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QUASI-STATIC AND DYNAMIC ANALYSIS OF VISCOELASTIC PLATES 

SUMMARY 

The behavior of real bodies under external loads constitutes a significant part of solid 

mechanics. Rheology is the science, which studies the behavior of the material under 

the influence of applied stress. The mathematical form of the rheology is called the 

constitutive equations or stress-strain relations. This is, of course, an ideal case since 

all materials change shape, namely to undergo deformation when the self-weight of 

the materials is considered as a factor that causes stress. The amount of deformation 

changes depending on the amount of applied stress, environmental conditions (such as 

ambient temperature), rate and duration of loading and type of material. The behavior 

of materials can be divided into three main groups under different stress and 

temperature conditions: (1) Elastic behavior (2) Plastic behavior (3) Viscous behavior. 

Elastic behavior is time-independent. An elastic body undergoes an instantaneous 

strain, with stress application and the strain stays constant under the constant stress. 

The strain in the elastic body only depends upon the final value of stress and not upon 

its history. Plastic behavior is also time-independent. When a body that shows plastic 

behavior is stressed beyond the yield point, it experiences instantaneous deformation 

followed by plastic deformation. Plastic deformation, regardless of time and rate of 

loading, depends only on the maximum value of the stress in the past. In viscous 

behavior, stress is proportional to strain rate. When the body that exhibits viscous 

behavior is loaded, the deformation is not instantaneous but delayed and it increases 

with time. When the load is removed, there is a permanent deformation. There are also 

transition regions between the main groups of behavior. Numerous materials exhibit 

both viscous and elastic behavior under the applied stress. Viscoelastic behavior is 

commonly composed of combinations of elastic and viscous behavior.  

There are some phenomena that occur in viscoelastic bodies such as instantaneous 

elasticity, creep, stress relaxation, instantaneous elastic recovery, delayed recovery and 

permanent or viscous deformation. The rate of loading and duration of applied load 

affect deformation of a viscoelastic material. The resulting strain will be the same 

regardless of the rate of loading for the elastic and plastic behavior; however, in a 

viscoelastic substance, the slow loading results in higher strain than the faster loading. 

The strain value at any time depends upon the whole stress history. 

The values of strain should be limited in addition to the values of stress of structural 

systems in practice. For example, creep phenomenon occurs in metals at elevated 

temperatures and in concrete, wood and plastics at normal (room) temperatures. 

Special precautions that minimize the effects of creep should be taken especially in 

high-rise buildings. Moreover, machine components that operate at high temperatures, 

asphalt pavements deform under stress and these deformations are mostly irreversible. 

Another important phenomenon, which is actually in direct relation to the creep, is 

relaxation. The relaxation phenomenon should also be considered in some application 

areas. For instance, it is expected that the time dependent relaxation of stress in steel, 

which is used in prestressed reinforced concrete elements should be low. 
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This and other similar examples that represent the time dependence of the mechanical 

behavior of materials necessitate the need for considering time as a variable. A 

constitutive equation of viscoelastic behavior includes time as a variable in addition to 

the stress and strain variables. 

It is very important to model the time-dependent behavior, in other words, viscoelastic 

behavior properly for the accurate analysis of structures made of viscoelastic materials. 

The most commonly used method by the science of rheology is to develop some 

rheological models and to make laws of deformation with the help of these models. 

With this purpose, starting with standard rheological models in literature (such as 

Kelvin, Maxwell, etc.) behavior of plates represented by different mechanical models 

is discussed within the scope of thesis for a more realistic approach. 

Plates are important structural elements having more than one function. One of the 

main functions of plates is to transfer the applied loads to the supporting members of 

load-bearing system properly and the other one is to form a convenient basis for its 

purpose by providing continuity between members of load-bearing system. The fact 

that plates are one of the most commonly used structural elements in engineering 

makes the plate theories and applications as an interesting research topic. 

In this thesis study, quasi-static and dynamic analysis of plates modeled with 

viscoelastic constitutive equations is studied under different types of time dependent 

loads considering the Kirchhoff plate theory that ignores the transverse shear stress. 

Due to the difficulty of obtaining closed-form solutions for the problems which have 

complex geometries, loading conditions and constitutive relations, numerical solution 

techniques are employed. The finite element method is widely used because it is 

systematic and suitable for programming and it can be easily applied to solve complex 

problems in engineering disciplines. 

In this study, which examines linear viscoelastic plate problems, a mixed finite element 

formulation is developed. By applying the Gâteaux differential approach, a new 

functional that includes the boundary conditions of the problem is proposed through 

the potential operator condition is satisfied. Hereditary integral form of the constitutive 

law is used in order to represent the viscoelastic behavior. The solutions obtained in 

the Laplace-Carson domain are transformed into the real-time domain using various 

numerical inverse Laplace transform methods. With this study, the performance of the 

numerical inverse transformation techniques such as Maximum Degree of Precision 

(MDOP), Dubner & Abate and Durbin are compared and, the detailed information is 

given about the content, parameter, precision, advantages/disadvantages and so on of 

transform methods. A special computer program is developed in Fortran programming 

language in order to perform analysis. 

The unique aspects of this thesis study and the possible contributions of the proposed 

method to the literature can be summarized as follows: by using this new functional, 

moment and shear force values that are important for engineers can be obtained 

directly without any mathematical operation. In addition, geometric and dynamic 

boundary conditions can be obtained easily and a field variable can be included to the 

functional systematically. Moreover, shear locking problem can be eliminated.  

The effectiveness of the mixed finite element formulation developed for the analysis 

of viscoelastic Kirchhoff plates is shown by several numerical examples. In addition, 

it is aimed to form the base for the analysis of viscoelastic plate problems by 

considering the original problems that have not been discussed in the literature yet. 
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The studies that use the formulation proposed within the scope of the thesis for the 

analysis of viscoelastic structural elements with arbitrary geometries still continue. 

Thus, the gap in the literature related to the analysis of viscoelastic structural elements 

with complex geometries will be able to fill and viscoelastic analysis, which is a more 

realistic approach, will be widely used for the investigation of engineering structures 

in the future. 
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VİSKOLEASTİK PLAKLARIN KUAZİ-STATİK VE DİNAMİK ANALİZİ 

ÖZET 

Reel cisimlerin dış yükler altındaki davranışı, katı cisim mekaniğinin önemli bir 

bölümünü teşkil eder. Reoloji maruz kalınan gerilmeye karşı malzemenin davranışını 

inceleyen bilim dalıdır. Reolojinin matematiksel ifadesi ise bünye denklemleri veya 

gerilme-şekil değiştirme bağıntıları olarak adlandırılır. Malzemelerin kendi 

ağırlıklarının da gerilme yaratan bir unsur olduğu düşünüldüğünde, her malzemenin 

şekil değiştirmesi yani deformasyona uğraması kaçınılmazdır. Şekil değişimi miktarı 

cismin maruz kaldığı gerilmenin şiddetine, çevre koşullarına, yükleme hızı ve süresine 

ve malzeme türüne göre değişir. Değişik gerilme ve sıcaklık koşulları altında 

cisimlerin davranışları üç ana gruba ayrılır: (1) Elastik davranış (2) Plastik davranış 

(3) Viskoz davranış. Elastik davranış zamandan bağımsızdır. Elastik cisimlerde şekil 

değiştirme gerilme ile aynı anda oluşur, gerilme sabit kalınca şekil değiştirme sabit 

kalır. Elastik cisimlerde şekil değiştirme gerilmenin son değerine bağlıdır, geçmişte 

aldığı değerlerin etkisi yoktur. Plastik davranışta zamandan bağımsızdır. Bu tür 

davranış gösteren cisme akma sınırının üstüne çıkan bir gerilme uygulandığında, ani 

şekil değiştirme ve onu izleyen plastik şekil değiştirme oluşur. Plastik şekil değiştirme 

zamandan ve yükleme hızından bağımsız olarak sadece gerilmenin geçmişte aldığı en 

büyük değerine bağlıdır. Viskoz davranışta gerilme ile şekil değiştirme hızı orantılıdır. 

Bu tür davranış gösteren cisme gerilme uygulandığında deformasyon aniden olmaz, 

gecikmeli şekil değişimi gösterir ve şekil değişimi zamana bağlı olarak artar. Yük 

kaldırıldığında, deformasyon kalıcıdır. Bu ana davranış grupları arasında geçiş 

bölgeleri de vardır. Pek çok malzeme gerilmeler altında hem elastik hem de viskoz 

davranış gösterir. Viskoelastik davranış genellikle viskoz davranışla elastik davranışın 

karışımlarından oluşur. 

Viskoelastik davranış gösteren cisimlerde ani elastik uzama, sünme, gevşeme, ani 

elastik toparlanma, gecikmiş toparlanma ve kalıcı veya viskoz şekil değiştirme gibi 

olaylar gerçekleşir. Viskoleastik malzemede, yükleme hızının ve süresinin oluşacak 

şekil değiştirmeye etkisi vardır. Yükleme hızı ne olursa olsun elastik ve plastik 

davranışta aynı gerilme altında oluşan son şekil değiştirmeler aynı olacaktır ancak 

viskoleastik cisimde yavaş yükleme sonunda oluşan şekil değiştirme, hızlı yüklemenin 

sonunda oluşacak şekil değiştirmeden daha büyük olur. Herhangi bir andaki şekil 

değiştirme gerilmenin geçmişte aldığı bütün değerlere bağlıdır. 

Uygulamada yapı sistemlerinde gerilmenin yanında şekil değiştirmenin de sınırlı 

olması gerekir. Örneğin metallerde yüksek sıcaklıklarda; beton, ahşap ve plastiklerde 

ise oda sıcaklığında sünme olayı gerçekleşir. Özellikle yüksek binalarda sünme 

etkisini azaltıcı önlemler almak gerekir. Ayrıca asfalt kaplamalar, yüksek sıcaklıkta 

çalışan makina parçaları gerilme altında deforme olurlar ve bu deformasyonlar çoğu 

kez tam olarak geri dönmezler. Gerçekte sünme olayından kaynaklanan bir diğer 

önemli olay ise gevşemedir. Gevşeme olayının da bazı uygulama alanlarında göz 

önüne alınması gerekir. Örneğin öngerilmeli betonarme elemanlarda kullanılan donatı 

çeliklerinde zamanla oluşacak gevşemenin düşük olması istenir. 
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Malzemelerin mekanik davranışlarının zamana bağlılığını temsil eden bu ve benzeri 

birçok örnek, zamanın da bir değişken olarak hesaba katılması gerekliliğini zorunlu 

kılmıştır. Viskoelastik davranışta bünye denklemlerinde gerilme ve şekil 

değiştirmenin yanında bir de zaman değişkeni vardır. 

Zamana bağlı davranışın, diğer bir deyimle viskoelastik davranışın doğru bir şekilde 

modellenmesi, bu malzemeden yapılmış olan yapıların doğru analizi için son derece 

önemlidir. Reoloji biliminin en çok yararlandığı yöntem bir takım reolojik modeller 

geliştirmek ve bunların yardımı ile şekil değişimleriyle ilgili yasaları çıkarmaktır. Bu 

amaçla, tez kapsamında literatürdeki standart reolojik modellerden (Kelvin, Maxwell, 

vb.) başlanarak, daha gerçekçi yaklaşım için değişik mekanik modellerin temsil ettiği 

plak davranışları ele alınmıştır. 

Plaklar, birden fazla işleve sahip önemli yapı elemanlarıdır. Plakların ana işlevlerinden 

biri, üzerine etkiyen yükleri oturduğu taşıyıcı sistem elemanlarına sağlıklı bir şekilde 

aktarmak, diğeri ise taşıyıcı sistem elemanları arasındaki sürekliliği sağlayarak 

işlevine uygun bir zemin oluşturmaktır. Mühendislikte plakların yaygın kullanım 

alanına sahip olan yapı elemanlarından biri olması, plak teorilerini ve uygulamalarını 

ilgi çekici araştırma konusu haline getirmiştir. 

Bu tez çalışmasında, kalınlık doğrultusundaki kayma gerilmelerini göz ardı eden 

Kirchhoff plak teorisi esas alınarak, viskoelastik bünye denklemlerine sahip plakların 

zamanla değişen farklı yükleme türleri için kuazi-statik ve dinamik  analizleri 

yapılmıştır. 

Karmaşık geometrilere, yükleme koşullarına ve bünye denklemlerine sahip 

problemlerin kapalı çözümlerini elde etmede yaşanan zorluklardan dolayı, sayısal 

çözüm yöntemleri uygulanmaktadır. Sonlu elemanlar yöntemi, sistematik ve 

programlamaya elverişli olması ve mühendislik disiplinlerindeki karmaşık 

problemlerin çözümünde kolaylıkla uygulanabilmesinden dolayı yaygın olarak 

kullanılmaktadır. 

Lineer viskoelastik plak problemlerinin incelendiği bu tez çalışmasında Laplace-

Carson uzayında bir karışık sonlu eleman formülasyonu geliştirilmiştir. Gâteaux 

diferansiyel yaklaşımı uygulanarak, potansiyel operator koşulunun sağlatılması ile 

probleme ait sınır koşullarını da içeren yeni bir fonksiyonel önerilmiştir. Viskoelastik 

davranışı temsil etmek için Hereditary (bellekli) integral tipinde bünye bağıntıları 

kullanılmıştır. Laplace-Carson uzayında elde edilen çözümler, çeşitli sayısal ters 

Laplace dönüşüm yöntemleri kullanılarak gerçek zaman uzayına dönüştürülmüştür. 

Bu çalışma ile, En Büyük Duyarlılık Derecesi (MDOP), Dubner & Abate ve Durbin 

gibi sayısal ters dönüşüm tekniklerinin performansları kıyaslanmış ve dönüşüm 

yöntemlerinin içerikleri, parametreleri, hassasiyetleri, karşılıklı üstünlükleri vb. 

hakkında detaylı bilgi verilmiştir. Analizlerin gerçekleştirilebilmesi için Fortran 

programlama dili kullanılarak özel bir bilgisayar programı hazırlanmıştır. 

Bu tez çalışmasının özgün değerleri ve önerilen yöntemin literatüre yapacağı katkılar 

şu şekilde özetlenebilir: önerilen yeni fonksiyonel kullanılarak, mühendislikte önemli 

olan moment ve kesme kuvveti değerleri doğrudan elde edilebilir. Buna ek olarak, 

probleme ait geometrik ve dinamik sınır koşulları kolaylıkla elde edilebilir ve herhangi 

bir alan değişkeni sistematik bir biçimde fonksiyonele aktarılabilir. Ayrıca, kayma 

kilitlenmesi gözlenmez. 

Viskoleastik Kirchhoff plaklarının analizi için geliştirilen karışık sonlu eleman 

formülasyonunun etkinliği çeşitli sayısal uygulamalarla gösterilmiştir. Ayrıca 
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literatürde hiç ele alınmamış özgün problemlerin çözümü yapılarak viskoelastik plak 

problemlerinin analizi ile ilgili alt yapı oluşturulması hedeflenmiştir. Tez çalışması 

kapsamında sunulmuş bu yöntemin keyfi geometriye sahip viskoelastik yapı 

elemanlarının analizi için de kullanılması yönünde çalışmalar devam etmektedir. 

Böylece literatürde karmaşık geometrilere sahip viskoelastik yapı elemanlarının 

analizi ile ilgili boşluk doldurulabilecek ve daha gerçekçi olan viskoelastik analiz 

gelecekteki mühendislik yapılarının incelenmesinde çok daha yaygın olarak 

kullanılabilecektir. 
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 INTRODUCTION  

Plates are one of the most significant structural members which are used extensively 

in all fields of engineering such as bridge buildings, high-rise buildings, hydraulic 

structures, aircraft structures, etc. Because of the applications requiring high-load 

carrying capacity, lightweight, economic and technological effectiveness, it becomes 

very important to understand the behavior of plates. 

If we look at the development of plate theory history, various plate theories are 

developed depends on the changes in structural materials. In the context of the plate 

theories, two different limit cases are usually considered one of which is the 

Kirchhoff’s (classical thin) plate theory and the other one is the Reissner-Mindlin’s 

plate theory. Reissner-Mindlin’s first order shear deformation plate theory can be used 

for somewhat thicker plates when compared to Kirchhoff’s plate theory and considers 

the influence of the transverse shear deformation on the deflection of the plate. 

Kirchhoff’s plate theory forms the basis for calculating and designing of engineering 

structures and has widespread use in practice. 

The classical (thin) plate theories assume that the material of the plate is linear elastic 

based on the fundamental assumption of the linear, elastic, small-deflection theory of 

bending. For linear elastic materials, the stress is proportional to the strain and when 

the external force is removed, internal forces generated by the deformation disappear. 

The deformation depends on many factors such as geometrical configuration of the 

body, the applied load, the exposure time, the mechanical properties of the material, 

etc. 

Due to the internal forces dominate the response; characterizing the stress-strain 

relation of the material becomes a major concern in the practical design and analysis 

of engineering structures. 

To simplify the analysis, it is generally assumed that the material behavior is elastic. 

However, in reality, most engineering materials exhibit noticeable time-effects. 

Therefore, real materials have viscous and elastic properties simultaneously due to 
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internal friction and time-dependent deformation so they are named as viscoelastic. In 

viscoelastic materials, viscosity, which is defined as the ratio of stress to strain rate, 

affects the time-dependent response. An instantaneous elastic response is observed 

upon loading then a slow and continuous change occurs in the response at a decreasing 

rate. 

With regard to the actual material behavior, viscoelastic constitutive relations should 

be used instead of elastic constitutive relations for determination of the most realistic 

results. Hence, it is crucial to fully understand the mechanism and response of 

viscoelastic materials in order to analyze the behavior of structural components 

properly. 

The constitutive equations of viscoelastic materials may be either linear or nonlinear. 

However, the assumptions of linear viscoelastic analysis will be considered in this 

thesis. 

Theory of linear viscoelasticity focuses on the history of stress or strain. The behavior 

of viscoelastic materials modeled mathematically using mechanical analogs consisting 

of springs and dashpots. Spring and dashpot are the basic elements and used for 

modeling the elastic and viscous behaviors of viscoelastic materials, respectively. 

In order to describe a wide range of linear viscoelastic materials, various combinations 

of spring and dashpot elements in series and/or parallel arrangement are used. To 

capture viscoelastic phenomena, the most commonly used models are the Maxwell 

model, the Kelvin-Voight model and complex combinations of these elementary 

models. The Maxwell model represents the material shows a typical property of a fluid 

whereas the Kelvin-Voight model represents the material shows a typical property of 

a solid. Neither the Kelvin-Voight solid model nor the Maxwell fluid model is 

sufficient for describing the response of linear viscoelastic solids and fluids certainly. 

Combinations of the classical models are used to illustrate the actual material’s 

viscoelastic behavior that it undergoes strain slowly varying with time under constant 

stress (it creeps) and the stress in response to a constant strain diminishes gradually 

with time (it relaxes). 

There are basically three approaches used in linear viscoelastic analysis. They are 

Laplace transformation, Fourier transformation and direct time integration method. 

Laplace transform and Fourier transform are used for solving differential equations 
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easily by turning differential equations into algebraic equations. Laplace and Fourier 

transformation approaches involve solving the problem in the transformed domain and 

reverting the results into the physical domain by applying inverse transformation. In 

the direct time integration approach, analysis involves the integration of the behavior 

over a series of time steps. Correspondence principle (the elastic-viscoelastic analogy) 

is another procedure in linear theory of viscoelasticity that is carried out by 

transforming the governing equations of viscoelastic problem into a set of 

corresponding elastic governing equations. 

When these approaches are compared, Laplace transformation seems to be simpler and 

more efficient if an accurate numerical inverse transform method is available. There 

are many methods such as Schapery, Fourier, Durbin, Dubner & Abate and Maximum 

Degree of Precision (MDOP) in literature for numerical inversion. 

Furthermore, Laplace-Carson transformation can also be used for the linear 

viscoelastic problems. Several studies exist in literature which calculated the linear 

viscoelastic response of the structure in the Laplace-Carson domain. In the present 

study, method of Laplace-Carson transform will be utilized for the analysis. 

To analyze viscoelastic problems, most of the analytical methods use correspondence 

principle. However, an application of this method is restricted to very limited problems 

with simple geometry and loading conditions (Vallala et al, 2012). For the problems 

have complex geometries, loadings and constitutive relations, closed-form solution are 

often not possible and numerical solution techniques should be employed. Finite 

element method is one of the most powerful numerical solution techniques and has 

ability to handle all types of analysis in structural mechanics. The application of the 

Finite element method is the most common and has been presented by a number of 

authors. However, one well-known problem associated with the finite element analysis 

of the plate elements is shear-locking phenomenon. Whenever the plate thickness 

decreases, locking effect is clearly observed. To avoid shear locking, alternative finite 

element formulations (mixed type) are widely used. 

Researchers suggested many principles to formulate mixed type finite element 

formulations. The Hellinger-Reissner and the Hu-Washizu principles are more popular 

ones and these variational principles are based on the minimization of the energy 

functional. Hellinger-Reissner principle involves stresses and displacements as 



4 

fundamental unknown variables. Hu-Washizu principle is a generalization of 

Hellinger-Reissner principle and involves stresses, strains and displacements as 

functional arguments. In derivation of a functional, the Gâteaux Differential method is 

more powerful and efficient variational tool when compared to conventional 

variational principles, Hellinger-Reissner and Hu-Washizu. 

In this thesis, the quasi-static and dynamic behavior of viscoelastic Kirchhoff plates is 

studied numerically by using the mixed finite element method in transformed Laplace–

Carson space. In the transformed Laplace–Carson space, a new functional has been 

constructed for viscoelastic Kirchhoff plates through a systematic procedure based on 

the Gâteaux differential. For numerical inversion, the Maximum Degree of Precision 

(MDOP), Dubner & Abate’s, and Durbin’s transform techniques are employed. The 

developed solution technique is applied to several quasi-static and dynamic example 

problems. 

