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ABSTRACT 

A COMPARATIVE EVALUATION OF FEATURE 

SELECTION ALGORITHMS FOR CANCER 

CLASSIFICATION THROUGH GENE EXPRESSION DATA 

Aslı Taşçı 

M.S. in Electrical and Electronics Engineering with Thesis 

 Graduate School of Natural and Applied Sciences  

Supervisor: Assoc. Prof. Dr. Türker İnce 

Co-Supervisor: Prof. Dr. Cüneyt Güzeliş 

The number of people who have been diagnosed with cancer is increasing day 

by day. Cancer is diagnosed by interpreting the results obtained from the imaging 

technologies, blood analysis and diagnostic biopsies. Cancer begins in the cell. 

Therefore, studying genetic structure of the cancer cell is more reliable and 

informative in the long term. The analysis of the genetic structure of these cells can 

also be helpful while identifying marker genes, which can be used in targeted drug 

therapies. Additionally, understanding the gene networks, relations between genes 

and their products and the effects of genes on certain cell signaling pathways can 

help scientists to understand the dynamics of cancer. Microarrays are one of the 

important data sources for gene expression which can be used to diagnose cancer or 

classify cancer types. In this thesis, gene expression data from the benchmark 

datasets is analyzed to select a proper gene subset and classify three different types 

of cancer by using statistical and machine learning techniques. Nine different 

statistical filter approaches as feature selection methods are comparatively evaluated. 

For pattern recognition, support vector machines and multilayer perceptrons are 

employed to test the feature selection algorithms and classify cancer types.      

Keywords: Gene expression, cancer classification, gene selection, SVM, MLP
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ÖZ 

GEN İFADESİ VERİLERİ ARACILIĞIYLA KANSER 

SINIFLANDIRMASINDA ÖZNİTELİK SEÇME 

ALGORİTMALARININ KARŞILAŞTIRMALI 

DEĞERLENDİRİLMESİ 

Aslı Taşçı 

Elektrik Elektronik Mühendisliği Tezli, Yüksek Lisans 

Fen Bilimleri Enstitüsü 

Tez Danışmanı: Doç. Dr. Türker İnce 

İkinci Tez Danışmanı: Prof. Dr. Cüneyt Güzeliş 

Kanser teşhisi konan insanların sayısı her geçen gün artmaktadır. Doktorlar 

kanser türlerini, görüntüleme teknolojileri, kan analizi ve doku biyopsilerinden elde 

edilen sonuçları yorumlayarak teşhis ederler. Kanser hücrede başlar. Bu nedenle, 

kanser hücresinin genetik yapısının incelenmesi, uzun vadede daha güvenilir ve 

bilgilendiricidir. Ayrıca, bu hücrelerin genetik yapısının analizi, hedef ilaç 

tedavilerinde kullanılabilen belirteç genleri tanımlarken ve gen ağlarını, genler ile 

gen ürünleri arasındaki ilişkileri ve genlerin belirli hücre sinyal yolakları üzerindeki 

etkilerini anlamakta da yardımcı olabilir. Mikro-dizilinler bu alandaki veri 

kaynaklarından biridir. Gen ifade değerlerini belirlerler ve kanseri teşhis etmek veya 

kanser türlerini sınıflandırmak için kullanılabilirler. Bu tezde önerilen yöntemde, gen 

ifadesi verileri, uygun bir gen alt kümesi bulmak ve kanser türlerini sınıflandırmak 

için istatistiksel teknikler ve makine öğrenme teknikleri kullanılarak analiz edilir. 

İstatistiksel filtre yaklaşımları, anlamlı bir gen alt kümesi elde etmek için öznitelik 

seçme yöntemleri olarak kullanılır. Destek vektör makineleri ve çok katmanlı 

algılayıcı da öznitelik seçme algoritmalarını test etmek ve kanser türlerini 

sınıflandırmak için kullanılır. 

Anahtar Kelimeler: Gen ifadesi, kanser sınıflandırması, öznitelik seçme, DVM 
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Chapter 1 

 

Introduction 
 

 Cancer is the disease of the era. According to the World Cancer Report issued 

by World Health Organization (WHO) in 2014 [1], there are approximately 14 

million diagnosed cancer cases estimated and 8 million recorded deaths in 2012. 

These figures are foreseen to increase in the following decade by 42%, reaching up 

to 20 million cases in 2025. Most common types of cancer differ by sex. The leading 

forms of cancer in men are lung cancer, colorectal cancer, prostate cancer, liver 

cancer and stomach cancer. The most common cancers for women, on the other hand 

are breast cancer, lung cancer, cervix cancer, colorectal cancer and stomach cancer. 

Uncontrolled growth of cancer cases is caused by several factors. Aside from 

regional and ethnic factors of the mentioned disease, increase in obesity and tobacco 

usage, lack of physical activity and many different environmental or individual 

factors affect the spreading rate of the disease. Since cancer is not like any other 

traditional diseases, finding a permanent cure is more difficult. There is not one 

certain reason behind cancer like virus or bacteria. It does not target any specific 

organ. It can begin in one part of the body and easily spread to other parts. The 

behavior of the disease differs from patient to patient and can only be explained by 

studying the origin of the cancer. Cancer begins in the cell, and cell structure is 

unique to each individual. Therefore, there is not one specific drug, vaccine or 

treatment to cure cancer permanently for all cancer patients. Today, cancer growth 

can be controlled by several means of treatments such as chemotherapies, 

radiotherapies and immunotherapies. Even though continuous breakthroughs 

achieved by scientists, applied treatment methods are limited for cancer and are not 

easily accessible for everyone.  
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 Cancer, as a disease, is the abnormal growth of cells and caused by the 

alterations in genetic or epigenetic structure of the cell. The main purpose of the 

studies on cancer treatment is to permanently repair the DNA damage caused by 

these alterations. Therefore, studying genetic structure of the cells in order to 

understand its behavior is of great importance to find a permanent cure for cancer, 

develop more effective drugs and vaccines for cancer treatments, diagnose the 

disease more accurately and make better prognosis predictions. Not only the 

structural changes in genes but also the gene interactions and gene networks are 

important to understand the development process of cancer. The improvements in the 

DNA sequencing technologies allow scientists to analyze excessive amounts of 

cellular data. Data mining and machine learning techniques are employed effectively 

to interpret the biological data. One of the widely used data types in terms of cellular 

data is gene expression values. Gene expression values can be measured at different 

levels of cellular processes. They basically give the information about how active the 

gene is.  

  An organism’s life cycle begins with birth, later it grows and dies. Growth 

means cell division in the cellular level. The cell division process begins with the 

transcription of the related DNA sequence. Then, the transcripted sequence is 

translated to produce proteins and other types of cellular products. Improved 

techniques in this area allow scientists to measure different levels of this process. 

When measuring data in cellular level, there is a trade-off between biological 

relevancy and simplicity of the method of measurement. Since the DNA sequence is 

the source of the data, measuring is easy with the improved DNA sequencing 

methods. However; gene sequence is only the beginning of the process, how much 

and which type of information will be extracted from that sequence and how much of 

that information will be used to produce any type of cellular product are not clear. 

Therefore, biological relevancy increases, but the measurement methods become 

harder and cost more along with the specialty of the data. For instance, cell can 

transcribe excessive amount of messenger RNA (mRNA) but only use some of them 

to produce proteins. In this case, measurement in the proteomics level is more 

relevant in terms of biological accuracy, but it costs more than measurement process 

for the amount of produced mRNA. Microarrays are among the several types of 

measurement techniques for gene expression values. They cost relatively high but 
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provide excessive amount of biological data with regards to the activity of any 

specified gene by measuring the amount of produced mRNA. Microarrays, which 

serve a high throughput measurement method, have many advantages and 

disadvantages when it comes to data analysis. The major disadvantage of microarray 

data is the dimensionality. They usually have small sample size and excessive 

amount of gene expression values. This characteristic of the data makes it hard to be 

analyzed without employing pre-processing. Even though the biological relevancy is 

argumentative in this level of measurement, microarrays are used in many studies to 

classify cancer types, separate normal or cancerous tissues and identify marker genes 

for a specific type of cancer. 

Alizadeh et al. used microarray of 4,026 genes to explore the subtypes of 

diffuse large B-cell lymphoma by using hierarchical clustering methods [2]. Begum 

et al. studied gene expression values to select the biomarker genes for leukemia using 

consistency based feature selection and k nearest neighbor (kNN), Naïve Bayes and 

Support Vector Machines (SVM) as classifiers to test selected genes’ performances 

on classification of leukemia subtypes. Cystatin C and Nucleoside Diphosphate 

Kinase are selected as biomarker genes and the best classification performed by 

SVM with an average of 95% accuracy [3]. Khan et al. performed classification of 

small round blue-cell tumors (SRBCT) using hierarchical clustering and artificial 

neural networks [4]. Hu et al. used non parametric feature selection methods and 

compared the classification performance of classification trees and SVMs for seven 

different microarray datasets [5]. The aim of these studies is to help physicians make 

more accurate and fast diagnosis, use the biomarker gene information to develop 

targeted drugs for individuals and define an exclusive gene subset to better 

understand the dynamics of specific cancer types.  

 Feature selection is a vital part of microarray data analysis. Generally, 

microarray datasets for cancer classification involves high dimensional feature 

vectors with relatively smaller sample size. Genes are the features used to classify 

cancer in microarray datasets. Therefore, feature selection becomes selecting the 

most relevant genes for the cancer type and this may lead to biomarker gene 

identification which has an important role in many cancer related study areas. Non 

parametric tests, information theoretic approaches, probabilistic feature selection 

methods and genetic algorithms are practiced by many scientists to select the optimal 



4 

 

genes.  There are several approaches to evaluate the suitability of the selected gene 

subsets. For instance, ranking algorithms may be used to rank the genes and top 

ranked genes are studied by the professionals in biology or medicine to assess the 

relation and importance of the genes. Another way of evaluating optimality of 

selected genes can be performed with an algorithm. 

In this thesis, nine different feature selection algorithms are compared to 

select the most suitable gene subset for cancer classification. The suitability of the 

selected gene subsets is evaluated by using two different supervised machine 

learning techniques, Support Vector Machines (SVM) and Multilayer Perceptron 

(MLP). SVM’s performance on big data is proven by many studies and often used 

for the analysis of microarray data. MLP are one of the most commonly used state of 

the art classifiers in machine learning area. Furthermore, different types of 

perceptrons (single/multilayer, linear/nonlinear) or artificial neural networks are 

employed by many studies [6] - [11]. The results of the comparison of proposed 

methods will provide better understanding about the practicality of feature selection 

and classification algorithms when studying gene expression. 

The thesis is organized as follows: Chapter 2 provides comprehensive 

information about the biological background of the cancer dynamics and cellular 

processes. Chapter 3 reviews feature selection algorithms and define the criteria of 

nine different feature selection algorithms used in this thesis to select a suitable gene 

subset. Further, classification algorithms used to evaluate the classification 

performance of selected gene subsets are explained in Chapter 3. In Chapter 4, 

experimental results of three different microarray datasets with nine different feature 

selection and two classification algorithms are presented and explained in detail. 

Further a comparison of algorithms and biological relevancy discussions are 

provided in Chapter 4. Lastly, Chapter 5 includes final comments on the topic and 

future works. 
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Chapter 2 
 

Background 
 

2.1 Cancer  
 

 The simplest definition for cancer is uncontrolled cell growth. Each healthy 

cell usually undergoes a cell cycle, meaning the process of cell division. Normally, 

cells duplicate their DNAs, and this starts a series of incidents leading to cell division. 

