Path Encoding Approach

In our second algorithm, named GA path, we represent our chromosome as a
sequence of edges, which represents the visiting order of the edges. An example
chromosome which forms a path visiting each color at least once is given in
Figure 6.10 for the tree in Figure 6.2.

Figure 6.10: An example representation for GA-path.

The outline of the main algorithm does not change. Moreover, computing the
cost is now much easier. In the initialization step, we select a node for each color.
Then, using Algorithm formPath given in Figure 6.5, we create a path which
visits all colors. The edges of the path are corresponding to the genes of the
chromosome. We compute the cost by summing all of the selected edges. After
that, we calculate the fitness of the chromosome.

In the crossover phase, we use Roulette Wheel Selection algorithm to select
the parent chromosomes. For GA-path, we choose single point crossover as shown
in Figure 6.11. To the top of the figure, the parent chromosomes, Parent1, and
Parent2, are seen, where the arrows represent the crossover points. With the
crossover, we exchange parts of the chromosomes. To the bottom of it, newly
generated children, Child1, and Child2, are given.

23

Figure 6.11: GA-path: Parents (above) and children (below).

Mutation phase follows the crossover. For each child, we select a random
number. If this number is lower than the mutation rate, we perform mutation.
For mutation, we delete 10 % of the genes at the end of the chromosome. Then, we
select an unvisited edge, and connect it to the node with the minimum distance.

The chromosome returned by the crossover might be a disconnected path. In
such a case, we use the pairwise shortest paths to reconnect the paths. After
reconnection, we check the solution to see whether there is any missing color. If
missing colors exist, for each missing color, we find a node with the minimum
distance to the end of the path, and connect it to the last node in path. This
process is repeated until all colors are visited. Duplicate edges, if any, are deleted,
and a valid solution that visits each color at least once is generated. Then, we
calculate the fitness of the chromosome. After crossover and mutation the two
worst chromosomes in the population are replaced by the chromosomes generated
in the crossover phase.

When the iterations are completed, best chromosome found so far is returned,
and the path is rearranged using Algorithm formPath in Figure 6.5. Then,
starting from the beginning of the chromosome, we check the colors of the nodes
on the path. When all of the colors are visited, we crop the rest of the chromo-
some, calculate the cost of the path, and finally return it.

24

6.2 Tabu Search

Tabu Search is a metaheuristic used to solve optimization problems that employs
iterative local search methods. Tabu search algorithm was first developed by
Glover [29] in 1986. It is used to solve a wide range of classical and practical
problems ranging from graph theory to scheduling problems, and telecommuni-
cations. Tabu search starts from an initial solution, iteratively searches a subset
of the solution neighborhood, and returns the best solution within the neighbor-
hood. A neighbor solution is obtained by replacing elements in a solution. A
mechanism called a short term memory is used to prevent from visiting the same
solutions over and over again. This mechanism provides a way to escape from
local minima. The attributes of the recently visited solutions are declared as
forbidden or tabu; and not considered as a neighbor solution unless they fulfill an
aspiration criterion. If a solution declared tabu is good enough to reconsider, its
tabu status is overridden. By using aspiration criteria, we have a chance to catch
good solutions that are considered as tabu. One of the mostly used aspiration
criteria is that when an attribute declared tabu yields a better solution than the
best known solution, tabu status of the attribute is overridden, and the solution
is allowed to be reconsidered as a neighbor solution.

Tabu attributes are kept in a tabu list for a certain time period which is
called tabu tenure. After the tabu tenure elapses, tabu attributes are freed to
be considered within a new solution. The search continues for a fixed number of
iterations attributed by the iteration count. When a specified number of iterations
have elapsed in total, or since the last best solution was found, the search stops.
Then, the tabu search may either be terminated, or a new search iteration start
for diversification.

In the rest of this section we present tabu search methods developed specifi-
cally for ACSP-t problem with different neighborhood search methods.

For ACSP-t, we employ a tabu search algorithm which similar to the one used
to solve GMST by Öncan et al. in [30]. A solution is encoded as an integer
array of size k, where each element corresponds to a node with color ci ∈ C. The
algorithmic outline of a typical TS is given in Figure 6.13.

Figure 6.12: An example representation for Tabu Search.

In order to generate a feasible solution, we first select a random node for each
color ci ∈ C. The set of selected nodes is denoted by A(s) where s is the current
solution. We calculate the cost of the solution using Algorithm calculateCost

25

input: ACSP-t instance identified with T (V,E) rooted at r
output: Best solution
1: function Tabu Search(T)
2: colorselectionFrequency [i] = 0 ∀i ∈ V ;
3: tabuList ← ∅;
4: tabuTenure ← ∅;
5: initialSolution ← createInitialSolution(T) ;
6: bestSolution ← initialSolution;
7: for i = 0 to iterationsize do
8: sc ← selectColors();
9: update colorselectionFrequency for all colors in sc;

10: bestCandidate ← neighborhoodSearch(T,sc,initialSolution);
11: if cost(bestCandidate) < cost(bestSolution) then;
12: bestSolution ← bestCandidate;
13: end if
14: initialSolution ← bestCandidate;
15: update tabulist ;
16: update tabuTenure;
17: end for
18: end function

Figure 6.13: Tabu Search Algorithm

in Figure 6.9.

After creating an initial solution, we continue with the iterative neighborhood
search. In each iteration, we look for a lower cost solution using tabu mechanism.
For neighborhood search, we restrict the search to a neighborhood with c colors,
denoted by N c(s). First, we select as many as c colors for searching neighborhood.
To overcome repeatedly selecting the same colors, we select the colors based on
their rate of selection. If a color has a lower selection rate, it has a higher chance
for selection. For each color ci ∈ C, we assign an attribute δci , which denotes the
number of times color ci has been selected. All such attributes are initially set to
zero. When a color ci ∈ C is selected δci is increased by one. For each color, we
then calculate its selection rate, which is equal to 1

δci
.

Neighborhood search follows the color selection. For each selected color, we
substitute in a new node with the same color in the solution, so that we get a new
neighbor solution s in N c(s). We consider all such neighbors. Next, we discuss
different methods for the neighborhood search.

Neighborhood Search I for Color Encoding

In the first version for neighborhood search called Tabu, we employ N3(s).
We consider all (|cp| − 1)× (|cq| − 1)× (|cr| − 1) solutions as possible neighbors
where cp, cq, and cr are different colors, and |ci| where i ∈ {p, q, r} denotes the
number of nodes with color ci. Cost of the candidate solution is calculated with
Algorithm calculateCost in Figure 6.9. Neighbors are evaluated, and put
into a candidate list if a replaced node is either not in the tabu list, or the node

26

is in the tabu list, but it meets the aspiration criteria. The candidate list is
initially empty. If a solution is considered as a tabu, and it has a lower cost than
the best solution found so far, we override the tabu status, and put the solution
into the candidate list. This simple aspiration criteria results a faster runtime
performance. After evaluating all neighbors, and forming the candidate list, we
select the solution with the lowest cost. If the newly obtained solution is better
than the best solution, we designate it as the new best solution. Then, we update
the tabu status of modified nodes. If the modified node is not in the tabu list,
we add it into the tabu list.

Neighborhood Search II for Color Encoding

The second search method, called Tabu Visit Frequency (Tabu-VF) is the
same as the one used by Öncan et al. [30] for GMST problem. In this method,
a new attribute αi is associated with each node i ∈ V , corresponding to the
aspiration level of that node. Initially, αi is set to cost(s), the cost of solution,
if i ∈ A(s), and otherwise to infinity. Another new attribute τi is also associated
with each node i ∈ V , corresponding to the visit frequency, which is the number
of times a node has been selected as part of a solution. Initially, τi is set to 1 if
i ∈ A(s), and otherwise to 0.

We obtain the neighbors by selecting colors, and replacing nodes in the solu-
tion. A node is considered in forming a new neighbor, if it is either not in the
tabu list, or meets the aspiration criteria. In this version, the aspiration criterion
is met if the cost of a neighbor solution s is lower than one of the aspiration levels
αi such that i ∈ A(s). We use a penalty function to penalize frequently visited
vertices of the tree. The penalized cost function is defined in [30] as follows:

p(s) =

cost(s) + βcost(s)
√
kn

∑
i∈A(s)\A(s)

αi/λ, if cost(s) ≥ cost(s)

cost(s), otherwise.

The penalty is added to a neighbor solution, if its cost is greater than the cost
of the current solution.

√
kn is used to compensate for the instance size, where

k is the number of colors, and n is the number of nodes. β is used as a factor
that adjust intensity of diversification, and λ is the iteration count. Finally,
considering all solutions in the Candidate list, we return the solution with the
minimum penalized cost in it.

In Tabu-VF, for neighborhood search, we use N1(s), N2(s) and N3(s). In
order to control the increased computational demand, we propose a hybrid neigh-
borhood search that uses all three of them. We iteratively increase the neigh-
borhood size until a better solution is found. First, Tabu search starts to iterate
in N1(s) neighborhoods. When it doesn’t give us a better solution for a prede-
termined number of iterations, we switch to N2(s) neighborhood, and then, to
N3(s), and then back to N1(s) in a cyclic order. After evaluating all neighbor
solutions, we get the solution with the lowest cost as the current solution. If the

27

newly obtained solution is better than the best solution, we designate it as the
new best. Then, we update tabu status, increase αi by 1 for the modified nodes,
and for each i ∈ A(s), update τi to min{τi, cost(s)}.

Tabu-VF is iterated for a fixed number of iterations dictated by the iteration
count. When the iterations are over, the best solution found is returned, and the
path is formed using Algorithm formPath in Figure 6.5.

28

Chapter 7

Experimental Study

In this chapter, we present experimental results for the heuristic solutions pro-
posed, namely LP-relaxation, genetic algorithm, and tabu search based heuristics.
All algorithms are implemented using C++ on a computer with an Intel i7 2.79
GHz CPU, 8GB 1333 MHz DDR 3 RAM, and running on Windows∗ 7 operating
system. For ILP, and LP solutions, IBM ILOG CPLEX Optimizer [31] is used.
We conduct our experiments with several types of datasets generated. The details
of the datasets are presented in Section 7.1.

The rest of this chapter is organized as follows. In Section 7.2, we present
the parameters used in metaheuristics and how they are chosen. Finally in Sec-
tion 7.3, we report the results of the experiments conducted.

7.1 Datasets

We conduct our experiments on several types of trees with various weight distri-
butions, and bushiness to see how the proposed algorithms behave on these trees.
The trees used in our experiments are classified based on two criteria excluding
the number of nodes, and colors: bushiness, and edge weight distribution. Bushi-
ness of trees depends on the average branching factor, and has an impact on the
height of the tree generated. This parameter can be set in 3 different ways:

1) Random: Trees in which the nodes are distributed randomly.

2) Shallow: Trees which has a relatively small height, and high average branch-
ing factor.

3) Deep: Trees which are tall, and have a low average branching factor.
∗Windows is a registered trademark of Microsoft Corporation in the United States and

other countries.

29

For each bushiness level, we also use four different types of edge weight dis-
tributions that are:

1) randomly distributed edge weights,

2) all edge weights are set to one,

3) weights decreasing from the root to the leaves,

4) weights increasing from the root to the leaves.