 Purpose of Thesis  

Most engineering materials exhibit viscoelastic properties with deformation depending 

on load and time. While the material undergoes deformation, energy dissipation occurs 

due to internal friction. Viscoelastic materials have a mix of two simple behaviors, 

viscous and elastic behaviors. Viscoelastic materials show pronounced influence of 

the rate of loading and display creep and relaxation. Such a material shows a slowly 

increasing deformation with time under sustained constant stress, that is, it creeps; and 

the stress diminishes gradually with time if deformed at constant strain, that is, it 

relaxes. 

In certain cases, a viscoelastic evaluation is sufficiently complicated to challenge 

because modelling the behavior of progressive deformations (i.e., suffer from creep, 

relaxation and hysteresis problems) along the long-term structural response involves 

mathematical complexity. 

Analysis of the structural elements like beams, plates or shells subjected to time 

varying loadings is one of the well-established areas of applied mechanics. Although 

many research activities have been devoted toward the development of theoretical and 

computational methods for the viscoelastic analysis of beams, very little has been done 

to analyze time-dependent (viscoelastic) behavior of plates. As a consequence of the 
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increasing applications of plates constructed with various shapes, it becomes 

increasingly important to be able to characterize the viscoelastic response of plates. 

In this sense, the main objective of this thesis is to perform quasi-static and dynamic 

analysis of viscoelastic Kirchhoff plates. The other objectives and an outline of this 

thesis can be given as follows: 

 to obtain the field equations for the viscoelastic Kirchhoff plates 

 to utilize the method of the Laplace-Carson transform in order to remove the time 

derivatives from governing equations and boundary conditions 

 to obtain the field equations in the Laplace-Carson space 

 to construct a new functional for viscoelastic Kirchhoff plates through a systematic 

procedure based on the Gâteaux Differential method. In this functional, there exists 

four independent variables such as deflection w, internal forces (bending moments 

Mx and My, and twisting moment Mxy). In addition to this, dynamic and geometric 

boundary condition terms are included in the functional in a systematic way 

 to develop mixed finite element formulations for viscoelastic Kirchhoff plates in 

the Laplace-Carson space 

 to develop computer program in order to perform calculations in transformed space 

 to analyze the problem and obtain the solutions in transformed space by applying 

the developed computer program 

 to apply various numerical inverse transform techniques for transformation of the 

solutions obtained in the Laplace-Carson domain to the time domain 

 to test the performance of the different inverse transform methods and to identify 

suitable methods for inverse transformation 

 to compare the results of the present study with the results of the other studies 

available in the literature and to demonstrate the validity and effectiveness of the 

procedure for different time-dependent loads and viscoelastic material models 

 to verify the results with different examples and to evaluate and discuss the 

obtained results 

The possible contributions of this thesis to the scientific knowledge can be stated as 

follows: 
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 Mechanics of viscoelastic media is challenging problem for researchers. Since 

performing viscoelastic analysis is believed to be too complicated, numerical 

studies in this area are relatively limited. This study presents a new mixed type 

finite element formulation based on the Gâteaux differential method for the quasi-

static and dynamic analysis of linear viscoelastic Kirchhoff plates. The 

characteristics of the element are; 

i. Simple, reliable, and efficient in computations 

ii. Fairly accurate moment and shear force predictions 

iii. Directly obtained boundary condition terms (geometric and dynamic) 

iv. No shear-locking effect for very thin structures 

 A numerical methodology discussed in this thesis can easily be applied for the 

analysis of viscoelastic structural members like laminated composite beams 

according to different beam theories, shells with complex geometry and 

constitutive relations, and plates with different theories in bending. Thus, new 

research infrastructures can be built for future studies. 

 Literature Review 

Since the plate elements are being increasingly used in all fields of engineering, a 

considerable amount of research has been devoted to this subject. In order to describe 

the behavior of plates, various theories have been developed. The interested reader is 

referred to Timoshenko (1953), Truesdell (1968), Ventsel and Krauthammer (2001) 

and Szilard (2004) for more information about the historical background of the plate 

theories and their applications. 

Of the numerous plate theories, two are widely accepted and used in engineering 

depending on whether transverse shear deformation is considered or not considered. 

These theories are Kirchhoff-Love (classical) plate theory (Kirchhoff, 1850) and 

Reissner-Mindlin (first-order shear) plate theory (Reissner, 1944, 1945 and Mindlin, 

1951). Kirchhoff-Love plate theory is used for the analysis of thin plate of which its 

thickness to width ratio is less than 0,1 and for the analysis of plates with small 

deflections as the maximum deflection of the plate is less than two tenths of its 

thickness. Kirchhoff-Love plate theory neglects transverse shear deformation in the 

plate thickness whereas Reissner-Mindlin plate theory takes into account the influence 

of the transverse shear deformation on the deflection of the plate. The theory developed 
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by Mindlin also includes the effects of rotary inertia in addition to the effect of the 

transverse shear deformation. The reader is referred to relevant research papers 

Donnell et al. (1946), Salerno and Goldberg (1960) and Voyiadjis et al. (1985) for 

more information about the assumptions of these theories. 

There are many works in the literature on the static and dynamic analysis of plates 

with various theories and geometries because determination of the plate deformations 

and stresses when it is subjected to loads is an important engineering problem. Initially, 

researchers usually focused on elastic problems, but when viscoelastic materials found 

wider utilization in practice, the need for studies on viscoelastic problems has 

increased. Assuming the material is elastic for simplification of the analysis proves to 

be inconsistent with reality due to the fact that most engineering materials exhibit 

noticeable time-effects and they are viscoelastic because of internal friction. Therefore, 

viscoelastic constitutive relations are more realistic than elastic constitutive relations 

to reflect the material behavior. The theoretical and mathematical background of 

viscoelasticity has long been established by Gurtin and Sternberg (1962), Pipkin 

(1972), Flügge (1975), Findley et al. (1976), Christensen (1982), Reddy (2008), Lakes 

(2009) and Gutierrez-Lemini (2014). 

In structural analysis of time-dependent materials, linear viscoelasticity has been used 

for a long time. There are basically three approaches that can be used in linear 

viscoelastic analysis: Laplace transformation, Fourier transformation and direct time 

integration method. Flügge (1975) presented the application of the Laplace transform 

for the analysis of viscoelastic beams. Christensen (1982) used the Fourier transform 

for the transient response of viscoelastic beams. Rencis et al. (1990) used a time-

stepping procedure based on Newmark’s method for the quasi-static and dynamic 

viscoelastic responses of Euler-Bernoulli beams. Yi et al. (1992) developed a 

numerical algorithm to analyze the dynamic responses of anisotropic viscoelastic 

composite shell structures based on variational principles and direct time integration 

by the Newmark average acceleration method. Chen (1995) used the hybrid Laplace 

transform for the quasi-static and dynamic analysis of the linear viscoelastic 

Timoshenko beam and conventional beam having the Prony series form of relaxation 

modulus. Kocatürk and Şimşek (2006) used the direct time integration method of 

Newmark for the dynamic response of eccentrically presetressed viscoelastic 

Timoshenko beams under a moving harmonic load. Sorvari and Hämäläinen (2010) 
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analyzed and compared the behavior of the different time integrators of the integral 

model of linear viscoelasticity. 

Correspondence principle is another procedure that is used for the analysis of 

viscoelastic problems. By employing correspondence principle, the problem of 

viscoelastic structures can be solved as elastic structures (Lee, 1955, Rizzo and Shippy, 

1971, Tschoegl, 1989).  Findley et al. (1976) used the correspondence principle and 

the superposition principle for the analysis of the viscoelastic beam problem. Wang et 

al. (1997) presented exact linking relationships between linear viscoelastic Euler-

Bernoulli beam solutions and Timoshenko beam solutions under quasi-static loading 

by using the elastic-viscoelastic correspondence principle. Temel et al. (2004) studied 

the quasi-static and dynamic behavior of cylindrical helical rods made of linear 

viscoelastic materials in the Laplace domain by using the correspondence principle. 

Piovan and Cortínez (2008) studied the linear viscoelastic behavior of curved or 

straight shear flexible thin-walled beam members based on the correspondence 

principle. Zhu et al. (2011) presented a new approach for analyzing the time-dependent 

behavior of linear viscoelastic materials via the elastic-viscoelastic correspondence 

principle.  

Most of the analytical methods use the correspondence principle to perform analysis 

of viscoelastic problems. However, closed-form solutions are often not possible for 

the problems that have complex geometry, loading conditions and constitutive 

relations. Hence, numerical solution techniques should be employed for practical 

analysis of viscoelastic problems. Finite element, Finite difference and Boundary 

element methods are the most commonly used numerical methods in solution of 

viscoelastic problems. Among the computational methods used for viscoelastic 

problems, the finite element method is the most common and versatile and it has been 

applied to static and dynamic problems in structural mechanics. 

The application of the finite element method to viscoelastic problems has been 

presented by a number of authors. Adey and Brebbia (1973) presented a method 

capable of solving a large range of linear viscoelastic problems by using a Laplace 

transform approach. The finite element method was used for the analysis in the 

transform plane and least square collocation was used in order to obtain the inversion 

of the transformed displacements and stresses. Chen and Lin (1982) presented an 

incremental finite element method based on the Hamilton’s variational principle for 
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dynamic analysis of viscoelastic structures with complicated geometries. White (1986) 

used constitutive law of hereditary integral type and applied the time interval form 

finite difference method to perform a finite element analysis in a quasi-static problem. 

Purushothaman et al. (1988) developed a finite element analysis for viscoelastic solids 

responding to periodic disturbances travelling at constant speed. In order to decompose 

the response into harmonic components, the discrete Fourier transformation was used 

and the viscoelastic material response was determined using the correspondence 

principle. Chen and Chan (2000) developed integral finite element method to estimate 

the dynamical characteristics of elastic-viscoelastic composite structures, namely 

sandwich beam, plate and shell structures with viscoelastic materials as core layers. 

Mesquita and Coda (2002) proposed an alternative methodology to treat quasi-static 

and dynamic viscoelastic problems by finite element method. In order to demonstrate 

the proposed formulation accuracy and stability, plates and shells applications were 

presented. An application of the boundary element method together with the numerical 

inversion of the Laplace transform to analyze the linear viscoelastic problems 

presented by Kusama and Mitsui (1982). To show the validity of the proposed method 

based on the elastic-viscoelastic correspondence principle, two numerical examples 

were presented. 

In the past years, most researchers have focused mainly on a way of investigation of 

several responses of viscoelastic thin plates. Aboudi et al. (1990) investigated the 

dynamic stability of uniform homogenous viscoelastic thin plates subjected to 

harmonic in-plane loads based on the evaluation of the Lyapunov exponents. The 

viscoelastic behavior of the plate was given in terms of the Boltzmann superposition 

principle. Cheng and Zhang (1998) established the initial-boundary value problem for 

the static-dynamic analysis of viscoelastic thin plates by introducing a structural 

function. The corresponding variational principles were presented by means of the 

Boltzmann relaxation law of linear theory of viscoelasticity and convolution bilinear 

forms. Ilyasov and Aköz (2000) presented a method for the vibration and dynamic 

stability of viscoelastic triangular plates. The viscoelastic constitutive equations were 

written in the Boltzmann-Volterra form. Zhou and Wang (2007) investigated the 

transverse vibration and stability of the axially moving viscoelastic thin plate 

constituted by Kelvin-Voight model with constant thickness and with parabolically 

varying thickness. Based on the two dimensional viscoelastic differential constitutive 
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relation, dimensionless complex frequencies of an axially moving viscoelastic plate 

with different boundary conditions were calculated by the differential quadrature 

method. Hatami et al. (2008) developed an exact finite strip method for the free 

vibration analysis of axially moving viscoelastic thin plates. The exact stiffness matrix 

of a finite strip of plate was extracted in the frequency domain. By assembling the 

stiffness matrices of these finite strips, the global stiffness matrix of the whole plate 

was obtained. The eigenvalues of the global stiffness matrix have the form of complex 

numbers. Marynowski (2010) presented a calculation method on the basis of the 

elastic-viscoelastic equivalence for the free vibration analysis of axially moving 

viscoelastic thin plate. The viscoelastic properties of the plate material were 

determined in the complex frequency domain and numerical calculations of dynamic 

stability were conducted for a steel plate. Amoushahi and Azhari (2013) developed a 

semi analytical finite strip method to evaluate the deflection and buckling of 

viscoelastic thin plates subjected to different types of out-of-plane and in-plane 

loading. The mechanical properties of the viscoelastic materials were considered to be 

linear by expressing the relaxation modules in terms of Prony series. The displacement 

functions of the plate were assumed to be polynomials in the transverse direction and 

be continuous harmonic function series that satisfies the pre-set boundary conditions 

in the longitudinal direction.  

In addition, numerous authors have investigated several responses of viscoelastic thick 

plates. In the paper by Wang and Tsai (1988), quasi-static and dynamic responses of 

the linear viscoelastic plate constituted by the Maxwell type and three-parameter solid-

type models were analyzed on the basis of the Mindlin plate theory. For the analysis, 

a finite element model was developed by applying Hamilton’s variational principle 

without any integral transformations. In this publication, the relaxation modulus was 

expressed by the Prony series, and the constitutive law of hereditary integral type with 

constant Poisson’s ratio was assumed. In order to transform the integral equation to 

algebraic equations, a finite difference approach was used.  To achieve a satisfactory 

convergence in the numerical solutions, a proper element type was investigated 

according to the convergent conditions such as the ratio of plate thickness to span, 

number of elements, boundary and loading conditions. Yi and Hilton (1994) developed 

a numerical procedure in the time domain using variational principles and a direct time 

integration method to analyze dynamic transient responses of viscoelastic composite 
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plates based on Mindlin theory. In order to evaluate the accuracy and convergence of 

the presented numerical algorithm, numerical solutions were compared with the 

analytical ones and dynamic transient responses of viscoelastic composite plates 

subjected to unit step loads were calculated. Jafari et al. (2011, 2014) proposed finite 

strip formulation for the buckling analysis of viscoelastic composite thin and 

moderately thick rectangular plates with variable thickness. The method of effective 

moduli and the higher-order shear deformation theory were used to solve the equations 

governing the stiffness and the geometry matrices of the composite plate. However, 

the developed methodology could not capture the deformation time history of the 

viscoelastic plates. The application of the higher-order global-local theory based on 

the double-superposition concept was employed by Shariyat (2011) for vibration and 

dynamic buckling analyses of composite/sandwich viscoelastic thick plates subjected 

to thermomechanical loads. Hermitian elements are employed to insure C1-continuous 

in-plane variations of displacement components. The transient behavior of orthotropic, 

viscoelastic thick plates was studied numerically by Temel and Şahan (2013). In this 

paper, using Kelvin model, the material constants were replaced with their complex 

counterparts in the Laplace domain according to the correspondence principle. For 

evaluation of the element matrices, numerical integrations of the stiffness and mass 

matrices and the load vector were computed by the Gauss-quadrature method. For 

moderately thick viscoelastic plates using first-order shear deformation theory, a fully 

discretized nonlinear finite strip method was reported by Amoushahi and Azhari 

(2014) for the static and instability analysis. For evaluation of the deflection, 

polynomial shape functions were used and the relaxation modulus was expressed by 

the Prony series. Later, the element-free Galerkin method to the quasi-static stability 

of moderately thick stepped skew viscoelastic composite plates subjected to in-plan 

forces was presented by Jaberzadeh and Azhari (2015). This study is based on the first-

order shear deformation theory and the method of effective moduli. Nguyen et al. 

(2015) investigated the mechanical behaviors of viscoelastic laminates and sandwich 

plates based on the efficient higher-order plate theory. Time-dependent relaxation 

moduli was represented by Prony series and the equivalent linear elastic stress-strain 

relationship in the corresponding Laplace domain was used. The solutions in the 

Laplace domain were converted back into the real-time domain by employing the 

Fourier series algorithm. Han et al. (2016) developed an enhanced first order shear 

deformation theory through strain energy transformation for linear viscoelastic 
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analysis of laminated composite and sandwich plates with various cross-ply layup 

configurations in the Laplace domain. In order to overcome the complexity of dealing 

with linear viscoelastic materials, the convolution theorem of Laplace transformation 

was applied. The fast Fourier transform method was used to convert the stresses and 

displacements in the Laplace domain back into the real-time domain. Nguyen et al. 

(2016) analyzed the viscoelastic behavior of laminated and sandwich plates by 

developing a three-node triangular finite element based on the efficient higher-order 

plate theory. With the help of the Laplace transform, the integral form of the 

constitutive equation in the time domain was reduced to an algebraic equation in the 

Laplace domain. In order to obtain the responses in the real-time domain, the inverse 

Laplace transform technique developed by Crump was used. Yang et al. (2016) 

analyzed the vibration and damping characteristics of the sandwich conical shells and 

annular plates using a simple and efficient modified Fourier solution. A Rayleigh-Ritz 

technique based on the energy function was adopted to obtain natural frequencies and 

loss factors. The effects of layout orientations, number of layers, conical angles and 

thickness ratios on the vibration frequencies and loss factors of the sandwich shells 

and plates were discussed. Vibration and instability of axially moving viscoelastic 

microplate were investigated by Arani and Haghparast (2017) by using sinusoidal 

shear deformation theory. The viscoelastic structural properties of microplate were 

taken into consideration based on Kelvin’s model. Using Hamilton’s principle, 

equations of motion were obtained and solved by hybrid analytical-numerical solution 

at different boundary conditions. Influences of various parameters such as size effect, 

axially moving speed, viscoelastic structural damping coefficient, thickness and aspect 

ratio on the vibration characteristics of moving viscoelastic microplate were discussed 

in detail. 

Compared with the amount of research studies devoted to stability analysis of 

viscoelastic thin and thick plates in the past years, the published works on quasi-static 

and/or dynamic analysis of viscoelastic thin plates appear to be scarce.  

To the best of our knowledge, a simple and efficient calculation method to implement 

for the quasi-static and dynamic analysis of the viscoelastic Kirchhoff  plate using the 

mixed-type finite element has not been described yet in the literature already 

published. This mixed finite element method based on the Gâteaux differential 

approach is regarded as one of the most powerful, reliable and efficient variational 
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principle, as it does not require any mathematical operation to obtain stress resultants 

and stress couples with excellent accuracy which are especially important for 

engineers. The proposed approach has also advantage that the boundary conditions of 

the problem can be easily obtained, and the whole field variables with boundary 

conditions on a regular basis can be included to the functional. In addition, shear-

locking effect encountered in the development of plate elements based on shear plate 

theories can be eliminated. Specifically, decreasing the thickness of the plate element 

causes shear locking when employing the conventional finite element formulation. In 

the prevention of shear locking phenomena, the mixed finite element method can be 

used. 

This method was originally introduced by Aköz and Özçelikörs (1985) for analysis of 

elastic plates and successfully applied by Aköz and his co-workers for analysis of 

viscoelastic structural elements. Kadıoğlu (1999) constructed new functionals for 

viscoelastic helical rods, straight rods with a circular, non-circular or parabolic cross-

section through a systematic procedure based on the Gâteaux differential. For the 

quasi-static and dynamic analysis, new mixed finite element formulations were 

derived in the Laplace-Carson domain. Special attention was devoted to the methods 

for numerical inversion of Laplace transforms. Different methods such as Schapery 

collocation, Maximum degree of precision, Dubner & Abate and Durbin for 

numerically transforming the solutions into the real time domain were tested and 

evaluated. Aköz and Kadıoğlu (1999) developed two new functionals for viscoelastic 

Timoshenko beams on the Winkler foundation. For the quasi-static and dynamic 

analysis, two mixed finite element formulations were derived in the Laplace-Carson 

space. The viscoelastic responses in the time domain were obtained through various 

numerical inverse Laplace transforms. Kadıoğlu and Aköz (1999) examined the 

dynamic response of viscoelastic circular beams. To represent viscoelastic behavior, 

two constitutive relations (one for bending and one for the shear force) in the hereditary 

integral form were assumed. In order to analyze viscoelastic circular beams, a mixed 

finite element VPB12 was developed with twelve independent variables. The 

performance of the element was investigated through the representative problems. In 

addition, Kadıoğlu and Aköz (2000) investigated the quasi-static and dynamic 

behavior of linear viscoelastic parabolic beams. In viscoelastic modeling, three-

parameter solid model was employed. A new mixed finite element formulation was 
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presented and various numerical examples were shown in order to demonstrate the 

proposed approach accuracy and efficiency. The quasi-static and dynamic behavior of 

viscoelastic circular beams on Winkler elastic foundation were studied by Kadıoğlu 

and Aköz (2003). In this paper, utilizing the Kelvin and three-parameter Kelvin model, 

the stress-strain relations for viscoelastic materials were obtained in the hereditary 

integral form. For the analysis, a functional based on the Gâteaux differential approach 

was derived. Numerical results for the fixed ended semi-circular viscoelastic beam and 

circular viscoelastic beam on Winkler elastic foundation were presented to prove the 

efficiency of the proposed formulation. 

Aköz et al. (2015) developed a new mixed finite element model to study the quasi-

static and dynamic responses of linear viscoelastic Kirchhoff plates. The developed 

mixed finite element named VPLT16 was C0-continuous four-node linear 

isoparametric plate element with four degrees of freedom per node. Hereditary integral 

form of the constitutive law with constant Poisson’s ratio was used. A new functional 

in the Laplace-Carson domain suitable for mixed finite element formulation in the 

same domain was developed by employing Gâteaux differential method. Various 

numerical Laplace inversion techniques were adopted to transform the obtained 

solution from the Laplace-Carson domain into the real-time domain. A set of 

numerical examples were presented to demonstrate the validity and accuracy of the 

proposed mixed finite element formulation. Moreover, the proposed formulation was 

successfully applied to the analysis of viscoelastic Kirchhoff plates constituted by 

different rheological models by Kadıoğlu and Tekin (2015, 2016a, 2016b, 2017a and 

2017c) and Tekin and Kadıoğlu (2016b, 2016c, 2017c) and with variable thickness by 

Tekin et al. (2015), Tekin and Kadıoğlu (2016a and 2017b) and Kadıoğlu and Tekin 

(2017b).  