If there is no DNA damage, cell divides and duplicates itself. In the presence of DNA 

damage, cell cycle gets interrupted. In this case, there are two options for a healthy 

cell. The first one is trying to fix the damage if it is possible. The second one is the 

programmed cell death (apoptosis). If the cell is untenable to fix itself, it usually goes 

to apoptosis. However; cancerous cells cannot perform this task. When there is 

damage in DNA that affects the cell cycle signaling pathways, the cell cannot follow 

the normal procedure and goes into proliferation (uncontrolled cell division). This 

abnormal cell growth may result in abnormal tissue growth which will eventually 

form a tumor in organs. In the case of leukemia, the damage occurs in the bone 

marrow cells which lead to an increase in the abnormal white blood cells. There are 

two types of tumors; benign and malignant. Since benign tumors do not spread to 

other tissues, they are not classified as cancerous tumors. On the other hand, 

malignant tumors have an invasive behavior and spread to other tissues and organs 

which make them cancerous.  

 Cancer is caused by the irreversible changes in DNA sequences or in the 

production of certain enzymes and RNA types (messenger RNA, micro RNA) whose 

changes will affect the cell cycle. There are several factors that can cause these 
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changes and affect cellular processes. Carcinogen substances, radiation, hormones, 

infectious diseases, diet and heredity are the main factors that may cause cancer [12].  

Any substance that may cause cancer called carcinogens. Long term exposure 

to these substances can cause certain types of cancers. The most common forms of 

carcinogens are tobacco products. The most common cause of lung cancer is long-

term usage of these products. There are certain chemicals that long term exposure to 

these chemicals that are proved to promote cancer after long-term exposure. For 

instance, asbestos fibers also cause lung cancer [13], [14]. 

Generally, the effect of radiation in cancer development is seen in the 

invasive cancer types such as skin cancer [15], [16]. 

Anything that affects the genes or cell cycle process has an important role in 

cancer development in cells. Therefore, hormones play an important role in cancer. 

Hormones that affect the cell cycle may cause the cell to proliferate and create the 

unwanted cancerous tissue. For instance, insulin, plays a key role in cell proliferation 

or estrogen level in the blood, has an effect on the development of breast cancer [17]-

[19]. 

Some viruses, bacteria or parasites that cause infectious diseases may also be 

reason behind certain cancers. For instance, human papillomavirus (HPV) is an 

oncovirus (virus that has a role in cancer development in cells) which causes cervical 

cancer. Not as common as viruses, bacteria and parasites can cause cancer too [20], 

[21]. 

Unhealthy diet and lack of physical activity are the main reasons behind 

many diseases such as obesity, diabetes etc. Further, they have significant roles in 

nearly 10 types of cancers. There are researches that study the cancer metabolism 

and effects of sugar consumption, diabetes and insulin levels in the blood on 

tumorigenesis [22]-[24].  

Despite the fact that only 10% of cancer is caused hereditarily, the effect of 

inheritance cannot be ignored. Since cancer is caused by the mutations in the DNA, 

inheriting these corrupted DNAs increase the risk of cancer [25]-[27]. Therefore, 

studying genomics and epigenetics has a significant role in cancer research. It can 

help in all the three stages of cancer: diagnosis, treatment and prognosis. 
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 Most of the cancer types are difficult to be diagnosed. The abnormal cell 

growth is not easy to be detected because it takes time for a tumor to form, and 

symptoms might not appear until the last stages of cancer. Therefore, regular 

checkups play an important role in the diagnosis process of cancer. Even after the 

checkups, for an accurate diagnosis of cancer, the cancerous tissue must be examined 

by a pathologist.  

 Even though there is no permanent cure for cancer, there are several treatment 

options [28]. Treatment method can change depending on the type and location of 

the cancer. The most common method is chemotherapy which is basically using 

drugs to kill the cancerous cells. Most types of cancer respond to chemotherapy but it 

is toxic to the body and has many side effects. Therefore, it has a limited usage but it 

can shrink the tumors and reduce some of the symptoms. 

 Another way to treat cancer is the radiation therapy. Ionizing radiation is used 

to damage the DNA of cancer cells and destroy them. It is a more intense method 

than chemotherapy since focused radiation beams directly affect the tumor [29]. 

Generally, chemotherapy and radiation therapy used along with the surgery. For 

cancers that form a solid tumor, surgery can be a permanent cure. In most of the 

cases, the tumor gets shrunk by using chemo or radiation therapy then removed 

surgically. Even though the cancerous tissue is completely removed, there is no 

guarantee that cancer will not relapse. Recently, there are many researches on 

immunotherapy to cure cancer. Immunotherapy is the activation of the immune 

system to fight the cancer by using antibodies but this treatment method is still 

experimental. 

 Another vital part of cancer treatment is prognosis, which is used to 

determine the life span of cancer patient. Cancer types, the invasive behavior of the 

cancer, mental and physical health of the patient are the main factors that affect the 

survival term of the patient. The TNM (Tumor Node Metastatis) staging system 

helps physicians to assess the cancer development in the body, determine a treatment 

and make proper prognosis estimations. It is only applicable to the cancers caused by 

solid tumors. The system focuses on three main aspects of a tumor; the size of the 

tumor, numbers of the affected lymph nodes by the tumor and metastasis. 
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 Cancer has a heterogeneous structure. It can be caused by chromosomal 

changes, genetic or epigenetic alterations, environmental or hereditary factors etc. 

Even though the DNA sequencing techniques provide high-throughput data about the 

genetic and epigenetic factors of cancer, it is not possible to identify one source for 

cancer development. Therefore, physicians have to consider all these aspects of the 

disease when they administer treatments and make prognosis estimations. The 

following sub section will provide a detailed background on the cellular mechanisms 

which play a role in cancer dynamics. 

2.2 Genetics, Epigenetics and Cancer 
 

 Cancer is the general name for the disruptions in the cell growth mechanisms. 

The natural process for a cell is to grow and die. In order to accomplish this, cells 

must complete a process called “cell cycle”. This procedure includes different 

phases; each of them is regulated by certain types of proteins and enzymes. There are 

several cell cycle checkpoints to control the regulation of the cell division procedure. 

If there is DNA damage in the cell, it is detected in these checkpoints and cell 

division procedure gets interrupted. If the cell is able to repair the damage, it 

continues to divide and grow. If not, the cell goes to apoptosis. For a cell to become 

cancerous, genetic changes have to be in the genes that control the cell growth and 

division. The types of genes, whose changes may cause cancer, are oncogenes and 

tumor suppressor genes. Oncogenes usually have regulatory functions in the cell 

cycle, and changes in these genes may occur in several ways during the cell division. 

The cell may encounter a change in the chromosomal level or in the nucleotide 

sequence of the gene. These nucleotide sequence changes are called mutations. When 

a mutation occurs in an oncogene, it prevents cell from dying, and cell goes into 

proliferation. Proliferated cells form cancerous tissue which will provoke 

tumorigenesis. For instance, MYC (V-Myc Avian Myelocytomatosis Viral Oncogene 

Homolog)
1
 gene is an example of oncogene. This gene takes part in the transcription 

of DNA during the cell division and if there is any mutation or overexpression 

present in this gene, cell cycle progress is interfered. Tumor suppressor genes have 

regulatory functions and protect cells from any cancerous development. TP53 (tumor 

                                                           
1
 National Center for Biotechnology Information, 2016  

https://www.ncbi.nlm.nih.gov/gene/4609 
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protein p53)
2
 is an example of a tumor suppressor gene; alterations in this gene can 

be seen in more than 50% of the cancer types. Even though alterations in these types 

of genes are important, they are not the only responsible factors of a cell’s cancerous 

behavior [30], [31].    

 Epigenetics is the study of changes which affect a gene’s output. A gene’s 

output can be a protein or RNA such as messenger RNA (mRNA), transfer RNA 

(tRNA), micro RNA (miRNA) etc. Epigenetic changes do not occur in the DNA 

sequence of a gene but may affect a gene’s activation or expression. DNA 

methylation and histone modification are two main factors for epigenetic changes. 

DNA methylation is the addition of a methyl group to the DNA which cause 

disruptions in the function and expression of that gene. Histones are proteins that 

have a part in DNA structure. DNA sequences comprised of base pairs are meters 

long and could not fit in a cell if they do not form into nucleosomes. DNA sequences 

wrap around histone proteins and form nucleosomes which are the constituent for 

chromatins. Therefore, they are able to fit in a cell or cell nucleus. Any alterations in 

these histone proteins affect the expression of a gene as well. Gene expression is the 

process of a protein or RNA production. Mainly, this process includes transcription 

and translation of a gene. In transcription, DNA strands are separated, and coding 

region of a particular gene gets duplicated into types of RNAs. In case of protein 

coding genes, transcribed RNAs are mRNAs, and they produce proteins with the 

translation process. If the gene is a non-coding gene, several types of RNA can be 

transcribed and become a mature RNA as the result of transcription. The 

improvements in DNA sequencing technologies made interpreting gene expression 

values easier. There are several methods to measure gene expression values. The 

oldest method to measure gene expression is differential display which is based on 

the comparison of two RNA strands. Although it is easy to implement, gene 

expression values measured by differential display can be unreliable and sensitive to 

errors. Northern blotting is another outdated method for gene expression 

measurement. The main idea of Northern blotting is to measure the excess amount of 

RNA by using radioactive probes which make the technology undesirable despite 

being cheap. Real time and reverse transcriptase polymerase chain reactions (RT-

                                                           
2
National Center for Biotechnology Information, 2016   

https://www.ncbi.nlm.nih.gov/gene/7157 
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PCR) are other methods for measuring gene expression. The basic principle for these 

two methods is the same. They measure the output of polymerase chain reaction 

which produces specific DNA or RNA sequence in large quantities. Fluorescence 

dyes are used to label sequences. RT-PCR is a reliable method to measure gene 

expressions, but its application is costly and the size of output data is very limited 

[32], [33]. The most recent methods used to measure gene expression values are 

Serial Analysis of Gene Expression (SAGE) and Microarray. SAGE is the analysis of 

the sequenced, tagged and amplified complementary DNA samples produced by 

mRNA samples. Despite being a reliable method, it is very expensive to conduct [34]. 

Microarray is the measurement method used to produce the datasets studied in this 

thesis. Therefore, a detailed explanation of the method is provided in the next 

subsection.   

2.3 Microarray 
 

            Microarray is the most common measurement method for gene expression 

values. They provide information about thousands of genes in a single experiment. 

Microarrays are basically glass slides with thousands of spots on them. These spots 

contain DNA strands or sequences which represent a gene. Microarrays are the clean 

way of Northern blotting. The basic principle of Northern blotting was measuring the 

excess amount of mRNAs by radioactive labelling but in microarrays instead of 

radioactive labels, fluorescence dyes are used for labelling the data. Microarray 

experiments have several significant processes and always have the same processes 

for a reference sample from the same cell/tissue type to see the difference in the 

analyzed sample. First, mRNA samples should be separated from the cells. This cell 

could belong to a tumor, blood sample, bone marrow or lymph node depending on 

the cancer which will be analyzed. After the mRNAs extracted from the sample, 

reverse transcription of the mRNAs begin to produce complementary DNA strands 

(cDNA) and these cDNA sequences are labelled with fluorescence dyes. Then, 

complementary DNA strands washed to the microarray slide which is the process of 

cDNA sequences attaching to their complementary sequence on the slide. This 

process is called hybridization. After the samples hybridized to the slide, they are 

agitated with laser and scanned with a laser scanner. The more the cDNA strands get 

hybridized and bound to the spots, the more agitated they get and radiate or in the 
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case of fluorescence labelling emit more fluorescence light. Laser scanner measures 

the amount of emitted fluorescence lights by the microarray slides. 