The complete list of parameters used in generating different types of trees are
given in Table 7.1.

Parameter Description Values
n number of nodes 211-1111
k number of colors 26-556
b bushiness type S (Shallow), D (Deep), R (Random)

w edge weight distribution Random (R), 1 (All 1),
I (Increasing), D (Decreasing)

bf branching factor 2-20
h height of the tree 2-10

Table 7.1: The complete list of parameters used in generating different types of
trees.

Each specific type of a tree used throughout the experiments is labeled with
a string of the form nV1kV2bV3bfV4wV5, where Vi with i ∈ {1..6} are the corre-
sponding values for the parameters right next to them. The possible values for
each parameter are specified in the third column of Table 7.1.

b bf Description

R 5-20
Trees are created randomly.
Branching factor changes from node to node.
Tree height is dynamic.

D 2 Branching factor is low. Trees are balanced.
S 9-20 Branching factor is high. Trees are balanced.

Table 7.2: The parameters indirectly set for each bushiness type.

For each bushiness type, the parameters indirectly determined, and their de-
scriptions are given in the first, and third columns of Table 7.2 respectively. In
the second column of the table, branching factors which compatible with the re-
spective bushiness type dictated by this setting are shown, which also have an
impact on height of the tree.

30

W Edge Weight Description

R 1-10 Weights are randomly distributed
among the edges.

1 1 All edge weights are set to one.

D 1-10 Starting from level 0 with edge weight
10, weights decrease gradually.

I 4-10 Starting from level 0 with edge weight
1, weights increase gradually.

Table 7.3: Weight types, and the values of the corresponding parameters along
with their description.

In Table 7.3, weight types are shown in the first column. Parameter val-
ues along with their description are given in the second, and the third columns
respectively.

Furthermore, for each tree type generated, we have three different n/k ratios
used to see the impact on the quality of the solution obtained by the heuristics.
The ratio can take on the values 2, 4, and 10 throughout the experiments.

7.2 Parameter Tuning

Parameter tuning is an important part of metaheuristic algorithms to get good
solutions. In this section, we present algorithm specific parameters used in
metaheuristic algorithms, and decide on their values. In Section 7.2.1, we
explain meta-parameters, and perform tuning for Genetic Algorithm, while in
Section 7.2.2, we do it for Tabu Search.

7.2.1 Parameter Tuning for Genetic Algorithm

In this section, we present results of the experiments conducted for selecting the
values of the parameters used in Genetic Algorithm. GA-path takes at least 2352
seconds to generate result even in the smallest tree instance which has 255 nodes
and 26 colors, therefore is not included in experiments. In GA-color, we use
iteration size, population size, crossover rate, and mutation rate, which have a
huge impact on the quality of the solutions obtained. For ACSP-t, we conduct
experiments to decide on the values of these parameters on random trees with
randomly distributed weights. First, we conduct experiments for iteration size.
We keep the values of other parameters fixed at population size = 500, crossover
rate = 0.5, and mutation rate = 0.1. Then, we perform tests on all tree instances
with iteration sizes 1000, 2000, 3000, 4000, 5000, 10000, 20000, 30000, 40000, and
50000. As seen in Table 7.4, we get 6 of the best results with 30000, and 50000
iterations, 5 with 40000 iterations, 2 with 20000 iterations, and 1 with 10000
iterations. Best results are obtained with 30000, and 50000 iterations. When we

31

compare the runtimes of those two iteration sizes, as seen in Table 7.5, 50000
iterations case gives results higher by a factor of 1.75 than the 30000 iterations
case on the average. As iteration size increases, runtime increases. Hence we
select 30000 as the iteration size to be used throughout the experiments.

Iteratin Size
Instances 1000 2000 3000 4000 5000 10000 20000 30000 40000 50000

n255k26bRbf5wR 347 277 266 189 183 178 179 177 181 179
n255k64bRbf5wR 901 782 677 634 588 552 548 543 554 555
n255k128bRbf5wR 1445 1329 1257 1191 1166 1140 1138 1134 1134 1138
n421k43bRbf7wR 649 527 447 384 349 298 304 298 303 302
n421k106bRbf7wR 1482 1330 1193 1085 995 852 832 836 833 836
n421k211bRbf7wR 2545 2376 2248 2142 2064 1948 1944 1941 1945 1946
n511k52bRbf7wR 945 769 653 569 515 428 423 419 423 424
n511k128bRbf7wR 1909 1714 1531 1371 1281 1029 1010 1018 1010 1014
n511k256bRbf7wR 3025 2849 2704 2552 2459 2265 2241 2240 2247 2243
n820k82bRbf8wR 1590 1384 1217 1038 935 646 625 632 613 612
n820k205bRbf8wR 3342 3093 2837 2615 2460 1892 1764 1758 1758 1754
n820k410bRbf8wR 5471 5242 4961 4748 4748 4131 4037 4019 4037 4009
n1023k103bRbf15wR 2097 1868 1602 1438 1280 878 798 798 791 772
n1023k256bRbf15wR 4328 3999 3688 3533 3266 2558 2280 2279 2277 2273
n1023k512bRbf15wR 6937 6715 6434 6205 6005 5321 5059 5049 5041 5071
n1111k112bRbf20wR 2302 2058 1822 1564 1442 933 840 850 840 851
n1111k278bRbf20wR 4573 4319 4020 3768 3566 2800 2472 2467 2487 2462
n1111k556bRbf20wR 7778 7413 7158 6913 6636 5863 5580 5580 5578 5582

Table 7.4: Average path cost for iteration size tuning in GA-color on random
trees with randomly distributed edge weights. The best results are given in bold.

Iteration Size
Instances 1000 2000 3000 4000 5000 10000 20000 30000 40000 50000

n255k26bRbf5wR 0.483 0.982 1.453 1.921 2.365 5.381 11.245 19.352 26.417 33.452
n255k64bRbf5wR 0.671 1.331 1.953 2.581 3.221 6.772 15.16 23.32 31.56 40.53
n255k128bRbf5wR 0.954 1.784 2.631 3.462 4.336 8.961 19.384 29.635 40.811 51.358
n421k43bRbf7wR 0.672 1.261 1.851 2.472 3.057 6.165 14.471 22.152 30.424 38.145
n421k106bRbf7wR 0.951 1.797 2.613 3.455 4.218 8.253 18.422 28.954 39.796 49.894
n421k211bRbf7wR 1.279 2.418 3.526 4.649 5.772 11.373 25.132 38.033 52.125 65.707
n511k52bRbf7wR 0.671 1.264 1.857 2.433 3.057 6.147 13.931 22.106 29.531 38.189
n511k128bRbf7wR 0.967 1.794 2.636 3.479 4.306 8.486 18.331 29.281 39.546 50.435
n511k256bRbf7wR 1.435 2.683 3.931 5.211 6.459 12.777 26.384 46.124 57.096 72.182
n820k82bRbf8wR 0.796 1.498 2.184 2.871 3.588 6.869 14.569 24.264 33.341 42.541
n820k205bRbf8wR 1.279 2.371 3.464 4.555 5.633 11.154 23.042 36.566 49.452 63.398
n820k410bRbf8wR 1.435 2.621 3.791 4.961 4.945 11.981 24.538 39.415 53.149 67.408
n1023k103bRbf15wR 0.795 1.445 2.093 2.766 3.417 6.682 14.043 23.218 31.903 54.529
n1023k256bRbf15wR 1.256 2.299 3.328 4.381 5.404 10.611 31.433 34.374 46.926 60.116
n1023k512bRbf15wR 1.972 3.633 5.282 6.942 8.583 16.823 33.891 53.245 72.288 91.969
n1111k112bRbf20wR 0.827 1.492 2.177 2.862 3.544 6.872 14.595 23.799 33.028 41.452
n1111k278bRbf20wR 1.022 1.883 2.731 3.597 4.445 8.698 17.378 28.581 39.831 50.533
n1111k556bRbf20wR 1.688 3.013 4.361 5.673 7.001 13.636 27.353 43.363 58.919 75.491

Table 7.5: Average runtime for iteration size tuning in GA-color on random trees
with randomly distributed edge weights.

After tuning iteration size, we conduct experiments for population size. We
fix iteration size to 30000, crossover rate to 0.5, and mutation rate to 0.1, and we

32

carry out the experiments on random trees with random weights for population
size values 100, 250, 500, 1000, 2000, 3000, 4000, and 5000. As seen in Table 7.6,
we get 11 of the best results with a population size of 1000, 7 with population
size 500, 1 with population size 250, and 1 with population size 2000. Thus, we
select the population size as 1000.

Population Size
Instances 100 250 500 1000 2000 3000 4000 5000

n255k26bRbf5wR 189 176 177 178 179 179 187 204
n255k64bRbf5wR 564 546 543 544 547 567 611 658
n255k128bRbf5wR 1148 1137 1134 1132 1137 1153 1187 1228
n421k43bRbf7wR 324 297 298 297 294 326 375 416
n421k106bRbf7wR 892 832 836 832 862 958 1066 1144
n421k211bRbf7wR 1969 1946 1941 1944 1958 2051 2136 2204
n511k52bRbf7wR 444 426 419 419 428 477 560 626
n511k128bRbf7wR 1081 1039 1018 1011 1077 1238 1388 1481
n511k256bRbf7wR 2280 2254 2240 2234 2302 2424 2548 2637
n820k82bRbf8wR 720 634 632 601 710 876 1037 1145
n820k205bRbf8wR 1988 1826 1758 1753 2047 2401 2617 2788
n820k410bRbf8wR 4166 4056 4019 4001 4271 4563 4767 4937
n1023k103bRbf15wR 1027 886 798 774 936 1229 1419 1564
n1023k256bRbf15wR 2709 2395 2279 2276 2791 3121 3398 3512
n1023k512bRbf15wR 5344 5134 5049 5056 5547 5946 6197 6316
n1111k112bRbf20wR 1162 900 850 813 1050 1362 1574 1758
n1111k278bRbf20wR 2851 2592 2467 2475 3079 3474 3769 3967
n1111k556bRbf20wR 5940 5643 5580 5587 6153 6600 6866 7055

Table 7.6: Average path cost for population size tuning in GA-color on random
trees with randomly distributed edge weights. The best results are given in bold.

Then, we conduct experiments for tuning the crossover rate. We fix iteration
size at 30000, population size at 1000, and mutation rate to 0.1. We run ex-
periments on random trees with randomly distributed weights for crossover rates
ranging from 0.1 through 0.9 in increments of 0.1. As seen in Table 7.7, we obtain
10 of the best solutions with crossover rate 0.6, 5 with 0.5, 2 with 0.8, and 1 for
each of 0.3, 0.4, and 0.7. We selected the crossover rate as 0.6.