Tekin and Kadıoğlu (2017a) presented a new mixed-type finite element model to study 

the quasi-static and dynamic responses of first-order shear deformable (FSD) linear 

viscoelastic Mindlin-Reissner plates. The developed mixed finite element named 

VPLT32 was C 0-continuous four-node linear isoparametric plate element with eight 

degrees of freedom per node. In the Laplace-Carson domain, a new functional was 

derived in terms of displacements, stresses and boundary conditions (geometric and 

dynamic) based on the Gâteaux differential method. In this study, three-parameter 

solid model and Zener rheological model were employed for modeling the behavior of 
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a viscoelastic thick plate material. In order to transform the solutions obtained in the 

Laplace-Carson domain to the real-time domain, Dubner and Abate numerical Laplace 

inversion technique was adopted. Several numerical examples were presented not only 

to demonstrate the validity and accuracy of the proposed mixed finite element 

formulation but also to examine the effects of load, geometry and material parameters 

on the viscoelastic response of FSD Mindlin-Reissner plates and to give a better insight 

into time-dependent behavior of engineering thick plate problems. 

 Hypothesis 

The plate theory has still been a technically important subject, which has been studied 

more extensively. If we look at the historical background of the plate theory, Kirchhoff 

published an important thesis on the theory of thin plates. Most of the plates used in 

practical applications satisfy thin plate criterion. In this thesis, Kirchhoff plate theory 

is adopted under the hypotheses of linear viscoelasticity and small deflections. 

Due to mathematical complexity in viscoelastic constitutive relations, closed-form 

solutions are often not possible and numerical solution techniques should be 

performed. Finite element method is the most powerful numerical procedure and has 

been applied to various problems in structural mechanics. However, as presented in 

literature, finite element method giving rise to locking phenomena such as shear 

locking occurs in plate elements when the thickness is very small. While dealing with 

the effects of locking, various methods have been suggested. To overcome shear-

locking effect, a suitable mixed finite element formulation can be considered. In order 

to formulate mixed type finite elements, Gâteaux Differential method is efficient and 

reliable variational tool. 

By using the Gâteaux Differential method, new energy functional in the transformed 

Laplace-Carson space for the quasi-static and dynamic analysis of the linear 

viscoelastic Kirchhoff plate is constructed. In order to remove the time derivatives 

from governing equations and boundary conditions, the method of the Laplace-Carson 

transform is adopted. For transforming obtained solutions to the real time domain, 

different numerical inverse transform methods; such as MDOP, Dubner and Abate and 

Durbin are used. The analysis is performed for different viscoelastic material models 

and types of time-dependent loadings to enhance accuracy and applicability of the 

results for subsequent studies. 
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 THEORY OF VISCOELASTICITY  

Viscoelasticity or Rheology is defined as the science of deformation by some 

scientists. Fundamental deformation of materials can be simplified by means of 

idealization theory and classified into three groups: elastic, plastic and viscous based 

on materials’ stress-strain pattern. 

Time-independent deformation which disappears on release of load is called elastic 

deformation. As illustrated in Figure 2.1, an immediate elastic deformation is obtained 

with loading. Then the deformation stays constant as long as the load is fixed and it 

disappears immediately by release of the load. 

 

 Strain versus time plot for purely elastic deformation. 

For an elastic material, stress is proportional to strain. When materials are subjected to 

increasing stress, the behavior is no longer elastic. The limiting stress above which the 

behavior is no longer elastic is called the elastic limit. Time-independent deformation 

which remains on release of load is called plastic deformation. As illustrated in Figure 

2.2, the deformation continues to increase for a short while after the load is fully 

applied, and then remains constant as long as the load is fixed, but a permanent 

deformation remains on release of the load. 

 

 Strain versus time plot for purely plastic deformation. 
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Time-dependent deformation steadily increases whilst the load is applied is called 

viscous deformation. Then, after the load is removed, the deformation shows no 

subsequent change and recovery does not occur as illustrated in Figure 2.3. Because 

flow requires shear, the strain and stress in Figure 2.3 correspond to the shear strain 

and shear stress, respectively. 

 

 Strain versus time plot for purely viscous deformation. 

Some materials such as metals at elevated temperatures, concrete, plastics, natural and 

synthetic fibers and wood display mechanical response that combines the 

characteristics of both elastic solids and viscous fluids. These materials are called 

viscoelastic or time-dependent materials since time is a very important factor in their 

behavior. Time-dependent deformation of viscoelastic materials is illustrated in Figure 

2.4. 

 

 Strain versus time plot for viscoelastic deformation. 

As indicated in Figure 2.4, an elastic deformation is obtained with loading if loading 

is rapid enough, then a slow and continuous increase of deformation at a decreasing 

rate is observed. After the load is removed, a continuously decreasing strain follows 

an initial elastic recovery. 

If the load is released, a reverse elastic strain followed by recovery of a portion of the 

creep strain will occur at a continuously decreasing rate. The disappearance of some 

of the strain more slowly than the purely elastic strain is also called delayed elasticity. 
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When testing and describing viscoelastic materials, it is preferable to apply a step strain 

or step stress in time. One of the most important phenomena in viscoelastic materials 

is termed creep that is defined as a slow continuous deformation of a material under 

constant stress (step stress). Other phenomenon is termed relaxation that is defined as 

the gradual decrease of stress under constant strain (step strain). 

 Linearity 

If the linear superposition principle is valid and the stress at any time is proportional 

to the strain, the material is said to be linearly viscoelastic. The mathematical 

expressions of these two requirements are: 

   

     1 2 1 1 2 1

( ) ( )

( ) + ( ) ( ) + ( )

cσ t = c σ t

σ t σ t - t = σ t σ t - t

 

  
 

(2.1) 

where c is a constant, ε and σ are the resultant strain and applied stress, respectively. 

Illustration of these two requirements are given by Findley et al. (1976). According to 

Findley et al. (1976), most materials are nearly linear over certain ranges of the 

variables, stress, strain, time, temperature. 

Viscoelasticity is the engineering discipline that is developed to provide a 

mathematical framework in order to describe the behavior of viscoelastic materials in 

detail. Linear (infinitesimal) viscoelasticity and especially the model of linear 

viscoelastic solid can be traced back to Boltzmann (1874) who considered an elastic 

material with memory and elaborated the model of linear viscoelastic solid. Quite often 

linear viscoelasticity is motivated through mechanical models composed of springs 

which are perfectly elastic and dashpots which are perfectly viscous. 

 Linear Elastic Spring 

The mechanical behavior of a linear elastic spring depicted in Figure 2.5 is governed 

by Hooke’s law (ideal solid): "stress is directly proportional to strain". This model is 

thus referred to as the Hooke model. The constitutive equation of the spring described 

by: 

σ= E  
(2.2) 
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where σ and ε are analogous to the spring force and displacement and E can be 

interpreted as a linear spring constant or a Young’s modulus. In spring model, inertia 

effects are neglected and the constitutive equation is written in "stress-strain" form. 

 

 Mechanical model of linear elastic spring. 

2.2.1 Response to stress loading 

For a specified stress loading that takes the form σ (t) = f (t) H (t - t0), the strain response 

of the spring is obtained as: 

0

1
( ) ( ) ( )ε t = f t H t - t

E
 

(2.3) 

This shows that the strain response of an elastic spring is instantaneous and remains 

non-zero for as long as the applied stress is non-zero. This is the solid response 

characteristic. One of the most important test which is used very often to determine 

the viscoelastic response characteristics of a material is creep test. The creep 

compliance J (t) of an elastic spring is defined as the strain response to a step stress, σ 

(t) = σ0 H (t - t0), measured per unit of applied stress. The creep compliance has the 

form: 

0 0

0

( ) 1
( ) ( )

ε t
J t - t = = H t - t

σ E
 (2.4) 

or simply 

1
( ) ( )J t = H t

E
 

(2.5) 

2.2.2 Response to strain loading 

For a specified strain loading that takes the form ε (t) = f (t) H (t - t0), the stress response 

of the spring is obtained as: 
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0
( ) ( ) ( )σ t =E f t H t - t  

(2.6) 

This shows that the stress response of an elastic spring is instantaneous and remains 

non-zero for as long as the applied strain is non-zero. This is the solid response 

characteristic. Another important test which is used very often to determine the 

viscoelastic response characteristics of a material is stress relaxation test. The 

relaxation modulus Y (t) of an elastic spring is defined as the stress response to a step 

strain, ε (t) = ε0 H (t - t0), measured per unit of applied strain.The relaxation modulus 

has the form: 

0 0

0

( )
( ) ( )

σ t
Y t - t = = EH t - t

ε
 (2.7) 

or simply 

( ) ( )Y t = EH t  
(2.8) 

 Linear Viscous Dashpot 

The mechanical behavior of a linear viscous dashpot depicted in Figure 2.6 is governed 

by Newton’s law (perfect liquid):"stress (force) is directly proportional to strain-rate 

(velocity)." This model is thus referred to as the Newton model. The constitutive 

equation of the dashpot described by 

( ) ( )
d

σ t = η ε t
dt

 (2.9) 

Here, the coefficient η being the viscosity coefficient. 

 

 Mechanical model of linear viscous dashpot. 
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2.3.1 Response to stress loading 

For a specified stress loading that takes the form σ (t) = f (t) H (t - t0), the strain response 

of the linear viscous dashpot can be obtained by integrating the resulting expression 

between 0 and t as:. 

0

0

1
( ) (0) ( ) ( )

t

ε t = ε + f s H s - t ds
η
  

(2.10) 

by using the initial condition ε (0) = 0, equation (2.10) becomes 

0

0

1
( ) ( ) ( )

t

t

ε t = H t - t f s ds
η

  
(2.11) 

The creep compliance J (t) of a linear viscous dashpot is defined as the strain response 

to a step stress, σ (t) = σ0 H (t - t0), measured per unit of applied stress. The creep 

compliance has the form:  

0

0 0

0

( )( )
( ) ( )

t - tε t
J t - t = = H t - t

σ η
 (2.12) 

or simply 

( ) ( )
t

J t = H t
η

 
(2.13) 

2.3.2 Response to strain loading 

For a specified strain loading that takes the form ε (t) = f (t) H (t - t0), the stress response 

of the linear viscous dashpot is obtained by performing the differentiation using the 

properties of the unit step and delta functions as: 

 0

0 0

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d d
σ t = η ε t = η f t H t - t

dt dt

d d
= η f t H t - t +η f t H t - t

dt dt

d
= η H t - t f t + f t t - t

dt


   
   
   

 
 
 

 

(2.14) 

Due to the stress response contains a unit impulse function at t = t0, it would take an 

infinite value at the instant when an instantaneous strain is imposed on a linear viscous 

dashpot. 
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The relaxation modulus Y (t) of a linear viscous dashpot is defined as the stress 

response to a step strain, ε (t) = ε0 H (t - t0), measured per unit of applied strain. By 

noting that f (t) = ε0 and ( ) 0
d

f t =
dt

, the relaxation modulus has the form: 

0 0
( ) ( )Y t - t = t - t   

(2.15) 

or simply  

( ) ( )Y t = t   
(2.16) 

 Rheological Models 

Rheological models are made up of more elaborate combinations of linear elastic 

springs and linear viscous dashpots. Two elementary rheological models developed 

from an assembly of a linear elastic spring and a linear viscous dashpot are the 

Maxwell or Maxwell-Wiechert model and the Kelvin or Kelvin-Voight model. The 

Maxwell model characterizes a viscoelastic fluid whereas the Kelvin-Voight model 

characterizes a viscoelastic solid. 

2.4.1 Maxwell-Wiechert model 

The Maxwell model is a two-element model consists of a linear spring and a linear 

viscous dashpot connected in series as depicted in Figure 2.7. 

 

 Maxwell-Wiechert model. 

The constitutive equation of the Maxwell model is developed using the following 

stress-strain relations of individual elements: 

For the spring: 
S S
σ = E  (2.17) 
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For the dashpot: 
D D D

d
σ = η ε = ηε

dt
 

(2.18) 

When two elements are connected in series, each element carry the same amount of 

stress while the strains are different in each element as follows: 

S D
σ = σ = σ  

(2.19) 

 

S D
ε = ε +ε  

(2.20) 

And the strain rate is: 

S D
ε = ε +ε  

(2.21) 

Therefore, the constitutive equation of the model can be obtained by inserting (2.18) 

and the time derivative of (2.17) into equation (2.21) as follows: 

ε = +
E

 


 

(2.22) 

2.4.1.1 Response to stress loading 

The strain-time relation under given stress condition can be obtained by solving an 

ordinary linear differential equation of first order. Applying a constant stress σ = σ0 at 

time t = 0, a differential equation (2.22) has the solution 

0

1
( ) + , > 0t = t C t





 

(2.23) 

with 0σ = .  

In order to determine C1, an initial condition is required. The sudden application of the 

constant stress σ0 at time t = 0 means that ( )σ t  has a singularity at this point. To deal 

with it, equation (2.22) is integrated across this point: 

   + ( ) ( ) ( ) ( )
+τ

-τ

σ dt +τ - -τ = +τ - -τ
E


      (2.24) 

Let τ = 0, then the first term goes to zero and equation (2.24) simplifies to 
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   0 0
=

E


    

(2.25) 

That is 0
0 =

E


  and ε0 = ε (0+) is the value of the ε immediately to the right of time    

t = 0. If equation (2.23) is re-written for t = 0+, C1 is obtained as: 

+ 0

0 1
(0 ) = = C =

E


   

(2.26) 

As a result, equation (2.23) becomes: 

0 0( )t = t +
E

 



 

(2.27) 

The creep compliance of the Maxwell model has the form: 

1
( ) +

t
J t =

E
 

(2.28) 

Equation (2.27) indicates that if the stress is removed at time t1, the elastic strain 0

E


 

in the spring returns to zero at the instant the stress is removed, while 0
1

 
 
 

t



 

represents a permanent strain which does not disappear. Strain-time response of the 

Maxwell model under given stress condition is shown in Figure 2.8. 
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 Creep and recovery behavior of the Maxwell model.  

2.4.1.2 Response to strain loading 

In this case, the stress-time relation under given strain condition can be obtained by 

solving an ordinary linear differential equation of first order. 

Applying a constant strain ε = ε0 at time t = t0, a differential equation (2.22) has the 

solution 

2 0
( ) , >

E
t

t =C e t t


 
  
   (2.29) 

with 0= . 

In order to determine C2, an initial condition σ (t0) or, more precisely, σ (t0
+) is required. 

For σ (t0
-) = σ (t0

+) = σ0, C2 is obtained as: 

0

2 0

E
t

C = e


 
 
   (2.30) 

where σ0 =Eε0 and ε0 is the initial strain at t = t0. As a result, equation (2.29) becomes: 

0 0( ) ( )

0 0
( )

E E
t t t t

t = e = Ee   
    

 
 

 
(2.31) 

From (2.31), the relaxation modulus of the Maxwell model has the form 
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 0

0 0
( ) = , >

E
t t

Y t - t Ee t t
 

 (2.32) 

or simply  

( ) , > 0

E
t

Y t = Ee t


 
  
   (2.33) 

The relaxation modulus evaluated at t = τr or t - t0 = τr , where the time parameter 

=r
E


  is called a relaxation time, is e-1 E ≡ 0,37 E. In this case, the relaxation time of 

the Maxwell model represents the time it takes the stress to decay by about 63%. In 

other words, only 37% of the initial applied stress remains at t = τr. Stress-time 

response of the Maxwell model under given strain condition is shown in Figure 2.9. 

 

 Stress relaxation behavior of the Maxwell model. 

2.4.2 Kelvin-Voight model 

The Kelvin model is a two-element model consists of a linear spring and a linear 

viscous dashpot connected in parallel as depicted in Figure 2.10. 
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 Kelvin-Voight model. 

The constitutive equation of the Kelvin model is developed using the following stress-

strain relations of individual elements: 

For the spring: 
S S
σ = E  (2.34) 

 

For the dashpot: 
D D D

d
σ = η ε = ηε

dt
 

(2.35) 

When two elements are connected in parallel, each element carry the same amount of 

strain while the stresses are different in each element as follows: 

+
S D

σ = σ σ  
(2.36) 

 

S D
ε = ε = ε  

(2.37) 

Therefore, the constitutive equation of the model can be obtained by inserting 

equations (2.34) and (2.35) into (2.36) as follows: 

= Eε+ ε   
(2.38) 

2.4.2.1 Response to stress loading 

The strain-time relation under a constant stress σ = σ0 applied at time t = t0 = 0 has the 

following form: 
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0

3
( ) +

E
t

t = C e
E




 
  
   (2.39) 

In order to determine C3, an initial condition is required. Initial condition is σ = σ0 and 

ε = 0 at t = 0. Introducing this into equation (2.39), C3 is obtained as 

0

3
-C =

E


 

(2.40) 

As a result, equation (2.39) becomes: 

0( ) 1

E
t

t = e
E




 
  
 

 
 

 
 

 
(2.41) 

This expression indicates that the strain increases with a decreasing rate and 

approaches asymptotically the value of 0

E


 when t tends to infinity. The behavior 

described by equation (2.41) is appropriately called delayed elasticity. 

The creep compliance of the Kelvin model has the form: 

1 1
( ) 1 1 c

E t
t

J t = e = e
E E

 

 
  
 

   
      

  

 
(2.42) 

The parameter 
c =

E


 , introduced here, is called a retardation or creep time which has 

the dimensional units of time. At t = τc,. In this case, only 37% of the asymptotic strain 

remains to be accomplished after t = τc, 0 01
( ) 1 0.63

 
 

 
t = =

E e E

 
 . Strain-time 

response of the Kelvin-Voight model under given stress condition is shown in Figure 

2.11. 
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 Creep and recovery behavior of the Kelvin model. 

2.4.2.2 Response to strain loading 

In this case, the stress-time relation under given strain condition is the point of interest. 

Equation (2.38) is not a differential equation in stress. To assess the response of the 

model to the step change in strain, the Heaviside H (t) and Dirac delta δ (t) functions 

are used. By using the expressions ε (t) = ε0 H (t - t0) and 
0 0( ) ( - )t = t t   , (2.38) 

yields: 

0 0 0 0
( - ) ( - )= E H t t + t t     

(2.43) 

where the first term describes the change in stress in the spring and the second term 

describes the infinite stress pulse on application of the strain. 

The relaxation modulus of the Kelvin-Voight model has the form: 

0 0 0
( - ) ( - ) ( - )Y t t = EH t t + t t   

(2.44) 

or simply 

( ) ( ) ( )Y t = EH t + t   
(2.45) 

As such, the stress-time response of the Kelvin-Voight model under given strain 

condition ε (t) = ε0 H (t - t0) - ε0 H (t - t1), shown in Figure 2.12, is obtained as 

    0 0 0 1 1
( ) ( - ) ( - ) - ( - ) ( - )t = EH t t + t t EH t t + t t     (2.46) 
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 Stress relaxation behavior of the Kelvin model. 

 Classification of Rheological Models 

The Maxwell and the Kelvin-Voight models are widely used in theoretical studies 

because of their simplicity. However, neither the Maxwell nor Kelvin-Voight models 

provide good representations of real viscoelastic behavior. Creep functions predicted 

by the Maxwell model and relaxation functions predicted by the Kelvin model are 

unrealistic for the viscoelastic materials. For linearly elastic materials, a stress-strain 

curve is a straight line whereas linearly viscoelastic materials give rise to a curved 

stress-strain plot. The Maxwell model has creep curve which is fitted by a straight line. 

More clearly, this model shows no time-dependent recovery and does not show the 

decreasing strain rate under constant stress which is a characteristic of primary creep 

(Findley et al, 1976). The Kelvin-Voight model does not exhibit the instantaneous 

response (instantaneous elasticity), which is associated with a solid, because the strain 

in two elements (a spring and a dashpot) is required to be equal and the dashpot is not 

allowed to have an instantaneous strain. 

Composite models which are formed by judicious combinations of linear elastic spring 

and viscous dashpot elements can predict both creep and relaxation functions well. So 

that, these models are capable of reproducing more realistic viscoelastic behavior. 

There are several possible combinations of three-element and four-element models. 
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These models are classified into four groups by Findley et al. (1976) as shown in 

Figure 2.13. Group I exhibits a solid-like character with retarded elasticity 

(instantaneous elastic deformation and delayed elastic deformation). Model (a) and 

Model (c) in Group I are called "the standard linear (viscoelastic) solid". Group II 

exhibits a liquid-like character, viscous flow, plus delayed elasticity. Group III exhibits 

an instantaneous elastic response followed by viscous flow and delayed elasticity. 

Group IV shows delayed elasticity with two retardation times. Clearly, the choices are 

very many however this thesis study restricts attention to models which exhibit solid-

like character. 

 

 Various combinations of Three-element and Four-element models 

(Findley et al, 1976). 

 Standard Linear Solid 

Standard linear solid model has two equivalent versions. One of them consists of a 

Kelvin-Voight unit in series with a linear spring element. The other one is composed 

of a Maxwell unit in parallel with a linear spring element. These three-element models 

include the essential characteristics of the behavior of viscoelastic solids. These 

characteristics can be demonstrated by evaluating their responses to the creep and 
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stress relaxation tests. Their responses to stress and strain loadings can be determined 

in a similar way as to the Maxwell and Kelvin-Voight models. In so doing, it should 

be noted that the form of response to strain loading is of the same form as its response 

to stress loading and vice versa. 

2.6.1 Three parameter standard solid model 

For the three parameter standard solid model obtained by adding a spring element in 

series to the Kelvin-Voight element in Figure 2.14, the constitutive equation is derived 

using the following relations: 

0K K K K K S S K S
σ = E ε + η ε , σ = E ε , σ = σ = σ  

(2.47) 

In this arrangement, the Kelvin-Voight unit and the series spring element experience 

the same stress and equal to the imposed stress σ, while the total strain ε is the sum of 

the strain in each arm (the Kelvin-Voight arm and the series spring): 

+
K S

ε = ε ε  
(2.48) 

Therefore, the constitutive equation of the three parameter standard solid model is 

given by: 

0 0 0
( ) ( ) ( )

K K K K

d d
E +E σ+η σ = E E ε+ E η ε

dt dt
 (2.49) 

 

 Three parameter standard solid model. 