 

Figure 2.1: Microarray image 

 

 

Figure 2.2: Hybridization and fluorescent dye labeling of microarray spots 

 An image of the dyed microarray slide is produced after the hybridization and 

scanning processes. Intensity values of the spots are detected with advanced image 

processing techniques. The first and most important image analysis part is 

determining the spots. According to the expression levels, spots sizes may change as 

shown in Figure 1. If the gene expression value is low, it might appear obscure on 

the microarray image. Therefore, identifying spots on the microarray image is a vital 

part of the process. The next important part is the intensity analysis. Intensity 

analysis of the spot and background gives the gene expression value. There are two 
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approaches for the intensity analysis of the spots. One approach measures the 

intensity for the spot signal and background by accepting fixed spot sizes. This 

approach is easy and cheap but has a great error potential. The other approach is to 

determine exact spot sizes and analyze the intensity values in defined ranges for the 

spots. This method result in more accurate expression values but expensive and 

computationally challenging. Lastly, normalization is performed for the image to 

highlight the differentially expressed genes [35]. For further details on the 

microarray experiments and image processing, one may refer to [36]-[39]. 

2.4 Related Works 
 

 Cancer studies have achieved rapid improvements over the past two decades. 

Thanks to discoveries on the dynamics of cancer and biology, scientists have been 

able to take control of the disease, diagnose more accurately and estimate better 

prognosis for the patients. Naturally, these rapid discoveries have not been the result 

of only biology or medicine research areas. Several approaches by scientists from 

different areas are used to analyze the dynamics of the disease. Recently, with the 

improvements in DNA sequencing technologies, scientists have been able to study 

excessive amounts of cellular level data. When biological data became interpretable 

for computers, scientists started using statistical approaches more effectively. These 

improvements reduced the time of the analysis and made the topic open to scientists 

from a variety of areas. Microarray is one of the data types used by statisticians and 

physicians to classify cancer types and identify marker genes for diagnostic or 

prognostic purposes. For the microarray data, dimensionality is a big problem when 

it comes to analysis of the data. Sample numbers are limited and feature numbers are 

too high. Therefore, statistical approaches are biased and do not provide good results 

without any pre-processing. Feature selection is important in order to analyze the 

data. Further, a meaningful and optimal feature subset should be provided to 

distinguish relevant genes with the cancer type. Firstly, simple and strict filter 

approaches were used to reduce the feature number. For instance, any gene 

expression value that is above or below the pre-defined limits was cut-off. This type 

of filters does not take the in-between feature relations or feature to class relations 

into consideration, which may result in biologically irrelevant and redundant features. 

Later on, scientists started to consider these gene relations and use more effective 
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filter approaches to find better feature/gene subsets. Golub et al. provided a 

microarray dataset for the classification of two different kinds of leukemia. A 

weighted voting scheme is used as class predictor, and “prediction strength” is 

calculated for each gene by using the following equation; 

  

AMLALL

AMLALLPS







  

(2.1) 

 

A preset threshold of 0.3 was used to select the “informative genes” and classify the 

data using these genes. A set of 38 samples were used as training data and another set 

of 34 samples were used as test set. Class predictor was able to correctly classify 29 

samples of the total test set [40]. Golub’s dataset is made publicly available and used 

for many other studies with a variety of classifiers and feature selection algorithms. 

 Statnikov et al. used support vector machines, k-nearest neighbors, 

backpropagation neural networks and probabilistic neural networks as classifiers for 

eleven different microarray datasets which include binary or multi-class cancer 

classification problems. Before any type of analysis, normalization so that the data 

will have 0 mean, 1 standard deviation and scaling into the range of [0 1] is 

performed. Three different feature selection methods used to rank the features; ratio 

of genes between-categories to within-category sums of squares, Signal to noise ratio 

and Kruskal-Wallis non-parametric one-way ANOVA. Different number of genes 

was used for classification to see how the number of genes will affect the 

classification performance. The best classification performance for leukemia data is 

achieved by using SVM with the accuracy of 97.5% [41]. 

Lee et al. used many different classifiers and feature selection algorithms on 

seven different microarray datasets which include binary or multi-class cancer 

classification problems. Several pre-processing steps are performed on the datasets. 

For the leukemia data, a floor of 100 and ceiling of 16,000 thresholding, filtering of 

the genes according to their maximum and minimum values ratio (
𝑚𝑎𝑥

𝑚𝑖𝑛
 < 5 or (max – 

min) < 500) and base 10 logarithmic transformation is applied to the data. Consistent 
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with the previous studies, SVM gave the best result with 94% accuracy for the 

classification of leukemia types [42].  

 Furey et al. used SVM as classifier with the Golub’s prediction strength as 

feature selection method and applied this model to an ovarian cancer dataset. Further, 

for the sake of completeness, the method is verified on two previously published 

datasets. SVM was able to classify the leukemia types with 91% accuracy [43]. 

 In another study by Guyon et al., 100% classification is achieved for the 

leukemia dataset using recursive feature elimination method with SVM [44]. 

Table 2.1: Reference studies for leukemia dataset 

Reference 

Study 

Pre-processing Gene Selection 

Method 

Classifier Classification 

Accuracy 

(Alexander 

Statnikov, 

2005) 

Normalization & 

Scaling to [0 1] 

BW 

Signal to noise 

ratio 

ANOVA 

SVM 

kNN 

NN 

PNN 

97.5%  

83%  

76%  

85%  

(Jae Won 

Lee, 2005) 

Thresholding, 

Filtering, Log 

transformation, 

Normalization  & 

Scaling 

 

BSS/WSS 

Wilcoxon 

Soft - Thresholding 

FLDA 

DLDA 

DQDA 

Logistic 

regression 

kNN 

CART 

SLNN 

ML NN 

SVM 

78%  

88%  

87%  

78% 

 

90%  

85%  

92%  

79%  

94%  

(Terrence S. 

Furey, 2000) 

Normalization Prediction strength SVM 91% 

(Isabelle 

Guyon, 2002) 

Normalization SVM-RFE SVM 100% 

 Another microarray dataset for normal tissue and cancerous tissue 

classification of prostate cancer was published and analyzed by Singh et al. [45]. 

Normalization so that the data will have 0 mean and 1 standard deviation, 

thresholding in the limits of 100 and 16,000 and a variance filter which filters out the 

genes whose expressions does not vary more than 5-fold between two samples 

applied as pre-processing to the data. K-nearest neighbor was used as classifier with 

signal to noise ratio as feature selection method. kNN was able to classify the data 
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with the accuracy ranging from 86% to 92% which was not recorded as an 

acceptable rate by Singh et al. but the selected genes used for the further biomarker 

gene studies. 

 Statnikov et al. studied prostate cancer dataset as well. The same pre-

processing and gene selection methods were used for the prostate data as for the 

leukemia data. The best classification performance was achieved by SVM with the 

accuracy of 92% [41]. 

 Peng et al. studied the prostate cancer dataset without any pre-processing and 

random feature selection. Different types of SVMs used as classifiers and ensemble 

SVM gave the best classification result with the accuracy of 95.1% [46]. 

Table 2.2: Reference studies for prostate dataset 

Reference 

Study 

Pre-processing Gene Selection 

Method 

Classifier Classification 

Accuracy 

(Dinest 

Singh, March 

2002) 

Normalization, 

Thresholding & 

Variance Filter 

Signal to Noise 

Ratio 

kNN 86-92% 

(Alexander 

Statnikov, 

2005) 

Normalization 

& Scaling to [0 

1] 

BW 

Signal to noise 

ratio 

ANOVA 

SVM 

kNN 

NN 

PNN 

92% 

85.09% 

79.18% 

79.18% 

(Peng, 2006) No pre-

processing 

Random gene 

selection 

SVM (all genes) 

SVM(Random) 

Bagging(all 

genes) 

Bagging 

(Random) 

Boosting (all 

genes) 

Boosting 

(Random) 

enSVM 

(Random) 

91.2%  

92.2% 

91.2%  

 

90.2% 

 

89.2% 

 

89.2% 

 

95.1% 

 

The last dataset is for the classification task of diffuse large B-cell lymphoma 

and follicular lymphoma. Shipp et al. published and analyzed the data by using signal 

to noise ratio as gene selection algorithm and a weighted voting scheme as classifier. 

Normalization, scaling, thresholding and variance filter were applied to the data 

before classification. Thresholding applied between the range of 20 and 16000. 

Expression values lower than 20 were fixed to 20 expression values and the ones 
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greater than 16000 were fixed to16000 gene expression values. Further, if gene’s 

expression did not vary, they are filtered out. Classification was performed with 30 

gene predictors and 91% accuracy was achieved [47]. 

 Pankaj et al. used different three different gene pairing methods and six 

different classifiers. Genes were paired, and gene expression vectors were calculated 

according to sum, difference, multiplication or signs of the genes. The best 

classification performance was achieved by Top Scoring Pair with 98.10% accuracy 

[48].  

 Kun Yang et al. proposed two new gene scoring methods: GS1 and GS2. F-

test and Cho’s method were used additional to these proposed methods as gene 

selection algorithms. SVM and kNN were used for the classification part of the 

problem. Intensity thresholding between 20 and 16000 gene expression units and 

filtering according to the maximum and minimum value relations of the genes (
𝑚𝑎𝑥

𝑚𝑖𝑛
 < 

3 or (max-min) < 100) were applied before the classification. The best result for the 

DLBCL data was achieved by GS2-SVM by using 5-fold cross validation. When 

Leave-one-out was used for cross validation, and classification performance raised to 

96% [49]. 

Table 2.3: Reference studies for DLBCL dataset 

Reference Study Pre-processing Gene Selection 

Method 

Classifier Classification 

Accuracy 

(Margaret A. 

Shipp, January 

2002) 

Normalization,, 

Thresholding & 

Variance Filter 

Signal to Noise 

Ratio 

Weighted 

Voting 

Classification 

86-92% 

(Pankaj Chopra, 

2010) 

-No pre-

processing 

Gene pairing PAM 

SVM 

kNN 

DT 

TSP 

k-TSP 

85.45% 

97.40% 

89.61% 

80.52% 

98.10% 

97.40% 

(Kun Yang, 

2006) 

Thresholding & 

Filtering 

 

GS1 

GS2 

Cho’s 

F test 

kNN 

SVM 

92% 

93% 
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Chapter 3 
 

Gene Selection and Classification Algorithms 
 

Gene expression values have been a great source of information to understand 

cellular mechanisms. Sequencing technologies enabled to quantify these values and 

made biological information to be interpretable for computers. DNA microarrays are 

one of the methods for measuring gene expression values. Microarrays provide high 

throughput gene expression data, but this extensive information has many 

disadvantages when it comes to analyzing it for various purposes. One of them is the 

dimensionality problem when performing a classification. Even though a classifier 

biased to the dimensionality problem is used; a suitable gene subset should be 

selected to provide relevant genes with the classified disease. The relevancy of the 

selected gene subsets can be assessed through many approaches. One approach is to 

apply only feature selection or ranking algorithms to the genes and examine the top 

ranked or selected genes by directly analyzing the biological functions of them. 

Another approach is to use statistical or machine learning techniques to evaluate the 

classification ability and importance of the selected genes [50]. In this thesis, nine 

different feature selection algorithms are used to select the suitable gene subset and 

two different classifiers are used to evaluate the importance of the selected genes 

subsets. The next subsection will provide a comprehensive explanation of these 

algorithms. 

3.1 Feature Selection Algorithms 
  

Feature selection plays a crucial part in the analysis of microarrays and cancer 

classification. Selected genes are expected to provide information about the 
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characteristics of cancer. Despite achieving a good classification accuracy is 

important, the relevancy of the selected genes is vital for the analysis as well. There 

are two types of feature selection algorithms; filter and wrapper approach. Filter 

methods only consider feature relations and analyze them with statistical approaches 

such as correlation, mutual information etc. They do not depend on the classifier 

model, and they are faster. Yet, some of the selected features might be redundant and 

need post–processing to select the best feature subset. Wrapper methods depend on 

the classifier model. Since they test each possible subset with a learning algorithm to 

find the best one, they need more computing time, and they perform very slowly with 

big datasets. Further, they are prone to overfitting if observation number is low. 