33

Crossover Rate
Instances 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n255k26bRbf5wR 175 177 175 178 179 173 177 174 178
n255k64bRbf5wR 559 549 543 545 544 544 5446 543 565
n255k128bRbf5wR 1146 1136 1137 1134 1133 1136 1134 1133 1137
n421k43bRbf7wR 312 309 298 297 299 296 298 302 316
n421k106bRbf7wR 856 839 847 836 834 829 826 836 875
n421k211bRbf7wR 1954 1948 1948 1944 1943 1941 1944 1949 1965
n511k52bRbf7wR 436 434 428 431 422 419 423 426 442
n511k128bRbf7wR 1058 1023 1016 1012 1016 1014 1012 1030 1072
n511k256bRbf7wR 2259 2251 2243 2242 2242 2241 2245 2242 2275
n820k82bRbf8wR 695 642 621 625 629 601 628 650 703
n820k205bRbf8wR 1919 1801 1774 1763 1754 1763 1775 1806 1983
n820k410bRbf8wR 4095 4046 4012 4030 4018 4005 4026 4050 4141
n1023k103bRbf15wR 938 831 805 778 796 787 788 868 1001
n1023k256bRbf15wR 2546 2352 2284 2289 2279 2283 2304 2347 2562
n1023k512bRbf15wR 5209 5083 5068 5067 5067 5062 5085 5090 5315
n1111k112bRbf20wR 1007 907 872 840 825 851 858 898 1046
n1111k278bRbf20wR 2710 2505 2507 2483 2458 2465 2505 2559 2851
n1111k556bRbf20wR 5702 5631 5583 5595 5592 5586 5598 5636 5783

Table 7.7: Average path cost for crossover rate tuning in GA-color on random
trees with randomly distributed edge weights. The best results are given in bold.

Finally, we conduct experiments for mutation rate on random trees with ran-
domly distributed edge weights. We fix iteration size to 30000, population size to
1000, and crossover rate to 0.6. Experiments are conducted for mutation rates in
the interval [0.1, 0.9] in increments of 0.1. As seen in Table 7.8, we get the best
results between 0.1 and 0.8. We get 8 of the best results with mutation rate 0.5,
3 with each of 0.4, 0.6, and 0.7, 2 with each of 0.3, and 0.2, and 1 with each of
0.1, and 0.2. Therefore we set the mutation rate to 0.5.

34

Mutation Rate
Instances 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n255k26bRbf5wR 179 179 177 178 175 177 176 180 177
n255k64bRbf5wR 546 548 541 542 546 542 544 540 551
n255k128bRbf5wR 1132 1139 1132 1131 1133 1136 1135 1131 1136
n421k43bRbf7wR 298 297 295 296 298 298 292 296 295
n421k106bRbf7wR 829 838 840 830 833 831 832 833 842
n421k211bRbf7wR 1945 1945 1947 1942 1943 1939 1941 1945 1946
n511k52bRbf7wR 422 416 421 416 418 419 418 421 422
n511k128bRbf7wR 1017 1008 1013 1015 1006 1006 1006 1017 1035
n511k256bRbf7wR 2248 2247 2238 2239 2240 2239 2239 2242 2265
n820k82bRbf8wR 627 619 611 610 605 609 605 608 641
n820k205bRbf8wR 1753 1755 1746 1767 1775 1753 1772 1848 1932
n820k410bRbf8wR 4021 4035 4021 4025 4011 4017 4032 4085 4170
n1023k103bRbf15wR 785 798 806 786 769 783 778 804 877
n1023k256bRbf15wR 2273 2271 2263 2270 2258 2307 2340 2451 2586
n1023k512bRbf15wR 5052 5059 5055 5045 5037 5054 5099 5195 5366
n1111k112bRbf20wR 842 855 834 837 852 826 828 856 902
n1111k278bRbf20wR 2482 2458 2460 2462 2441 2484 2526 2623 2817
n1111k556bRbf20wR 5592 5595 5568 5559 5588 5595 5657 5780 5961

Table 7.8: Average path cost for mutation rate tuning in GA-color on random
trees with randomly distributed edge weights. The best results are given in bold.

7.2.2 Parameter Tuning for Tabu Search Algorithm

For tabu search algorithms, the iteration size, and the tabu tenure are the param-
eters to be fine-tuned for the quality of the solutions. Tabu and Tabu-VF give
similar results for parameter tuning. Hence we only present the results of the ex-
periments for Tabu. First, we fix the tabu tenure as 10, and conduct experiments
on random trees with randomly distributed edge weights. We perform tests with
iteration sizes 1000, 2000, 3000, 4000, 5000, 10000, 20000, 30000, 40000, and
50000. As seen in Table 7.9, 12 of the best results are obtained with iteration
size of 50000, 4 with iteration size of 10000, 2 with iteration size of 30000, and 1
with iteration size of 40000. Hence, we select the iteration size as 50000.

In order to determine the best tabu tenure value for Tabu, we, then fix it-
eration size to 50000, and conduct experiments on random trees with randomly
distributed edge weights. Tests are performed with tabu tenures 1, 5, 10, 15, 20,
25, 30, 40, and 50. As seen in Table 7.10 we obtain 8 of the best results with
tabu tenure value 10, 4 of them with 40, 3 with tabu tenure value 20, 2 with 50,
and 1 with each of 1, 5, and 15. Thus we set tabu tenure as 10.

35

Iteration Size
Instances 1000 2000 3000 4000 5000 10000 20000 30000 40000 50000

n255k26bRbf5wR 177 191 190 177 176 171 179 187 180 179
n255k64bRbf5wR 575 573 554 567 561 563 561 539 542 539
n255k128bRbf5wR 1181 1159 1153 1151 1169 1143 1151 1152 1146 1144
n421k43bRbf7wR 313 310 312 308 315 307 304 309 305 301
n421k106bRbf7wR 883 867 848 841 837 839 835 845 828 820
n421k211bRbf7wR 2002 1994 2001 1988 1979 1983 1987 1964 1960 1950
n511k52bRbf7wR 448 421 440 426 435 412 431 417 414 415
n511k128bRbf7wR 1113 1079 1072 1067 1069 1050 1027 1050 1026 1015
n511k256bRbf7wR 2331 2287 2302 2272 2286 2276 2272 2268 2260 2245
n820k82bRbf8wR 639 612 615 636 641 623 626 619 620 603
n820k205bRbf8wR 1846 1851 1837 1847 1821 1830 1803 1756 1750 1763
n820k410bRbf8wR 4516 4471 4517 4508 4516 4479 4536 4441 4455 4455
n1023k103bRbf15wR 850 841 838 802 801 796 809 797 785 778
n1023k256bRbf15wR 2437 2421 2450 2441 2381 2331 2334 2318 2311 2293
n1023k512bRbf15wR 6107 6104 6092 6067 6078 6089 6089 5978 6113 6039
n1111k112bRbf20wR 938 938 914 856 873 831 840 863 861 831
n1111k278bRbf20wR 2610 2614 2591 2576 2573 2557 2524 2495 2493 2479
n1111k556bRbf20wR 6773 6807 6728 6767 6736 6653 6711 6756 6725 6651

Table 7.9: Average path cost for iteration size tuning in Tabu on random trees
with randomly distributed edge weights. The best results are given in bold.

Tabu Tenure
Instances 1 5 10 15 20 25 30 40 50

n255k26bRbf5wR 171 175 179 182 178 182 174 180 178
n255k64bRbf5wR 562 572 539 557 548 567 566 543 531
n255k128bRbf5wR 1143 1145 1134 1138 1136 1145 1141 1144 1147
n421k43bRbf7wR 299 305 301 311 308 297 300 296 306
n421k106bRbf7wR 842 834 820 836 829 827 841 820 830
n421k211bRbf7wR 1952 1957 1950 1969 1955 1959 1955 1967 1960
n511k52bRbf7wR 421 426 396 406 428 400 417 397 407
n511k128bRbf7wR 1035 1047 1015 1041 1028 1051 1039 1015 1040
n511k256bRbf7wR 2258 2247 2245 2247 2247 2263 2267 2258 2240
n820k82bRbf8wR 630 625 603 612 611 614 618 607 609
n820k205bRbf8wR 1768 1737 1750 1766 1776 1764 1753 1772 1776
n820k410bRbf8wR 4449 4440 4414 4468 4478 4473 4434 4497 4458
n1023k103bRbf15wR 790 778 778 772 785 796 779 779 775
n1023k256bRbf15wR 2326 2314 2293 2322 2310 2319 2298 2329 2346
n1023k512bRbf15wR 6061 6026 6039 6088 6005 6027 6019 6076 6052
n1111k112bRbf20wR 849 848 831 848 831 864 841 848 852
n1111k278bRbf20wR 2477 2464 2458 2467 2485 2456 2467 2500 2490
n1111k556bRbf20wR 6873 6738 6620 6730 6592 6706 6733 6674 6706

Table 7.10: Average path cost for tabu tenure tuning in Tabu on random trees
with randomly distributed edge weights. The best results are given in bold.

As a summary, for GA-color, we select iteration size 30000, population size
10000, crossover rate 0.6, and mutation rate 0.5. For Tabu and Tabu-VF, we
select iteration size 50000, and tabu tenure 10.

36

7.3 Experimental Results

In Section 7.3.1, we present the results for random trees. In Section 7.3.2, we
present the results for shallow trees, and in Section 7.3.3, we present the results
for deep trees.

7.3.1 Results for Random Trees

In Section 7.3.1.1, we present the results of random trees with random weights, and
the results when the weights are all equal to one are presented in Section 7.3.1.2

7.3.1.1 Random Trees with Randomly Distributed Weights

In this section, we show, and compare, the results of the proposed heuristics
on random trees with randomly distributed weights. These trees are generated
as described in Section 7.1. Tests are repeated 10 times for each metaheuristic
algorithm. As seen in Table 7.11, we obtain the optimal values using ILP. LP-
oneshot gives us values that are, on the average, within a factor of 2.3, 1.53, and
1.18 of the optimal when n/k ratios are 10, 4, and 2 respectively. As n/k ratio
increases, the solution by LP-oneshot moves away from the optimal. LP-iterative
returns solutions that are, on the average, farther from the optimal by a factor
of 1.71, 1.39, and 1.12 when n/k ratios are 10, 4, and 2 respectively. As seen in
Table 7.11, GA-color returns solution within a factor of 1.07 of the optimal, while
GA-path, Tabu, and Tabu-VF can provide solutions that are away by a factor of
1.18, 1.09, and 1.12 respectively from the optimal. For the best path cost shown
in Table 7.12, GA-color, Tabu, Tabu-VF have values worse off by a factor of
1.053, 1.054, and 1.082 of the optimal respectively. However, as number of colors
(k) increases, we get worse results with Tabu, and Tabu-VF specifically on the
datasets n820k82bRbf8wR, n1023k103bRbf15wR, and n1111k112bRbf20wR.

When n/k ratio increases, the runtime of ILP increases dramatically on the
datasets n820k82bRbf8wR, n1023k103bRbf15wR, n1111k112bRbf20wR, and n11-
11k278bRbf20wR as shown in Table 7.13. Average runtime for these four trees is
2617 seconds while the average runtime for the rest of random trees with randomly
distributed edge weights is only 4.9 seconds. Average runtime for LP-oneshot is
5.94 seconds. As the LP-iterative calls the LP solver multiple times, its runtime
is higher as would be expected. GA-color, Tabu, and Tabu-VF have average
runtimes of 39 seconds, 28 seconds, and 8 seconds respectively. The average run-
time of GA-path is 12273 seconds, hence is only executed once for each instance.
Since GA-path has high runtime, it isn’t included in the experiment of other
tree types. The increase in the number of colors (k), increases the runtime for
GA-color due to the crossover operation presented in Section 6.1.1. As a result of
the neighborhood search, runtime increases in Tabu, and Tabu-VF as n/k ratio
increases.