2.6.2 Zener model 

For the Zener model obtained by adding a spring element in parallel to the Maxwell 

element in Figure 2.15, the constitutive equation is derived using the following 

relations: 
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1 2 0 1 2

M M

S S M S M

M M

σ σ
ε = , ε = , σ = E ε , ε = ε = ε , ε = ε +ε

η E
 (2.50) 

In this arrangement, the Maxwell unit and the parallel spring element experience the 

same strain ε, while the total stress σ is the sum of the stress in each arm (the Maxwell 

arm and the parallel spring): 

+
M S

σ = σ σ  
(2.51) 

Therefore, the constitutive equation of the Zener model is given by: 

0 0
1 1

+ = + 1+
M M M M

E Ed d
σ σ ε ε

η E dt η E dt

       
       
       

 
(2.52) 

 

 Zener model. 

 Operator Forms of Rheological Models 

In order to represent the stress-strain-time relations of viscoelastic materials, two 

alternative forms are generally used:  

 Differential Operator Form 

 Integral Operator Form 

2.7.1 Differential operator form 

Since the mathematical processes required for the analysis are reasonably simple, the 

differential operator form has been widely used. A differential operator form of the 

constitutive equation of a general rheological model (mechanical model constructed 

through spring-and-dashpot arrangement) is: 

m n

0 1 2 m 0 1 2 nm n
+ + + + = + + + +

d d
p σ p σ p σ p σ q q q q

dt dt
     

(2.53) 

Here dots denote the derivative of the variable with respect to time and p0, p1, p2… and 

q0, q1, q2… are material constants which are known in terms of the spring constants Ei 
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and dashpot constants ηi of the model. Equation (2.53) can be written in a more 

compact form as follows: 

=Pσ Q  (2.54) 

where P  and Q  are m order and n order linear differential operators with respect to 

time, respectively. 

=0 =0

= =
k jm n

k jk j
k j

d d
P p , Q q

dt dt
   (2.55) 

Moreover, the stress-strain and strain-stress equations of a general rheological model 

can be written in symbolic form as follows: 

= =
Q P

σ , σ
P Q
   (2.56) 

2.7.2 Integral operator form 

An advantage that the integral operator form has over the differential operator form is 

that the integral operator form can be able to describe the time dependence more 

generally. 

"Integrals are summing operations, and this view of viscoelasticity takes the response 

of the material at time t to be the sum of the responses to excitations imposed at all 

previous time" (Roylance, 2001, p. 17). This principle is a statement of linearity. 

Mathematically if a linearly viscoelastic material is subjected to a strain of magnitude 

ε0, suddenly applied and held constant thereafter, the stress response of the material to 

the applied step strain can be given as follows: 

0
( ) = ( ) ( )σ t Y t H t  

(2.57) 

Now assume that the same material is subjected to a step down strain of magnitude ε0, 

but applying the step down loading t1 units of time. The stress response of the material 

to the applied step down strain can be given as follows: 

1 0 1
( ) = - ( - ) ( - )σ t Y t t H t t  

(2.58) 
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If the material is linear, the total stress response due to both subjected strain loading 

can be obtained by superposition of these two individual effects (using the 

Boltzmann’s superposition principle) as: 

 0 1 1
( ) = ( ) ( ) - ( - ) ( - )σ t Y t H t Y t t H t t  (2.59) 

The total stress response σ (t) of the material is illustrated in Figure 2.16. 

 

 Stress-time response of linear material generated from a superposition 

of step functions of strain versus time. 

It is an easy matter to extend these results for prediction of response to arbitrary history 

of strain ε (t) as a function of time t. 

 

 Linear superposition to derive hereditary integral. 



37 

As shown in Figure 2.17, this arbitrary strain history can be divided into the basic part 

ε0 H (t) and a sequence of infinitesimal strain increments dε (t' ) H (t - t' ). The 

corresponding stress at time t can be written using the Boltzmann’s superposition 

principle as: 

0 0

0 0
( ) = ( ) ( - ) ( ) = ( ) ( - ) ( )

t t d
σ t Y t + Y t t' d t' Y t + Y t t' t' dt'

dt'
      

(2.60) 

Equation (2.60) indicates that the stress at any given time depends on all that has 

happened before on the entire strain history ε (t') for t' < t. Equation (2.60) is called a 

hereditary integral. An alternate form for (2.60) can be obtained through integration 

by parts as: 

 
0

0

0
( ) = ( ) ( - ) ( ) ( - ) ( )

t
t d

σ t Y t + Y t t' t' - Y t t' t' dt'
dt'

    
(2.61) 

where 

( - ) = - ( - )
( - )

d d
Y t t' Y t t'

dt' d t t'
 (2.62) 

and thus equation (2.61) reduces to the following second version of the hereditary 

integral: 

0

( ) = (0) ( ) ( - ) ( )
( - )

t d
σ t Y t + Y t t' t' dt'

d t t'
   

(2.63) 

Including the initial part due to ε0 into the integral and even moving its lower limit to 

-∞, produces the following form of the hereditary integral: 

-

( ) = ( - ) ( )
t d

σ t Y t t' t' dt'
dt'




  (2.64) 

Arguments similar to those presented for the relaxation modulus Y (t) can be used to 

derive the hereditary integrals for the creep compliance J (t). If an arbitrary history of 

stress σ (t) is approximated by the sum of a series of infinitesimal stress increments in 

addition to its basic part σ0 H (t), corresponding strain can be given by: 
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0

0

( ) = ( ) ( - ) ( )
t d

t σ J t + J t t' σ t' dt'
dt'

   (2.65) 

 

0

( ) = (0) ( ) ( - ) ( )
( - )

t d
ε t J σ t + J t t' σ t' dt'

d t t'
  

(2.66) 

 

-

( ) = ( - ) ( )
t d

ε t J t t' σ t' dt'
dt'

  (2.67) 
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 THEORY OF PLATES 

A plate is defined as a plane, load-carrying element of which one dimension, referred 

to as thickness h, is very small compared with the other dimensions (width and length). 

The static and dynamic loads carried by plates are predominantly perpendicular to the 

plate surfaces. The plate as a flat body develops bending moments in two directions, 

torsional (twisting) moments and transverse shear forces to resist the loads. 

Plates may be classified according to their ratio of thickness to characteristic length   

(h / L). This classification is conditional (depends on the type of loading, boundary 

conditions, accuracy of analysis, etc.). An example of a well-accepted classification is 

the one published by Ventsel and Krauthammer (2001). 

1. Thick Plates 1 1

8 10

 
 

 

h

L
 have all the components of stresses, strains, and 

displacements and the general equations of three-dimensional elasticity are 

used for the analysis of such bodies. 

2. Membranes 1 1

80 100

 
 

 

h

L
 have no flexural rigidity and carrying loads by 

axial tensile forces and central shear forces1. 

3. Thin Plates 1 1 1 1

8 10 80 100

 
  

 

h

L
 with flexural rigidity. This group can 

be subdivided into the following two categories depending on the value of the 

ratio 
w

h
 , where w is defined as the maximum deflection of the plate. 

a. Stiff Plates 0,2
 

 
 

w

h
 are flexurally rigid thin plates, carrying loads 

two dimensionally, mostly by internal bending and torsional moments 

                                                 

 
1 Central shear force acts in the plane of the plate. 
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and by transverse shear forces2. The middle plane3 (or simply 

midplane) deformations and the membrane forces are negligible. In 

engineering practice, plate is understood to mean a stiff plate unless 

otherwise specified. 

b. Flexible Plates 0,3
 

 
 

w

h
 represent a combination of stiff plates and 

membranes, carrying loads by the combined action of internal (bending 

and torsional) moments, shear forces and membrane (axial) forces. 

The theory of plates involves traditionally the analysis of stress and strain in the plate 

subjected to loads. Along with the change in structural materials at the end of the 19th 

century, various plate theories were developed. Of the numerous plate theories, two 

different limit cases are widely accepted and used in engineering applications: the 

Kirchhoff theory of plates (classical plate theory) and the Mindlin-Reissner theory of 

plates (shear-deformable plate theory). 

Kirchhoff (1850) introduced the well-known hypothesis of classical plate theory for 

thin plates, that is: 

1. Points of the plate lying initially on a normal to the middle plane of the plate 

remain on the normal to the middle surface of the plate after deformation. This 

means that transverse shear deformations are negligible. 

2. The stress in the direction which is normal to the plate middle plane can be 

disregarded. 

3. There is no deformation in the middle plane of the plate. 

Since characterizing the stress-strain relation of the material becomes a major concern 

in the practical design and analysis of engineering structures, plate theories can also 

be grouped according to their stress-strain relationships. Linear-elastic plate theories 

are based on the assumption of a linear relationship between stress and strain according 

to the well-known Hooke’s law, whereas non-linear elasticity, plasticity and 

                                                 

 
2 Transverse shear forces acts perpendicularly to the plane of the plate. 
3 Middle plane (or simply midplane) is a plane parallel to the plate’s surfaces which divides the thickness 

h into equal halves. Being subjected to transverse loads, an initially flat plate deforms and the midplane 

passes into some curvilinear surface, which is referred to as the middle surface. 
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viscoelasticity consider more complex stress-strain relationships. With regard to the 

actual material behavior, viscoelastic constitutive relations should be used instead of 

the elastic constitutive relations for determination of the most realistic results. 

This chapter is concerned with basic assumptions of the linear, viscoelastic, small-

deflection theory of bending for thin plates and fundamental equations 

i. Equilibrium equations 

ii. Kinematic equations (strain-displacement equations) 

iii. Compatibility equations 

iv. Constitutive equations (stress-strain relations)  

required for the calculation of the linear, time-dependent response of thin plates. 

 Basic Assumptions 

A load-free plate with top and bottom surfaces lie at 
2


h

z =  and an associated 

Cartesian coordinate system (x, y, z) located at its middle plane are shown in Figure 

3.1. The plate’s middle plane coincides with the xy plane and the z coordinate is 

perpendicular to it. The basic assumptions used in the derivation of the fundamental 

equations of a viscoelastic plate body may be stated as follows: 

i. The material of the plate is homogenous, isotropic and linear viscoelastic 

ii. The plate is initially flat 

iii. The validity of Kirchhoff’s classical theory of thin plates is assumed 

iv. The middle surface of the plate remains unstrained after bending 

v. Since the displacement of the middle plane is small compared with the 

thickness of the plate, the slope of the deflected surface is therefore very small 

and the square of the slope is a negligible quantity in comparison with unity 

 

Figure 3.1 : Rectangular plate and associated coordinate system. 



42 

 Fundamental Equations 

3.2.1 Equilibrium equations 

In order to completely define the state of stress at a point anywhere in the interior of 

the plate body, an infinitesimal parallelepiped with faces parallel to the Cartesian 

coordinate planes and side lengths dx, dy and dz in the x, y, and z directions, 

respectively is considered (Figure 3.2). For the parallelepiped to be in equilibrium, the 

static equilibrium conditions, namely, the sum of all the forces in each of the directions 

and sum of the moments of the forces about the three reference axes should both be 

zero must be satisfied.  

Stresses acting on the faces of this parallelepiped describe the intensity of the internal 

forces at a point on a particular face. These stresses can be broken down into two 

components, a normal stress component and tangent (shear) stress component. For 

normal stress, the single subscript that indicates the direction of an outer normal to the 

face on which the stress component acts is used. For the shear stress, the first subscript 

indicates the direction of the plane normal on which the shear stress is acting while the 

second subscript indicates the direction in which it is acting. 

 

Figure 3.2 : Stress components on plate element. 

By considering the following six static equilibrium conditions: 

Force Equilibrium: = 0 = 0 = 0
x y z

F , F , F    (3.1) 

 

Moment Equilibrium: = 0 = 0 = 0
x y z

M , M , M    (3.2) 
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and designate the components of the body force in the x, y and z directions by X, Y, 

and Z, the following differential equations of equilibrium is obtained by considering 

the force equilibrium conditions in the x, y, and z directions, respectively. 

+ + + = 0

+ + + = 0

+ + + = 0

yxx zx

xy y zy

yzxz z

τσ τ
X

x y z

τ σ τ
Y

x y z

ττ σ
Z

x y z

 

  

  

  

 

  

 
(3.3) 

By considering the moment  equilibrium conditions about the x, y, and z axes, 

respectively, the following relations imply equality of shear stresses on perpendicular 

planes (reciprocity law of shear stresses) are obtained: 

=

=

=

yz zy

zx xz

xy yx

τ τ

τ τ

τ τ

 (3.4) 

These relations show that the state of stress at a point can be completely defined by six 

independent stress components instead of nine stress components. Since the three 

equilibrium equations (3.3) are not sufficient for determination of the six stress 

components, the problem is internally statically indeterminate. In order to obtain 

additional equations, the deformation of the body as well as the stress-strain relations 

of the material of the body need to be considered. 

3.2.2 Kinematic equations (strain-displacement equations) 

These equations express the strain components in terms of displacements which in turn 

describe the deformation of a body. Deformation of the body occurs as a result of 

relative displacement between two points in the body. The general displacement of the 

point may be composed of 

i. Rigid body displacement  

ii. Deformation 

In the rigid body displacement, the shape and size of the body remain unchanged 

whereas the deformation causes the body to change its size and shape. The concept of 

strain is derived from that of deformation. There are two aspects of deformation, 
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namely translation and rotation. Translation gives a measure of elongation or 

contraction and it is called the normal strain. Rotation gives a measure of relative 

rotation of orthogonal lines and it is referred to as shear strain. Normal strain is denoted 

by ε with a subscript corresponds to the direction along which the strain is measured. 

Whereas the shear strain is denoted by γ with double subscripts indicate the coordinate 

plane in which the shear strain occurs. The strain-displacement relations assuming that 

the deformation of the body is small can be obtained purely from geometrical 

consideration by comparing the deformed state with the initial state of the rectangle as 

shown in Figure 3.3. In the view of that the components of the displacement in the x, 

y, and z directions are u, v and w, respectively, the strain-displacement relations can be 

obtained as: 

=

=

=

x

y

z

u
ε

x

v
ε

y

w
ε

z













 
(3.5) 

and 

= +

= +

= +

xy

yz

zx

u v

y x

v w

z y

w u

x z







 

 

 

 

 

 

 
(3.6) 

by neglecting the square and the products of derivative of displacements. In equations 

(3.5) and (3.6), εx, εy and εz are called the normal or linear strains and γxy, γyz, γzx are 

called the shear strains in xy, yz, zx planes, respectively. 
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Figure 3.3 : Angular deformation. 

3.2.3 Compatibility equations 

By means of the six equations given by (3.5) and (3.6), the six strain components can 

be uniquely determined if the three displacement components are given. On the other 

hand, if the six strain components are given and three displacement components are 

asked, the displacement components cannot be uniquely determined unless the given 

strain components satisfy some specific relations. These relations are called the 

compatibility equations and if the displacement components u, v and w are to be single 

valued and continuous functions of the Cartesian coordinates x, y and z, then the 

corresponding strain components obtained from the kinematic equations (3.5) and 

(3.6) satisfy the following compatibility equations: 

2 22

2 2

2 22

2 2

2 22

2 2

+ =

+ =

+ =

y xyx

y yzz

x zxz

εε

y x x y

ε ε

z y y z

εε

x z z x







 

   

 

   

 

   

 
(3.7) 

and 

2

2

2

2 = - + +

2 = - +

2 = + -

yz xyx zx

y yz xyzx

yz xyzxz

ε

y z x x y z

ε

z x y x y z

ε

x y z x y z

 

 

 

   
 

      

   
 

      

   
 

      

 
(3.8) 
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Since the material properties were not used in derivation of the equilibrium conditions 

and the kinematic relations, these relationships are valid for any type of material. The 

constitutive equations describe the relation between stresses and strains and vary from 

material to material. The relationships established in this chapter are restricted to 

viscoelastic materials. 

3.2.4 Constitutive equations 

In Section 2.7, two alternative forms used to define the constitutive equations of linear 

viscoelastic materials were described. In this study, the stress-strain relations of 

viscoelastic materials will be described by integral operator form, the hereditary 

integrals. No matter how integral representation over differential operator forms 

sometimes leads to difficult mathematics in stress analysis it has the advantage of 

greater flexibility when it comes to rendering the measured properties of an actual 

(viscoelastic) material (Flügge, 1975). 

The constitutive equation of linear viscoelastic materials can be written in hereditary 

integral form as follows: 

0

0

( ) = (0) ( ) + ( - ) ( )
( - )

( ) = (0) ( ) + ( - ) ( )
( - )

t

t

d
σ t Y ε t Y t t' ε t' dt'

d t t'

d
ε t J σ t J t t' σ t' dt'

d t t'





 
(3.9) 

where t denotes time, t' is a dummy variable for integration and σ (t) and ε (t) are the 

time-dependent stress and strain, respectively. J (t) is a time-dependent compliance 

and Y (t) is a time-dependent relaxation modulus. 

By invoking the foregoing assumptions, the field equations of the viscoelastic classical 

or Kirchhoff plates will be derived. 

To express the strain-curvature relations, a section of the plate by a plane parallel to 

0xz, y = const., before and after deformation is considered as shown in Figure 3.4. 
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Figure 3.4 : Section before and after deformation. 

Using the Kirchhoff’s first assumption given in Section 3 and integrating the equations 

(3.5) and (3.6) for εz, γyz and γxz, the following equations are obtained: 

0

0

0

=

= -

= -

w w

w
v v z

y

w
u u z

x









 

(3.10) 

where u, v  and w are the displacements of points at a distance z from the middle 

surface. In addition u0, v0, w0 denote the displacements of a material point at (x, y, 0) 

in (x, y, z) coordinate directions. 

Let’s consider a segment AB in the positive z direction (as in Figure 3.4). After the 

deformation, point A displaced a distance w parallel to the original z direction and 

reached to its final position A1. Based upon the Kirchhoff’s first assumption given in 

Section 3, the deformed position of point B, which initially lies at a distance z from 

the point A (undeformed middle plane), must lie on the normal to the middle surface. 

The final position of B is denoted by B1. Using the Kirchhoff’s second and third 

assumptions given in Section 3, the distance z between the above mentioned points 

remains unchanged during deformation and is also equal to z. The displacement 

components u and v can be expressed in the form: 
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= -

= -

x

y

u z

v z




 

(3.11) 

Here, =



x

w

x
  and =




y

w

y
  correspond to the angles of rotation of the normal (line 

I-I) to the middle surface in the 0xz and 0yz plane, respectively. Substitution of (3.10) 

into the first two (3.5) and into the first (3.6) yields: 

2

2

2

2

2

= -

= -

= -2

x

y

xy

w
ε z

x

w
ε z

y

w
z

x y












 

 

(3.12) 

Here, εx, εy, γxy refers to the in-plane strain components at a point of the plate located 

at a distance z from the middle surface. In (3.12), the second derivatives of the 

deflection, which corresponds to the normal component of the displacement vector w, 

define the curvature of the section. 

The curvatures of the section κx and κy along the x and y axes, respectively are defined 

by the following relations: 

2

2

2

2

= -

= -

x

y

w
κ

x

w
κ

y









 
(3.13) 

These curvatures characterize the phenomenon of bending of the middle surface in 

planes parallel to the 0xz and 0yz coordinate planes, respectively. They are referred to 

as "bending curvature". The derivative 

2

 

w

x y
 in (3.12) defines the warping of the 

middle surface at a point with coordinates x and y is referred to as "twisting curvature 

with respect to the x and y axes" (Ventsel and Krauthammer, 2001) and it is defined 

by: 

2

= = -
xy yx

w
κ κ

x y



 
 (3.14) 

In particular, the main interest in the theory of plates is to introduce the total statically 

equivalent forces and moments, known as stress resultants and stress couples. The 
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stress resultants are in-plane and transverse shear forces and the stress couples are 

bending and twisting moments. In order to obtain the stress resultant quantities and 

stress couple quantities, the integral relations of stresses through the plate’s thickness 

must be defined mathematically as: 
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x xh

y y
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(3.17) 

where Nx and Ny are in-plane membrane forces due to stretching of the plate middle 

plane, Nxy is an in-plane shear force, Mx and My are bending moments about the y and 

x axes, respectively, Mxy and Myx are twisting moments, and Qx and Qy are transverse 

shear forces. The stress resultants given by (3.15) and (3.17) have the units of forces 

per unit length of the plate middle plane and the stress couples given by (3.16) have 

the units of moments per unit length of the plate middle plane. Positive sign convention 

for the stress resultants and stress couples is illustrated in Figure 3.5 by considering 

equilibrium of an element, with side lengths dx and dy, of the plate subjected to the 

external loading. In most plate applications, the external loading includes distributed 

load and/or concentrated load normal to the plate (z direction), or in-plane tensile, 

bending or shear loads applied to the edge of the plate. 
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Figure 3.5 : Force and moment resultants acting on a plate element. 

As illustrated in Figure 3.5, it is assumed that the plate middle plane is subjected to 

applied distributed loads px, py, and pz with units of force per unit area. In reality, these 

loads are applied to the top or bottom surface of the plate but they are transferred to 

the middle plane since the force and moment resultants are assumed to be applied to 

the middle plane of the plate element. In addition, the stress resultants and couples are 

shown by a single vector for the sake of simplicity by noting that as the element is very 

small, they may be considered to be distributed uniformly over the middle plane of the 

plate element. Because of the reciprocity law of shear stresses τxy = τyx, the in-plane 

shear forces and twisting moments on perpendicular faces of an infinitesimal plate 

element are identical, i.e., Nxy = Nyx and Mxy = Myx. In addition, the variation of an 

intensity of the force and moment stress resultants between the edges of the plate 

element by a value of partial differential is shown in Figure 3.5.  

For the system of force and moments shown in Figure 3.5, the following five 

equilibrium equations (two in-plane and one transverse force equilibrium equations in 

the x, y and z axes, respectively and two moment equilibrium equations about the x 

and y axes, respectively) can be obtained as follows: 
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Referring to these equations, the problem can be decomposed into two sets of problems 

which are uncoupled with each other, as in-plane problems and out-of-plane problems. 