Therefore, filter methods are more suitable for microarray datasets because of their 

small sample size and large number of features.  

 In this thesis, nine different filter type feature selection algorithms are used to 

select a suitable gene subset for three different microarray datasets, and classification 

is performed to distinguish cancerous tissues from normal samples or determine the 

cancer type. Further, feature selection algorithms’ performance is tested according to 

their provided gene subset’s classification performance. These feature selection 

algorithms are t test, Receiver Operating Characteristics curves (ROC), 

Bhattacharyya distance, Wilcoxon signed-rank test, Entropy, ReliefF algorithm, 

Correlation Based Feature Selection (CFS), Double Input Symmetrical Relevance 

(DISR) and Maximum Relevancy Minimum Redundancy (mRMR). While the 

remaining algorithms rank the features according to defined criteria, mRMR and 

DISR methods provide a specified gene subset by previously defined number.  

3.1.1 T Test 

  

T test is the test statistic to determine differences between two sets of data. 

Generally, t statistic gives the best result for the data pairs which have normal 

distribution and independent from each other [51], [52]. The difference between the 

data is calculated as follows: 
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where μ1 and μ2 are the estimates for the mean values, s1 and s2 are the estimates for 

the variances, N1 and N2 are the sample numbers of class 1 and class 2, respectively. 

In this thesis, absolute value of the t-test with pooled variance estimate used as 

ranking criterion for the feature selection from three different microarray datasets. 

The assumption in the pooled variance estimation is that the samples have equal 

variances and calculated by the following formula: 
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Then the t value for the t-statistic is calculated as: 
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(3.3) 

3.1.2 Receiver Operating Curves 

  

Receiver operating curves are generally used to analyze the performance of a 

classifier. They are plotted according to false positive and true positive rates of a 

classifier which describe the sensitivity and specificity of it. In this thesis, the 

intersection area of ROC and random classifier slope is considered as a ranking 

criterion for the features [53]-[55].  

3.1.3 Bhattacharyya Distance 

  

Bhattacharyya distance is a divergence measure. It provides the degree of 

similarity between two variables. There are two approaches for the Bhattacharyya 

distance. One is by calculating the Bhattacharyya coefficient and using the following 

formula to calculate Bhattacharyya distance. 

    2121 ,ln, PPPPB   (3.4) 
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where P1 and P2 is the probability distributions for the two distinct samples in the 

same feature domain.  ρ(P1, P2) is the Bhattacharyya coefficient and calculated by the 

following formula: 

     



Ff

fpfpPP 2121 ,  
(3.5) 

where f is a feature in the feature domain F. In this thesis, Bhattacharyya distance is 

calculated by minimizing the minimum attainable classification error [56]. 

3.1.4 Wilcoxon Signed-Rank Test 

    

Wilcoxon signed – rank test is a non-parametric feature ranking test similar to 

t-test statistic. Unlike the t-test, features are not considered to have normal 

distribution. This characteristic of the method makes it preferable for the data which 

have outliers. Features are ranked according to the difference between pairs. Then, a 

W statistic is calculated for the feature pairs and used to evaluate the features [51], 

[57]. W value is defined by the following equation: 

  



rN

i

iii RxxsignW
1

,1,2
 (3.6) 

where Nr is the number of feature pairs, Ri is the rank for the i
th

  feature. In this thesis, 

a specific form of Wilcoxon signed – rank test is used to rank feature. Mann–

Whitney U test is the equivalent for two sample t test with pooled variance 

estimation; it assumes equal variance for the samples but does not require samples to 

have normal distribution. In Mann – Whitney U test, features have assigned ranks 

and U statistic is calculated to see the relation of the feature to the class and 

importance of the features is evaluated according to U statistic. In this thesis, U 

statistic is the determined criteria for feature selection and calculated by the 

following equation: 
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3.1.5 Relative Entropy 

  

In information theory, entropy defined as a purity measurement for the 

transmitted signals. It basically represents the amount of information which is 
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expected to specify the quality and sufficiency of the information [58], [59]. Entropy 

is calculated by the following formula: 

     ib

N

i

i xPxPXH log
1




  (3.8) 

In this thesis, relative entropy is used as the ranking criterion for features. Relative 

entropy in another words information gain is defined by the following equation: 

     YXHXHXRE /  (3.9) 

where X and Y are the features, H(X/Y) is the conditional entropy of X. 
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(3.10) 

3.1.6 ReliefF 

  

Relief is a weight-based feature selection algorithm. When ranking features 

according to the Relief algorithm, samples are divided into the classes and Near-hit, 

Near-miss values are calculated for a randomly chosen feature. Then, weight of the 

feature is updated using the following equation: 

   22
,, iiiiii missnearxdiffhitnearxdiffWW   (3.11) 

Relief algorithm uses nearest neighbor approach to find the near-hit sample 

which is the closest sample from the same class and near-miss sample which is the 

closest sample from the different class. In this thesis, an updated version of Relief 

algorithm called ReliefF is used to rank the features according to the weights 

calculated by using this algorithm. ReliefF algorithm is more accurate and applicable 

to the incomplete or multi class data version of the Relief algorithm. ReliefF 

algorithm finds k nearest neighbors to calculate the near-hit and near-miss values for 

the feature and makes an estimation using the average information k-nearest 

neighbors [60]-[64].  

3.1.7 Correlation based Feature Selection 

 

CFS algorithm proposed by Hall et.al. provides a feature subset according to 

their correlation in between features and to the class [65]. In this study, feature 
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number for the gene subset is accepted equal to the complete number of features and 

calculated CFS score for each is used to rank the features/genes. Correlation score 

for each gene is evaluated individually but considering the in between feature 

correlation reduces the redundancy of the selected genes. 

  ff

cf

rkkk

rk
CFS

1
  

(3.12) 

CFS is the score for ranking, 𝑟̅ 𝑐𝑓 is the average correlation of feature to class, 𝑟̅ 𝑓𝑓 is 

the average correlation between features and k is the number of features in the gene 

subset which in this case, is equal to the total number of features [63]. 

3.1.8 Double Input Symmetrical Relevance 

  

Double input symmetrical relevance feature selection method uses the mutual 

information and entropy measures to determine the relevancy of the feature to the 

class [66], [67]. First, a symmetrical relevance measure is calculated by using the 

following equation: 

 
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where I (XS, Y) is the mutual information between feature subset S and class Y, 

H(XS, Y) is the entropy of feature subset S and class Y. The best feature subset is 

defined by the maximizing the symmetrical relevance of the features calculated by 

the following criterion: 

  
 
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(3.14) 

where Xs ϵ X.  

3.1.9 Maximum Relevancy Minimum Redundancy  

  

The best feature is the most relevant and the least redundant feature and this 

algorithm chooses the best features by analyzing information theoretic relations 

between features and class [66]-[68]. The relevancy of the feature is defined by the 

following equation: 
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where S is the feature subset and I(xi, c) is the mutual information of the i
th

 feature to 

the class. Even though maximum related features are selected for the classification, 

there can be redundant features in this most relevant features subset. Therefore, 

redundancy of the features is measured by the following criterion: 
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The mRMR algorithm aims to find the best balance between relevancy and 

redundancy. This is achieved by maximizing Max Փ(D, R) where Փ(D, R) is defined 

by the following criterion: 

RD   (3.17) 

The performance of the feature selection algorithms are tested by using SVM and 

MLP. Therefore, these classifiers will be explained in the next section. 

3.2 Classification Algorithms 
  

Cancer studies using gene expression data have gained great importance over 

the past two decades. Scientist used several statistical or machine learning 

approaches to classify cancer types and define gene subsets or biomarker genes. In 

this thesis, importance of the selected genes is evaluated by using two classification 

algorithms. Support vector machines and multilayer perceptrons are used for the 

classification of three different microarray datasets all of which consist of binary 

classification problems for different cancer types. Thus, detailed information about 

the classifiers is given in the next subsections. 

3.2.1 Support Vector Machines 

  

Support vector machines are supervised classification or regression 

algorithms, and widely used in the text, image, handwriting recognition and 

bioinformatics. First, SVM is proposed for binary classification problems but multi 

class adaptation is provided later. One-versus-one (OVO) or one-versus-all (OVA) 

approaches are used for multi class classification problems. First, SVMs were 
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applicable to the linear and separable data. Later on, SVM is improved for nonlinear 

and non-separable data by using kernel functions. In the case of linear and separable 

data, a hyperplane is defined between samples to separate two distinct classes.  

 

Figure 3.1: Optimal Hyperplane for SVM 

The optimal hyperplane is defined by the maximum distance of the samples 

to the hyperplane. Hence, linear SVM becomes a maximization problem for the best 

separating margin. The samples the samples that define the hyperplane and nearest to 

it, are named support vectors. Any possible hyperplane is defined by the equation 

3.18. 

0 bxw      (3.18) 

The optimal hyperplane is the minimization of equation 3.19 

ww       (3.19) 

subject to the constraints in equation 3.20 

  ..,,.........2,1,1 libwxy ii       (3.20) 

where yi is the output and xi is the input of the given dataset, and is completed by 

using Lagranian methods. The Lagranian defined for the optimization is 
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    
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1

1
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1
,,       (3.21) 

 

where Ʌ
T
 = (α1, ……, αl). The objective of Lagranian optimization is maximizing the 

w and b while minimizing αi’s. As a result of this optimization, optimal hyperplane 

can be defined by equation 3.22 

0,
1




l

i

iiii bxyw       (3.22) 

 In the case of no optimal separating hyperplane, classifier may need to ease 

the constraints on the optimization problem. Therefore, ξi slack variables are 

introduced and the minimization of equation 3.19 becomes 





l

i

iCww
1

      (3.23) 

subject to the constraints 3.24 and 3.25 

........,.........2,1,0 lii       (3.24) 

and 

   ...,..........,.........2,1,1 libxwy iii        (3.25) 

 In the case of nonlinear and non-separable data, kernel function method is 

used to perform classification. Input samples are mapped to a higher dimensional 

feature space by using several kernel functions [69].  

In this thesis, LibSVM is used for the implementation of SVM. LibSVM is a 

library that provides SVM for binary and multi class classification and regression on 

several platforms such as MATLAB, Java, and Python. There are two types of SVM 

for classification provided by LibSVM, C SVM and ν SVM. The difference between 

these SVMs is only the cost parameter. C SVM uses C as cost parameter and it is a 

soft-margin classifier. C is usually defined in the logarithmic scale and can be too 

small or too high but it cannot be smaller than 0. Defining a big value for C makes 

the classifier prone to errors. When the cost value is big, classifier has the luxury to 

define new samples to wrong classes. If the C value is small, it becomes a hard-
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margin classifier and too strict. This can be a bad thing too. Therefore, an 

optimization for classifier parameters is a must when performing classification. ν 

SVM uses ν as cost parameter and solve the optimization problem of equation 3.26 





m

i

i
m

ww
1

1
      (3.26) 

subject to the constraints 

   ..........,.........2,1, libxwy iii        (3.27) 

0i      (3.28) 

0      (3.29) 

 ν is restricted in the range of [0 1] and a hard-margin classifier [70].  

Four different kernel functions are applicable in LibSVM; linear, polynomial, 

radial basis function (RBF) and sigmoid. Several parameter changes may affect the 

performance of these SVM types. Linear SVM is defined by the equation 3.30 

 
j

T

iji xxxxK ,      (3.30) 

and only the C parameter change may affect the classification performance. 