37

ILP LP-oneshot LP-iterative GA-color GA-path Tabu Tabu-VF
n255k26bRbf5wR 155 2.6194 1.6839 1.1613 1.3354 1.1548 1.2194
n255k64bRbf5wR 511 1.5538 1.4716 1.0626 1.1976 1.0548 1.1174
n255k128bRbf5wR 1131 1.1424 1.1034 1.0044 1.1520 1.0115 1.0203
n421k43bRbf7wR 262 2.5725 1.7137 1.1527 1.2938 1.1489 1.2176
n421k106bRbf7wR 780 1.6385 1.4064 1.0718 1.3358 1.0718 1.0731
n421k211bRbf7wR 1933 1.2111 1.1107 1.0052 1.1908 1.0088 1.0207
n511k52bRbf7wR 368 2.3777 1.7554 1.1467 1.5652 1.1467 1.2065
n511k128bRbf7wR 984 1.4533 1.3923 1.0366 1.4115 1.0549 1.0691
n511k256bRbf7wR 2227 1.2003 1.1486 1.0063 1.1508 1.0117 1.0216
n820k82bRbf8wR 557 2.0718 1.6535 1.0987 1.4111 1.0826 1.1149
n820k205bRbf8wR 1659 1.5624 1.4286 1.0645 1.3267 1.0549 1.1121
n820k410bRbf8wR 3954 1.1725 1.1477 1.0167 1.1765 1.1267 1.1343
n1023k103bRbf15wR 685 2.3620 1.6350 1.1620 NA 1.1460 1.1577
n1023k256bRbf15wR 2157 1.5369 1.3848 1.0552 NA 1.0709 1.1205
n1023k512bRbf15wR 4989 1.1790 1.1189 1.0138 NA 1.2105 1.2129
n1111k112bRbf20wR 750 2.0280 1.8213 1.1320 NA 1.1080 1.1653
n1111k278bRbf20wR 2340 1.4513 1.2872 1.0590 NA 1.0628 1.1120
n1111k556bRbf20wR 5499 1.1879 1.1200 1.0160 NA 1.2199 1.2219

Table 7.11: Average path costs as factor of the optimal solution for random trees
with randomly distributed weights.

ILP LP-oneshot LP-iterative GA-color GA-path Tabu Tabu-VF
n255k26bRbf5wR 155 2.6194 1.6839 1.1548 1.3354 1.1097 1.1032
n255k64bRbf5wR 511 1.5538 1.4716 1.0509 1.1976 1.0313 1.0470
n255k128bRbf5wR 1131 1.1424 1.1034 1.0000 1.1520 1.0000 1.0053
n421k43bRbf7wR 262 2.5725 1.7137 1.1069 1.2938 1.0534 1.1374
n421k106bRbf7wR 780 1.6385 1.4064 1.0526 1.3358 1.0269 1.0218
n421k211bRbf7wR 1933 1.2111 1.1107 1.0021 1.1908 1.0041 1.0072
n511k52bRbf7wR 368 2.3777 1.7554 1.1332 1.5652 1.0000 1.1196
n511k128bRbf7wR 984 1.4533 1.3923 1.0244 1.4115 1.0142 1.0366
n511k256bRbf7wR 2227 1.2003 1.1486 1.0031 1.1508 1.0009 1.0085
n820k82bRbf8wR 557 2.0718 1.6535 1.0610 1.4111 1.0323 1.0467
n820k205bRbf8wR 1659 1.5624 1.4286 1.0536 1.3267 1.0289 1.0573
n820k410bRbf8wR 3954 1.1725 1.1477 1.0086 1.1765 1.1088 1.1179
n1023k103bRbf15wR 685 2.3620 1.6350 1.1255 NA 1.0847 1.0876
n1023k256bRbf15wR 2157 1.5369 1.3848 1.0408 NA 1.0315 1.0890
n1023k512bRbf15wR 4989 1.1790 1.1189 1.0072 NA 1.1812 1.1920
n1111k112bRbf20wR 750 2.0280 1.8213 1.0813 NA 1.0347 1.1107
n1111k278bRbf20wR 2340 1.4513 1.2872 1.0376 NA 1.0436 1.0897
n1111k556bRbf20wR 5499 1.1879 1.1200 1.0105 NA 1.2035 1.2042

Table 7.12: Best path costs as factor of the optimal solution for random trees
with randomly distributed weights. The optimal results are given in bold

38

ILP LP-oneshot LP-iterative GA-color GA-path Tabu Tabu-VF
n255k26bRbf5wR 1.641 1.634 17.321 18.322 2352 19.341 8.432
n255k64bRbf5wR 2.145 1.688 36.598 23.455 5242 3.508 2.541
n255k128bRbf5wR 1.293 1.712 79.658 31.558 16731 1.411 1.495
n421k43bRbf7wR 3.841 3.431 41.278 22.613 2809 33.906 8.112
n421k106bRbf7wR 2.988 3.369 101.774 23.802 8975 8.234 5.854
n421k211bRbf7wR 2.227 3.721 167.013 50.488 15031 3.716 2.341
n511k52bRbf7wR 14.637 8.231 62.587 35.744 5573 57.603 17.718
n511k128bRbf7wR 4.726 5.101 143.692 51.953 8555 10.455 6.715
n511k256bRbf7wR 2.048 5.106 255.504 48.584 20517 6.502 6.513
n820k82bRbf8wR 750.046 7.158 154.392 41.545 6623 101.617 18.757
n820k205bRbf8wR 16.718 7.806 344.059 70.345 16495 18.809 7.577
n820k410bRbf8wR 2.741 7.106 618.323 64.361 38380 7.234 7.318
n1023k103bRbf15wR 3960.33 7.683 248.196 32.643 NA 88.725 20.289
n1023k256bRbf15wR 491.993 8.446 574.221 33.851 NA 13.825 6.007
n1023k512bRbf15wR 4.497 6.602 972.131 52.596 NA 5.218 4.451
n1111k112bRbf20wR 3941 9.023 302.541 29.674 NA 111.567 15.189
n1111k278bRbf20wR 1818.82 9.621 589.667 28.598 NA 14.554 6.069
n1111k556bRbf20wR 4.575 9.588 1034.56 48.421 NA 7.605 6.757

Table 7.13: Average runtimes for random trees with randomly distributed weights.

7.3.1.2 Random Trees with All Weights Set to One

In this section, we show, and compare the results for random trees when all the
edge weights are equal to one. As seen in Table 7.14 we could obtain the optimal
values using ILP except for the datasets n802k82bRbf8w1, n1023k103bRbf15w1,
and n1111k112bRbf20w1. For those datasets, we present the LP results instead
of optimal. LP-oneshot gives us values that are, on the average within a factor of
1.9, 1.42, and 1.16 of the optimal when n/k ratios are 10, 4, and 2 respectively.
As n/k ratio increases, the solution by LP-oneshot moves away from the optimal.
LP-iterative returns solutions that are, on the average, farther from the optimal
by a factor of 1.40, 1.19, and 1.11 of when n/k ratios are 10, 4, and 2 respec-
tively. As seen in Table 7.14, GA-color returns solutions within a factor of 1.03 of
optimal values, while Tabu, and Tabu-VF give 1.11, and 1.12. For the best path
cost shown in Table 7.15, GA-color, Tabu, and Tabu-VF have values within a
factor of 1.02, 1.09, and 1.11 of the optimal values respectively. An inspection of
Table 7.16 reveals that the average running time for ILP is 8.4 seconds except for
the datasets n1023k256bRbf15w1, and n1111k278bRbf20w1. Average runtimes
for these two trees are 48268, and 7393 seconds respectively. While LP-oneshot
runs in 6.79 seconds, LP-iterative has a run time of 317 seconds on the average.
GA-color, Tabu, and Tabu-VF have average runtimes of 39, 26.5, and 8.5 seconds
respectively.

39

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bRbf5w1 42 1.9524 1.4762 1.0476 1.0476 1.0714
n255k64bRbf5w1 120 1.4333 1.2167 1.0417 1.0417 1.0500
n255k128bRbf5w1 256 1.1406 1.0938 1.0117 1.0234 1.0313
n421k43bRbf8w1 73 2.0274 1.2877 1.0548 1.0685 1.0822
n421k106bRbf8w1 203 1.4877 1.2808 1.0345 1.0591 1.0640
n421k211bRbf8w1 410 1.1780 1.1024 1.0098 1.0268 1.0317
n511k52bRbf8w1 92 1.9783 1.4565 1.0435 1.0652 1.1196
n511k128bRbf8w1 240 1.3583 1.1542 1.0333 1.0500 1.0708
n511k256bRbf8w1 512 1.1563 1.1445 1.0234 1.0352 1.0469
n820k82bRbf8w1 81 3.7037 2.3457 1.9506 2.0000 2.0247
n820k205bRbf8w1 397 1.4282 1.1864 1.0453 1.0630 1.1033
n820k410bRbf8w1 824 1.1335 1.1092 1.0182 1.0801 1.0947
n1023k103bRbf15w1 104 3.9608 2.5000 2.0294 2.0588 2.0588
n1023k256bRbf15w1 498 1.3815 1.1807 1.0562 1.0703 1.0984
n1023k512bRbf15w1 1032 1.2064 1.1231 1.0213 1.1308 1.1434
n1111k112bRbf20w1 114 3.5946 2.4234 2.0090 2.0180 2.0541
n1111k278bRbf20w1 541 1.4603 1.1811 1.0518 1.0702 1.0887
n1111k556bRbf20w1 1116 1.1756 1.1344 1.0251 1.1577 1.1676

Table 7.14: Average path costs as factor of the optimal solution for random trees
with all weights equal to one.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bRbf5w1 42 1.9524 1.4762 1.0238 1.0000 1.0238
n255k64bRbf5w1 120 1.4333 1.2167 1.0417 1.0083 1.0250
n255k128bRbf5w1 256 1.1406 1.0938 1.0078 1.0117 1.0234
n421k43bRbf8w1 73 2.0274 1.2877 1.0411 1.0137 1.0411
n421k106bRbf8w1 203 1.4877 1.2808 1.0197 1.0443 1.0394
n421k211bRbf8w1 410 1.1780 1.1024 1.0049 1.0146 1.0146
n511k52bRbf8w1 92 1.9783 1.4565 1.0326 1.0217 1.0217
n511k128bRbf8w1 240 1.3583 1.1542 1.0250 1.0167 1.0333
n511k256bRbf8w1 512 1.1563 1.1445 1.0195 1.0156 1.0391
n820k82bRbf8w1 81 3.7037 2.3457 1.9012 1.9630 1.9630
n820k205bRbf8w1 397 1.4282 1.1864 1.0327 1.0353 1.0680
n820k410bRbf8w1 824 1.1335 1.1092 1.0158 1.0704 1.0777
n1023k103bRbf15w1 104 3.9608 2.5000 2.0000 1.9412 2.0098
n1023k256bRbf15w1 498 1.3815 1.1807 1.0442 1.0542 1.0783
n1023k512bRbf15w1 1032 1.2064 1.1231 1.0165 1.1231 1.1231
n1111k112bRbf20w1 114 3.5946 2.4234 1.9820 1.9550 1.9910
n1111k278bRbf20w1 541 1.4603 1.1811 1.0370 1.0536 1.0702
n1111k556bRbf20w1 1116 1.1756 1.1344 1.0197 1.1452 1.1541