The out-of-plane problem is regarded as a bending problem and the in-plane problem 

is also called as a stretching problem of a plate. The present study is focused solely on 

a bending problem (out-of-plane problem) which is governed by equations (3.20), 

(3.21) and (3.22). These three equations involve five unknowns Mx, My, Mxy = Myx, Qx 

and Qy. In order to derive the governing equation of the classical plate bending theory, 

differentiate the two moment equilibrium equations, (3.21) and (3.22), with respect to 

x and y, respectively and substitute these two equations into the transverse force 

equilibrium equation (3.20). pz is denominated from now on as q. Finally, the following 

equation is obtained: 

2 22
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xy yx
M MM
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 (3.23) 

To relate the stress-strain, two operators 
*

1E  and 
*

2E  are introduced as follows: 
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These operators operate on any function f as below: 
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(3.25) 

Using Mohr circle, it can be easily shown that shear stress and shear strain relation can 

be expressed using the same operators as follows: 

* *
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2
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By substituting the strain-displacement relations (kinematic relations) into the stress-

strain relations (constitutive equations) and integrating over the plate thickness, the 

stress couples can be derived in terms of the displacement as follows: 
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(3.27) 

Expressions for the bending and twisting moments may now be rewritten considering 

the new operator as follows: 
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Here, D* is the operator form of the flexural rigidity of the plate and it is derived 

assuming that the Poisson ratio, which is denoted by υ, is constant as: 

3

* *
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12

h
D E  

(3.29) 
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 INTEGRAL TRANSFORMS 

Differential equations are at the heart of physics, chemistry, biology and other areas of 

natural sciences, as well as areas such as engineering and economics. A differential 

equation is any mathematical equation relating the values of the function to the values 

of its derivatives, either ordinary derivatives or partial derivatives. In applications, the 

functions usually represent physical quantities, the derivatives represent their rates of 

change, and the equation defines a relationship between the two. When considering 

differential equations, it is important to distinguish between the dependent variable 

and the independent variable. In an ordinary differential equation (ode), there can be 

more than one dependent variable, but there can only be one independent variable e.g., 

f (t) where f is the dependent variable and t is the independent variable. However, in a 

partial differential equation (pde), there is more than one independent variable e.g.,       

f (x, y, z, t) where the four independent variables are x, y, z and t, while f is the 

dependent variable. An ode contains ordinary derivatives in it. Likewise, a pde 

contains partial derivatives. Typically, pdes are much harder to solve than odes. For 

the solution of certain breeds of differential equations, two extremely powerful 

methods: the Fourier and the Laplace transforms have become essential working tools 

of nearly every engineer and applied scientist. Beside their practical use, they are also 

of fundamental importance in applied mechanics, providing a transform the given 

problem into one that is easier to solve. In the case of an ode with constant coefficients, 

the transformed problem becomes an algebraic problem. When a pde is transformed, 

it becomes an ode or lower order pde. The solution of the transformed problem in 

either case will be a function of the transform variable and any remaining independent 

variables. Inverting this solution produces the solution of the original problem. In order 

for these transform techniques to work, the ode or pde that the transform is being 

applied to must be linear. The basic idea behind a transform can be represented 

diagrammatically for odes as follows: 
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Figure 4.1 : Basic idea behind use of a transform for odes. 

The Fourier transform is intimately related with the Laplace transform. The use of 

Fourier and Laplace transforms in applications is quite extensive. In this thesis, the 

major emphasis will be on briefly discussing how Laplace transform method is used 

for solving problems associated with linear pdes. 

We will start by introducing the Heaviside unit step function and the Dirac delta 

function as these functions will be used in future sections for the modeling of physical 

problem and in the representation of certain solution. 

 Heaviside Unit Step Function 

Heaviside unit step function is a widely used fundamental function in the study of 

physical and engineering problems. The Heaviside unit step function is a discontinuous 

function that is defined as: 

1 for > 0
( )

0 for < 0

t
H t

t

 
  
 

 
(4.1) 

That is, the value of the function H (t) at t = 0 is not defined. The value of the function 

is always unity when the argument of the function is greater than zero, and its value is 

zero when the argument of the function is always less than zero. A graph of the 

Heaviside unit step function is illustrated in Figure 4.2. 
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Figure 4.2 : Heaviside unit step function. 

Heaviside unit step function can be used to crop and shift functions. For instance, the 

function H (t - t0) is just H (t) shifted, or dragged so that it turns on at t = t0 as in Figure 

4.3. 

 

Figure 4.3 : Heaviside unit step function H (t - t0). 

Moreover multiplying an arbitrary function f (t) by the Heaviside unit step function    

H (t - t0) crops f (t) so that it turns on at t = t0: 

0

0

0

( ) for >
( ) ( )

0 for <

f t t t
H t - t f t

t t
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(4.2) 

The Heaviside unit step function can be used to define the impulse function. Although 

impulse function is not really a true function in the mathematical sense, it has a wide 

range of applications in many physical problems. The impulse function of height 
1

ε
 

between t0 and t0 + ε, and zero elsewhere can be defined as follows: 
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 0 0 0

1
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ε

t - t H t - t H t - t ε
ε

   (4.3) 

A graph of impulse function δε (t - t0) is constructed by subtracting two Heaviside unit 

step functions as illustrated in Figure 4.4. 

 

Figure 4.4 : Impulse function δε (t - t0). 

It should be noted that the area under the impulse curve is always unity. An impulse 

function is also known as a ‘‘delta function’’. There are different types of delta 

functions as Dirac delta function and Kronecker delta function. Although, these 

functions appear as an impulse in general, they have slightly different properties. 

 Dirac Delta Function 

The Dirac delta function known as unit-impulse function was introduced by Dirac 

(1958) and developed by Schwartz (1950, 1951). It is defined as a generalized function 

or distribution. 

The (time-delayed) Dirac delta function δ (t - t0) have the value zero everywhere except 

at the point t0, where it has the value of infinity. 

0 0
0

( ) lim ( )
ε

ε
t - t t - t 


  

(4.4) 

At the point t0, this function subtends on area of unity. 
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0
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  (4.5) 

A very useful property for the Dirac delta function is the shifting property that is given 

by the integral of the time-delayed Dirac delta as follows: 

0 0
( ) ( )  ( )f t t - t dt f t
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  (4.6) 

Another property gives a close relationship between the Heaviside unit step function 

and Dirac delta function as follows: 
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The Kronecker delta δij is a function of two variables i and j. The function is equal to 

one if the variables are equal. Otherwise, the Kronecker delta is equal to zero: 

1 for =

0 for
ij

i j

i j
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This function satisfies the shifting property: 

=-
i ik k

i

a a




  
(4.9) 

The Kronecker delta is a discrete function whereas the Dirac delta is a continuous 

function. An integral of Dirac delta function is exactly equal to one. The Kronecker 

delta function is similarly infinitesimally thin, but its amplitude is equal to one, not its 

area. For more information about the relationship between them, the reader is referred 

to Signals and Systems/Engineering Functions (2017). 
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 The Laplace Transform 

Suppose that f (t) is a piecewise continuous function of t specified for t > 0. The 

Laplace transform of f (t), denoted by F (s) = L {f (t)}, is defined by the integral 

transform: 

 ( ) ( ) ( ) - st

0

L f t = F s = f t e dt


  (4.10) 

Laplace transform is a linear operator of a function f (t) with a real argument t (t ≥ 0) 

that transforms it to a function F (s) with a complex argument s.  

When a function is called piecewise continuous (or sectionally continuous) in an 

interval, an interval can be broken into a finite number of subintervals in each of which 

the function is continuous and has a finite limit at the endpoints of each subinterval. 

The Laplace transform may not exist if f (t) becomes singular in an interval 0 ≤ t ≤ ∞. 

However, we assume continuity for f (t) for the large majority of engineering problems. 

The Laplace transform operates on [0, ∞] unlike the Fourier transform that operates 

on [-∞, ∞]. Therefore, the Laplace transform is useful for initial value problems since 

it incorporates in a natural way the initial conditions.  

The operator L{ } has an inverse operator L-1{ }. Then the inverse Laplace transform 

is given by the following integral form where integration takes place in the complex 

s-plane. 
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2πi
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st
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f t = L F s = F s e ds




  
(4.11) 

where i = √−1 and a is a real number. 

 Basic Properties of the Laplace Transform 

Laplace transforms satisfy a number of general properties. Here, some of the simplest 

and quite useful properties of the Laplace transform will be presented without their 

proofs. For more comprehensive list of the Laplace transform properties with proofs, 

see, Andrews and Philips (2003) and Dyke (2014). 
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4.4.1 Linearity of Laplace transform 

The Laplace transform is a linear transform. Linearity is one of the simplest and most 

frequently invoked property of the Laplace transform. That is, let’s say we have two 

functions x (t) and y (t) with Laplace transforms given by X (s) and Y (s), respectively. 

Then, the Laplace transform of any linear combination of x (t) and y (t) can be easily 

given by: 

     ( ) ( ) ( ) ( ) ( ) ( )L a x t +b y t = a L x t +b L y t = a X s +bY s  (4.12) 

where a and b are arbitrary constants. 

4.4.2 Shift property of Laplace transform 

Another simple property of the Laplace transform is the time-shift (a delay in time). 

That is, let’s say shifting the original function x (t) in time by a constant amount t0 

causes the Laplace transform X (s) to be multiplied by a complex exponential. 

  0

0
( ) ( )

-st
L x t - t = e X s  

(4.13) 

4.4.3 Derivative property of Laplace transform 

The Laplace transform of x' (t), the first derivative of x (t), is given by: 
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d

L x t = s X s x
dt

 
 
 

 (4.14) 

For higher order derivatives, the Laplace transform of the function x (t): 
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(4.15) 

4.4.4 Convolution property of Laplace transform 

The convolution of two given functions f (t) and g (t) is written f *g and is defined by 

the integral taken over an infinite range: 

( ') ( ') 'f * g = f t g t - t dt




  (4.16) 
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The delay time τ = t - t ' may be put in either function as: 

( ) ( )f * g = f t - τ g τ dτ




  (4.17) 

For functions f (t) and g (t) is zero for negative arguments, the integration limits can 

be truncated as: 

( ) ( ) for :[0 )
t

0

f * g = f t - τ g τ dτ f,g ,  (4.18) 

A convolution integral expresses the amount of overlap of one function as it is shifted 

over another function. 

The Laplace transform of the convolution of x (t) and y (t) with corresponding Laplace 

transforms X (s) and Y (s) is given by: 

 ( ) ( ) ( ) ( )L x t * y t = X s Y s  (4.19) 

 The Laplace-Carson Transform 

For the purposes of viscoelasticity, it is sufficient to consider functions f (t) of variable 

t, of real or complex values, piecewise indefinitely differentiable and identical to zero 

for t ≤ 0. The Laplace-Carson transform of a function f (t), t ≥ 0 is an integral transform 

defined as: 

( ) ( )  ( )-st

0

F s = s f t e dt = s F s


  (4.20) 

In order to denote the Laplace-Carson transform of a time-varying function f (t), the 

notation ( )F s  is used. When equation (4.20) is considered, it is obvious that the 

Laplace-Carson transform of any function corresponds to the s-multiplied Laplace 

transform of that function. 

 Field Equations in Laplace-Carson Domain 

In order to remove the time derivatives from governing equations and boundary 

conditions, the method of Laplace-Carson transform is employed. 



61 

By taking Laplace-Carson transform of equations (3.23) and (3.28), the following field 

equations are obtained in the Laplace-Carson domain: 
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(4.21) 

For a plate, boundary conditions written in symbolic form are: 

ˆ- = 0
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T T

M M

w w

w w

 
(4.22) 

Here, terms with ‘‘^’’ are the known boundary conditions. The final forms of the 

boundary conditions will be obtained after carrying out the following variational 

process. 
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 VARIATIONAL PRINCIPLES 

Variational principles are scientific principles used within the calculus of variations 

wherein the stationary property of a function of functions, namely a functional, is 

studied. In solid and structural mechanics problems, the functional includes all the 

fundamental properties of the problem such as the governing equations, boundary 

and/or initial conditions and constraint conditions and represents the total energy of 

the system. 

The application of the variational principles, such as the principle of minimum 

potential energy, the principle of minimum complementary energy and the minimum 

of some combinations of potential and complementary energies provides a powerful 

tool in mathematical formulation of the finite element approach. 

Many different variational principles have been developed based on the rapid 

development of the finite element method. Basically, the following finite element 

models may be considered in solid mechanics: 

i. Kinematic finite element models (unknowns are kinematically admissible 

displacement fields and the best known instance of such models are those 

arising from the application of the principle of minimum potential energy, 

entirely expressed in terms of displacements) 

ii. Equilibrium finite element models (unknowns are stresses and the classical 

example is provided by the finite elements constructed for the application of 

the principle of minimum complementary energy) 

iii. Mixed type finite element models (unknowns are usually displacements and 

stresses which are used simultaneously and variables of different nature are 

approximated by independent finite element interpolations) 

In finite element method, ‘‘approximate displacement fields yield approximate 

equilibrium configurations. Although this may lead to sufficiently accurate 

displacement fields, the accuracy of the approximate displacement field rapidly 

deteriorates when differentiations are required to compute other results, such as 
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stresses” (Santos et al, 2010, p. 810). However, in the mixed finite element method, 

different types of variables can be handled independently in approximation 

procedures. Depending on the applied variational principles, the formulations of the 

mixed type finite element models are changed. 

The basis of variational formulation is the principle of virtual work, sometimes it is 

called the principle of virtual displacements, which states that the virtual work done 

by the external and internal forces is zero if and only if the body is in equilibrium. This 

principle is equivalent to the equations of equilibrium of the system and is independent 

of the stress-strain relations of the material of the body. However, the constitutive 

relations should be taken into account for the formulations of variational principles. 

The principle of minimum potential energy is the most frequently applied variational 

principle in the finite element method. The potential energy in the system is defined 

by the strains. In order to satisfy the equilibrium position of the system, the total work 

should be minimum. The minimum is obtained when the variation of the total potential 

energy is equal to zero. In the case of linear systems, the potential and the 

complementary energy should be of the same value, except that the complementary 

energy in the system is expressed in terms of the stresses. These variational principles 

are applied for the purpose of deriving approximate solutions to practical problems for 

which there is no exact solution. Different combinations of the potential and the 

complementary energies are sometimes applied in practice. These combinations give 

different types of functionals, as Hellinger-Reissner, Hu-Washizu, Gâteaux. These 

variational principles are known as mixed variational principles. 

The use of mixed variational principles in mechanics began with the work of Reissner 

(1948, 1953) who presented a variational principle for elasticity problems which 

allowed the simultaneous variation of stresses and displacements. Reissner (1948, 

1953) extended an earlier idea of Hellinger (1914) by showing how to correctly include 

boundary conditions. Therefore, this mixed variational principle is referred to as the 

Hellinger-Reissner variational principle. This principle eliminates the strain as a 

primary dependent variable; consequently, only the displacement and the stress remain 

as arguments in the functional for which variations are constructed. A generalization 

of this principle is known as the Hu-Washizu variational principle, presented by Hu 

(1955) and Washizu (1955), in which stresses, displacements, and strains are 

arguments in the functional. By using the Lagrange multipliers, equilibrium conditions 
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and kinematic conditions can be included into the functional which is derived by the 

Hellinger-Reissner principle and Hu-Washizu principle, respectively. The Hu-

Washizu principle is based on the potential energy function and the Hellinger-Reissner 

principle is based on the complementary energy function. 

In literature, new energy functional that gains an advantage over the classical potential 

energy and complementary energy functions is derived by Gâteaux differential 

method. The Gâteaux differential method is a powerful variational tool when 

compared by the well-known variational principles of Hellinger-Reissner and Hu-

Washizu. In Gâteaux differential method, all field equations and boundary condition 

terms can be included into the functional by mathematical manipulations. A detailed 

discussion about the Gâteaux differential method and its advantages over the 

Hellinger-Reissner and Hu-Washizu principles are given in the following section. 

 The Gâteaux Differential Method 

The Gâteaux differential generalizes the concept of directional derivative. In this 

thesis, efficient and systematic procedure based on the Gâteaux differential has been 

developed in order to construct a new energy functional for the quasi-static and 

dynamic analysis of viscoelastic plates, as mixed-type finite element analysis. The 

Gâteaux differential procedure has several advantages over the well-known mixed-

type formulations introduced based on the Hellinger-Reissner and Hu-Washizu 

principles. A detailed comparison of the Gâteaux differential approach with the 

Hellinger-Reissner and Hu-Washizu principles has been presented in the literature 

(Saleeb and Chang, 1987; Omurtag et al, 1997; Omurtag and Kadıoğlu, 1998; Aköz 

and Özütok, 2000). Here, we just summarize some of the most representative ones: 

 Technique can easily be applied to any field equation. 

 Displacement, internal force (moment and shear force) and frequency values 

can be obtained directly without any mathematical operation. 

 Geometric and dynamic boundary conditions can be obtained easily. 

 Shear locking problem can be eliminated. 

5.1.1 Definition 1 

Let U and V denote normed linear spaces and Q is an operator from U into V. The 

Gâteaux differential of the operator Q at u in the direction η is defined as the limit: 
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(5.1) 

where η is a fixed nonzero element of U, τ is a real number, u and u + τη are arbitrary 

elements of U. 

5.1.2 Definition 2 

Let I : U→ℝ is a functional on a space U which has a Gâteaux differential dI (u0; η) at 

a point u0 ϵ U which is linear and continuous in η. The operator Q defined as follows 

is called the gradient of the functional I at u0, 

0

0 0
0

( + )
( ) = grad ( ) lim ,

τ

I u τη
Q u I u η U

τ


 


 

(5.2) 

A point u0 ϵ U is called a critical point of the functional I (u) if  

0
grad ( ) = 0I u  

(5.3) 

where 0 is the zero element. If Q (u) = grad I (u), the problem of finding solutions to 

the equation: 

( ) = 0Q u  
(5.4) 

is, therefore, equivalent to finding critical points of the functional I. Equation (5.4) is 

then called the Euler equation for the functional I (u). 

 Potential Operator 

An operator Q (u) is said to be a potential, if and only if there exists a Gâteaux 

differentiable functional I (u) such that Q (u) = grad I (u). 

5.2.1 Theorem 1 

Let Q is a continuous operator which has a linear Gâteaux differential dQ (u; η); the 

necessary and sufficient condition that Q be potential operator is that: 

( ; ), = ( ; ),dQ u η ξ dQ u ξ η  (5.5) 
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5.2.2 Theorem 2 

Let Q : U→ V is a continuous and potential operator, then there exists a functional        

I (u) whose gradient is the operator Q, which is given by: 

1

0 0 0 0

0

( ) = ( + ( - )) , - +I u Q u r u u u u dr I  (5.6) 

where I0 = I (u0) and r is a real parameter. More information about these theorems can 

be found from the work of Oden and Reddy (1976). 

 Functional 

All field equations in the Laplace-Carson domain including boundary conditions for 

viscoelastic Kirchhoff plates (see equations (4.21) and (4.22)) can be written in 

operator form as: 

= -Q Pu f  
(5.7) 

where P  represents the coefficient matrix, u  represents unknown vector 

= { , , , }x y xyw M M Mu  and f  represents the load vector in the Laplace-Carson space. 

This operator can be written explicitly in matrix form as: 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
= ˆ0 0 0 0 0 0 0 1

ˆ0 0 0 0 0 0 -1 0 -
0 0 0 0 0 1 0 0 ˆ

0 0 0 0 -1 0 0 0 ˆ-

    
    
    
    
    
   

    
    
    
    
    
         

1
112 13 14

2
221 22 23

3
331 32 33

4
441 44

'

'

fuP P P

fuP P P

fuP P P

fuP P

w T

w M
M w
T w

 

(5.8) 

where 
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2 2

* *

2 2

2 2

* *

2 2

2

* *

* 2 * 2 *

= = - + ; = = -

= = - + ; = = -

1
= = - (1- ) ; = - (1- )

2

= ; = = = 0 ; =

- - 2
= ; = ; =

(1- ) (1- ) (1- )

x y y x xy

D υ D
x y

D υ υD
y x

D υ D υ
x y

q w

M υM M υM M

D υ D υ D υ

  
 
  

  
 
  



 

12 21 22 33

13 31 23 32

14 41 44

1 2 3 4 1

2 3 4

P P P P

P P P P

P P P

f f f f u

u u u

 
(5.9) 

If the Gâteaux derivative of the operator Q  in the Laplace-Carson domain is defined 

as: 

=0

( + ')
( ') =

τ

τ
d

τ





Q u u
Q u ,u  

(5.10) 

and the potentiality requirement 

* *( , ' ), = ( , ), 'd dQ u u u Q u u u  (5.11) 

is satisfied, the functional can be obtained. Here, ( , ' )dQ u u and *( , )dQ u u  are the 

Gâteaux derivatives of the operator Q  in the 'u  and *
u  directions and 

*( , ' ),dQ u u u  represents the inner product of two vectors. The explicit forms of 

these expressions are: 
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, , ,

* * * *

* *

* *

, ,* 2 * 2

* * 2

* *

, ,* 2 * 2

* *

* 2 * 2

( , ' ), = - , - , - 2 ,

- , + ,
(1- ) (1- )

- , + ,
(1- ) (1- )

1
- , + ,

(1- ) (1- )

-

x x y y x yx y x y

x x x x x y

y y x y y y

x x x y

d M w M w M w

D D υ
w M w M

D υ D υ

D υ D υ
w M w M

D υ D υ

υ
M M M M

D υ D υ

      
    

       

       

    
   

Q u u u

* *

* *

, ,* 2 * 2

* * 2

* *

, ,* 2 * 2

* *

* 2 * 2

* *

, *

* *

, + ,
(1- ) (1- )

- , + ,
(1- ) (1- )

1
- , + ,

(1- ) (1- )

2
-2 , - ,

(1- )

+ , - ,( )

y y y y y x

x x y x x x

y y y x

x y x y x y x y

σ

D D υ
w M w M

D υ D υ

D υ D υ
w M w M

D υ D υ

υ
M M M M

D υ D υ

w M M M
D υ

T w M w

       

       

    
   

       

     
* *+ ( ) , - ,

σ

ε ε
w M w T

 

        

 

(5.12) 

 

, , ,

* * * *

* *

* *

, ,* 2 * 2

* * 2

* *

, ,* 2 * 2

* *

* 2 * 2

( , ), ' = - , - , - 2 ,

- , + ,
(1- ) (1- )

- , + ,
(1- ) (1- )

1
- , + ,

(1- ) (1- )

-

x x y y x yx y x y

x x x x x y

y y x y y y

x x x y

d M w M w M w

D D υ
w M w M

D υ D υ

D υ D υ
w M w M

D υ D υ

υ
M M M M

D υ D υ

       
     

    
   

    
   

    
   

Q u u u

* *

* *

, ,* 2 * 2

* * 2

* *

, ,* 2 * 2

* *

* 2 * 2

* *

, *

* *

, + ,
(1- ) (1- )

- , + ,
(1- ) (1- )

1
- , + ,

(1- ) (1- )

2
-2 , - ,

(1- )

+ , - ,( )

y y y y y x

x x y x x x

y y y x

x y x y x y x y

σ

D D υ
w M w M

D υ D υ

D υ D υ
w M w M

D υ D υ

υ
M M M M

D υ D υ

w M M M
D υ

T w M w

    
   

    
   

    
   

    
   

     
* *+ ( ) , - ,

σ

ε ε
w M w T

 

        

 

(5.13) 

After the application of a related mathematical procedure, it is seen that the potentiality 

requirement is satisfied. If so, the operator Q  is potential then the functional 
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corresponding to the field equations can be written in explicit form by using equation 

(5.6) as: 

, , ,

*

2

, , , ,* 2

* 2 * 2

*

2

, , , ,* 2

,* 2 * 2

*

- 2 -

- ( - - + )
(1- )

- +
(1- ) (1- )

( ) = - ( - - + )
(1- )

- + - 2
(1- ) (1- )

2
-

(1-

x x y y x yx y x y

x x x x x y y y y y y x

x x x y

y y y y y x x x x x x y

y y y x x y x y

-rM w - rM w rM w qw

D r
w M υw M υ w M υw M

D υ

r υr
M M M M

D υ D υ

D r
w M υw M υ w M υw M

D υ

r υr
M M M M r w M

D υ D υ

r

D

I u
1

0

+ - ( ) + ( ) -
)

ˆ ˆ ˆ ˆ- + ( ) - ( ) +

x y x y

dr

M M rT w rM w r w M rwT
υ

T w M w w M wT

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

  



 

(5.14) 

With the application of some variational manipulations, the explicit form of the 

functional for viscoelastic Kirchhoff plates in Laplace-Carson domain is generated. 