Polynomial SVM is defined by the equation 3.31. 

   dT

iji rxxxK  ,      (3.31) 

C, γ, r coefficient and degree of the polynomial function affects the classification 

performance. In RBF SVM, radial basis function defined by the equation 3.32. 

  0,,
2





 ji xx

ji exxK      (3.32) 

 is used as kernel function. C and γ parameters are important for the classification 

performance of RBF SVM. Lastly, sigmoid function defined by the equation 3.33. 

   rxxxxK j

T

iji  tanh,      (3.33) 
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is used as the kernel for this type of SVM. C, γ and r coefficient is used to optimize 

the classification performance of this type of SVM [71]. 

SVMs are prone to big data. Therefore, an optimal classification performance 

for gene expression or proteomics data can be achieved with or without any pre-

processing or gene selection [72], [73]. 

3.2.2 Multi-Layer Perceptrons 

  

A multilayer perceptron is a type of artificial neural network (ANN). The 

basic principle of artificial neural networks is to estimate the outputs by using inputs 

to a set of interconnected nodes and adjusting the parameters of these nodes to 

minimize the errors in output. The simplest form of ANN includes an output layer. 

Number of nodes in this layer is related with the number of input samples and the 

number of output classes. This type of ANN is named single-layer perceptron or 

linear perceptron and it is not applicable to nonlinear data. Therefore, one or more 

hidden layers are introduced to perform classification for nonlinear data as well. 

When an ANN includes hidden layers apart from output layer, it is called multi-layer. 

The number of layers and the neurons in these layers are not specified and may 

change depending on the classification problem.  

 

Figure 3.2 Linear Perceptron 
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Figure 3.3: Multi-layer Perceptron 

 Linear perceptrons input i samples and a bias term (b or x0), assign them 

weights and then output the result by summing each input and its weight through an 

activation function. In the case of MLP, each layer’s output becomes the input for the 

next layer and perceptron learns by updating the parameters of layers using a 

learning algorithm. Back-propagation learning algorithm is used in multilayer 

perceptrons [74], [75].  

Back-propagation learning algorithm initializes the parameters of the nodes, 

weights and bias, updates these parameters to minimize the output error. It can be 

applied with two different approaches; batch and online mode. In the batch mode, 

whole sample set is used and average values are aggregated to update the parameters. 

In online mode, the parameters are updated for every sample. Therefore, the most 

important difference between these modes is the computation time. If the data is too 

big, using all samples to update the parameters will take time. Further, Online 

learning is better and more reliable than the average values of batch mode learning 

[76]. An error function is used to minimize the output error which is usually least 

mean square error function. MLP is defined by the equation 3.34. 

 bxwbxwy T
n

i

ii 







 




1

     (3.34) 
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where w is the weight matrix, x is the input samples, b is the bias term, y is the output 

and δ is the activation function. The back-propagation algorithm uses the gradient 

descent rule (3.35) to update the node parameters and minimize the output error. 

   
ij

ijij
w

E
nwnw




 1      

(3.35) 

where w is the weight, η is the learning rate and E is the error function in equation 

3.36 and 3.37. 

 



n

i

nEE
12

1      (3.36) 

   
2

LynynE       (3.37) 

where y
L
 is the output of MLP when the input is x(n).  

  The activation function may change according to the classification problem. 

In the case of linear classification problems, a linear activation function is used and 

input-output relations are defined by linear algebraic equations. Generally, two types 

of activation functions are used: hyperbolic tangent sigmoid (3.38) and logistic 

sigmoid function (3.39). 

   xxy tanh      (3.38) 

    1
1

 xexy      (3.39) 

 Radial basis functions can be used as activation functions as well. 

 In this thesis, a simple feedforward back-propagation perceptron is employed 

to perform classification for different types of cancer. This multilayer perceptron 

with three layers is set up in MATLAB .The first hidden layer included 16 neurons 

and the second one included 8 neurons. The number of neurons is determined by trial 

and error. Levenberg-Marquadt as training function and mean squared error as 

performance function are chosen as the characteristic functions of perceptron. 

Dimensionality is a big problem for multilayer perceptrons and, they are not 

applicable to big data. Classification of the microarray datasets is feasible only after 

applying feature selection and reducing the size of the data. 
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Chapter 4 
 

Experimental Results 
 

Experimental results for gene selection and classification of three different 

datasets is completed and reviewed in this chapter. Gene selection is performed with 

nine different feature selection algorithms. Two classification algorithms are used to 

classify and evaluate the suitability of the selected gene subsets. Microarray datasets 

provide a great quantity of data about genes, but their sample and attribute sizes are 

too large to analyze before any type of pre-processing. Even though some types of 

classifiers are applicable for this kind of big data, we still have to define appropriate 

gene subset for biological relevancy part of the study. 

Three different publicly available microarray datasets used in this study to 

classify cancerous tissues and cancer types. All three datasets consist of binary 

classification problems. First dataset is Golub’s leukemia microarray dataset which 

contains 7,129 gene expression values from 72 patients as features from two different 

leukemia types, Acute Myeloid Leukemia (AML) and Acute Lymphoblastic 

Leukemia (ALL). High density oligonucleotide microarray of Affymetrix is used to 

produce gene chip by using the bone marrow cell samples [40]. Second dataset is 

prostate cancer microarray dataset which contains 12,600 gene expression values as 

features derived from 102 patients who have normal or cancerous prostate tissue 

samples. Affymetrix GeneChip is used to produce the microarray for prostate dataset 

as well [45]. Third dataset is diffuse large B-cell lymphoma (DLBCL) microarray 

dataset which contains 7,129 gene expression values as features from 77 patients to 

classify diffuse large B-cell lymphoma and Follicular Lymphoma (FL). Gene 
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expression values of DLBCL dataset is measured by using Affymetrix GeneChip 

[47]. 

Table 4.1: Datasets’ Description 

Reference 

Study 

Number of 

samples 

(Total) 

Number of 

Genes 

Number of Samples 

(per class) 

Production 

Platform 

(T.R. Golub, 

1999) 

 

72 

 

7,129 

47  

ALL 

25  

AML 

 

Affymetrix 

(Dinest 

Singh, March 

2002) 

 

102 

 

12,600 

52 

Tumor 

50 

Normal 

 

Affymetrix 

(Margaret A. 

Shipp, 

January 

2002) 

 

 

77 

 

 

7,129 

 

58 

DLBCL 

 

19  

FL 

 

Affymetrix 

 

SVM provided by LibSVM library and multi-layer perceptron are used to 

evaluate the performance of feature selection algorithms. All of the experiments 

conducted on MATLAB. 10-fold cross validation is used to separate the data as train 

and test sets. Some of the feature selection algorithms provide ranking of the genes 

and some of them provide fixed-number gene subsets. Since ranking feature 

selection algorithms required less computational time, they are evaluated for each of 

the fold in cross validation to consider the stability of the feature selection algorithms. 

The computation time for feature selection algorithms which provide a fixed-number 

gene subset were long. Therefore, a feature number is determined for these 

algorithms and tests are conducted over those defined gene subsets. Comparison of 

computational time is completed for each feature selection method using leukemia 

dataset. Same experimental procedure as feature ranking algorithms is applied to the 

feature selection algorithms that provide gene subset to show the computational time 

requirements of these algorithms. Related tables are provided in the “Experimental 

Results of Leukemia Data” sub section. Gene subset stability could not be measured 

for these feature selection algorithms.  
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First, experiments conducted on raw data to see the classifier performance 

without any pre-processing. Multi-layer perceptron was not able to classify this type 

of big data without any pre-processing. On the other hand, SVM is prone to big data 

and performed well for microarray datasets without any pre-processing. In SVM, 

each kernel has several parameters which may affect their classification performance. 

Therefore, after classifying the raw data with the default parameters, grid search for 

significant parameters is performed to see the effects of parameter change. Ranges 

for SVM parameters adjusted according to suggested values from previous studies 

[44], [77]. Since C SVM performed better than ν SVM in general, C SVM is used for 

all experiments.  

Table 4.2: Classification accuracy for leukemia data, No feature selection 

SVM Type Kernel Accuracy 

C SVM Linear 97.32% 

C SVM Polynomial 97.32% 

C SVM RBF 65.41% 

C SVM Sigmoid 65.41% 

For leukemia data, linear and polynomial SVM performed better than RBF or 

sigmoid SVM. When C SVM with linear kernel used, changes in the C parameter 

may affect the performance of classifier. Therefore, parameter search in the range of 

[2
-6

 2
16

] is performed for C parameter. C change has a light effect on classification 

accuracy, decreases to %97.22 but this result is in the range of acceptable error. 

In the case of C-SVM with polynomial kernel C, gamma, r coefficient and 

degree of the polynomial are the most important parameters. Therefore, grid search 

for these parameters performed in the range of [2
-6

 2
16

] for C, [2
-16

 2
6
] for gamma, [2

-

6
 2

6
] for r and [1 10] for degree of the polynomial kernel function. It is seen that 

changing C, gamma and r has no effect on classification accuracy but the polynomial 

kernels which has a degree greater than 5 results poorly for classification tasks of 

leukemia dataset. 

 For C SVM with RBF kernel, C and gamma parameters are important and 

may affect the classification performance. Therefore, grid search for parameters C 
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and gamma are performed in the range of [2
-6

 2
16

] and [2
-16

 2
6
], respectively. 

Changing the value for C and gamma in the specified ranges did not affect the 

performance of C-SVM with RBF kernel; it still performs poorly. 

 Lastly, C SVM with sigmoid kernel is sensitive for the changes in C, gamma 

and r. Therefore, grid search for these parameters conducted in the range of [2
-6

 2
16

] 

for C, [2
-16

 2
6
] for gamma and [2

-6
 2

6
] for r coefficient. Sigmoid kernel performed 

poorly for this data and parameter changes did not affect the classification 

performance. 

 For the classification task of prostate cancer dataset, linear and polynomial 

SVMs performed better than others. 

Table 4.3: Classification accuracy for prostate data, No feature selection 

SVM Type Kernel Accuracy 

C SVM Linear 90.09% 

C SVM Polynomial 91.18% 

C SVM RBF 50.90% 

C SVM Sigmoid 50.90% 

All parameter grid search steps done for the leukemia dataset is repeated for 

the prostate cancer dataset classification task in the previously defined parameter 

ranges. Adjusting the C parameter bigger than its default value, which is 1, affected 

the classification performance badly in linear SVM. Decreasing C did not have any 

effect. Therefore, default value for C accepted for this dataset. 

In the polynomial kernel SVM, changing C, gamma and r had no effect on the 

classification performance but degree of the polynomial affected badly. Only first 

and second degree polynomial kernels were applicable for prostate cancer dataset.  

C and gamma parameters are important for the RBF kernel but changing them 

had no effect on classification performance either.  

In sigmoid SVM, changing C, gamma and r coefficient had no effect on 

classification performance.  
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For the classification task of DLBCL dataset, linear and polynomial SVMs 

performed better than others. 

 

Table 4.4: Classification accuracy for DLBCL data, No feature selection 

SVM Type Kernel Accuracy 

C SVM Linear 96.07% 

C SVM Polynomial 96.07% 

C SVM RBF 75.35% 

C SVM Sigmoid 75.35% 

For DLBCL dataset, grid search for all the effective parameters done in the 

previously defined ranges. Linear SVM performed well with the default values for C 

parameter. Changing C did not have any effect on the classification performance.  

Polynomial SVM performed well for DLBCL dataset but only up to three 

degree polynomial kernels, any degree greater than three decreased the classification 

performance. Changing C, gamma or r coefficient did not have any effect on the 

performance. 

In the case of RBF and sigmoid SVMs, classification performance is poor for 

DLBCL dataset and changing C, gamma or r coefficient had no effect on the 

classification performance. 