Table 7.15: Best path costs for random trees with all weights equal to one. The
optimal results are given in bold

40

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bRbf5w1 6.591 3.635 18.607 34.957 29.412 13.592
n255k64bRbf5w1 4.006 1.632 45.678 48.245 5.694 5.781
n255k128bRbf5w1 1.171 1.632 87.783 39.295 2.402 2.139
n421k43bRbf8w1 15.503 6.237 52.293 25.750 38.851 12.756
n421k106bRbf8w1 10.819 4.233 127.487 28.451 6.710 3.651
n421k211bRbf8w1 2.579 4.021 256.484 43.312 3.174 2.846
n511k52bRbf8w1 23.692 4.541 99.524 28.489 47.182 12.759
n511k128bRbf8w1 10.751 7.385 230.505 38.414 8.333 4.127
n511k256bRbf8w1 2.968 4.578 38.234 41.985 3.650 3.991
n820k82bRbf8w1 2.456 6.839 254.953 21.997 73.859 13.743
n820k205bRbf8w1 281.860 7.625 573.437 50.517 14.117 7.983
n820k410bRbf8w1 18.353 8.129 952.115 54.513 5.124 4.037
n1023k103bRbf15w1 6.671 7.204 376.979 36.739 110.652 22.815
n1023k256bRbf15w1 48268 13.512 718.946 48.352 18.315 8.124
n1023k512bRbf15w1 20.251 7.288 1095.26 63.751 7.002 5.331
n1111k112bRbf20w1 7.001 14.493 428.337 24.862 84.623 20.541
n1111k278bRbf20w1 7393.44 9.253 822.434 28.615 14.721 6.011
n1111k556bRbf20w1 8.252 10.026 1224.04 44.642 4.571 4.322

Table 7.16: Average runtimes for random trees with all weights equal to one.

7.3.2 Results for Shallow Trees

In this section, we present the results for shallow trees. In Section 7.3.2.1, we
present the results for shallow trees with randomly distributed edge weights. In
Section 7.3.2.2, we present the results for shallow trees with all edge weights equal
to 1. In Section 7.3.2.3, we present the results for shallow trees when weights are
decreasing. And finally in Section 7.3.2.4, we present the results when weights
are increasing.

7.3.2.1 Shallow Trees with Randomly Distributed Weights

In this section, we present, and compare the results of the proposed heuristics on
shallow trees when the weights of the edges are distributed randomly. As seen
in Table 7.17, we obtain the optimal values using ILP for all trees. LP-oneshot
obtains solutions that are on the average within a factor of 1.4, 1.09, and 1.006 of
the optimal when n/k ratios are 10, 4, and 2 respectively. As n/k ratio increases,
the solution by LP-oneshot moves away from the optimal. LP-iterative returns
solutions that are, on the average, farther from the optimal by a factor of 1.4, 1.09,
and 1.003 when n/k ratios are 10, 4, and 2 respectively. As seen in Table 7.17,
GA-color returns solutions within a factor of 1.02 of the optimal, while Tabu,
and Tabu-VF can provide solutions that are away by a factor of 1.06, and 1.07
respectively from the optimal on the average. For the best path cost shown in
Table 7.18, GA-color, Tabu, and Tabu-VF have values worse off by a factor of
1.014, 1.038, and 1.051 of the optimal respectively. As presented in Table 7.19, the
average runtime is 5.1 seconds for ILP. LP-oneshot has a runtime of 5.93 seconds

41

while LP-iterative has an average runtime of 349 seconds. GA-color, Tabu, and
Tabu-VF have average runtimes of 39, 22.7, and 6.6 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wR 152 1.3158 1.3026 1.0395 1.0724 1.1184
n421k106bSbf20wR 573 1.0297 1.0244 1.0087 1.0052 1.0070
n421k211bSbf20wR 1592 1.0031 1.0000 1.0000 1.0000 1.0000
n820k82bSbf9wR 420 1.4643 1.4405 1.0714 1.0619 1.0976
n820k205bSbf9wR 1322 1.1362 1.1362 1.0182 1.0234 1.0386
n820k410bSbf9wR 3382 1.0103 1.0065 1.0009 1.0849 1.0837
n1111k112bSbf10wR 552 1.5018 1.5489 1.0670 1.0888 1.1105
n1111k278bSbf10wR 1849 1.1174 1.1201 1.0319 1.0460 1.0595
n1111k556bSbf10wR 4532 1.0049 1.0033 1.0024 1.1825 1.1845

Table 7.17: Average path costs as factor of the optimal solution for shallow trees
with randomly distributed weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wR 152 1.3158 1.3026 1.0132 1.0263 1.0132
n421k106bSbf20wR 573 1.0297 1.0244 1.0035 1.0000 1.0070
n421k211bSbf20wR 1592 1.0031 1.0000 1.0000 1.0000 1.0000
n820k82bSbf9wR 420 1.4643 1.4405 1.0381 1.0143 1.0595
n820k205bSbf9wR 1322 1.1362 1.1362 1.0045 1.0151 1.0272
n820k410bSbf9wR 3382 1.0103 1.0065 1.0006 1.0716 1.0585
n1111k112bSbf10wR 552 1.5018 1.5489 1.0453 1.0308 1.0815
n1111k278bSbf10wR 1849 1.1174 1.1201 1.0249 1.0249 1.0552
n1111k556bSbf10wR 4532 1.0049 1.0033 1.0013 1.1615 1.1593

Table 7.18: Best path costs as factor of the optimal solution for shallow trees
with randomly distributed weights. The optimal results are given in bold

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wR 2.036 3.244 38.681 23.542 23.455 5.853
n421k106bSbf20wR 1.037 2.765 51.822 43.653 3.856 2.452
n421k211bSbf20wR 1.162 2.766 55.836 40.145 1.765 1.784
n820k82bSbf9wR 10.072 7.375 330.252 35.931 76.133 16.131
n820k205bSbf9wR 3.472 5.840 342.550 45.123 12.933 6.318
n820k410bSbf9wR 2.701 6.581 575.765 62.400 5.710 5.663
n1111k112bSbf10wR 14.803 9.911 351.998 30.567 66.442 12.023
n1111k278bSbf10wR 7.024 7.224 701.217 28.642 11.234 6.051
n1111k556bSbf10wR 3.791 7.709 698.401 44.675 3.476 3.648

Table 7.19: Average runtimes for shallow trees with randomly distributed weights.

7.3.2.2 Shallow Trees with All Weights Set to One

For shallow trees when all the edge weights are equal to one, the average cost of
the solutions are shown in Table 7.20. We could obtain the optimal values using
ILP except for the datasets n820k82bSbf9w1, and n1111k112bSbf10w1. For those

42

datasets, we present the LP results instead of optimal. LP-oneshot operates on
the average, within a factor of 1.03, and 1.011 of the optimal when n/k ratios are
4, and 2 respectively. A solution within a feasible amount of time is returned when
n/k = 10 only for the dataset n421k43bSbf20w1. LP-iterative returns solutions
that are, on the average, farther from the optimal by a factor of 1.02, and 1.008
when n/k ratios are 4, and 2 respectively. As seen in Table 7.20, GA-color returns
solutions within a factor of 1.0005 of the optimal, while Tabu, and Tabu-VF can
provide solutions that are away by a factor of 1.013, and 1.019 respectively. For
the best path cost shown in Table 7.21, GA-color returns the optimal for all trees
while Tabu, and Tabu-VF have values worse off by a factor of 1.007, and 1.011 of
the optimal respectively. As presented in Table 7.22, the average runtime is 9.5
seconds for ILP. LP-oneshot has an average runtime of 5.85 seconds while LP-
iterative has an average runtime of 336 seconds. GA-color, Tabu, and Tabu-VF
have average runtimes of 37, 22.1, and 8.12 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20w1 82 1.0244 1.0000 1.0000 1.0000 1.0122
n421k106bSbf20w1 208 1.0192 1.0192 1.0000 1.0096 1.0144
n421k211bSbf20w1 418 1.0096 1.0048 1.0048 1.0048 1.0048
n820k82bSbf9w1 82 2.1358 2.0370 1.9877 1.9877 2.0123
n820k205bSbf9w1 405 1.0444 1.0296 1.0000 1.0074 1.0148
n820k410bSbf9w1 815 1.0172 1.0147 1.0025 1.0221 1.0245
n1111k112bSbf10w1 111 2.1982 2.0270 1.9730 2.0000 1.9910
n1111k278bSbf10w1 551 1.0290 1.0145 1.0000 1.0163 1.0254
n1111k556bSbf10w1 1109 1.0090 1.0054 1.0000 1.0343 1.0388

Table 7.20: Average path costs as factor of the optimal solution for shallow trees
with all weights equal to one.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20w1 82 1.0244 1.0000 1.0000 1.0000 1.0000
n421k106bSbf20w1 208 1.0192 1.0192 1.0000 1.0000 1.0000
n421k211bSbf20w1 418 1.0096 1.0048 1.0000 1.0048 1.0048
n820k82bSbf9w1 82 2.1358 2.0370 1.9877 1.9877 1.9877
n820k205bSbf9w1 405 1.0444 1.0296 1.0000 1.0000 1.0099
n820k410bSbf9w1 815 1.0172 1.0147 1.0000 1.0147 1.0196
n1111k112bSbf10w1 111 2.1982 2.0270 1.9730 1.9730 1.9730
n1111k278bSbf10w1 551 1.0290 1.0145 1.0000 1.0073 1.0145
n1111k556bSbf10w1 1109 1.0090 1.0054 1.0000 1.0252 1.0325

Table 7.21: Best path costs as factor of the optimal solution for shallow trees
with all weights equal to one. The optimal results are given in bold

43

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20w1 5.694 3.292 59.403 24.866 25.591 15.554
n421k106bSbf20w1 4.758 2.980 135.023 39.031 5.179 3.713
n421k211bSbf20w1 1.108 2.824 56.737 41.668 2.371 2.590
n820k82bSbf9w1 6.596 7.176 257.926 31.887 58.810 14.540
n820k205bSbf9w1 19.748 6.234 712.413 35.741 9.641 5.039
n820k410bSbf9w1 3.812 6.001 772.628 48.703 4.852 4.711
n1111k112bSbf10w1 7.126 7.996 360.772 32.786 76.705 15.584
n1111k278bSbf10w1 26.341 8.316 1138.25 33.431 11.281 6.942
n1111k556bSbf10w1 5.037 7.894 1261.77 50.435 4.649 4.967

Table 7.22: Average runtimes for shallow trees with all weights equal to one.