For the functional, three different expressions can be obtained: 

 
2 2 2

1 2 2

* 2 * 2

* 2 *

( ) = - , - , - 2 , - ,

1 1
- , - ,

2 (1- ) 2 (1- )

1
+ , - ,

(1- ) (1- )

ˆ ˆ ˆ ˆ- , - ,( ') + (( ') - ( ')), - ( - ),

x y xy

x x y y

x y xy xy
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M M M M

D υ D υ
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(5.15) 
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(5.16) 
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(5.17) 

where [  ,  ] is the inner product which is defined as: 

 ,f g = f g d


  
(5.18) 

In this thesis study, equation (5.17) is considered during the analysis. In equation 

(5.17), the parentheses with subscripts σ and ε indicate dynamic and geometric 

boundary conditions, respectively. Explicit expressions of boundary conditions are: 

, , , ,

, = + + + ,

,( ) = , + , + ,( + )

xy y xyx

x y

x x x y y y xy x y y x

M M MM
T w n n w

x y y x

M w M w n M w n M w n w n

       
                

             

 
(5.19) 

Equation (5.19) shows the work done by the shear force at the boundary and the work 

done by the moment force at the boundary, respectively. For dynamic analysis, the 

expression  ,q w  in equation (5.17) corresponds to: 

   21
, = ,

2
q w hs w w  

(5.20) 

where ρ represents the mass density per unit volume of the plate. 

 

 

 

 

 

 



72 

 



73 

 FINITE ELEMENT FORMULATION 

 Finite Element Method 

An exact solution of the governing pdes is often difficult for the general field problems. 

Among the approximate analytical methods available for the solution, the Rayleigh-

Ritz and the Galerkin methods are the most commonly used ones and they are referred 

to as classical variational methods. The classical variational methods are limited to 

simple geometries because of the difficulty in constructing approximation functions 

for complicated geometries. The use of numerical methods provide alternative means 

of finding solutions for the problems with geometric and material complexities. The 

finite element method is a powerful numerical method of solving solid and structural 

mechanics problems that involve complicated physics, geometry, and/or boundary 

conditions. In the application of the finite element method, the domain of the problem 

is divided into a set of simple subdomains, called finite elements. Over each finite 

element, an approximate solution to the problem is developed. As outlined by Reddy 

(2006), the finite element method has three main features that give it superiority over 

the classical variational methods. 

1. It allows accurate representation of geometrically complex domains by a 

collection of geometrically simple subdomains. 

2. It enables derivation of approximation functions over each finite element. The 

solution is approximated by a linear combination of physical quantities at 

selective points, called nodes of the element, and approximation functions, 

almost always polynomials. 

3. It allows assemblage of the element equations using continuity of physical 

quantities in order to obtain solution to the whole. 

The finite element method consists of decomposing the domain of the problem Ω into 

a collection of N subdomains, Ωe called finite elements, such that 
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=1

=
N

e
e

   
(6.1) 

Since the solution is represented by approximation functions on each element e
, an 

approximation of the solution of the whole   can be obtained in the form: 

=1

=
N

e
e

    
(6.2) 

The approximation of the solution within a typical finite element Ωe is assumed to be 

of the form: 

=1

= ψ ( )
n

e e e

h j j
j

u u x  
(6.3) 

where e

ju  are the values of the solution u (x) at the nodes of the finite element Ωe, and 

ψ e

j  are the approximation functions over the element. The approximate solution is 

sought in the form of algebraic polynomials, although this is not always the case. The 

reason for this choice is two-fold (Reddy, 2006): 

 The interpolation theory of numerical analysis can be used to develop the 

approximation functions systematically over an element. 

 Numerical evaluation of integrals of algebraic polynomials is easy. 

In order to derive the approximate solution 
e

hu  that is convergent to the actual solution 

u as the number of elements is increased, the following conditions must be satisfied: 

1. The approximate solution should be continuous over the element and 

differentiable. 

2. The approximate solution should be a complete polynomial (all lower-order 

and highest-order terms are included). 

3. The approximate solution should be an interpolant of the primary variables at 

the nodes of the finite element. 

The first condition ensures a nonzero coefficient matrix. The second condition is 

necessary in order to capture all possible states of the actual solution and the third 

condition is necessary in order to enforce continuity of the primary variables at points 

common to the elements. 
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For one-dimensional domain, the finite element approximation 
e

hu  of u (x) can be an 

interpolant, that is, must be equal to 1

eu  at xa and 2

eu  at xb (see Figure 6.1). A complete 

linear polynomial is of the form: 

1 2
( ) = +e e e

h
u x c c x  (6.4) 

where 1

ec  and 2

ec  are constants. The expression in equation (6.4) satisfies the first and 

second conditions of an approximation. The third condition is fulfilled if 1

ec  and 2

ec  

meet the conditions: 

1 2 1

1 2 2

( ) = +

( )= +

e e e e

h a a

e e e e

h b b

u x c c x u

u x c c x u




 

(6.5) 

where 1

eu  and 2

eu  are the nodal values of ( )e

hu x  at x = xa  and x = xb, respectively. 

 

Figure 6.1 : (a) Finite element discretization of a one-dimensional domain (b) Linear 

finite element approximation over an element. 

Equation (6.5) can be expressed in matrix form as:  

1 1 1 2 2 1

1 2

2 2

1 - -
= = , =

1 - -

e e e e e e
a b ae e

e e
b b a b a

x c u u x u x u u
c c

x x x x xc u

        
    

        

 
(6.6) 

where xb - xa = Le. Substitution of equation (6.6) for 
e

ic  into equation (6.4) yields: 
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2

1 1 2 2
=1

( ) = ψ ( )+ ψ ( )= ψ ( )e e e e e e e

h j j
j

u x u x u x u x  
(6.7) 

where 

1 2

- -
ψ ( ) = , ψ ( ) =

b ae e

e e

x x x x
x x

L L
 

(6.8) 

which are called the linear finite element approximation functions. 

The approximation functions ψ ( )e

i x  have some interesting properties. First, note that: 

1 1 1 2 2
( ) ( ) = ψ ( )+ ψ ( )e e e e e e

h a a a
u x u x u x u x  (6.9) 

implies 1ψ ( ) = 1e

ax  and. 2ψ ( ) = 0e

ax . Similarly, 

2 1 1 2 2
( ) ( ) = ψ ( ) + ψ ( )e e e e e e

h b b b
u x u x u x u x  (6.10) 

gives 1ψ ( ) = 0e

bx  and 2ψ ( ) = 1e

bx . In other words, ψ e

i  is unity at the ith node and zero 

at the other node as: 

1 if =
ψ ( ) =

0 if

e e

i j

, i j
x

,    i j

 
 

 

 
(6.11) 

This property is known as the interpolation property of ψ ( )e

i x  and they are also called 

interpolation functions. In finite element analysis, two basic types of interpolation 

functions are used. The Lagrange interpolation function and the Hermite interpolation 

function. The Lagrange interpolation functions are derived to interpolate function 

values only and not the derivatives of the function. The Hermite family of interpolation 

functions are derived to interpolate the function and its derivatives. The finite elements 

developed using the Lagrange type interpolation are called C 0 elements, and finite 

elements developed using the Hermite type interpolation are called C m elements, 

where m > 0 is the order of the derivatives included in the interpolation. In addition, 

ψ ( )e

i x  satisfy the property, known as the "partition of unity", that their sum is unity. 

=1

ψ ( ) = 1
n

e

i
i

x  
(6.12) 
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In order to express the element interpolation functions, ψ e

i  which were derived in 

terms of the global coordinate x as in equation (6.8), in terms of the local (or element) 

coordinate = - ax x x  as follows: 

1

2

ψ ( ) = 1-

ψ ( ) =

e

e

e

e

x
x

L

x
x

L

 
(6.13) 

the origin is fixed at node 1 of the element Ωe as shown in Figure 6.1 (b). 

To improve the calculational accuracy without increasing the number of elements, the 

degree (or order) of the polynomial approximation can be increased (see Figure 6.2). 

 

Figure 6.2 : (a) Linear approximation (b) Quadratic approximation. 

Derivation of interpolation functions depends only on the geometry of the element and 

the number and location of the nodes. The number of nodes must be equal to the 

number of terms in the polynomial. For instance, second-order polynomial 

approximation (quadratic approximation) has the form: 

2

1 2 3
( ) = + +e e e e

h
u x c c x c x  (6.14) 

Since there are three parameters, ( = 1, 2,3)e

ic i  three nodes in the element must be 

identified as shown in Figure 6.2 (b).  

In two dimensions, the domain is approximated by simple two-dimensional elements, 

such as triangles, rectangles and/or quadrilaterals. Let’s consider the complete 

polynomial 
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1 2 3 4
( , ) = + + +e e e e e

h
u x y c c x c y c x y  (6.15) 

which contains four linearly independent terms and is linear in x and y, with a bilinear 

term in x and y. This polynomial requires an element with four nodes like a rectangular 

element with dimensions a and b along the x and y directions, respectively (see Figure 

6.3 (a)).  

 

Figure 6.3 : (a) Linear rectangular element (b) its interpolation functions. 

Following the same procedure as those described for one-dimensional element as 

eliminating 
e

ic  by rewriting ( , )e

hu x y  in terms of the four nodal values, 

1 2 3 4( , , , )e e e eu u u u  and substituting the obtained 
e

ic  into equation (6.15), the linear 

interpolation functions can be derived for the four-node rectangle in terms of the local 

(or element) coordinate system ( , )x y : 
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(6.16) 

Interpolation functions given in equation (6.16) also satisfy the properties illustrated 

by equations (6.11) and (6.12) (see Figure 6.3 (b)). For additional details about the 

derivation of the interpolation functions of two-dimensional basic elements (linear 

and/or higher-order rectangular and triangular elements), see Reddy (2006). 

 Coordinate Transformation 

In general, the boundary of a two-dimensional domain is a curve. For an accurate 

representation of domains with curved boundaries, refined meshes and/or irregularly 

shaped curvilinear elements are used.  

Since the interpolation functions are easily derivable for a rectangular element and it 

is easier to evaluate integrals over rectangular geometries, we transform the finite 

element integral statements defined over quadrilaterals to a rectangle. This 

transformation results in complicated expressions in terms of the coordinates used for 

the rectangular element. Therefore, numerical integration is used to evaluate such 

complicated expressions. The Gauss-Legendre quadrature requires the integral to be 

expressed over a square region ̂  of dimension 2×2 with respect to the coordinate 

system (ξ, η) to be such that -1 ≤ (ξ, η) ≤ 1. For example, every quadrilateral element 

can be transformed to a square element that facilitates the use of Gauss-Legendre 

quadrature for the purpose of numerically evaluating the integrals defined over the 

quadrilateral element (see Figure 6.4).  
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Figure 6.4 : Transformation of quadrilateral elements to the master element for 

numerical evaluation of integrals. 

The element ̂  is called a master element. The transformation between a typical 

element Ωe of the finite element mesh and the master element ̂  or equivalently 

between (x, y) and (ξ, η) is accomplished by a coordinate transformation of the form: 

=1

=1

ˆ= ψ ( , )

ˆ= ψ ( , )

m
e e

j j
j

m
e e

j j
j

x x ξ η

y y ξ η





 
(6.17) 

where e

jx  and e

jy  represent the nodal coordinates of an element and ψ̂ e

j  denote the 

finite element interpolation functions of the master element ̂ . The transformation 

given in equation (6.17) maps a point (ξ, η) in the master element onto a point (x, y) in 

the element Ωe and vice versa if the Jacobian of the transformation is positive-definite. 

Geometrically, the Jacobian J represents the ratio of an area element in the real element 

to the corresponding area element in the master element, 

=dA dxdy J dξ dη  (6.18) 

where J ≡ det [ J ] > 0 everywhere in the element Ωe. Here, [ J ] is the Jacobian matrix. 

For one-dimensional element, the transformation of the problem coordinate x to a local 

coordinate ξ such that -1 ≤ ξ ≤ 1, with its origin at the center of the element, the 

following interpolation functions are derived for an element with two nodes as shown 

in Figure 6.5,  
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Figure 6.5 : Interpolation functions for one-dimensional element in terms of the 

local coordinate ξ. 

1

2

1
ψ ( ) = (1- )

2

1
ψ ( ) = (1+ )

2

ξ ξ

ξ ξ

 
(6.19) 

This choice of local coordinate is dictated by the Gauss-Legendre quadrature rule used 

in the numerical evaluation of integrals over the element.  

For two-dimensional element, the transformation of the problem coordinate system   

(x, y) to a local coordinate system (ξ, η) such that -1 ≤ (ξ, η) ≤ 1, with its origin at the 

center of the element, the following interpolation functions are derived for an element 

with four nodes as shown in Figure 6.6,  

 

Figure 6.6 : Interpolation functions for two-dimensional element in terms of the 

local coordinate system (ξ, η). 
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(6.20) 

This choice of local coordinate system is required in numerical integration using 

Gauss-Legendre quadrature. 
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 Basic Steps to Obtain Element Matrix 

The finite element approximation 
e

hu  satisfies the differential equation(s) and 

appropriate boundary condition(s). Since there are n unknown parameters, we need n 

relations to determine them. Substitution of the approximate solution into the 

functional I (u) will give the necessary algebraic equations among the nodal values.  

In order to obtain the element equations, the parameters 
e

iu  are determined by 

minimizing the functional I (u). The necessary condition for the minimization of 

e e e

1 2 n( , , , )I u u u  is that its partial derivatives with respect to each of the parameters be 

zero: 

1 2 n

= 0 , = 0 , , = 0
e e e

I I I

u u u

  

  
 

(6.21) 

Thus, there are n linear algebraic equations in n unknowns, ( = 1,2, , n)e

iu i . 

The algebraic equations can be expressed in matrix form as: 

   =e e eK u F    (6.22) 

Equation (6.22) is called the finite element model of the original equation. 

Since the element is physically connected to its neighbors, it becomes necessary to put 

the elements together (i.e., assembly). After the assembly of element equations, the 

assembled system of equations can be expressed in the matrix form (Reddy, 1993) as: 

    =K u F  (6.23) 

where {u} denotes the global nodal unknowns vector, [ K ] and { F } denote the global 

coefficient matrix (or stiffness matrix) and the source vector (or force vector), 

respectively, in structural mechanics problems. 

 Element Matrix in Laplace-Carson Domain 

In my thesis study, C0 class finite element formulation is generated by introducing the 

coordinate transformation from (x, y) plane to (ξ, η) plane. A four node rectangular 

master element as illustrated in Figure 6.7  



83 

 

Figure 6.7 : Global and local coordinate system of rectangular master element. 

with the following interpolation functions in terms of the global coordinate system     
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(6.24) 

and local coordinate system (ξ, η),  

1

2

3

4

ψ ( , ) = (1- )(1- )

ψ ( , ) = (1- )

ψ ( , ) = (1- )

ψ ( , ) =

ξ η ξ η

ξ η ξ η

ξ η ξ η

ξ η ξ η

 
(6.25) 

is used.  

The rectangular viscoelastic plate element has four nodes with four degrees of freedom 

per node (VPLT16): one transverse displacement, two bending moments and one 

torsional moment. The four variables of the functional given in equation (5.17) in 

Section 5.3 are approximated by using the interpolation functions as follows: 



84 

=4

=1

=4

=1

=4

=1

=4

=1

= ( ) ψ ( , )

= ( ) ψ ( , )

= ( ) ψ ( , )

= ( ) ψ ( , )

N

i i
i

N

x x i i
i

N

y y i i
i

N

xy xy i i
i

w w ξ η

M M ξ η

M M ξ η

M M ξ η









 
(6.26) 

where N represents the nodes of the element.  

All expressions of unknown quantities in terms of interpolation functions are inserted 

into the functional (equation (5.17) in Section 5.3) to obtain the necessary algebraic 

equations among the nodal values. After minimization of the functional by using the 

procedure explained in Section 6.3, the following element matrix for mixed finite 

element formulation of the viscoelastic Kirchhoff plates named VPLT16 and load 

vector can be derived: 

 
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(6.27) 

The explicit form of the submatrices [ki] is defined (for i =1, 2, 3, 4 and 5) by the 

expressions: 

 1

9 18 18 36

18 9 36 18
= ψ ψ =

18 36 9 18

36 18 18 9

i j

A

ab ab ab ab

ab ab ab ab
k dA

ab ab ab ab

ab ab ab ab

 
 
 
 
 
 


 

(6.28) 
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(6.31) 

 

   5 1
=

w
k k k  (6.32) 

where kw is the modulus of the foundation. Here, the submatrix [k5] characterizes the 

interaction between the viscoelastic Kirchhoff plate and Winkler-type elastic 

foundation. In order to obtain a standard viscoelastic Kirchhoff plate bending element, 

one should simply let [k5] = 0. 

In Figure 6.8, a flowchart for a special mixed finite element program that is written in 

Fortran is presented. This program is capable of performing quasi-static and dynamic 

analysis of viscoelastic plates in transformed domain and converting the solutions in 

real time domain. 
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Figure 6.8 : Flowchart for Fortran program. 

When the program is started, a series of statements as a subprogram (or subroutine) is 

called in order. Notice that there are three types of symbols in this flowchart: START 

and END symbols represented as rounded rectangles, processing steps represented as 

rectangles and INPUT/OUTPUT (RESULTS) represented as a parallelogram. A 

subroutine DATA contains structural parameters, load parameters and material 

parameters. A subroutine NODM creating a mesh of finite elements. An INPUT data 

file ask user to enter the type of analysis (such as quasi-static or dynamic), the type of 

loading, the type of inverse transform technique and values of the effective parameters 

of inverse transform techniques. Obtained results in the Laplace-Carson domain are 

transformed into real time domain in a subroutine called INVERSE 

TRANSFORMATION. The results are saved in an output file, the name of which is 

also required at the beginning of the program execution. 
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 INVERSE TRANSFORM TECHNIQUES 

The most important and difficult step to get the solution of viscoelasticity problem is 

inversion which is used to convert the obtained solution from the Laplace domain into 

the real time-domain. Instead of extensive tables are available for inversion, these 

tables by no means cover all cases arising in practice and they are useless. Thus, the 

need arises for numerical methods of inversion of the Laplace transform. According 

to the Krlyov and Skoblya (1969), inversion of the Laplace transform is one of a class 

of so-called improper problems of modern mathematics. These problems possess two 

properties which make their solution very difficult: 

1. They are not solvable for all values of the numerical or functional parameters 

determining the problem. 

2. Small perturbations of these parameters may induce large perturbations in the 

solution. 

For the numerical inversion of Laplace transform using real or complex data, a great 

number of methods have been proposed. Piessens (1975) and Piessens and Dang 

(1976) compiled an almost complete bibliography on the numerical inversion of 

Laplace transform and its applications. There are numerous applications of the 

numerical Laplace transform in wave propagation, structural dynamics, 

viscoelasticity, heat conduction, fluid dynamics and other areas of applied mechanics. 