Since multi-layer perceptron could not perform without any type of feature/gene 

selection, feature selection methods applied in order to find an appropriate gene 

subset to classify. These subsets were useful to find genes appropriate and sufficient 

enough for diagnostic purposes. Nine different filter feature selection methods are 

used to find optimal gene subset for three different microarray datasets.  

 
 

4.1 Experimental Results for Leukemia Data 
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Nine different feature selection methods applied to leukemia data to find an 

optimal gene subset. These gene subsets’ classification performance evaluated using 

SVM and multi-layer perceptron. 10-fold cross validation is used to separate the data 

into train and test sets. C SVM with all possible kernels is applied to determine the 

classification performance. In the case of multi-layer perceptron, a four layered feed 

forward back-propagation perceptron with Levenberg-Marquadt as training and 

mean squared error as performance function is used to evaluate the classification 

performance. Feature number is selected regarding the previous studies and adjusted 

in the range of [1 100] with 9 feature increments. First, the classification performed 

with the raw data. Then, normalization and scaling applied to see its effect on gene 

selection and classification performance. Samples are normalized so that they have 0 

mean, 1 standard deviation and scaled in the range of [-1 1].  

Table 4.5: Computational time of T test as feature selection algorithm 

Feature Selection Method Classifier Elapsed Time (s) 

T test Linear SVM 6,46 

T test Polynomial SVM 31,96 

T test RBF SVM 2,19 

T test Sigmoid SVM 2,13 

T test MLP 152,98 
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Table 4.6: T test statistic feature selection for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-10 Linear 100% 

1-82 Polynomial 98.57% 

1-28 RBF 65.47% 

1-10 Sigmoid 65.53% 

 

 

 

 

Figure 4.1: Classification performance of SVM for leukemia data (raw) 
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Table 4.7: T test statistic feature selection for leukemia dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 97.5% 

1-73 Polynomial 65.53% 

1-64 RBF 98.75% 

1-10 Sigmoid 86.96% 

 

 

 

Figure 4.2: Classification performance of SVM for leukemia data 

(normalized) 
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Feature Selection Method Classifier Elapsed Time (s) 

CFS Linear SVM 207,15 

CFS Polynomial SVM 227,71 

CFS RBF SVM 180,73 

CFS Sigmoid SVM 178,37 

CFS MLP 254,58 

Table 4.9: CFS for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-19 Linear 97.32% 

1-55 Polynomial 96.25% 

1-46 RBF 65.53% 

1 Sigmoid 65.47% 

 

 

 

Figure 4.3: Classification performance of SVM for leukemia data (raw) 
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Table 4.10: CFS for leukemia dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-37 Linear 92.79% 

1-19 Polynomial 65.53% 

1-10 RBF 97.14% 

1-19 Sigmoid 74.22% 

 

 

 

Figure 4.4: Classification performance of SVM for leukemia data 

(normalized) 
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Feature Selection Method Classifier Elapsed Time (s) 

Bhattacharyya Distance Linear SVM 7,53 

Bhattacharyya Distance Polynomial SVM 39,85 

Bhattacharyya Distance RBF SVM 2,30 

Bhattacharyya Distance Sigmoid SVM 2,31 

Bhattacharyya Distance MLP 141,07 

Table 4.12: Bhattacharyya Distance for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 97.32% 

1-73 Polynomial 88.39% 

1-46 RBF 65.53% 

1-28 Sigmoid 65.53% 

 

 

Figure 4.5: Classification performance of SVM for leukemia data (raw) 
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Table 4.13: Bhattacharyya Distance for leukemia dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 98.75% 

1-10 Polynomial 65.47% 

1-19 RBF 84.76% 

1-10 Sigmoid 70.29% 

 

 

 

Figure 4.6: Classification performance of SVM for leukemia data 

(normalized) 

 

 

 

Table 4.14: Computational time of Entropy as feature selection algorithm 

10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100 MaxL=98.75

MaxP=65.4762

MaxR=84.7619

MaxS=70.2976

Feature numbers

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Bhattacharya Distance for Feature Selection 

 

 

Linear

Polynomial

RBF

Sigmoid



 

42 

 

Feature Selection Method Classifier Elapsed Time (s) 

Entropy Linear SVM 2,27 

Entropy Polynomial SVM 47,05 

Entropy RBF SVM 2,07 

Entropy Sigmoid SVM 2,10 

Entropy MLP 204,76 

Table 4.15: Entropy for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-28 Linear 100% 

1-19 Polynomial 95.65% 

1 RBF 66.90% 

1-10 Sigmoid 77.5% 

 

Figure 4.7: Classification performance of SVM for leukemia data (raw) 
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Table 4.16: Entropy for leukemia dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-28 Linear 97.5% 

1 Polynomial 65.53% 

1-19 RBF 87.85% 

1-10 Sigmoid 72.67% 

 

 

 

Figure 4.8: Classification performance of SVM for leukemia data 

(normalized) 
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Feature Selection Method Classifier Elapsed Time (s) 

ReliefF Linear SVM 499,89 

ReliefF Polynomial SVM 536,36 

ReliefF RBF SVM 516,46 

ReliefF Sigmoid SVM 497,47 

ReliefF MLP 613,25 

Table 4.18: ReliefF for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 97.14% 

1-46 Polynomial 95.89% 

1-10 RBF 65.53% 

1 Sigmoid 65.47% 

 

Figure 4.9: Classification performance of SVM for leukemia data (raw) 

 

 

Table 4.19: ReliefF for leukemia dataset (normalized) 

10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

Feature numbers

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Relief Algorithm for Feature Selection 

MaxL = 97.1429

MaxP = 95.8929

MaxR = 65.5357

MaxS = 65.4762

 

 

Linear

Polynomial

RBF

Sigmoid



 

45 

 

Number of features Kernel Type Classification Accuracy 

1-10 Linear 97.32% 

1 Polynomial 65.47% 

1-19 RBF 94.64% 

1-10 Sigmoid 89.04% 

 

 

 

Figure 4.10: Classification performance of SVM for leukemia data 

(normalized) 
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Feature Selection Method Classifier Elapsed Time (s) 

Wilcoxon Linear SVM 289,47 

Wilcoxon Polynomial SVM 314,77 

Wilcoxon RBF SVM 285,10 

Wilcoxon Sigmoid SVM 285,10 

Wilcoxon MLP 360,93 

Table 4.21: Wilcoxon signed-rank test for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-46 Linear 98.75% 

1-28 Polynomial 94.22% 

1-10 RBF 65.53% 

1-28 Sigmoid 65.53% 

 

 

Figure 4.11: Classification performance of SVM for leukemia data (raw) 

 

Table 4.22: Wilcoxon signed-rank test for leukemia dataset (normalized) 
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Number of features Kernel Type Classification Accuracy 

1-55 Linear 98.75% 

1-64 Polynomial 65.53% 

1-82 RBF 97.5% 

1-46 Sigmoid 93.21% 

 

 

 

Figure 4.12: Classification performance of SVM for leukemia data 

(normalized) 

 

 

 

 

Table 4.23: Computational time of mRMR as feature selection algorithm 
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Feature Selection Method Classifier Elapsed Time (s) 

mRMR Linear SVM 43579,75 

mRMR Polynomial SVM 44310,25 

mRMR RBF SVM 45533,68 

mRMR Sigmoid SVM 42550,60 

mRMR MLP 47745,76 

Table 4.24: mRMR for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-64 Linear 80.47% 

1-37 Polynomial 77.26% 

1 RBF 67.97% 

1-37 Sigmoid 66.90% 

 

 

Figure 4.13: Classification performance of SVM for leukemia data (raw) 

 

Table 4.25: mRMR for leukemia dataset (normalized) 
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Number of features Kernel Type Classification Accuracy 

1-73 Linear 88.03% 

1-46 Polynomial 65.53% 

1-19 RBF 65.53% 

1-10 Sigmoid 65.47% 

 

 

 

Figure 4.14: Classification performance of SVM for leukemia data 

(normalized) 

 

 

 

 

Table 4.26: Computational time of DISR as feature selection algorithm 
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Feature Selection Method Classifier Elapsed Time (s) 

DISR Linear SVM 4225,40 

DISR Polynomial SVM 4341,12 

DISR RBF SVM 4420,40 

DISR Sigmoid SVM 4320,16 

DISR MLP 3774,57 

Table 4.27: DISR for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 85.83% 

1-100 Polynomial 87.97% 

1 RBF 69.34% 

1-91 Sigmoid 65.53% 

 

 

Figure 4.15: Classification performance of SVM for leukemia data (raw) 

 

Table 4.28: DISR for leukemia dataset (normalized) 
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Number of features Kernel Type Classification Accuracy 

1-100 Linear 86.07% 

1-19 Polynomial 65.53% 

1-28 RBF 65.47% 

1-46 Sigmoid 65.53% 

 

 

 

Figure 4.16: Classification performance of SVM for leukemia data 

(normalized) 

 

 

 

 

Table 4.29: Computational time of ROC as feature selection algorithm 
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Feature Selection Method Classifier Elapsed Time (s) 

ROC Linear SVM 5,56 

ROC Polynomial SVM 31,92 

ROC RBF SVM 5,34 

ROC Sigmoid SVM 5,27 

ROC MLP 207,39 

Table 4.30: ROC for leukemia dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-28 Linear 98.75% 

1-82 Polynomial 98.75% 

1-28 RBF 65.53% 

1-10 Sigmoid 65.47% 

 

 

 

Figure 4.17: Classification performance of SVM for leukemia data (raw) 
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Table 4.31: ROC for leukemia dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-19 Linear 98.75% 

1 Polynomial 65.53% 

1-28 RBF 98.75% 

1-10 Sigmoid 92.97% 

 

 

 

Figure 4.18: Classification performance of SVM for leukemia data 

(normalized) 
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Table 4.32: Feature numbers for leukemia dataset using MLP (raw) 

Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-80 T test 97.5% 

1-80 ROC 96.90% 

1-30 ReliefF 91.60% 

1-50 Wilcoxon 95.83% 

1-10 CFS 100% 

1-10 Entropy 97.14% 

1-90 MRMR 94.04% 

1-90 DISR 94.46% 

1-50 Bhattacharyya 95.83% 

 

 

Figure 4.19: Classification performance of MLP for leukemia data (raw) 
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T test = 97.5

ROC = 96.9048

ReliefF= 91.6071

Wilcoxon= 95.8333

CFS= 100

Entropy= 97.1429

MRMR= 94.0476

DISR= 94.4643

Bhattacharyya = 95.8333
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Table 4.33: Feature numbers for leukemia dataset using MLP (normalized) 

Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-80 T test 94.46% 

1-20 ROC 95.47% 

1-60 ReliefF 91.90% 

1-100 Wilcoxon 94.28% 

1-40 CFS 96.90% 

1-100 Entropy 95.65% 

1-70 MRMR 82.67% 

1-90 DISR 90.71% 

1-100 Bhattacharyya 93.15% 

 

Figure 4.20: Classification performance of MLP for leukemia data 

(normalized) 

4.2 Experimental Results for Prostate Cancer Data 
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Same experimental procedure followed for the prostate data. Nine different 

feature selection methods applied to find an optimal gene subset. Classification 

performance for the gene subsets evaluated using SVM and multi-layer perceptron. 