7.3.2.3 Shallow Trees with Decreasing Weights

In this section, we show, and compare the results on shallow trees when all
the edge weights are decreasing from root to the leaves. As presented in Ta-
ble 7.23, we could obtain the optimal values using ILP except for the datasets
n820k82bSbf9wD, n1111k112bSbf10wD, and n1111k278bSbf10wD. For those data-
sets we give the LP results. LP-oneshot gives us values within a factor of 1.09 of
the optimal on the average. LP-iterative returns solutions that are, on the aver-
age, farther from the optimal by a factor of 1.07. As seen in Table 7.23, GA-color
has values worse off by a factor on the average of 1.03 of the optimal, while Tabu,
and Tabu-VF have values within a factor of 1.04, and 1.05 respectively. For the
best path cost shown in Table 7.24, GA-color, Tabu, and Tabu-VF return solu-
tions within a factor of 1.02, 1.03, and 1.04 of the optimal respectively. As seen in
Table 7.25, average runtime is 5.5 seconds for ILP except for n820k205bSbf9wD
which takes 142651 seconds to complete. LP-oneshot has an average runtime of
6.34 seconds, while LP-iterative has average runtime of 293 seconds. GA-color,
Tabu, and Tabu-VF have average runtimes of 30, 20, and 9.3 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wD 520 1.2692 1.2000 1.0596 1.0577 1.1058
n421k106bSbf20wD 1316 1.0973 1.0851 1.0464 1.0729 1.0783
n421k211bSbf20wD 2640 1.0197 1.0133 1.0136 1.0136 1.0136
n820k82bSbf9wD 486 2.6173 2.4527 2.3148 2.3272 2.3292
n820k205bSbf9wD 2604 1.1298 1.0998 1.0476 1.0438 1.0568
n820k205bSbf9wD 5200 1.0465 1.0385 1.0129 1.0352 1.0354
n1111k112bSbf10wD 666 2.5976 2.5766 2.2808 2.2913 2.2958
n1111k278bSbf10wD 2230 1.7516 1.6915 1.6561 1.6623 1.6874
n1111k556bSbf10wD 7024 1.0310 1.0216 1.0142 1.0500 1.0473

Table 7.23: Average path costs as factor of the optimal solution for shallow trees
with decreasing weights.

44

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wD 520 1.2692 1.2000 1.0462 1.0462 1.0615
n421k106bSbf20wD 1316 1.0973 1.0851 1.0426 1.0547 1.0699
n421k211bSbf20wD 2640 1.0197 1.0133 1.0136 1.0136 1.0136
n820k82bSbf9wD 486 2.6173 2.4527 2.2881 2.2798 2.2305
n820k205bSbf9wD 2604 1.1298 1.0998 1.0445 1.0292 1.0461
n820k205bSbf9wD 5200 1.0465 1.0385 1.0100 1.0285 1.0269
n1111k112bSbf10wD 666 2.5976 2.5766 2.2583 2.2342 2.2402
n1111k278bSbf10wD 2230 1.7516 1.6915 1.6556 1.6502 1.6771
n1111k556bSbf10wD 7024 1.0310 1.0216 1.0125 1.0433 1.0450

Table 7.24: Best path costs as factor of the optimal solution for shallow trees
with decreasing weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wD 6.274 2.711 65.172 32.356 26.482 17.978
n421k106bSbf20wD 5.528 3.653 133.621 43.212 4.957 3.131
n421k211bSbf20wD 1.144 3.173 55.552 45.683 2.886
n820k82bSbf9wD 5.001 5.483 153.442 23.924 53.044 13.365
n820k205bSbf9wD 142651 7.634 553.068 30.726 7.888 6.438
n820k205bSbf9wD 5.761 6.682 519.719 40.844 2.934 4.812
n1111k112bSbf10wD 10.965 11.287 272.692 24.211 67.462 14.544
n1111k278bSbf10wD 8.245 8.893 1045.22 28.902 10.447 8.734
n1111k556bSbf10wD 9.172 7.489 881.823 46.15 3.444 5.347

Table 7.25: Average runtimes for shallow trees with decreasing weights.

7.3.2.4 Shallow Trees with Increasing Weights

Experimental results are presented in this section for shallow trees, when the
edge weights are increasing. As shown in Table 7.26, we could obtain the optimal
values using ILP except for the dataset n820k82bSbf9wI. For this dataset we give
the LP results. LP-oneshot gives us values that are, on the average, within a
factor of 1.01, 1.01, and 1.004 of the optimal when n/k ratios are 10, 4, and 2
respectively. LP-iterative returns solutions that are, on the average, farther from
the optimal by a factor of 1.01, 1.008, and 1.004 when n/k ratios are 10, 4, and
2 respectively. As presented in Table 7.26, GA-color returns solutions within a
factor of 1.0003 of the optimal, while Tabu, and Tabu-VF can provide solutions
that are away by a factor of 1.009, and 1.011 respectively from the optimal.
For the best cost shown in Table 7.27 GA-color returns the optimal for all tree
instances while, Tabu, and Tabu-VF have values worse off by a factor of 1.007,
and 1.001 of the optimal respectively. Furthermore, Tabu returns the optimal
values for 4 different types of trees, while Tabu-VF is superior in only 1 of them.
As seen in Table 7.28, average runtime is 20.61 seconds for ILP. LP-oneshot has
average runtime of 6.35 seconds, while LP-iterative has an average runtime of 310
seconds. GA-color, Tabu, and Tabu-VF have average runtimes of 36.47, 20.9, and
8.06 seconds respectively.

45

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wI 278 1.0000 1.0000 1.0000 1.0000 1.0000
n421k106bSbf20wI 900 1.0044 1.0044 1.0000 1.0022 1.0033
n421k211bSbf20wI 1942 1.0010 1.0010 1.0010 1.0010 1.0010
n820k82bSbf9wI 371 1.5768 1.5768 1.5067 1.5067 1.5148
n820k205bSbf9wI 1675 1.0215 1.0143 1.0000 1.0024 1.0107
n820k410bSbf9wI 3709 1.0081 1.0097 1.0016 1.0197 1.0200
n1111k112bSbf10wI 777 1.0309 1.0386 1.0000 1.0000 1.0013
n1111k278bSbf10wI 2337 1.0231 1.0077 1.0000 1.0090 1.0145
n1111k556bSbf10wI 5083 1.0035 1.0035 1.0000 1.0395 1.0427

Table 7.26: Average path costs as factor of the optimal solution for shallow trees
with increasing weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wI 278 1.0000 1.0000 1.0000 1.0000 1.0000
n421k106bSbf20wI 900 1.0044 1.0044 1.0000 1.0000 1.0022
n421k211bSbf20wI 1942 1.0010 1.0010 1.0000 1.0010 1.0010
n820k82bSbf9wI 371 1.5768 1.5768 1.5067 1.5067 1.5067
n820k205bSbf9wI 1675 1.0215 1.0143 1.0000 1.0000 1.0072
n820k410bSbf9wI 3709 1.0081 1.0097 1.0000 1.0135 1.0151
n1111k112bSbf10wI 777 1.0309 1.0386 1.0000 1.0000 1.0000
n1111k278bSbf10wI 2337 1.0231 1.0077 1.0000 1.0051 1.0077
n1111k556bSbf10wI 5083 1.0035 1.0035 1.0000 1.0315 1.0311

Table 7.27: Best path costs as factor of the optimal solution for shallow trees
with increasing weights. The optimal results are given in bold

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n421k43bSbf20wI 2.587 2.684 82.174 31.124 34.515 18.267
n421k106bSbf20wI 3.907 2.859 158.575 34.415 5.123 3.806
n421k211bSbf20wI 1.123 2.754 63.885 53.214 3.034 3.021
n820k82bSbf9wI 7.362 7.985 150.788 20.124 49.872 12.741
n820k205bSbf9wI 6.967 7.038 460.999 40.875 8.277 4.119
n820k410bSbf9wI 3.851 6.815 469.717 45.131 3.599 2.995
n1111k112bSbf10wI 138.324 10.745 255.284 24.746 69.284 18.523
n1111k278bSbf10wI 8.124 8.367 840.613 33.311 10.727 5.382
n1111k556bSbf10wI 4 7.925 1099.42 45.341 4.044 3.713

Table 7.28: Average runtimes for shallow trees with increasing weights.

7.3.3 Results for Deep Trees

In this section we present the results for deep trees. In Section 7.3.3.1, we
present the results for deep trees with randomly distributed edge weights. In
Section 7.3.3.2, we present the results for deep trees with all the edge weights
equal to 1. In Section 7.3.3.3, we present the results for deep trees when the
weights are decreasing from root to the leaves. Finally, in Section 7.3.3.4, we
present the results when the weights are increasing.

46

7.3.3.1 Deep Trees with Randomly Distributed Weights

In this section, we show, and compare the results of the proposed heuristics
on deep trees when the edge weights are randomly distributed. As seen in Ta-
ble 7.29, we could obtain the optimal values using ILP except for the dataset
n1023k103bDbf2wR. For this dataset we give the LP results. LP-oneshot gives
us values that are, on the average, within a factor of 2.5, 1.7, and 1.17 of the
optimal when n/k ratios are 10, 4, and 2 respectively. LP-iterative returns solu-
tions that are, on the average, farther from the optimal by a factor of 1.82, 1.31,
and 1.21 when n/k ratios are 10, 4, and 2 respectively. As seen in Table 7.29,
GA-color is worse off by a factor of 1.04 of the optimal, while Tabu, and Tabu-VF
returns solutions, on the average, within a factor of 1.06, and 1.09 of the optimal
respectively. For the best path cost shown in Table 7.30, GA-color, Tabu, and
Tabu-VF can obtain values within a factor of 1.018, 1.029, and 1.048 of the opti-
mal respectively. As presented in Table 7.31, average runtime is 7.38 seconds for
ILP except for the dataset n1023k256bDbf2wR which takes 9180 seconds. LP-
oneshot has an average runtime of 5.23 seconds while LP-iterative has an average
runtime of 391 seconds. GA-color, Tabu, and Tabu-VF have average runtimes of
37.26, 27.04, and 5.57 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wR 201 3.0149 2.0647 1.0597 1.0995 1.1244
n255k64bDbf2wR 561 1.7398 1.3939 1.0250 1.0285 1.0998
n255k128bDbf2wR 1244 1.2074 1.1270 1.0080 1.0153 1.0217
n511k52bDbf2wR 396 1.9899 1.5404 1.0884 1.0909 1.0934
n511k128bDbf2wR 1150 1.5591 1.2183 1.0426 1.0470 1.0617
n511k256bDbf2wR 2486 1.1581 1.1279 1.0169 1.0257 1.0334
n1023k103bDbf2wR 140 13.9143 11.5071 7.5786 7.4214 7.5429
n1023k256bDbf2wR 2441 1.4928 1.3290 1.0795 1.0782 1.1200
n1023k512bDbf2wR 5357 1.1589 1.1088 1.0162 1.1697 1.1833

Table 7.29: Average path costs as factor of the optimal solution for deep trees
with randomly distributed weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wR 201 3.0149 2.0647 1.0000 1.0000 1.0000
n255k64bDbf2wR 561 1.7398 1.3939 1.0160 1.0053 1.0374
n255k128bDbf2wR 1244 1.2074 1.1270 1.0048 1.0032 1.0064
n511k52bDbf2wR 396 1.9899 1.5404 1.0202 1.0000 1.0480
n511k128bDbf2wR 1150 1.5591 1.2183 1.0270 1.0270 1.0287
n511k256bDbf2wR 2486 1.1581 1.1279 1.0068 1.0032 1.0193
n1023k103bDbf2wR 140 13.9143 11.5071 7.4500 7.1429 7.1643
n1023k256bDbf2wR 2441 1.4928 1.3290 1.0610 1.0414 1.0901
n1023k512bDbf2wR 5357 1.1589 1.1088 1.0134 1.1572 1.1581

Table 7.30: Best path costs as factor of the optimal solution for deep trees with
randomly distributed weights. The optimal results are given in bold

47

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wR 2.882 2.162 22.651 21.358 20.816 8.127
n255k64bDbf2wR 2.467 2.066 57.836 23.466 3.590 2.323
n255k128bDbf2wR 0.820 1.786 101.757 31.706 1.543 1.541
n511k52bDbf2wR 17.035 5.314 65.015 20.639 56.129 8.498
n511k128bDbf2wR 13.391 4.572 145.161 29.156 9.517 3.342
n511k256bDbf2wR 1.503 4.555 292.502 28.439 4.134 3.213
n1023k103bDbf2wR 7.793 8.312 479.848 41.761 121.993 13.251
n1023k256bDbf2wR 9180.50 8.959 917.34 47.564 19.235 5.819
n1023k512bDbf2wR 7.036 9.362 1441 91.322 6.474 4.045

Table 7.31: Average runtimes for deep trees with randomly distributed weights.