The study of Narayanan and Beskos (1982) discussed only the applications of the 

numerical Laplace transform in applied mechanics, reviewed various existing methods 

of numerical Laplace transform inversion and classified them into the following three 

groups: 

 Interpolation-collocation methods 

 Methods based on expansion in orthogonal functions 

 Methods based on numerical Fourier transform 

The Maximum Degree of Precision (Krlyov and Skoblya, 1969), Schapery’s 

Collocation (Schapery, 1962) and the multidata method of Cost and Becker (1970) are 
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three algorithms of interpolation-collocation methods. Trigonometric (Papoulis, 

1957), Legendre (Bellman et al, 1966 and Krlyov and Skoblya, 1969) and Laguerre 

functions (Weeks, 1966 and Wing, 1967) are three algorithms of methods based on 

orthogonal function expansion. Direct Fourier transform (Cooley et al, 1970), sine-

cosine transform of Durbin (Dubner and Abate, 1968 and Durbin, 1974) are two 

algorithms of methods based on Fourier transform. Eight algorithms of numerical 

Laplace transform inversion of which are applied certainly for problems with the 

transformed solution being given in numerical form were compared with each other 

with respect to their accuracy and computational efficiency. As a result, the following 

general conclusions were drawn on the basis of this study. 

1) Trigonometric, Legendre and Schapery’s collocation algorithms achieve 

relatively low accuracy with less computer time when compared to Laguerre, 

direct Fourier transform and sine-cosine transform of Durbin algorithms which 

achieve high accuracy with more computer time. 

2) For slowly varying or non-oscillatory functions of time which characterize heat 

conduction or viscoelasticity problems, collocation methods should be 

preferred. However, they furnish acceptable results for very early times only if 

the functions are oscillatory, as it happens in structural dynamics. 

3) Durbin algorithm is the most accurate algorithm for short as well as long time 

solutions when compared to the other studied algorithms. 

These conclusions serve as the basis for algorithms evaluated within the context of this 

thesis for numerical Laplace transform inversion. In this thesis, three algorithms of 

numerical Laplace transform inversion such as Maximum Degree of Precision 

(MDOP), Dubner & Abate and Durbin are systematically discussed with respect to 

their accuracy and applicability. 

 Method of Maximum Degree of Precision (MDOP) 

In this method, the integral (4.11) in Section 4.3 can be approximated by the quadrature 

formula 

1 1

 1  1 
( ) ( ) ( )

n n
km

k k k k
k = k =

p
f t A p A p F

 t  t t
    

(7.1) 
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by substituting 
p

s=
t

 in equation (4.11).  

This method suppose that the regular function F (p) tends to zero to the order of some 

power of 
1

p
 and can be written as: 

1
( ) ( )

m
F p = p

p


 
 
 

 
(7.2) 

where m > 0 and φ (p) is regular. 

The numerical values of the weights Ak and the tabular points pk are given in Krlyov 

and Skoblya (1969). Their values are in complex form and tabulated for n (number of 

terms) = (1, 2, …, 10) and for the power m of 
1 

 
 p

 in equation (7.2) varying from 

0,01 to 3 at steps of 0,01. This method is recommended especially if a value of a 

function at any time is required because this value can be found directly. Other 

methods are time-consuming because there is no way to find the ‘only’ value at the 

desired time. For instance, if the value of a function at time t is desired, (0, t) interval 

is scanned with Δt steps to reach time t. 

 Method of Dubner and Abate 

Dubner and Abate (1968) developed a method to determine the inverse Laplace 

transform numerically based on the finite Fourier Cosine transform. The freedom in 

assigning the parameter ‘a’ provides the basis for a powerful computational method in 

determining the inverse integral. The inversion method of Dubner and Abate assumes 

that f (t) be a real function. By letting s = a + iω, the integrals (4.10) and (4.11) in 

Section 4.3 become: 

  aRe ( ) ( )cos ω- t

0

F s = e f t  t dt


  
(7.3) 

 

 
a2e

( ) Re ( ) cos ω
π

t

0

f t = F s  t dt


  
(7.4) 
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Equations (7.3) and (7.4) give alternative formulas of the Laplace transform and its 

inverse transform for real functions, respectively. An essential feature of the proposed 

method is that the error in the computed inverse transform can be controlled by varying 

the parameter ‘a’ or by the size of the step used. 

Specifically, Dubner and Abate (1968) developed a method of inversion which 

approximates f (t) as: 

 
a

= 1

2e  1  πi  π 
( ) Re (a) + Re (a + ) cos ( )

2

t

k

k k
f t F F  t

T T T

  
   

  
  

(7.5) 

where 
a

a =
T

T
, T is the time interval of the solution, 

 π 

T
 represents the step size. 

Numerically equation (7.5) is valid only for the interval 0 ≤ t ≤ 
2

T
 since the error 

becomes prohibitively large as t approaches T. 

 Method of Durbin 

This method is a modification of the inversion method of Dubner and Abate (1968). 

Since Durbin’s method is compared to the Dubner and Abate’s method, the inversion 

method of Durbin combined both finite Fourier sine and cosine transforms. 

According to the method described by Durbin (1974), the advantage of this modified 

procedure are twofold: 

1. The error bound on the inverse f (t) becomes independent of t, instead of being 

exponential in t. 

2. The trigonometric series obtained for f (t) in terms of F (s) is valid on the whole 

period 2T of the series. 

Durbin (1974) developed a method of inversion which approximates f (t) as: 

   
a 1

=0

2e  1 
( ) Re (a) Re ( ) i ( )

2

j t N -
jk

j k
k

f t F L A k B k W
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   
     

  
  

(7.6) 

with (0,1, 2, ..., -1)j

T
t = j t = j , j = N

N
. 
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(7.7) 

since l = 1, 2, 3, …. Here i is the complex number i = √−1, T is the time interval of 

the solution, N is the equidistant points for which f (t) is required. For this method, we 

take L=1. 

 Comparison of the Methods of Numerical Laplace Transform Inversion 

In this section, the three methods of numerical Laplace transform inversion described 

above are compared on the basis of the following three examples to illustrate the 

numerical accuracy and computational efficiency. The accuracy of the methods for the 

numerical inversion of Laplace transforms significantly depends on the values of some 

parameters. Therefore, these examples also serve to determine the optimum values of 

these parameters. 

The following comparison studies are performed by using a computer program written 

in Fortran language. For comparison, three function of t (i.e., a function of time 

domain) and their Laplace transforms (i.e., a function of s where s is a variable 

denoting Laplace parameter) are considered. To test the numerical inversion 

techniques, the approximate function fa (t) obtained by numerical inversion is 

compared with the exact function f (t). For different values of the independent variable 

t, the accuracy of the various numerical Laplace transform inversion algorithms are 

discussed on the basis of the values of characteristic parameters of each method. 

7.4.1 Example 1 

The first example is for a function: 
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( ) = sin( )
2

t
f t t  

(7.8) 

The Laplace transform of this function is: 

2 2
( ) =

( +1)

s
F s

s
 

(7.9) 

Let’s approve that solution of equation (7.9) for a sequence of values of s has already 

been known and its numerical inversion finally furnishes the time domain response 

has been tried to find out.  

The exact values of f (t) and the approximate values obtained by the application of the 

MDOP method are illustrated in Figure 7.1. The most important parameter in MDOP 

method is m because without knowledge of its value, Ak and pk cannot be determined. 

The other important parameter in this method is n whose increasing values lead to 

higher accuracy. To determine the most suitable values for the effective parameters of 

the MDOP inverse transform technique, different values of n has been considered. As 

illustrated in Figure 7.1, the results obtained using n =10 overlap the exact results. In 

MDOP inverse Laplace transform technique, better numerical results are obtained for 

m = 1 and n = 10. 

 

Figure 7.1 : Effect of the changes in the value of the n parameter. 

This example continues for a function which is unbounded: 
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( ) = cos( )
2

t
f t t  

(7.10) 

The Laplace transform of this function is: 

2

2 2

-1
( ) =

2( +1)

s
F s

s
 

(7.11) 

Let’s approve that solution of equation (7.11) for a sequence of values of s has already 

been known and its numerical inversion finally furnishes the time domain response 

has been tried to find out. The exact values of f (t) and the approximate values fa (t) 

obtained by the application of the MDOP method is tabulated in Table 7.1. 

The format of this example is as follows: the 1st column gives values of the independent 

time variable t and the 2nd column gives approximate values of f (t), so fa (t). The 3rd 

column gives exact values of f (t). This representation is restricted to the interval 0 ≤ t 

≤ 20 s. In this example, the performance of the MDOP method is tested at different 

time intervals of Δt = 0,2; 0,5 and 2 s and the results are compared. It was found that 

the accuracy of this inversion method is independent from the sampling interval Δt. 

Therefore, in Table 7.1, the performance of the MDOP method is illustrated only for 

time intervals of Δt = 0,5 s. 
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 Performance of the MDOP method. 

Time  

(t) 

Approximate  

fa (t) 

Exact  

f (t) 

Time  

(t) 

Approximate  

fa (t) 

Exact  

f (t) 

0,5 0,219 0,219 10,5  -2,494 -2,497 

1,0 0,270 0,270 11,0 0,026 0,024 

1,5  0,053 0,053 11,5 2,776 2,779 

2,0 -0,416 -0,416 12,0  5,046 5,063 

2,5  -1,001 -1,001 12,5 6,189 6,236 

3,0 -1,485 -1,485 13,0  5,816 5,898 

3,5 -1,639 -1,639 13,5 3,921 4,016 

4,0 -1,307 -1,307 14,0 0,932 0,957 

4,5 -0,474 -0,474 14,5  -2,388 -2,573 

5,0  0,709 0,709 15,0 -5,154 -5,698 

5,5 1,949 1,949 15,5 -6,649 -7,583 

6,0 2,880 2,881 16,0  -6,558 -7,661 

6,5  3,174 3,174 16,5 -5,048 -5,795 

7,0 2,639 2,639 17,0  -2,652 -2,339 

7,5 1,300 1,300 17,5 -0,034 1,920 

8,0 -0,582 -0,582 18,0 2,239 5,943 

8,5 -2,559 -2,559 18,5 3,824 8,691 

9,0  -4,100 -4,100 19,0  4,618 9,393 

9,5 -4,736 -4,737 19,5 4,699 7,759 

10,0 -4,194 -4,195 20,0 4,237 4,081 

 

7.4.2 Example 2 

The second example is for a function given by: 

-
2( ) = e cos(2 )
t

f t t  (7.12) 

The Laplace transform of this function is: 

2

1
( + )

2( ) =
1

( + ) + 4
2

s
F s

s

 
(7.13) 

Let’s approve that solution of equation (7.13) for a sequence of values of s has already 

been known and its numerical inversion finally furnishes the time domain response 

has been tried to find out. The exact values of f (t) and the approximate values fa (t) 

obtained by the application of the two algorithms of numerical Laplace transform 

inversion as Dubner & Abate and Durbin are illustrated in Figure 7.2 and Figure 7.3, 

respectively. 
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In these methods, the parameters which affect the inversion results are N and aT. For 

this example, the value of aT is increased in order to determine the optimum value of 

this parameter. 

The time interval for which we require f (t) is 0 ≤ t ≤ 25 s, therefore we take T = 50 s. 

f (t) is computed for N = 100 equidistant points. In other words, the desired sampling 

interval is Δt = T / N = 0,5 s. The values of aT were chosen as 5, 8 and 10 because 

these values have been used by Dubner and Abate (1968) to test the performance of 

the numerical Laplace inversion method. In addition, Durbin (1974) implied that if the 

value of aT is chosen from 5 to 10, good results are obtained. 

The results illustrated in Figure 7.2 show that fluctuation scattering increases as aT in 

Dubner and Abate’s inverse transform technique increases. For instance, in Dubner & 

Abate’s inversion method, reasonably accurate results can be obtained up to t = 35 s if 

aT = 8 and departure from the exact solution is relatively small whereas the time is 

decreases up to t = 25 s if aT = 10. In addition, the approximate values fa (t) overlap 

with the exact values f (t) for aT = 5. 

 

Figure 7.2 : Effect of the changes in the value of the aT parameter in Dubner & 

Abate. 

The results illustrated in Figure 7.3 show that the approximate values fa (t) obtained 

through the application of the Durbin’s inversion method tend to infinity as time 

increases. In addition, departure from the exact solution increases for increasing values 
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of aT. For instance, departure is observed for t > 40 s as aT = 5, for t > 35 s as aT = 8 

and for t > 25 s as aT = 10. 

 

Figure 7.3 : Effect of the changes in the value of the aT parameter in Durbin. 

7.4.3 Example 3 

The last example is presented to illustrate the approximation of a function having a 

jump discontinuity: 

( ) = ( - 5) - ( -15)f t H t H t  (7.14) 

The Laplace transform of this function is: 

-5 -10(1- )
( ) =

s se e
F s

s
 (7.15) 

Let’s approve that solution of equation (7.15) for a sequence of values of s has already 

been known and its numerical inversion finally furnishes the time domain response 

has been tried to find out. The accuracy and efficiency of the Dubner & Abate’s and 

Durbin’s methods proposed for the numerical inversion of Laplace transforms are 

compared on the basis of the choice of parameter N which greatly affects their 

accuracy. 

In general, the calculation time of each value of f (t) depends entirely on how many 

terms one takes. N is the total number of terms of interest in the time interval. In this 

representation, the interval for which we require f (t) is 0 ≤ t ≤ 25 s. Therefore, we take 
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T = 50 s. The value of the parameter aT used in this example is aT = 5 due to the 

reasons already mentioned in the previous example. 

In Figure 7.4 and Figure 7.5, the exact values of f (t) and the approximate values fa (t) 

obtained by the Dubner & Abate’s and Durbin’s numerical inversion techniques, 

respectively are compared for different number of terms of interest. The results are 

discussed for the cases that number of terms (N) are taken as: 100, 250 and 500.  As 

illustrated in Figure 7.4, the fluctuation scattering decreases as N in Dubner and 

Abate’s inverse transform technique increases. 

 

Figure 7.4 : Effect of the changes in the value of the N parameter in Dubner & 

Abate. 

In addition, it was observed that if f (t) is computed for N = 100 equidistant points, 

significant departures from the exact solution occur for t > 35 s in Durbin’s inverse 

transform technique. On the other hand, for N = 500 terms, the time can be increased 

significantly up to t > 45 s as illustrated in Figure 7.5. 
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Figure 7.5 : Effect of the changes in the value of the N parameter in Durbin. 
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 ILLUSTRATIVE EXAMPLES AND DISCUSSION 

In this section, the application of the proposed mixed finite element formulation to a 

variety of quasi-static and dynamic problems is illustrated. In numerical computation, 

a plate with length Lx = 4m , width Ly = 4m and thickness h, simply supported on all 

edges as shown in Figure 8.1 and subjected to time-dependent loads in the form of a 

step-function, sinusoidal impulsive, rectangular impulsive and wave-type as shown in 

Figure 8.2 has been analyzed. 

 

Figure 8.1 : Geometrical properties of the simply supported plate subjected to a 

uniform pressure load q = q (x, y). 
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Figure 8.2 : Time histories of external loads. 

Due to symmetry, the computations are carried out in one quarter of the plate as shown 

in Figure 8.1. In all numerical examples, the values of displacements and bending 

moments’ amplitudes are given at the center point of the plate. The displacement and 

time are measured in meters (m) and seconds (s), respectively. 

For modeling the behavior of viscoelastic plate material, five different rheological 

models as illustrated in Figure 8.3 are utilized. The Kelvin model seen in Figure 8.3 

(a) is one of the simple spring-and-dashpot model. Here, three-element models and 

four-element models are also discussed to provide some insight into the creep and 

relaxation characteristics of viscoelastic responses. There are two three-element 

models, as shown in Figure 8.3 (b) and (c). In the first one, an extra linear spring 

element is added in series to the Kelvin model, and in the second one a spring element 

is added in parallel to the Maxwell element. There are two four-element models, as 

shown in Figure 8.3 (d) and (e). The first one degenerates into the Kelvin model when 

its components parts are made equal and the second one is obtained by connecting the 

Maxwell element in parallel with the Kelvin element. 
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Figure 8.3 : Rheological models: mechanical analog for the Kelvin (a),Three-

parameter-solid (b), Zener (c), Kelvin-chain (d) and Four-parameter-solid (e) model. 

The Maxwell model has an initial elastic response to a suddenly applied stress, 

however the material described by the Maxwell model shows a typical property of a 

fluid: its capability of unlimited deformation under finite stress. The displacement of 

Kelvin, three-element, and four-element models approaches a finite value as t → ∞. 

Note that Kelvin model and four-element models do not have an initial elastic response 

to a suddenly applied stress, however the three-element models have an elastic 

response to a suddenly applied stress. Therefore, three-element models also known as 

the standard linear solid. 

The creep compliance function that describes, in a certain way, stress-strain behavior 

of the material is listed in Table 8.1 for each rheological model.  
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Table 8.1 : Creep compliance functions of viscoelastic material models. 

Material 

Models 

Ceep Compliance Functions J (t) 

Kelvin 

Model 
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The analysis was performed with the aid of a coded computer program in Fortran 

language. 

 Example 1 

The performance of the developed computer program is tested through this example. 

This program consists of two parts, elastic and viscoelastic. As a first step, the elastic 

part is tested. 

A plate is subjected to a Type I load of q0 = 10 kPa and a Type I point load P0 = 100 

kN separately. The material properties are E = 3×107 kPa and υ = 0,3. The 
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displacement values at the center of the elastic plate are computed for different orders 

of mesh schemes, 2×2, 4×4, 6×6 and 8×8, and the results are presented in Figure 8.4 

(a) - (b). The results are compared with existing results in the literature in order to 

determine the most suitable mesh scheme. For the theoretical results of elastic plates, 

see Timoshenko and Woinowsky-Krieger (1959). 

 

(a) 

 

(b) 

Figure 8.4 : Comparison of theoretical and calculated deflection results under Type I 

loading (a) distributed load, (b) point load. 
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Simulations show that if the mesh gets finer, the results of the developed mixed finite 

element solution show good agreement with the theoretical results. However, an 

increase in the number of mesh cells naturally increases the time of computer solution. 

As illustrated in Figure 8.4 (a) - (b), the 4×4 mesh scheme results are very satisfactory 

and this scheme has the advantage of saving time. Therefore, through this study, the 

results of the 4×4 mesh scheme are considered in all numerical examples. 

Once the results of elastic plates and the most suitable mesh scheme for the solution 

are obtained, the performance of the viscoelastic part of the developed program is 

tested for the elastic plates. 

The viscosity coefficient, η, is set to zero in the developed viscoelastic computer 

program in order to obtain the results of the elastic plate. The results of the elastic 

plates obtained from the developed viscoelastic plate program are given in Figure 8.5 

for the Type I load of q0 = 10 kPa for aT = 5, N = 100 and T = 20 s. The numerical 

results show an excellent agreement with the theoretical results of elastic plates. Thus, 

it is proved that the performance of the developed viscoelastic computer program is 

efficient. 

 

Figure 8.5 : The displacement-time variation of the center point of an elastic plate. 
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changed, fluctuation is observed in Dubner and Abate’s and Durbin’s inverse 

transform techniques. In addition to aT, the results depend also on parameter N. The 

error in the solution decreases as the value of N increases. This example is solved for 

a Kelvin solid employing MDOP, Dubner and Abate’s and Durbin’s inverse transform 

techniques for different values of aT (aT = 5, 10 and 20, respectively). The time 

variation of the bending moment and displacement of the center point under the      

Type I load of q0 = 10 kPa are computed for N = 50 and T = 100 s. The results are 

presented in Figure 8.6 for the following material properties: E = 3×107 kPa; η = 3×107 

kPa s and υ = 0,3. 

It is observed that the results of the MDOP method are independent of aT. However, 

fluctuation is observed in the Dubner and Abate’s and Durbin inverse transform 

methods when aT takes values bigger than 10. As observed from Figure 8.6, the 

fluctuation scattering increases as aT in Dubner and Abate’s inverse transform 

technique increases. Fluctuation is observed for t > 20 s as aT = 20 and for t > 30 s as 

aT = 10 in Dubner and Abate’s and Durbin’s methods. If the time histories of the 

external loads in applications are considered, it is clearly seen that the behavior up to 

maximum 10 seconds is our interest. So throughout this study, all examples are solved 

for the values of aT less than or equal to 10. For the next examples, problems are solved 

for aT = 5 or 10 and N = 100 or 200 to decrease the fluctuation and the error in the 

solutions. 
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Figure 8.6 : Effect of the changes in the value of the aT parameter. 
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 Example 3 

A plate is subjected to different loads, and the time histories are illustrated in Figure 

8.2. Kelvin solid model is employed. The material properties are assumed to be as 

follows: E = 3×107 kPa; η = 3×107 kPa s and υ = 0,3. For the numerical inversion, the 

MDOP, Dubner and Abate’s and Durbin’s transform techniques are used. The time-

dependent displacement and bending moment at the center of the plate are computed 

for aT = 5, N = 100 and T = 20 s and presented in Figure 8.7. 

This example is solved for the η (viscosity coefficient of the material) / E (modulus of 

elasticity of the material) ratio being equal to one. 

The success of the MDOP, Dubner and Abate’s and Durbin’s methods is tested for the 

Type I, Type II for t0 = 2 s, Type III for t0 = 10 s and Type IV for t0 = 10 s loads. It is 

observed that the MDOP method gives good results for the displacement variation as 

compared to the bending moment variation. Fluctuation is observed in the time-

dependent bending moment at the center of the plate as time increases in the MDOP 

inverse transform technique. Therefore, the time variation of the bending moment is 

presented only for the Dubner and Abate’s and Durbin’s inverse transform methods. 

When the time variation of the bending moment at the center point is considered, it is 

observed that Durbin’s method gives perfect results compared to Dubner and Abate’s 

method for the Type III and IV loads. Since little fluctuation exists in the Dubner and 

Abate’s method as time increases, the results are not shown in the next examples. 

 

 

 



108 

 

 

 

 

 

Figure 8.7 : The displacement and bending moment-time variation results for the 

damping ratio η/E =1. 
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Figure 8.7 (continued): The displacement and bending moment-time variation 

results for the damping ratio η/E =1. 
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Figure 8.7 (continued): The displacement and bending moment-time variation 

results for the damping ratio η/E =1. 

 Example 4 

The problem is solved for a Kelvin solid employing different η/E ratios in order to 

show the damping effect in displacement variation of the center point. In the numerical 

process, the material properties of the plate are assumed to be E = 3×107 kPa and             

υ = 0,3. When the viscosity coefficient decreases, the time-dependent displacement 

behavior of the plate approaches the elastic behavior as expected. The results are given 

in Figure 8.8 only for the Type III load employing Durbin’s inverse transform 

technique for aT = 5, N = 100 and T = 20 s. 
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Figure 8.8 : Effect of different η/E ratios. 