10-fold cross validation is used to separate the data into train and test sets. In the case 

of SVM, C SVM with four different kernels is applied to determine the classification 

performance. A four layered feed forward back-propagation perceptron with 

Levenberg-Marquadt as training and mean squared error as performance function is 

used to evaluate the classification performance. Feature number for the gene subset is 

selected according to previous studies and adjusted in the range of [1 100] and 

experiments conducted with 9 feature increments. First, the classification performed 

with the raw data. Then, normalization and scaling so that the data will have 0 mean, 

1 standard deviation and scaled in the range of [-1 1], applied to see its effect on gene 

selection and classification performance. 
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Table 4.34: T test statistic feature selection for prostate dataset (raw)  

Number of features Kernel Type Classification Accuracy 

1-100 Linear 92.09% 

1-28 Polynomial 92.18% 

1 RBF 78.36% 

1-10 Sigmoid 51.90% 

 

 

 

 

Figure 4.21: Classification performance of SVM for prostate data (raw) 
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Table 4.35: T test statistic feature selection for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 95.18% 

1 Polynomial 50.90% 

1-19 RBF 92.36% 

1-10 Sigmoid 92.18% 

 

 

 

Figure 4.22: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.36: CFS for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-64 Linear 95.18% 

1-64 Polynomial 94% 

1 RBF 67.72% 

1 Sigmoid 50.90% 

 

 

 

     Figure 4.23: Classification performance of SVM for prostate data (raw) 
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Table 4.37: CFS for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-19 Linear 95.18% 

1 Polynomial 50.90% 

1-37 RBF 93.18% 

1-19 Sigmoid 85.27% 

 

 

 

Figure 4.24: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.38: Bhattacharyya Distance for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 91.36% 

1-91 Polynomial 87.27% 

1 RBF 56.72% 

1 Sigmoid 50.90% 

 

 

 

Figure 4.25: Classification performance of SVM for prostate data (raw) 
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Table 4.39: Bhattacharyya Distance for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-73 Linear 93.36% 

1 Polynomial 50.90% 

1-10 RBF 55.90% 

1 Sigmoid 50.90% 

 

 

 

Figure 4.26: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.40: Entropy for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 91.09% 

1-73 Polynomial 89.18% 

1-10 RBF 50.90% 

1 Sigmoid 64.72% 

 

 

 

Figure 4.27: Classification performance of SVM for prostate data (raw) 
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Table 4.41: Entropy for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 96.18% 

1 Polynomial 50.90% 

1-37 RBF 69.63% 

1-19 Sigmoid 51.90% 

 

 

 

Figure 4.28: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.42: ReliefF for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 92.18% 

1-64 Polynomial 92.36% 

1 RBF 61% 

1-19 Sigmoid 50.90% 

 

 

 

Figure 4.29: Classification performance of SVM for prostate data (raw) 
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Table 4.43: ReliefF for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 96.09% 

1 Polynomial 50.90% 

1-10 RBF 80.36% 

1 Sigmoid 65.90% 

 

 

 

Figure 4.30: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.44: Wilcoxon signed-rank test for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 91.27% 

1-100 Polynomial 91% 

1 RBF 78.36% 

1-10 Sigmoid 52.90% 

 

 

 

Figure 4.31: Classification performance of SVM for prostate data (raw) 
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Table 4.45: Wilcoxon signed-rank test for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 95.09% 

1 Polynomial 50.90% 

1-10 RBF 93.09% 

1-10 Sigmoid 93.18% 

 

 

 

Figure 4.32: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.46: mRMR for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 82.63% 

1-100 Polynomial 84.18% 

1 RBF 66.45% 

1-73 Sigmoid 55.63% 

 

 

 

Figure 4.33: Classification performance of SVM for prostate data (raw) 
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Table 4.47: mRMR for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 81.36% 

1 Polynomial 50.90% 

1 RBF 77.36% 

1 Sigmoid 73.45% 

 

 

 

Figure 4.34: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.48: DISR for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 94.27% 

1-55 Polynomial 94% 

1 RBF 70.36% 

1 Sigmoid 53.90% 

 

 

 

Figure 4.35: Classification performance of SVM for prostate data (raw) 
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Table 4.49: DISR for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 95.09% 

1 Polynomial 50.90% 

1-19 RBF 89.09% 

1 Sigmoid 77.27% 

 

 

 

Figure 4.36: Classification performance of SVM for prostate data 

(normalized) 
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Table 4.50: ROC for prostate dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-64 Linear 94.18% 

1-55 Polynomial 93.09% 

1 RBF 81.27% 

1-10 Sigmoid 52.90% 

 

 

 

Figure 4.37: Classification performance of SVM for prostate data (raw) 
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Table 4.51: ROC for prostate dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-64 Linear 95.09% 

1 Polynomial 50.90% 

1-10 RBF 93.18% 

1-19 Sigmoid 92.36% 

 

 

 

Figure 4.38: Classification performance of SVM for prostate data 

(normalized) 

 

 

 

 

Table 4.52: Feature numbers for prostate dataset using MLP (raw) 
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Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-60 T test 91.18% 

1-20 ROC 88.54% 

1-40 ReliefF 83.18% 

1-20 Wilcoxon 88.45% 

1-60 CFS 99.09% 

1-30 Entropy 89.36% 

1-90 MRMR 93.18% 

1-80 DISR 100% 

1-10 Bhattacharyya 84.54% 

 

 

Figure 4.39: Classification performance of MLP for prostate data (raw) 
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T test = 91.1818

ROC = 88.5455

ReliefF= 83.1818

Wilcoxon= 88.4545

CFS= 99.0909

Entropy= 89.3636

MRMR= 93.1818

DISR= 100

Bhattacharyya = 84.5455
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Table 4.53: Feature numbers for prostate dataset using MLP (normalized) 

Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-50 T test 91.27% 

1-60 ROC 88.54% 

1-90 ReliefF 85.45% 

1-50 Wilcoxon 88.45% 

1-10 CFS 94.09% 

1-50 Entropy 84.72% 

1-90 MRMR 87.27% 

1-30 DISR 97% 

1-30 Bhattacharyya 79.18% 

 

Figure 4.40: Classification performance of MLP for prostate data 

(normalized) 
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T test = 91.2727

ROC = 88.5455

ReliefF= 85.4545

Wilcoxon= 88.4545

CFS= 94.0909

Entropy= 84.7273

MRMR= 87.2727

DISR= 97

Bhattacharyya = 79.1818
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4.3 Experimental Results for DLBCL Data 
 

Same experimental procedure followed for the DLBCL data. Nine different 

feature selection methods applied to find an optimal gene subset. Sufficiency of the 

gene subsets for classification evaluated using SVM and multi-layer perceptron. 10-

fold cross validation is used to separate the data into train and test sets. C SVM with 

four different kernels is applied to determine the classification performance. Feed 

forward back-propagation perceptron with four layers which has Levenberg-

Marquadt as training and mean squared error as performance function is used to 

evaluate the classification performance. Feature number for the gene subsets is 

selected according to previous studies and adjusted in the range of [1 100]. Different 

gene subsets constituted with 9 feature increments and the classifiers evaluated over 

these 10 different gene subsets. First, the classification performed with the raw data. 

Normalization so that the data will have 0 mean, 1 standard deviation and scaling in 

the range of [-1 1] applied to see its effect on gene selection and classification 

performance. 
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Table 4.54: T test statistic feature selection for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-91 Linear 93.33% 

1-82 Polynomial 88.57% 

1 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.41: Classification performance of SVM for DLBCL data (raw) 
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Table 4.55: T test statistic feature selection for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-73 Linear 88.39% 

1 Polynomial 75.47% 

1-19 RBF 76.78% 

1-91 Sigmoid 75.47% 

 

 

 

Figure 4.42: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.56: CFS for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-64 Linear 95% 

1-55 Polynomial 100% 

1 RBF 76.42% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.43: Classification performance of SVM for DLBCL data (raw) 
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Table 4.57: CFS for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-73 Linear 93.39% 

1 Polynomial 75.47% 

1-10 RBF 80.89% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.44: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.58: Bhattacharyya Distance for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-55 Linear 93.75% 

1-64 Polynomial 95% 

1-46 RBF 75.47% 

1-46 Sigmoid 75.47% 

 

 

 

Figure 4.45: Classification performance of SVM for DLBCL data (raw) 
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Table 4.59: Bhattacharyya Distance for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-37 Linear 83.57% 

1-19 Polynomial 75.47% 

1-19 RBF 75.47% 

1-64 Sigmoid 75.47% 

 

 

 

Figure 4.46: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.60: Entropy for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 92.32% 

1-37 Polynomial 87.14% 

1-19 RBF 75.47% 

1-28 Sigmoid 79.46% 

 

 

 

Figure 4.47: Classification performance of SVM for DLBCL data (raw) 
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Table 4.61: Entropy for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 81.60% 

1-55 Polynomial 75.47% 

1-28 RBF 75.47% 

1-28 Sigmoid 75.47% 

 

 

 

Figure 4.48: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.62: ReliefF for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-37 Linear 96.07% 

1-100 Polynomial 94.82% 

1 RBF 75.47% 

1-91 Sigmoid 75.47% 

 

 

 

Figure 4.49: Classification performance of SVM for DLBCL data (raw) 
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Table 4.63: ReliefF for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 92.14% 

1 Polynomial 75.47% 

1-10 RBF 76.60% 

1-37 Sigmoid 75.47% 

 

 

 

Figure 4.50: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.64: Wilcoxon signed-rank test for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-37 Linear 92.32% 

1-100 Polynomial 93.21% 

1-91 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.51: Classification performance of SVM for DLBCL data (raw) 
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Table 4.65: Wilcoxon signed-rank test for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-37 Linear 94.64% 

1 Polynomial 75.47% 

1-19 RBF 89.64% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.52: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.66: MRMR for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-46 Linear 96.25% 

1-37 Polynomial 93.75% 

1 RBF 77.85% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.53: Classification performance of SVM for DLBCL data (raw) 
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Table 4.67: MRMR for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-73 Linear 90.89% 

1 Polynomial 75.47% 

1 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.54: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.68: DISR for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 91.01% 

1-82 Polynomial 87.14% 

1-91 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.55: Classification performance of SVM for DLBCL data (raw) 
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Table 4.69: DISR for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-100 Linear 88.21% 

 Polynomial 75.47% 

1 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.56: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.70: ROC for DLBCL dataset (raw) 

Number of features Kernel Type Classification Accuracy 

1-55 Linear 90.71% 

1-73 Polynomial 84.82% 

1-91 RBF 75.47% 

1 Sigmoid 75.47% 

 

 

 

Figure 4.57: Classification performance of SVM for DLBCL data (raw) 
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Table 4.71: ROC for DLBCL dataset (normalized) 

Number of features Kernel Type Classification Accuracy 

1-82 Linear 89.58% 

1-19 Polynomial 75.47% 

1-91 RBF 75.47% 

1-64 Sigmoid 75.47% 

 

 

 

Figure 4.58: Classification performance of SVM for DLBCL data 

(normalized) 
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Table 4.72: Feature numbers for DLBCL dataset using MLP (raw) 

Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-70 T test 89.82% 

1-90 ROC 86.96% 

1-90 ReliefF 83.75% 

1-100 Wilcoxon 89.82% 

1-90 CFS 100% 

1-90 Entropy 89.28% 

1-90 MRMR 98.75% 

1-100 DISR 97.5% 

1-50 Bhattacharyya 95% 

 

Figure 4.59: Classification performance of MLP for DLBCL data (raw) 
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T test = 89.8214

ROC = 86.9643

ReliefF= 83.75

Wilcoxon= 89.8214

CFS= 100

Entropy= 89.2857

MRMR= 98.75

DISR= 97.5

Bhattacharyya = 95
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Table 4.73: Feature numbers for DLBCL dataset using MLP (normalized) 

Number of features Feature Selection 

Algorithm 

Classification Accuracy 

1-90 T test 85.35% 

1-10 ROC 83.21% 

1-60 ReliefF 83.03% 

1-90 Wilcoxon 89.82% 

1-60 CFS 97.32% 

1-100 Entropy 70.53% 

1-60 MRMR 95% 

1-80 DISR 93.39% 

1-80 Bhattacharyya 66.42% 

 

Figure 4.60: Classification performance of MLP for DLBCL data 

(normalized) 
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T test = 85.3571

ROC = 83.2143

ReliefF= 83.0357

Wilcoxon= 89.8214

CFS= 97.3214

Entropy= 70.5357

MRMR= 95

DISR= 93.3929

Bhattacharyya = 66.4286
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The performance of the above feature selection algorithms and classifiers are 

evaluated according to their classification performance and required feature/gene 

numbers. There is a trade-off between these two factors. Although, high 

classification accuracy is desired and important for the performance of the algorithm, 

required feature number should be small. Previous studies show that less than 50 

features are enough to classify cancer types with good classification performance 

[40], [44]. 