7.3.3.2 Deep Trees with All Weights Set to One

In this section, the results for deep trees when all the edge weights are equal to one
are shown, and compared. As seen in Table 7.32, we could obtain the optimal val-
ues using ILP except for the datasets n1023k103bDbf2w1, and n1023k256bDbf2w1.
For those datasets we give the LP results. LP-oneshot gives us values that are,
on the average, within a factor of 2.32, 1.59, and 1.14 of the optimal when n/k
ratios are 10, 4, and 2 respectively. LP-iterative returns solutions that are, on
the average, farther from the optimal by a factor of 1.3, 1.14, and 1.08 when n/k
ratios are 10, 4, and 2 respectively. As presented in Table 7.32, GA-color returns
solutions within a factor of 1.034 of the optimal, while Tabu, and Tabu-VF can
provide solutions that are away from the optimal by a factor of 1.065, and 1.082
respectively. For the best path cost shown in Table 7.33, GA-color, Tabu, and
Tabu-VF have values worse off by a factor of 1.017, 1.031, and 1.051 of the op-
timal respectively. We obtain one of the optimal solutions with GA-color, and
3 of optimal solutions with Tabu. As shown in Table 7.34, the average runtime
is 18.15 seconds for ILP. LP-oneshot has an average runtime of 5.14 seconds,
while LP-iterative has an average runtime of 255 seconds. GA-color, Tabu, and
Tabu-VF have average runtimes of 32.28, 21.20, and 6.42 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2w1 45 2.3556 1.4000 1.0444 1.0444 1.0889
n255k64bDbf2w1 121 1.6860 1.1653 1.0331 1.0496 1.0661
n255k128bDbf2w1 257 1.1673 1.0856 1.0078 1.0195 1.0195
n511k52bDbf2w1 98 2.2857 1.2653 1.0714 1.0816 1.1224
n511k128bDbf2w1 254 1.5118 1.1260 1.0433 1.0787 1.0748
n511k256bDbf2w1 520 1.1308 1.0769 1.0192 1.0327 1.0462
n1023k103bDbf2w1 102 4.4118 2.3824 2.1078 2.1471 2.1765
n1023k256bDbf2w1 255 2.9490 2.3569 2.1647 2.2039 2.2431

1023N512C_D1_2d_h9 1061 1.1329 1.0980 1.0207 1.1517 1.1593

Table 7.32: Average path costs as factor of the optimal solution for deep trees
with all weights equal to one.

48

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2w1 45 2.3556 1.4000 1.0000 1.0000 1.0444
n255k64bDbf2w1 121 1.6860 1.1653 1.0165 1.0000 1.0000
n255k128bDbf2w1 257 1.1673 1.0856 1.0078 1.0000 1.0156
n511k52bDbf2w1 98 2.2857 1.2653 1.0408 1.0204 1.0612
n511k128bDbf2w1 254 1.5118 1.1260 1.0315 1.0472 1.0630
n511k256bDbf2w1 520 1.1308 1.0769 1.0115 1.0231 1.0385
n1023k103bDbf2w1 102 4.4118 2.3824 2.0490 2.1078 2.0882
n1023k256bDbf2w1 255 2.9490 2.3569 2.1294 2.1451 2.2000

1023N512C_D1_2d_h9 1061 1.1329 1.0980 1.0170 1.1320 1.1357

Table 7.33: Best path costs as factor of the optimal solution for deep trees with
all weights equal to one. The optimal results are given in bold

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2w1 10.577 1.570 14.045 20.867 19.756 8.533
n255k64bDbf2w1 5.217 1.966 40.891 23.571 3.697 2.449
n255k128bDbf2w1 1.146 1.981 73.971 30.512 1.732 1.638
n511k52bDbf2w1 39.302 4.636 57.207 23.856 40.851 9.314
n511k128bDbf2w1 20.688 4.698 154.707 29.171 6.864 3.775
n511k256bDbf2w1 9.454 5.070 275.352 45.181 3.881 3.511
n1023k103bDbf2w1 7.347 7.966 296.099 27.623 92.895 16.952
n1023k256bDbf2w1 7.145 7.816 679.947 39.912 16.092 6.898
n1023k512bDbf2w1 40.712 10.561 707.155 49.841 5.054 4.727

Table 7.34: Average runtimes for deep trees with all weights equal to one.

7.3.3.3 Deep Trees with Decreasing Weights

This section presents, and compares, the results for deep trees when the edge
weights are decreasing from root to the leaves. As shown in Table 7.35, we could
obtain the optimal values using ILP except for the datasets n1023k103bDbf2wD,
and n1023k256bDbf2wD. For those datasets we give the LP results. LP-oneshot
gives us values that are, on the average, within a factor of 2.57, 1.74, and 1.31 of
the optimal when n/k ratios are 10, 4, and 2 respectively. LP-iterative returns
solutions that are, on the average, farther from the optimal by a factor of 1.6,
1.36, and 1.15 when n/k ratios are 10, 4, and 2 respectively. As seen in Table 7.35,
GA-color returns solutions within a factor of 1.098 of the optimal, while Tabu,
and Tabu-VF can provide solutions that are away from the optimal by a factor
of 1.096, and 1.125 respectively. For the best path cost shown in Table 7.36, GA-
color, Tabu, and Tabu-VF have values worse off by a factor of 1.071, 1.060, and
1.073 of the optimal respectively. As shown in Table 7.37, the average runtime
is 14.04 seconds for ILP. LP-oneshot has average runtime of 5.81 seconds, while
LP-iterative has an average runtime of 161.63. GA-color, Tabu, and Tabu-VF
have average runtimes of 39.49, 21.82, and 6.58 seconds respectively.

49

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wD 277 2.5162 1.6931 1.1227 1.1047 1.1480
n255k64bDbf2wD 707 1.7383 1.4187 1.0651 1.0636 1.1061
n255k128bDbf2wD 1371 1.3173 1.1648 1.0306 1.0379 1.0365
n511k52bDbf2wD 488 2.6332 1.5082 1.2582 1.1721 1.2541
n511k128bDbf2wD 1230 1.7472 1.3106 1.1244 1.1065 1.1236
n511k256bDbf2wD 2298 1.2977 1.1340 1.0379 1.0461 1.0579
n1023k103bDbf2wD 204 5.8627 5.8627 5.4804 5.0784 5.1324
n1023k256bDbf2wD 512 6.7734 5.2773 4.5059 4.3867 4.5117
n1023k512bDbf2wD 3652 1.3280 1.1632 1.0507 1.1443 1.1528

Table 7.35: Average path costs as factor of the optimal solution for deep trees
with decreasing weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wD 277 2.5162 1.6931 1.0505 1.0289 1.0866
n255k64bDbf2wD 707 1.7383 1.4187 1.0396 1.0226 1.0820
n255k128bDbf2wD 1371 1.3173 1.1648 1.0160 1.0117 1.0058
n511k52bDbf2wD 488 2.6332 1.5082 1.2172 1.1475 1.0984
n511k128bDbf2wD 1230 1.7472 1.3106 1.1057 1.0683 1.0683
n511k256bDbf2wD 2298 1.2977 1.1340 1.0296 1.0226 1.0348
n1023k103bDbf2wD 204 5.8627 5.8627 5.2843 4.7745 4.8725
n1023k256bDbf2wD 512 6.7734 5.2773 4.4336 4.2070 4.4102
n1023k512bDbf2wD 3652 1.3280 1.1632 1.0433 1.1238 1.1369

Table 7.36: Best path costs as factor of the optimal solution for deep trees with
decreasing weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wD 6.145 2.531 12.995 35.464 28.712 7.891
n255k64bDbf2wD 7.984 2.160 30.981 28.119 4.977 2.876
n255k128bDbf2wD 2.102 2.141 109.687 42.432 1.592 1.638
n511k52bDbf2wD 12.891 6.101 41.543 21.639 43.514 8.573
n511k128bDbf2wD 36.372 5.288 186.061 39.766 6.958 3.349
n511k256bDbf2wD 18.581 4.211 356.265 57.765 3.713 3.214
n1023k103bDbf2wD 8.988 9.706 445.844 23.725 89.402 19.202
n1023k256bDbf2wD 10.741 11.502 109.699 25.654 13.326 5.803
n1023k512bDbf2wD 13.953 8.720 1655.38 80.886 4.227 6.724

Table 7.37: Average runtimes for deep trees with decreasing weights.

7.3.3.4 Deep Trees with Increasing Weights

In this section, results for deep trees when the edge weights are increasing are
presented. As seen in Table 7.38, we could obtain the optimal values using ILP
except for the dataset n1023k103bDbf2wI. For this dataset we give the LP results.
LP-oneshot gives us values that are, on the average, within a factor of 1.06 of the
optimal for all n/k ratios. LP-iterative returns solutions that are, on the average,

50

farther from the optimal by a factor of 1.6, 1.08, and 1.04 when n/k ratios are 10,
4, and 2 respectively. As seen in Table 7.38, GA-color returns solutions within a
factor of 1.026 of the optimal, while Tabu, and Tabu-VF can provide solutions
that are away by a factor of 1.041, and 1.056 respectively. For the best path cost
shown in Table 7.39, GA-color, Tabu, and Tabu-VF have values worse off by a
factor of 1.013, 1.025, and 1.033 of the optimal respectively. An inspection of
Table 7.40 reveals that the average running time for ILP is 9.85 seconds. LP-
oneshot has an average runtime of 5.36 seconds, while LP-iterative has an average
runtime of 189.87 seconds. GA-color, Tabu, and Tabu-VF have average runtimes
of 30.24, 19.96, and 6.15 seconds respectively.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wI 172 1.0872 1.0814 1.0233 1.0233 1.0581
n255k64bDbf2wI 574 1.0418 1.0418 1.0261 1.0314 1.0366
n255k128bDbf2wI 1400 1.0400 1.0271 1.0000 1.0057 1.0129
n511k52bDbf2wI 462 1.0411 1.1385 1.0368 1.0216 1.0325
n511k128bDbf2wI 1464 1.0820 1.0669 1.0355 1.0321 1.0403
n511k256bDbf2wI 3342 1.0718 1.0437 1.0180 1.0197 1.0311
n1023k103bDbf2wI 600 2.0100 1.9450 1.9383 1.9000 1.9050
n1023k256bDbf2wI 3475 1.0639 1.0829 1.0521 1.0397 1.0645
n1023k512bDbf2wI 7877 1.0764 1.0551 1.0171 1.1603 1.1714

Table 7.38: Average path costs as factor of the optimal solution for deep trees
with increasing weights.