 Example 5 

In this example, the problem is solved for the Kelvin solid model employing Durbin’s 

inverse transform technique for aT = 5, N = 100 and T = 20 s. A viscoelastic plate with 

the following properties E = 3×107 kPa; η = 3×107 kPa s and υ = 0,3 is subjected to a 

Type I point load P0 = 100 kN. The displacement values at the center of the viscoelastic 

plate are computed for the 4×4 mesh scheme. The results of the developed mixed finite 

element viscoelastic Kirchhoff plate program and the theoretical results of viscoelastic 

plates under point load are presented in Figure 8.9. The numerical results show an 

excellent agreement with the theoretical results of viscoelastic plates. Thus, it is proved 

that the performance of the developed viscoelastic computer program is efficient. 

 

Figure 8.9 : Comparison of theoretical and calculated deflection results of 

viscoelastic plates under point load. 
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Moreover, in this example different η/E ratios are considered in order to show the 

damping effect in displacement variation of the center point of the viscoelastic plate 

under Type I point load P0 = 100 kN. The results are given in Figure 8.10. 

 

Figure 8.10 : Effect of the different η/E ratios under point load. 

 Example 6 

This example is solved for a Three-parameter-solid model under the Type III load 

employing Durbin’s inverse Laplace transform technique for aT = 5, N = 100 and           

T = 20 s. In the numerical process, the material properties are assumed to be as follows: 

E = 3×107 kPa and υ = 0,3. The time-dependent displacement at the center of the plate 

is presented in Figure 8.11 for the damping ratio (η/E) equal to 1,5. 

 

Figure 8.11 : Variation of different E/E1 ratio curves when the damping ratio equals 

to 1,5. 
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The results are presented for different E/E1 ratios, and the time-dependent 

displacements are compared with the previous example’s results (the curve 

corresponds to the damping ratio equal to 1,5 in Example 4, Section 8.4). As expected, 

the E/E1 ratio increases as the E1 value of Three-parameter-solid model decreases, and 

the results of the Three-parameter-solid model coincide with those of the Kelvin solid 

model. 

 Example 7 

The main objective of this example is to make comparison between different 

rheological models. One of the primary interests in rheology is to understand the 

advantages and disadvantages of the existing rheological models because rheological 

models can explain and predict various viscoelastic properties of materials. In this 

example, an analysis of three viscoelastic solid models are carried out: the Kelvin 

model, the three-parameter-solid model and the Zener model employing Durbin’s 

inverse Laplace transform technique for aT = 5, N = 100 and T = 20 s. All three 

viscoelastic models studied in this example contain two common parameters, the 

Young’s modulus of linear elastic springs (E and E1) and the viscosity coefficient of 

linear viscous dashpot (η). Figure 8.12 shows the results of time-dependent 

displacement at the center of the plate, which is subjected to load Type III for t0 =10 s, 

constituted individually by the following material models with the following 

properties: Kelvin: E = 3×107 kPa, η = 3×107 kPa s, υ = 0,3; Three-parameter-solid 

and Zener: E = E1 = 3×107 kPa, η = 3×107 kPa s, υ = 0,3. 

 

Figure 8.12 : Comparison between different rheological models. 
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A noticeable thing in Figure 8.12 is that the maximum displacement of the Three-

parameter-solid model is two times bigger than those of the Kelvin and Zener models. 

It should be noted that the Kelvin model often prove insufficient, however; the Kelvin 

model does not describe the stress relaxation and does not exhibit the instantaneous 

elasticity, which is associated with a solid. Therefore, it is more convenient to use 

three-element models (Three-parameter-solid and Zener models) to provide good 

representations of viscoelastic solid behavior. 

This apparent result leads to an important conclusion: comparing the Three-parameter-

solid model and Zener model, it is seen that the plate structure constituted by the Zener 

model is stiffer than the plate structure constituted by Three-parameter-solid model. 

It is also possible to reach the same displacement value by changing the material 

parameters of the Three-parameter-solid model. However, the deformation 

characterization of these materials will be different because of the arrangement of the 

elements and it should be evaluated by experiment. 

 Example 8 

Plate-foundation interaction problems has been an important research topic in 

engineering fields. In many practical engineering applications, Winkler elastic 

foundation model (Winkler, 1867), which idealizes the soil as a series of isolated 

springs, provides satisfied results. In order to show the effect of elastic foundation on 

quasi-static behavior of a viscoelastic Kirchhoff plate, a plate constituted by the Zener 

model (E = E1 =3×107 kPa, η = 3×107 kPa s, υ = 0,3) and subjected to load Type I and 

resting on a Winkler foundation with the stiffness kw = 1000 kPa / m is considered. For 

numerical inversion, Durbin’s inverse Laplace transform technique is employed for  

aT = 5, N = 100 and T = 20 s and time-dependent displacement values are depicted in 

Figure 8.13 for two different cases: 

 Case 1: a viscoelastic plate with no foundation 

 Case 2: a viscoelastic plate resting on elastic foundation 

Results are quite reasonable. It can be seen that the time-dependent displacement 

values at the center of the plate decreases when it is supported by an elastic foundation. 
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Figure 8.13 : Time-dependent displacement response of a viscoelastic Kirchhoff 

plate with or without elastic foundation interaction. 

 Example 9 

The purpose of this example is investigation of the link between the Kelvin-chain 

model and the Kelvin model. Here the Kelvin-chain model which consists of two 

Kelvin units in series is analyzed. The problem is solved under the load Type I 

employing Durbin’s inverse Laplace transform technique for aT = 5, N = 100 and           

T = 20 s. The material coefficients are chosen as follows:  

 Kelvin-chain model: E = E1 = 3×107 kPa, η = η1 = 3×107 kPa s, υ = 0,3 

 Kelvin model: E = 3×107 kPa, η = 3×107 kPa s, υ = 0,3 

Figure 8.14 depicts the comparison between the Kelvin-chain model and the Kelvin 

model. Regarding the behavior in Figure 8.14, a plate modeled with the Kelvin-chain 

rheological model results in larger values of displacement than a plate modeled with 

the Kelvin rheological model due to the arrangement of the springs. As expected, if 

the springs are in series combination, the equivalent stiffness is equal to the reciprocal 

of sum of the reciprocal stiffness’s of individual springs. One may extend this result 

to Kelvin chains of any length. In general, the longer the chain is, the greater the 

deformation there are. 
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Figure 8.14 : Comparison between the two adopted viscoelasticity models. 

 Example 10 

For evaluating the effect of variation of the height of the cross-section along sections 

A-A and B-B on the quasi-static response of viscoelastic plate, two uniformly varying 

thickness problems are solved. Thickness at the corner sides of the plate hc = 0,1 m 

and at the center of the plate along section A-A hmy = 0,1 m is held constant, whereas 

the thickness at the center of the plate along section B-B is (b) hmx = 2hc, (c) hmx = 4hc 

(as in Figure 8.15), respectively. 

 

Figure 8.15 : Simply supported plate of variable thickness. 
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A viscoelastic plate with variable thickness constituted by the Kelvin-chain model and 

subjected to load Type V (t0 = 5 s) with an amplitude q0 = 100 kPa is considered. The 

parameters of the Kelvin-chain viscoelastic material are E = E1= 6×107 kPa, η = η1= 

6×107 kPa s and υ = 0,3. The problem is solved employing Durbin’s inverse Laplace 

transform technique for aT = 5, N = 200 and T = 40 s. 

Figure 8.16 displays the variation of displacement at the center of the plate: (a) Plate 

with constant thickness along sections A-A and B-B, (b) and (c) Plate with variable 

thickness: Thickness is constant along section A-A and uniformly increasing from 

supports to the center of the plate along section B-B. As expected, an increase in the 

value of plate thickness at the center of the plate along section B-B exerts the decrease 

in the central displacement response. Results are quite reasonable and show that the 

variable thickness formulation is reliable. The programming procedure is very simple 

for variable cross-sectional plates. 

 

Figure 8.16 : Variation of time-dependent displacements at the center of the 

viscoelastic plate with constant thickness (a) and with variable thickness (b) and (c). 

 Example 11 

In this example, viscoelastic Kirchhoff plate constituted by the Four-parameter-solid 

model is analyzed. The material properties are assumed to be as E = E1 =3×107 kPa 

and υ = 0,3.  

In general, four-element models have found numerous applications, especially in geo-

sciences, see e.g., the books by Klausner (1991) and Carcione (2007). 
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For evaluating the effect of material parameters on the quasi-static response of 

viscoelastic thin plates subjected to load Type II (t0 = 5 s) with an amplitude q0 = 10 

kPa, each unit with different parameter values are considered. Dubner & Abate inverse 

Laplace transformation algorithm for aT = 5, N = 150 and T = 30 s is used for coming 

back to time domain solutions. 

Figure 8.17 shows the variation of the central displacement values of the plate with 

respect to the time for different η/E and η1/E1 ratios. 

 

Figure 8.17 : Effect of different η/E and η1/E1 ratios. 

The η/E and η1/E1 ratios decrease as the viscosity coefficient values of the Maxwell 

structure and the Kelvin structure decrease, respectively. It is well known that the 

dashpot or viscous element will cause a time delay in the mechanical response of the 

material. The time-dependent displacement response of a plate reaches 2,77 mm in 5 

seconds if the η/E ratio equals to η1/E1  ratio. Whereas, at t0 = 5 s, the amplitude of the 

displacement response of a plate is 3,3 mm with the minimization of the dashpot’s 

efficiency of the Maxwell structure and is 3,37 mm with the minimization of the 

dashpot’s efficiency of the Kelvin structure. As expected, decreasing the viscosity in 

the dashpot resulting in greater extensions. However, it is worth noting that even if the 

viscosity coefficient values of the Maxwell and Kelvin structures are decreased in the 

same ratio, remarkable changes in deformation behavior of material occurred. 
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 Example 12 

In this example, the quasi-static response of the viscoelastic plate under different 

wave-type loadings is considered. Figure 8.18 shows the time-dependent displacement 

at the center of the plate constituted by the Four-parameter-solid model for the load 

Type VI (t0 = 5 s) with an amplitude q0 = 10 kPa. The parameters of the viscoelastic 

material are E = E1 = 3×107 kPa and υ = 0,3. 

 

Figure 8.18 : The displacement-time variation results of viscoelastic plates under 

wave-type loading Type VI employing Durbin’s method. 

The results of the plate constituted by the three parameter-solid model under the load 

Type VII (t0 =10 s) with an amplitude q0 = 10 kPa are presented in Figure 8.19 for the 

following material properties: E = E1 = 6×107 kPa, η = 6×107 kPa s and υ = 0,3. 

 

Figure 8.19 : The displacement-time variation results of viscoelastic plates under 

wave-type loading Type VII employing Durbin’s method. 
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These problems are solved employing MDOP, Dubner & Abate’s and Durbin’s inverse 

transform techniques. Since little fluctuation exists in the MDOP and Dubner & 

Abate’s inverse transform methods as time increases, the results are presented only for 

the Durbin’s inverse transform method for aT = 5, N = 200 and T = 40 s. From the 

analysis results shown in Figure 8.18 and Figure 8.19, it would be reasonable to 

conclude that Durbin’s inverse transform technique works well for periodic type 

loadings (i.e., wave-type loadings). 

 Example 13 

In this example, the dynamic response of a simply supported viscoelastic plate              

(Lx = Ly = 4 m and h = 0,1 m) is considered. For the analysis, the Kelvin solid model 

is employed. The problem is solved for the Type I load of q0 = 10 kPa, using the 

MDOP, Dubner and Abate’s and Durbin’s inverse transform techniques for aT = 5,     

N = 200 and T = 0,2 s. The material density ρ is defined as the mass density per unit 

volume of the plate, and it is assumed to be 2000 kg/m3; and we also take E = 3×107 

kPa and υ = 0,3. In order to determine the frequency of vibration, free vibration 

analysis is carried out for (m = 1 and n = 1). The effect of the increasing viscosity 

coefficient η on the transient response and the frequency of vibration is shown in 

Figure 8.20. 

When η is assumed to be 1500 kPa s, the vibration period, T, of the plate equals to 

0,0435 s. The vibration behavior of the viscoelastic plate resembles the vibration of an 

elastic plate for small values of the viscosity coefficient. This result is compared with 

the existing studies done by Leissa (1969), Craig and Kurdila (2006) and provides 

theoretical validation for the use of the vibration frequency of elastic plates (see 

Equation (8.1) for a review): 
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Figure 8.20 : Effect of viscosity coefficient on the vibration period and amplitude of 

displacement. 

22

m n
=

x y

D
ω

h L L

    
           

 
(8.1) 

where 

3

2
=

12(1 )

Eh
D

υ
 

(8.2) 

If D is substituted in Equation (8.1), then 

22

2

2π m n
=

12(1 )
x y

E
ω h

T υ L L

    
             

 
(8.3) 

is obtained. 
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When the viscosity coefficient is assumed to be 30000 kPa s, the viscoelastic plate 

shows vibration in the same period as the elastic plate, and the time behavior under the 

Type I load is illustrated in Figure 8.20. As it is known, the period of vibration depends 

on the viscosity coefficient, and a change in the value of free vibration period is 

expected when the viscosity coefficient is increased. However, it is observed that when 

the viscosity coefficient takes any value between 1500 and 30000, the viscoelastic 

plate will vibrate in the same period as the elastic plate. 

Moreover, this example shows the effect of the thickness variation on the dynamic 

behavior of the viscoelastic plates. The material density ρ is taken as 2000 kg/m3, η is 

assumed to be 1500 kPa s, υ = 0,3 and E = 3×107 kPa. The thickness of the plate, h, is 

assumed as 0,01 m. The results are presented in Figure 8.21 for aT = 5, N = 200 and   

T = 1 s. It is observed that decreasing the thickness of the plate element does not cause 

shear locking. 

 

Figure 8.21 : Effect of plate thickness on the vibration period and amplitude of 

displacement. 

In addition, the vibration period is inversely proportional to the thickness, as expected. 

If the thickness of the plate is changed from 0,1 m (the results are presented in Figure 

8.20) to 0,01 m, according to Equation (8.3), the vibration period of the plate becomes 

T1 = 10 T and equals to 0,435 s as seen in Figure 8.21. This is a very important result 

to show that the new solution method is free from shear locking. It is impossible to 

obtain similar results using the well-known classical finite element method (see Bathe, 

1982 and Reddy, 1993). 
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 Example 14 

In this example, the problem is solved for the Kelvin solid model employing Dubner 

and Abate’s and Durbin’s inverse transform techniques. The material density ρ is 

assumed as 2000 kg/m3, the viscosity coefficient η is assumed as 3000 kPa s, and           

E = 3×105 kPa. The dynamic behavior of the viscoelastic plate under the rectangular 

impulsive load is illustrated in Figure 8.22 for aT = 5, N = 200 and T = 4 s. The time-

dependent displacement amplitude at the center of the plate is continuous, whereas 

their derivatives show discontinuity at the time the load is removed (t0 = 1 s).When      

t > 1 s, the plate starts to vibrate in the reverse direction. 

 

Figure 8.22 : Dynamic behavior of Kelvin solid model. 

 Example 15 

In this example, the influence of elastic foundation stiffness parameter kw on the 

displacement response and the natural frequency of vibration of simply supported 

viscoelastic plates has been investigated under Type I load of q0 = 10 kPa. For 

modelling the behavior of a viscoelastic plate material, three-parameter-solid model is 

employed for the following material properties: E = E1 = 6 ×107 kPa, η = 60000 kPa s 

and υ = 0,3. The material density of the plate ρ is assumed as 2000 kg/m3. The results 

for the viscoelastic plates without any elastic foundation and with Winkler-type elastic 

foundation are presented in Figure 8.23 employing Durbin’s method for aT = 5,              

N = 200 and T = 0,2 s and it can be observed that the higher the value of kw, the lesser 

the amplitude and time period of response. In the case of viscoelastic plate-Winkler 

elastic foundation interaction, results are sensitive to modulus of foundation reaction. 
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Figure 8.23 : Effect of foundation interaction on the vibration period and amplitude 

of displacement. 

As in Example 13, vibration behavior of the viscoelastic plate resting on elastic 

foundation resembles the vibration of an elastic plate resting on elastic foundation for 

small values of the viscosity coefficient. This result provides theoretical validation for 

the use of the natural frequencies of vibration ωmn of an elastic thin plate on elastic 

foundation, simply supported on all the edges, presented by Leissa (1969) and Rao 

(2007): 
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 CONCLUSIONS AND RECOMMENDATIONS  

In this thesis, it is focused on the quasi-static and dynamic analysis of linear 

viscoelastic plates considering the Kirchhoff hypothesis with the mixed finite element 

method in the Laplace-Carson domain. Using the hereditary integral form of the 

viscoelastic constitutive law and assuming that the Poisson ratio is constant: 

i. The field equations of Kirchhoff plates in the Laplace-Carson domain are 

obtained. 

ii. A new functional, which has geometric (essential) and dynamic (natural) 

boundary conditions in addition to displacement and stress variables in the 

Laplace-Carson domain, is constructed through a systematic procedure based 

on the Gâteaux differential method. 

iii. A special mixed finite element program is developed in Fortran programming 

language. Since the first derivatives of the variables exist in the functional, the 

conforming element formulation for the shape function ѱ must satisfy only C0 

(r) continuity. 

iv. In order to transform the solutions obtained in the Laplace-Carson domain to 

the real time domain, various transform techniques are adopted. In particular, 

Maximum Degree of Precision (MDOP), Dubner & Abate and Durbin methods 

are employed. The performance of the methods are tested through various 

quasi-static and dynamic problems. 

v. Various viscoelastic material models are discussed for the plate structure to 

read from them possible patterns of viscoelastic behavior. In this respect, 

starting with the simplest and most common used mechanical (rheological) 

models such as the Maxwell and Kelvin models, more advanced mechanical 

models characterized by three or four parameters, that are referred to as Three-

parameter-solid, Zener, Kelvin-chain and Four-parameter-solid models are 

considered. 

vi. The influences of the load, geometry and material parameters on the 

viscoelastic response of Kirchhoff plates are discussed by numerical example 

problems in detail. 
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The unique aspects of this thesis study and the possible contributions of the proposed 

method to the literature can be summarized as follows: 

 By using this new functional, moment and shear force values that are important 

for engineers can be obtained directly without any mathematical operation. 

 Geometric and dynamic boundary conditions can be obtained easily and a field 

variable can be included to the functional systematically. 

 This presented formulation avoids shear locking. 

 The results are quite in agreement with each other for a simply supported plate. 

The calculation is accomplished for different orders of mesh schemes, 

beginning with 2×2 and ending with 8×8. The 4×4 mesh scheme results are 

very satisfactory and this scheme has the advantage of saving time. 

 Two parameters control the flow of the numerical precision: aT and N, where 

a is the constant in numerical inverse Laplace transforms, T is the solution 

interval and N is the total number of terms of interest in the time interval and 

time increment is defined as Δt = T / N in numerical precision. The results of 

the MDOP method are independent of aT and N. However, fluctuation 

scattering increases as aT in Dubner & Abate method increases and N in 

Dubner & Abate method decreases. Moreover, departure from exact solution 

increases for increasing values of aT and decreasing values of N in Durbin 

method. Satisfactory results can be obtained if the value of aT is chosen in the 

range 5-10 and N is chosen in the range 100-200. 

 The MDOP method gives good results for the displacement variation as 

compared to the bending moment variation. Fluctuation is observed in the time-

dependent bending moment as time increases in the MDOP inverse transform 

technique. 

 When the time variation of the bending moment is considered, Durbin’s 

method should be preferred over Dubner & Abate’s method since it provides 

very good results not only for early times but also for later times. 

 The quasi-static and dynamic responses of viscoelastic plates are investigated 

for various types of loading, such as a point load, a step load, a gradual step 

load, a rectangular impulsive load, a sinusoidal impulsive load, a triangular 

impulsive load, a square wave-type loading and a half rectified sine wave-type 

loading. 
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 Since the loading of the problem is not constant but varies in time, numerical 

inversion methods based on the sine-cosine transform are much more efficient. 

 Special attention was devoted to the rheological models of linear 

viscoelasticity. 

a) It is more convenient to use three-element models (Three-parameter-

solid and Zener models) instead of Kelvin model to provide good 

representations of viscoelastic solid behavior. 

b) The plate structure constituted by the Zener model is stiffer than the 

plate structure constituted by the Three-parameter-solid model. 

c) The Kelvin-chain model consists of a chain of Kelvin units is 

considered. The longer the chain is, the greater the amount of 

deformation. 

d) The Four-parameter-solid model is also considered. As expected, 

decreasing the viscosity in the dashpot resulting in greater extensions. 

However, it is worth noting that even if the viscosity coefficient values 

of the Maxwell and Kelvin structures are decreased in the same ratio, 

remarkable changes in deformation behavior of material occurred. 

 The mixed finite element formulation introduced in this thesis is also 

applicable to the viscoelastic plate-elastic foundation interaction problems. The 

quasi-static and dynamic analysis of viscoelastic Kirchhoff plates resting on 

Winkler foundation is performed and reasonable results are obtained. 

 Uniform variation of the thickness of the plate is also included into the mixed 

finite element formulation of the VPLT16. 

 The free vibration period of a viscoelastic plate is obtained by the proposed 

mixed finite element model. 

 A viscoelastic plate vibrates in the same period as does elastic plate for small 

values of viscosity coefficient, as expected. 

 The free vibration period of a simply supported viscoelastic plate is inversely 

proportional to the thickness. Results are in good agreement with the periods 

of elastic plates in the literature for all thicknesses. 

 Using different types of time-dependent loads and viscoelastic material models 

enhances the accuracy and applicability of the presented results for subsequent 

studies. 
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 It is expected that the results reported in this thesis may serve as a benchmark 

for future studies.  

 The approach introduced can be applied for the higher order plate theories as 

well as shell theories. Following the described methodology, some of these 

problems are under study. 
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