For the leukemia data classification problem, all of the algorithms performed 

well, above 80% classification accuracy. When the raw data used for classification, t 

test as feature selection algorithm with linear SVM gave the best result; 100% 

classification accuracy and used only 10 features/genes to classify. Normalization 

and scaling for leukemia data increased the classification performance but affected 

the required feature number negatively for most of the feature selection algorithms. 

ROC as feature selection algorithms with linear SVM gave the best result for 

normalized and scaled leukemia data; 98.75% classification accuracy with only 10 

features required. When multi-layer perceptron is used for classification, CFS gave 

the best result with 100% accuracy, when raw data is used and required only 10 

features. Normalization and scaling of the data affected classification in MLP. CFS-

MLP was able to classify the data using 40 features with 96.90% accuracy. 

In the case of prostate data classification, the best classification accuracy 

reached by CFS feature selection algorithm with linear SVM which is 95.18%, and 

64 features required to perform this classification. Normalization and scaling of the 

prostate data did not have any effect on the required feature number and increased 

classification accuracies for most of the feature selection algorithms. Entropy as 

feature selection algorithm using Linear SVM as classifier performed well with 

96.18% classification accuracy, but required 100 features to classify for normalized 

and scaled prostate data. On the other hand, CFS used only 19 features to classify 

with 95.18% accuracy which is in the acceptable accuracy error range when the 

trade-off between feature numbers and accuracy is considered. Overall best result for 

this dataset is reached by MLP using DISR as feature selection algorithm with raw 

data. DISR-MLP was able to classify normal and cancerous tissues for prostate 

cancer with 100% classification accuracy and using 80 features/genes. Normalization 

and scaling affected the classification and required feature number for MLP. DISR-
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MLP classified the data with 97% accuracy. Even though the classification accuracy 

is decreased; the performance is still better and used only 30 features/genes. 

For the classification task of DLBCL data, most of the feature selection 

algorithms performed well when considering the classification accuracies but all of 

them required more than 50 features to classify. The best classification for raw data 

performed using CFS as feature selection algorithm with polynomial SVM, 55 

features used and classified with 100% accuracy. Normalization and scaling 

decreased the classification accuracy for all of the feature selection algorithms. When 

using normalized and scaled data, the best classification rate is reached using 

Wilcoxon signed-rank test with linear SVM as classifier, 37 features are needed to 

classify with 94.64% accuracy. On the other hand, CFS-MLP was able to classify 

with 100% accuracy using 90 features. Bhattacharyya distance as feature selection 

criterion performed relatively well for raw DLBCL data. MLP was able to classify 

the data with 95% accuracy. Despite the classification accuracy is decreased, only 50 

features used for this performance. Normalization and scaling of the data affected 

both the classification accuracy and required feature number. MLP was able to 

classify only using 60 features with 97.32% accuracy. 

Microarray datasets studied in this thesis provided corresponding gene 

descriptions as well. Therefore, the analysis of functions of the selected genes can be 

analyzed.  Feature selection is repeated for raw and normalized data to see the effect 

of normalization on the process. Feature selection algorithms were stable, and mostly 

selected the same genes with raw and normalized data.  

In [40] Golub et al. selected 50 genes to perform classification, and more than 

three of the feature selection algorithms that are used in this thesis were able to select 

24 genes identical to the original study. Even though no geneticist, biologist or 

oncologist contributed to the thesis, biological background for commonly selected 

genes is analyzed. Most of the selected genes play significant roles in cell cycle. 

However; some of them are not directly related with leukemia. For instance, CD33 

molecule is related to the natural kill receptor signaling pathways. Its effect on the 

apoptosis of AML cells are examined by many studies [78]. Any alteration in this 

gene may affect the cell cycle and cells may proliferate if they can’t perform 

apoptosis. Even though there are several studies about the relation of the selected 
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genes, an interdisciplinary and detailed research should be performed for the 

biological relevancy part of the thesis [79]-[81].  

Table 4.74: Most Commonly selected Genes for Leukemia dataset
3
 

Gene Names 

CD33 molecule Transcription factor 3 

Zyxin Topoisomerase (DNA) II beta 

Cystatin C Granulin 

Glutathione S-Transferase, 

Microsomal 

'PRG1 Proteoglycan 1, secretory 

granule 

Amyloid beta precursor-like protein 2 Fumarylacetoacetate hydrolase 

Cathepsin D LYN proto-oncogene 

Cyclin D3 CD79a molecule 

Complement Factor D (Adipsin) Myosin light chain 1 

Terminal transferase, GSTP1 ATPase H+ transporting V0 subunit c 

Myeloperoxidase Inducible protein 

Proteasome Iota Chain Complement Factor Properdin 

Azurocidin SWI/SNF Related, Matrix Associated, 

Actin Dependent Regulator Of 

Chromatin, Subfamily A, Member 4 

 

Additionally, the plot of expression values in Figure 4.61 shows the distinct 

gene expressions for different types of leukemia and their ability to classify ALL and 

AML. 

 

                                                           
3
 National Center for Biotechnology Information, 2016 

https://www.ncbi.nlm.nih.gov/ 
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Figure 4.61: Gene Expression Values for 24 commonly selected genes 

In [45] Singh et al. could not find any significant biological relation between 

gene expression values and tumor development. In the same way as Singh’s study, 

most of the selected features/genes are not correlated with the tumor development for 

prostate cancer. Different feature selection algorithms selected the same 25 genes. 

Even though there are some reference studies showing relation of these genes to the 

prostate cancer development, an expanded research should be performed to 

understand the biological relations of these genes [82]-[89]. 
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Table 4.75: Most Commonly Selected Genes for Prostate Dataset
4
 

Gene Names 

Transforming growth factor beta 3 Hepsin 

Annexin A2 pseudogene 3 Adipsin 

MAF bZIP transcription factor Prostaglandin D2 synthase 

thymosin beta 15a Neural EGFL like 2 

TCR gamma alternate reading frame 

protein 

Crystallin alpha B 

PDZ and LIM domain 5 Calmodulin 1 

Angiopoietin 1 X-box binding protein 1 

ADP ribosylation factor like GTPase 2 

binding protein 

Serpin family F member 1 

Solute carrier family 25 member 6 Ribosomal protein lateral stalk subunit 

P0 

Regulator of G-protein signaling 10 LIM domain only 3 

Prolyl 4-hydroxylase subunit beta Annexin A2 

Collagen type IV alpha 6 chain Family with sequence similarity 107 

member A 

Latent transforming growth factor beta 

binding protein 4 

 

 

                                                           
4
 
4
 National Center for Biotechnology Information, 2016 

https://www.ncbi.nlm.nih.gov/ 
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Figure 4.62: Gene Expression Values for 25 commonly selected genes 

 In the case of DLBCL data, feature selection using Bhattacharyya 

distance and t test resulted in almost identical gene selection. However; most of the 

feature selection algorithms resulted in diverse set of gene subsets [47]. 
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Chapter 5 
 

Conclusion 
 

  Gene expression data analysis is important for many research areas. It can 

help the understanding of cancer dynamics and provide great information for 

biomarker gene selection or targeted drug therapy studies. Even though the 

biological relevancy is argumentative, it is still preferable comparing to other data 

types. Yet, gene expression analysis is challenging because of several disadvantages 

of measured data. The biggest issue when it comes to gene expression data analysis 

is dimensionality. Generally, gene expression datasets contain values for thousands 

of genes while remaining small sample size. Therefore, feature selection is crucial 

for the analysis of gene expression data.   

In this thesis, two classification methods are designed by using nine different 

feature selection algorithms for gene selection and two different classifiers for the 

classification of cancer types. Discrete data obtained by using microarray data is 

employed in every method. The basic difference between the proposed methods is 

caused by the difference in feature selection algorithms. Seven of the feature 

selection algorithms employed in this thesis rank the features according to their 

relation to the class and fast in terms of computation time. The other two feature 

selection algorithms provide a gene subset and computation time is much slower than 

the others. Therefore, in the first method, data is ranked according to the criterion of 

feature selection algorithm and top ranked 100 features are selected to perform 

classification and this process is repeated in each cross-validation. When the feature 

selection algorithms which provide a gene subset are employed for the gene selection 

part, a feature subset with 100 features is chosen and the following experiment 
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procedures are completed over this subset. All experiments are performed for both 

raw and pre-processed data with or without feature selection. Normalization and 

scaling is performed in the pre-processing part of the data preparation. Feature 

selection algorithms were stable enough to choose same features for raw and pre-

processed data and pre-processing had no effect on the feature selection. Since SVM 

is prone to big data, classification without any gene selection is performed only with 

SVM. Multi-layer perceptrons were not able to classify this type of big data. Feature 

selection solved the dimensionality problem of the microarray data and made the 

data available for MLP. Furthermore, different gene subsets for each of the studied 

cancer types are provided by several feature selection algorithms. Optimality of these 

gene subsets and the performance of feature selection algorithms are compared in 

Chapter 5 in detail. SVM with different kernels and MLP with back-propagation 

algorithm have been employed to classify the cancer types. Performances of the 

classifiers are examined in Chapter 5 separately for each dataset used in this thesis. 

 The experiment results in Chapter 5 indicate that both classifiers can be 

employed for the classification task of microarray cancer datasets. Most of the 

classifiers perform above 80% classification accuracy. In terms of classification 

accuracy, every feature selection and classifier combination is applicable to each 

cancer classification problem. In the case of leukemia type classification, both t test-

linear SVM and CFS-MLP combinations resulted in 100% accuracy. The best 

classification performance is reached by DISR-MLP combination for the 

classification task of normal and cancerous tissue of prostate cancer. CFS-

polynomial SVM and CFS-MLP combinations performed well for DLBCL data set 

classification problem with 100% percent accuracy. When the biological relevancy 

of the provided gene subsets are considered, feature selection algorithms fail to select 

relevant genes for prostate and DLBCL datasets. In the case of leukemia type 

classification, most of the selected genes by more than three feature selection 

algorithms were identical to the original study and the classification ability of these 

genes were distinguishable from Figure 4.61.   

 In conclusion, proposed feature selection and classification methods 

performance’s resulted better than previous studies in terms of classification ability. 

It is shown that these methods can be employed for further analysis of gene 

expression data and biomarker gene selection for specific cancer types. Selected gene 
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subsets by each of the feature selection method or commonly selected genes by most 

of the feature selection algorithms were not clinically evaluated or analyzed by a 

geneticist. Yet, they are compared with the previous study results and some reference 

studies are found for most commonly selected genes of leukemia and prostate cancer. 

The classification problems studied in this thesis were binary classification problems. 

Proposed methods can be enhanced for the multi-class classification problems. 

Although the results of the experiments in terms of classification accuracy are 

adequate for most of the feature selection and classifier combinations, optimization 

of feature selection and classification algorithms must be performed. Optimization of 

significant parameters may improve the classification accuracy and relativity of the 

selected genes. Moreover, an interdisciplinary approach must be considered for a 

better analysis of biological relevancy of the selected gene subsets. This thesis may 

contribute to these several aspects of gene expression data analysis. 
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