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wI 172 1.0872 1.0814 1.0000 1.0000 1.0116
n255k64bDbf2wI 574 1.0418 1.0418 1.0174 1.0139 1.0000
n255k128bDbf2wI 1400 1.0400 1.0271 1.0000 1.0000 1.0000
n511k52bDbf2wI 462 1.0411 1.1385 1.0216 1.0000 1.0173
n511k128bDbf2wI 1464 1.0820 1.0669 1.0164 1.0178 1.0109
n511k256bDbf2wI 3342 1.0718 1.0437 1.0132 1.0108 1.0197
n1023k103bDbf2wI 600 2.0100 1.9450 1.8800 1.8550 1.8617
n1023k256bDbf2wI 3475 1.0639 1.0829 1.0265 1.0224 1.0541
n1023k512bDbf2wI 7877 1.0764 1.0551 1.0135 1.1353 1.1582

Table 7.39: Best path costs as factor of the optimal solution for deep trees with
increasing weights. The optimal results are given in bold

ILP LP-oneshot LP-iterative GA-color Tabu Tabu-VF
n255k26bDbf2wI 3.289 2.502 25.319 24.261 19.932 8.155
n255k64bDbf2wI 2.915 2.218 38.865 25.727 3.888 2.591
n255k128bDbf2wI 1.710 1.934 96.296 26.645 1.467 2.512
n511k52bDbf2wI 16.251 6.921 71.713 21.178 45.839 8.751
n511k128bDbf2wI 12.567 10.495 138.435 30.972 7.745 3.495
n511k256bDbf2wI 4.154 4.352 371.571 35.492 2.949 5.335
n1023k103bDbf2wI 6.751 7.923 252.549 27.788 80.831 12.402
n1023k256bDbf2wI 13.564 5.093 524.277 26.641 12.725 5.319
n1023k512bDbf2wI 27.128 6.848 1027.38 53.491 4.305 6.873

Table 7.40: Average runtimes for deep trees with increasing weights.

51

7.3.4 Discussion

In this section, we show which algorithm performs best with which type of trees.
In Table 7.41 number of best results of heuristics are given for each type of tree. In
random trees, both GA-color, and Tabu can be used. In shallow trees, GA-color
outperforms all the other heuristics except for decreasing weights from root to
the leaves. In deep trees, Tabu perform best except for the trees with all weights
are equal to 1.

b/w R 1 D I

R Tabu: 11
GA-color: 8

GA-color:10
Tabu: 8 - -

S GA-color: 6
Tabu: 5

GA-color: 9
Tabu: 5

Tabu-VF: 4

Tabu: 6
GA-color: 5

GA-color: 9
Tabu: 5

D Tabu: 8
GA-color: 3

GA-color: 6
Tabu: 4

Tabu: 6
Tabu-VF: 3

Tabu: 6
Tabu-VF: 3
GA-color: 3

Table 7.41: Number of best results for heuristic algorithms

52

Chapter 8

Conclusion

In this chapter, we present concluding remarks, and point at the future research
directions.

8.1 Summary

We introduce the problem informally, and give some motivational scenarios.
Then, we present the contribution of the thesis, and we give organization of
the thesis. We examine similar problems, and compare them with ACSP-t. We
define the problem formally. Then, we prove that ACSP-t problem is NP-Hard,
using a reduction from HSP. We show that there isn’t any constant factor approx-
imation algorithm for the problem. Based on this formulation, an LP-relaxation
is obtained for ACSP-t. The LP-relaxation is then exploited to propose heuristic
algorithms for ACSP-t. We present metaheuristic algorithms for ACSP-t problem
based on Genetic Algorithm, and Tabu Search. We present experimental results
for the proposed heuristics in an effort to compare them.

8.2 Future Work

For our future research, we would like to develop more sophisticated heuristic
methods based on LP-relaxation might be developed to obtain better results.
Other metaheuristic methods might be explored for ACSP-t. Genetic algorithm
using path encoding might be improved using more sophisticated methods to get
solutions within a reasonable runtime.

53

Chapter 9

Bibliography

[1] Y. C. Bilge, D. Çağatay, B. Genç, M. Sarı, H. Akcan, and C. Evrendilek,
“All Colors Shortest Path Problem,” ArXiv e-prints, July 2015, 1507.06865.

[2] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to
the theory of NP-completeness. San Francisco, LA: Freeman, 1979.

[3] G. B. Dantzig, Linear programming and extensions. Princeton University
Press, 1998.

[4] L. G. Khachiyan, “Polynomial algorithms in linear programming,” USSR
Computational Mathematics and Mathematical Physics, vol. 20, no. 1,
pp. 53–72, 1980.

[5] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
in Proceedings of the sixteenth annual ACM symposium on Theory of Com-
puting, pp. 302–311, ACM, 1984.

[6] M. R. Garey and D. S. Johnson, “Strong NP-completeness results: Moti-
vation, examples, and implications,” Journal of the ACM (JACM), vol. 25,
no. 3, pp. 499–508, 1978.

[7] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha, “On the generalized minimum
spanning tree problem,” Networks, vol. 26, no. 4, pp. 231–241, 1995.

[8] P. C. Pop, “New models of the generalized minimum spanning tree problem,”
Journal of Mathematical Modelling and Algorithms, vol. 3, no. 2, pp. 153–
166, 2004.

[9] C. Feremans, M. Labbé, and G. Laporte, “A comparative analysis of several
formulations for the generalized minimum spanning tree problem,” Networks,
vol. 39, no. 1, pp. 29–34, 2002.

[10] P. C. Pop, W. Kern, and G. Still, “A new relaxation method for the gen-
eralized minimum spanning tree problem,” European Journal of Operational
Research, vol. 170, no. 3, pp. 900–908, 2006.

54

[11] P. C. Pop, W. Kern, and G. Still, “An approximation algorithm for the gen-
eralized minimum spanning tree problem with bounded cluster size,” Tech.
Rep. 1577, Department of Applied Mathematics, University of Twente, 2001.

[12] P. C. Pop, The generalized minimum spanning tree problem. PhD thesis,
University of Twente, 2002.

[13] M. Dror, M. Haouari, and J. Chaouachi, “Generalized spanning trees,” Eu-
ropean Journal of Operational Research, vol. 120, no. 3, pp. 583–592, 2000.

[14] G. Reich and P. Widmayer, “Beyond steiner’s problem: A VLSI oriented
generalization,” in Graph-theoretic Concepts in Computer Science, pp. 196–
210, Springer, 1990.

[15] E. Ihler, “The complexity of approximating the class steiner tree problem,” in
Graph-Theoretic Concepts in Computer Science, pp. 85–96, Springer, 1992.

[16] P. Klein and R. Ravi, “A nearly best-possible approximation algorithm for
node-weighted Steiner trees,” Journal of Algorithms, vol. 19, no. 1, pp. 104–
115, 1995.

[17] P. Slavik, “The errand scheduling problem,” tech. rep., Department of Com-
puter Science, SUNY, Buffalo NY, 1997.

[18] E. Ihler, G. Reich, and P. Widmayer, “Class steiner trees and VLSI-design,”
Discrete Applied Mathematics, vol. 90, no. 1, pp. 173–194, 1999.

[19] N. Garg, G. Konjevod, and R. Ravi, “A polylogarithmic approximation al-
gorithm for the group Steiner tree problem,” Journal of Algorithms, vol. 37,
no. 1, pp. 66–84, 2000.

[20] E. Halperin and R. Krauthgamer, “Polylogarithmic inapproximability,” in
Proceedings of the thirty-fifth annual ACM Symposium on Theory of Com-
puting, pp. 585–594, ACM, 2003.

[21] H. Labordere, “Record balancing problem: A dynamic programming solution
of a Generalized Travelling Salesman problem,” Revue Francaise D Informa-
tique De Recherche Operationnelle, vol. 3, no. NB 2, p. 43, 1969.

[22] G. Laporte and Y. Nobert, “Generalized traveling salesman problem through
n-sets of nodes-an integer programming approach,” Information Systems and
Operational Research, vol. 21, no. 1, pp. 61–75, 1983.

[23] S. Srivastava, S. Kumar, R. Garg, and P. Sen, “Generalized traveling sales-
man problem through n sets of nodes,” Canadian Operational Research So-
ciety Journal, vol. 7, pp. 97–101, 1969.

[24] G. Laporte, H. Mercure, and Y. Nobert, “Generalized travelling salesman
problem through n sets of nodes: The Asymmetrical case,” Discrete Applied
Mathematics, vol. 18, no. 2, pp. 185–197, 1987.

[25] E. L. Lawler, “The traveling salesman problem: a guided tour of combi-

55

natorial optimization,” Wiley-Interscience Series In Discrete Mathematics,
1985.

[26] Y.-N. Lien, E. Ma, and B. W.-S. Wah, “Transformation of the generalized
traveling-salesman problem into the standard traveling-salesman problem,”
Information Sciences, vol. 74, no. 1, pp. 177–189, 1993.

[27] V. V. Vazirani, Approximation algorithms. Springer Science & Business Me-
dia, 2001.

[28] J. H. Holland, Adaptation in natural and artificial systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. U
Michigan Press, 1975.

[29] F. Glover, “Future paths for integer programming and links to artificial in-
telligence,” Computers & Operations Research, vol. 13, no. 5, pp. 533–549,
1986.

[30] T. Öncan, J.-F. Cordeau, and G. Laporte, “A tabu search heuristic for the
generalized minimum spanning tree problem,” European Journal of Opera-
tional Research, vol. 191, no. 2, pp. 306–319, 2008.

[31] “IBM ILOG CPLEX Optimizer.” http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/. Accessed: 2015-06-20.

56

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

	Acknowledgments
	Abstract
	Öz
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions of the Thesis
	Organization of the Thesis

	Background and Terminology
	Related Work
	Formal Problem Definition and Its Computational Complexity
	Formal Definition
	Example

	NP-Hardness
	Inapproximability

	Integer Linear Programming Formulation of ACSP-t
	ILP Model
	Linear Programming Relaxation
	Heuristics based on the LP-relaxation

	Metaheuristic Solutions
	Genetic Algorithm
	Color Encoding Approach
	Path Encoding Approach

	Tabu Search

	Experimental Study
	Datasets
	Parameter Tuning
	Parameter Tuning for Genetic Algorithm
	Parameter Tuning for Tabu Search Algorithm

	Experimental Results
	Results for Random Trees
	Results for Shallow Trees
	Results for Deep Trees
	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

